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Abstract 

Terrestrial vegetation plays a significant role in climate balance and biogeochemical 
cycling. The feedback interactions between the biosphere and atmosphere and the 
identification of mechanisms which maintains these interactions is one of today’s 
scientific priorities in view of the climate change debate. However, the methods to 
assess these interactions operationally are widely criticized. The present attempts to 
validate the algorithms are biased towards temperate and neotropical areas. In this 
context, the present study assesses the implementation of an alternative algorithm in 
an old world tropical biodiversity hotspot.  

 
The model is formulated by taking into consideration of the local environmental 

conditions. The maximum light use efficiency of vegetation types (ε0), and the 

controlling factors which limits ε0, the amount of incident PAR and fraction of PAR 
that canopy absorbs are combined together to estimate the carbon assimilation. The 
result is compared with the existing operational algorithm (MODIS GPP product) 
and the difference is analysed in terms of structure of algorithm and resolution of 
input datasets. 
 
The results indicated that the lower elevation tropical wet evergreen forest 
assimilates the highest amount of carbon whereas montane grasslands assimilate 
lowest level of carbon. Tropical deciduous forests showed an assimilation rate which 
was almost equal to evergreen forest during wet season. The comparison with 
globally derived estimate (MODIS GPP product) showed that both the estimates are 
significantly different. The change in magnitude of estimate was not because of 
algorithm difference, but it was due to the resolution of the input datasets. The 
estimates using global datasets of 10 resolution was almost three times higher than 
the estimates using ground measurements.  
 
The study leads to several ecological insights and practical implications in the 
carbon assimilation monitoring. Daily data at 500 m resolution by MODIS is quite 
reasonable to understand the spatial and temporal dimensions of vegetative surfaces. 
Advanced vegetation index such as EVI can outperform conventional index like 
NDVI. Soil moisture condition could be adequately represented by MODIS 
shortwave infrared indices. Physical constraints can limit carbon assimilation 
capacity of vegetation types. GPP estimation in heterogeneous mountain areas needs 
high resolution temperature and IPAR datasets. Resolution of the input datasets 
plays a major role rather than algorithm in carbon assimilation estimation. 
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1. Introduction 

1.1. General Research background 
 
The earth’s climate is determined by a number of complex connected physical, 
chemical and biological processes occurring in the atmosphere, land and ocean. The 
radiative properties of the atmosphere, a major controlling factor of the earth’s 
climate, are strongly affected by the biophysical state of the earth’s surface and by 
the atmospheric abundance of a variety of trace constituents. The relations between 
these two components are generally nonlinear and may produce negative or positive 
feedbacks to the climate system. A wide range of direct and indirect measurements 
confirm that the atmospheric mixing ratio of CO2 has increased globally by about 
100 ppm over the last 250 years, from a range of 275 to 285 ppm in the pre-
industrial era (AD 1000–1750) to 379 ppm in 2005 (IPCC 2007). Since the 
beginning of continuous measurements of the atmospheric CO2 concentration at the 
end of the 1950s (Keeling 1960), the average rate of increase is 1.4 ppm/yr (IPCC 
2007). Some of the possible biogeophysical effects of this increase includes 
extinction of species especially endemics (Thomas et al. 2004, Ishigami et al. 2005, 
Malcolm et al. 2006), migration of boreal forest northward into tundra (Otterman et 
al. 1984, Brovkin et al. 2003, IPCC 2007) and shift of tropical rainforest to savannah 
(Dickinson and Henderson-Sellers 1988, Sukumar 1995). 
 
Terrestrial ecosystems absorb approximately 60 Gt of carbon annually while 
releasing the same amount (Janzen 2004). As the estimated annual turnover between 
the atmosphere and terrestrial ecosystems is approximately 120 Gt, much greater 
than the amount of fossil fuel emissions (5 Gt), small alterations in the terrestrial 
carbon balance are likely to have significant impact on atmospheric CO2 
concentrations (Hilker et al. 2006). Therefore, operational monitoring of biosphere 
and biosphere-atmosphere carbon exchange is an inevitable step to be undertaken to 
ensure habitability of the earth. Diagnostic models that utilize climate constrained 
light-use and production efficiency equations provide an effective method for 
achieving this goal, as demonstrated by products such as MODIS MOD17 (Running 
et al. 2004, Heinsch et al. 2006), CASA (Potter et al. 1993, 2003, Lobell et al. 2002), 
and GLO-PEM (Prince and Goward 1995, Goetz et al. 1999). These spatiotemporal 
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estimates are subject to errors and uncertainties arising from state variables (for 
example, land cover, plant biomass), interpolated meteorology, model logic, and 
model parameters. Quantifying model errors and uncertainties allows carbon flux 
estimates to be reported with known levels of confidence (Heinsch et al. 2006, 
Zaehle et al. 2005, Kyriakidis and Dungan 2001), and identifying and minimizing 
these inaccuracies will improve model predictions. 
 
In particular, NASA land products MOD17A2/A3, which provide 8-day estimates of 
gross primary production (GPP) and annual estimates of net primary production 
(NPP) (Running et al. 2004) is one of the primary sources of information on carbon 
exchange at the global scale. However, several recent studies have highlighted 
limitations of this model (Heinsch et al. 2006, Turner et al. 2005, and Yuan et al., 
2007). The most serious limitation arises from the uncertainties of coarse resolution 
DAO (Data Assimilation Office is now replaced by the Global Modeling and 
Assimilation Office) meteorological reanalysis data used in MOD17 (Heinsch et al. 
2006, Zhao et al. 2006). MOD17 also depends on estimates of light use efficiency 
(LUE) obtained from lookup tables based on vegetation type, which may contain 
errors either in the original estimate of LUE for a particular vegetation type or in the 
assignment of vegetation type to a pixel. Although it may be possible to correct 
problems with the MOD17 by improving the accuracy of the meteorological and 
other data inputs, it is also worthwhile to explore alternative methods for estimation 
of global GPP.  
 
Tropical forests are huge storehouse of carbon accounting as much as 40% stored as 
terrestrial biomass (Dixon et al. 1994). Studies based on long term ecological plots 
report accumulation of carbon at a mean rate of 0.71 ± 0.34 tons C/ha/yr in mature, 
undisturbed neotropical forests (Phillips et al. 1998). Koerner (2004) argues that 
accurate assessment of trends in forest carbon balance requires long-term monitoring 
of many replicate plots or very large plots; lacking these studies, the net carbon 
balance of undisturbed tropical forests cannot be authoritatively assessed based on in 
situ studies. Baker et al. (2004) present an updated analysis from Philips et al. (2004) 

by considering several methodological issues and concluded that neotropical forests are 

accumulating carbon at a rate of 0.9 ± 0.32 tons C/ha/yr. If this value is extrapolated 
for the whole Neotropical moist forest area, the net carbon sink would be 0.6 Gt C/yr 
(Malhi and Phillips 2004). However, assessments of carbon sink in old world tropics 
(≈ 50% global moist forest is in Afro-Asian tropics) is not well represented in 
literature. If African and Asian tropics were to show a similar trend like in 
neotropics, the associated tropical net carbon sink would be about 1.2 Gt C/yr. 
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India has a geographical area of 328 Mha, of which 68 Mha are under forest cover 
(FSI 2003). India is a known mega-diversity country, contributing 7% (with 33% 
endemism) to the total phytodiversity existing in the world. Out of 25 biodiversity 
hotspots listed by Myer et al (2000), two are located in India. The forests of India are 
broadly classified into 14 major types (Champion and Seth, 1968). Of these, the 
tropical forests occupy 51 Mha or 80% of the forested area. Based on limited 
number of studies, it is estimated that carbon storage capacity of Indian forests are in 
the range of 1.9–4.1 Gt C. Mainly two types of approaches have been taken to reach 
such conclusion. Using phytomass carbon densities based on ecological studies and 
remote sensing-based forest areas, forest phytomass C pool was estimated in the 
range of 2.5–4.1 Gt C (Ravindranath et al. 1997). Using field inventory of growing 
stock volume and biomass expansion factors relating wood volume to biomass, 
forest phytomass C pool was estimated as 1.9–4.0 Gt C (Dadhwal and Nayak 1993, 
Dadhwal and Shah 1997). The estimated carbon densities per hectare of forest 
phytomass are mostly in the range of 50–68 tons (Chhabra and Dadhwal 2004). 
Except these few gross estimates carbon stock, there are no studies on carbon 
exchange as a sink or source at frequent time intervals reported.  
 
India is presently a non–Annex I country in the Kyoto Protocol of the UNFCCC and 
is exempt from binding GHG emissions targets, but as it makes the transition to a 
developed economy, its status could be revised. India has called for a 
comprehensive, long-term monitoring network to accurately assess India’s GHG 
inventory and its vulnerability and adaptation to environmental change (Government 
of India 2004). As part of this, India decides to establish fluxtowers (INDOFLUX) 
(Sundareswar et al. 2007) and the selection of suitable sites is in progress now. The 
challenge is how much spatial coverage flux towers can provide and how the 
measurements can be interpolated under diverse climatic, topographic and biotic 
gradients. Therefore, as a surrogate, it is essential to develop remote sensing based 
methodologies for rapid estimation of carbon flux which helps in the trade-off 
analysis in carbon budget and policy formulations for climate change mitigations.  
 
Based on the above discussion, it could be concluded that 1). Operational monitoring 
of carbon flux is the hour of need, 2). The existing method for operational 
monitoring is widely criticized, 3). Approximately 50% carbon in terrestrial 
vegetation is located in tropical forest, 4). There is an overwhelming of studies in 
Neotropics whereas old world tropics is hardly represented, 5). Carbon estimates 
from Indian forests is not well studied though it is a mega-diversity country. By 
given that, the following sessions elucidate the existing attempts to estimate carbon 
flux in order to identify the best possible method in Indian context.  
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1.2. Review of the Literature 
 
Three main approaches could be identified for estimating the carbon exchange: i) 
on-field measurement of biomass and its conversion to carbon (eg: Chave et al 2005, 
Ramachandran et al. 2007), ii). employment of physiological process-based models 
(Raich et al. 1991, Crammer et al. 1999), and iii) remote sensing based light use 
efficiency models (Xiao et al. 2004a, Olofsson et al, 2007a). Excellent reviews are 
available on the current status of these methods and their relative merits and 
demerits (Running et al. 2004, Hilker et al. 2006, Gibbs et al. 2007). The first 
approach is considered effective, however continuous measurements are difficult to 
achieve and may need destructive sampling at times. The second approach simulates 
ecosystem processes using detailed data sets obtained mainly from ground-based 
measurements like eddy covariance measurements. Though, high temporal 
resolution could be achieved, these models demands detailed inputs from a number 
of variables. Moreover, these measurements are made at single sites or across 
networks, but are not readily scaled up. Studies indicate that an advanced process-
based model is not necessarily more accurate than remote sensing based light use 
efficiency models (Olofson et al. 2007b). Moreover, satellite-based measurements 
provide more than 30 years of global coverage with spatial resolution ranging from 
tens of metres to a few kilometres, and temporal sampling intervals of days to 
weeks. New sensors and satellites are expanding the scope of such observations.  
 
Light use efficiency models assess canopy productivity based on Monteith’s 
observation that gross primary productivity is proportional to amount of absorbed 

photosynthetically active radiation (APAR) and constant light use efficiency, ε 
(Monteith 1972, 1977).  
 

APAR*  (GPP)ty ProductiviPrimary  Gross ε=  

 
The method has been proven attractive to implement on the basis of remote sensing 
since it is possible to obtain these parameters from satellite.  A number of studies 
(Ruimy et al. 1995; Field et al. 1995, Nemani et al. 2003, Olofson et al. 2007a) have 
used the light use efficiency model to estimate GPP at different spatial and temporal 
scales. 
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1.2.1 Light use efficiency (ε)ε)ε)ε) 
 

The value of light use efficiency (ε) was initially considered as  relatively constant 
but substantial differences have been found that depend on ecosystem type, age, 
species composition, fertility and stresses (Ruimy et al. 1995, Lagergren et al. 2005), 

ε is therefore a crucial parameter to estimate. Broadly, there are two approaches to 

model ε from remote sensing; one is based on the environmental stress factors which 
restrict the carbon fixation and the other one is direct approach which tries to predict 

ε by measuring changes in leaf spectral reflectance resulting from photoprotection 
and chlorophyll fluorescence. Though, the second approach looks promising, its 
application is technically challenging at this moment as it involves sub-nanometer 
reflectance bands in the red and near infrared regions (often 690 and 760 nm) where 
solar radiation is not abundant due to atmospheric absorption (Meroni and Colombo 
2006). Also, under natural sunlight illumination chlorophyll fluorescence emitted by 
the vegetation represents less than 3% of the reflected light in the near infrared part 
of the spectrum (Moya et al. 2004). At the same time, the studies based on 
environmental stress factors are much more developed and practically found feasible 
with present technology. Table: 1 summarise the present approaches to model LUE 
based on stress factors such as temperature, water, phenology, soil moisture, vapour 
pressure deficit and seasonality. Running et al. (1999) used temperature and water 
vapour deficit to model LUE in the standard MOD 17 A2/A3 product. Potter et al. 
(1999) modeled LUE as a function of temperature and moisture (water) stress 
scalars. Lagergren et al. (2005) derived LUE as a function of temperature and day of 
the year (seasonal factor). Xiao et al. (2004a, b) modelled LUE as a function of 
temperature, water and leaf phenology in the Vegetation Photosynthesis Model 
(VPM).  
 
Table: 1. The structure of major light use efficiency models.  

Model Name/Author           Model Logic           Reference 
 

GLO-PEM ε = ε0  . T .  SM . VPD  Prince and Goward (1995) 

MODIS GPP  ε = ε0 . T . VPD Running et al (1999) 

CASA ε = ε0 . T . W Potter et al (1999) 

VPM ε = ε0  . T .  W .  P Xiao et al (2004) 

Lagergren ε = ε0  . T . DOY Lagergren et al (2005) 

EC-LUE ε = ε0  . T . SM Yuan et al (2007) 

*Abbreviations are expanded in List of Abbreviations.  
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1.2.2 Absorbed photosynthetically active radiation (APAR) 
 
APAR is the product of Incident PAR (IPAR) and fraction of photosynthetically 
active radiation (FPAR). IPAR is generally calculated by multiplying incident 
shortwave radiation by a constant value (0.45). The same is implemented in the 
standard MODIS product (MOD 17–Net Photosynthesis and Primary Productivity) 
(Heinsch et al. 2003). Recently, more advanced methods which take into 
consideration atmospheric conditions have been developed (van Laake and Sanchez-
Azofeifa 2004 and 2005, Liang et al. 2006, Liu et al. 2008).   
 
FPAR is the proportion of available shortwave radiation in the photosynthetically 
active wavelengths (0.4 to 0.7 mm) that a canopy absorbs. In remote sensing, it is 
usually estimated as a linear or non-linear function of NDVI due to its high 
correlation with NDVI (Ruimy et al. 1995, Olofsson et al. 2007). Many of the GPP 
models have directly substituted FPAR by NDVI values (FPAR ≈ NDVI) (Running 
et al 2004, Yuan et al 2007). But, there are clear cut evidences that NDVI is getting 
saturated in high biomass areas such as tropical forest (Huete et al. 2002, Glenn et al. 
2008). In addition, its sensitivity to atmospheric conditions and soil background 
makes it less reliable in tropical environment. As an alternative, Enhanced 
Vegetation Index (EVI) was developed to account for residual atmospheric 
contamination (e.g., aerosols) and variable soil background reflectance (Huete et al. 
1997, 2002). EVI directly normalizes the reflectance in the red band as a function of 
the reflectance in the blue band (Huete et al. 1997). A number studies shown that 
EVI is linearly related to FPAR and therefore, could be directly used as an estimate 
of FPAR (FPAR ≈ EVI) (Xiao et al. 2004a, b, 2005; Li et al. 2007, Mahadevan et al. 
2008).  
 

1.3. Profiling of Study Area 
 
Western Ghats, specifically located in the western coastline of India, is one of the 
‘hottest hotspots’ of biological diversity in the old world tropics. It contains more 
than 30% of all plant and vertebrate species found in India, in less than 6% of 
India’s landmass. Out of four thousand species of flowering plants known from the 
Western Ghats, 1500 are endemic (Nair and Daniel 1986). Due to varied topography 
and micro-climatic regimes, some areas within the region are considered to be active 
zones of speciation and localized centres of endemism (Blasco 1970, Nair and 
Daniel 1986). Anamalai Hills (administratively Indira Gandhi Wildlife sanctuary) 
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located in the southern Western Ghats (Fig: 1) is one among them and is therefore 
considered as one of the 25 micro centres of diversity in the Indian Subcontinent 
(Nayar 1996). The western side of the hills is occupied by the luxuriant rainforest 
(humid forest), while the eastern side is dominated by dry forests. This is possibly 
due to the influence of south west monsoon which strikes the western part of the 
sanctuary first, and then advances eastwards, while retreats in reverse, creating a 
longer rainy period and shorter dry season length in the west. Also, the western side 
of the sanctuary is windward side of Western Ghats and therefore, the quantity of 
precipitation (mainly orographic rainfall) is higher at west whereas, precipitation is 
lower at east due to its leeward position. The overall terrain is hilly with the altitude 
ranging from 250m at the foothills in the north-east to 2500 m in the Grass Hills area 
in the south-west. The annual rainfall varies from 500 mm in the rain shadow eastern 
slopes to 5000 mm in the west. Mean daily temperature varies from <50 C in the 
winter at elevations above 2000m to nearly 400C in the eastern plain in the summer 
(Fig: 2).  
 

 
Fig. 1. Location map of Anamalai wildlife sanctuary in Western Ghats, India. 
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Fig: 2. Topographical (elevation (m), slope (degrees) and aspect (degrees)) and 
climatic gradients (temperature (0C) and precipitation (cm)) in Anamalai wildlife 
sanctuary, India. Topographical variables are derived from SRTM (Shuttle Radar 
Topographic Mission) data and climatic variable are derived from 50 year average 
WorldClim datasets. 
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1.4. Formulation of Research Problem 
 
Based on the above discussion, it could be inferred that the nature of the research 
problem is twofold; first one is related to heterogeneity (diversity) of the area at an 
aerial distance of 50 km and the second one is related to the input datasets in the 
present estimate by MOD 17A2 product.  
 

1) Joseph et al (in press) identified seven major vegetation types in Anamalai 
hills using a satellite data of 24m resolution. Further studies using 
multivariate statistical techniques on ground based species data identified 
fourteen vegetation communities or species assemblages in the area. In 
such a diversified area, it may be point of interest to assess the performance 
of biome level classification of MODIS Land cover product (Since it is one 
of the most important inputs in MODIS GPP product) and its influence on 
the estimates of carbon assimilation rate. 

 
2) By given that, LUE is a function of micrometeorological conditions and 

phenological properties of leaves, and NDVI is a function of amount of 
biomass, the GPP estimate given by MOD 17 A2 product (please note that 
climatic information is at a resolution of 1o (≈ 100km) and FPAR (≈ NDVI) 
information at a scale of 1 km) may be vague estimation of the real GPP.  

 
Therefore a better estimate of GPP is required with an alternative approach which 
takes into consideration of the heterogeneity area and local meteorological 
conditions.  
 

1.5. Research Objective 
 
1.5.1. General Objective 
 
The aim of the study is to estimate GPP by considering the local environmental 
conditions and compare this estimate from MODIS GPP product.  By doing so, the 
study will become an attempt to identify suitable methodology for the operational 
monitoring of carbon flux in tropical forests of India (It is worthwhile to mention 
here that remote sensing based light use efficiency model will be tested in the Indian 
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forests for the first time). In addition, sensitivity analysis of each input variables in 
the GPP estimate in tropical forests will help to prioritise the future research needs.  
 
1.5.2. Specific Objectives 
 
The following specific objectives are formulated for addressing the above general 
objective.  
 

� To estimate the Gross Primary Productivity of the area as a function of 
environmental and vegetation-type specific factors. 

 
� To compare global level satellite-derived data products (MOD 17A2) with 

the estimate of GPP derived at the local scale by this study.  
 

� To analyze the sensitivity of input variables and estimate its impact 
on carbon assimilation rate. 

 

1.6. Research Questions 

 
� Is advanced vegetation index such as EVI performing better than 

conventional vegetation index such as NDVI in tropical forest?  
 
� Which MODIS water index can better represent ground soil moisture 

condition? 
 

� How heterogeneity and seasonal changes in the vegetation types affect the 
carbon assimilation rate? 

 
� What are the sensitive parameters in the GPP model? How it affects the 

total estimates of GPP.  
 

� How global level data products behave at local scale? Is there any variation 
in MOD 17 A2 product when it is estimated at local scale? If yes, is it due 
to the algorithm difference or due to the changes in the resolution of the 
input datasets? 
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1.7. Hypotheses 
 
Hypothesis 1 

 
H0 - Advanced vegetation index such as EVI can outperform conventional NDVI in 
biomass rich areas. 
H1 - Advanced vegetation index such as EVI can not outperform conventional NDVI 
in biomass rich areas. 
 
Hypothesis 2 

 

H0 - MODIS Water index based on channels 6 can perform better than channel 5 to 
represent ground soil moisture conditions. 
H1 - MODIS Water index based on channels 6 can not perform better than channel 5 
to represent ground soil moisture conditions. 
 

Hypothesis 3 

 
H0 - The GPP estimate derived by the present study is not significantly different 
from MODIS GPP estimates. 
H1 - The GPP estimate derived by the present study is significantly different from 
MODIS GPP estimates. 
 

1.8. Research Approach 
 
The first step is to identify the environmental and vegetation type specific 
parameters for carbon assimilation. Based on available literature and expert 
knowledge, the parameters listed are maximum light use efficiency and its 
controlling factors (such as temperature (mainly in montane wet shola forest), water 
(rainshadow regions in the east) and longetivity of leaves (deciduous systems)), 
incoming PAR and fractional PAR. The second step is to identify the suitable data 
sources for estimating these parameters operationally. Four inputs identified are 
MODIS daily images, local weather observations, medium resolution remote sensing 
data and ground based biomass and soil moisture measurements. MODIS daily 
images could be used to derive vegetation and water indices which are further 
helped to calculate FPAR, water stress, and phenological stress; weather data could 
be used to estimate IPAR and temperature; medium resolution remotely sensed 
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image could be used to derive land cover type and thereby assigning maximum light 
use efficiency to each land cover type; and ground based biomass and soil moisture 
data could be used to compare the MODIS derived indices. The third step is the 
selection of best indices in the model. For FPAR, two commonly used vegetation 
indices (NDVI and EVI) are available. For representing water stress, Land Surface 
Water Index (Xiao et al 2004) and Shortwave Infrared Water Stress Index (Fensholt 
and Sandholt 2003) (detailed descriptions are given in methods section) are 
available.  Finally, carbon assimilated could be calculated as the product of 
maximum light use efficiency (controlled by environmental factors) and absorbed 
photosynthetically active radiation (another product of incoming PAR with 
fractional PAR). The modelled output can be compared with MODIS GPP product. 
A detailed sensitivity analysis could be useful for understanding the influence of 
each input parameter in the GPP estimate. Based on the experience, the challenges 
and uncertainties in each step can be discussed and suitable recommendations can be 
formulated for reducing the uncertainty in the operational monitoring of carbon flux 
in the Indian context.  
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2. Materials and Methods  

2.1. Model Inputs 

 
2.1.1. MODIS daily surface reflectance images 
 
MODIS Surface Reflectance and radiance product (MOD02HKM) is a seven-band 
image computed from the MODIS  Level 1A scans of raw radiance of bands 1 (620-
670 nm), 2 (841-876 nm), 3 (459-479), 4 (545-565 nm), 5 (1230-1250 nm), 6 (1628-
1652 nm), and 7 (2105-2155 nm). Channels 1 and 2 have 250 m resolution 
originally, but is aggregated to 500 m in this product and channels 3 through 7 have 
500 m original resolution. Thus the entire channel data set is co-registered to the 

same spatial scale in the 500 m product. The radiance is in the unit of W/m2/µm/sr 
and reflectance is unitless values between 0.0 and 1.0. The MODIS L1B 500 m data 
are stored in the Earth Observing System Hierarchical Data Format (HDF-EOS) and 
typical file size is approximately 170 MB. 
 
2.1.2. IRS P6 LISS III image  

IRS P6 LISS III image (Indian Remote Sensing satellite) have a spatial resolution of 

24 m and four bands (0.52 – 0.59, 0.62 – 0.68, 0.77 – 0.86 and 1.55 – 1.70µm). The 
raw data is in BIL (Binary Interleaved by Line) format and is geometrically 
uncorrected.  

2.1.3. Meteorological Data  

Four weather stations are available in and around the study area. These are located at 
different elevations ranges and represent four major vegetation types.  The first 
station is located at an elevation of 450 m where thorn scrub forests are 
predominant, second station is located at an elevation of 700 m where deciduous 
forests are predominant, third station is located at an elevation of 1100 m where 
luxuriant evergreen forest grows and fourth station is located at an elevation of 2000 
m where montane wet temperate (shola) forests-grassland system prevails. The 
parameters measured include total shortwave radiation, atmospheric temperature, 
precipitation, relative humidity, wind direction and wind speed.  
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2.1.4. Ground based biomass and soil moisture measurements 
 
The quadrate data was available for the study area (Joseph et al. 2008). A stratified 
transect survey was conducted in the study area during the period of 2005-2006. The 
selection of strata was based on major vegetation types, different elevation ranges, 
and temperature and precipitation gradients.  A circular plot of 10 m radius were laid 
on every 200 m interval along the transect length of 2 km. In each of the plot, all 
woody plants with ≥ 20 cm GBH  (Girth at Breast Height, 1.3 m) were identified at 
species level, counted individuals and measured its height (hypsometer) and GBH 
using a tape. Biomass is derived from these datasets. Surface soil moisture data was 
available for one station in the study area.   
 
In addition to the above, the following inputs are required for model comparison.  
 
2.1.5. MODIS 12 Q1 Land cover product 

MOD 12 Q1 Land cover product consists of five layers and each layer represents 
one classification system. These layers are IGBP global vegetation classification 
scheme, University of Maryland (UMD) scheme, MODIS-derived LAI/fPAR 
scheme, MODIS-derived Net Primary Production (NPP) scheme, and Plant 
Functional Type (PFT) scheme. The source data for the classification is coming 
from both Terra and Aqua satellites and the supervised decision-tree classification 
method is the classification technique. The latest version (version: 4) is for the year 
of 2004. The data are available in nominal 10-degree tiles in the Sinusoidal Grid 
projection with 1 km spatial resolution.  

2.1.6. MODIS 15 A2 LAI and FPAR Product 
 
The MOD15 A2 Leaf Area Index and Fraction of Photosynthetically Active 
Radiation absorbed by vegetation are 8 days composite provided at 1 km spatial 
resolution. The data is provided in EOS-HDF format and contains two bands; 
MODIS LAI_1km and MODIS FPAR_1km. The data type is unsigned 8-bit integer 
whose values ranges from 0 – 255. These MOD15 A2 data are provided as a level-4 
composited product in Sinusoidal projection.  

2.1.7. MODIS 17 A2 GPP Product 

MODIS Terra Gross Primary Productivity 8-day Global 1 km SIN Grid V005 
(MOD17A2) is a cumulative composite of net photosynthesis (PSN) values. The 
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data is provided in EOS-HDF format and contains three bands; MODIS GPP_1km, 
MODIS PsnNet_1km and MODIS PsnQC_1km. Detailed description about the 
algorithm could be found in Heinsch et al. (2003) and Running et al. (2004). It 
requires daily inputs of incoming photosynthetically active radiation (IPAR), 
fraction of absorbed photosynthetically active radiation (FPAR), biome level 
maximum light use efficiency, minimum temperature over the 24 h period, and 
daytime average vapour pressure deficit. GPP is estimated for each 1 km2 cell for 
each day of the year by first determining the absorbed photosynthetically active 
radiation (APAR). The incident PAR and the fraction of PAR that is absorbed by the 
vegetation (FPAR) determine APAR. Their product is multiplied by light use 

efficiency (ε) to get daily GPP. FAPAR for each 1 km cell is based on the spectral 

reflectances detected by the MODIS sensor (Myneni et al. 2002). The daily ε is 
based on a biome-specific maximum derived from a lookup table (Heinsch et al. 
2003) and modified by scalars (0–1) associated with a daily minimum air 
temperature and vapour pressure deficit (VPD). The meteorological data are 
provided by the NASA Data Assimilation Office (DAO) based on a general 
circulation model run at the 1o spatial resolution (~100 km). These MOD17A2 data 
are provided as a level-4 composited product in Sinusoidal projection. 
  

2. 2. Model Framework 

2.2.1. Calculation of Light use efficiency (ε) 

For calculating LUE, four parameters were required; maximum light use efficiency 
of vegetation types, and its controlling factors such as temperature, water and 
longetivity of leaves (Evergreen vs. Deciduous). All these parameters are 
successfully formulated in satellite based Vegetation Production Model (VPM) and 
is validated in different vegetation types such as temperate evergreen needleleaf 
forest (Xiao et al 2004a), deciduous broadleaf forest (Xiao et al. 2004b), tropical 
moist evergreen forest (Xiao et al. 2005), alphine ecosysystems (Li et al. 2007) and a 
number of other biomes (Mahadevan et al. 2008). Therefore, the present study 
adopted the concept of VPM (Equation 1), though there were changes in the 
implementation.    
 

εg = ε0 . Tscalar . Wscalar . Pscalar  ---------(1) 
 

Where, ε0  is the maximum light use efficiency, and Tscalar, Wscalar and Pscalar are 
the down-regulation scalars for the effects of temperature, water and leaf phenology 
on the light use efficiency of vegetation, respectively.  
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2.2.1.1. Maximum LUE (εεεε0000) - The values of maximum light use efficiency were 

taken from Biome-BGC model (White et al. 2000, Thornton et al 2002) after an 
extensive literature survey. Though there were scattered informations (Ruimy 1995, 
Xiao et al. 2004a,b), the Biome-BGC values were found to be most comprehensible 
which fit all the vegetation types in the study area. Moreover the values given by 
other estimates were not largely varying from Biome-BGC values. For example,  
Xiao et al (2005) adopted a value of 0.9765 g C/m2/MJ IPAR from the studies of 
Malhi et al (1998) and Goulden et al. (2004) for tropical evergreen forests which is 
slightly lower than Biome-BGC value. The major vegetation type in the study area 
(according to Champion and Seth’s classification for Indian Forests, Champion and 
Seth 1967), its corresponding Biome-BGC classification and maximum light use 
efficiency values are given in Table: 2. In absence of specific information about 
teak, the value deciduous broadleaf forest is assigned to teak (since it is a deciduous 
broadleaf tree) and for tea plantation, the value cropland is assigned.  
 
Table: 2. The major land cover types in Anamalai Hills, corresponding Biome-BGC 
type and its maximum light use efficiency values 
 

Major land cover type in the 
study area  

Corresponding Biome-BGC 
vegetation type 

ε0 (g C/m2/MJ 
IPAR) 

West Coast Tropical 
Evergreen Forest 

Evergreen broadleaf forest 1.159 

Southern Montane Wet 
Temperate Forest 

Evergreen broadleaf forest 1.159 

Southern Tropical Deciduous 
Forest 

Deciduous broadleaf forest 1.044 

Southern Thorn Scrub Closed shrubland 0.888 
Grasslands Grasslands 0.768 
Teak plantations Deciduous broadleaf forest 1.044 
Tea plantations Croplands 0.680 
Agriculture and fallow lands Croplands 0.680 
Water bodies Water bodies 0.000 

 
2.2.1.2. Temperature scalar – Temperature control on photosynthetic process is 
represented as Tscaler and is calculated using the equation developed for the 
Terrestrial Ecosystem Model (Raich et al. 1991). 
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Where, Tmin, Tmax and Topt are minimum, maximum and optimal temperature for 
photosynthetic activities. After careful examination of literature, the value of 
optimum temperature was taken as 280C (Tian et al. 1998, Ishida et al. 1999, Pons 
and Welschen 2003, Xiao et al. 2005).    
 
2.2.1.3. Water Scalar – In MODIS, there are two shortwave infrared channels, 
channel 5 (1230–1250 nm) and channel 6 (1628–1652 nm), which are wavelength 
areas at which leaf water content influence the radiometric response. Based on these 
channels, two water stress indices were derived in literature. Fensholt and Sandholt 
(2003) proposed two configurations of Shortwave Infrared Water Stress Index 
(SIWSI), which make use of normalized difference between NIR and Channel 5 in 
the first configuration and NIR and Channel 6 in the second configuration. 
Conversely, Xiao et al. (2004a, b) developed Land Surface Water Index (LSWI) 
based on NIR and Channel 6 which was primarily a repetition of the second 
configuration proposed by Fensholt and Sandholt (2003). For avoiding confusion in 
the present study, the first index, based on Channel 5, is called SIWSI (equation 3) 
and the second index, based on Channel 6, is called LSWI (equation 4).  The 
selection of suitable index for the study area was based on the relative performance 
of these indices against the in-situ soil moisture data. Soil moisture data was 
available for one station in the study area. Correlation analysis showed that LSWI6,2 
is performing better than SIWSI5, 2 and therefore Water scalar is calculated based 
equation (5) as proposed by Xiao et al. (2004a, b, 2005).  
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Where, ρ2 is the surface reflectance at NIR band and ρ5 and ρ6 are surface 
reflectance at SWIR bands. The values range from -1 to +1, and the simple 

formulation of Wscalar is a linear scalar with a value range of 0 to 1. 
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Where, LSWImax is the maximum LSWI value within the photosynthetically active 
period. 
 
2.2.1.4. Phenological scalar –Pscalar is dependent upon life expectancy (longevity) 
of leaves (deciduous versus evergreen). In the study area, leaves were retained 
throughout the wet season and therefore Pscalar is taken as 1 during this season. For 
the dry season, Pscalar is calculated using the equation (6) developed by Xiao et al. 
(2004a, b, 2005) for their VPM model.  
 

2

1 LSWI
Pscalar

+= ------------- (6) 

2.2.2. Computation of Absorbed Photosynthetically Active Radiation (APAR) 

For estimating Absorbed Photosynthetically Active Radiation (APAR), two inputs 
were required. First one is the Incident PAR (IPAR) and the second one is the 
fraction of absorbed PAR (FPAR) (equation 7).  

FAPARIPARAPAR ⋅= ------------ (7) 

2.2.2.1. Incident Photosynthetically Active Radiation (IPAR) - Generally, IPAR is 
calculated as 50% (specifically 0.45) of the total solar radiation. When enough 
ground observations are not available, IPAR is modelled as a function of total 
shortwave radiation at the top of the atmosphere (TOA) and the atmospheric 
conditions which decide the amount of radiation to reach at the ground level. A 
number of such algorithms are available in the literature (van Laake and Sanchez-
Azofeifa 2004, 2005, Liang et al. 2006, Liu et al. 2008). Since, enough numbers of 
weather stations are available in the study area; the present study did not attempt any 
of these methods. Therefore, IPAR is calculated using the equation (8) in similar to 
MOD 17 A2 product (Heinsch et al. 2003).  

45.0⋅= SWRadIPAR ----------- (8) 

2.2.2.2. Fraction of Photosynthetically Active Radiation (FPAR) – Many models 
and studies have used vegetation indices values as a substitution for FPAR due to 
their high correlation. Running et al. (2004) and Yuan et al. (2007) used NDVI for 
FPAR while Xiao et al. (2004a, b, 2005), Li et al. (2007) and Mahadevan et al. 
(2008) used EVI for FPAR. Therefore, both the approaches were attempted in the 
present study. NDVI and EVI were calculated using the equations (9) and (10) 
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respectively. Then the selection of index for the model was based on their relative 
performance against the ground biomass. For this purpose, biomass was calculated 
using allometric equations developed for Western Ghats (Murali et al. 2005). Two 
allometric equations were used. One was for evergreen forests (equation 11) and the 
other was for deciduous forests (equation 12). The Basal Area required for these 
equations is calculated from GBH using the equation (13).  The values of biomass 
were plotted against the corresponding vegetation indices values and the coefficient 
of determination (R2) was noted. EVI has shown better R2 than NDVI and therefore 
the values of EVI were substituted for FPAR in the model.  
 

rednir

rednirNDVI
ρρ
ρρ

+
−

= ----------------- (9) 

LCC
GEVI

bluerednir

rednir

+−+
−

=
)*2*1(

*
ρρρ

ρρ
---------------- (10) 

Where ρnir, ρred and ρblue are surface reflectance values at NIR, Red and Blue bands 
respectively, G is the gain factor, C1, C2 are the coefficients of the aerosol 
resistance term, which uses the blue band to correct for aerosol influences in the red 
band, and L is the canopy background adjustment that addresses non-linear, 
differential NIR and red radiant transfer through a canopy. For MODIS, the values 
are set to be G=2.5, C1=6, C2=7.5 and L=1.  
 

)53.0(]78.681.2[_ 2 =⋅+−= rBasalAreaEvergreenBiomass ------------ (11) 

 

)82.0(]73.1055.73[_ 2 =⋅+−= rBasalAreaDeciduousBiomass ---------(12) 
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2.2.3. Computation of Gross Primary Productivity (GPP) 

The estimation of Gross Primary Productivity was done as the cross product of light 
use efficiency with Absorbed Photosynthetically Active Radiation (equation 14). 
The complete model is given in equation (15). 
  

APAR⋅= ε  (GPP)ty ProductiviPrimary  Gross  --------- (14) 
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)()(  GPP 0 FPARIPARPscalarWscalarTscalar ⋅⋅⋅⋅⋅= ε ------------ (15) 

 

2.3. Model Implementation 
 

2.3.1. Generation of maximum light use efficiency map 

Since maximum light use efficiency is a vegetation specific factor, creation of an 
accurate land cover map was the first step. It was done through supervised 
classification of the IRS P6 LISS III data. The image was acquired from National 
Remote Sensing Center (NRSC), Hyderabad, India. The image was geometrically 
corrected with respect to Enhanced Thematic Mapper (ETM+) data based on Ist 
order polynomial regression between ground control points (RMSE<0.5 pixel) to 
compute the coefficients for two co-ordinate transformation equations, and 
registered to the UTM projection. Based on the knowledge of the data and ground 
truth information, nine different land cover classes were identified in the study area. 
Parametric signatures were used to train a statistically based (e.g. mean and 
covariance matrix) classifier to define the classes. Training sites were digitized 
within ERDAS Imagine (ERDAS 2006), using the AOI tools. The inquire cursor 
was used to identify a single pixel (seed pixel) that represents the training sample 
then neighbors to the seed pixel were added to the training sites. After several 
iterations with different criteria, the maximum size of area (geographic constraints) 
and spectral Euclidian distance were limited to 500 pixels and 10 respectively. After 
the signatures were defined, the image was classified using the maximum likelihood 
parametric rule. An accuracy assessment was performed by comparing the classified 
image with reference data, collected from the field survey. Upon completion of this 
step, the values maximum light use efficiency which has taken from Biome-BGC 
Model (Table: 2) were assigned to each land cover type. 

2.3.2. Generation of Wscalar, Pscalar and FPAR 

Daily MODIS surface reflectance images (MOD02HKM – Level 1B calibrated 
Radiance – 500m) were downloaded from data distribution centre of Goddard Space 
Flight Centre, NASA (http://ladsweb.nascom.nasa.gov/) for a period of two years 
(September, 2006 – August 2008). The data were projected into Universal 
Transverse Mercator (UTM) Projection and reflectance images were extracted using 
MODIS Conversion Tool Kit (MCTK) – a plug-in associated with ENVI/IDL 
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software environment (http://www.ittvis.com/). Since MCTK user interface can 
handle only one image at a time, suitable programs were written in IDL language for 
automating the work. The georeferenced images were subsetted using the study area 
boundary. Water indices (SIWSI and LSWI) were calculated for each image using 
equations (3) and (4) respectively. Similarly, Vegetation indices (NDVI and EVI) 
were calculated as per equations (9) and (10) respectively. The correlation between 
water indices and soil moisture data were carried out for selecting the suitable index. 
Subsequently, Wscalar and Pscalar were calculated using equations (5) and (6) 
respectively. For selecting the suitable index to represent FPAR, the values of 
vegetation indices were plotted against biomass values. The biomass of sample plots 
were calculated using equations (11) and (12) depending on the type of vegetation. 
The coefficient of determination (R2 - value) was the criteria for selection. Since the 
number of images were enormous (2 years of daily images), it was not possible to do 
the work manually. Therefore, suitable programs were made in Python (ver.2.5) 
scripting language for automating the work. 

2.3.3. Generation of Tscalar and IPAR 
 
Daily temperature and IPAR values were collected from weather stations. Since 
these observations were collected from point locations, it was necessary to 
extrapolate the observations to study area. This was done by taking into 
consideration of long term climatic data (50 year average global climatic datasets 
from WORLDCLIM) (Hijmans et al. 2005) and altitudinal variation in the study 
area. The digital elevation model was placed over climatic data to study the changes 
in climatic parameters with respect to elevation. Four zones were digitized by 
assuming that the first weather station is a representative of first zone, second 
weather station is a representative second zone and so on. The altitude of weather 
station, its extrapolated range and major vegetation type in the zone are given in 
Table: 3. The zones were digitized and new attribute columns were generated for 
Tscalar and IPAR. The Tscalar and IPAR, calculated using equations (2) and (8), 
were entered in their respective attribute columns and rasterized to generate daily 
Tscalar and IPAR images.   
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Table: 3. The altitude of weather station, its extrapolated range and major vegetation 
type in the zone.  
 

Altitude of 
Weather Stn (m) 

Extrapolated 
Range (m) 

Major vegetation type around the station 

450 280 – 600 Southern Thorn Scrub 
700 600 – 1000 Southern Mixed Deciduous Forest 
1100 1000 – 1600 West Coast Tropical Evergreen Forest 
2000 1600 - 2504 Southern Montane Wet Temperate Forest 

2.3.4. Calculation of LUE, APAR and GPP 

LUE, APAR and GPP were calculated using equations (1), (7) and (14) respectively. 
Since, Pscalar is a season-specific parameter, defining of season was necessary 
during LUE calculation. This was done by plotting the monthly variation in 
temperature and precipitation in 50 years time period (WORLDCLIM datasets). 
Finally, GPP was calculated as the cross product of LUE and APAR. From the daily 
GPP images, five points were randomly selected for each vegetation types. The 
average of these values was considered as GPP of that vegetation type for further 
analysis.    

2.4. Model Comparison 

 
MODIS Terra Gross Primary Productivity 8-day Global 1km SIN Grid V005 
(MOD17A2) products were downloaded from Land Processes Distributed Active 
Archive Centre (LP DAAC) (http://edcimswww.cr.usgs.gov/pub/imswelcome/) for 
the study period (September 2006 to August 2008). The images were reprojected to 
UTM projection and the first band, i.e., GPP_1km, was extracted. These scaled 
digital images were converted into biophysical quantity using the equation (16).  
 

1000   valuedigital factor  scale  pixel lBiophysica ⋅⋅=  -----------(16) 

 
where biophysical pixel is sequestered carbon (kg C/m2), scale factor is the gain for 
the MODIS productivity products (0.0001), digital value is the numeric value of a 
file pixel, and 1000 is the conversion factor from kilogram to gram. 
 
In a similar fashion, the daily GPP estimates from the present study were composited 
into 8-day cumulative composite. Before compositing, all the images were 
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resampled to 1 km resolution for valid comparison. The pixels from the same 
geographical locations were picked up in both the images (GPP images by the 
present study and MODIS GPP images). Five points were selected for each 
vegetation types and every fifth composite were included in the analysis. 
Subsequently, Paired sample t-test was conducted to check whether the GPP 
calculated with the present study is significantly different from MODIS GPP.  
 
Further investigations were carried out to understand the difference between the 
algorithms of the present study and MOD 17A2 product. MODIS GPP product 
heavily depends on MODIS land cover product (MOD 12Q1) through the use of 
BPLUT (Biome Parameter Look-Up Table). Therefore, the accuracy of this product 
was the first step to be estimated in the comparison. The MOD 12 Q1 land cover 
product for the study area was downloaded from LPDAAC server. The downloaded 
data is reprojected to UTM projection and subsetted with the study area. The second 
layer from the land cover product was extracted since MOD 17 uses the UMD 
classification system. The accuracy of the product was checked using 225 ground 
control points collected from the field. 
 
In addition, MOD 17 A2 GPP algorithm (equation 17) is implemented using the 
ground data to know whether the difference in the estimate is due to the formulation 
of the model or due to the changes in the resolution of the input data. The required 
parameters were  

 
i. ε0 - The maximum light use efficiency  

ii.  TMINmax - The daily minimum temperature at which ε = ε0 (for optimal 
VPD) 

iii.  TMINmin - The daily minimum temperature at which e = 0.0 (at any VPD) 

iv. VPDmax - The daylight average vapour pressure deficit at which ε = ε0 (for 
optimal TMIN) 

v. VPDmin - The daylight average vapour pressure deficit at which ε = 0.0 (at 
any TMIN) 

vi. IPAR - Photosynthetically Active Radiation incident on the vegetative 
surface 

vii.  FPAR – Fraction of Photosynthetically Active Radiation that canopy 
absorbs 
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The two parameters for TMIN and the two parameters for VPD are used to calculate 

the scalars that attenuate ε0. These scalars were derived as simple linear ramp 

functions as illustrated in Fig: 3.  
 

)*(*)_*_*(  GPP 0 FPARIPARscalarVPDscalarTMINε= ------------- (17) 

 

 
 
Fig: 3. The TMIN and VPD attenuation scalars are simple linear ramp functions of 
daily TMIN and VPD. 
  
All these parameters except FPAR were calculated using data which were available 
at the local scale (in-situ data). Vapour Pressure Deficit was calculated from 
saturation vapour pressure and relative humidity using equation (18). 
 

100

).100(
*

HR
SVAVPD

−=   ----------- (18) 

 
Where, SVA is the saturation vapour pressure of air at a particular temperature and 
R.H is the relative humidity at that temperature.   
 
Since ground measured FPAR was not available, it was derived from MOD 15 A2 
LAI/FPAR product. The datasets were downloaded from LPDAAC server, 
reprojected to UTM projection, subsetted with study area and extracted the FPAR 
values.  

 

2.5. Model Sensitivity 

 
The sensitivity of each input variables in the total GPP estimate were analysed. The 
selected variables are temperature scalar, water scalar, phenological scalar, incident 
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PAR and fractional PAR. Maximum light use efficiency was not selected for the 
sensitivity analysis since it is a biome specific constant. The yearly mean and 
standard deviation of input variables were calculated. The values of standard 
deviation were altered by ±10% repeatedly for each variable while keeping the other 
variables constant and the corresponding change in GPP was noted.   
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3. Results  

3.1. Vegetation type and maximum LUE (εεεε0) maps 

Vegetation and land cover type mapping using the IRS P6 LISS III data showed 
the area is dominated by deciduous forest (487.6 km2) and evergreen forest (230.2 
km2) (Fig: 4). The nine land cover classes, their area statistics and estimated 
classification accuracy are given in Table: 4. The pristine grasslands, a particular 
feature of the hills covered an area of 86 km2. In addition to natural vegetation 
types, the other land cover types in the area are plantations, agriculture areas and 
reservoirs. Overall classification accuracy was 83% and the Kappa statistic was 
0.79. Each of these vegetation types were assigned by the maximum light use 
efficiency values according to Biome-BGC model. 

  

Fig: 4. Major land cover types in Anamalai hills, India derived from IRS P6 LISS III 
satellite data. 
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Table: 4. Area statistics of major land cover types and their classification accuracy in 
Indira Gandhi Wildlife Sanctuary, India (Area statistics is derived from the IRS P6 
LISS III data dated 28th March, 2006). 

 
 
3.2. Tscalar, Wscalar and Pscalar 
 
Study on temperature, water and phenological parameters indicated that all these 
parameters have spatial and temporal dimensions. Temperature was a constraint in 
higher altitude areas where montane wet temperate forest (shola forest) – grassland 
system is existing. Eastern plains in the study area (rainshadow regions) where 
deciduous and thorn scrub forests are predominant, temperature was not a limiting 
factor. The correlation analysis between water stress indices and soil moisture data 
indicated that MODIS channel based on 6th band (LSWI) is performing better than 
5th band (SIWSI). The correlations were 0.71 and 0.64 respectively (Table: 5). 
Therefore, LSWI was taken for calculating Wscalar and Pscalar. For incorporating 
phenological scalar into the model, it was necessary to define wet and dry seasons. 
Fig: 5 shows the variation in temperature and precipitation in the study area in 
different months. Precipitation showed a sudden increase during the month of June. 
The highest amount of precipitation was observed during the month of July. In 
December, the intensity has substantially reduced, more than half from previous 

Sl. 
No.  Land cover Type 

Area 
(Sq.km) 

Area 
(%) 

 Producer 
Accuracy  

User 
Accuracy  

1 Tropical Evergreen Forest 230.2 23.8 87.5% 89.4% 

2 Montane wet temperate forest 21.8 2.2 66.7% 83.3% 

3 Tropical Deciduous Forest 487.6 50.3 90.0% 75.9% 

4 Thorn Scrub Forest 34.3 3.5 58.8% 76.9% 

5 Grasslands 85.8 8.9 70.0% 95.5% 

6 Teak Plantations 31.3 3.2 75.0% 69.2% 

7 Tea Plantations 30.2 3.1 100.0% 84.6% 

8 Agriculture and Fallow lands 36.5 3.8 84.6% 91.7% 

9 Water bodies 10.9 1.1 100.0% 90.0% 

  Total Area 968.6 100.0     

Overall Classification accuracy - 82.67%    

Overall Kappa statistics - 0.79     
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month (170 mm in November to 69 mm in December). In case of temperature, June 
has showed a drastic decrease in temperature in similar to precipitation. Therefore, 
the wet season is defined as the period between June to November (Julian Days 152 
to 333) and dry season is defined as the period between December (Julian Day - 
334) to May (Julian Day - 151). During the period of wet season, the Pscalar is not 
considered as a constraint for carbon assimilation and therefore included in the 
model.    
 
Table: 5. Correlation analysis between soil moisture data and water stress indices. 
MODIS channel based on 6th band (LSWI) has shown better correlation than 5th 
band (SIWSI).   
 

  LSWI (MODIS6, 2) SIWSI (MODIS5,2) 

Correlation coefficient 0.71 0.64 

 
 

Fig: 5. Variation in monthly temperature and precipitation in Anamalai hills of 
Western Ghats, India (Data Source: WORLDCLIM 50 year average) 
 

 

3.3. Light use efficiency (εεεε) 
 

Since the carbon assimilation is a vegetation and season specific property, all the 
results are categorised into season-wise in addition to yearly average. In the yearly 
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estimate, the values of light use efficiency varied from zero to 0.577 g C/m2/MJ 
(Fig: 6). The maximum light use efficiency is observed in those areas where there 
are no physical constraints. Phenologically, these areas are dominated by evergreen 
forests within an altitudinal range of 800 – 900 m. The average temperature is 
around 260C, a value which is slightly less than the optimum temperature (280C) 
considered. A number of rivulets in the area ensure the abundance of water in the 
physiological processes. The lowest values are observed in mountain grasslands and 
shola forest systems where temperature is the most important constraint. Moreover, 

the ε0 fixed for grasslands was lower. In dry season, the higher elevation rainforests 
(> 1200 m) is showed a better LUE than wet season. This is in agreement with the 
changes in temperature in both seasons. The lower value of LUE in deciduous-scrub 
system in dry season was due to the water and phenological stresses. In wet season, 
the deciduous-scrub system showed higher values of LUE due to the absence of 
limiting factors in physiological processes.    
  
3.4. Incident PAR 
 
The average annual IPAR was higher at eastern plains of the study area (station 3 
and 4) and lower at higher elevation western ranges (station 1 and 2) (Table: 6). In 
dry season, there was not much variation in the incoming PAR among the stations, 
whereas this difference was prominent in wet season. From station-1 to station-4, the 
difference was almost double. The positive correlation between elevation and solar 
radiation (increase in solar radiation with respect elevation) is not found significant 
in the study area. This is mainly because of the dense cloud cover over the western 
high ranges during the wet season.  In terms of vegetation types, the eastern plain is 
dominated by deciduous and thorn scrub forest formations and the western high 
ranges are dominated by evergreen-shola forest formations.  
 
Table: 6. The variation in average IPAR (MJ/m2) in different weather stations in the 
study area.  
 

Station No. 
Average IPAR 

Station-1 Station-2 Station-3 Station-4 

Yearly average 6.86 6.69 8.04 8.43 

Dry season 8.75 8.33 9.56 9.01 

Wet season 4.96 5.05 6.51 7.85 
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Fig: 6. The variation in light use efficiency (g C/m2/MJ APAR) in Anamalai Hills of 
Western Ghats, India. a. Yearly average. b). dry season average and c). wet season 
average 
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3.5. Fractional PAR 
 
The estimation of fractional PAR was based on the relationship between vegetation 
indices and biomass of sample plots. Biomass calculated using allometric equations 
for different vegetation types were varied from 14 to 515 tons/ha with an average of 
148±130 tons/ha. For evergreen vegetation types, the average biomass per hectare 
was 233±132 tons while in deciduous, it was 76±66 tons. The NDVI values ranged 
from 0.33 to 0.66 with an average of 0.45 while EVI vary from 0.23 to 0.53 with an 
average of 0.33. A good positive relation was found between vegetation indices and 
biomass of both the vegetation types. Enhanced Vegetation Index (Fig: 8) performed 
slightly better Normalized Differential Vegetation Index (Fig: 7) in both the 
vegetation types. The coefficient of determination (R2) between EVI and biomass 
was 0.47 for evergreen forest and 0.39 for deciduous forest. For NDVI, the values 
were 0.38 and 0.34 respectively. Therefore, EVI was taken as FPAR in the model.  
 
3.6. Gross Primary Productivity 
 

The high values of GPP are observed in the low elevation rainforests followed by 
deciduous system in the western part of the sanctuary (Fig: 9). The montane 
grasslands are showed the poor carbon assimilation capacity primarily due to the 
unavailability of optimum temperature and enough IPAR. Most of the montane areas 
are cloud covered throughout the day especially in wet season which limits the IPAR 
to reach the ground. The relative higher value of GPP in the shola forest in these 
mountain areas in dry season is an additional evidence to cloud problem. Seasonal 
variation in carbon assimilation was very prominent in the study area. The low 
elevation evergreen forests is observed higher carbon assimilation in dry season 
while deciduous-scrub forests is showed higher carbon assimilation in wet season. 
During the dry season, the water and phenological stresses are prevalent in 
deciduous system. This might have limited the conversion of IPAR into GPP, 
though IPAR was abundant. In wet season, there are no physical constraints in 
deciduous systems which enables the luxurious leaf growth and thereby carbon 
assimilation.  
 
With respect to vegetation types, deciduous forest and teak plantations (another 
deciduous tree) showed higher carbon assimilation rate especially in wet season 
(Fig: 10). In dry season, the evergreen forest showed higher assimilation rate. Even 
in same phenological category, the assimilation rate was different. There are two 
types of evergreen forest observed in the study area, first one is found at an elevation 
range of 700 – 900 m and the second one is found at a range of 1100 – 1500 m. Both 
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the areas showed a significantly different assimilation rate. If low elevation 
rainforest is alone considered, the carbon assimilation rate is highest in this forest 
type whereas, if both are considered together, the values match more or less similar 
with deciduous forests. The low values of GPP were observed for grasslands and tea 
plantations.  
 
Fig: 7. Biomass-NDVI relation in Evergreen and Deciduous vegetation types in 
Anamalai hills, Western Ghats, India 
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Fig: 8. Biomass-EVI relation in Evergreen and Deciduous vegetation types in 
Anamalai hills, Western Ghats, India 
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Fig: 9. The variation in carbon assimilation rate (g C/m2/day) in Anamalai hills of 
Western Ghats, India. a). Yearly average. b). Dry season average and c). Wet season 
average 
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Fig: 10. Carbon assimilation rate (g C/m2/day) in different vegetation types in 
Anamalai Hills of Western Ghats, India. 
 

 
 
3.7. Model Comparison 
 
Comparison of 8-day cumulative composite between the GPP estimated by the 
present study and the GPP estimated by MODIS 17A2 product is given in Table: 7. 
On an average, the estimate by the present study was nearly half from the MODIS 
product. The paired sample t-test confirmed that means are significantly different at 
95% confidence limits (p < 0.000) (Table: 8).   
 
Table: 7. Basic statistics (minimum, mean, maximum and standard deviation) of 8-
day cumulative composite by the present study and MODIS 17A2 GPP product 
 

    Min Mean Max SD 

Yearly Average 1.37 12.93 30.54 7.17 

Dry Season 1.35 12.86 36.64 6.53 
GPP estimated by 
the present study 

Wet Season 1.16 12.85 39.21 8.85 

Yearly Average 4.91 30.23 50.83 11.34 

Dry Season 4.43 38.02 63.41 17.36 
MODIS GPP 
estimate 

Wet Season 5.14 22.45 46.91 7.23 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Julian Day (245_2006 to 244_2008)

Ca
rb

on
 (g

 C
/m

2/
da

y) Evergreen

Shola

Deciduous

Scrub

grass

tea

teak

Wet season Dry season Wet season Dry season Wet season



45 

 
 
Table: 8. Comparison of GPP estimated by the present study (GPP_ESTMD) with 
the MODIS 17A2 GPP product using Paired sample t-test 
 

Paired Differences 
Paired Parameter 

Mean 
Std. 

Deviation 
Std. Error 

Mean 

t df 
Sig. (2-
tailed) 

GPP_ESTMD - 
MODIS_GPP 

11.54 16.34 0.79 14.55 423 0.00 

 
 
The difference in the GPP estimates was analysed by comparing the input variables. 
Since maximum LUE is a BPLUT property, the accuracy of the land cover map used 
in both models was the primary concern. The assessment of MODIS land cover map 
for the study area indicated that 50% of the forests belong to evergreen category in 
contrast to 24% in the present study. The land cover type, area statistics and 
accuracy assessment are given in Table 9. It was surprised to note that 20% of the 
deciduous forest is mapped as crop land in MODIS land cover product (Fig: 10). 
The classes such as evergreen needleleaf forest, woody savanna (grassy woodland) 
and savanna are practically not found in the Anamalai hills whereas MOD 15 A2 
mapped these classes as 22% of the total area. The major vegetation type in the area 
(50% according to present study), i.e., deciduous broadleaf forest, was 
underrepresented (0.4%) in the MODIS land cover product. The accuracy estimation 
using 225 ground control points indicated that MODIS land cover product has an 
overall accuracy of 46% with kappa coefficient of 0.34.   
 
The implementation of MODIS 17 A2 algorithm using the ground measured data 
indicated that the algorithm difference between the present study and the MODIS 
product is not the reason in the changes in GPP estimate. Both these models were 
given more or less similar results. The changes in the result are given in Table: 10. 
Sometimes, globally derived results (gloabal datasets of 10 resolution) were three 
times higher than the locally derived outputs. For example, the present study and 
MOD 17 A2 algorithm using in-situ data resulted a carbon assimilation rate of 12.8 
and 11.6 g C/m2/8 days respectively, whereas, globally derived datasets yielded a 
value of 42.8 g C/m2/8 days. In terms of vegetation types, locally derived models 
showed that evergreen, deciduous and teak plantations assimilate carbon at higher 
rate, and grassland and tea plantations assimilates at lower rates. Globally derived 
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outputs showed that evergreen and tea plantations absorb carbon at higher rate, and 
scrub forest and grasslands absorb at lower rates. The tea plantations are mapped as 
evergreen forest in MODIS land cover product and this may be reason for higher 
assimilation rate of tea. In terms of season, the present study showed that deciduous 
types (deciduous forest, scrub forest and teak plantations) has higher assimilation 
rate in wet season and low assimilation rate in dry season. In contrary, MOD 17A2 
model (both local and global datasets) showed that deciduous types has higher 
assimilation rate in dry season and lower assimilation rate in wet season. The present 
study algorithm include a phenological factor (Pscalar) whereas, the MOD 17 A2 
algorithm does not include a specific phenological measurement. The estimation of 
higher carbon assimilation for deciduous types in dry season by MOD 17 A2 
algorithm was not found logical since leaves were nearly absent during the season.  
For evergreen types (evergreen forest, shola, grassland and tea plantation), all the 
models were showed higher carbon assimilation in dry season and lower 
assimilation in wet season.  
 

Fig: 11. Major land cover types in Anamalai hills, India according to MODIS Land 

cover product (MOD 12Q1) 
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Table: 9. Area statistics of major land cover types and their classification accuracy in 
Indira Gandhi Wildlife Sanctuary, India (Area statistics is derived from the MODIS 
Land cover product MOD 12Q1). 
 

Sl. 
No.  Land cover Type 

Area 
(Sq.km) 

Area 
(%) 

 Producer 
Accuracy  

User 
Accuracy  

1 Evergreen Needleleaf forest 3.5 0.4 0.0% 0.0% 

2 Evergreen Broadleaf forest 486.7 50.8 87.5% 80.2% 

3 Deciduous Broadleaf forest 4.2 0.4 3.1% 66.7% 

4 Mixed forest 33.5 3.5 27.3% 66.7% 

5 Closed shrubland 1.6 0.2 28.6% 80.0% 

6 Open shrubland 2.7 0.3 0.0% 0.0% 

7 Woody savanna 149.4 15.6 0.0% 0.0% 

8 Savanna 52.3 5.5 0.0% 0.0% 

9 Grassland 34.7 3.6 29.0% 81.8% 

10 Crop land 190.0 19.8 100.0% 14.0% 

  Total Area 958.6 100.0     

Overall Classification accuracy - 46.22%    

Overall Kappa statistics - 0.34     
 
 
3.8 Model Sensitivity 
 
Tscalar was the most sensitive parameter followed by IPAR and FPAR in the model 
(Fig: 9). The least sensitive parameters were Wscalar and Pscalar. A variation of 
±10% Tscalar can cause ±8% change in GPP estimates, while the same percentage 
variation in IPAR and FPAR can cause only ±4% change in GPP. The variation in 
Wscalar and Pscalar was negligible.   
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Table: 10. The changes in the cumulative composite of GPP (g C/m2/8 days) in 
different vegetation types and different seasons according to i). present study, ii). 
MOD 17 A2 algorithm implemented using ground data and iii). MOD 17A2 GPP 
product using global datasets.   
  

    EVR Shola DEC Scrub Grass Tea Teak 

Present study 12.8 6.4 11.9 10.6 1.4 3.1 11.7 
MOD 17A2 
In-situ data 11.6 7.2 8.5 6.8 4.5 6.8 9.1 

Yearly 
Avg. 

MOD 17A2 
GPP product 42.8 26.6 21.9 19.0 18.5 40.9 27.7 

Present study 16.9 7.0 10.9 7.1 1.7 5.0 10.1 
MOD 17A2 
In-situ data 18.1 9.9 10.0 7.9 6.4 10.0 12.2 

Dry 
Season 
Avg. MOD 17A2 

GPP product 59.6 35.4 23.9 21.1 23.6 54.8 35.4 

Present study 8.8 5.7 12.8 14.1 1.1 1.2 13.2 
MOD 17A2 
In-situ data 5.1 4.6 7.0 5.6 2.7 3.6 5.8 

Wet 
Season 
Avg. MOD 17A2 

GPP product 25.9 17.8 19.8 17.1 13.5 26.9 20.0 
 
Fig: 12. Sensitivity of GPP to its input variables in Anamalai hills of Western Ghats, 
India. Out of five parameters (Tscalar, Wscalar, Pscalar, IPAR and FPAR), Tscalar 
is the most sensitive parameter in the model. 
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4. Discussion 

4.1. Model inputs, framework and environmental settings 
 
4.1.1. Data Availability 

The study was undertaken with the aim to identify the challenges in the operational 
monitoring of carbon flux in tropical forests of India. Therefore, the first thing to 
mention is that the availability of the data. Though the daily images from MODIS 
Terra sensor were available, the cloud problem was a limiting factor for the use of 
data on a daily basis. The problem was most prominent in the monsoon (wet) period. 
It was very difficult to find a data which is cloud free in monsoon season. At the 
same time, 100% clouds were observed in few days. Those images were not 
considered in the analysis. Therefore, on an average, 5-6 days images were missing 
per month.  

4.1.2. Model formulation 

 
Two things are very important in any modelling studies; the first one is the model 
logic (how the model is logically organized) and the second one is the accuracy or 
resolution of the input data. In the present study, the model is organized in a logical 
manner by taking into consideration of the local environmental conditions. 
Temperature is a limiting factor or constraint in the photosynthetic process in higher 
elevation areas in the study area. Water is a stress factor in rainshadow regions or 
eastern side of the Western Ghats. Since 50% of the area belong to deciduous 
phenology, it was necessary to include a phenological measurement in the model. 
The area includes sparse vegetation (thorn forest) to dense vegetation (evergreen) 
and therefore, an index is required which is insensitive to background soil 
reflectance and high biomass condition. By considering all these parameters, the 
model logic suggested by Xiao et al. (2004) in Vegetation Production Model is 
found most appropriate to the study area.  
 
In terms of resolution of data, a data was required which could be utilized for the 
operational monitoring carbon flux. MODIS could be considered as a sensible sensor 
in the trade-off between spatial resolution and temporal resolution. Daily data at 500 
m resolution is quite reasonable to get information about the properties of vegetative 
surfaces. The maximum light use efficiency, a vegetation specific property, needs to 
be mapped at a better resolution since the area is highly heterogeneous. At the same 
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time, it was not easy to go at the species assemblages level due to the inadequacy of 
the physiological information of these species. Therefore, as an agreement, 24 m 
resolution IRS P6 LISS III data was selected which was sufficient enough to provide 
land cover types with an accuracy of 80%. Daily weather observations were another 
major inputs in the model.  The spacing of four weather stations in and around the 
areas was sufficiently enough to provide the information according to the standard 
climate reference guides (Linacre 1992).    

 
4.1.3. Seasonal influence 
 
The influence of monsoon is very clear in the hills. There are two types of monsoon 
in the study area. The first one is the south west monsoon which starts in the month 
of June and retrieve by first half of August and the second one, called north-east 
monsoon, starts in the second half of August and extend up to November. Due to 
this time lag, the month of August experience relatively low amount of rainfall 
compared to the preceding and following months as is evident from the figure: 4. In 
addition, the amount of rainfall received in the western part of the sanctuary was 
higher than eastern part. The western side of the sanctuary is windward side of 
Western Ghats and therefore, the quantity of precipitation (mainly orographic 
rainfall) is higher at west whereas precipitation is lower at east due to its leeward 
position. The western part of the sanctuary is approximately 75 km away from the 
coast and the monsoon current which flows through humid area condensed and 
precipitated by hitting on the mountain ranges (orographic rainfall). In the case of 
north-east monsoon, the current coming through the dry parts of Peninsular India by 
travelling hundreds of kilometres and the intensity reduced significantly before 
hitting the mountain ranges and therefore the amount of rainfall is much lower than 
the amount receives in the west.  
 
4.1.4. Vegetation Types 
 
The distribution of vegetation was according to the prevailing environmental 
conditions in the area. The western part of the study area where high amount of 
rainfall available is characterised by luxurious rainforest whereas the drier parts in 
east is characterised by deciduous forest. In addition to this common trend, the local 
distribution of vegetation communities was a function of topography of the area. The 
slopes in the mountainous areas (>1500m) support typical wet temperate forest 
(shola forest), whereas tops of the mountains are characterized by extensive stretches 
of grasslands. The upper elevation areas (> 800m) are characterised by evergreen 
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forest, medium elevation areas by deciduous forest and low elevation areas by thorn-
scrub forest. The occurrence of plantations in the area dates back to end of 18th 
century. About 150 years ago, these hills contained undisturbed and contiguous 
tracts of forest, but they were opened for plantations during the last century 
(Congreve 1938; Sundararaju 1987). The medium elevation and medium rainfall 
areas in the Top slip plateau were used for teak plantations and higher elevation and 
rainfall areas in the Valparai Plateau were used for tea plantations. This history is 
reflected in the extensive distributions of plantations now observed in the vegetation 
type map. In addition, there are about 36 tribal settlements inside the sanctuary and 
agriculture is the most common occupation for these villagers .  
 

4.2. Model results  
 
4.2.1. Maximum LUE 
 

In light use efficiency models, maximum light use efficiency (ε0) is considered as a 
constant for individual biomes. But in reality, biome is a very large spatial unit 
which could be considered as an aggregation of dynamic small spatial units. 
Interannual dynamics, land use changes, disturbance history, and different 
successional stages of vegetation may result in the spatial variation and temporal 

changes of ε0 within a biome type. So it is possible that ε0 at the canopy level is site-
specific. The study area contains as much as fourteen natural vegetation 
communities or species assemblages in addition to the non-forest classes. Moreover, 
a number of disturbance factors are prevalent in the study area which maintains 
secondary forest formations (Joseph et al. in press). Any of these factors were not 
considered while assigning a constant value to the specific biome type. The major 
reason was the unavailability of the information. The maximum possible information 

about the ε0 was available from Biome-BGC model and therefore, those values were 
assigned for biome types.  
 
4.2.2. Selection of Indices 
 
A number of studies have shown that changes in water content in plant tissues have 
a large effect on the leaf reflectance in the SWIR band region of the spectrum. It is 
well known that a large absorption by leaf water occurs in this region and therefore 
shortwave infrared reflectance (SWIR) reflectance is negatively related to leaf water 
content (Tucker 1980, Bowman, 1989, Ceccato et al. 2001).  MODIS has two 
discrete channels in the SWIR (channel 5 is from 1230 to 1250 nm and channel 6 is 
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from 1628 to 1652 nm) with a signal to noise ratio above 100 (Guenther et al. 2002). 
Studies by Fensholt and Sandholt (2003) and Fensholt et al (2006) indicated that 
water stress index based on channel 6 is performing better than channel 5 in Sahelian 
environment. They have recorded a correlation of 0.87 and 0.79 for channel 6 and 
channel 5 respectively. The present study also recorded a similar observation that 
water stress index based on channel 6 is performing better than channel 5. The R2 
values were 0.71 and 0.64 respectively. Xiao et al (2004a) have also used the water 
stress index based on channel 6 (LSWI) in their vegetation production model.  
 
Comparison of vegetation indices with biomass values indicates that EVI is 
performing slightly better than NDVI.  The advantage of using EVI lies in two 
properties. The first one is that it is not saturating at high biomass conditions. The 
second one is that it is less sensitive to atmospheric conditions and soil background 
reflectance (Huete et al. 2002). In the present study, both vegetation indices were not 
found saturated. Therefore, linear curves were fit into the data to know the R2 value 
and to compare the relative performance. The second advantage was not tested due 
to the unavailability of ground data. The better performance of EVI in GPP 
modelling was noted recently and attempts were made to predict GPP solely based 
on EVI. Xiao et al (2004a, b) found a strong positive correlation between 
photosynthetically active vegetation and EVI, both for evergreen and deciduous 
forests. Rahman et al. (2005) noted a strong overall relationship between the MODIS 
16 day EVI product and GPP across ten AmeriFlux tower sites representing a wide 
range of vegetation types. Sims et al. (2006) demonstrated that EVI alone could 
provide estimates of GPP that were as good as or better than MOD17 for nine flux 
tower site in North America during the active photosynthesis period. Sims et al. 
(2008) further explored to predict GPP based on EVI and LST (Land Surface 
Temperature) in their Temperature-Greenness (TG) model which excludes biome 
level look up table and coarse scale meteorological data.   
 
4.2.3. Gross Primary Productivity 
 
The maximum carbon assimilation is observed in those areas where there are no 
physical constraints. Phenologically, these areas are dominated by evergreen forests 
within an altitudinal range of 800 – 900 m. The lower value of GPP in deciduous 
forest in dry season was probably due to the water and phenological stresses. In wet 
season, the deciduous-scrub system showed higher assimilation rate due to the 
absence of limiting factors in physiological processes. The lowest values are 
observed in mountain grasslands and shola forest systems where temperature is the 
most important constraint.  
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4.3. Model comparison 
 
The MODIS land cover product showed extremely low accuracy in the study area. 
The major vegetation type in the area, i.e., broadleaved deciduous forest was nearly 
absent and most of this vegetation type is mapped as crop land in the land cover 
product. The estimated accuracy was 42% which was much lower than the estimates 
available in literature. Hansen et al (2000) and Heinsch et al (2003) reported the 
accuracy of the product within a range of 65-80%. The misclassification between 
savanna and grassland may not have a significant implication in the GPP estimates 

since both the biome types have more or less similar ε0. But the mapping of 

deciduous forest as cropland has much more implications since the ε0 of cropland is 
almost half of deciduous forest.   
 
The change in GPP estimate due to the difference in the resolution of input datasets 
was very prominent compared to the difference in algorithms. When local datasets 
having high resolution are used in both the models, the difference in the GPP 
estimate was negligible. When the same algorithm is implemented using global 
datasets, the GPP estimate was almost three times higher than the GPP estimate by 
local datasets. The resolution of this global DAO meteorological datasets is 10 which 
correspond approximately 100 km in the study area. A wide range of weather 
conditions exists in this interval as it clear from observations from local weather 
stations. The amount of IPAR varied almost double especially in wet season from 
station 1 to station 4. A similar trend was observed in case of temperature and 
relative humidity. Altitudinal variation may have a significant influence in 
micrometeorological conditions. The elevation in study area varies from 250 to 2500 
m from eastern plains to high ranges in the west. The observed temperature lapse 
rate in the western side of the hills is 5.50C/km while it is 7.60C/km in the eastern 
side of the hills (Linacre 1992). Such large fluctuation might not be counted in the 
global datasets.  

  
4.4. Model sensitivity 
 
The most sensitive parameter in the model was temperature scalar. This was 
primarily due to the variability in the temperature throughout the landscape. The 
mountain tops recorded a temperature of 00C in winter season whereas the eastern 
plains recorded a temperature of 400C. The altitudinal difference, undulating terrain, 
and temperature lapse rate may be some of the parameters to be responsible for high 
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sensitivity of Tscalar. Though a number of publications suggested an optimum 
temperature of 280C for tropical environment, there was confusion in assigning this 
value at the initial stage due to the diversity in the vegetation type. For example, the 
mountain tops experienced a temperate climatic system and the vegetation type in 
this area is considered as wet temperate forest according to the standard 
classification of Indian forest (Champion and Seth 1968). Therefore, a separate 
sensitivity analysis was conducted for a range of optimum temperature values from 
20 to 280C. The analysis was conducted in uniform as well as stratified manners. 
Here, the uniform manner means a constant optimum temperature  is assigned for all 
the vegetation types (for example 280C for deciduous and wet temperate forest) and 
stratified manner means different optimum temperatures were assigned to different 
vegetation types (for example, 280C for deciduous and 200C for wet temperate 
forest). The result showed that the variances are more or less similar in all the 
optimum temperature values and it was primarily due to topography of the 
landscape. The second most sensitive parameter was IPAR. This may be due to the 
prevalent and dynamic cloud conditions existing in the area. vanLaake and Sanchez-
Azofeifa (2004 and 2005) reported that cloud optical thickness is the most sensitive 
parameter in tropical conditions and can hold back up to 50% of IPAR to reach the 
earth surface.   
 

4.5. The question of validation 
 
Though validation was not possible for the whole model due to the absence of 
ground measurements like eddy covariance towers, a stepwise validation procedure 
was followed in the course of study. The testing of relation between soil moisture 
and water stress indices, and biomass values and vegetation indices could be 
considered on that perspective. The other input variables (temperature, IPAR and 
relative humidity) in the model were locally available. Moreover, the study could be 
considered as a model study where fluxnet towers is limited (applicable to most of 
the old world tropics).    
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5. Conclusion 

There is a trend among ecosystem modellers to work in those areas where enough 
databases are available. The limited studies in old world tropics, though it 
contributes ≈50% of total tropical forest area, could be attributed to this trend.  In 
particular, there are no flux towers in South Asian forest including Indian forest. 
Therefore, none of the carbon assimilation models are calibrated and validated in 
this area. But efforts has been started to include these areas into the global network 
of ecosystem flux studies. At this context, the present study was undertaken to 
forecast the trend first by comparing the existing well known algorithms in 
operational monitoring, and thereafter check the efficacy of the models when the 
ground measurements are available. By taking this reverse approach, the bias of the 
analyst to fit the model to ground measured data could be eliminated. 
 
The area selected for the study is the Anamalai hills in the Western Ghats 
biodiversity hotspot where the ecological setting is a representation of the diverse 
climatic and topographic gradients existing in peninsular India. The general 
objective was to assess the carbon assimilation of different vegetation types in 
different seasons. The following research questions are answered while achieving 
the objective. 
 
Research Question: 1. Is advanced vegetation index such as EVI performing better 
than conventional vegetation index such as NDVI in tropical forest?  
 
Method: The relative performance of vegetation indices was assessed by plotting the 
values of vegetation indices against sample plot biomass.  
 
Result: A good positive relation was found between vegetation indices and biomass 
in evergreen and deciduous vegetation types. Enhanced Vegetation Index performed 
slightly better Normalized Differential Vegetation Index in both the vegetation 
types. The coefficient of determination (R2) between EVI and biomass was 0.47 for 
evergreen forest and 0.39 for deciduous forest. For NDVI, the values were 0.38 and 
0.34 respectively. 
 
Conclusion: EVI is performing better than NDVI in tropical forest. 
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Research Question: 2. Which MODIS water stress index can better represent 
ground soil moisture condition? 
 
Method: Correlation analysis was conducted between ground soil moisture data and 
MODIS water stress indices.  
  
Result: Water stress index based on Channel 6 (Land Surface Water Index) yielded a 
correlation coefficient of 0.71 while Channel 5 (Shortwave Infrared Water Stress 
Index) yielded a value of 0.64. 
 
Conclusion: Water stress index based on Channel 6 is performing better than the 
Channel 5. 
 
Research Question: 3. How heterogeneity and seasonal changes in the vegetation 
types affect the carbon assimilation rate? 
 
Method: A model is formulated to cover local environmental and vegetation-type 
specific factors. The variables included are the maximum light use efficiency of 

vegetation types (ε0), controlling factors of ε0, i.e., temperature, water and 
phenology, incoming PAR and fractional PAR that canopy absorbs. Carbon 
assimilation rate is estimated with respect to vegetation types and season-wise. 
 
Result: The highest rate of carbon assimilation is observed in tropical wet evergreen 
forest especially lower elevation forest. The lowest rate of carbon assimilation is 
observed in grasslands. Tropical deciduous and thorn scrub forests showed a higher 
assimilation rate in wet season in comparison with dry season.  
 
Conclusion: The area where there are limited physical constrains assimilate carbon 
at higher rate.  
 
Research Question: 4. What are the sensitive parameters in the GPP model. How it 
affects the total estimates of GPP.  
 
Method: The standard deviation of each input variable were altered by ±10% 
repeatedly while keeping the other variables constant and the corresponding change 
in GPP was noted.   
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Result: Temperature scalar was the most sensitive parameter followed by IPAR. A 
variation of ±10% Tscalar can cause ±8% change in GPP estimates, while the same 
percentage variation in IPAR can cause only ±4% change in GPP. This was 
primarily due to the topographic variability in the landscape and extreme cloud 
conditions respectively.  
 
Conclusion: GPP estimation in heterogeneous mountain areas needs high resolution 
temperature and IPAR datasets.  
 
Research Question: 5. How global level data products behave at local scale? Is 
there any variation in MOD 17 A2 GPP product when it is estimated at local scale? 
If yes, is it due to the algorithm difference or due to the changes in the resolution of 
the input datasets? 
 
Method: The accuracy of the MODIS land cover product was tested using the 

ground control points. The variables in the MOD 17 A2, i.e., max LUE (ε0), 
temperature minimum (TMIN) and vapour pressure deficit (VPD), IPAR and FPAR 
were calculated using local datasets and compared with globally derived estimates.  
 
Result: MODIS land cover product showed an accuracy of 46%. Algorithm 
difference was not prominent in GPP estimate except for deciduous vegetation types. 
At the same time, estimates using global datasets were almost three times higher 
than the locally derived outputs.  
 
Conclusion: Resolution of the input datasets plays a major role in GPP estimates 
rather than algorithm.  
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