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Abstract

Superionic conductors (SIC’s) posses liquid like diffusivity in solid state. Mate-
rials possessing a superionic phase transition can be researched using first principles
calculations. These take long for for bigger system sizes however, and can become
impracticable quickly. There is a new method though which can improve on this;
on-the-fly machine learning force fields. This method uses first principle calculations
to then use these to quicken calculations. It is however not obvious if this method will
work; in the superionic phase of the SIC, diffusivity is high and the local environment
of atoms varies a lot. In this BSc thesis, we will show that machine learning force
fields can indeed model a superionic phase transition for the semiconductor KAg3Se2.
Although the experimental superionic structure is not achieved, we will show that
we do indeed observe a superionic phase and a phase transition. Using this, we will
convey that we can also get accurate values for diffusion, which are comparable to lit-
erature. Finally, we will show that the error of the force field is in reasonable bounds,
compared to first principles calculations.
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1 Introduction

1.1 Why use thermoelectric materials?

Net zero is a somewhat recent term, referring to the balance between production and
removal of greenhouse gasses to and from the atmosphere [7]. This is one of the hot terms
currently, with many countries saying they will commit to reaching net zero emissions.
With increasing worries concerning climate change, in June 2019 the UK became one of
the first major economies to set plans into motion to achieving net zero goals in 2050.
Many other countries such as France and Sweden have since followed and put plans into
motion to achieve this ambitious goal.

All these claims sound good on paper, but actually reaching these targets is excep-
tionally challenging. Even the before mentioned UK goals are already quite a bit behind
schedule. It is believed that one of the main contributors to reaching net zero is going to
be in scientific developments. This means that investing in the right innovative ideas and
plans is crucial for developing the right technologies in time so the goals can be reached
as planned. This is also quite a challenge however, since there are a lot of different tech-
nologies which help reach this goal, such as wind and water turbines, photovoltaics etc.

A good argument as to where most money should go, is to look at where most green-
house emissions originate from. Around 72% of the global emissions come from the energy
production sector [1]. If we look closer at this sector, we can see that almost one third of
this energy goes into electricity and heat, which is by far the biggest chunk of the whole
energy production. This is also one of the parts where efficiency can most definitely be
improved. Waste heat for example is a big problem, which if solved can lead to massive
increase in energy efficiency and hence also lead to reduction in emissions.

Figure 1: Pie chart showing global manmade greenhouse gas emissions per sector
in 2013 [1]

Where does this waste heat come from? It is reported that about 20% of the total
energy conversion is effective, meaning that 80% is converted into environmental or waste
heat [4]. From this 80 %, about 44% comes from the industrial sector, and 36% originate
from residential and commercial sectors. So it seems that targeting these sectors with
funding and attention could be one of the key ingredients to achieving the net zero goals.

One technology that could help solve the waste heat problem, is in thermoelectrics.
As the name suggests, thermoelectric materials are materials which can convert heat into
electricity by applying a temperature gradient to the material. These materials can hence
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convert waste heat directly into electrical energy, and also provide full cooling and heating
technology without the need of moving parts or refrigerants. The part of not needing
refrigerants is appealing, since these are also notorious for being greenhouse gasses.

Thermoelectric materials have already been known for about a century, yet they are not
very much applied yet. Apart from niche sectors such as the aerospace sector, the current
state of the technology leaves a lot to be desired for more widescale application. One of
the reasons for this is the low efficiency of current materials. Another one of the reasons
for the lack of application is the sustainability of the materials. Hence, current research
in thermoelectrics is being done in making sustainable materials with high performance
characteristics. This may seem like big hurdles, but one must be reminded that the possible
gain of this technology is also significant. It is hence of great advantage for countries aiming
for net zero to invest in developing these materials.

While there are a lot of known thermoelectric materials, this report will look closer
into a specific type of these materials; thermoelectric materials with a superionic phase
transition, also called superionic conductors (SIC’s). Having a superionic phase transition
means having a sudden sharp increase in diffusion of ions within the material at a certain
temperature. This diffusion is often comparable to that of a liquid at room temperature
[source], while the rest of the material stays solid. As we will see later, these SIC’s
have very desirable properties for thermoelectric generators, such as very low thermal
conductivity and high ionic conductivity. This combination would help to retain a given
temperature gradient intact while ‘harvesting’ electrical power from it - this is potentially
a breakthrough.

1.2 The newcomer; Machine Learning Force Fields

The mechanism behind this superionic phase transition is however still poorly understood.
Simulations trying to uncover the phenomenon often would take extremely long, and it
would become very impracticable. A new method has shown up recently however, which
could help with the computation cost; so-called machine learning force fields (MLFF). As
we will see later, this method makes calculations orders of magnitude faster than previous
methods, which enables the possibility of simulating the superionic transition at smaller
time scales.

There is however no guarantee that this method is accurate, or will even work for that
matter. This is because this method relies on the surroundings of an atom not changing
’too’ much, because this can blow op the system size. Since superionic materials contain a
highly diffusive layer, it is entirely possible that there are too many ’different’ structures
to learn and hence the method will not be practicable anymore.

This is exactly the main aim of this bachelor thesis; to verify whether the MLFF
method can reproduce the superionic phase transition in the semiconductor KAg3Se2.
If so, then another question becomes how accurate it is, and how well properties like
diffusivity compare to literature.

1.3 A 2D Superionic Conductor

The material of interest is the semiconductor KAg3Se2. This is not just a semiconductor
however; it has been reported [11] that this material has a superionic phase. At around
675 K, the low-temperature β-phase transforms into the superionic α-phase through a type
I superionic phase transition (see section 2.1). At this temperature, the silver ions start to
hop between sites, creating a highly diffusive layer between immobile selenium layers. The
potassium-selenium structure prohibits the silver atoms from diffusing between different
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Figure 2: Different phases of KAg3Se2. On the left, the low-temperature β-phase
is shown, and on the right the superionic α-phase is shown [12].

layers, creating a two dimensional superionic conductor. The fact that the diffusion is two
dimensional can be of interest in application to for example batteries. Using a 2D material
in batteries can help a multitude of problems that 3D materials face. They do this by
for example increasing thermal stability, improve ion flux through the different interfaces
and protect the materials from pulverization [14]. They also for example have a lot more
active sites [13].

The transition between the two phases is quite complex, or maybe even better said; the
unit cell changes quite a bit from structure. The unit cell transforms from a wide to a long
unit cell, as can be seen in figure 2. Not only does the lattice parameter c almost triple,
but the lattice parameter a also gets divided by four. These are not the only changes
however; also the angle between these parameters change significantly. All of this makes
the transition quite a complex one. The exact values are given in the table below.

Phase a (Å) b (Å) c (Å) α(◦) β(◦) γ(◦)

β 16.163 4.39149 8.7768 90 115.546 90
α 4.5638 4.5638 25.4109 90 90 120

Table 1: Table showing the different unit cell lattice parameters and angles for
different phases of KAg3Se2 [12].

As we will show in this report, while we do not see this exact phase transition, we do
see an phase transition. From this, we can deduce properties of KAg3Se2 and compare
them with literature.

The organization of this report is as follows. In section 2, we will go over the basic
principle behind superionic conductors, and introduce the machine learning force fields
theory. Then in section 3, the on-the-fly method will be introduced, along with the
various settings and the numerous procedures for all experiments will be explained. In
section 4, we will go over all the results one by one and discuss them aswell. Finally, we
will conclude in section 5 and give a short outlook in section 6.
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2 Theory

2.1 Superionic conductors

Superionic conductors (SIC’s) are solid state systems (crystals, semiconductors, ect) which
have ions showing very high diffusivity at a certain temperature. In the high conductivity
regime, measurements for the diffusion coefficient D usually yields values of around D =
10−5cm2s−1, which is comparable to the diffusivity of water at room temperature. This
makes these types of materials unique, in the sense that they are solids possessing liquid
like behaviour. What is furthermore interesting is that if only one type of ion is the charge
carrier, an simple estimate of the charge carrier concentration n can be obtained which
yields n 1022 carriers/cm3. This is almost a whole sublattice of the solid. From this result
it is believed that a whole ion sublattice moves as some sort of liquid, going from site to
site which is provided by the solid sublattice.

Figure 3: Graph showing the different types of superionic conductors. Here, AgI
is a type I SIC, PbF2 is a type II SIC and Naβ −ALUMINA is a type III SIC [6].

An important aspect of these SIC’s is that they get to the superionic phase through a
well defined phase transition. If the material is heated from low to high temperature,
the type of transition can be characterised into three types. Firstly there are type I
superionic conductors, whose phase transition are characterised by a very sharp change
in conductivity, changing orders of magnitude in a small range around the transition
temperature Tc. Secondly there are type II SIC’s, which have a sharp but way more
smooth transition around Tc, which can be seen as going from an insulating to a conducting
state. Lastly there are type III superionic conductors, which have an exponential growth
of conductivity. A graphical representation of the three types can be seen in figure 3. In
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this research, since the SIC researched is of type I (see section 1.3), we will only discuss
this type in more detail.

As said before, type I superionic conductors are defined by a sharp increase in con-
ductivity around the transition temperature. For many of these materials, around Tc a
rearrangement of both the immobile lattice and a disordering of the conducting sublattice
occur. This makes it relatively more complicated than if only one of the layers were to
change, since now there are two layers which change instead of one. This gives an ex-
tra degree of freedom, which is believed to be responsible for the very sharp increase in
conductivity around Tc.

2.2 Machine learning force fields

2.2.1 The aim of Machine Learning Force Fields

The goal of machine learning force fields is to describe the potential energy surface (PES)
of a system. The PES (U({Ri})) is described in terms of atomic coordinates {Ri} in the
crystal, and is hence dependent on them. To represent the PES, a variant of the Gaussian
approximation potential (GAP) [3] is used. Following this method, the objective is to find:

U =

Na∑
i=1

Ui, (1)

where U is the potential energy, Na is the number of atoms and Ui is the local atomic
potential energy assigned to atom i. The idea is that if we assume the local energy Ui

to be fully defined by its environment, we can look at the local environment within a
certain cutoff radius Rcut of each atom individually and calculate the local energy and
then sum over these energies. It is assumed that everything outside this cutoff radius does
not contribute much to the local energy.

2.2.2 Descriptors

For this to work we need a way to describe the environment of an atom. To this end, the
local environment is mapped onto a set of so called descriptors. Descriptors are feature
vectors which describe the local environment around an atom within the cutoff radius.
This is done by using the distribution of other atoms around atom i. The distribution is
given as a probability distribution ρi(r), which describes the probability to find another
atom j at position r [9]:

ρi(r) =
Na∑
i

fcut(rij)g(r − rij), (2)

where fcut(rij) is a cutoff function which smoothly removes the information outside the
cutoff radius Rcut. The position of atom i is given ri, and hence we also have the difference
vector rij = |rij | = |rj − ri|. Lastly, g(r) is the delta function. A different function is
used however to approximate the delta function, since the delta function is impractical on
the computer. The approach is called the SOAP [2] method and replaces the delta by a
Gaussian function:

g(r) = 1√
2σatomπ

exp− |r|2

2σ2
atom

(3)
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One of the upsides to this is that this mimics the influence of temperature on the system,
since it is a smeared out version of the delta function and hence smears out the positions
of the atoms. We now have that the local potential energy of an atom is dependent on
the probability distribution, i.e Ui = F [ρi(r)]. The simplest procedure now would be to
develop ρi(r) into a finite basis set and express F as a function of the coefficients. The
problem here however is that ρi(r) does not have rotational invariance, which is very
impractical since this would mean that if we rotate our system, we would get a different
energy. So even though the system is the same for the atom we are looking at, we have to
treat it as a different system. This means that our machine has more unnecessary learning
work to do.

To overcome this problem, intermediate functions are introduced which depend on
ρi(r). The aim is to let these functions be invariant under rotation, translation, and
permutation of atoms. A good choice of descriptor is the so called radial distribution
function, which is given by [9]:

ρ
(2)
i (r) =

1

4π

∫
ρi(rr̂)dr̂, (4)

where r̂ denotes the unit vector of r. This function calculates the distance between atom
pairs from atom i to another atom within Rcut. If we were to use only this function as
descriptor however, we would lack angular information. This leads to some configurations
being seen as the same, which would lead to the same local potential energy. To combat
this, another descriptor is introduced which is called the angular distribution function.
This function describes the probability to find an atom j at a distance r from atom i, and
another atom k at a distance s, with an angle θ = ̸ kij. The probability is given by [9]:

ρ
(3)
i (r, s, θ) =

∫∫
δ(r̂ · ŝ− cos θ)ρi(rr̂)ρ

∗
i (sŝ)dr̂dŝ. (5)

These two descriptors together are used to describe the local environment of an atom.
It is useful to expand equation 2 into basis functions:

ρi(r) =

Lmax∑
l=1

l∑
m=−l

N l
R∑

n=1

cinlmχnl(r)Ylm(r̂), (6)

where χnl denote radial basis functions, in our case Spherical Bessel functions, Ylm are
spherical harmonics and cinlm are expansion coefficients. Combining equations 4, 5 and 6
we obtain:

ρ
(2)
i (r) =

1√
4π

N0
R∑

n=1

cinχnl(r), (7)

cin = cin00 (8)

ρ
(3)
i (r, s, θ) =

i∑
l=1

Lmax∑
n=1

N l
R∑

v=1

√
2l + 1

2
pinvlχnl(r)χνl(s)Pl(cos θ) (9)

pinvl =

√
8π2

2l + 1

l∑
m=−l

cinlmci∗vlm, (10)

where Pl is a Legendre polynomial of order l. While this might seemingly come out of
nowhere, the coefficients used to fill the descriptors in the next chapter are actually the
Fourier coefficients cin and pinvl for the radial and angular descriptors respectively.
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2.2.3 Kernel Regression

In the previous chapter, we have assumed that the local potential energy is a functional
of the local environment. Using the descriptors found in the previous chapter, we can
now write this as Ui = F

[
ρ
(2)
i , ρ

(3)
i

]
. So the task which is left now is to find a suitable

functional F . The way this is done in the GAP method is by using a so called kernel-
regression method. We write the functional as a sum of weights multiplied by a kernel K
[10]:

Ui = F
[
ρ
(2)
i , ρ

(3)
i

]
=

NB∑
iB=1

wiBK(Xi,XiB ). (11)

In this equation, iB is a local reference structure, {wiB |iB = 1, ..., NB} is the set of linear
fitting coefficients, XiB is a reference configuration in the descriptor space, and Xi is the
local configuration of interest in the descriptor space. These Xi and XiB contain the
coefficients cin and pinvl for a specific or reference configuration, respectively. Lastly, K is
called a kernel function, and this function measures the similarity between the two input
vectors. The value goes to zero for low similarity, and to one if high similarity is found.
The kernel used in this research is given by [9]:

K (Xi,XiB ) = β(2)
(
X

(2)
i ·X(2)

iB

)
+ β(3)

(
X̂

(3)
i · X̂(3)

iB

)ζ(3)
, (12)

where the (2) in the power stands for the vectors Xi containing cin, and the (3) in a power
stands for vectors containing pinvl. Furthermore, X̂i

(3) stands for a normalised version of
X3

i . Lastly, β(2) and β(3) are weighting parameters, and ζ3 is a parameter which controls
the sharpness of K.

2.2.4 Fitting

Using equation 11, we can describe the energies, forces and stress tensor (EFS’s) as:

y = ϕw, (13)

where w = {wiB} is the set of weights and ϕ is a matrix which contains K (XiXiB ) and
its derivatives. Then y contains the EFS’s of the desired structure. We have an unknown
in the right hand side however; we need to find the weight. We do know both y and ϕ for
the training set however. So we can write a different form of equation 13:

Y = Φw, (14)

where Y and Φ contain the same information as their lowercase counterpart, but now for
the reference structures. So Y contains the first principle energies, and Φ is a collection
of all ϕ for all training structures. Since we know both Y and Φ, we can use these to
calculate the weights and uncertainty for the EFS using the Bayesian theorem [5]:

w =
[
I/σ2

w +ΦTΦ/σ2
v

]−1
ΦTY/σ2

v , (15)

σ = σ2
vI+ ϕT

[
I/σ2

w +ΦTΦ/σ2
v

]−1
ϕ. (16)

In these equations, I denotes the identity matrix, and σ2
w and σ2

v denote parameters which
are determined such that the robustness and accuracy are balanced. The diagonal elements
of σ, which correspond to the variances of the prediction, are used as uncertainty in the
prediction.

This concludes the machine learning force field method. In the next section, we shall
explain how we obtain the reference structures; this is done on-the-fly.
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3 Method

3.1 On-the-fly Machine learning force fields

The machine learning method VASP uses to calculate forces and energies are so called on-
the-fly machine learning force fields. The difference with ’normal’ machine learning force
fields is that instead of starting with an already existing database of atom configurations,
we now start with just one. DFT calculations are then performed until the potential energy
surface is sufficiently sampled around the propagated configuration. When this happens,
forces and energies are instead calculated using the force field generated by the machine
learning method. If during the MD run a ’new’ configuration occurs which has not been
sampled enough yet, another DFT calculation is performed. This cycle of DFT and force
field steps is repeated until the MD run has ended. The algorithm can be summarised as
follows:

1. The machine predicts the energy, forces and stress tensor and their uncertainties for
a given structure using the existing force field. If no force field is yet present, a first
principle (FP) step is done.

2. The machine decides whether to do a first principles calculation (go to step 3) or a
force field step (go to step 5) based on the uncertainty.

3. Perform a first principle calculation. This calculation can be added to the database
to improve the force field.

4. If there are a certain amount of structures added through step 3 or the uncertainty
has become to high, the force field gets improved by learning from the new structures.

5. The atomic positions and velocities are updated by using either the force field or the
first principle calculation, depending on the accuracy of the force field.

6. If the requested amount of MD steps have been achieved, the program is done. If
not, go back to 1.

A graphical representation of the algorithm is show in figure 4

3.2 VASP

To run the molecular dynamics simulations, the Vienna Ab initio Simulation Package, or
VASP has been used. Within this program, the potential energy, the forces on the atoms
and the stress tensor of the crystal structure are calculated based on Density Functional
Theory (DFT). This thesis does not cover the detailed working of this theory, but treats
the resulting data as a given database. However, multiple settings of great importance
must be chosen to obtain accurate results, or even results at all. This section will be
dedicated to this topic.

3.2.1 General VASP settings

The simulations were performed using the exchange-correlation functional in the Perdew-
Burke-Ernzerhof (PBE) form. The cutoff energy ENCUT was set to 310 eV. This was
chosen in accordance with max energy ENMAX of the POTCAR file, where ENCUT =
1.2ENMAX was chosen. A more generally used formula is ENCUT = 1.3ENMAX, but
a prefactor of 1.2 has been chosen to speed up the calculations, without limiting the
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Figure 4: On-the-fly scheme used by VASP. Here RI stands for structure I, with
I being the current MD step.

accuracy too much. The IBRION flag was set to 0, which means the Verlet algorithm is
used to integrate Newtons’ equations of motion. The ISIF flag has also been set, which
controls whether the stress tensor is calculated and which degrees of freedom are allowed
to change. The degree of freedoms which can change are the positions, cell shape and
cell volume. Since we want to try and witness an superionic phase transition for which
(as described in ...) the cell shape and parameters change, we put the ISIF flag such
that all these values are allowed to change (so ISIF = 3). The next important flag is
the MDALGO flag, which sets the thermostat which is used. This in combination with
some other settings determines what ensemble the run will be held in, which is important.
For this research, the Langevin thermostat was used (MDALGO = 3). In combination
with the afor mentioned flags (especially the ISIF flag), this produces an NpT simulation,
which is desired since we want the cell volume to be able to change while keeping the
temperature as constant as possible. So ALL runs have been done in an NpT ensemble.
The next important setting that has been set is the LATTICE_CONSTRAINTS. This parameter
controls which lattice parameters are allowed to change. All three lattice parameters have
been set to be able to change, since the changing of the lattice parameters is inherent for
the phase transition of the material. The next flag that is very important is the POTIM
flag. This parameter sets the time step between MD steps. This time step has been chosen
as 2 fs, since literature doing similar simulations have also used this timestep [11]. It is
furthermore able to capture nearly most vibrational frequencies in the system.

There are some other important flags, such as the machine learning flags, starting/final
temperature, amount of MD steps, etc. These are however not generally the same for all
runs and will hence be provided by the respective figure/section.
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3.2.2 Training of the force field

Lets first go over the settings used to train the force field. One of the settings which has
been set manually is the radial cutoff distance. This was set to a distance of 10Å, since
the distance from one potassium layer to another is about 9Å. Setting this to 10Åallows
the layers to ’communicate’ which each other, which helps the silver layer stay in between
the selenium layers. The other machine learning settings are kept standard. The training
of the force field was done as follows. Firstly the force field was trained from scratch for
200 ps at 800K. This run was started with the low-temperature beta structure, converted
to a a 1 ×2×3 supercell. This was done to make the force field learn the phase transition,
as the DFT calculation forces the phase transition from which the force field learns. This
cell was also made 3 high on purpose since, as we can see from figure 2, to have a better
chance at finding the phase transition we need to make the supercell high enough such
that it can stretch into the lengthy alpha phase.

The second training run started with the force field of the 800K run. This run was
performed with 300K, also over 200 ps, to obtain data on the low-conductivity phase.
This run also started with the low-temperature beta structure, with the same 1 × 2 × 3
supercell. This was done to get data on the β-phase.

The first principle calculations for both runs were done on a 2×3×1 regular k-grid.
With these two training runs, the force field should have both high and low temperature
structures, while also having seen the phase transition.

3.2.3 Continuous heating

To verify whether the force field can get to the experimental superionic phase, a continuous
heating run was done. This run was started from the low temperature structure, in a 3×2
×3 supercell (see figure 5). This run was done using only force field steps, to see whether
the transition can be made. The run was divided in two steps; first, 400 ps at a temperature
of 600K, and after this run a continuation was done for about 300 ps at 700K. The time
step for both these runs was 2 fs.

Figure 5: β-structure as a 3×2×3 supercell. The purple balls are potassium ions,
the green balls are selenium ions and the grey balls are silver ions.
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3.2.4 Heating

For the main result, constant temperature runs were done on temperatures ranging from
300K to 800K, with steps of 25K between each MD run. Only the fully trained force
field was used for calculations, so no FP calculations. The runs were done one a 1×2×3
supercell. For each run, 55 ps was simulated with a 2 fs time step at constant temperature.
Each run started from the final structure of the previous run, such that the equilibration
time was little and the heating was not too sudden. After each run, the first 5 ps was
taken to be equilibration time and hence removed from the data. This resulted in 50 ps
per temperature from which the results were generated.

3.2.5 Alpha-phase

One MD run has been performed starting at the α-phase. This run follows the exact
procedure as in Rettie et al [11], except that we let the force field train and help when the
uncertainty in the prediction is small enough. The simulation is 55 ps using a time step
of 2 fs. In the α-phase, the silver ions have 75% occupancy. This means that we have to
remove three silver atoms from the primitive unit cell. The paper we are copying from
does this at random, but we do this by removing one silver atom systematically from each
layer, and then taking the configuration which has the lowest energy. After this selection,
the cell was multiplied into a 4×4×1 supercell. For the FP calculations, a gamma-only
k-point grid was used. This run was then performed at a constant temperature of 800K.

3.3 Diffusion coefficient calculation

The diffusion coefficient is a measurem of how much an atom moves . It is thus a quantity
of great interest for us, as it gives information about the superionic phase transition. In
this section the procedure of how the diffusion coefficient is obtained shall be given.

Before we get to the diffusion coefficient, it is important to introduce the mean squared
displacement, or MSD first. The MSD is a measurement of the displacement from some
predefined starting position. It is given in formula form by:

MSD(t) =
1

N

N∑
i=1

1

Nt

Nt∑
k=0

|ri(t+ k∆t)− ri(k∆t)|2, (17)

where N is the amount of atoms of the type which is being looked at. The position vector
atom i at time t is given by ri(t). ∆t is the time step used in the MD run. The second
sum in equation 17 is an ensemble average over time. The idea is that the whole MD run
is split in overlapping parts of size t. Starting from the first atomic positions, we then
calculate the MSD from this location until time t. We then shift our starting structure
one time step ∆t further, and then look at the MSD until a time t + ∆t. In general,
we calculate the mean squared displacement from k∆t until t + k∆t, with k = 0 until
k = Nt, where Nt is the amount of pieces which fit in the total simulation time. So for a
certain t and ∆t, only a certain amount of overlapping pieces Nt can fit in the whole run.
The reason this is done is because there is no reason for the first structure to be the best
structure to start from. By averaging in this way, we get a more accurate value for D,
since this procedure will result in a smoother MSD vs t graph.

In in case of a random walk, the dependence of MSD vs t is linear. The relation is
given by the Einstein relation:

MSD(t) = 2dDt, (18)
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where d is the dimension of the diffusion and D is the diffusion coefficient. In this research,
even though the diffusion in the z-direction is small, it is still taken into account. Hence
we take d = 3. We can thus obtain the diffusion coefficient from MSD data, which in
turn can be obtained from the positions of the atoms over the MD run. There is another
subtlety in calculating the diffusion coefficient however. Since we divided the MD run into
multiple smaller MD runs, we calculate the diffusion coefficient over all the runs. These
are then averaged over Nt to obtain the desired result: the diffusion coefficient.

3.3.1 Error on the diffusion coefficient

Now that we have obtained a way to calculate the diffusion coefficient, we also would like
to know the error on this value. We could take the standard deviation of all the diffusion
coefficients calculated over the split runs. This however does not take into account the
fact that at lower temperatures, less diffusion happens. Since all parts of the MSD run
will look similar, independent of the temperature, the standard deviation of the mean of
D will grow similarly to D itself. We would however like to take into consideration the
fact that at lower temperatures less diffusion happens, which results in an inherently less
accurate value of D since we have less diffusion events. We thus adopt the method of
calculating the standard deviation developed by He et al [8]. According to this method,
the standard deviation is given by:

σ = Dtrue

(
A√
Neff

+B

)
, (19)

where Dtrue is the ’true’ value of the diffusivity calculated over the whole (so uncut) MD
run, and A B are fitting constants. These values have been fitted for many superionic
materials, and this resulted in values of 3.43 and 0.04 for A and B respectively. Since
they have been fitted specifically for superionic materials, we will be using these values as
well. Furthermore, Neff is the effective amount of ion hops which contributed to the total
MSD, calculated by:

Neff =
maxt [TMSD(t)]

a2
, (20)

where TMSD = N · MSD is the total mean squared displacement of all ions, and a is
the distance between two neighbouring Ag sites. So maxt [TMSD(t)] is the maximum
total mean squared displacement, taken over the whole MD run. Since ion hopping is the
main diffusion mechanism in superionic conductors, it makes sense to relate the amount
of hopping to the error in the diffusivity; more hopping means a better sampling size for
the diffusion coefficient, and vice versa. Equation 19 is used to calculate the error on D.

3.4 The Activation energy

As described before, multiple runs at different, constant temperatures have been done. An
diffusion coefficient can be obtained for all of these runs. These diffusion coefficients are
related to the temperature T by the so called Arrhenius relation by [8]:

D = D0 exp

(
−Ea

kbT

)
, (21)

where D0 is a model-dependent prefactor, kb the Boltzmann constant and Ea the activation
energy. This activation energy is an important quantity of SIC’s; it tells something about
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how easily the atom comes ’loose’ of the site, and hence how easily it starts hopping. So
by fitting the logarithm of D vs the inverse of T , a linear relation should be obtained with
which the activation energy Ea can be obtained:

logD = logD0 −
Ea

kb

1

T
(22)

One should be careful about the range of T over which this is fitted however. The Arrhenius
relation assumes that the mechanism of diffusion is the same over the fitted range of T .
For SIC’s, this means that this relation should only be fitted in the superionic region.
Furthermore, the inverse of the standard deviation σ squared should be used as weights
for fitting. This is because we should weight values of D which we are more certain off
heavier than values we have lower statistics on.
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4 Results and Discussion

4.1 Continuous heating

(a) (b)

Figure 6: (A) Lattice vector length and (B) Angle change versus simulation time.
These runs have been done according as described in section 3.2.3. On the left of
the red line, the temperature was kept at 600K while on the right of the red line
the temperature was increased to 700K.

Figure 6 shows the results from the continuous heating run as described in section
3.2.3. We can see that in the 600K regime, we observe a phase transition around 275 ps
in both graphs. We can see from the values of for example the angles that this is not the
’correct’ phase transition; if we compare these values to the values in table 1, we observe
that only the value of γ is the same. So even though we do observe a phase transition,
we do not get to the α-phase as observed in experiment. This could have multiple reasons
as to why. One of them is that the heating was done very suddenly. We started from the
300K structure, and suddenly heated it up to 600K. It could be that the structure got
broken, and the force field could not recover from this. It is more likely however that we
got into some other energy minimum, since the structure does not seem broken (see figure
7. This is also supported by the fact that after we heat it to 700K, the structure still does
not change, indicating we have found some other weird energy minimum. Another reason
could be that the force field did not acquire correct data on the phase transition. This will
be discussed in more detail in a later section. The next result shall show that eventhough
we did not get to the correct α-phase, we still observe an superionic phase transition.

Figure 7: Final structure after continuously heating at 600K and 700K.
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4.2 Heating

The following subsections shows the results from the heating simulations as described in
section 3.2.4.

4.2.1 Radial distribution function

0 1 2 3 4 5 6 7 8
r (Å)

0

1

2

3

4

5

G(
r) 
(a
.u
)

T=300.0
K - K
Ag - Ag
Se - Se

(a)

0 1 2 3 4 5 6 7 8
r (Å)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

G(
r) 
(a
.u
)

T=800.0
K - K
Ag - Ag
Se - Se

(b)

0 2 4 6 8
r (Å)

0

1

2

3

4

5

G(
r) 
(a
.u
)

300

400

500

600

700

800

T (K)

(c)

Figure 8: Results from radial distribution function calculations. (A) Radial distri-
bution function for different atom-atom pairs for T = 300K. (B) Radial distribution
function for different atom-atom pairs for T = 800K. (C) Radial distribution func-
tion for Ag-Ag pairs over different temperatures, shown in a heat map.

Figure 8 shows the radial distribution plotted against distance, for different temper-
atures of the heating runs (see section 3.2.4). From figure 8a we can see that at low
temperatures, the RDF of all atom types show multiple peaks. This indicates that at
these temperatures, there was still quite some structure in the system for all atoms, which
means the system behaved solid like. From figure 8b, when we are at higher temperatures
we can see that the RDF for silver has changed dramatically; the two peaks at around
r = 4.4 Åand r = 5.5 Åare gone, and the graph seems to go to a constant value for higher
r. This is very typical of a liquid; one sharp spike, and then a flat constant line. The
disappearing of the secondary peaks is shown in figure 8c. We can clearly see that as T
increases, the silver layers start to lose structure and behave like a liquid. As for the other
atom types, we can see some change here as well. It seems that both K and Se lose some
structure as well, but this is too be expected as we are close to the melting point of 900K.
These two atom types have a lot more structure than the silver structure though, which
is to be expected since they should be keeping the silver atoms in the superionic phase.
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We can furthermore see that the potassium ions are most structured at this temperature,
even going to zero after the peak. From these graphs, we can conclude that we can defi-
nitely observe a superionic phase transition; the Ag layer starts to behave like a liquid for
increasing temperature, while the K and Se layers still behave solid like.

4.2.2 Mean squared displacement
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Figure 9: Graphs showing the MSD of all atom types versus time, for different
temperatures. These have been averaged over the whole MD run according to
equation 17. The temperatures are as following: (A) T = 300K, (B) T = 500K,
(C) T = 600K, (D) T = 800K.

Figure 9 shows the MSD vs time for different temperatures. We can see that the
maximal MSD increases with increasing temperature for all atom types, but by far mostly
for the silver atoms. This is to be expected, since the silver layer is the mobile layer
while the others should be immobile. They of course start moving a bit more, but this is
inevitable since we are increasing the temperature. Another result is the clear difference
between the 300K graph and the 800K graph; not only did the shape of the Ag curve
change completely, the difference with the other atom types also increases sharply. From
this it can be seen that we indeed have a superionic conductor; one conducting layer, with
the other layers being immobile.

Figure 10 shows the MSD in all three directions vs time, for 800K. From this graph we
can see that the diffusion in the x and y direction are almost identical, while the diffusion
in the z direction is almost three times as low. We can clearly see the 2D element of
the system from this. We do however have some diffusivity in the z direction, which is
still quite some. This can be explained by the path the silver atoms take when hopping.
Sometimes, even though the distance is a bit bigger than the nearest site, a silver atom
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Figure 10: Graph of MSD vs tau for silver atoms in x,y,z direction to show 2D
behaviour. This data was taken from the whole 800K heating run for clearity.

can hop to a site below it. This results in a mean squared displacement in the z direction,
which is what we see. But is clear that most hopping happens in the x-y plane.

4.2.3 Diffusion
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Figure 11: Graphs (A) Diffusion coefficient and (B) the natural logarithm of the
diffusion coefficient versus temperature. The diffusion coefficients are obtained as
described in section 3.3, with σ the standard deviation from equation 19.

Figure 11 shows the diffusion coefficient plotted versus temperature, as obtained from
the procedure explained in section 3.3. From figure 11a we can see something remarkable
instantly; after T = 575K we can see a very sharp spike in diffusion coefficient, going up in
orders of magnitude. This appoint this to the superionic phase transition as described in
the previous section. Another striking characteristic of this graph is that the error seems
to grow with temperature. This is not something which is expected, since we should have
more diffusion events for larger temperatures, hence more certainty in diffusion coefficient.
This is however just misleading in the plot; the errors for low temperature are actually
relatively high, almost of the same order as the value of D itself. In figure 11b, where
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the logarithm of D is plotted against T , we can see a better representation of the relative
error per point. We can see that overall, the error decreases as T increases, as we would
expect.
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Figure 12: The effective number of silver hops vs temperature.

Another graph supporting the existence of the superionic phase transition can be seen
in figure 12. This graph shows the effective amount of ion hops versus temperature. From
this graph we can see a very similar structure as in figure 11a. We can again see a very
sharp increase around T = 575K. This is also expected, since at low temperature we expect
little to no hops as this is the low-conductivity phase. As T increases, we would expect to
see an increase in ion hops as we get to the superionic phase, which is what we see.
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Figure 13: The logarithm of D plotted vs the inverse of T and the accompanying
fit used to obtain Ea for T between 600 K and 800 K, which we assume corresponds
to the superionic region as predicted by figure 11. The inverse of σ squared has
been used as weights for the fit.

Figure 13 shows the superionic region for which the Arrhenius relation has been fitted.
The values of logD were plotted against the inverse of T , to then fit this relation to
equation 22. In this fit, the inverse of the variance has been used as weights. This results
in the diffusion coefficients which we are more certain about impact the fitting more than
point we are not so certain about. For this plot, it was assumed that the superionic
conduction starts happening from 600K. This is on the basis of figure 11. This results in

20



the fit shown in the figure. From the slope of this fit, after multiplying by −kb, we obtain
a value of Ea = 0.21 ± 0.06 eV. This is of the order of kbT , which is typical for SIC’s.
Values for the activation energy of 0.12 eV were reported for this material [11], so we are
on the same order. The reported value is not within our error region however. There are
possibilities why this is the case.

4.3 Alpha-phase
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Figure 14: Graphs showing the MSD plotted against simulation time. The data
was obtained following the procedure described in section 3.2.5. (A) Plot and fit
of the diffusion coefficient for the split MD run, as can be seen by the smoothness
of the graph and the length on the x-axis. (B) Plot of the whole MSD run versus
time. The diffusion coefficient obtained from (A) has been used here to obtain the
straight black line.

Figure 14 shows the result from the constant temperature run, where we start from the
’correct’ α-phase (see figure 2). We can see that the shape of the graphs are very similar
to those of figure 9. This supports that our superionic phase is in fact a superionic phase,
similar to that of the correct alpha phase. The values on the y-axis of 14a are also similar
to the values in 9. This shows that our version of the superionic phase is somehow similar
in diffusion of silver ions as the correct version. We also find the diffusion coefficient at
this temperature to be Dag = 9.2×10−6cm2s−1. This is in great agreement with the value
of Dag = 9.9 × 10−6cm2s−1 which Rettie et al [11] found, which shows that the help of
force fields does not worsen the accuracy of the diffusion coefficient.

One thing that should be noted, but is definitely not trivial, is the time this run took.
We did the exact same as Rettie et al[11], the only difference being that we let MLFF help
whenever the force field was accurate enough. An average FP step took about 171 s (on
4 cores, each core having 32 cpus), while a force field step took only 0.27 s with the same
computing power. This is about 629 times faster! So this run of 55 ps would have taken
them about 54 days, while doing this run with only a (fully trained) force field would have
only taken about two hours. This is a huge speed increase, and can save researchers tons
of time/allow for bigger research.

4.4 The Force field

4.4.1 Database

After the full training was completed (as discussed in section 3.2.2), about 751 structures
were in the training database. VASP predicts using the force field and calculates the
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(a) (b)

Figure 15: FP calculation of (A) energy and (B) forces versus the prediction
of the force field on energy and forces respectively. These predictions were done
on the structures in the database after the whole training of the force field was
completed.

energies on the force field database, which is shown in figure 15. These are the data points
which are used in equation 15 to obtain the weights. We expect to see a straight line here,
since we are doing regression. We observe something strange immediately however; there
are some significant outliers in the energy prediction of the database. This means that we
most likely have some faulty structures in our database. The structure with the biggest
outlier in energy is shown in figure 16. We can indeed see something strange happen;
the silver ions are infiltrating into the selenium layers and at some places even in the
potassium layers. This means that this structure is probably broken. This is most likely
due to the ’harsh’ training; the 300K structure was heated directly to 800K, which was
most likely too big of a step and broke some of the structures. The deviating points are
small in number however, so since the bulk of the points lie on a straight line the weights
should still be estimated quite well.

Figure 16: Structure from the database of the force field with the highest devia-
tion of prediction of the energy from the bulk of the structures. The purple balls
are potassium ions, the green balls are selenium ions and the grey balls are silver
ions.

Curiously though, the prediction in the forces show no such deviations; all points lie on a
nice straight line. This means that although we have some bad structures in our database,
our force prediction is still good and hence the propagation of the system should still be
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quite good. Hence we can still rely on our diffusion results, even with the faulty structures
in our database.

4.4.2 Accuracy of the force field
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Figure 17: Plots showing the difference in (A) energy and (B) force between a
DFT calculation and MLFF calculation on the same structure. From each temper-
ature in the heating run, one random structure has been picked as structure.

Figure 17 shows the difference between the FP and a force field calculation on the same
structure. One random structure was taken from each temperature of the heating run. We
assume the FP calculation to be more accurate, as with MLFF we cannot become more
accurate than what we have learned on as we are always approximating. The difference in
values between the two methods can then be seen as the error of the MLFF method. We
first observe that the error for both the energies and forces are within reasonable bounds;
under 32 meV per atom and under 0.12 (eV/Å) per atom, respectively. We do observe
contradicting behaviour between the energy and force trends however; the error in the
energies decrease with increasing temperature, while the error increases for the forces.
A possible explanation for this could be that the system stabilizes at higher temperature
(since the phase transition happened), which is why the energy becomes more accurate. On
the other hand, the force becomes more inaccurate because the whole system (especially
the silver atoms) start having higher kinetic energies, which makes it more difficult to
predict the forces. Overall however, the errors are within reasonable range.
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5 Conclusion
Our results show that machine learning force fields are capable of describing superionic
phase transitions. Eventhough diffusion becomes rapid, by choosing the VASP parame-
ters wisely one can still get the system to be at a very reasonable size while still being
accurate. While in this research, we did not get to the exact superionic phase from the
low temperature phase, we did observe a superionic phase transition, with our version of
the superionic phase showing good correspondence concerning diffusion. We can hence
conclude that MLFF are capable of simulating thermoelectric materials with a superi-
onic phase transition. We have also shown that if we try to exactly copy the method of
another study on the same material, we can speed up the simulation with orders of mag-
nitude while achieving nearly the same values for the diffusivity. We thus conclude that
machine learning force fields can be used to significantly speed up simulations concerning
SIC’s. It should finally be noted that the way the force field is trained is crucial, as a
dirty force field gives innacurate results. MLFF thus works, if the appropriate settings are
chosen.

6 Outlook
One of the main letdowns of the results is that we did not get to the wanted superionic
phase described in literature. This could be fixed by training the force field better. Not
only did we have bad structures in our force field, but the training could have been done
way more gradually instead of just on two temperatures. This would most likely get rid of
the bad structures aswell. Future research could be invested in for example training in the
same fashion as the heating runs; so slowly heating the material at constant temperatures,
while starting the MD runs anew every temperature. This might also shift the phase
transition temperature to the experimental value of 700K. Another aspects that could
be further researched are the types of SIC’s. In this research, we have only looked at a
type I superionic conductor. But while we do not expect it, the MLFF method might
not work/work better for different types of SIC’s as they follow different phase transition
curves. The results have shown that KAg3Se2 is a complex material. Simpler SIC’s could
be checked with the MLFF method too see if the experimental superionic phase can be
achieved there.
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