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Abstract

Environmental model is use to predict the natural science system and provides
information to decision maker for environmental management and decision making
purposes. However, the important issue is not only to obtain information but is to get
certain predicted output. As for decision maker, they should always question about
how certain the model outputs are. At the some time, modeller should be able to
answer this question. The different perspective of uncertainty from modeller and
decision maker point of view has hindered the assessment of uncertainty to be
effectively implemented. Thus, in order to create the common understanding of
uncertainty between modellers and decision makers, an uncertainty conceptual
framework is needed. To establish an uncertainty framework, one should understand
the source and the propagation of uncertainty in an integrated model system.
Managing forest under climate change is one of the examples which involve
multiple models integration. Uncertainty and sensitivity analysis therefore is
important to identify, to regconise and to assess uncertainty that occurs in the model
chain. The uncertain outputs of regional climate model (RCM) in PRUDENCE are
used as the site condition input (vegetation growing period, annual temperature
ampltitude, mean temperature and precipitation during vegetation growing period) to
SILVA to examine uncertainty propagation and conduct the sensitivity analysis.
Tree input variable (tree height, tree height to crown base and crown diameter) are
used to investigate uncertainty and sensitivity analysis in the SILVA modal. The
sensitivity analysis revealed that the SILVA output: aggregation index, species
profile index and species mingling index has very small impact from climate change.
Sensitivity analysis also provides underlying information of the model and traces the
uncertain inputs. Questionnaire analysis describes the uncertainty in decision making
model by different experts. With all these analysis, an uncertainty conceptual
framework is developed. However, the large uncertainty from different models has
been “dismissed” by the classification system in habitat evaluation model. To
conclude, the developed uncertainty framework is useful as a communication tool
between modellers and decision makers to identify, recognise and analysis
uncertainty in the model chain. However, the framework needs to be improved in
terms of uncertainty assessment especially in the method of quantifying uncertainty.
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1 INTRODUCTION

This chapter provides a brief introduction of the research background and
significance and states the problems, objectives, questions, hypotheses, research
approach and outlines of the thesis.

1.1. Background and significance

An environmental model is the prediction of a natural science system. It provides an
understanding of the environmental science and its complex interrelated physical
processes. At the same time, the predicted model output can be used for
environmental management and decision making purposes (Beven, 2008).
However, decision maker must critically ask the following questions, “How certain
of the predicted output would be”? “If the model output was uncertain, how can it be
handled"? As for the modeller, he/she should be able to answer these questions.

Existence of uncertainty within the model and decision making process is generally
understood by modeller and decision maker (Walker et al., 2003). Yet, they have
different view of uncertainty (Walker et al., 2003; Liu et al., 2008). The concern of
the modeller is about the accumulated uncertainty in the model output and the
robustness of the output to decision support practice. For decision maker,
uncertainty is about how to value the model output from the perspective of
management’'s goal, priority and interest (Walker et al.,, 2003). Nevertheless,
assessment and measurement of the effects of uncertainty for environmental
modelling and decision support has started to be widely recognised by both parties
(Helton and Davis, 2003; Walker et al., 2003; Brown, 2004; Refsgaard et al., 2007,
Van der Sluijs et al., 2008). For example, the US National Research Council
recommends that the US-Environmental Protection Agency should pay more
attention to the systematic treatment and communication of uncertainties (Van der
Sluijs et al., 2008).

Uncertainty assessment of model predictions is therefore important to be practically
implemented in environmental modelling for policy and management.
Communication across modellers, scientists, and decision makers is always a
challenge in uncertainty assessment (Van der Sluijs, 2007). Assessment of
uncertainty becomes more difficult when it involves multiple models integration.




Adaptation of forest management under future climate change is one of the
examples that need to apply the integrated uncertainty assessment. Integration of
climate model, forest function model and forest management model carries large
uncertainties and knowledge gaps between scientists and policy makers from various
disciplines. Consequently, developing a framework to identify, categorise,
communicate and assess uncertainty for integrated forest management under climate
change is needed.

1.2 Resear ch problem

Forest growth model is useful to forest researcher and forest decision maker to
predict future forest growth and assist silvacultural practice (Vanclay, 1994). The
long production period of forest growth tends to engage unpredictability and
uncertainty in forest management. Dynamic interactions in forestry ecosystem with
future climate change would bring more uncertainties. (Hoogstra and Schanz, 2008).
Due to that, modelling of forest growth becomes a challenge to modellers and the
predicted model outputs are always questionable to decision makers.

Forests are critically influenced by climate because growth of forest plants is highly
dependent on climate (Kirschbaum, 2000; Van der Meer et al., 2002). Response of
forest to atmospheric and climate change is still a question mark to decision makers.
Predictions of regional climate especially across European are also uncertain (Lasch
et al., 2002). Policy-makers have been increasingly searching for information and
strategy to help the adaptation of forest management under climate change. Thus,
integration of forest growth models with regional climate model is essential
(Lindner et al., 2002). Predictions from integrated models need to be carefully used
and assessed by decision makers as the complexity of the models lead to great
uncertainty of the model outputs (Bdéttcher et al., 2008).

Various types of uncertainty in models integration require an integrated uncertainty
assessment for model outputs (Van der Sluijs, 2002; Van der Sluijs, 2005; Refsgaard
et al.,, 2006). Before implementing the uncertainty assessment, one should
understand the cause and effect of uncertainty to model predictions and to forest
decision makers (Brown and Heuvelink, 2005). Moreover, confusion about the
terminology, different mixture of interpretations and classifications of uncertainty in
interdisciplinary science should be avoided (Walker et al., 2003). An uncertainty
conceptual framework therefore needs to be developed to aid modellers and decision
makers to understand, identify and manage uncertainty in a systematic way.
However, most of the developed conceptual framework for climate change impacts
are focused on single discipline (Lindner et al., 2002; Nitschke and Innes, 2008).
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Single discipline might fail to perceive uncertainties in the models and restrict
sufficient assistance to forestry decision maker (Nitschke and Innes, 2008).
Consequently, adaptation of forest management under climate change needs an
uncertainty conceptual framework to provide better understanding and
communication of uncertainty between modellers, forest decision makers and policy
makers.

13. Resear ch objective

13.1 General objective

Establish an uncertainty conceptual framework to systematic identify, recognise and
understand the uncertainty in forest management under climate change through the
integration of climate model, forest growth model and decision support model.

132 Specific objective

1. To identify and recognise possible uncertainty in climate model, forest
function model and decision making model.

2. To demonstrate sensitivity analysis of SILVA outputs to site condition and
tree input variables.

3. To develop the uncertainty conceptual framework from the achievement of
objective 1, 2 and 3.

1.4. Resear ch questions

Specific Objective Resear ch Questions |

1. To identify and recognise 1. How to identify uncertainty in the climate
possible uncertainty in climate model, SILVA and decision making model?
model, forest function model
and decision making model.

2. To demonstrate sensitivity 1. How does the uncertain site condition and tree
analysis of SILVA outputs to inputs variable contribute to SILVA output?
site condition and tree input | 2. The SILVA output is most sensitive to tree
variables. input variable or site condition variables?

3. To develop an uncertainty 1. How to compile, construct, analyse and develop
conceptual framework from the conceptual model from the impact of each
the achievement of objective|1  objective to assess uncertainty?
and 2.

15. Organisation of thethesis and outline

This thesis is organised and structured as follows
1. Chapter 1 describes the introduction and background of uncertainty in
integrated assessment modelling which includes the climatic model, forest




1.6.

function model and decision making model. Research problem, research
objective and research question are presented as well.

Chapter 2 focuses on the basic concept and interpretation of uncertainty
and sensitivity analysis. This chapter also includes a brief description of the
climatic model, forest function model and decision making model.

Chapter 3 provides information about study area, material and methodology
that are used in the research.

Chapter 4 describes the results of uncertainty analysis and sensitivity
analysis in climatic model, forest function model SILVA and decision
making model. Development of uncertainty conceptual model is also
explained.

Chapter 5 focuses on the discussion of the results for uncertainty and
sensitivity analysis as well as the conceptual framework This chapter also
comments the limitation of methodology

Chapter 6 provides a brief conclusion and recommendation to the future
research.

Resear ch approach

Uncertainty analysis

Forest i
i Uncertainty
Climate model - Forenigg;clawth - management conceptual

model - * framework

1 1 Ll

<
<

Sensitivity analysis

Figure 1 Research approach overview




2. LITERATURE REVIEW

This chapter begins with what is uncertainty (2.1), uncertainty analysis (2.2) and
sensitivity analysis (2.3), uncertainty terminology and classification in the

perspective of The W&H framework (2.4), comments and critiques of W&H

framework (2.5). Description of individual model in integrated model chain is

explained in section 2.6 for climatic model-PRUDENCE, section 2.7 for forest
growth model-SILVA and section 2.8 for forest management model-habitat
evaluation model. A summary of this chapter is presented in section 2.9.

2.1. What is uncertainty

What men really want is not knowledge, but certainty.
Bertrand Russell, 1964

Knowledge is useful to improve and enhance our skill, awareness and understanding
of something we do not know. Knowing how to interpret and evaluate the truth of
the knowledge is more important than just having knowledge. According to
Feynman (1988), scientific knowledge has different magnitudes of certainty, ranging
from unknown, nearly sure and never absolutely certain. In order to identify and
quantify uncertainty, we have to know something which gives a means of
comparison. Uncertainty is impossible to be addressed when it is being completely
ignored.

On the other hand, according to Van Asselt and Rotmans (2002) “uncertainty is not
simply the absence of knowledge” but massive flow of information would cause
confusion that might trigger uncertainty. Uncertainty can be reduced and increased
by knowing more knowledge. This is because new knowledge brings more
understanding to find out and to quantify uncertainties. Having more knowledge
makes us realise the limitations and the complexity of the process that we have
ignored in the past. Shackle (1955) in Van Asselt and Rotmans (2002) noted that

“the fundamental imperfection of knowledge is the essence of uncertainty”.

2.2. Uncertainty analysis

Three key terms relate to uncertainty analysis are introduced in this section: bias,
precision and accuracy. Bias is predicted by mean error, which measures the
agreement between known value (expected) and predicted value. It is the systematic
error that makes all measurement wrong by a certain amount,
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Precision is predicted using measure of the spread of errors around the mean error
which is the standard deviation of error. It describes how close the measured value
to each other,

(1.2)

Accuracy is the sum of unbias and precision. It measures how close the measured
value to the true value. Accuracy is quantified by root mean square error (RMSE),

(1.3)

Accuracy, like bias and precision, depends on a statistical model. It is an expectation
of the overall error.

2.3. Sensitivity analysis

According to Saltelli et al. (2000) sensitivity analysis is the study about the relations
between the input and the output of a model. It is used to determine the contribution
of individual input factors to the uncertainty in model predictions (Lilburne et al.,
2006). Sensitivity analysis is classed into global sensitivity analysis (GSA) and local
sensitivity analysis (LSA). GSA quantifies sensitivity of model output to all inputs
with combined variability of input simultaneously. It has the ability to counter the
autocorrelation between inputs and outputs. LSA is the opposite of GSA where each
input factor is varied at one time while other input factors fixed at nominal value. No
interactions between inputs factors as as the analysis is limited to small area of the
input space (Lilburne et al., 2006; Saltelli et al., 2006).

2.4, Uncertainty ter minology and classification from the per spective of
W&H Framework

W&H frameworK is an integrated uncertainty conceptual framework dexedoby
Walker et al (2003) to provide a basic concept andlagines to systematically
diagnose uncertainty in model-based decision supfdré objective of W&H

! The framework was named by the principal author Warren Walker and the central person within the
group of authors, Poul Harremoés. The framework is the result of a collective effort by all of the co-
authors of the Walker et §R003) paper




framework is to establish a common terminology of various typology of uncertainty
by using unified vocabulary in different scientific fields. It aims to bring the
communication gap among the scientists as well as between policy makers and
stakeholders (Walker et al., 2003V&H framework described the concept of
uncertainty into three dimensions: location, level and nature (Figure 2).

Location

- Model contex and framing
- Model structure

- Input data

- Parameter

- Model output

Figure 2 Three dimensions of uncertainty concept (source Walker et al., 2003)

Location of uncertainty
The location dimension or source of uncertainty depicts where uncertainty takes
place within the model. Location of uncertainty is classified as follows

Model context refers to the problem framing and boundary condition setting
at the initial stage of the model development. External economic,
environment, politics, social and technology are the key factors to structure
the context of the problem.

Model uncertainty relates to the model structure and model technical
uncertainty. Uncertainty of model structure is lack of understanding about
the system behaviour and the interactions of input, parameter, equation and
assumptions in the system boundary. Model technical uncertainty is the
uncertainty from the computer implementation in the model.

Uncertainty of input is the uncertainty of system data that drives the model
such as the measurement and observation data.

Parameter uncertainty describes uncertainty of the factor that relates
various part of a system and determines its performance such as used for
model calibration. Parameters are usually constant in the model.

Uncertainty of model output is the accumulation of various uncertainties
from all the above locations.

Level of uncertainty




The level of uncertainty relates to the gradual scale of uncertainty ranges from
“known” to “unknown” (Figure 3). The level of uncertainty provides information of
“which” and “where” the uncertainty occurs in the range of uncertainty
classification. In order to quantify the level of uncertainty, a quantitative scale was
proposed to represent each level of uncertainty and further described by using the
generic description (Figure 3) (Krayer von Krauss et al., 2004; Gillund et al., 2008).

We knowthe | \ve now part of |We know very littie| We do not know
range of |40 System, the | information of the | and understand the
undZ:tf:rf:iin We know the detail information of ou{f:;lslznd range of system. thca" tr‘:';ﬁrmaml"’ "
9| the system works, the possible possible imagine the g re, vawe o
of everything " d ated bility|  able to rank t but outcome but | the system. We can
in the sys(em outcome and assoclated possipllity them ordinally outcome bui unable to know the not imagine the
basedon | Unebletorank | poungofthe | possible outcome
plausibility them probability range | and its probability
Determinism Indeterminacy
0 1 ‘ 2 3 4 5
Statistical Uncertainty Scenario Unce Recognised Ignorance Total Ingnorance
Known outcome; Known outcome; UnKnown outcome; I
Iy o L Nothing is known
known probability Unknown probability Unknown probability

Figure 3 The scale of levels of uncertainty range combined from Walker et al., 2003,
Krayer von Krauss et al., 2004 a@dlund et al., 2008

The levels of uncertainty are:

» Determinism means knowing everything perfectly and absolute certainty.

e Satistical uncertainty is the measureable uncertainty which can be
guantified statistically. The deviation of predicted values from true is
guantifiable and the probabilities are assumed known.

e Scenario uncertainty is the uncertainty that beyond the measurement of
statistical methods. The range of outcome is possibly known but its
probability distribution is not formulated (known unknowns). This is
because scenario uncertainty involves external environmental factors
particularly in the future which might or might not happen.

» The level of recognised ignorance refers to the unknown outcome and the
unknown probability of the outcome. This level of uncertainty is
recognised and realised but it can not be estimated due to the deficit of
knowledge and unpredictable process.

» Total ignorance is at the extreme end of uncertainty scale which means we
do not even know what we do not know (unknown unknowns). The
continuing arrow in the uncertainty scale indicates the infinite ignorance
that is impossible to know.

Natural uncertainty




The third dimension of uncertainty concept, nature uncertainty is due to the intrinsic
process and phenomena in the natural environment. Nature of uncertainty is divided
into epistemic uncertainty and variability uncertainty.

» Epistemic uncertainty refers to uncertainty that caused by insufficient
knowledge and can be improved by more studies.

* Variability uncertainty (ontological uncertainty) is primarily due to
inherent variability such as the stochastic and unpredictable process in
natural systems, the variability of human behaviour and external factors in
economic and technology.

Three dimension classification of uncertainty in W&H framework was used to
develop an uncertainty matrix. As shown in Figure 4, the vertical axis (row table) is
used to identify where the uncertainties manifested and the horizontal axis (column
table) explains how these uncertainties are categorised in dimension level and
nature. Uncertainty at any location can occur in various levels of uncertainty and in
different nature of uncertainty at the same time. For instance, uncertainty of input
data might cause by statistical uncertainty and part of it might class as recognised
ignorance.

Level Nature
Statistical Scenario Recognised | Epistemic | Variability
L ocation uncertainty | uncertainty | ignorance | uncertainty | uncertainty
Context Natural,
technological,
economic,
social and
political
Inputs Input data
Driving force
Model Model
structure
Technical

Parameters
Model output

Figure 4 The Uncertainty Matrix (source fraffalker et al., 2003)

2.5. Commentsand critiques of W& H framework

The W&H framework is commented by Norton et al. @Ppand replied by Krayer

von Krauss et al. (2006). One of the major comments is the classification and
terminology of uncertainty such as location, level and nature are uncommonly
understandable if without any explicit explanation. Thus, classification of
uncertainty should be more opened and varied to accommodate and to be adapted by




different disciplines. The major comments and evaluation from Norton et al. (2006)
and Krayer von Krauss et al. (2006) can be summarised as following,

W&H framework is not able to relate the classification of uncertainty to the
real situation in the model and the method for assessing uncertainty.

» The framework takes no account of interactions between different sources
of uncertainty which excludes sources of uncertainty that might be occurred
before or after the model application.

* The concept of uncertainty is more on modeller point of view rather than
decision maker and it does not consider the link to decision making.

» Linguistic uncertainty should be included.

e Structural uncertainty should be divided into the precision of model
prediction (low deviation from observed data) and the capability of model
to predict the real processes (knowledge of the underlying process).

e The framework did not include the uncertainty propagation analysis
especially on the qualitative elements.

2.6. Climate model: regional climate ensemble model PRUDENCE

Regional climate models (RCMs) have gained highréstein investigating the
impacts of climate change to human and terrestrial ecosystems. This is because the
horizontal resolution of general circulation models (GCMs) are too coarse to resolve
detailed climate variables for regional impact studies (Olesen et al., 2007).
Individual simulation of regional climate model ifaimed inadequate to assess
future climate change phenomena and its impacts to different sectors. The use of
ensembles approach by integrating multi-climate models can provide more
comprehensive uncertainties of the potential future climate change (Palmer and
RaEisaEnen, 2002; Murphy et al., 2004; Stainforth et al., 2005; Christensen and
Christensen, 2007)..

Prediction of Regional scenario and Uncertaintigsdefining EuropeaN Climate
change risks and Effects project (PRUDENCE) is the European Commission funded
project which aimed to provide large ensemble of high resolution future regional
climate change for Europe. At the same time, it was designated to analyse the
uncertainty propagate from the GCM to RCMs (Christensen and Christensen,
2007). PRUDENCE produced a set of nine RCMs with horizontal resolution about
50km under two IPCC Special Report on Emission Scenarios (SRESnABJ.

2 A2 scenario depicts the future world with more regional oriented development in economic and
technological growth. Green house gases emission will be higher in this scenario compared to B2. See:
http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission/094.htm
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All the RCM outputs were driven by two different GCMs, HadAM3H and
ECHAM4/OPYC3. HadAM3H is the atmospheric general circulation model
(AGCM) which is developed by the Hadley Centre, United Kingdoitih W40 km
horizontal resolutionECHAM4/OPYC3 is an atmospheric ocean general citicula
model (AOGCM) provided by Max-Planck Institute for Meteorology (MPI) with the
horizontal resolution of 300 km (Christensen and Christensen, 2007; Déqué et al.,
2007; Jacob et al., 2007). The simulations of PRUDENCE RCMs were run for 30
years which covered current period 1961-1990 and projected period 2071-2100. A
short description of the PRUDENCE RCMs together with information about the
GCMs is listed in Appendix 1.

2.7. Forest growth model: single tree growth SILVA model

Single tree forest growth model SILVA is one of the forest growth models
developed by Chair of Forest Yield Science in Munich, Germany (Pretzsch et al.,
2002a). It is a semi-empirical and environmentally sensitive model. It has been
developed and parameterised mainly based on forest inventory data from Germany.
Simulation of SILVA is initialised with tree key variables, information about
management and site condition (Pretzsch et al., 2002a; Schmid et al., 2006). SILVA
simulates pure and mixed forests based on single tree approach. Each tree is
described by a set of tree variables: tree species, diameter at breast height, tree
height, height to crown base, crown diameter and tree coordinates. Management
information about different types of thinning, the intensity and frequency of thinning
can be set before the simulation. Site condition input variables are used to calculate
competition index (competition between neighbouring trees) which determines the
single tree growth. The site condition variables are: soil nutrient supply (NUT),
atmospheric NQand CQ concentration, duration of the vegetation period (DT
annual temperature amplitude (Tvar), mean temperature during vegetation period
(Tv), aridity index of vegetation growing period (Mv), total precipitation during
vegetation period (Pv) and soil moisture (MOIST) (Pretzsch et al., 2002a).

SILVA uses a time step of five years to simulate the forest growth. At each time
step, the simulation starts with inter-tree competition analysis follows by tree growth
(height, diameter and crown dimension growth) and mortality of single tree
calculation. After the removal of tree from mortality and thinning practices,
competition of the tree and tree growth of each tree are recalculated (Pretzsch et al.,
2002a). Due to the underlying environmental and biological processes of trees,

% B2 scenario is the storyline of IPCC which emphasis on environmental concern and social sustainability.
See: http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission/095.htm
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SILVA incorporates stochastic elements in mortality and tree height calculations
(Pretzsch et al., 2002b). SILVA produces three kinds of output (Pretzsch et al.,
2002a). The first output is the classical growth and yield data of the stand and
individual tree. Secondly, SILVA provides information about the monetary values
and development of the stand. The third output describes the ecological value of the
stand and individual tree. Indices of structure and diversity of forest can be
calculated, for example, aggregation index by Clark and Evan (1954).

2.8. Forest management model: habitat evaluation model

Decision support model in environmental management needs to deal with various
objectives and multiple criteria of the problem (van Herwijnen, 1999). Thus, multi-
criteria evaluation model is essential to assist decision maker to investigate possible
choices based on the criteria priority (Voogd, 1983). The Central Services
Department of National Forests of Rhineland-Palatinate, Germany has established a
multi-criteria evaluation model to assess habitat and species protection (Appendix
2). This evaluation model started to use since 1998. It is still operating to serve as a
communication tool between forester and environmentalist in environmental
protection. Operation scale of these evaluation models is on a community basis. The
assessment is focused in area where three to four communities are found in the same
area with the purposed of land use planning. The objective, criteria and indicator in
the model are evaluated based on the weight summation technique. Each objective,
criteria. and indicator is attached to a weight in percentage. The weight for
objectives, criteria and indicators is assigned depending on their priorities level to
the evaluation score. Detail description of the evaluation model is shown in
Appendix 3.

2.9. Summary

Studies from various literature sources establish the understanding of the basic
concept and different types of uncertainty and sensitivity analysis. W&H framework
gives more explicit classification and terminology of uncertainty. Shortcomings of
W&H framework can be improved from the comments and critiques made by
Norton et al. (2006) and Krayer von Krauss et al. (2006). Exploration of climate
model, forest growth model and forest management model helps to establish the link
between models in the integrated model chain.
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3. MATERIAL AND METHODOLOGY

An overview of the materials and methodologies used for this research is described
in Figure 6.

3.1. Study area

Location of the forest stands BE3 and BE4

80
evé_ﬁ Germany

i Tl Bad Dirktjeim
» ‘ _ Neustadt
. It —
BE4 Pine and Beech ¥ |,
f
ibriicke
LT BE3 Oak and Beech ¥ \
-
]
_—
Stidwestpfalz < u
f—— Studliche WeinstraRe
5 ’
o

|
Kaiserslautern
Kaiserslaut
T

z
5
g

4900'N

N 800'E
t 0 3 6 12 18 24

Figure 5 Location map of forest demonstration sites.

The study areas of the research are two demonstration sites in the National Forests
of Rhineland-Palatinate (Landesforsten Rheinland-Pfalz), Germany (Figure 5).
150,000 hectares of National Forests Rhineland-Palatinate will be used as the new
site surveying practices for forest planning and sustainable forestry measures in the
context of climate change. It covers both deciduous and coniferous forest with range
of species such as oak, pine, douglas fir, spruce, beech, birch and larch. This
national forest is under the control of Research Institute for Forest Ecology and
Forestry Germany (FAWF)

The two forest demonstration sites were named as forest stand numbéBBaBE

forest stand number 4 (BE4). They are located in the south-western part of
Germany. The location of BE3 is at 49°16’N and 7°48’E in Merzalben area and BE4
is situated at 49°18’N and 7°51’E in Johanniskreuz. The average elevation range in
this region is about 550m above mean sea level. This area consists mainly of reddish
sandstone with low soil moisture content. The climatic condition of BE3 and BE4 is

4 Information about FAWF: http://www.wald-rlp.de/index.php?id=1750&L=2
® BE is the abbreviation of bestands in German which means forest stand.
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summarised in Table 1. This climatic data was collected from 1971 to 2000 by
Institute of Climate Impact Research (IFOM), Potsdam in the framework of the
project “concepts and feasibility studies for the integrated analysis of data of forest
environmental monitoring”.

Table 1 Summary of Climatic condition for BE3 and BE4 from 1971 to 2000

Climatic condition BE3 BE4
Temperature (yearly) 7.9°C 8.6C
Temperature (May to September) 14.3C 15.rC
Total precipitation (yearly) 1067 mm 967 mm
Total precipitation (May to September) 423 mm 389 mm
Annual potential evapotranspiration 598 mm 611 mm
Annual actual evapotranspiration 562 mm 545 mm

The tree species composition of BE3 and BE4 is respectively oak and beech and
pine and beech. The trees are mature with on average 204-year-old oak, 100-year-
old beech and 133-year-old pine. The area of the stand is 0.57 hectares (107 x
53.5m) for BE3 and 0.25 hectares (50 x 50m) for BE4. These forest stands are
usually functioning as the sample plots to estimate forest resource for forest

inventory in forestry management.

3.2. General methodology overview

The main focus of the research was to develop an uncertainty conceptual framework
in the models chain which consists of PRUDENCE RCMs, SILVA and habitat
evaluation. An experimental design was designed to practically examine uncertainty
chain from the input data to the model output throughout three models. One-at-a-
time (OAT) sensitivity analysis was applied and focused on the effect of input
variables used in SILVA to the model output. This was aimed to observe which
input variable contributes the most to SILVA outputs. Two set of input variables
were used to run sensitivity analysis, they are site condition and tree input variables.
The site condition input variables were obtained from PRUDENCE RCMs outputs.
Tree input variables were computed from allometric regression model. The
uncertainty of SILVA outputs were linked to habitat evaluation model. Uncertainty
in habitat evaluation model was investigated through the questionnaire survey of
expert judgement for criteria weight estimation. Eventually, the source, the linkage
and the relation of input/output uncertainty in three models were compiled, analysed
and incorporated with W&H framework to establish an uncertainty conceptual
framework (Figure 6).
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Figure 6 General methodology overview

3.3 Climate model: PRUDENCE regional climate model (RCM)

3.3.1. PRUDENCE RCM outputs. precipitation and temperature

PRUDENCE RCMs output, 2-m temperature (t2m) and precipitation (precip) were
used to compute the site condition input variables to SILVA. For the experimental
design in this research, only four site condition inputs were used to run OAT
sensitivity analysis. This was due to the limitation of obtaining the complete set of
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site condition inputs from PRUDENDE RCMs’ output. The four site condition input
variables were listed in Table 2

Table 2 Description of four site condition inputs of SILVA

Site condition input variables Abbreviation Description unit

Duration of vegetation growing period BT number of days with mean day
temperature more than 10°C

Mean temperature during vegetation Tv Mean temperature with Q  °C

growing period

Annual temperature amplitude Tvar difference  between  theh

highest and the lowest
monthly mean temperature of

the year
Precipitation during vegetation growingPv Precipitation with DTy mm
period
332 Processing of site condition input variables

Two output variables from PRUDENCE, t2m and precip were downloaded from
PRUDENCE official webpage http://prudence.dmi.di/2m was presented in
monthly means in unit Kelvin (k) and precip was available in daily means (mm/day)
throughout the entire 30 years (1961-1990 and 2071-2100). PRUDENCE output
variables were computed based on a 360-day calendar with 30 days per month.
These data were downloaded in the format of interpolated® @Rt with 0.5°x0.5°

spatial resolution. CRU grid covered the Europearaaanging from -14.7%V-
32.75°E and 35.2%55-74.75N. The studied forest stands in this research weome

grid box, 7.78E and 49.29\. Downloaded t2m and precip data were processed and
computed based on the site condition requirement input in SILVA (Table 2).

Computation and processing of four site condition input variables to SILVA is
shown in Figure 7. The computation steps were performed in Microsoft Excel. Tv
and Pv were computed based on vegetation growing period with temperature more
than 10°C. This was different with the initial standard vegetation growing period
from May to September. This was because the rising of temperature will increase the
vegetation growing duration from April to October or even longer (Menzel et al.,
2003; Fronzek and Carter, 2007). Thus, computation of precipitation in vegetation
growing period should not be limited only in the standard vegetation growing period
but should take into consideration of the temperature.

% CRU is the common grid for climatic data that produced by the Climatic Research Unit, School of
Environmental Sciences University of East Anglia, United Kingdom.
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Figure 7 Computation and processing steps of PRUDENCE data to SILVA required
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3.3.3.

Computed site condition variables from multiple RCMs need to be selected to use in
SILVA. However, according to Déqué et al. (2007), selection of the plausible model
outputs is a difficult task as there is no recognised method about the proper
selection. In addition, different models performed differently and have varied model
setups. Investigation of climate models in PRUDENCE was aimed to examine the
uncertainty driven by emission scenarios A2 and B2 in different RCMs. Thus, the
multiple choices of RCMs were categorised into current, scenario A2 and scenario
B2 (Table 3). The RCMs were selected accordingly in current, scenario A2 and B2.
RCMs with different driven AGCM boundary condition (HadAM and ECHAM)

Vlean temperature i
vegetation growing
period (°C)

years

Annual temperature
amplitude (°C)

Monthly precipitation
in vegetation growing
period.

v

Average monthly
precipitation in
vegetation growing
period by 30 years

Precipitation sum
within vegetation
growing period (m

Selection of site condition variables from PRUDENCE RCMs

were not taken into considerations.

Table 3 List of PRUDENCE RCMs based on current, scenario A2 and B2

~| Driving SRES Horizontal Institute PRUDENCE

§ GCM emissions  Resolution RCM RCM

5 scenarios Acronym
O HadAM A2 50km DMI HIRHAM HC1
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Driving SRES Horizontal Institute PRUDENCE
GCM emissions Resolution RCM RCM
scenarios Acronym
ETH CHRM HC _CTL
GKSS CLM CTL
CLM (improved) CTLsn
ICTP RegCM ref
KNMI RACMO HC1
METNO HIRHAM HADCN
MPI REMO REMO3003
SMHI RCAO HCCTL
UCM PROMES Control
ECHAM DMI HIRHAM ECC
ecctrl
SMHI RCAO MPICTL
HadAM A2 50km DMI HIRHAM HS1
ETH CHRM HC_A2
GKSS CLM SA2
CLM (improved) SA2sn
g ICTP RegCM A2
o KNMI RACMO SA2
I METNO HIRHAM HADA2
o MPI REMO REMO3006
3 SMHI RCAO HCA2
UCM PROMES A2
ECHAM A2 50km DMI HIRHAM ECS
ecscA2
SMHI RCAO MPIA2
HadAM B2 50km DMI HIRHAM HB1
N ICTP RegCM B2
o METNO HIRHAM B2
3 SMHI RCAO HCB2
o UcMm PROMES b2
3 ECHAM B2 DMI HIRHAM ecscB2
SMHI RCAO MPIB2

Uncertainty in climate change literature was interpreted as the spread of the
predicted values (Déqué et al., 2007). Multiple PRUDENCE RCMs driven by

different AGCMs and emission scenarios produced wide range of the predicted
precipitation and temperature. This caused the computed site condition variables
have large spread of predicted. The uncertainty of the predicted site condition
variables propagated into the SILVA model. The wide spread of predicted site
conditions in different RCMs was presented in four different scales as illustrated in
Figure 8. Different RCMs were assigned in different colours. RCMs in current,

scenario A2 and B2 were differentiated by different symbols. However, same RCMs
presented in current, scenario A2 and B2 were given the same colour. In order to
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establish the uncertainty range between the models and between the variable values,
selections of RCMs were divided into:

Selections based on the same RCMs where the four site condition variables
were chosen from the same RCMs in same level of extremeness. The
extremeness level was divided into minimum, average and maximum
(black lines in Figure 8)

Selections based on the variability value of site condition variables in
minimum, average and maximum extreme (red lines in Figure 8)

Site condition variable Variable value
= i i il i S
= = s = s = =
@] @] (@)
%:) g %:) o 8 o x
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200

Figure 8 Method used to select RCMs by model and variable

34.

34.1.

Forest growth model: SILVA

Treeinput variablesfor SILVA

SILVA uses a list of tree input variables in Table 4 to represent each tree in the
stand (Pretzsch et al., 2002a). The tree input variables used in the research were
measured in 2003 for BE3 and BE4. This was due to the incompleteness of
measurements during field work. The high density of beech leaves in autumn
during the field visit hindered the measurement of tree height and tree height to
crown base. As a result, tree inputs variables measured in 2003 were used to
substitute the incomplete measurement of the above two variables.

Table 4 Tree inputs used in SILVA to generate forest stand

Variable unit Abbreviation
Diameter at breast height cm DBH

Tree height m H

Tree height to the base of the crown m Hcb
Crown diameter m Cd

The tree input variables in BE3 and BE4 were not from the actual measurement but
they were predicted from the allometric regression. According to Huxley (1932),
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“allometric regression is used to express the relationship between the relative
growth rate of one organ to another organ within the same organism”. The
allometric regression was developed by measuring the four tree input variables in
the neighbouring trees which surrounded BE3 and BE4. The neighbouring trees
have same species composition, similar age and stand structure as in BE3 and BE4.
The surrounded environmental conditions such as soil moisture and soil nutrient are
comparable to the two demonstrations stands as well. These similarities were
important to establish the allometric regression because it can make more precise
prediction of tree variable values based on the similarities mentioned above. This
statement was supported by Ponce-Hernan(®904), where “selection of
regression model approach needs to consider the similarity of the site”.

The measurement and calculation process of the tree variables in BE3 and BE4 is
illustrated in Figure 9. Measurement in BE3 and BE4 was completed only for DBH.
H, Hcb and Cd were predicted from the allometric regression which relates the
relationship between DBH-H, DBH-Hcb and DBH-Cd. The allometric regression
was calculated based on the power regression function (equation 3.1). According to
the forestry expert at FAWF Dr. Dong Phan Hoang, power regression function is the
best model to fit the relation of DBH-H and DBH-Cd. This statement was supported
by Hemery et al. (2005) where there is a close relationship between crown size and
DBH. As shown in Table 5 and Table 6, the coefficient of determinatidnaR
DBH-H and DBH-Cd were strongly correlated. However, DBH-Hcb has low
correlation of R and this function is not commonly used in forestry. Due to the
limitations of time and that Cd was one of the key variables to generate stand in
SILVA, the DBH-Hcb allometric regression was still used to predict Hcb.

Y=ax (3.1)
Where
Y is predicted H, Hcb or Cd.
a is intercept
b is slope
x is DBH

Table 5 Allometric regression for BE3 (source from FAWF)

Relationship  Beech Oak
Regression R? SE Regression R? SE
equation equation

DBH-H y =4.3159%%%°2  0.8097 1.00252 y=11.076 ¥°*®  0.2348 1.00153

DBH-Hcb y=4.0213%2°°  0.2576 1.02303 y=71.1080%%"  0.0905 1.01226
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DBH-Cd y =0.6636%%  0.7726 1.00723 y=0.0543%%"®  0.6866 1.00564

Table 6 Allometric regression model for BE4 (source from FAWF)

Relationship  Beech Pine
Regression R? SE Regression R? SE
equation equation
DBH-H y=9.0363%°%  0.6549 1.00238 y=13.222%%3  0.0936 1.00211
DBH-Hcb y=5.051>1% 00158 1.06124 y=32.1112%%  0.0527 1.00227
DBH-Cd y=1.49558%°1 07933 1.00619 y=0.1762%%° 0559 1.00489
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Figure 9 Measurement and calculation process of tree variables in BE3 and BE4
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34.2. Uncertainty of treeinput variables

To quantify the uncertainty of predicted tree input variables H, Hcb and Cd,
standard error (SE) of the regression equations was computed (Equation 3.2). SE of
the regression equation was applied to the estimated tree vaitapk for BE3

and Yges) BE4 in order to define the interval for each tree variable. This was to
assume the interval of lower limit (potential minimum uncertainty) and upper limit
(potential maximum uncertainty) of predicted tree input variables. Assigning the
minimum and maximum value for uncertain input variable has been practised in
many uncertainty and sensitivity analysis approaches. (Beven, 2008; Wramneby et
al., 2008; Xenakis et al., 2008).

(3.2)
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In order to establish the upper and lower bound of the (95%) interval, facted
to be multiplied by SEt gives the critical value for certain degree of freedom and
selected significance level.

Y, + SExt (3.3)

3.5. One-at-a-Time (OAT) sensitivity analysis

To demonstrate the sensitivity analysis in this research, the simple one-at-a-time
(OAT) sensitivity analysis technique was used. This was due toettection of

using batch mode of SILVA to process repeated batch simulations and provide the
distributions information of model variables. Generation of random sample across
the entire input variables was unable to carry out in SIMLABIternatively,
simulations in SILVA have to carry out manually by repeating the simulations in
interactive mode. Hence, only OAT sensitivity analysis was applicable to suit the
constraint of manual simulations in SILVA. OAT sensitivity analysis investigates
the effects of changing one input variable at a time to the output whilst other input
variables are kept at a nominal value. The changing rate of the output is relative to
the changing magnitude of the input (Saltelli et al., 2004). The limitation of this
approach is it takes no account of the interactions or correlations between the input
variables (Hamm et al., 2006).

Two set of input variables, site condition inputs (Table 2) and tree inputs (Table 4)
were used to run the OAT sensitivity analysis. The stand development was
simulated over a 30-years period to suit the future site condition time window. Each
input was varied across two levels of variations which were the minimum and
maximum value while the other inputs variables were held constant at their average
value. The intention of varying the input in minimum and maximum value was to
produce the uncertainty range with the possible situation of underestimate or
overestimate the input variables.

Two types of experiments were carried out for OAT sensitivity analysis. First
experiment used the tree inputs and site condition input variables that selected from
the same RCMs in same level of extremeness. For example, maximum extreme
RCMs (Figure 10) represented all the site conditions variables in maximum extreme
from the same RCM. Thus, only a set of four site condition variables from same
RCMs was varied at one time. The objective of the first experiment was to examine

" SIMLAB stands forSimulation Laboratory. It is a software designed to learn, to use and exploit
uncertainty and sensitivity analysis techniques. See: http://simlab.jrc.ec.europa.eu/
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the impact of theuncertain value of tree inputs and site conditioputs from
different RCMs. The second experiment was to investigate the sensitivity of tree
inputs and site condition inputs based on variability of variable values (Figure 11).
For these two experiments, only one input from tree and site condition input
variables was varied and the other inputs were held constant at average value. These
experiments were carried out for current, scenario A2 and scenario B2. This
approach requiredk21 model runs wherkis the number of input variables and one
is the mean. Number of model runs for first experiment was 9 (3 tree inputs and 1
set of site condition variable from same RCM) (Figure 10). Second experiment has
15 model runs for 7 input variables (Figure 11). Total model runs for current,
scenario A2 and B2 was 27 runs in first experiment and 45 model runs for second
experiment. The experiments were carried out for two demonstration stands. Hence,
the grand total model runs for BE3 and BE4 was 144.

SILVA Input

Average 4['7

Lower limit H

Upper limit H 4['—0
Tree
inputs Lower limit Hbc O—D— C SILVA

Upper limit Hbc —D—o simulations

Lower limit Dc O—D—
Upper limit Dc —D—o

Slt_e' Current/A2/B2 minimum extreme RCMs O 1
condition L Average ——fF—

inputs Current/A2/B2 maximum extreme RCMs 1 0 Minimum o——m—mf——
Maximum 0 o

Figure 10 First experiment of OAT sensitivity analysis: varying tree inputs and site
condition inputs from same RCMs
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Figure 11 Second experiment of OAT sensitivity analysis: varying tree inputs and
site condition inputs based on variability of variable values
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3.6. Linking SILVA output to habitat evaluation model

Linkage of SILVA outputs to habitat evaluation model was aimed to examine the
propagation of uncertain site condition inputs and tree inputs to habitat evaluation
model. SILVA outputs were linked to evaluation model based on the explanation
from the model main user, Miss Astrid Tesch and Miss Ulrike Raible from FAWF.
Besides, information from literature review was use to establish the possible link.
The linkage of SILVA output to evaluation model was shown in Table 7. Three
ecological indices, species profile index by Pretzsch, mingling index and
aggregation index from SILVA outputs were matched with habitat criteria. These
indices were used to examine the effect of uncertain SILVA input to SILVA outputs
in sensitivity analysis. The three indices are mainly used to quantify spatial stand
structure diversity in the forest. The calculations of the indices are based on
distance-dependent measures (neighbour relations) (Pretzsch, 1998; Pommerening,
2002). The detailed information of the indices can be found in Appendix 4.

Table 7 Linkage of SILVA outputs to habitat and timber production model

Silva output Criteria of habitat model
Species profile index by Pretzsch (1996) (Indek A Stratification
Mingling index (Index M) mixed tree species numbey
Aggregation index by Clark Evan, (1954) (IndeX R) mosaic diversity

3.7. Questionnaire survey on criteria weightsfor habitat evaluation
model

A gquestionnaire survey to assign and estimate criteria weight for habitat evaluation
model was conducted at Research Institute for Forest Ecology and Forestry
Rheinland-Pfalz (FAWF), Germany during the field visit. The objective of the
guestionnaire survey was to determine the uncertainty associated with weight
estimating from various experts compared to the existing criteria weights. The
experts expressed the criteria weights in percentage with the total value of 100% for
the sum of the weight. The original criteria weights (Appendix 2) were used for
more than 10 years by FAWF Central office of the Forest Services Department. This
method was based on expert judgement approach as according to Meyer and Booker
(2001) expert judgement is practised to interpret multiple experts judgement on
existing data. Generally, judgement from various experts is based on their education
background, working history, personal experience, understanding of the problem
and personality. Thus, they would most probably interpret a subject or an issue

8 Source from Pretzsch (1998)
® Source from Pretzsch (1998)
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differently with diverse opinion and judgement (Gillund et al., 2008; Krayer von
Krauss et al., 2008).

This survey was administrated with the help of ForeStClim project coordinators to
35 FAWF's experts at Trippstadt and Neustadt office in Germany. These experts
were mainly from the department of Forest Growth, Forest Ecology and Forest Plant
Production, Forest Protection and Forest Health, Forest Operations and Forest
Products, Forest and Wildlife Ecology and Central Services. The questionnaire is
enclosed as in appendix 5.

3.8. Construction of uncertainty conceptual framework

Uncertainty analysis throughout the integrated model chain in this research required
an understanding of fundamental concept of uncertainty in order to analytically deal
with various types of uncertainty. Thus, an uncertainty conceptual framework is
needed to recognise, to classify and to assess uncertainty throughout forestry
management in the context of climate change. W&H framework developed by
Walker et al. (2003) was chosen to be adapted in this research. Modifications of the
framework byVan der Sluijs et al.(2003), Refsgaard et al. (2007 Krayer von
Krauss et al. (2008) were taken into considerations. The conceptual framework was
also enhanced by using the critiques and comments from Norton et al. (2006) and
Krayer von Krauss et al. (2006) (Section 2.5).

Summary of the adaptations of W&H framework by Van der Sluijs et al.(2003),

Refsgaard et al. (2007) is shown in Table 8. The main modifications of Van der
Sluijs et al.(2003) approach was in dimension and location uncertainty. Van der
Sluijs (2005) has integrated quantitative and qualitative element in model
uncertainty analysis. Changes made by Refsgaard et al. (2007) were mainly in
terminology uncertainty and level uncertainty. Consequently, a new conceptual
uncertainty framework was developed by adapting the modifications, comments and
critiques (Table 9) to suit into the research objective and research problem of this
study.

Table 8 Comparison of W&H frameworkan der Sluijs et al. (2003) framework
and Refsgaard et al. (2007) framework

Classification W&H framework Van der Sluijset al. Refsgaard et al. (2007)
of uncertainty | (Walker et al., 2003) (2003)
Dimens_ion e Location » Location » Source of
uncertainty ¢ Level o Level uncertainty

* Nature * Nature e Taxonomy
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e Qualification of * Nature
the knowledge
base
e Valueladennes of
choice
Location of Context of « Context of model | Changed in terminology
uncertainty model « Model of location uncertainty
Model « Model input to sour ce of uncertainty
Model input « Parameter ¢ Context of model
Parameter « Model output ¢ Model
Model output « Expert judgement * Model input
« Data e Parameter
e » Model output
Level of statistical « statistical Changed in terminology
uncertainty uncertainty uncertainty of level uncertainty to
scenario e scenario taxonomy
uncertainty uncertainty  gtatistical uncertainty
recognised * recognised e scenario uncertainty
ignorance ignorance e gualitative
uncertainty
* recognised ignorance
Nature of Epistemic e Knowledge related | « Epistemic
uncertainty uncertainty * Variability related uncertainty
Variability » Stochastic
uncertainty uncertainty

Table 9 Development of new uncertainty conceptwahé&work

Classification
of uncertainty

Description of new uncertainty

framewor k

Remarks

Dimension
uncertainty

.

Source of uncertainty
Level of uncertainty
Nature of uncertainty

Qualification of the knowledge

base

Value-ladennes of choice
Spatial uncertainty
Temporal uncertainty

Adapted from Refsgaard et
al. (2007)

Adapted from Van der Sluijs
et al. (2003)

Adaptation from
experimental design in
climate model and SILVA

Location of
uncertainty

Context and framing
Model

0 Model structure
Model technical
Model parameter
Model input
Model output
Expert judgement

O O0Oo0oo0oo

Adaptation from
experimental design

Adapted from Refsgaard et
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al. (2007)

Level of « Statistical uncertainty * Adapted the level of
uncertainty « Scenario uncertainty uncertainty scale from
» Recognised ignorance Krayer von Krauss et
al.(2004) and Gillund et
al.(2008)
Nature of » Epistemic uncertainty + Comments from Norton et
uncertainty « Variability uncertainty al. and Krayer von Krauss et
0 Linguistic uncertainty al. (2006)
o Natural uncertainty » Adaptation from

experimental design

3.9. Summary

The uncertainty in model chain was recognised fraem PRUDENCE, SILVA to
habitat evaluation model throughout the whole exercise. The uncertainty in model
chain started from PRUDENCE RCMs outputs, precipitation and temperature.
Uncertainty from RCMs propagated into the SILVA model by the computed site
conditions input variables. Besides uncertainty from RCMs, tree input variables for
the SILVA model found to have certain range of uncertainty. The OAT sensitivity
analysis was carried out to examine which uncertain input variables contributed the
most to the SILVA outputs. Three uncertain SILVA output, species profile index,
mingling index and aggregation index were linked to habitat evaluation model. The
uncertainty in habitat evaluation model was found in the criteria weights by
examining the questionnaire survey. Finally, the uncertainty throughout the model
chain was recognised and it provided practical information to construct an
uncertainty conceptual model.
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4, RESULTS

This chapter shows the results of the uncertainty and sensitivity analysis throughout
the model chain. Firstly, the uncertainty of PRUDENCE regional climate model is
described. Then, the results from OAT-sensitivity analysis in the forest growth
model, SILVA is presented. Uncertainty of decision making process in forest
management by using the habitat suitability evaluation model as an example is
shown. Finally, the focus is on the uncertainty conceptual framework.

4.1. Uncertainty of site condition variable from PRUDENCE RCMs

Figure 12, 13 and 14 shows the spread of site condition variables and the selection
results of RCMs in current, scenario A2 and scenario B2. According to selection
based on extremity between models, PROMES was selected as the minimum
extreme for current, scenario A2 and scenario B2. For average case, HS1 and HB1
were selected for scenario A2 and scenario B2. MPIA2 and MPIB2 were selected
for maximum extreme case in scenario A2 and scenario B2. However, model ECC
was chosen for current condition. The selected maximum extreme RCMs tend to
have low Pv in three climate conditions. RCMs selected by variables were found to
be inconsistent where the selected RCMs were from a mixture of different models.
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Figure 12 Distribution of site condition variables and selected PRUDENCE RCMs
for current condition
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Figure 13 Distribution of site condition variables and the selected PRUDENCE
RCMs for scenario A2
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Figure 14 Distribution of site condition variables and the selected PRUDENCE
RCMs for scenario B2

Table 10 and Table 11 show the range of variability of site condition variables in
current for selected RCMs by models and selected RCMs by variables. Tvar has
similar uncertainty magnitude to both selection methods of RCMs. Variation of Pv
for selected RCMs by variables was large compared to RCMs selected by model.
This was contributed by the RCMs, ECC in maximum case with low precipitation.

Table 10 Distribution range of site condition variables for RCMs selected by model
in current condition
Sitecondition variables ~ Minimum  average Maximum

DT1o(day) 137 157 179
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Tv (%) 14.80 15.63 16.66
Tvar Cc) 17.28 18.75 21.25
Pv (mm) 216.76 40053  475.45

Table 11 Distribution range of site condition variables for RCMs selected by

variables in current condition

Sitecondition variables ~ Minimum  average @ Maximum
DTy (day) 137 157 179

Tv (°c) 14.74 15.63 16.66
Tvar (c) 17.28 19.36 21.25
Pv (mm) 216.76 400.53 626.73

Table 12 presents the distribution range of site condition variables for scenario A2

and scenario B2 for selected RCMs by model. Distribution range of site condition

variables for scenario A2 and B2 for RCMs selected by variables is described in

Table 13. The spread of site condition variables in scenario A2 and B2 for RCMs

selected by model and RCMs selected by variable was generally analogous.

Interestingly, substantial difference was found in variable Pv for scenario A2 and
B2. For In general, RCMs driven by scenario B2 shows lower value in all site

condition variables compared to RCMs driven by scenario A2.

Table 12 Distribution range of site condition variables for RCMs selected by same

model in scenario A2 and B2

A2 B2
Site condition Minimum  Average Maximum  Minimum  Average Maximum
variables
DTio(day) 187 206 247 177 187 226
Tv (°c) 17.66 18.25 20.00 17.47 17.88 18.5
Tvar (c) 19.31 20.31 24.28 19.31 20.31 20.92
Pv (mm) 264.38 599.38 387.23 234.69 556.27 420.3

Table 13 Distribution range of site condition variables for RCMs selected by

different model in scenario A2 and B2

A2 B2
Site condition Minimum  average Maximum Minimum  average Maximum
variables
DTio(day) 187 220 247 177 198 226
Tv (%) 17.54 18.37 20.00 17.15 17.88 18.84
Tvar (c) 19.17 20.81 24.28 18.93 20.31 22.05
Pv (mm) 236.10 494.5 702.18 234.69 420.3 698.54
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Current

Another attention that can be drawn was the difference of RCMs site condition
values driven by two differences GCM, HadAM and ECHAM. From the selection
result, RCMs driven by ECHAM found to have more extreme estimation than
RCMs driven by HadAM for current, scenario A2 and B2. Selection of RCMs by
model with GCM HadAM (H) and ECHAM (E) is summarised in Table 14. For

RCMs selected by variable value, RCMs driven by HadAM and ECHAM were
varied for minimum and average case in current, scenario A2 and B2 (Table 15).

Table 14 Selection of RCMs by model with GCM HadAM and ECHAM

RCMs RCM swith degree of variability
Category Minimum extreme Average M aximum extreme
Current H H E

H/EA2 H H E

H/EB2 H H E

Table 15 Selection of RCMs by variable with GCM HadAM and ECHAM

Site condition RCMswith degree of variability for variables value
variable Minimum extreme  Average M aximum extreme
DTy H H E
Tv H,E H E
Tvar H,E H,E E
Pv H H,E E
4.2. OAT Sensitivity analysisof SILVA

Results from Figure 15 show that the sensitivity of index R, index A and index M to
tree variables and site condition variables was varied in a forest stand, species oak
and beech. Sensitivity of index R, index A and index M to RCMs site condition did
not reveal information about the contributions of each site condition inputs variable.
Table 16 shows the indices value from sensitivity analysis by using site condition
variable from same RCMs at lower and upper bound in BE3.

IndexR Index A Index M

RCMs site condition 2 RCMs site condition
Cd Cd

W Stand BE3
Heb Doak Heb

==
@beech

RCMs site condition

W Stand BE3
Doak
@ beech

Cd
W Stand BE3
Doak

@ beech

Heb

SILVA inputvariable
SILVA input variable

SILVA input varia

H H H

————
02-01-01 0 00501015 <015 01 -005 0 005 0.1 -02-01-01 0 00501015
Indices difference Indices difference Indices difference
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Figure 15 Sensitivity of index R, index A and index M to tree variables and site
condition for RCMs selected by model under current condition, scenario A2 and B2
in BE3

Table 16 Results from OAT sensitivity analysis for index R, index A and index M
by using site condition variables from same RCMs under a)current condition, b)
scenario A2 and c)scenario B2 in BE3

a) Current

Input variables Index R Index A Index M
L ower Upper L ower Upper L ower Upper
bound bound bound bound bound bound
H 0.99 0.98 1.05 0.91 0.5 0.39
Heb 0.97 0.88 0.99 0.93 0.44 0.39
Cd 1.02 0.98 0.87 0.89 0.44 0.44
RCM site condition 0.94 1 0.91 0.97 0.38 0.43
b)Scenario A2
Input variables Index R Index A Index M
L ower Upper L ower Upper L ower Upper
bound bound bound bound bound bound
H 0.96 0.95 1.08 0.95 0.46 0.41
Hcb 0.93 0.95 0.93 0.97 0.4 0.39
Cd 0.93 0.92 0.87 0.9 0.4 0.39
RCM site condition 0.95 0.93 0.92 1.08 0.4 0.43
b)Scenario B2
Input variables Index R Index A Index M
L ower Upper L ower Upper L ower Upper
bound bound bound bound bound bound
H 0.96 0.95 1.02 0.99 0.44 0.4
Hcb 0.97 1.03 0.95 1 0.43 0.46
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A2

B2

Cd 0.93 0.93 0.92 0.92 0.43 0.4
RCM site condition 0.91 0.98 0.89 0.85 0.43 0.41

Sensitivity results in Figure 16 depict more information about the explicit sensitivity
effects from individual input variable. Sensitivity of the indices to the input
variables behaved differently in forest stand and different tree species. Sensitivity of
index A tends to have similar response in forest stand and beech for three climate
conditions. OAT sensitivity results for different RCMs revealed individual index
value for each site condition variables explicitly.
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Figure 16 Sensitivity of index R, index A and index M to tree variables and site
condition for RCMs selected by variables under current condition, scenario A2 and
B2 in BE3

Table 17 Results from OAT sensitivity analysis for index R, index A and index M
by using site condition variables from different RCMs under a)current condition, b)
scenario A2 and c)scenario B2 in BE3

a) Current

”!pglt Index R Index A Index M
variables L ower Upper L ower Upper L ower Upper
bound bound bound bound bound bound
H 0.94 0.91 1.02 0.92 0.44 0.39
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Hcb 0.92 0.95 0.94 0.99 0.41 0.39

Cd 1 0.94 0.89 0.89 0.42 0.4
DTio 1.01 0.92 0.97 0.95 0.43 0.41
Tv 0.92 1 0.96 0.92 0.43 0.46
Tvar 0.92 0.97 0.98 0.98 0.43 0.36
Pv 0.92 0.93 0.91 1.08 0.41 0.43
b)Scenario A2
In_put Index R Index A Index M
variables L ower Upper L ower Upper L ower Upper
bound bound bound bound bound bound
H 1.01 0.95 1.07 0.91 0.45 0.41
Hcb 1.03 0.95 0.9 0.93 0.45 0.45
Cd 0.94 0.99 0.8 091 0.41 0.42
DTio 1.03 0.96 0.93 0.93 0.45 0.39
Tv 1.05 0.9 0.98 1.06 0.48 0.4
Tvar 1.05 0.93 0.97 1.08 0.48 0.43
Pv 0.96 0.96 0.93 0.9 0.42 0.35
b)Scenario B2
In_put Index R Index A Index M
variables L ower Upper L ower Upper L ower Upper
bound bound bound bound bound bound
H 0.98 0.99 0.97 1.03 0.44 0.41
Hcb 0.97 1.02 0.96 0.96 0.48 0.49
Cd 0.99 0.93 0.81 0.88 0.4 0.4
DTio 0.97 0.97 0.98 1.03 0.48 0.45
Tv 0.97 0.98 0.94 0.85 0.41 0.41
Tvar 0.95 1 0.92 0.91 0.4 0.39
Pv 0.94 0.9 0.9 1.01 0.43 0.41

OAT Sensitivity analysis was conducted for BE4 with the composition of beech and
pine. Results of OAT sensitivity analysis for BE4 with input variable from same
RCM is shown in Figure 17. For this experiment, only variable height and variables
of RCM were found to be most sensitive to index A, index R and index M in three
climate conditions for both types of tree and forest stand. Generally, sensitivity of
index R, index A and index M for pine was much lower than beech and forest stand.
As shown in Table 18, changes of RCMs site condition produced very different
results than tree input variables.
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Figure 17 Sensitivity of index R, index A and index M to tree variables and site
condition for RCMs selected by RCMs under current condition, scenario A2 and B2
in BE4

Table 18 Results from OAT sensitivity analysis for index R, index A and index M
by using site condition variables from same RCMs under a)current condition, b)
scenario A2 and c)scenario B2 in BE4

a) Current

Input variables Index R Index A Index M
L ower Upper L ower Upper L ower Upper
bound bound bound bound bound bound
H 1.09 1.05 0.97 1.06 0.52 0.47
Hcb 1.07 1.07 1.07 1.07 0.51 0.51
Cd 1.07 1.07 1.07 0.99 0.51 0.51
RCM site condition 0.99 1.07 0.88 1.07 0.49 0.51
b)Scenario A2
Input variables Index R Index A Index M
L ower Upper L ower Upper L ower Upper
bound bound bound bound bound bound
H 11 1.06 0.96 1.1 0.52 0.52
Hcb 1.07 1.07 1.06 1.06 0.51 0.51
Cd 1.07 1.07 1.06 0.99 0.51 0.51
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RCM site condition 0.99 0.99 0.85 0.87 0.49 0.49

b)Scenario B2
Input variables Index R Index A Index M
L ower Upper L ower Upper L ower Upper
bound bound bound bound bound bound
H 1.1 1.05 0.96 1.09 0.52 0.47
Hcb 1.07 1.07 1.07 1.07 0.51 0.51
Cd 1.07 1.07 1.07 1.07 0.51 0.51
RCM site condition 0.99 1.07 0.85 1.04 0.49 0.51

Results of sensitivity analysis for BE4 by using variables from different RCMs are
shown in Figure 18. Generally, three predicted indices showed less effect on the
selected input variables in BE4. Under scenario B2, the sensitivity effect was very
low for index R, index A and index M. As shown in Table 19, the range of indices
results mostly increased by variable Pv which tend to generate lower indices value.

IndexR Index A Index M
| —
Pv —— Py L Pv o f—
Current . = —_—
S Tvar = 2 Tvar £ Tvar
< g e El =
g W O'Stand BE4 g O Stand BE4 g o Stand BE4
2 DT10 B pine 2 DT10 W pine § DT10 B pine
£ mbeech £ | B beech <
< Bbeech
< 3 o — s
7 Heb % Heb % Heb
H | —] H [===1 N —
01 005 0 005 01 03 -02 02 -01 01 0 005 01 015 01 008 0 0.05 01
ndices difference Indices difference Indices difference
IndexR Index A Index M
| —
v — Py [ — Py o
@ | m— 2 2
g Tar o — 2 e e 2 Tar —
g =— g g
A2 g ™ s R — 0'Stand BE4 ER e oSwneEs
2 om0 B pine 2 pT10 ]j 8 pine 2 DT10  pine
< mbeech s Bbeech £ Bbeech
3 o g 1 o
3 Heb 5 Heb 3 Heb
| e—]
" ] M H E
01 005 0 005 01 030202 01-01 0 00501 0.15 02 01 005 o 005 01
Indices difference dices difference Indices difference
ndexR IndexA IndexM
| —
Pv E— Pv C— Py o
2 Tar 2 T 2 T
g 8 = g
B2 g W o Stand BE4 FR— o Stand BE4 g W @ Stand BE4
3 DTI0 ® pine 2 DT10 W pine 3 DT10 | pine
£ Bbeech £ =] £
< o < o beech < B beech
B s s
2 2 2
o Heb % Heb % Heb
| ———
H i  S— H H j
01 005 0 005 01 005 0 005 01 015 02 01 005 0 005 01
Indices difference Indices difference Indices difference

Figure 18 Sensitivity of index R, index A and index M to tree variables and site
condition for RCMs selected by variables under current condition, scenario A2 and
B2 in BE4
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Table 19 Results from OAT sensitivity analysis for index R, index A and index M
by using site condition variables from different RCMs under a)current condition, b)
scenario A2 and c)scenario B2 in BE4

a) Current
Input Index R Index A Index M
variables L ower Upper L ower Upper L ower Upper
bound bound bound bound bound bound
H 1.09 1.05 0.97 1.06 0.52 0.47
Hcb 1.07 1.07 1.07 1.07 0.51 0.51
Cd 1.07 1.07 1.07 0.99 0.51 0.51
DTio 1.07 1.07 1.07 1.07 0.51 0.51
Tv 1.07 1.07 1.07 1.07 0.51 0.51
Tvar 1.09 1.07 0.97 1.06 0.51 0.51
Pv 0.99 1.07 0.85 0.69 0.49 0.51
b)Scenario A2
Input Index R Index A Index M
variables L ower Upper L ower Upper L ower Upper
bound bound bound bound bound bound
H 1.1 1.05 0.94 1.1 0.52 0.47
Hcb 1.07 1.07 1.05 1.05 0.51 0.51
Cd 1.07 1.07 1.05 1.05 0.51 0.51
DTio 1.07 1.07 1.04 1.06 0.51 0.51
Tv 1.07 0.99 1.07 0.87 0.51 0.49
Tvar 1.07 0.99 1.06 0.87 0.51 0.49
Pv 0.99 1.07 0.83 0.93 0.49 0.51
b)Scenario B2
In_put Index R Index A Index M
variables L ower Upper L ower Upper L ower Upper
bound bound bound bound bound bound
H 1.1 1.05 0.94 1.1 0.52 0.47
Hcb 1.07 1.07 1.06 1.06 0.51 0.51
Cd 1.07 1.07 1.06 1.06 0.51 0.51
DTio 1.07 1.07 1.06 1.06 0.51 0.51
Tv 1.07 1.07 1.07 1.04 0.51 0.51
Tvar 1.07 1.07 1.04 1.04 0.51 0.51
Pv 0.99 1.07 0.85 0.93 0.49 0.51
4.3. Results of questionnaires

14 questionnaires were collected from the total of 35 experts. The number of
collected questionnaires did not achieve the expected number which should be half
of the total in order to get more concrete representation of the expert judgement.
Distribution of the estimated criteria weights for individual criteria was showed in
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Figure 19. The estimated criteria weights from 14 respondents have high variation
and inconsistency. For example, the estimated weight for close to nature has high
number of equal proportion of experts in assigning different weight. Criteria for
rarity, age diversity and number of tree species have more significant proportion of
experts in expressing the same weight. On average, only four to six experts
estimated the same weight for each criterion.
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Figure 19 Histogram of estimated criteria weights from 14 experts to criteria and
indicators of habitat evaluation model

Table 20 shows the descriptive statistic of the weight from 14 experts. Two
respondents assigned zero weight to the criteria number of tree species, water and
nutrient supply. This caused the high standard deviation in criteria water supply.
One respondent did not assign the criteria weight to the sum of 100% in criteria
structural diversity.

Table 20 Mean and standard deviation of the criteria weights from 14 experts
Standard Standard

Min Max Mean Deviation Error

Close_to_nature 20 50 36.07 12.43 3.322
Structural diversity 20 70 39.29 12.84 3.431
« spatial structure 20 80 41.07 15.00 3.998
o vertical structure 10 40 21.14 10.55 2.820
stratification 40 70 54.29 10.16 2.716

step range 30 60 45.71 10.16 2.716

o stock structure 10 60 30.00 13.59 3.631

tree species diversity 30 90 51.79 15.89 4.245

mixed tree species number 10 40 25.36 9.70 2.592

number of tree species 0 50 22.86 12.04 3.219

o age diversity 10 40 24.21 8.29 2.214
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0 mosaic diversity 10 50 24.64 12.32 3.293

« habitat feature 10 70 35.71 14.92 3.987

o stocking 10 30 2143 6.91 1.848

o heavy wooden share 10 60 32.50 15.41 4.119

o location potential 20 80 46.07 17.34 4.634

water supply 0 80 56.43 22.05 5.893

nutrient supply 0 70 36.43 18.23 4.873

« special structure 10 40 21.79 8.68 2.321

o dead wood 10 50 3321 14.36 3.838

o location diversity 10 70 40.36 16.7 4.462

o special local structure 10 40 26.43 10.08 2.695

Rarity 10 50 24.64 11.84 3.165

* biotope des LUWG 20 50 37.14 9.35 2.498

* protected area 50 80 62.86 9.35 2.498
4.4. Uncertainty conceptual framework and uncertainty matrix

The new uncertainty conceptual framework was exparideseven dimensions of
uncertainty for characterising source of uncertainty in this research and projected in
Figure 20. The rows in the matrix indicate the sources of uncertainty that occur in
the model chain. The columns are used to further categorise the sources of
uncertainty into level of uncertainty, nature of uncertainty, qualification of
knowledge base, value ladenness of choice, spatial uncertainty and temporal
uncertainty. In order to facilitate the model chain approach, the new matrix was
rearranged and combined the uncertainty of input, parameter, expert judgement, data
and model outcome into the category of model uncertainty.

The model uncertainty was sub-divided into four divisions which included general
circulation model, regional circulation model, SILVA and habitat evaluation model.
Each model was examined separately based on the above source of uncertainty but
uncertainty of each model output was accumulated from one model to another and
summed as the total uncertainty output at the end for model chain. Expert judgement
was added as the source of uncertainty in habitat evaluation model because the
assessment score and criteria weight for the model were contributed mainly from
interpretation and judgement from mental model. Data uncertainty was added to
facilitate the usage of forest inventory data in SILVA and habitat evaluation model.
Uncertainty of data refers to uncertainty of monitoring and observation data which
was used as the empirical data and inventory data in the model development.

Level of uncertainty was categorised into scale of 1 to 5 as explained in Figure 3.
One source of uncertainty can be categorised into different level of uncertainty and
different dimensions of uncertainty. For example, model technical of global

circulation model can be expressed as statistical uncertainty and recognise
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ignorance. The model technical error can be quantified from model result relative to
the effects of parameter variation (Knight et al., 2007). Yet, bugs from software,
different processor and RAM size used in the model have shown unclear association
to the predicted results variation. Technical uncertainty was found in epistemic
uncertainty as the software and hardware problem in the model can be improved by
understanding and knowledge.

Besides, variability uncertainty was further sub-divided into linguistic uncertainty
and natural uncertainty. Linguistic uncertaffitywas added as it was occurred in
system data of SILVA. It expressed the ambiguity of verbal communication among
forest workers during the tree measurement in the forest. This was examined during
the field measurement in field work especially when measurement value was not
pronounced precisely to other co-workers. Besides, linguistic uncertainty also
occurred in criteria weights estimation from questionnaire exercise for habitat
evaluation model. As claimed by some of the experts, the terminology of the criteria
was vague and incomprehensible to estimate the weight. This caused
misinterpretation of the criteria amtbscured precise weight estimation.

Qualification of knowledge base and value ladenness of choice were added to reflect
the underpinning and reliability of the employed knowledge and the different views
and perspectives in the choice. For example, all source of uncertainty in general
circulation models tend to have strong qualification of knowledge base. This was
because GCM was developed and investigated by wide range of scientist and
climate experts with large scale of numerical methods and information for global
circulation modelling (Houghton, 2001). Expert judgement for criteria score and
criteria weight found to have strong value ladenness of choice as they contained
many different views and assumptions from different experts.

Spatial uncertainty can be discussed at GCM and RCM level. As for GCM, coarse
spatial resolution of climatic data is unable to capture fine-scale of climate variations
for impact assessment studies (Giorgi et al., 2001). Besides, spatial uncertainty
occurs due to the downscaling process of GCM output to RCM from 300 km spatial
resolutions to 50 km spatial resolutions. Temporal uncertainty concerned about the
wide range of temporal scale from sub-daily to century for climate prediction in
GCMs and RCMs (Heal and Kristrdm, 2002).

191t is the uncertainty related to communication of sciersalted from vague, context dependent,
ambiguous and underspecific of scientific vocabul&illgnd et al., 2008)
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Eventually, the matrix was filled by marking the tick symbol in the relevant
uncertainty columns for any occurrences of uncertainty. The total uncertainty was
the chain of uncertainty propagated and accumulated from GCM, RCM, SILVA and
habitat evaluation model. The uncertainty in GCM has to carry forward to RCM,
accumulated to SILVA, habitat evaluation model and sum in the total output of
uncertainty. From the total output of uncertainty, all the sources of uncertainty in
model chain can be identified and further categorised. In level of uncertainty,
statistical uncertainty found to be the highest uncertainty in the model chain. In
nature uncertainty, natural uncertainty has the highest occurrences of uncertainty,
followed by epistemic uncertainty. The model chain has strong qualification of
knowledge base with low quantity of large value ladenness of choice. Spatial and
temporal uncertainty have high occurrence in model chain as well.
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5. DISCUSSION

5.1. Uncertainty of site condition variable from PRUDENCE RCMs

Prediction of future climate change involves varisosirces of uncertainty (Déqué

et al., 2007). The sources of uncertainty include uncertainty of emission scenario,
uncertainty of the driving GCM, uncertainty of RCM formulation and uncertainty of
natural variability (Déqué et al., 2007; Jacob et al., 200Fhrough the RCMs
selection exercise and the results from RCMs selectimtertainty caused by
emission scenarios and uncertainty from driving GCM can be discussed.

The computed site condition input variables are gdlyehigher for scenario A2
compared to scenario B2 (Table 12 and Table 13). This is because scenario A2
developed under the economic oriented storyline with high emissions. But, B2 was
developed under environmental protection storyline with low emissions (IPCC,
2007). Yet, the variation of predicted site conditions was found to be small between
RCMs under scenario A2 and RCMs under scenario B2. This can be concluded that
uncertainty introduced by different scenario is not enormous (Fowler et al., 2007).

The uncertainty introduced by choice of driving GCM was larger than different
emission scenario (Fowler et al., 2007; Fronzek and Carter, 2007). This can be
shown by the wide spread of the predicted site condition value driven by HadAM
and ECHAM. RCMs driven by ECHAM, generated the maximum extreme value of
all the site condition inputs (Figure 12, 13 and 14). As claimed by Fronzek and
Carter (2007), RCMs driven by ECHAM produced greater temperature changes
compared to RCMs driven by HadAM. This is due to the different behaviour of
atmospheric moisture in HadAM and ECHAM. Besides, projection of site condition
from RCMs with same GCM ECHAM showed large variation especially in Pv. This
can be explained that RCMs has more influences to Pv variation during summer
compared to GCM (Christensen and Christensen, 2007; Déqué et al., 2007; Fowler
et al., 2007). Exploration and selection of RCMs outputs by inter-comparison of
RCMs driven by different emission scenario and GCMs gave an insight of sources
of the uncertainty.

5.2. OAT sensitivity analysis

The results of OAT sensitivity analysis to index R, index A and index M were not
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consistent to the same input variables. The sensitivity of the indices to the input
variables differed between three climate conditions. Therefore, it is not possible to
identify that the indices are most sensitive to which particular input variables.
However, this might due to the complexity of SILVA model structure coupled with
multiple sub-models in it. The interactions of tree inputs and site conditions input to
the index R, index A and index M are non-linear. The indices are calculated from
three dimensional structure model (Pretzsch, 1998; Pretzsch et al., 2002a). The
three-dimensional stand structure model is constructed from stem position, tree
height, diameter, crown length, crown diameter and species related crown model
(Pretzsch, 1998). Index R, index A and index M used the 3-D stand as the basis
platform to derive the index value.

The large change of indices value does not make a difference if the change of the
indices is between the ranges of index classification. For example, index R is
classified into: R <1 represents the stand with high clustered distribution, R=1 has
random distribution and R>1 has the regular distribution pattern (Pretzsch, 1998).
This can be discussed in the changes of index R to Cd and Hcb in scenario B2
(Table 17). The change of index R to Cd was larger than Hcb, but, this did not give
much difference to the classification of index R. This was because the change of
index to Cd from 0.93 to 0.99 was still under the same category of index R

classification. However, change of index R to Hcd from 0.97 to 1.02 revealed that
the change of index classification. To conclude, the inputs which contribute the most
to the index change do not make much difference it has been classified to certain
classification.

Two different mixed stands, BE3 with oak and beech and BE4 with pine and beech
also behaved differently in this analysis. Generally, sensitivity of the indices to the
tree input variables and site condition for BE4 is much lower than BE3. The reason
for this might cause by the low coefficient of determinatiof) ¢ Hcb to DBH in

the allometric regression (Table 6). The predicted value of Hcb was not compatible
to the size of tree crown diameter. As a result, the generated 3D stand structure in
SILVA for BE4 was occupied by large crown diameter and short tree height to
crown base. This strange shape and dimension of stand structure might cause the
calculation of the spatial structure indices to be deviated.

To conclude, the sensitivity analysis under different climate scenario showed that
the effect of climate change to three indices was very small. This reveals that
SILVA might be not sensitive to the change of climate. The OAT sensitivity
analysis in this research does not reveal that the indices are most sensitive to which
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particular input variables. This is because the interpretation of the changing
magnitude of the indices resulted from varying the input variable is difficult to infer
and varied between different experiments. Nevertheless, this analysis gives the
underlying information and broad picture of the problems in the research. This is
because OAT sensitivity analysis takes no accounts of the interactions between
different inputs.

5.3. Uncertainty conceptual framework and uncertainty matrix

The uncertainty framework was designed to deal with multiple integrated models in

the form of model chain. The expansion and modifications of the framework were

needed to cover all dimensions of uncertainty in the model chain. To achieve this,
new sources of uncertainty and dimensions of uncertainty were added (Figure 20.
One important changed in the matrix was to establish the linkage between model
outputs. This aimed to trace and accumulate the source of uncertainty from each
model to total model output. Expert judgement was another important source of
uncertainty in the chain because it was the shift of quantitative uncertainty to

gualitative uncertainty.

The level of uncertainty was further determined by the score of 1 to 5 to explicitly
classify level of uncertainty. Linguistic uncertainty was needed to address the
uncertainty in science communication (Gillund et al.,, 2008). Besides, the model
chain required the information about the level of quality and underpinning of the
various uncertainties. This was helpful to identify to which extent the uncertainty
can be reduced by better underpinning (Van der Sluijs et al., 2003; Walker et al.,
2003). Since the model chain included the decision support model, values and biases
in the choices were unavoidable. Spatial and temporal uncertainty was needed to
facilitate the spatial and temporal variability in climate models.

The result from the total output of uncertainty in Figure 20shows that natural

uncertainty and statistical uncertainty occurred the most in the model chain.
However, the focus of the framework was not on how many times the uncertainty
occurs. It was more relevant to investigate how this result could help decision
makers. The marking of the uncertainty in the matrix could help the policy makers

to identify and trace the uncertainty in each model. This identification can be used as
the communication tool between modellers, decision makers and policy makers to
understand the underlying uncertainty in the models (Walker et al., 2003). For
example, climate modeller can explain to SILVA developer and decision makers
that what, why and how system data and driving forces are classified as statistical
uncertainty (Figure 20. Furthermore, based on the uncertainty scale of uncertainty
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level, GCM modeller can explain which source of uncertainty can be reduced or vice
versa. With this information, RCM modeller and decision makers can use this

explanation and the accumulated model output uncertainty to investigate uncertainty
before using them.

The matrix also revealed the uncertainty from the normative perspective especially
in habitat evaluation model. For example, criteria score and criteria weights in the
model were basically contributed by the experts. As for criteria score, experts played
a major role in determining the criteria score to three standardised class which is
bad, medium and good (Appendix 3). For criteria weights, the uncertainty came
from the questionnaire survey of the weight estimation by different experts. These
two sources of uncertainty can be classified as statistical uncertainty as they can be
measured based on the range of the weight distribution from the experts (section
4.1.3). At the same time, the criteria score and criteria weights were considered full
of value ladennes of choice. This was resulted from the estimated weights by experts
with full of different views and interpretations. Together with this, the accumulated
model output from GCM, RCM and SILVA can be incorporated to examine the total
output model chain. This is the place where uncertainty from descriptive model can
be combined with normative model.

To conclude, the total output model can reveal two messages. Firstly, the

accumulated model chain output was surrounded by large uncertainty. But, “large

uncertainty” did not mean as a disaster to modeller, decision maker and policy

maker. This is because, on top of this, the total output model of uncertainty also

revealed that most of these large uncertainties were quantifiable (statistical

uncertainty and spatial uncertainty) and unavoidable (nature uncertainty and

temporal uncertainty). But quantifiable uncertainty can be improved and reduced by
further investigation and research (epistemic uncertainty). At the same time, the

results from the matrix explained that the degree of underpinning of the information

about the various uncertainties were strong and with large value ladenness of choice.
Therefore, it provided more information about the meaning of uncertainty.

Secondly, in the management point of view, one can argue that was the large
accumulated uncertainty from different models has enormous effects to decision
maker in the future? This might not be true. Because the large accumulated
uncertainty was “dismissed” when the uncertain results from GCM, RCM and
SILVA were classified into three standardised of the criteria score in habitat
evaluation model. As a result, the uncertain results from the chain made no
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difference to decision maker as the uncertainty might have been “demolished” by
the classes of criteria score.
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6. CONCLUSIONSAND RECOMMENDATIONS

6.1. Conclusions

Model based decision support is a useful too to assist decision makers to make
decision. However, what more important to decision makers is not only the
predicted model output, but it is the certainty. Therefore, to address the uncertainty
in a systematic way, an uncertainty framework for model-based decision support is
essentially needed particularly for integrated model-based decision support. In this
context, this study aimed to construct an integrated uncertainty conceptual
framework to assist decision makers in forest management under climate change.

The objectives of the study have principally been addressed. The first objective was
to identify and recognise possible uncertainty in climate model, forest function
model and decision making model. Three major uncertainties in climate model were
addressed: uncertainty from GCM, uncertainty from emission scenario and
uncertainty of RCM formulation. In forest function model, SILVA, uncertainty
analysis was focused on uncertainty of input variable. Therefore, tree input variables
were used to analyse uncertainty input by using standard error on prediction. For
decision making model, the uncertainty was recognised in expert judgement of the
criteria score and criteria weights. The uncertainty of the criteria score was analysed
by questionnaire survey to different experts.

The following objective was to demonstrate sensitivity and uncertainty analysis for
site condition and tree inputs of forest function model, SILVA. Two set of input
variables, site condition inputs (duration of vegetation growing period, mean
temperature in vegetation growing period, annual temperature amplitude and
precipitation in vegetation growing period) and tree inputs (tree input variable, tree
height, tree height to crown base and crown diameter) were used to run the OAT
sensitivity analysis in SILVA. The sensitivity of index R, index A and index M to
these input variables does reveal useful information about the research and model.
The analysis showed a broad picture about how the outputs change for a specific
change in any given input variable.

The final objective was to develop the uncertainty conceptual framework from the
achievement of objective 1 and 2. The uncertainty conceptual framework was
mainly adapted from the W&H framework and comments from Norton et al. (2006)
to systematically address the uncertainty in the model chain of GCM, RCM, SILVA
and habitat evaluation model. The framework managed to identify and categorise
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source of uncertainty and the linkage uncertainty from one model output to another
model. The framework was able to incorporate the quantitative and qualitative
uncertainty in habitat evaluation model. The total output of uncertainty revealed that
the uncertainty should take into account of the uncertainty from modellers’ point of
view and decision maker/policy makers’ point of view. By doing this, the “real”
uncertainty can be identified and revealed by both parties especially to decision
maker in making certain decision

6.2.

Recommendations

Climate model with more extreme emission scenario such as Al, A1B and
B1 should be included to investigate the effect of more extreme future
climate change in forest management.

More detail information about the underlying model structure and
calculation of the habitat evaluation model should be explored. The class of
the criteria score should be substituted with more meaningful value to
precisely assess the evaluation score.

The matrix should be distributed and filled by the relevant modeller,
developer and policy maker in an interview form. This is because they have
better understanding and knowledge to identify and characterize the source
of uncertainty

The matrix should be further extended to the method of how to assess and
qguantify uncertainty in the model chain.
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Appendices

Appendix 1: Summary and description of PRUDENCE RCMs

Model Research Centre or Institution of Description Reference
Origin
HadAM3H Met Office Hadley Centre (HC) HadRM3H was developegrovide (Hudson and
realistic simulation of regional Jones, 2002;
climate globally. configuration as Buonomo et al.,
HadRM3P. It can calculate large2007)
scale of cloud and make assumption
of the radiative effects of convective
clouds.
ECHAM4/O  Max-Planck-Institute for Meteorology ECHAM is the atmospheric general(Roeckner et al.,
PYC3 (MPI) and Deutsches circulation model and OPYC is the 1999)
Klimarechenzentrum (DKRZ) ocean general circulation model
HIRHAM Danish Meteorological Institute (DMI)  Incorporates new high resolutioiChristensen and
physiographical sets of surfaceMeijgaard, 1992)
topography and land use
classification in the model.
CHRM Swiss Federal Institute of Technology The model quality has been improvedVidale et al.,
(ETH) the ability to represent the continenta003)
and Alpine-scale water cycle.
CLM Geesthacht Institute for Coastal It is a non-hydrostatic regional (Steppeler et al.,
Research (GKSS) climate model. CLM is using the 2003)
same dynamic and physical core as
local weather forecast model of the
German Weather Services (DWD)
RegCM2 International Centre for Theoretical (Giorgi and
Physics (ICTP) Mearns, 1999)
RACMO Koninklijk Nederlands Meteorologisch It combines the land surface(Lenderink et al.,
Instituut (KNMI) characteristics and the dynamical2003)
core of the HIRLAM Numerical
Weather Prediction System with the
physical parameterisation of the
European Centre for Medium-range
Weather Forecasting (ECMWF),
version of 40-year reanalysis
(ERA40). The model increases the
soil  hydrological reservoir and
reduces the sensitivity of canopy
evaporation to drought conditions.
HIRHAM The Norwegian Meteorological (Christensen et
Institute (met.no) al., 1996)
REMO Max-Planck Institute for Meteorology REMO is developed from the (Jacob, 2001)
(MPI) Europa-Modell (EM) and
Deutschland-Modell (DM) model of
the German Weather Service. The
physical parameterisation schemes
have been modified by ECHAMA.
RCAO Swedish Meteorological and Simulation of RCAO is based on the(Doscher et al.,
Hydrological Institute (SMHI) combination of atmospheric (Rossby2002; Meier et
Centre Atmospheric 2) model andal., 2003; Jones et
ocean model (Rossby Centre Ocean)al., 2004)
PROMES University Complutense of Madrid (Castro et al.,
(UCM) 1993)
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Appendix 2: Criteriatreefor habitat evaluation model (source FAWF)

Objective Criteria Indicator
40 Close to Naturalness Proportion
nature of forest of natral
stand tree
40 . Stratification 50
Y Vertical
structure Step range 50
Tree species diversity 34
50 Spatial |25 stock mixed tree species 33
structure — | structure number
10  Age Number of tree species 33
| diversity
E Mosaics
diversity
30| structure ﬁStoc:king
Assessment score diversity |
40 Habitat |33 Head"y
features ~ | wooden
share
34Location Water supply 50
potential Nutrient supplys0
33
Dead wood
Special 33 Location
10 structure diversity
Special
34 local
structure
50 Biotope of .
30— the LUWG * Biotope
Ry
50 Protected Protected area
areas Forest nature reserve
Nuclear biosphere reserve
zone
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Appendix 3: Habitat evaluation model summary (source FAWF)

Objective Criteria I ndicator I ndicator Unit
Closetonature | Naturalnessof Proportion of Percentage of tree
- closeness of forest stand natural trees species sharing the
tree to nature same soil type and
indicated by moisture content
naturally growth 1=<40%
of tree species in 2 =40% - 80%
that particular 3=80%
soil type and
moisture content
of the area
Structural Spatial Vertical Stratification Index ranges from
diversity structure structure number of vertical | 1(no layer) to 5 (all
-horizontal and layers/ stratum aged of trees)
vertical diversity Step range Index ranges from 0
of forest Area within the (<20% of the area in
stand with the stand have the
difference height 8m difference of
which is more than | height) to 3 (>60%)
8m
Stock Tree species Percentage of area
structure diversity covered by dominant
proportion of tree.
dominant tree
species at the uppe
layer of the stand
Mixed tree species | < 5% of mixed tree
number species in the stand
Number of different| do not take into
tree species with consideration
area coverage 5% | > 5% of tree species
of the total stand
area
number of tree The code range from
species <4 to> 6 trees
Total number of
tree species
Agediversity | number of different | The Code range fron
age groups in the <3 ages to >4 ages
stand — covering
5% of total area
Mosaic Distribution or index with values
diversity composition of tree| from 1.0
species (homogeneous) —
3.0 (clustered)
Habitat features | Stocking Stand density (the | 1 bad outcome > 1.0
value obtained from| or<0,3
university). which 2 medium Scorg
depends on 1.0 and> 0.7
intervention and 3 Good Score: 0.4
type of tree and< 0.6
Heavy wooden | Based on DBH size] Percentage of the
share The higher the share
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value the more the
share.

1 badly< 10%

2 medium 11% -
30%

3 Good> 30%

L ocation Water supply Water supply
potential 1 (extremely dry) to
12 (wet)
Nutrient supply Nutrient supply
1to9
Special Dead wood Number of dead Index ranges from 0
structure wood in the stand | (a lot of dead wood)
including standing | to 3 (less dead wood
and lying dead and based on the
wood cubic meter value of
dead wood.
L ocation Rare soil type
diversity -if it occurs <6%
then it is not good.
But if >10% then it
is good
Diversity of the soil
-if more than 2 soll
types in the stand,
then it is very good
Special local Description of the | Yes or no
structure structure of the
landscape such as
rock, lake, cave
grassland.
Rarity Biotopes of the Biotope The area coverage | The percentage
LUWG of ecological coverage of these
valuable area such | areas
as biotope 1 = bad area 25%

2 medium surface
proportion> 25% and
<50%

3 Good surface shar
> 50%

D

Protected areas

The area coverage
of nature protected
areas, forest nature
reserve, nuclear
biosphere reserve
zone, NWR 100

The percentage
coverage of these
areas
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