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Abstract 

Environmental gradients overlay each other across the earth’s surface. These 
environmental heterogeneities are expressed by the plant communities living within 
them. Some gradients change temporally as well as spatially, reflected in the 
phenological responses of the local vegetation. Gradient analysts, attempting to 
understand these gradients, currently have little to aid them to stratify their sampling, 
along the logic of what they are studying (gradients). Furthermore, current landuse 
classifications compound the issue, providing little indication of landscape gradients, 
and giving little aid to the gradient analyst.  
 
This exploratory research hoped to produce a piece of logic, capable of guiding 
research into providing a tool for gradient analysts to stratify their sampling regimes. 
It investigated whether it was possible to devise a method, to extract gradient 
boundaries solely from temporal remotely sensed imagery, exploiting hyper-
temporal NDVI datasets available from the SPOT-VEGETATION instrument. 
  
The research consisted of firstly, an appraisal of environmental heterogeneity in the 
study area, using ISODATA classification, and subsequent NDVI class 
characterisation with rice crop calendars. Secondly, the research explored two 
methodologies to extract gradient boundaries from hyper-temporal NDVI datasets. 
These gradient boundaries were thought to bound regions that were heterogeneous in 
nature, representing regions over which fluctuations in environmental conditions 
were eliciting a phenological response in the vegetation. The first methodology was 
based upon Principal Components Analysis and its ability to summarise the hyper-
temporal variability. The second, involved a temporal use of Edge Detection, 
exploiting the asymmetry of time to help define and extract gradient boundaries. 
 
Both methods successfully extracted logical gradient boundaries. These did bound 
regions which were logically heterogeneous in nature, and therefore representative 
of areas of gradient flux. However, these boundaries, despite coinciding in many 
areas, did not universally match. Whilst it was evident that both methods are in need 
of further refinement, it was also evident that the different methodologies extracted 
boundaries based on different, though entirely gradient-relevant criteria. It was 
recommended that further research into a hybrid method, should follow research into 
refining the two attempted methodologies. This does not exclude research into other, 
alternative methodologies, provided they are founded in gradient logic. 
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1. Introduction 

1.1. Gradients, vegetation communities, and gradient analysis 

“We have abandoned any hope of ecological meaning in some idealised, uniform 
and constant environment” (Sparrow, 1999), rather, embracing the view that the 
world is heterogeneous and non-equilibrial (Chesson & Case, 1986). For every 
environmental condition (e.g. soil moisture, precipitation, cloud frequency, among 
others), a gradient exists, from low to high (or vice versa). These gradients overlay, 
cross, and enhance each other across the earth’s surface. It can be seen that in reality, 
each area/point on the earths’ surface represents the confluence of n number of 
environmental (both abiotic and biotic) gradients (Begon et al., 1990), which are 
consequently, a useful abstraction for explaining the distribution of species in space 
and time (Austin, 1985). 
 
All species live in a characteristic, minimum range of habitats (Ter Braak & 
Prentice, 1988). A species, living in a locality, has to be tolerant of the sum of all 
those constraints under which it must live (Hutchinson, 1958). According to 
Whittaker (1953), any community at a point is composed of species tolerant to the 
conditions at that point (see figure 1). Since communities are essentially groups of 
species occurring together (Giller, 1984), they are subject to the same environmental 
influences as their components (Hugget, 1995). The composition of biotic 
communities thus changes along environmental gradients. For example, vegetation 
communities appear to have distinctive vegetation types that change over the 
landscape. These appear to be separate. However, when concentrating on the 
distributions of individual species, the individual species abundances overlap 
considerably (figure 1), exhibiting a distinct lack of sharp boundaries, even where 
intra-dependent communities build up (Begon et al., 1990). 
 
Gradient representation has become a standard technique for the examination of 
vegetation patterning (Gosz, 1992). However, a form of gradient representation 
cartographically, appears illusive in the literature on remote sensing. Gradients 
remain as abstract interpretations of different zones in images, which exist only in 
the mind of the reader. Gradient models are a human construct, allowing empirical 
relations between environmental conditions, distributions and species abundances to 
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be explored. Essentially, they serve to organise environmental and biotic 
heterogeneity in a logical way (Keddy, 1991).  
 

 
Figure 1: Views of plant communities expressed as species response curves along an environmental 
gradient - (a) the Gleasonian (Gleason, 1917; 1926; 1939) view of plant communities expressed as species 
response curves along an environmental gradient; (b) Whittaker’s (1953) climax pattern hypothesis 
expressed as species response curves along an environmental gradient (adapted from Kent et al., 1997). 
 
It was this use which was kept as a guide, whilst defining gradients for the purpose 
of this study. In this research, a gradient was seen as a fluctuation in a subjectively 
chosen environmental condition (or complex of conditions) which illicits a 
phenological response in the locality’s’ vegetation. Confusion often arises with 
conceptualising gradients. Position on a gradient, and position spatially are often 
mixed up (Austin, 1985). Sites with similar values on a specified gradient, need not 
be related spatially (figure 2). Aside from their ability to suggest hypotheses by 
emphasizing patterns in the data, gradients also provide a tool for conducting 
experiments (Keddy, 1991), specifying predictable and quantifiable changes in 
environmental states. This is the use to which gradients are put in gradient analysis.  
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Figure 2: Difference between spatial position, and position on a gradient. (a) Multiple species occurrence 
sites, spatially spread out, experiencing a similar environmental condition denoted by black dots. (b) The 
environmental gradient, showing the single position about which  the species located in (a) survives. 

 
This “gradient analysis” has become a major input into studies of species 
communities by environmental scientists, and in particular ecologists (Whittaker, 
1967).  It is a research approach for studying these shifting species distributions, 
based predominantly on the spatial patterning of vegetation. It seeks to understand 
the structure and variation of a landscape’s vegetation in terms of gradients in space, 
at three levels- environmental factors, species and populations, and characteristics of 
communities (Whittaker, 1967).  It has been described as a “powerful technique” 
(Gosz, 1992), to analyse and detect changes in the dynamics, structure and 
functioning of ecosystems, and is a major alternative approach to studying 
communities through classification (Whittaker, 1973). 
 
The approach is not without criticisms. Begon et al. (1990) highlight one of the 
major criticisms of gradient analysis, as a way of detecting patterns in communities. 
They note that “the choice of the gradient is almost always subjective”. An 
investigator organises the data they have about a species, along a gradient or a factor 
they deem to be important to the organisms. Unfortunately, this may not necessarily 
be the most appropriate factor (Begon et al., 1990). 
 
In order, to make their work more viable, gradient analysts turn to randomising their 
sampling methods, combined with sampling as many environmental variables as 
possible. They rely on comparing the results of ordination to the sampled variables 
(Begon et al. 1990). For example, White and Hood (2004) in studying vegetation 
response to soil variables in the Mexican Yucatan, utilised a natural escarpment to 
delineate a transect, along which they could sample (figure 3). Such a method could 
have missed the strongest gradient acting across the local area in different directions 
to the transect alignment. Such a gradient could have been captured better, had their 
sampling been orientated differently, or even not aligned along a transect at all. 
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Figure 3: White & Hoods’ sampling transect. 
Sample sites are represented by stars, and 
associated code, whilst the escarpment from 
which they were orientated is represented as a 
dotted line (white & Hood, 2004) 

 
This sampling problem is also evident in current mapping techniques, which appear 
to ignore the logic of gradients and landscape heterogeneity. Classifications 
essentially homogenise portions of the landscape, creating hard boundaries between 
zones. Current classification techniques assign a pixel to a class on the basis that 
they are within a threshold of similarity to that class, then divides the image 
accordingly into what the algorithm deems are distinct class areas. A landuse class is 
either one thing or another, there is no identifiable “in between. This sampling 
problem is most effectively illustrated in figure 4. Here, it is easy to draw a 
boundary line between two zones along line A. However, in contrast, for line B, 
where does one class end, and the next begin? Meanwhile figure 5 shows one such 
landuse classification as an example of the lack of “in between” representation. 
 

 
Figure 4: Problems in defining class boundaries in the Mekong Delta. Transect “A” has an easily 
discernable cut off point along its axis, where the vegetation obviously changes. However, the change 
along transect “B” is much more gradual, making it difficult to discern where the class located at one end, 
turns into the class located at the other end of the transect. (image from www.envisat.int, 2009) 
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Figure 5:  Mekong Delta Landuse map 2005. This clearly shows the distinct class areas, with no 
transition zones or gradient representation incorporated into the map (obtained from the  National Institute 
of Agricultural Planning and Projection, Vietnam Ministry of Agriculture and Rural Development).  

 
Figure 6 shows some theoretical classes to emphasize this mapping issue. Arbitrarily 
numbered classes 1, 2, 3, and 4 are considered distinct entities, to be characterised 
by abrupt boundaries as their end points. Unfortunately, this does not take into 
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account the reality of the situation. Class 1 gradually becomes class 2, which 
gradually becomes class 3. Class 4 on the other hand, gradually develops into class 
1, yet has no common properties with classes 2 or 3. 

 
 
 
 
 
 
 

 
 
Figure 6: Inter-class relations along 
gradients. Theoretical representation of 
classes, identified as distinct by image 
analysis, though are in reality grouped 
together along a common factor. 

 
Some map classifications designate so called “transition zones”, though this raises 
the question “where does the transition zone begin and end?” This of course, is not 
to say that map classification is wrong. It merely emphasizes the point that currently, 
map classification is insufficient to the task of truly telling the entire story of the 
landscape. Critical to this research was the understanding that classification does 
pick out areas that are fundamentally different. despite placing a boundary line 
somewhat arbitrarily. This arbitrary drawn line is not depicted as a “soft” line, which 
could denote a transition. 
 
For example, when the classes in figure 6 grouped together logically, a different 
aspect is revealed, that of gradients. If such a logic is applied to classes 1, 2, 3, and 4 
above, not only could we see a natural grouping (1, 2, 3 and 4), but also the direction 
of change (4 to 1 to 2 to 3). This logic is seen to be that of “Gradients”, i.e one of 
infinitely fluctuating environmental conditions across the Earths’ surface. A gradient 
analyst could apply this logic to his/her sampling scheme. They could identify areas 
that are fundamentally different, and then see how they are grouped, or not grouped. 
Their sampling regime would therefore be stratified entirely from satellite data, and 
specifically to capture the primary agent of change between the classes. This could 
allow the correct agent to be subsequently identified, and studied in depth. 
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1.2. Normalised Difference Vegetation Index, hyper-temporal imagery, 
and gradients. 

Communities, including crops, on the Earths’ surface are structurally represented by 
plant species, detectable to a degree using the Normalised Difference Vegetation 
Index (NDVI). As each plant member or cluster grows, sickens, heals, and dies, the 
concentrations of chlorophyll in its tissues and its biomass fluctuate over time, a 
change which is detectable by NDVI (Tucker, 1979).  
 
Not only has the relationship between NDVI and productivity been well established 
(Pettorelli et al., 2005), but the effects of some environmental conditions on NDVI 
have also been documented (e.g. Jingyong et al., 2003; Roerick et al., 2003; Wang et 

al., 2003). These studies have shown that NDVI does indeed fluctuate along 
environmental gradients. 
 
There are reservations expressed about using NDVI, well summarised by Pettorelli 
et al. (2005). However, despite these, supporting the use of NDVI for this research 
were the arguments that: 
1: the index is relatively simple, easy to calculate, and also readily available online 
as a pre-prepared product. 
2: hyper-temporal datasets of NDVI existed, or were obtainable, for multiple sensors 
(e.g. SPOT-VEGETATION, MODIS, AVHRR) if required, some dating back over 
10 years or more. 
3: The core focus of this research is simply to use fluctuations in vegetation 
phenology, not to determine which the best measure of those fluctuations is.  
 
The NDVI effectively provides us with information on the vigour and abundance of 
the vegetation community (Campbell, 1996). However, NDVI can also provide us 
with information on vegetations’ spatial and temporal distribution, and it is this 
temporal aspect which was also exploited during this research through using hyper-
temporal imagery. The chosen vegetation was not only to be spatially analysed, but 
also analysed in how it changes in time. 

 
Stutheit (1991) pointed out that multi-temporal functionality should become a 
fundamental enhancement to all spatial analysis systems. “Time is the fourth 
dimension; it is unlike the first three dimensions in that it is asymmetrical, and 
difficult to envision, much less comprehend” (Saab & Haythornthwaite, 1990). 
However, it can greatly enhance the information gain from remote sensing imagery. 
For example, Zhang et al. (2004) used what is considered multi-temporal imagery 
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(composed of 16 day composites over a 1 year period) to track vegetation “green-
up” over the northern hemisphere. In their study of arctic sea-ice changes, Piowar 
and Le Drew (1995) noted that time sets of nearly 30 years, with near-daily revisit 
times, had been collected so far. They termed these extensive daily repeated datasets 
as “hyper-temporal” datasets, and called for research into “hyper-temporal image 
analysis” techniques, to take swift advantage of the oncoming “temporal data 
explosion”. 
 
“Hyper-temporal” data” is essentially “multi-temporal” data, collected with a very 
fine temporal resolution (with sensor repeat times of approximately 1 day). Despite 
Piowar and Le Drews’ (1995) tentative efforts, and the increasingly frequent use of 
the term in scientific literature, the term is still somewhat ill-defined and subjective. 
Here, it is taken to be imagery, or composite imagery, derived from near-daily 
repeated datasets. For the purpose of this research, there had to be at least two 
composite images produced within a calendar month, for a period longer than 3 
years (i.e. that used by Thenkabail et al., 2007, in their study using AVHRR data). 
 
Piowar and Le Drew (1995) called not only for new techniques to be developed, but 
also existing image processing tools to be adapted. They noted that hyper-temporal 
images could be considered analogous to hyper-spectral images, with each 
timeframe analogous to a different spectral band (Figure 7). Arguing this point, they 
promoted adapting methods such as unsupervised multispectral classification 
(Staenz & Goodenough, 1990), and Principal Components Analysis (Chavez & 
Kwarteng, 1989). 

   

 
Figure 7: The analogy between hyper-temporal and hyper-spectral. A shows hyper-temporal profiles of 
landuse NDVI signatures. (from Thenkabail et al., 1999). These can be considered to the hyper-spectral 
profile of different minerals shown in B (from www.ltid.inpe.br ). 
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De Bie et al. (2008) used hyper-temporal imagery to identify land-use classes, 
previously indiscernible from NDVI images taken at single time frames. As a case 
study they used this “hyper-temporal image analysis” and concurrent hyper-temporal 
profiling of classes, to delineate some possible gradients in the Limpopo Valley. 
This was suggested using visual comparison to an ASTER image. They showed that, 
using hyper-temporal NDVI imagery, land classes based along fluctuating gradients 
were visibly interpretable. However a scientifically rigorous and automated method 
to delineate the zones where a dominant gradient is affecting multiple classes (so-
called gradient effect zones), was not investigated further. 
 
Furthermore, it must be noted there was a lack of documented attempts of different 
methodologies to analyse hyper-temporal data. The field of hyper-temporal image 
analysis is relatively new. Consequently, the research here was in essence, 
exploratory, investigating different possible avenues. Hyper-temporal image analysis 
was chosen, as it appeared to be of fine enough temporal resolution to capture the 
fluctuations of vegetation in response to changing environmental conditions (such as 
flooding and salinity intrusion for example) on a local scale.  It progressed from the 
logic that temporal changes in gradients, would be expressed by the vegetation 
communities through their NDVI signature (see figure 8). These fluctuations were 
hoped to be discernable, due to the high temporal resolution of the hyper-temporal 
datasets used. 
 

 
Figure 8: Theoretical representation of how community  and temporal NDVI changes along gradients. 
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1.3. Rice crop calendars as “windows” into gradient activity 

Rice (Oryza sativa) was chosen as the “window” into the landscape, through which 
hyper-temporal NDVI image analysis would explore along the logic of gradients. It 
has a strongly fluctuating NDVI signature (figure 9) due to its’ unique feature of 
being grown on flooded soil (Xiao et al., 2002), and its growth cycle that effectively 
saturates NDVI. Wetland rice crops (such as those in the Mekong Delta studied 
here) have three distinctive, main periods in their temporal development (Le Toan et 
al., 1997). These are the sowing-transplanting period, the growing period, and the 
fallow period (figure 10). 
  
1: The sowing-transplanting period  

Fields are flooded to remove pests and weeds. They are subsequently drained 
and plants are either transplanted, or seeds sown directly into the wet soil. The 
NDVI signature is therefore low until the young plants grow.  

  
2: The growing period 

The sub-stages here can be recognised as a) vegetative, b) reproductive, and c) 
maturation. 
a) The vegetative stage, is characterised plants increasing in both height, and 

the number of leaves. NDVI increases with the higher biomass. After 50 to 
60 days, rice biomass covers almost any space between plants, saturating 
NDVI. 

b) The reproductive stage lasts about 25 to 30 days. The number of side shoots 
decreases slightly during this time. As New leaves are no longer produced, 
and no longer erectophile, ground-coverage is not severely impacted, 
maintaining the high NDVI value. 

c) The maturation stage is characterised by firstly, the development of seed 
heads, and secondly by a decrease in stem moisture content and in the 
number of leaves. This results in a gradual decrease in the NDVI level, 
which proceeds to fall abruptly when the crop is harvested.  

 
3: The fallow period. 

The fields can be either left bare and dry, or weed covered (with a relatively low 
NDVI). The field may be flooded early to prevent weed growth, or naturally to 
add fertile alluvium. Pre-sowing, the farmers purposely flood the fields, 
bringing them back to the rice sowing-transplanting period.  
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Figure 9: NDVI signature of the rice crop calendar, logically adapted from Le Toan et al., 1997.  

         
Figure 10: The Growth phase stages of rice , Oryza sativa (adapted from Le Toan et al., 1997). 

 
As Sklenár et al. (2008) noted, gradients can influence changes over time. They 
showed this by noting that temporal changes in cloud frequency were being reflected 
by changes in species composition. Zhang et al. (2004) charted the progression of 
vegetation “green-up” during the growing season of the Northern Hemisphere. 
Using MODIS multi-temporal imagery, they showed the temporal variability in 
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vegetation phenology were related to the predominant environmental conditions of 
temperature and precipitation.  
 
These changes can also be exhibited in  crop calendars, defined by De Bie (2000) as 
a “sequential summary of the dates/periods of essential operations including land 
preparation, planting, and harvesting, for a specific land use; it may apply to a 
specific plot, but is frequently generalised to characterise a specific area”. Irrigated 
rice crops (predominant in the study area) require farmers to flood their fields. It is 
in fact a vital part of the cropping cycle. These farmers depend on sufficient water 
being present and available to irrigate their crops, but not flood them out. A floods’ 
arrival, or the precipitation that leads to a floods’ arrival, can vary in time by a few 
weeks. Consequently, so too do the crop planting times, and hence the crop 
calendars, fundamentally due to temporal fluctuations in environmental conditions 
(gradients). 

 
Furthermore, It is well established that different varieties of rice are grown to suit 
different environmental conditions (evident in the current work of the Cuu Long 
Delta Rice Research Institute developing cultivars of rice to suit the conditional 
variety across the Mekong Delta). It was seen that rice, through its’ extent and 
specific NDVI signature, could act as a “window” into the Mekong Delta’s 
landscape, exhibiting the dominant changes in environmental conditions, and thus 
aid the gradient boundaries to be extracted.  
 

1.4. What is a “boundary”? 

 
In order to fully understand the logic of this research, the term “boundary” must be 
clarified. Kent et al. (1997) noted there are two extreme boundary situations - 
ecotone and ecocline (Van der Maarel, 1990). Kent further summarised that: 
- “An ecotone is a zone of relatively rapid change between two plant communities 
and a dynamic zone of interaction which as a consequence, is often unstable” 
- .An ecocline, in contrast, is defined as “a more gradual gradient of vegetation 
change between two plant communities, corresponding to a progressive spatial 
change in one or more underlying environmental or biotic factors”  
To illustrate this point, figures 11 and 12 show graphically and with ecological 
examples, the meaning of the two terms.  
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For this research, boundaries in gradients were assumed to occur at ecotones (such 
as that shown in figure 11). Features such as escarpments, large rivers, and man-
made barriers, all serve to disrupt the continuum of a gradient across a landscape. By 
identifying these features via vegetation, we can see where the gradients continuums 
are effectively broken. The 1km resolution of the SPOT-VEGETATION data was 
deemed to be of low enough resolution, not to necessarily identify these breaks, but 
to spatially map their effects. The NDVI values between pixels change, but it was 
not deemed important, at this stage, to identify the exact reason why. 
 
The boundaries or “natural breaks” sought for by the research logic, represent 
ecotones in the landscape. These form the boundaries which disrupt a gradients 
continuum across the landscape. Essentially the entire Mekong delta is viewed as 
one large transition zone, changing from any point in the image, to any other. This 
follows from “there are no homogenous environments in nature” (Begon et al., 
1990). The landscape is instead a continuum of ecoclines and ecotones (figure 13), 
of which ecotones are used here to conceptualise the essence of a gradient 
“boundary”. If an area bounded displays multiple unique classes, despite being 
within one bounded region, it can be viewed that conditions are changing within the 
region. Therefore logically, gradients are operating across the region, or “gradient 
effects zone”. 
 
With the asymmetry of time inherent in hyper-temporal datasets, a distinction could 
also be drawn between a relatively “permanent” boundary, and a relatively 
“impermanent” boundary. For the purposes of this research, a permanent boundary 
was defined as one which stays for a period longer than a month in a given area. 
Shown in figure 14, is an example of how gradients could have relatively permanent 
and impermanent boundaries, using the example of a flood gradient.  
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Figure 11: Graphical representation of species change across an ecotone (adapted from Kent et al., 
1997). Also included are images of "tepui" (or table top mountains) of Canaima National Park, in the 
Gran Sabana region of Bolivar State, Venezuela. The escarpments (b) represent an ecotone, dividing the 
higher ecosystem (a) from the lower ecosystem (c) and disrupting the gradient continuum between them.  
(Image sources: a- www.wikipedia.org, 2009a; b-www.wikipedia.org, 2009b; c- www.wikipedia.org, 
2009c) 

 
Figure 12: Graphical representation of species change across an ecocline (adapted from Kent et al., 
1997). Also included are images of sand dune systems in North-western Europe. The transition from a - 
sandy beach with colonising species to c – a progression of grassland to shrubland shown in the 
background, cannot be delineated clearly. Where does the transition occur looking at image b?  
 (Image sources: a- www.kscience.co.uk, 2009a; b- cache.daylife.com, 2009; c-www.kscience.co.uk , 
2009b) 
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Figure 13: Ecoclines and ecotones across a landscape. A represents areas considered as ecoclines where 
species change slowly, whilst B represents zones of rapid species transition, or ecotones. (adapted from 
Kent et al., 1997). 

 
 

 
Figure 14: The different between “permanent and “impermanent” gradient boundaries, based on the logic 

that “permanent” boundaries repeat successively over periods of time. 
 
During a non-flood season, the river has a constant boundary (boundary A in figure 
14) repeatedly and successively imaged at times T0 to T4. However, upon the 
progression of flooding, the water-vegetation boundary shifts across the boundary, 
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over vegetation adapted to floods to varying degrees. The boundary is captured in 
non-successive images, as a temporally shifting boundary, or impermanent boundary 
(boundaries C, D, and E in figure 14). The vegetation at point B, is totally unadapted 
to flooding, and thus exhibits a different phenology to that vegetation which is 
adapted. The contrast between the two thus forms another permanent boundary, 
repeatable successively during the flood event around the time for flood maximum, 
and during the recover phase after the flood. This is then considered as another 
permanent edge. 
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2. Research approach 

2.1. Problem statement to hypotheses 

 

2.1.1. Problem statement 

Until recently, classification methods in remote sensing have been based on images 
taken at a single time, or at most a few available with multi-temporal images. As a 
result, these classifications’ ability to capture, and summarise the temporal 
variability across the Earths’ surface (and especially concerning the subject of 
gradients) is severely limited.  
 
We are now in the “explosion” of hyper-temporal datasets becoming available that 
Piowar and Le Drew (1995) envisaged. Within the last ten years in particular, Earth 
observation systems such as SPOT-Vegetation, MODIS, MERIS, and AWIFS have 
been added to the list of sensors with datasets of high enough temporal resolution, 
and long enough datasets, to be considered hyper-temporal. 
 
The same concern expressed by Piowar and Le Drew (1995) is also present. Namely, 
that there is a distinct lack of methods currently available, to interpret and exploit 
this new data resource to its’ full potential. Concerning this research for example, 
there is a lack of methods available to group hyper-temporal profile classes together, 
accepting that classes, though fundamentally different, are connected along gradients 
acting over the landscape within, and between them.  
 
The aim of this research was to explore methods to extract boundaries, or natural 
breaks, where the effects of a strongly acting gradient logically cease to influence 
the vegetation, and a new gradient takes over. In grouping the classes associated 
with that gradient (whatever it may be) together, the research aimed to produce a 
tool which exploits the newly available resource of hyper-temporal imagery.  
 
By identifying the boundaries of gradients, the research hoped to demarcate zones, 
over which one can assume that a strongly impacting gradient changes markedly. 
The approach was to produce a method that extracts required information from the 
satellite data alone, without identifying which specific gradients are causing the 
spatial variation. Thus it could allow gradient analysts to exploit the resource of 
cheaply available remote sensing products, to logically stratify their study areas as 
input for their fieldwork, saving them time, effort, and resources. 
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2.1.2. Research objective 

- to explore possible methods which could be capable of grouping together map 
units which have equal status to NDVI classes. These NDVI classes would be 
obtained from ISODATA classification of data derived from the same hyper-
temporal stack of NDVI images. Meanwhile the grouping methods would follow the 
logic that classes grouped together are affected by the same, strongly acting 
landscape-level gradient(s). 

 

2.1.3. Specific objectives 

To ascertain whether there is logical variability in rice crop calendars across the 
Mekong Delta, ascertaining whether the fundamental assumption of this thesis is 
valid, i.e. that there are, in fact, gradient attributable variations in rice crop 
calendars. 
 
To explore various methods, which may be capable of recognizing boundaries, or 
“natural breaks”, indicative of an abrupt change in gradient effect. 
. 
To compare and contrast the various promising methods. This is tasked to 
investigate which one is the “best” at grouping detailed mapped NDVI classes 
together as they appear to be the result of the same landscape-level gradient(s). 
 

2.1.4. Research questions 

1 - Assuming the ISODATA classification results are NDVI classes that are 
fundamentally different, can these differences be seen, expressed in rice crop 
calendar data collected in the field? 
 
2 - Could shifts in rice crop calendars be attributable to landscape heterogeneity in 
environmental conditions across the Mekong Delta? 
 
3 - Are there methods capable of recognizing and delineating boundaries, or “natural 
breaks” in a gradients’ effects upon the landscape, using hyper-temporal satellite 
data alone? 
 
4 - Of any promising method(s), how do they compare at recognising boundaries or 
natural breaks, thus delineating the borders of regions within which crop calendar 
heterogeneity occur, as caused by the same landscape level gradient. 
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2.2. Study Approach 

 
The study consisted of three primary steps (figure 15). The first step was the 
production of a landuse map and legend showing crop calendars for different NDVI 
classes, across the Mekong Delta. This was produced using a combination of 
collected field data on rice crop calendars, and hyper-temporal image classification.  
 
The second steps was more exploratory, involving trying out different methods of 
extracting natural breaks or gradient boundaries from the hyper-temporal NDVI 
image data. It aimed to produce maps showing NDVI classes, identified in step 1, 
grouped by the natural breaks or gradient boundaries identified by the boundary 
extraction methods. Both steps 1 and 2 utilised the same hyper-temporal NDVI data 
of the Mekong Delta. 
 
Lastly, step three involved comparing the landuse map and legend, and the natural 
breaks and groupings maps from the various promising methodologies. This was 
done to see whether or not boundaries coincided, and whether areas enclosed by the 
“natural breaks” were logical entities having a gradient that impacted on the 
respective series of rice crop calendars. 
 
The final product of the research was to have been a discussion on the various 
methodologies which were seen to hold promise. The various methodologies 
strengths and weaknesses were to be clarified, and a recommendation given on 
whether or not (and if so, how) to proceed in this line of research. 
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Figure 15: Summary of the study approach, showing the three primary steps taken, the inputs, and the 
outputs of the research. 
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3. Methodology 

3.1. Method overview 

As outlined in the study approach, the research’s progress can be summarised into 3 
main steps (see figures 15 and 16): 
Step 1 - the production phase, assessing rice crop variability 
Step 2 - the exploratory phase, exploring methods to extract boundaries 
Step 3 - the assessment phase, appraising the products 
 
The production phase involved the construction of a landuse map and legend. This 
was done using NDVI classes derived by ISODATA classification of a 10 year 
(1998-2008) stack of hyper-temporal NDVI imagery. These classes were then 
characterised with field data on crop calendars and rice varieties collected in the 
Mekong Delta, and flooding information derived from the hyper-temporal 10 year 
stack. 
 
The exploratory phase consisted of using a 3 year (2004-2007) subset of the original 
10 year stack of images, to explore methods capable of extracting logical gradient 
boundaries, or “natural breaks” in the gradient continuum. Principal Components 
Analysis (Chavez & Kwarteng, 1989) was followed by extraction of transition 
features, and subsequent boundary delineation. A new, innovative, and logical use of 
edge detection was also attempted. Methods were constantly reappraised, with the 
final products (maps of boundaries, and the NDVI classes they grouped) coming 
from the more promising methods. 
 
The final phase of the research (the assessment phase) involved comparing the 
product of the exploratory phase products (satellite-down products) both to each 
other, and with the production phase product (a field level-up product). Feature 
recognition and extraction was ascertained, whilst common boundary similarities 
were qualitatively assessed. Furthermore, qualitative logical analyses of class 
heterogeneity within bounded regions were carried out. 
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3.2. Study area 

The study area was the Mekong Delta, situated in the southern part of Vietnam 
(Long: 8o60’N to 10oN, Lat: 104o50’E to 106o80’E), shown in figure 17. It is a low-
lying plain with an area of approximately 40,000km2, crisscrossed by a complex 
system of canals and rivers (Nguyen, 2007). The region experiences a savannah 
climate, with well-defined wet and dry seasons, associated with the annual monsoon 
rains (Sakamoto et al., 2006). Average air temperatures range between 18oC to 30oC 
(Sakamoto et al., 2006). With heavy wet season precipitation, and a low-lying 
topography, the region experiences extensive flooding (Sakamoto et al., 2006).  
 
Distributary channels of the Mekong overflow their banks in the northern delta every 
year (figure 20), inundating more than a third of the delta (Hori, 1996). 
Approximately 1 billion cubic metres of sediment is deposited onto the delta 
annually, extending it up to 80 metres into the sea per year (Nguyen, 2007), and 
fertilising its’ soils.  However, due to its’ low-lying nature, and newly created soils, 
saline intrusion, is a notable environmental feature of the landscape, especially near 
the periphery (see figure 18). Furthermore soils, despite being alluvial in origin, vary 
in composition and chemistry across the delta (figure 19).  
 
The delta is one of Vietnams’ two most important rice granaries, alongside the Red 
River Delta in the north (Nguyen, 2007). The main crop in the delta is rice, grown in 
the irrigated lowlands (IRRI, 1993), occupying approximately 10,000 km2 of the 
delta (Nguyen, 2007), and making up about 70% of the regions’ agriculture (Nguyen 
et al., 2004). A general idea of the landuse evident in the region can be gained from 
figure 5, (obtained from the Can Tho University). 

 
The study area was chosen for a number of reasons. Firstly, as it is low-lying, it was 
hoped that the elevational gradients most commonly studied will not be as influential 
on the vegetation phenology as in other studies (e.g. Peet, 1978). Spatially the region 
is small enough to be considered relatively homogenous climatically for the 
purposes of this research. With these two frequently dominant gradients reduced, it 
was hoped that lower level gradients might be expressed in the data. Thirdly the area 
is technically tropical in nature contrasting sharply with the temperate climates 
studied by Zhang et al. (2003, 2004). Secondly, the tropical nature of the area, with 
its’ high potential for cloud cover, allowed the research to see whether the any 
methodologies could be affected by cloud cover. 
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Figure 17: The Mekong River Delta, showing the administrative areas. Also included are the major river 
channels the Mekong, and the Bassac rivers. Inset is the Delta’s position in Vietnam. (adapted from Berg, 
2001, and Sakamoto et al., 2006). 

 

 
Figure 18: Saline intrusion conditions in the Mekong Delta. (from www.cantho.cool.ne.jp , 2009a). 
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Figure 19: Soil map of the Mekong Delta (from www.cantho.cool.ne.jp, 2009b) 
 

 

 
Figure 20: Extent of annual flooding in the Mekong Rivers’ lower reaches.  
( from www.cantho.cool.ne.jp, 2009c) 
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3.3. Data used 

The hyper-temporal data used were SPOT-VEGETATION 10-day composite NDVI 
images at 1km2 resolution. Images were dated from the 1st April, 1998 to the 21st 
January, 2008. These were obtained from www.VGT.vito.be, as part of the SPOT 
S10 product.  
 
The S10 product is derived from the Système pour l’Observation de la Terre (SPOT) 
program, started by the French Space Agency (Centre National d’Etudes Spatiales, 
CNES) in which Sweden and Belgium now participate. (Cracknell & Hayes, 2007). 
The S10 product is derived from data gathered by the VEGETATION instrument 
aboard SPOT-4 (launched in 1998) and SPOT-5 (launched in 2002) from 1998 
onwards. This is a wide-swath (2200km), low resolution (about 1km) scanner with 4 
spectral bands, designed for large scale monitoring of the Earths’ vegetation 
(Cracknell & Hayes, 2007)  
 
This product (described in detail in Maisongrande et al., 2004) is published as de-
clouded and geo-referenced images. Quality flags were obtained with the S10 
product images which indicated the viability of each pixel. Only pixels rated “good” 
or higher radiometric quality from bands 2 (Red: 0.61-0.68µm) and 3 (NIR: 0.78-
0.89µm), whilst also not having “shadow”, “cloud”, “uncertain”, but “velar” as 
general quality were retained. All other rejected pixels were re-labelled as 
“missing”.  
 
The red and NIR bands had been used to calculate the NDVI index for each pixel, 
using the formula in section 1.2. Though the NDVI ration can range from -1 to 1, 
these NDVI values were converted to unsigned-8-bit integer (with -1 equal to  a 
Digital Number (DN) value of 0, and 1 equal to 255) using the formula: 
 

   DN = NDVI + 0.1 
    0.004 
 

The 354 images were then stacked. A subset of the images from the 1st January, 
2004 to the 21st January, 2008 was extracted to be used in the exploratory phase. 
 
The NDVI product was chosen because it represents a repeated and constant, single 
measure. This incorporates all the fluctuations in a single aspect of vegetation 
phenology, consistently over 10 years. Furthermore, with 10 day composites from 
near daily repeat times, the data can be considered hyper-temporal. Whilst there are 
alternative products from the MODIS system (of both NDVI and EVI, the Enhanced 
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Vegetation Index) that could be considered hyper-temporal, and freely available, the 
SPOT 1km product was assumed to be of an adequate spatial resolution to capture 
landscape-level gradients. Furthermore with the extensive hyper-temporal dataset, it 
was seen as an adequate starting point of investigation. 
 
Other data used included the landuse map 2002 of the Mekong delta (see appendix 
A) and the land use map 2005 of the Mekong Delta (Figure 5) obtained during 
fieldwork from staff at Can Tho University. These were used in both the 
determination of rice classes, and in the construction of the land-use map and 
legend.  

3.4. Assessing rice crop calendar variability 

3.4.1. ISODATA classification 

The 10 year stack of 10-day composite SPOT-VEGETATION NDVI images was 
classified by unsupervised classification, using the ISODATA clustering algorithm 
of Erdas-Imagine software (for more information see Leica Geosystems, 2005). The 
unsupervised classification is simply a process, where a predefined number of 
classes is obtained with no additional data, or expert guidance (De Bie et al., 2008), 
from multi-temporal imagery. The classification was run to obtain from 10 to 100 
classes with 50 iterations each, and the convergence threshold set to 1.0. 
 
Each iteration performs an entire classification, with the ISODATA algorithm 
minimising the Euclidian distances to form clusters (Leica Geosystems, 2005; 
Swain, 1973). The separability of each number of classes was assessed using the 
Erdas signature evaluator (Leica Geosystems, 2005), measuring the divergence of 
classes from each other, within a given classification. Average (of all classes) and 
minimum (between the most similar classes) separability values of divergence were 
plotted (figure 21), and the optimal number of classes was chosen by visual 
inspection.  
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Figure 21: Selection of the optimal number of classes to represent landscape classification in the 10 year 
SPOT NDVI stack. Average separability (measured by divergence) is graphed in red, whilst, minimum 
separability is graphed in blue. An orange arrow indicates the peak in average, and the coinciding peak in 
minimum that indicates that 76 classes is the optimal choice. 

 
 
Where a peak in the average separability, and/or a peak in the minimum separability 
occurs, indicates an optimal number of classes. The clear presence of a peak in 
separability classes at 76 classes indicated the optimal choice. The landuse map 
2002 (in appendix A), was subsequently used, to identify NDVI classes where rice 
was known to be the dominant landuse. Out of the mapped 76 classes, 26 classes 
were selected to design the sampling scheme for the field work, and for crop 
calendar characterisation. 
 
 

3.4.2. Field data collection 

Field collection took place between the 21st September, 2008, and the 19th October, 
2008. During this time, each of the 26 classes were visited. They were firstly 
confirmed as being rice producing areas, and secondly sampled. 

 
A clustered randomised representative sampling scheme was applied, with the 
sampling unit comprising a single rice field. Certain selection criteria applied before 
a farmer was interviewed. These were: 
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1 – the field had to be mapped using a hand held GPS. 
2 – the farmer had to know the dates of sowing, and harvesting his/her rice crops for 
the period in question. 
3 – the farmer had to know the varieties of rice he/she grew in the field for each 
crop. 
 
Each farmer was interviewed, with crop calendar (sowing and harvesting) dates and 
crop rice variety details being collected for all crops grown over the period of 
August, 2007, to October 2008. Dates were collected in the local lunar calendar, and 
then subsequently converted to the Western Julian calendar. Whilst the interviews 
were been conducted, the field boundary was mapped using ArcPad running on an 
Ipaq. Farmers whose fields were located close to each other tended to sow and 
harvest within a week of each other. This was due to their reliance on contractors 
and machine hire for ploughing machinery. These machine operators operate around 
the region, so farmers in a locality tended to coordinate when they hired the 
machinists’ services. 
 
Overall, all 26 classes were confirmed as rice, and had their crop calendars 
characterised. Up to seven samples (farmer + field) were taken for each class, with 
their overall distribution throughout the delta seen in figure 22. In total, 110 samples 
were collected, though the number of samples did vary between classes, depending 
on local conditions, and difficulties encountered.  
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Figure 22: Distribution of the sample clusters over sampled rice area in the Mekong delta. Clusters can 
contain up to 3 samples, all taken between the 21st September, 2008, and the 19th October, 2008. Inset is 
an example of one cluster, showing the field distributions within that cluster. 
 

3.4.3. Constructing the landuse map and legend 

The final landuse map and legend (Ali, 2009) was intended to contain four primary 
points of information: 
1 - the distribution of rice classes 
2 - summaries of the rice crop calendars per class, and the corresponding flooding      
      regime. 
3 - details of the predominant rice crop varieties used for each crop in each class  
4 -  a hyper-temporal NDVI profile representing the NDVI flux over a number of 
       years within the class.  
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The distribution map was compiled from three main sources of data (figure 23). The 
26 rice class distribution map (henceforth referred to as “rice map 2009”) produced 
by the ISODATA classification formed the core component of the map. From the 
Landuse map 2005, areas officially known to be rice, were extracted to indicate 
unsurveyed rice areas. Roadside housing and garden crops, noted during fieldwork 
to be a major landuse, along the Mekong Deltas road networks, were also extracted 
from the Landuse map 2005. This served to screen out the detailed small regions that 
the relatively coarse (1km pixel) NDVI classification could not pick up. 
 
Shapefiles on the Bassac and Mekong river channels, urban centres, Vietnamese, 
Mekong and Cambodian administrative areas, were then incorporated to provide 
logical spatial frames of reference to the map. All the data was projected to UTM 
zone 48N, using the WGS 1984 datum.  
 
This landuse map required a meaningful legend, vital for qualitatively interpreting 
the results of any promising, exploratory phase method. The legend was compiled 
from different sources of data (figure 24). Shown in figure 25 is how the legend 
represented the ranges of sowing and harvesting dates reported by farmers by class. 
The reported variety of rice grown for each crop, in each class, was the dominant 
variety grown for that crop period. Meanwhile, supplementary data on problems 
encountered by farmers concerning environmental conditions were also incorporated 
as comments. 

 
As flooding is considered a vital part of the rice crop cycle, a flooding component 
was included. The timing of flooding in each class was determined using the 10 
year, SPOT 10-day composite NDVI stack. This was then averaged to create a mean 
stack of 36 NDVI images spanning a single year, representing the NDVI values of 
10 years. The idea was founded on the assumption that low NDVI values indicate 
flooding (because surface water absorbs light in the NIR spectrum). The assumption 
has been used in past studies. For example, De Bie et al. (2008) used low NDVI 
values to look at flooding in the Limpopo valley, Mozambique. Xiao et al. (2002) 
noted that fluctuations in NDVI could be used in flood monitoring.  
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Building upon this work, four dates were collected to characterise the flood regime 
(figure 26).  These were: 
1 -  the date of flood onset (when NDVI values indicative of flooding began to 
       appear in temporal analysis of the rice class in question) 
2 -  the date of flood peak (when NDVI values indicative of flooding had the  
       maximum extent within the class) 
3 -  the onset of flood recession (when NDVI values indicative of vegetation began  
       to reappear) 
4 -  the date of total flood dissipation (when NDVI values representing surface water  
       ceased to recede from the class). 
From these four dates, a flood regime was derived (figure 26). Flooding was also 
classified as partial (where flooding did not entirely cover the class in question) or 
extensive (where flooding completely covered the class in question). 
 

 
Figure 25: Summarising rice class crop calendars, and representing the variability in the sampled data in 
the legend product. 

 
Figure 26: Summarising rice class flood regimes, and representing the variability in the sampled data in 
the legend product.  

 
Lastly, the hyper-temporal profiles for 3 years (2004 to 2007), for each class were 
derived from the signature files produced during the ISODATA classification. The 
flood calendars, crop calendars, predominant rice crop varieties, supplementary 
information on environmental conditions, and hyper-temporal profiles, were finally 
collated, to form a meaningful, hierarchical, and informative legend, designed to 
relate to NDVI.  
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3.5. Methodologies for extracting boundaries 

 

3.5.1. Principal Components Analysis and region growing 

The 3 year stack (2004-2007), unmasked, of hyper-temporal NDVI images 
contained 111 images, with each pixels having 111 varying values. Piowar and Le 
Drew (1995) had noted this variability inherent in hyper-temporal datasets, and had 
envisioned Principal Components Analysis (Chavez &Kwarteng, 1989) as being a 
possible approach to analyse hyper-temporal imagery. This approach was seen as an 
adequate starting point for the exploratory phase.  
 
Principal Components Analysis (PCA) essentially compresses bulk of the variability 
in 111 images into three to four images. It creates a new image band (a principal 
component) through undertaking an linear transformation of a set of image bands. 
The components are uncorrelated and are ordered in the amount of variance 
explained in the data (Eastman & Fulk, 1993). It can be used to compress the 
information content of n number of bands (images) into fewer than n number of 
principal component images (Richards & Jia, 1999). Though there are two main 
types (Standardised and Unstandardised), previous studies have shown that 
Standardised PCA (Singh & Harrison, 1985) appears to be more effective when used 
to analyse multi-temporal datasets (Eastman, 1992; Fung & Le Drew, 1987). 
Standardised PCA was also chosen as it gives each time image equal weighting. The 
product of the PCA would then be 3 to 4 images summarising the bulk of the 
variability in the image stack.  
 
The 3 year unmasked stack was entered into a PCA in Erdas (see Leica Geosystems, 
2005, for details on how to do so). Only the first four components were extracted, 
with their accompanying eigenvalues. However, here it must be noted that Eastman 
and Fulk (1993) made the point that there are no clear guidelines on when to stop the 
analysis, despite the availability of eigenvalues.  
 
Following PCA, the individual components were overlaid by the 76 class polygon 
identified by ISODATA classification. (figure 27). For each polygon, zonal statistics 
in ArcGIS were used to calculate the mean value of that particular component within 
a polygon (Ai and Aii). The resulting homogenised image (B) was then reclassed 
into 2 classes, with the assumption that the midpoint of the component (shown in 
Table 1 represented the transition point within the image (C in figure 27). Whilst for 
the 1st component, the mid-value was chosen from the image, the subsequent three 
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components were chosen as 0, the value representing the cross-over between 
positive variability from the component, and negative. Converting these raster 
classes into polygons then yielded the boundaries as determined by PCA. 
 

 
Figure 27: Deriving boundaries from principal components. Shown is the process by which boundaries, 
representing transition zones in principal components. The original 1st component (A), was overlaid by 76 
classes with each polygon being homogenised (Ai, Aii and B). Reclassification produced C, and finally 
boundaries over the original principal component can be seen in D.  
 
Table 1: Midpoint values of the principal  
components used to determine reclassification 

 
 
 
 
 
 

 
As Saab and Haythornthwaite (1990) noted, time is asymmetrical. PCA takes into 
account the simple fact that the pixel values vary. However it does not take into 
account when pixel values vary. This was related to the concept of boundaries, in 
particular the permanency of a boundary. To encompass this, a new use of edge 
detection was devised, which could take into account both the asymmetry of time, 
and the relative permanence or impermanence of gradient boundaries. 

Component Midpoint value 
1st 1022.54 

2nd 0 

3rd 0 

4th 0 
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3.5.2. Edge Detection 

This method developed from the assumption that gradient boundaries, or “natural 
breaks” in gradient continuums, would logically cause such a change in vegetation 
phenology, that there would be a rapid shift spatially in NDVI. Leica Geosystems 
(2005) emphasizes that “there are no perfect edges in raster data, hence the need for 
edge detection algorithms”. These Edge Detection (ED) algorithms can emphasize 
these rapid changes. For each NDVI image, there was theoretically a multitude of 
NDVI edges present, ranging from low to high. Further more, some of these edges 
were repetitive, others successively repetitive, and others still only temporary.  
 
These edges (of varying characteristics), were thus broken down into two groups by 
this methodology- those edges that the research considered to be representative of 
gradient boundaries due to their permanence and relative strength, and those that 
were not considered to be representative, due to their weakness and impermanence. 
To factor in this logic, a series of edge cleaning steps were incorporated into the 
methodology (see figure 28 for method outline, or appendix B for method process 
details). Edges remaining at the end of the process were deemed representative of 
gradient boundaries, and thus representing the borders of gradient effects regions. 
 
To take into account the permanence or impermanence of boundaries, the 
methodology incorporated a temporal cleaning process, whilst weak edges were 
removed following histogram analyses. Edges which were weak overall, and 
occurred infrequently were also removed. 
 
The 3x3 pixel edge detection method began with the running of all 111 images in the 
3 year (2004-2007) SPOT-VEGETATION hyper-temporal stack through the Erdas 
Imagine edge detection algorithm. Two 3x3 pixel ED models were used (see 
appendix C for model details in Erdas) – the unweighted prewitt ED model, and the 
weighted sobel ED model. Sobel was abandoned during the testing process as 
software issues became evident (see appendix D for details), and began excessively 
disrupting the process. All edge detected images were shrunk, removing a 2 pixel 
periphery from every image, account for by image boundary effects. Ocean pixels 
were also masked out. 
 
A histogram analysis was then done on each edge detected and masked image. All 
edges below the median value for each image were reclassified (in ArcGIS 
software), as non-edges (boundaries), and given the value of zero. The principle here 
was that a value indicating non-edges must be sought from the data itself, hence the 
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need for histogram analysis. All reclassified images were then converted into binary 
format (1/0) with a value of 1 representing a potential edge (boundary) and 0 
representing a non-edge (boundary). This was done using the binary operation in 
Erdas Imagine (Leica Geosystems, 2005). 
 
The binary images were then entered into the temporal cleaning phase. Here, each 
image was multiplied by the image immediately preceding it in time, and the image 
immediately following it in time (figure 29). For an edge to be kept, it had to be 
present in both the time image immediately preceding it, and the time image 
immediately following it (see figure 30). All the multiplication operations were done 
using the Erdas Imagine operations function (Leica Geosystems, 2005). 
 
The 109 remaining, temporally cleaned, edge images were then run through the 
“clump” and “sieve” functions of Erdas Imagine (Leica Geosystems, 2005), to 
reduce the amount of noise in the images. Here, “noise” meant clusters of pixels no 
larger than 6 pixels in size. Effectively, this meant that the research assumed that a 
boundary would not occur only at a single spot, but along a series of spots, much 
like a barrier. Small clusters of spots therefore were not deemed to represent gradient 
boundaries, but more inconveniences at that time, around which the gradient 
continuum existed. Following from this logic, all pixel clumps of less than 6 pixels 
in size were removed (figure 31). 
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Figure 28: Overall method of extracting gradient boundaries using the edge-detection method. 
 
 



40 

 
Figure 29: Temporal cleaning of edge detected NDVI image from the 11th Jan., 2004. The temporally 
cleaned product shown here, also incorporated those edges which had been removed. 
 

 

 
Figure 30: Temporal cleaning of a single pixel. 1 indicates edge present, 0 indicates no edge present. 
Edge values pre cleaning, are modified according to whether they are present three successive times in the 
hyper-temporal stack. 
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Figure 31: Noise reduction of the temporally cleaned images. Image A is the temporally cleaned image 
of the 11th January, 2004. Following noise removal, small clusters of pixels (seen as red in image B) were 
removed, produced the temporally cleaned and considered noiseless image C. Inset in B is the shown 
area’s  location in the delta. 

 
The 109 (11th January, 2004 – 11th January, 2007) noise reduced, and temporally 
cleaned edge images (in binary format) were each multiplied by its’ corresponding 
edge detected image, using the multiply operation in Erdas Imagine. This produced 
109 images of edges of varying strengths which has been temporally cleaned and 
noise reduced. The 109 images were then summed, and the result divided by 109, to 
get a summary of the average strength of permanent edges in time, over the 3 year 
period (see figure 32). The summary contained information not only on the average 
strength of an edge, but resulting from the division by 109, it also introduced a 
measure of the edges’ permanence. 
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Figure 32: Average strength of permanent edges in the NDVI hyper-temporal stack. 
 
Further edge cleaning was needed, though of a different nature. Edges that were both 
strong, and persistent, were recognised as representing “true” boundaries. Likewise, 
edges that were infrequent, though strong when they existed, were also recognised as 
“true” boundaries. If an edge was of a middle strength nature, though did persist 
throughout the time period, it too was recognised as a “true” edge. However, edges 
that were consistently weak, and infrequent, were considered as non-boundaries, and 
had to be removed (table 2). 
 
          Table 2: Is an edge a “true” boundary or not? Logical criteria for evaluating 
           the temporally cleaned and noiseless edges. 

Edge strength Edge persistence Overall average value “true” edge? 
High Persistent High Yes 

High Infrequent Medium Yes 

Low Persistent Medium Yes 

low Infrequent Low No 
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To achieve this selection, a second histogram analysis of the edge images was 
performed in Erdas Imagine. However, as the histogram was extensively skewed 
(figure 33a), a log derivative of the average image was made which had a more 
useful histogram (figure 33b). Here, weak edges were deemed to be those with 
values below that of the mode in the log image. Any pixels with such values were 
reclassed as non-edges. Any edges remaining were subsequently converted to binary 
(with 1 indicating a “true” edge, and 0 indicating no edge). These “true” edges were 
then assumed to represent natural breaks in gradient continuum, thereby delineating 
the boundaries of gradient effects zones. The end product was a map of gradient 
boundaries extracted using a 3x3 pixel edge detection kernel. 

 
 
 
 
 
 
 
 
 
 
Figure 33: 2nd histogram 
analysis, finding the “true 
edge”. Histograms of the 
summarised average edges 
image shown in figure 33 
(a), and the log of 
summarised averaged 
edges image (b).  

 
Following the production of boundary maps by using a 3x3 pixel edge detection 
method, it was noted that larger template arrays provide greater noise immunity, 
despite being computationally more demanding (Leica Geosystems, 2005). With this 
in mind, it was to edge detect using a 5x5 pixel window, to see if it would produce 
more gradient representative boundary images. 
 
Two problems were encountered here. Firstly, the kernel had to be defined. To 
achieve this, an adaptation of the unweighted 3x3 prewitt window was used (figure 
34). Secondly, with a 5x5 pixel window, edge detection had to occur in four 
directions, and not two as is all that is possible using a 3x3 window. To achieve this, 
a 3x3 prewitt model in Erdas (shown in appendix C ) was adapted to incorporate 
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four 5x5 windows moving in the directions North, East, Southeast, and Southwest 
(figure 34). These directions were chosen as they do not cancel each other out.  
 

 
Figure 34: Directional and kernel differences between the 3x3 edge detection prewitt model, and the 5x5 
model adapted from the prewitt model in Erdas Imagine. Kernels show the weightings of surrounding 
values in determining the ultimate centre value. 

 
Meanwhile, the distance function employed by the 3x3 prewitt model in Erdas, 
taking the form of : 
 

22 )()( edgeEastedgeNorthedge +=  

 
was adapted to take into account of four variables, and not just two. This gave it the 
form of:  
 

2222 )()()()( astedgeSoutheestedgeSouthwedgeEastedgeNorthedge +++=
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Following the production of 5x5 kernel edge detected images by the improvised 
model, the same process was employed as for the 3x3 model. There was an 
alteration to the method concerning noise reduction. The 5x5 window tended to 
produce wider edges. Hence, with noise reduction, a decision was made to remove 
larger groups of pixels. Pixels groups of less than 10 pixels were therefore removed 
as noise. The end product was a map of gradient boundaries extracted using a 5x5 
pixel ED kernel. 

3.6. Product Comparison 

Following the production of a landuse map and legend, boundaries for each of the 
four principal components, and edge detected boundaries from both the 3x3 kernel 
ED, and the 5x5 kernel ED, the products were overlaid and visually inspected. 
Comparisons and contrasts were made between the different boundaries produced, 
and how they might be interpreted in looking at the landuse map and legend. 
 
The resulting permanent boundary maps from the edge detection methodologies 
were combined with the 26 rice 2009, and the 76 classes, produced by the 
ISODATA classification. This was done to evaluate whether or not the region 
successfully grouped ISODATA classes. The 76 classes were also combined with 
the collated principal components boundaries. 
 
The various boundaries were finally compared to two basic RGB composites of the 
principal components. An RGB:1st, 2nd, and 3rd component, and an RGB 2nd, 3rd, and 
4th component were made for this purpose. These were combined with the 76 
ISODATA classes, the 3x3 and 5x5 edge detected boundaries, and the boundaries 
produced by principal components.  
 
In all combinations, coincident boundaries were noted, as were those aspects of 
boundaries which did not coincide. Features of interest, such as the spatial 
characteristics of classes in areas where boundaries from either edge detection or 
principal components were present, were also noted. 
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4. Results 

4.1. Assessing rice crop calendar variability 

4.1.1. ISODATA classification 

Figure 35 shows the distribution of the 76 land classes (the 76th was the class 
representing open-ocean and has been removed) identified using the ISODATA 
clustering algorithm. From the separability analysis (figure 21 in chapter 3), it was 
determined that 76 classes best classified the landscape into distinct classes. From 
the 76 classes, 26 classes, officially known in 2002 to contain rice, were selected to 
sample during field data collection. This yielded the rice distribution map shown in 
figure 36. 

 

Figure 35: Distribution of 76 classes identified by ISODATA classification of the 10 year SPOT NDVI 
hyper-temporal image stack.  
 



47 

 
Figure 36: Classes identified and sampled as rice, and extracted from the 76 class distributions. Classes 
were identified as containing rice by comparison with the 2002 landuse map, and sampled during field 
data collection. 
 

4.1.2. Landuse map and legend 

Shown in figure 37 and figure 38, are the landuse map and legend derived from a 
combination of ISODATA classification products, and data collected in the field 
(courtesy of Ali, 2009). The map (figure 37) shows the distribution of sampled rice 
classes (identified during the ISODATA classification process) across the Mekong 
Delta. The map also shows areas of rice that were left unsurveyed during fieldwork. 
Roadside housing and homestead gardens have been removed from the classes to 
highlight purer rice areas. Meanwhile, the Mekong and Bassac river channels are 
included to provide a means of reference. 
 
Included in the map is a summary mini-legend, highlighting the variety of flooding 
conditions experienced by each class grouping, and the cropping systems in 
evidence across the delta (“2x Rice”, and “3x Rice”). Classes were grouped 
hierarchically on the basis of the flooding they experience. These hierarchical 
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groupings are represented by a letter in the mini-legend, which links to the more 
extensive, and detailed legend shown in figure 38.  
 
The primary legend (figure 38) displays information relating to the variability in 
environmental conditions across the delta. Individual classes are coloured to match 
with the map (figure 37). Furthermore, the number of samples used to characterise 
each class during fieldwork is also shown.  
 
Information on environmental conditions deemed noticeable to farmers is available 
in the form of comments on salinity and alkalinity with the associated classes. Note 
that some classes (e.g. classes 42, 29, and 33) experience problems with acidity 
when trying to grow rice. Meanwhile, overcoming salinity conditions is required in 
classes 61, 46, and 66.   
 
The legend also shows information concerning the temporal characteristics of the 
landscape. For example, crop calendars appear to demonstrate a high variability. For 
example, variation in harvesting dates can be seen between classes 28 and 41. Here, 
the farmers only started harvesting the 2nd crop in class 41, following the total 
harvesting of the crop in class 28. Meanwhile, class 42 is in the middle of its’ 2nd 
crop cycle. Likewise, the 3rd crop of class 51 is already sown, whilst the 2nd crop in 
class 28 is not yet harvested. This indicates a degree of temporal variability in crop 
calendars. 
 
This temporal variability can also be seen in the flood regimes. For example, 
flooding onset dates vary by up to 5 weeks between classes 32 and 29. Furthermore, 
the period of inundation experienced by various classes differs considerably. Class 
32 experiences flooding for approximately 16 weeks. In contrast, class 42 is 
inundated for only 7 weeks. Stark contrasts can be seen between those areas where 
flooding is controlled (e.g. class 54) and those which experience uncontrolled 
flooding (e.g. class 53). 
 
Concerning flooding, the hierarchical grouping reveals a variety of flooding 
conditions experienced by rice crops across the delta. Classes can be flooded, or 
remain outside any flood influence. Within flooded classes, the flooding can be 
controlled or uncontrolled, and further still, the flooding can be partial, or extensive.  
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Figure 37: The landuse map, and mini-legend, derived to appraise variability in rice and environmental 
conditions across the Mekong Delta area.  
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Figure 38: Detailed legend complementing the landuse map. Rice class groupings are linked to the 
landuse maps’ mini-legend by way of alphabetic letters on the left-most margin. 
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Also depicted in the legend, is the multitude of rice varieties (with their specific 
adaptations to variations in environmental conditions) grown across the delta. For 
example, in class 54, variety CK-92 is grown, whilst other classes grow IR-50404 
(class 63, 22 and 41). Still others grow Jasmine-85 (classes 31 and 28), or Ham Trau 
(classes 60, 42).  
 
Varieties also change within classes. For example, in class 53, Jasmine-85 is grown 
as the 1st crop, is replaced by OM-1940 for the second crop, and reverts back to 
Jasmine-85 for the 3rd crop. Likewise, in class 66, OM-2514 is grown as the first 
crop, shifting to OM-732 for the second, and back to OM-2514 for the third. 
 
Overall, there is evidently variability in the conditions experienced by farmers such 
as alkalinity, salinity, rice varieties, and flood extent across the delta. Furthermore 
there appears to be extensive temporal variability in not only flood regimes, but also 
in rice crop calendars. 
 
 

4.2. Methodologies for exctracting boundaries 

4.2.1. Principal Components Analysis  

Shown in Figure 39 are the 1st four components of the PCA performed on the 3 year 
hyper-temporal NDVI images stack. Each component displays a progressively 
smaller proportion of the variability attributable to that component’s axis (shown in 
table 3). Consulting the supplementary eigenvalues, produced with the components, 
it could be seen that together, the 1st four components summarised 89.41% of the 
variability within the hyper-temporal dataset. The eigenvalues for all components 
can be found in appendix E. 
 
Boundaries for each component were successfully extracted (see figures 40 and 41). 
Each component displayed visually sharp transition areas (e.g. at points A, and B in 
figures 40 and 41), which were used to define the boundaries. A summary of all four 
component boundaries can be found in figure 42. All boundaries extracted, and the 
principal component from which they were extracted, can be found in appendix F. 
Furthermore, in looking at solely the principal components and their boundaries, 
some interesting points can be noted. For example in looking at figure 43, it can be 
seen that the boundaries extracted did not successfully delineate some features (e.g. 
feature A in figure 43).  
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Figure 39: Principal components from a Principal Components Analysis of a 3 year hyper-temporal 
dataset. 1st (A), 2nd (B), 3rd (C), and 4th (D) component images  are shown. (All images are in UTM Zone 
48N, using the datum WGS 1984).  

 
 
 
Table 3: Proportions of hyper-temporal stack variability, attributable to each principal component. 

Principal Component Proportion of attributable vari ability 
1st Component 79.41% 

2nd Component 7.57% 

3rd Component 1.50% 

4th Component 0.93% 

Subsequent Components 10.59% 
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Figure 40: 1st Principal component, and mid-value boundary. The mid value of 1022.54 was used to 
divide the image into two classes, and define the boundary 

   
Figure 41: 2nd Principal component, and zero-value boundary. The mid value of 0 was used to divide the 
image into two classes, and define the boundary 
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Figure 42: Four boundaries extracted from the 1st four principal component images. 

   
Figure 43: Component boundaries and principal component composites. RGB (2nd, 3rd, 4th principal 
component) image overlaid by the four mid-value boundaries as identified from the principal components.  
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4.2.2. Edge Detection 

Shown figure 44 are the boundaries extracted by the 3x3 and the 5x5 ED methods. 
Both methods were successful in producing bounded regions (as can be seen in 
figure 44). However, the two methods extracted visibly different boundaries. Figure 
45 shows the common pixels extracted by both methods (green). It also shows those 
pixels, which were extracted by one method, but not extracted by the other.   
 
These also show a patterning in their distributions. Those edges extracted by the 3x3 
method are more spatially spread out, and are located further away from the 
commonly identified edge pixels. In contrast, those solely identified by the 5x5 
method, appear to be restricted to either side of commonly identified boundaries.  
 
These differences in identified boundaries, have also resulted in a difference of 
regions bounded by those boundaries. As can be seen in figure 44, these regions can 
differ considerably in spatial extent.  
 

 
Figure 44: Boundaries and regions extracted using the pixel edge detection methods. A shows those 
edges extracted by 3x3 kernel edge detection, and a sample region as defined by these boundaries. 
 B shows edges extracted by 5x5 kernel Edge Detection, and a sample region as defined by these 
boundaries. 
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Figure 45: Contrasts in derived edges. Pixels identified as edges by both methodologies (green), and 
those identified as edges by only one of either of the two methodologies (red, or blue).  

 

4.3. Product Comparison 

Figure 46 shows a combination of the boundaries extracted from the 4 principal 
components, and the 76 classes identified by ISODATA classification. The 
component boundaries are overlaid in an order derived from the proportion of 
variability they summarise. Hence, the 1st component (summarising 79.41% of the 
variability) is overlaying the 2nd (7.57%), which further overlays the 3rd component 
(1.50%), all of which overlay the 4th (0.93%). In this way a hierarchy has been 
established, which is derived from their contribution to the dataset. It could be 
viewed as the larger regions derived from the 1st Component, are subdivided by the 
2nd, which are subdivided again by the 3rd, and again by the 4th. Despite the extensive 
subdivision, within the areas left, it can be seen that IDODATA still derived 
multiple classes.  
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Figure 46: Principal component boundaries identified overlaying the 76 ISODATA classes.  
 
These principal component boundaries also show visibly identifiable similarities to 
those identified by ED. Both those boundaries identified by the 3x3 ED method 
(figures 47 and 48), and the 5x5 ED method (see Appendix G) show remarkable 
boundary overlap with portions of those boundaries identified from the PCA. These 
edges identified by ED, often overlay the areas of rapid transition from which the 
principal component boundaries were derived. A, B, and C, in  figures 47 and 48, 
show principal component boundaries overlaying boundaries extracted using the 3x3 
kernel ED method. Comparable images of the 5x5 kernel ED boundaries can be 
found in appendix G. 
 
When the 76 classes identified by ISODATA clustering, were compared to the 
principal component images, further notable features were revealed (figure 49). As 
can be seen, overlaying the 76 classes on the 2nd Component (as an example) 
revealed some interesting features highlighted at A, B, and C. These highlighted 
areas are visually distinct from their surrounding areas according to PCA, in a 
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pattern that is spatially coherent with that outlined by ISODATA classification. 
Whilst not all classes stand out as being so distinctive, some features of the various 
components do appear to be expressed by ISODATA classification. Other examples 
can be found in appendix H. 
 
In looking at false colour composites of the different components, the same 
characterisation of classes as occurred with individual components is apparent. For 
example, in figure 50, overlaying a RGB:1st, 2nd, 3rd Component composite with 
the 76 ISODATA classes reveals similar class characterisation to that shown by the 
2nd component (figure 49). Of interest, the feature at B in figure 50, though showing 
strongly in the composite image, is not featured as distinct by ISODATA 
classification. Figure 51 shows another composite, with the 2nd, 3rd and 4th 
components combined in an RGB image. Note that whilst the principal components 
composite feature at A, visibly matches the overlying ISODATA class, at B, a 
visibly distinct feature is not distinguished by ISODATA clustering. Furthermore, 
though the 4th component only summarises 0.93% of the variability, it is enough to 
draw out ISODATA classed features such as those at C, which have been missed by 
the 1st three components (figure 51). 
 

 
Figure 47: Comparing boundaries from 3x3 edge detection, and those from the 1st and 2nd Principal 
components. Arrows indicate notable areas where boundaries coincide. 
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Figure 48: Comparing boundaries from 3x3 edge detection, and those from the 3rd and 4th Principal 
Components. Arrows indicate notable areas where boundaries coincide. 

       
Figure 49: Principal component characterising ISODATA classes. 76 classes identified from ISODATA 
classification, overlaying the 2nd Principal Component image. Arrows point to noteworthy classes and 
how they are being characterised by the Principal Components 
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Figure 50: Component composite 1 characterising ISODATA classes. RGB:1st, 2nd, 3rd Component 
composite, overlaid by the 76 ISODATA classes. Arrows highlight noteworthy classes.  

 
Figure 51: Component composites 2 characterising ISODATA classes .RGB: 2nd, 3rd, 4th Component 
composite, overlaid by the 76 ISODATA classes. Arrows highlight noteworthy classes. 
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The boundaries extracted using ED also provided some noteworthy points. Shown in 
figures 52 and 53, are samples of the larger regions delineated by the 3x3 ED 
method, and the 5x5 ED method respectively. These are subdivided by the 76 
ISODATA classes. Note that the 3x3 and 5x5 kernel edge detected regions 
essentially group ISODATA classes together within the edge detected regions, 
though to different spatial extents. 
 
Note for example, that region A in Figure 52 partially covers the same area covered 
by area B in figure 53. Furthermore, note that not only are larger regions produced 
by the 5x5 ED method, but consequently, more ISODATA classes are grouped by 
the 5x5 edge detected regions, due to their extent. Also worth noting, is how the 
regions produced by both ED methods not only encompass rice classes, but also 
include unsampled classes (some of which are non-rice) into the groupings (see 
figures 54 and 55). 
 
The orientation of ED boundaries also shows remarkable similarity to the areas of 
highly fragmented classes identified by the ISODATA classification (figure 56). 
Shown at points A are example areas of where the edge detected boundaries from 
either the 3x3 method, or the 5x5 method, coincide with the borders of ISODATA 
classes. Furthermore, such ED boundaries, coincide considerably with areas where 
multiple class transitions occur over a short spatial extent.  
 
Of particular interest is how some of the boundaries, derived using the edge 
detection methodologies, do not coincide with the ISODATA class borders, or even 
areas of extensive ISODATA class fragmentation. Shown in figure 56, sample areas 
can be seen at points marked B. 
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Figure 52: Regions as defined by the 3x3 edge detected boundaries, and the ISODATA classes 
subdividing them. 

 
 
Edge detection also extracted some boundaries, some of which were comparable to 
areas of high NDVI class fragmentation (e.g. figure 56). Meanwhile other boundary 
segments were comparable to those extracted by PCA. This is evident for example in 
Figure 57, which shows the 3x3 edge detected boundaries, overlaying an RGB 2nd, 
3rd, 4th component composite. Note that the edges, which did not match the 
ISODATA classes at points B in figure 56, do outline features in the principal 
component composite at points A and B in figure 57. Furthermore, these features 
were not highlighted by the boundaries extracted from the principal components 
themselves (A in figure 43). 
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Figure 53: Regions as defined by the 5x5 edge detected boundaries, and the ISODATA classes 
subdividing them. 
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Figure 54: 3x3 edge detected boundaries grouping rice and non-rice ISODATA classes.  

 
Figure 55: 5x5 edge detected boundaries grouping rice and non-rice ISODATA classes. 
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Figure 56: 3x3 Edge detected boundaries overlaid by 76 ISODATA classes. Areas of noteworthy overlap 
are highlighted at points A, whilst noteworthy areas where edge boundaries do not coincide with 
ISODATA class borders are highlighted at points B. 
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Figure 57: Component composites overlaid by edge detected boundaries. Features in an RGB 2nd 3rd, 4th 
Component composite, which are outlined by boundaries extracted by 3x3 edge detection. Arrows point 
to noteworthy features.  
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5. Discussion  

5.1. Heterogeneity in the Mekong Delta 

The world can be viewed as a “heterogeneity of heterogeneities” according to 
Sparrow (1999), and apparently, so too can the Mekong Delta. As could be seen, 
even within a “single” crop species, varieties varied across the delta, driven by the 
farmers need to gain the maximum yield from the local environment. Furthermore, 
rice crop calendars exhibited temporal shifting along environmental conditions, most 
notably reflecting changes in flood regime.  
 
These findings of shifting crop calendars serve to support those findings of Sakimoto 
et al., (2006). They studied rice crop calendars in the Mekong delta, though they 
were more concerned with how they changed over the years, attributing these 
changes to seasonal and localised changes in water resources. However, they also 
characterised the cropping calendar shifts across the delta. They noted that the 
fluctuating water resource conditions, affected those crop calendars predominantly 
in the Northwest of the Delta, where the flooding (figure 20) prevented rice growth. 
Conversely, in the South East of the Delta, flooding was a requirement, mitigating 
against saline intrusion (show in figure 18) and commencing the rice crop calendars.  
 
Combining the findings of Sakimoto et al., (2006), and the information in the 
landuse map and legend produced in this research, lends strong evidence to the 
concept of the Mekong Delta in reality being a complex mosaic of environmental 
conditions.  
 
Furthermore, lower levels of edge had to be removed during the initial stages of 
edge detection. This allowed temporal cleaning to proceed. Whilst the method 
essentially defined these lower levels of edge as “non-edges” they do represent a 
minor flux across the landscape in NDVI values. Few homogeneous NDVI areas 
actually existed (whilst those that did could be attributable to cloud cover- figure 
58). This serves to further develop the idea that the Mekong Delta is truly 
heterogeneous, echoing Chesson and Case’s (1989) statement that “the world is 
heterogeneous and non-equilibrial. 
 
In overlaying the 76 ISODATA classes over the edge detected boundaries, a further 
interesting coincidence was revealed. Areas with edges, identified by the edge 
detection method, appeared to be spatially coincident with areas of high NDVI class 
fragmentation (figure 56). Gosz (1992) noted that community transitions take the 
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form of complex mosaics. NDVI class fragmentation over boundaries detected by 
edge detection could be interpreted as such community transitions. 
 
 

 
Figure 58: Edges enhanced around cloud pixels during Edge Detection. A shows the NDVI composite 
image of the 21st July, 2005. Cloud pixels have been given a value of zero by the cloud removal process. 
Edges (B) are then determined from this zero value. 

 
 
Alternatively, the fragmented classes are thought as elements of the larger classes 
surrounding them. These larger classes are bounded by the edge detection 
boundaries. If, as the research assumed (and landscape heterogeneity evidence 
supported), the Mekong Delta is a large, heterogeneous, transitional area, then the 
areas of high class fragmentation represent areas of rapid change in vegetation 
communities and their underlying gradients. Furthermore, these fragmentations 
occur over edges originally envisioned to represent ecotones. The bounded regions 
(with spatially large, though multiple NDVI classes) could therefore logically be 
interpreted as ecoclines (see figure 59). This conceptualisation of the landscape and 
how it is being expressed through its’ vegetation, serves to support that the 
landscape could indeed be conceived to be a complex mosaic of ecotones and 
ecoclines. Both of these transitional areas would be of interest to ecologists and 
gradient analysts, as they represent gradient flux on different scales.  
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Figure 59: Edge detected boundaries and ISODATA classes indicating ecotones and ecoclines. 

      
 

5.2. Methodology appraisal 

 
The ISODATA classification served to exploit hyper-temporal differences in NDVI 
into NDVI classes. These NDVI classes (and ultimately the map units characterised 
by various crop calendars) did have distinct differences between them. Despite this 
difference, the classes could successfully be grouped by boundaries, extracted solely 
from satellite hyper-temporal imagery.  
 
Furthermore, both methodologies attempted (Principal Components Analysis, and 
Edge Detection) extracted grouping boundaries of some form or another. In these 
groupings, non-rice and unsampled rice classes were included. This indicates that 
the class groupings went beyond simply grouping rice, but also indicating that rice  
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NDVI classes had aspects in common with their surrounding NDVI classes, despite 
some of these not being rice areas. This supports the assumption that fundamentally 
different classes would be linked to each other along factors such as gradients. The 
borders of these classes are therefore relatively meaningless when interpreted as a 
border. As such they should be interpreted as arbitrary lines denoting a certain 
(unknown) level of transition between two contrasting areas. 
 
The methodologies themselves each held promise. The principal components 
derived from the hyper-temporal dataset visibly displayed sharp transition 
boundaries (where the value is approximately equal to 0). This visible feature was 
exploited to yield the boundaries, which tracked the zero value of the component. 
However, the middle value of the 1st component was all that could be used. It lacks 
values below the zero value, despite visibly displaying boundaries which are 
logically meaningful. In future, perhaps some other, more statistically appreciable 
extraction could be developed. It could involve histogram analysis, so boundary 
choice is entirely data driven, and not depend, even to a small degree, on human 
interpretation.  
 
Interestingly, the components inherently established a hierarchy of boundaries. 
Boundaries derived from the 1st component, were derived from a summary of 
79.41% of the variability in the 3 year hyper-temporal dataset. The second 
component boundaries were drawn from 7.57%, the 3rd component, 1.5%, and so on.  
However, in total, the first four components here only summarised 89.41% of the 
variability. Whilst there are as yet, no clear guidelines on how many components 
should be used (Eastman & Fulk, 1993), perhaps it would be more appropriate to set 
a threshold. This threshold level would be a proportion of the variability that should 
be summarised (for example 95% of the variability). All components summarising 
up to that threshold would then have to be used. 
 
The method using Principal Components Analysis was also considered flawed as it 
fails to take advantage to the asymmetry of time inherent in sequential hyper-
temporal datasets. Edge detection was therefore seen as logical avenue of 
exploration. Each image was edge detected in succession, whilst a temporally 
cleaning step acted on a before and after concept of edge permanence.  
 
This temporal cleaning could also be helpful in removing suspect edges caused by 
cloud values. As shown in figure 58, this could be considered an issue in the ED 
method. Any suspect cloud pixels in the NDVI images were given a value of zero. 
Therefore, edges were calculated from these values (figure 58). Temporal cleaning 
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removes those edges not present in three successive images. Therefore the process 
may help to remove a quantity of temporary edges caused by cloud removal from the 
dataset, though the exact amount of contamination should be investigated further. 
 
Overall, the method did provide boundaries, which successfully grouped ISODATA 
classes. Though the definitions of edge “persistence” and how weak an edge must be 
before it is considered “weak” need to be clarified and researched. As is, the choice 
of median values probably screened out some edges that should not have been 
removed. Only the strongest and most persistent edges were kept, which could have 
been above the true level of when an edge could be considered “strong”.  
 
Unfortunately, currently available literature holds no answers to this problem. 
Despite the extensive use of edge detection, information on what makes an edge a 
true “edge” is notably absent. However the principal appears to hold. This means 
that the choice of edges should come from the data itself, and not from outside 
knowledge. This is why a feature of the histogram was twice used to screen out the 
lower levels of edge. It serves to highlight that a more rigorous statistical 
determination of what can be removed is required. This principal is applicable to 
both stages of lower edge removal, and should be researched if further progress is to 
be made. 
 
Within the Edge Detection method, two kernels were used. A 3x3 pixel kernel, and 
an adapted 5x5 pixel kernel. In general, the 5x5 kernel produced spatially wider 
boundaries.  Figure 45 shows how the pixels identified as edges by the 5x5 method, 
lie to either side of the pixels commonly identified as edges by both methods. 
Furthermore, a 10 pixel noise threshold was used with the 5x5 method, in contrast to 
the 6 pixel noise threshold used by the 3x3 method. In hindsight, perhaps this level 
of 10 pixels was too high, and should had been left at 6 pixels, maintaining 
consistency in the methodologies.  
 
Another issue was that the distance function used to combine the four directions of 
the 5x5 pixel edge detection, was simply an extension of that used by the 3x3 kernel 
method. However, the function still achieved the aim of exaggerating large 
fluctuations, and minimising minor fluctuations, and was appropriate for use. 
 
When the boundaries were compared, it was apparent that all methods identified 
boundaries that had some sections that coincided across methodologies, and others 
that differed spatially. Notably, even the different boundaries, identified by Principal 
components Analysis, coincided frequently with those identified by edge detection, 
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despite not being universal matches. The lack of universality could be interpreted 
that the Principal Components Analysis and Edge Detection methods are in fact 
extracting boundaries based on different definitions. For example, the edge detection 
method was devised specifically to take the asymmetry of time into account.  
 
It was also clear that the boundaries identified from principal components, missed 
visibly obvious features within the components themselves (e.g. A in figure 43). 
Furthermore, ISODATA classification also missed these features. This could 
indicate that ISODATA classification does not detect all variability present. 
However, this could have been a consequence of the use of a subset image stack for 
the PCA method, and should be reviewed before any concrete conclusions are made. 
Notably however, the edge detection methodology successfully bounded the 
features, determining that they had viable permanent, and strong boundaries (A and 
B in figure 57).  
 
This serves to highlight that no one single methodology worked. As such the 
research failed to define a single methodology to determine the boundaries of 
“gradient effects zones” within the time frame. However, it did suggest a plausible 
route for further research. Each method extracted boundaries. These different 
boundaries had similarities, and differences. This dissimilarity should therefore be 
exploited. Perhaps, the utility of Principal Components Analysis data reduction 
capability, and Edge Detections ability to exploit the sequential nature of hyper-
temporal datasets, could be combined in a hybrid method. 
 
For example, it can be logically argued that the nature of the boundaries extracted 
from the principal components, was hierarchical (.Furthermore, different 
components coincide with different sections (and common sections) of the edge 
detected boundaries. Perhaps the principal components boundaries could be used to 
weight the importance of the edge detected boundaries according to how much they 
contribute to the dataset. Otherwise, perhaps component boundaries, summarising 
95% (for example) of the hyper-temporal datasets variability, could be used to 
extract viable temporally cleaned edges (negating the need for a second histogram 
analysis). These are simply some possible future avenues of research, though they do 
serve to highlight the further work required and the plausibility of a hybrid method.  
 
 
 
 
 



73 

6. Limitations, concludions and recommendations 

6.1. Limitations 

- The NDVI signature of vegetation within the 1km SPOT pixel, was assumed to 
represent a indicator of vegetation responses to environmental gradients in that pixel 
- 1km pixels were seen to be of sufficient resolution to adequately capture landscape 
level gradients 
- a composite product of 10 days was seen to be of adequately high temporal 
resolution to represent the values occurring over the ten daily images. 
- the temporal fluctuations in NDVI value of an NDVI class, were assumed to be of 
sufficient magnitude to allow for ISODATA classification.  
- it was assumed that the landscape of the Mekong contained sufficient heterogeneity 
in NDVI to be divisible into classes. 
- the use of the peak in both average, and minimum separability was assumed to 
represent a level of optimum class number for ISODATA classification. 
- it was assumed that NDVI classes were equivalent to map units 
- it was assumed that these map units could be characterised concerning their crop 
calendars.  
- rice crop varieties were assumed to be adapted to optimise productivity under 
variations in specific environmental conditions. 
- it was assumed that the 10 year stack of hyper-temporal images used for the 
ISODATA classification, was adequately summarised in the 3 year stack used to 
develop the various methodologies, whilst still being comparable. 
- concerning boundary extraction from the principal components, the mid-value of 
the 1st component (1022) was assumed to be comparative to the zero value of the 
subsequent components. 
- the zero value of components 2, 3, and 4, was viewed as a transition point in the 
data, and representative of a boundary. 
-  the median value in the ED methods’ 1st histogram analysis, was assumed to 
represent an adequate level below which edges could be considered as “weak” and 
were removed as noise.  
- Concerning the ED methods’ 2nd histogram analysis, the mode of the logarithmic 
value of average edges was deemed to be an adequate value, below which edges 
were removed as noise. 
- one month was the period of time an edge had to remain, in order to be considered 
representative of a permanent boundary during the temporal cleaning portion of the 
ED methodology.  
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- the NDVI images were deemed to have undergone adequate processing for cloud 
interference 
 

6.2. Conclusions 

1 - Assuming the ISODATA classification results are NDVI classes that are 
fundamentally different, can these differences be seen, expressed in rice crop 
calendar data collected in the field? 
 
The rice crop profiles characterised in the landuse map and legend, demonstrate 
shifts in crop calendars between map units. Whilst in some classes, harvesting has 
only begun, other classes have already completed sowing the next crop. In another 
instance, whilst crops are only been sown, rice crops in another class are already half 
way through their growth cycle. Therefore differences can be seen in crop calendars 
characterising NDVI classes derived by ISODATA classification. 
 
 

2 – Could shifts in rice crop calendars be attributable to landscape heterogeneity 
in environmental conditions across the Mekong Delta? 
 
The research showed that shifts in rice crop calendars for each class were been 
accompanied by shifts in the class’ flood regime. Furthermore, the multitude of rice 
varieties grown indicated a need for farmers to adapt to environmental conditions 
across the delta. This argument was also supported by work done by Sakamoto et al. 

(2006), who found that rice crop calendars were being affected by seasonal and 
localised conditions such as flooding and salinity. Therefore, arguably, the shifts in 
rice crop calendars could be attributable in part to landscape heterogeneity in 
environmental conditions across the delta. 
 

3 - Are there methods capable of recognizing and delineating boundaries, or 
“natural breaks” in a gradients’ effects upon the landscape, using hyper-temporal 
satellite data alone? 
 
Both attempted methods successfully grouped NDVI classes obtained by ISODATA 
classification of hyper-temporal data. Both methods explored derived their 
boundaries entirely from the hyper-temporal dataset, with no other information data 
being used to guide the boundary extraction process. The methods need to be refined 
however, despite extracting logical boundaries, more sensitive and robust histogram 
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analysis should be researched for the Edge Detection methodology, whilst a more 
appropriate boundary extraction for the first component should be sought. 
 

4 - Of any promising method(s), how do they compare at recognising boundaries 
or natural breaks, thus delineating the borders of regions within which crop 
calendar heterogeneity occur, as caused by the same landscape level gradient. 
 
Both methods show an ability to extract boundaries. These different boundaries 
often coincide, though in many cases differed spatially. These boundaries are all 
feasibly attributable to gradients, despite their spatial differences. Boundaries 
extracted by PCA are seen as inherently hierarchical in nature. Meanwhile those 
extracted by ED are seen as 4 dimensional, taking into account the asymmetry of 
time. Visible features in principal components were only outlined by boundaries 
extracted by ED methodology, and not by those extracted by the PCA methodology. 
This indicates the need for a hybrid methodology, which would combine the 
boundary extracting capabilities of both (and maybe more) methodologies. 
 

6.3. Recommendations 

1.   The PCA methodology requires further refinement. Despite logical 
boundaries being extracted, the first component requires a more rigorous 
determination of the value indicative of a transition boundary. Furthermore, 
a threshold should be determined on how many components are required to 
adequately summarise the variability in hyper-temporal datasets. 

 
2. The ED methodology requires further refinement. Concerning the first and 

second histogram analysis, lower thresholds of edge values need to be 
determined. Therefore, A logical way of extracting this threshold from 
histograms needs to be developed. 

 
3.  Following the development of refined PCA, and ED methodologies, a 

hybrid method should be investigated to take into account the hierarchical 
and data reductive properties of PCA, and the ED method’s exploitation of 
the asymmetry of time. This should not preclude the development of other, 
alternative methodologies which may serve to augment the information 
gained from hyper-temporal datasets. 
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6.4. Summary 

The research successfully followed the logic of gradients to outline various 
methodologies, capable of grouping hyper-temporal data classes. This could 
eventually lead to a tool being produced to aid gradient analysts to stratify their 
sampling regimes along less subjective stratifications as are currently used. The 
methods investigated need to be refined, despite exhibiting a considerable degree of 
promise. Evidence was also presented, showing the need for a hybrid method, 
composed of the advantageous aspects of Principal Components Analysis, and those 
of Edge detection.  
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8. Appendices 

8.1. Appendix A  

Landuse Map 2002 of the Mekong Delta. 

 



83 

8.2. Appendix B   

Inputs and outputs of the various Edge Detection methodology’s stages. 
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8.3. Appendix C  

Model details of edge detection algorithms 

(i) 3x3 kernel edge detection algorithm (Prewitt) 

 
(ii) 5x5 kernel edge detection algorithm (prewitt adaptation) 
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8.4. Appendix D  

Unidentified software difficulties encountered when processing images 
edge detected with the sobel edge detection model 
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8.5. Appendix E 

Eigenvalues for all components derived from a Principal Components 
Analysis of 111 NDVI images in a 3 year hyper-temporal image stack 

 
Green shading indicates the 1st four components which were used in this research. 
Red shading indicates those components which should be added so the process 
summarised over 95% of the hyper-temporal variability. 
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8.6. Appendix F 

Boundaries extracted from all four principal components. 

(i) 1st component (mid-value = 1022.54) 

 
(ii) 2nd component (mid-value = 0) 
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(iii) 3 rd component (mid-value = 0) 

 
(iv) 4th component (mid-value = 0) 
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8.7. Appendix G 

Principal component boundaries overlaying those extracted using 5x5 
kernel Edge Detection. 

(i) 1st and 2nd component boundaries over 5x5 kernel boundaries. Arrows 
indicate example sections of coinciding boundaries.       

         
(ii)  1st and 2nd component boundaries over 5x5 kernel boundaries. Arrows   
               indicate example sections of coinciding boundaries.                   
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8.8. Appendix H 

76 ISODATA classes overlaying principal components. 

(i) 76 ISODATA classes overlaying the 1st Component 

 
 
(ii) 76 ISODATA classes overlaying the 2nd Component 
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(iii) 76 ISODATA classes overlaying the 2nd Component 

  
 
(iv) 76 ISODATA classes overlaying the 3rd Component 

 
 

 


