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Abstract

The main objectives of this research are (1) taipteand explain the distribution of
the Short-toed Eagle in Malaga province, Southgrairg (2) to generate maps of
preferred hunting sites and potential availabley foe the Eagle and (3) to infer the
contribution of prey availability in the Short-to&ghgle distribution model.

The spatial distribution of the prey snake spewiese modelled using multivariate
statistical techniques and GIS (Geographic InfoiomatSystem). To select the
explanatory environmental variables affecting thecses distribution and to find out
where the suitable habitat for the selected snaleeiss in Malaga province are,
predictive distribution models were created usimgidtic regression and the
environmental favourability function, absence/presedata of the species and a set
of independent variables related to bioclimaticpographic and anthropogenic
conditions.

A map showing Eagle’s preferred hunting areas veaerated by ranking the Corine
land cover map using expert knowledge and intersiaith local ornithologists. A
potential food availability map was generated based snake prey species
distribution, combined with the Short-toed Eaglefprred hunting areas.

To assess the predictor variables affecting thert8bed Eagle distribution in
Malaga province, predictive distribution models &esreated using Maximum
Entropy functions, presence data of the speciggngal food availability and a set
of 7 independent variables related to climatic d¢towls, topography and NDVI
(Normalized Difference Vegetation Index). Preseda&a (observed nest-locations)
were collected during fieldwork in September andober 2008.

To indentify a model with the fewest predictorsttegplained the data satisfactorily,
five variables model were selected; minimum temjpeeain the wettest quarter,
NDVI for mid August, precipitation in Septembemgé and the southness of aspect.
This research also revealed that inclusion of tbtenial available prey in the
distribution models did not result in significantlpcreased AUC (Area Under
Curve) compared to the food excluded models. Thmal fipredictive model
satisfactorily describes the Short-toed Eagle itistion in the Malaga province.

This research suggests re-testing the hypotheisig tgper spatio-temporal species
distribution data and/or new potential food avaligbindices.

Key words: Short-toed EagleCircaetus gallicus,spatial predictive models, Maxent, environmental
favourability function, potential food availabilitfalpolon monspessulanus, Hemorrhois
hippocrepis, Rhinechis scalaridlalaga province
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1. Introduction

Exploring the relationship between a species aedfé¢atures of the ecosystem in
which it occurs is fundamental in conservation dariddiversity management.
Sustaining biodiversity requires knowledge abositgeographical distribution and
pattern, as well as an understanding of the preses$ich are driving biodiversity
at different scales (Skidmore et al., 2006). Detisinakers and resource managers
need to have a clear and reliable view of distidyubf species and their abundance
in the landscape as well as knowledge of relativtakility of habitats for a given
species. Predictive modelling and mapping thatiged on these relationships forms
an analytical foundation for informed conversatjganning, mapping patterns of
biodiversity, detecting distributional changes fromonitoring data and quantifying
how variation in species performance related tooormore controlling factors
(Guisan and Hofer, 2003, Phillips et al., 2006, tyaisal., 2008).

To create conservation strategies for a specie® @gc the Short-toed Eagle
(Circaetus gallicuy a migratory raptor whose distribution throughaatrth and
west and central Europe has seriously declined §k#n 2004, Bakaloudis et al.,
2005, Agostini et al., 2002, Birdlife-Internation@008), wildlife managers need to
know environmental requirements and geographicstridutions. Several studies
have been conducted to describe the habitat atslnf the Short-toed Eagle in the
local level and its nest features, (Agostini et aD02, Bakaloudis et al., 2001,
Bakaloudis et al., 1998, Bakaloudis et al., 2008ka@oudis et al., 2005, Gensbol,
2004, Gil and Pleguezuelos, 2001, Rocamora, 19%chds and Papageorgiou,
1994) however, few studies have evaluated thebates at landscape level. Snakes
distribution and their correlation with the Shayetl Eagle occurrences were
minimally studied.

Advancements in computer technology, statisticaldeliing and Geographic
Information System (GIS) software allow the knovged of species/habitat
relationship to be used for prediction the geogi@phistribution of individual
population of wildlife species (Yost et al., 200®redictive species mapping is
founded in ecological niche theory and predictaalgsis and rests on the premise
that species distribution can be predicted from tatial distribution of
environmental variables that correlated with ortominthe occurrence of a species
(Yost et al., 2008, Phillips et al., 2006). Genlgrathere are three major steps
involved with predictive modelling and mapping; (Dpllect species level




occurrence data and biophysical attributes of #mel$cape, (2) build the model to
determine the best subset of predictors and thaiameter coefficient and (3)
application of the models to GIS data to predidbability of occurrence for un-
sampled location (Yost et al., 2008, Corsi et2000).

1.1. Research Problem

Available and published distribution maps in refee books and atlases have
traditionally been compiled from records of lodakt where a species has been
known to be present. A certain degree of interpmtatexpert knowledge and guess
is usually also involved in the compilation of teemaps (Bustamante and Seoane,
2004). Predictive models provide an alternative ¥ealuild distribution, abundance
and/or habitats suitability maps for a species $&uiand Zimmermann, 2000). They
are developed based on logic and knowledge thatespare habitat selective (Cody,
1985) and there are correlations between enviromahgrarameters and their
distribution or abundance (Buckland and Elston,3)98tlases are costly to produce
because they require much fieldwork and are no¢sssrily detailed enough for all
applications. Logical and dynamic models could cengate for this by predicting
the distribution as well as abundance of speciésgupresence occurrences. It
should be noted that detailed presence/absencerenca data are available for
some species; however, absence data are not deditalmost species (Phillips et
al., 2006).

The European population of the Short-toed Eaglapisroximately 8000 — 12,600
pairs (Gensbol, 2004). The densest population isteve and southern Europe are
on the Iberian Peninsula, in France, Croatia arekGr (Gensbol, 2004). Rocamora
(1994) reported that the Iberian Peninsula haslahgest breeding population in
Europe, and perhaps in the whole Western Palaeaithie breeding range has
contracted considerably over the last hundred yéBacamora, 1994, Birdlife-
International, 2008). In the T'@&entury it ranged as far as north Germany, wheze t
last breeding recorded was in 1877. Landscape esaagd the fanatical campaign
against birds of prey hit this species particuldndyd, with the result that it died out
completely in central Europe (Gensbol, 2004). TherBtoed Eagle uses mainly
soaring flight during migration and avoids long @ratrossings by crossing at the
Strait of Gibraltar (Agostini et al., 2002, Agostand Mellone, 2008).

Some ornithologists believe that the main reasothi® Short-toed Eagle population
decline lies in the reduced availability of foodepRiles do not thrive in intensely
cultivated landscapes and they are very sensitiyeesticides and fertilisers used in
farmlands. Resent research shows that the cumeilaffect of Organochlorine
residue in the liver of raptors which mainly feed @ptiles and amphibians were




quite high (van Drooge et al., 2008). Bakaloud®9@) stated that “It is important to
know how reptiles respond to land use activitiepredict how any changes might
affect the abundance and diversity of reptiles,civhwould have a knock-on effect
on many groups of animals, including the Short-tBadle.”

Bustamante and Seoane (2004) found that the gtatistodels yield better results
than existing maps and atlases. They implementadrghsed linear models of 10 x
10 km squares surveyed for the presence/abseribe species by road census. The
results of the statistical models for the Shorttd&eagle were fairly accurate and
predicted better than recordings of the atlas deddistribution maps. However,
their customised model was still difficult to inpeet from the point of view of the
ecology of the species.

1.1.1. Short-toed Eagle

Circaetus gallicus(Gmelin, 1788) is a medium-sized bird of prey i tfamily
Accipitridae and the order Falconiformes. The Ee@ppopulation migrate mainly
to sub-Saharan Africa north of the equator, leavimgSeptember/October and
returning in April/May. In Europe it is most numesoin Spain where it is fairly
common but elsewhere it is rare in many partssofahge. In English this species is
called Short-toed Eagle or some times Snake E&glert-toed Eagle was classified
as the LC in the IUCN red list and Birdlife International CN, 2009, Birdlife-
International, 2008).

Short-toed Eagle founds in open cultivate
plains, arid stony deciduous scrub areas &
foothills and semi-desert areas. It requir
trees for nesting and preys on reptiles, mair
snakes, but also some big lizar@ie Short-

toed Eagle is an accomplished flyer ar
spends more time on the wing than do mc
members of its genus. It favours soaring o
hill slopes and hilltops on up draughts, and
does much of its hunting from this position «
heights of up to 500 - 1000 meters (Birdlife
International, 2008).

Figure 1-1: Picture of Short-toed Eagle

! Least Concern




1.1.2. Selected Snake Species

There are three snake species that were studidgdisnresearch. Following the
published papers it is assumed that these snal@espare the only food for the
Short-toed Eagle (Gil and Pleguezuelos, 2001, MpiRuneda and Pizarro, 2007).

— Rhinechis scalari¢Schinz, 1822)

It was identified taxonomically bilaphe scalaridefore. Common name in English
is Ladder Snake because of ladder form of patfEne. ladder snake is one of the
smaller European rat snakes. It can reach aboutib®ut is normally 100-120 cm
in length. The ladder snake inhabits many differeabitats, prefers warm south
turning and sunny places in the vicinity of escppssibilities in form of bushes or
stonewalls. They love the heat and can be foundirgiin the middle of the day
even in midsummer. This species is listed as atl@ascern species in view of its
wide distribution, tolerance of a broad range obitss and presumed large
population (IUCN, 2009).

- Malpolon monspessulangldermann, 1804)

This snake is one of the back-fanged Colubrids. M@wb its prey preferences it
inhabits in dry stony areas heavily populated kgrlils, such as piles of stones on
the edges of fields or near ruined buildings. Whanting it will occasionally rear
up and look around, making it somewhat resemblectiea. If it feels threatened it
hisses loudly and attacks with the mouth closedidually for a snake, this Colubrid
possesses good vision. One of its distinguishirggufes is in fact the prominent
ridge above its eyes, giving it a frowning appeaearCommon English name for
this species is Montpellier Snake (Lloyd, 2007)s listed on Annex Ill of the Bern
Convention on the Conservation of European Wilddifiel Natural Habitats and it is
present in many protected areas (IUCN, 2009).

— Hemorrhois hippocrepiflinnaeus, 1758)

This classic Mediterranean species was also taximadlgn named Coluber
hippocrepisand its common name is Horseshoe Whip Snakekdstis name from
the horseshoe pattern along its body (Lloyd, 200H)s species occurs in a wide
variety of arid, dry, rocky or sandy habitats. laynbe found in scrubland, coastal
plains, arable land, pastures, vineyards, almordl @ive groves, rural gardens,
villages and cities in and around buildings. Thiedes is listed as Least Concern in
view of its wide distribution, tolerance of a deg@ habitat modification, presumed
large population (IUCN, 2009).

1.2. Research Objectives

Despite the previous findings, there is howeveritéoh information on the
relationship between environmental parameters hadotcurrence of the raptors.
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Since there is an impact of the loss of biodivgrsit the environment, it is assumed
that there should be a feed back relationship bevibe environment and loss of
biodiversity, in this case, on the population of tBhort-toed Eagle. This research
therefore aims to develop a model of the probahilftoccurrence of the Short-toed
Eagle in relation to environmental parameters aotdmgial food availability.

1.2.1. General Objective

The general objective of this study is to invedigéhe relationship of habitat
suitability of prey species and probability of ooeunce of the Short-toed Eagle in
Malaga province, southern Spain. Then depict theitdtasuitability map of the

Short-toed Eagle considering the potential avadlaptey and other explanatory
environmental variables in the study area.

1.2.2. Specific Objectives

— Generate a habitat suitability models for eachhefpirey snake species of
the Short-toed Eagle based on the explanatory@mwiental variables.

— Depict a map of hunting preference area for thertSbed Eagle based on
the Corine land cover classes and hunting behaviour

— Produce a potential available prey distribution rfapthe Short-toed Eagle
based on the prey snake species distribution antingupreference maps.

— Generate a habitat suitability model for the Shoed Eagle based on the
all environmental variables and potential food kalality.

— Generate a habitat suitability model for the Shoed Eagle based on the
all environmental variables, except food.

— Measure the goodness of fit and compare the pregliability of the both
(all-inclusive and food excluded) distribution méxle

1.3. Research Questions

Using the knowledge of the unique hunting behavifuthe Short-toed Eagle, does
considering the potential available prey distribati significantly increases the
AUC, in the habitat distribution model of the Shtwéd Eagle?

— Which subset of the explanatory environmental fis;tosignificantly
contributes to increase the predictive power ofaheh of the prey species
probability of occurrence?

— Which land cover classes are preferred to be fardge the Short-toed
Eagle?




- Which subset of the explanatory environmental fis;tosignificantly
contributes to increase the predictive power of Sieort-toed Eagle
probability of occurrence?

— Whether considering potential prey availability madpcreases the
predictive power of the probability of occurrencedal of the Short-toed
Eagle significantly?

1.4. Research Hypotheses

Hypothesis 1: Testing the concept that the selesiibdet of predictors, significantly
contribute in a predictive multiple logistic regseamn model of the prey species?
HO = The selected subset of predictors do not fogmtly contribute in a predictive
model of the prey species?
Hypothesis 2: Testing the concept that the Shad-6agle selects the foraging and
hunting sites intentionally?
HO = Short-toed Eagle selects the foraging sitedaaly.
Hypothesis 3: Testing the concept that the selesibdet of predictors, significantly
contribute in a predictive model of the Short-té&egjle?
HO = The selected subset of predictors do not tmritr significantly in a predictive
model of the Short-toed Eagle?
Hypothesis 4: Testing the concept that considetirgg potential prey availability
increased the predictive power of the Short-toegl€a distribution model?
HO = There is no significant difference in AUC beemethe model which does not
take into account potential prey hotspots map, taerdmodel which does take into
account potential prey hotspots map.

1.5. Research Outputs

- Spatial distribution regression equation and c@wadent distribution map
for the Montpellier snakeMalpolon monspessulanus Spain.

- Spatial distribution regression equation and c@uadent distribution map
for the Ladder snakdrhinechis scalarjsin Spain.

- Spatial distribution regression equation and c@wadent distribution map
for the Horseshoe Whip Snakdgmorrhois hippocrepjsin Spain.

- Foraging preference map of the Short-toed EaghMdlaga province.

— Distribution map of the potential available prey fbe Short-toed Eagle in
Malaga province

— Spatial distribution models and correspondent ihistion maps for the
Short-toed EagleGircaetus gallicuy considering potential available prey
and explanatory environmental variables in Malagevince.




2. Materials and Methods

There were two different scales of modelling sethis research. (1) Broad scale
modelling, to generate the habitat suitability medend maps of three prey snake
species of the Short-toed Eagle, based on theadaispecies presence/absence data
and explanatory environmental predictors. (2) Latale modelling, to generate the
habitat suitability models of the Short-toed Eadgbased on the collected nest
locations, explanatory environmental predictor ahd downscaled prey species
habitats. Figure 2.1 illustrates the general apgrad this study.

,

J
~
7

Species data Species data
presence/absence Presence only

(Three prey snake species) (Short-toed Eagle nests)

Explanatory Environmental

Explanatory Environmental
Variables ™ Variables

(Predictors)

ﬁ Modelling

4

Habitat Suitability Map of
Short-toed Eagle

(Predictors)

A
,—[ Modelling }4—4
@ R
4 /1
K

NIVdS
ajeds-peoag
r\ f\

Buijeosumoq
|

Habitat Suitability Map of
Snake Species 2

aouinoad YOVIVIN
9|eds-|ed0

Habitat Suitability Map of
Snake Species 3
\ J \.

Figure 2-1: General Approach of the Study

.

This chapter describes the materials and methodheofresearch and these are
presented as follows;

— Research workflow and steps

— Study area

— Species distribution data

— Predictor variables and ancillary data

— Statistical analysis and spatial modelling

— Assumptions and sources of errors

- Employed Software and Instruments




2.1. Reseach workflow

There were 13 steps accomplished to approach seaneh objectives and to answer
the research questions. (1) Data preparations amt palue extraction for three
snake species from Spain geo-database, (2) miiheatity diagnoses, (3)
performing multiple logistic regressions and enmirental favourability function
(Real et al., 2008) based on the species presésemiee and explanatory
environmental predictors, (4) downscaling the modeld generating habitat
suitability maps of three prey species in the lezale, (5) validating the local-scale
habitat suitability of three snake species by tbklfcollected data, (6) defining the
favourable hunting land covers, (7) generatingpbiential available prey map base
on the results of thé™and &' steps, (8) Data preparations and point value etitra
for the Short-toed Eagle nests from Malaga provingeo-database, (9)
multicollinearity diagnoses, (10) distribution mddey by Maxent® (Phillips et al.,
2006) based on the nest locations and explanatoviyommental predictors, (11)
distribution modelling by Maxent® based on the restations and potential food
availability resulted in the"7step, (12) validating the local-scale habitatahility
models resulted in the $Gand 11" steps and (13) comparison the predictive ability
and measure the goodness of fit of models. (fi@uPe)
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2.2. Study Area

There were two different study areas set for teisearch as well as two different
spatial scales; (1) Malaga Province as the stuéw &f the Short-toed Eagle to
compare the models and test the main hypothesig)n8pain as a study area to
model habitat suitably of three prey snake species.

The Malaga province is located on the southerntcofiSpain in the autonomous
community of Andalusia. It is bordered by the Medianean Sea to the South, and
by the provinces of Cadiz, Seville, Cordoba andnada. The Malaga province is
extended from 3°450"W about 165 kilometres to 5°2® "W and from 36°182"N
about 100 kilometres to 37°B/'N. Its area is 7308 square kilometres. Figure 2-1
shows the geographical location of the study aféa. prevailing climate of Malaga
province is a warm Mediterranean with dry and wérng summers with short mild
winters. Annual average temperature varies betwk®rdegree Celsius and 19
degree Celsius. Precipitation varies greatly fo®0 #illimetres in northern plains
to 1700 millimetres in western forests, generallfjdrm of rain (Font, 2000). Wind
regimes and other meteorological phenomena in Mafagvince are analogous to
the strait of Gibraltar and Mediterranean Sea. géegraphical relief varies greatly
from sea level to almost 2000 meter above (USGS)3R0 Sclerophyllous
vegetations and non-irrigated arable lands cover third of study area. Olive
groves are widespread in Malaga province followgdother principally occupied
land by agriculture (EEA, 2000).

Spain lies in the lberian Peninsula and occupiesoasiderable part of the
Mediterranean basin. It borders to the North on Bay of Biscay, France and
Andorra; to the East, on the Mediterranean; toSbath, on the Mediterranean and
the Atlantic, and to the West on the Atlantic arwdtégal. Spain is characterised by
mild wet winters and by warm to hot/dry summerss Iituated in a temperate area,
between latitudes 43 47' 24"N. and 36 00' '3#rf8l. between longitudes 7 00' 29" E.
and 5 36' 40" W (Bario, 2006YVith only 26% of the land arable, olive growing
features is the main agricultural output of theigagfollowed by other perennial
crops such as citrus, almond and more recentlgsviSince Spain’s incorporation in
the European Union, agriculture has been boostesibgidies, with citrus and olive
production being promoted. (ITC_report, 2002) Fgar3 shows the geographical
location of the study area.

Malaga province has a well studied breeding pomradf the Short-toed Eagle in
Andalusia, Southern Spain, compared to other poegnApart from that, inter-
institutional interests between ITC and Malaga @msity facilitated the study of
these areas.




Figure 2-3: Study Area — Spain (top) and the Malag#rovince (bottom)

2.3. Species Distribution Data

Species data were collected in two different s¢dlesad national scale based on the
available atlases and referenced and local provsnake based on the fieldwork and
sampling. This section describes the specificatibthe Short-toed Eagle breeding
locations and the prey snake species presencetzbdata.
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2.3.1. Short-toed Eagle Species Occurrence Data

To obtain the Short-toed Eagle’s nests locatior ihtensive field visits was
conducted from 12 September to 15 October 2008 in Malaga province.
Nongovernmental organisations and local ornithatsgiwere asked to help and
participate by pointing the nests location and dingwthe territories at the given
orthophoto images. Ornithologists 820 de Mijas/Ekologistand SEO de Ronda
indicated monitoring nests on the maps, as weliresire nest-locations. After the
field visit and positioning the nest, all the pasis (n=32) were confirmed by the
research field advisobr. Antonio Roman Munoz Gallefdinally. Geographical
positions of the raptor nests were requested nbetpublished. They are archived
on the ITC intranet, under ttgioFrag-ITC project data security rules. Figure 2-4
shows the distribution of the collected Short-toEdgle nests in the Malaga
province. These presence-only data were used terggnthe distribution models in
Malaga province.

260000 360000
n

41000

Mediterranean Sea

0 50
Kilometers

260000 360000

Figure 2-4: Distribution of the collected Short-toel Eagle nests in Malaga province

Long—term absence/presence data of the Short-taght Bvas downloaded from the
Atlas of the breeding birds of Spa{Marti and Del Moral, 2003) in Portable
Document Format (PDF) format, were digitized andessd into the Spain geo-

2 http://www.fundacionmigres.org/

8 http://www.itc.nl/research/themes/biofrag/defaudpa

11



database. Data for this collective work has beahegad by volunteers with field
work in the period 1998-2001 and can be consider®da reliable source of
distribution information completely independent rfro published maps. The
presence/absence 10 x 10 kilometres UTM squared9@6) were converted
randomly to the presence/absence points. The $iwdt-Eagle breeds in 2638
peninsular Spanish grid cells. These presence/abstata were employed to assess
the validation of the final model resulted in losable (Malaga) on broad-scale
(Spain).

2.3.2. Snake Species Occurrence Data

Long—term absence/presence data of the three spakdées was downloaded from
theRed list of Amphibians and Reptiles of Spg#ileguezuelos, 2003) and entered in
the Geo-database. Same as the Atlas of breedidg dirSpain, this atlas is based on
the data that has been gathered in the period P993- The presence/absence
10x10 kilometres UTM squares (n=4930) were condertandomly to the
presence/absence pointdalpolon monspessulanus present in 2481Rhinechis
scalarisis present in 2272 artdemorrhois hippocrepis present in 992 out of 4930
peninsular Spanish grid cells. Based on these datsence/absence data,
distribution models and maps of the mentioned sispkeies were generated.

To validate the national broad-scale models onllscale modelling, snake species
presence points were collected during field worean&m sampling rules were set
to cover Malaga province. Weather conditions fostamce rain, wind and low
temperatures, forced to “drive more” strategy tlbeod road killed snakes, as well as
time limitation. Beside the spatial resolution loé tstudies (1km) and vast study area
all the asphalt roads were covered in Malaga po&vikach snake has recorded with
a brief description of the land cover, time and tlveacondition as well as species,
gender and age. Totally 124 sampling points wetect Hemorrhois hippocrepis,
Rhinechis scalarisand Malpolon monspessulanusere found in 18, 13 an&3
sampling stations respectively. Figure 2-5 showes distribution of the sampling
points in Malaga province

2.4, Predictor Variables and Ancilliary Data

Four groups of explanatory environmental varialffgedictors) were managed into
the structure of personal geo-database for Spamational scale, so did for Malaga
province in large scale. Climatological variabl€@pographic variables, Biological
variables and anthropogenic variables were orgdnisethe same extend and
resolution. All the layers in the scale of Spainrevalefined iInGCS WGS 84
projections. The layers in the scale of Malaga wieéined inED50 UTM 30N
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projection. All the predictor maps were convertedASCII format to communicate
with other software.

4100000

260000 360000

Figure 2-5: Distribution of the sampling points for prey snake species in Malaga province.
Hemorrhois hippocrepis, Rhinechis scalaris and Malpolon monspessulanus are shown by orange, red
and light green circles respectively.

2.4.1. Climatological Variables

Climatological variables were downloaded directtgni WorldClim (Wordclim,
2008) online datasets. WorldClim is a set of glotlahate layers (climate grids)
with a spatial resolution of a square kilometreeyfttan be used for ecological
mapping and spatial environmental modelling. Teraporesolution of the
WorldClim variables is monthly average from 195@@00. (Hijmans et al., 2005)
Variables included are monthly total precipitatiand monthly mean, minimum and
maximum temperature, and 19 derived bioclimatidaldes. Bioclimatic variables
are derived from the monthly temperature and rdin&ues in order to generate
more biologically meaningful variables. The bioditic variables represent annual
trends, seasonality and extreme or limiting enwvinental factors (Beaumont et al.,
2005). There are 67 predictors listed in the clofugical group of variables.
Appendix | shows the table of predictor variabled ¢heir specifications.

2.4.2. Topographic Variables

Topographic variables were derived from the SRTM@$, 2003) data which is
available online. The Shuttle Radar Topography Mis$§SRTM) obtained elevation
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data on a near-global scale to generate the masplete high-resolution digital
topographic database of Earth. SRTM consistedspeially modified radar system
that flew onboard the Space Shuttle Endeavour duen 11-day mission in
February of 2000. (Rodriguez and Daffer, 2005) 8lapmd aspect of slope were
calculated using the spatial analyst toolbox of Map. The aspect degree was
converted to Southnessvalue in which instead of pixel value from -1360 degree
(N to N!), they were converted to 1 to 180 scalesuees (N to S). The highest the
value was the more south direction slope facingA##o approximate distance to
main rivers and approximate distance to the Mediteyran Sea (coastline) was
calculated as additional the raster layer to thisug of variables. There are 5
predictors listed in the topographic group of viales. Appendix | shows the table of
predictor variables and their specifications.

2.4.3. Biological Variables

Biological variables in this research are limitecaverage scaled NDVI per every 10
days obtained and analysed from thegetation Program (Vegetation-Programme,
2008) The Vegetation Programme is conceived to allovlydeonitoring of
terrestrial vegetation cover through remote sensihgegional to global scales. The
instrument and associated ground services for datdival, processing and
distribution are operational since April 1998. Tiirst vegetationinstrument was
part of the SPOT 4 satellite and a second payleegktation 2is now operationally
operated onboard SPOT 5. There are 36 predictiegilin the biological group of
variables. Appendix | shows the table of predistariables and their specifications.

2.4.4, Anthropogenic Variables and Land Cover

The Corine land cover map, (EEA, 2000) has been classifigd th classes of
suitability based on expert knowledge to form orfettee important predictor
variables. Finally, approximate distance to highsyagpproximate distance to
railroad, and approximate distance to urban andstl areas were derived from
1:1000000 national topographic maps and categorizednthropogenic variables.
There are 4 predictor variables listed in the ambgenic group of variables.
Appendix | shows the table of predictor variabled ¢heir specifications

2.4.5. Ancillary data

Quikbird (DigitalGlobe, 2004) orthophoto images @exmployed to facilitate the
public participatory during fieldwork. NGOs and #rnithologist were asked to
draw territories and location of the Short-toed IEatgst on the hardcopies during
field work and site visits. At the end all the reepbints were visited by person and
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the accurate GPS positions were recorded. Theaees were also digitized and
saved on geo-database.

2.5. Statistical analysis and spatial modelling

Briefly, to select a subset of significant predist@and to avoid multicollinearity
effects of correlated predictorgariance Inflation Factors (VIFyvas calculated and
the collinear predictors were eliminated one by émesach of the iteration for
dataset; (1) broad-scale Spain and (2) local-séédéaga province explanatory
environmental variables. Thenhultiple Logistic Regressionf presence/absence
three snake species data was preformed on thetsob#ee resulting significant
broad-scale predictor variables, using backwargvase procedures to obtain
models, where all predictors are significant. Mehitwva probability of occurrence
of the Short-toed Eagle nesting sites has been gtmtpby Maximum Entropy
method based on the presence-only data in Malagainze and independent
variables. This section describes the statisticathiods that have been performed in
this research.

2.5.1. Multicollinearity Diagnoses

A high degree of multicollinearity among the predis results the
disproportionately large standard deviation ofréngression coefficients which leads
to Type Il error in term of accepting the hypotisegtiat the coefficients are zero
even when the associated variable is important Xplagning variation in y
(ITC_handouts, 2008). Sets of environmental védemboften exhibit varying
amounts of linear dependencies which results ioren fof ill-conditioning in the
correlation matrix. Subsequently, the usual leagtages analysis of a regression
model can dramatically become inadequate (Ower)1S$&ce linear dependencies
may not be restricted to only two predictors analysf pair wise correlations
between variables may not be sufficient. Variano#lation Factor (VIF) is a
common indicator used to detect multicollinearitoptgomery, 1982) and is
calculated by the following mathematical expression

VIF = % (2-1)

1-R5

Myers (1990) suggests that values above 10 aresiamefor concern (Bowerman
and O'Connell, 1990, Myers, 1990).

2.5.2. Multiple Logistic Regression

Logistic regression is a model used for the préatictof the probability of
occurrence of an event by fitting data to a logistirve. It is a generalized linear
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model used for binomial regression. It makes ussewtral predictor variables that
may be either numerical or categorical (AgrestD20 For example, the probability
of absence or presence of a species might be peddiom knowledge of its habitat
and ecological behavior. In logistic regressiorstéad of prediction the value of a
variableY from a predictor variableX, or several predictor variablgs, in multiple

linear regression, the probability ¥foccurring is predicted by given known values
of X, orX,.

1

P(y) = Trc)
P(Y)is the probability ofY occurring,e is the base of natural logarithms. TR&)
can take as an input any value from negative iyfitu positive infinity, whereas the
output is confined to values between 0 and 1. Th@kley represents the exposure
to some set of predictor — here are explanatorjremmental variables- , whilB(y)
represents the probability of a particular outconieere is occurrence of species- ,
given that set of predictors. The varialgles a measure of the total contribution of
all the predictors used in the model and is defiasd

Y=B+ BX + L%+t Bk (2-3)
o is called theconstantand ,, S, f3, and so on, are called thegression
coefficientsof Xy, X, X3 respectively.
To assess whether a model fits the data, compaattime observed and predicted
values are used. The log-likelihood ) is used as a measure. The log-likelihood is
therefore based on summing the probabilities aatetiwith the predicted and
actual outcomes. The large values of the log-liicid statistics indicate poorly
fitting statistical models (Field, 2006). By addimge or more predictors to the
model, the improvement of the model can be computiede that multiplying this

(2-2)

value by 2 gives the result a chi-squapez() distribution and so makes it easy to

calculate/estimate the significance of the valuegks, 1998).

The R-statistic is the partial correlation between theécome variable and each of
the predictor variables and it can vary betweeand 1. A positive value indicates
that as the predictor variable increases so dae$ikblihood of the even occurring
and vice versa. If a variable has a small valu& dien it contributes only a small
amount to the model (Field, 2006).

Like t-test in linear regression the Wald statistics aixa whether thg-coefficient
for that predictor is significantly different fromero. Then we can assume that the
predictor is making a significant contribution teetprediction of the outcomé&)(
The Wald statistics should be used cautiously wherregression coefficieng)(is
large and so inflated the standard error. The tioflaof the standard error increase
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the probability of rejecting a predicator as besignificant when in reality it is
making a significant contribution to the model (€yip error) (Field, 2006). Multiple
logistic regression of presence/absence specitg#bditon (section 2-3-2) has been
performed on the subset of resulting significardictors using backward stepwise
procedure to obtain models where all variables ddifgnificant predictive power.

2.5.3. Environmental Favourability Functions

The number of presences and absences in the stedywas not equal, so the
probability values from multiple logistic regresssopotentially were biased to the
group with the greatest number. To overcome tlsisesenvironmental favourability
function performed (Real et al.,, 2006). Castro let(2008) described that this
function assesses the local variation in presemobagbility with respect to the
overall species prevalence, and that thereforedyigjeographical favourability
values for the species independently of the pragof the initial presence/absence
rate in the study area (Castro et al., 2008).

Environmental favourability could obtain directlyom the multiple logistic
regression probability values using the followingnula

F:( P(y) an P ] (2-4)
1-P(y) ) (n, 1-P(y)

N, is number of presences$), is number of absences aRy)is the probability of

occurrence form the equation 2-3.
2.5.4. Model Building with Maxent®

The estimated Maxent probability distribution igperential in a weighted sum of
environmental features divided by a scaling cortstarensure that the probability
values range from 0 to 1 and sum to 1 (Yost et28l08). The Maxent probability
distribution takes the form

e
ZA
A is a vector of n real-valued coefficients or featweights, f denotes the vector of

g,(x) = (2.5)

all n features, andzZ, is a normalizing constant that ensures tligtsums to 1.

Maxent is a maximum-likelihood method that genesatee probability distribution
over the pixels in a grid of the modelling areaeTgrogram starts with a uniform
distribution, and performs a number of iteratioesch of which increases the
probability of the sample locations for the speciEse probability is displayed in
terms of “gain”, which is the log of the number grfid cells minus the log loss
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(average of the negative log probabilities of thmple locations). The gain starts at
zero (the gain of the uniform distribution) andrie&ses as the program increases the
probabilities of the sample locations. Phillipsaét(2006) explained that the gain
increases iteration by iteration, until the chafigen one iteration to the next falls
below the convergence threshold, or until maximterations have been performed.
The gain is a measure of the likelihood of the dampFor example, if the gain is
0.8, it means that the average sample likelihooekfg0.8)32.22 times higher than
that of a random background pixel. The uniformriisition has gain 0, so the gain
can be interpreted as representing how much bitgedistribution fits the sample
points than the uniform distribution does. The gairlosely related to “deviance”,
as used in generalized linear models. The sequemiate algorithm is guaranteed
to converge to the optimum probability distributiand because the algorithm does
not use randomness, the outputs are determinizhidlips et al., 2006).

To control over-fitting, Maxent constrains the esited distribution so that the
average value for a given predictor is close to é@mepirical average (within
empirical error bounds) rather than equal to itisTdmoothing procedure is called
regularization and users can alter the parametepstentially compensate for small
sample sizes. The Maxent distribution is calculat®ger the set of pixels
representing the study area that have data famaironmental variables. However,
if the number of pixels is very large, processimgetincreases without a significant
improvement in modelling performance. For that o@asvhen the number of pixels
with data is larger than 10,000 (e.g. this resgaechrandom sample of 10,000
“background” pixels is used to represent the vgrigft environmental conditions
present in the data. The Maxent distribution issthbemputed over the union of the
“background” pixels and the samples for the spetiemg modelled. Maxent's
predictions for each analysis cell are represeasecumulative values representing a
percentage of the probability value for the curranalysis cell and all other cells
with equal or lower probability (Yost et al., 2008he cell with a value of 100 is the
most suitable, while cells close to 0 are the lsaggble within the study area. The
formulaic description of the Maxent modelling prdoee applied to species
occurrence data and a description of the Maxengrara (version 3.2.1) used to
perform the modelling in this study is given by Ikps$ et al. (2006).

As far as the presence-only distribution data fue Short-toed Eagle nests were
available in Malaga province (section 2-3-1), Maxerethods were employed to
perform analysis on the subset of resulting sigaiit predictors. This analysis was
accomplished by identifying which variables weresmionportant in predicting that
habitat. Maxent's Jackknife test of variable impode can be used to evaluate the
relative strengths of each predictor variable (Yetsal., 2008). The training gain is
calculated for each variable alone as well as ttop dn training gain when the

18



variable is omitted from the full model (Phillipg al., 2006). Therefore, the
modelling process started with a full model thabtained all predictor variables
(n=8). Then, the variable with the lowest decrdaghe average training gain when
omitted was removed and the remaining variablegwsed to build the model.
Functions were selected to automatic perform agg recommended in user help.
Model settings that train the algorithm to get elés convergence are the maximum
number of iterations, set to 1000, the convergehceshold, set @0~ and the
regularization multiplier was set to the value & fllowing Yost et al (2008). The
full set of presence points (n=32) were used tddbilie final model to obtain the
best estimate of the species distribution and fogating a GIS probability
distribution map.

2.5.5. Model Evaluation

Two statistical measures were employed to compat&idual species predictions

with ‘ground truth’: (1) Kappa statistics (CoherQ6D) by detecting the optimal

threshold for cutting the probabilistic predictionms#o presence-absence on the
calibration dataset and using this optimal threghfolr calculating Kappa on the

evaluation dataset (Guisan, 2000) and (2) the hiotdsndependent Receiver

Operating Characteristic (ROC) approach, by catmdathe area under the ROC
curve (AUC) as the measure of the prediction sueces

Cohen’sk provides a measure of the proportion of all pdssifases of presence or
absence that are correctly predicted after accogritor chance effects. It is thus
considered as a simple, effective, standardised apgropriate statistic for

evaluating or comparing presence-absence modelsngdMat al., 2001). The

equation for is:

Pr, - Pr,
K=—"2>—=
1-Pr,

Pr,is the relative observed agreement among raterseebd and ground truth),

(2-6)

and Pris the hypothetical probability of chance agreemesing the observed data

to calculate the probabilities of each observedaanly saying each category. If the
raters are in complete agreement tken 1 and if there is no agreement among the
raters then < 0.

The receiver operating characteristic (ROC) analygis employed to evaluate how
well the model performances compared to randomigtieds. The area under the
ROC (AUC) is an index of performance because itvigles a single measure of
overall accuracy that is independent of any pdaicthreshold (Deleo, 1993). The
ROC curve is therefore a graphical representaticthe trade-off between the false
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negative and false positive rates for every possivbbability cut-off (Zarri et al.,
2008). The ROC plot was generated using SPSS® lemdAUC and its standard
error were calculated. The results are reportedd€ = its standard error along
with the significance of a test that the area 5 0eb that the model result does not
differ from chance.

“However, When ROC analysis is used on presenceg-gata, the maximum AUC
is less than one (Wiley et al., 2003), and is sendibr generalist (wider ranging)
species. The maximum achievable AUC can be shovoe tequal td.- a/2 wherea

is the fraction of pixels covered by the speciéstribution.” (Yost et al., 2008)

Model performances evaluated by keeping out a sulifsthe presence points for
training and use the remaining records to testéisalting model. Performance can
vary depending upon the particular set of datavelth from building the model for
testing, therefore, 10 random partitions of thespree records were made to assess
the average behaviour of Maxent, following Phillgtsal. (2006). Each partition was
created by randomly selecting 85% of the total @mes points (n=27) and 1000
random background points selected as negative nosta (pseudo-absence) as
training data. The remaining 15% of presence pdimt$) were used for testing the
model.

The Maxent models were also evaluated with therhiabtest to determine whether
a model predicted the test localities significartitter than random (Phillips and
Dudik, 2008). The binomial test requires that thrdds be used in order to convert
continuous predictions into suitable and unsuitadrieas for the Short-toed Eagle.
After applying a threshold, model performance can ibvestigated using the
extrinsic omission rate, which is the fraction esttlocalities that fall into pixels that
are predicted as not suitable for the Short-toeglédEand the proportional predicted
area, which is the fraction of all the pixels tlzae predicted as suitable. The p-
values associated with a cumulative threshold &, dive and ten are reported to
show trend as the threshold varied.

Finally the success of the model was evaluatedifyaVinspection as well. A good
model should produce regions of high probabilitgttbover the majority of presence
records and areas of low probability should contewm to no presence points.

2.5.6. Model Comparison

The Akaike information criterion (AIC) and the Scamz information criterion
(SIC) are two objective measures of a model's bilitg and goodness of fit
(Koehler and Murphree, 1988). “They are groundedhi& concept of entropy, in
effect offering a relative measure of the inforroatlost when a given model is used
to describe reality and can be said to describe ttade-off between bias and
variance in model construction” (Burnham, 1998)eTAIC and SIC are not just
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tests on the model in the sense of hypothesistgstather they are tools to select
the proper models. Given a data set, several congpehodels may be ranked
according to their AIC or SIC, with the one havitihg lowest value being the best
(Burnham, 1998).

AIC = IOQ(EEJ + K_-2 + 2K (2-7)
n n n n

SIC=I09(§EJ+IoanK 720, Kxlogn (2-8)
n n n n

In whichK is the number of estimated coefficients, n isnhenber of observations,
SSEstands for error sum of squares afigs the log-likelihood of the models.
Koehler and Murphree (1988) discussed that it efgyable to apply the SIC test
which leads to lower order models for predictioro@iler and Murphree, 1988).

2.6. Assumptions and source of errors

It is assumed that the three selected snake spa@ebke only source of food for the
Short-toed Eagle and they are fully active duringebling session in Malaga
province. Also breeding site and hunting sites loé tShort-toed Eagle were
considered the same habitat. Territorial behaviafirthe Short-toed Eagle are not
taken into the account. Operational source of srgmes to the field work, using
GPS and digitizing steps. Accuracy of predictord amen the species distribution
atlases which are available on the correspondinigsitess should be take into the
account. Biases have already discussed in abovhodgtsections and more in
discussion chapter. So some spurious significasckkely, but the results seem
reasonable and consistent with theory and fiel&otagions.

2.7. Employed Software and Field Instruments

The following technical software applications weraployed in this research under
the ITC authorized licences, as well as the gersffade utilities on Window XP®
platform; SPSS® version 15.0, ESRI® ArcMap® Arcl®f®.3, ESRI® ArcPad®
8.0 and MaxEr® 3.2.1%

HP iPAQ PDA Classic Handheld and 12 parallel chémBéuetooth GPS receiver
recorded the field data position with 15 metersuagcy in 2 dimensions (x,y).

4 Maximum entropy modelling of species geographitritigtions
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3. Results

This chapter describes the main findings of theaesh and discuses them briefly.
These are presented as 3 sections:

- Environmental favourability of the snake species

- Potential food availability

— Habitat suitability modelling of the Short-toed Eag

3.1. Environmental Favourability of the Snake Species

As explained in the first chapter the Short-toedI|Eg@roved to be a specialist feeder
in southern Spain, as snake prey comprised alnt¥st& the diet, of which most of
them belong to only three specMsalpolon monspessulanus, Rhinechis scalarid
Hemorrhois hippocrepigGil and Pleguezuelos, 2001, Vlachos and Papagsargi
1994). This section explains the outcome of thea datocessing to obtain the
predictive spatial distribution models and envir@mtal favourability maps for each
of the three prey snake species in Spain. Theviatig abbreviations were used to
make the addressing to the species more sirgpierfor Malpolon monspessulanus,
Srsfor Rhinechis scalariand Shhfor Hemorrhois hippocrepis.

The three snake species presence/absence datsef@panish 10 km UTM grids
(n,. =4930) were obtained from thatlas of the Red List Reptiles and Amphibians

of Spain(Pleguezuelos, 2003). Table 3-1 shows the numb&yTdM grids with
recorded snake species presence or absence anthalpercentage of cells which
contained the species. The snake occupanc$rfanandSrswere 50.2% and 46.1%
respectively. This means that they are presentmmost half of the Spanish 10km
UTM grid cells.

Table 3-1: Number of Absences/Presences of SnakeeSes in Spain UTM grids (=4930)

Malpolon Rhinechis Hemorrhois
monspessulanug scalaris hippocrepis
(Smm) (Srs) (Shh)
Number of Cells tagged as “Presence” 2481 2272 992
Number of Cells tagged as “Absence” 2449 2658 3938
Snake occupancy % 50.3 46.1 20.1
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The distribution maps of
presence UTM grid (figure
3-1) illustrate that they are
distributed in a wide range.
The Shh species mainly
concentrates its niche to
southern areas. By visual
interpretation it is clear that
the distribution of snake
species significantly
decreases in the north-west
of Spain, mainly the coastal
zone of Atlantic Ocean and
the Bay of Biscay. Figure
3.1 shows the distribution
of snake species in Spain.
Compiling the distribution
maps with some climatic
layer shows that these
species are widely thrive
climatologically as well as
spatial distribution. (Table
3-2)

Malpolon monspessulanus

Rhinechis scalaris

Figure 3-1: Spatial distribution
of the three snake species in
Spain. Malpolon monspessulanus
(top), Rhinechis scalaris (middle),
and Hemorrhois hippocrepis
(bottom). The red grids represent
observed occurrence/presences
Hemorrhois hippocrepis (Pleguezuelos, 2003).

3.1.1. Independent Predictor Variable for the Snake Spece

Multicollinearity diagnoses were performed on theplanatory environmental
variables dataset of whole Spain for each snakssdban presences/absences, as
described in section 2-2-1. From the resulting i€guation 2-1), it was concluded
that the existence of multicollinearity was notrsfigantly high since none exceeded
10 as the rule of thumb. (Montgomery and Peck, 1@8@ hence all the variables
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could be used in subsequent analysis. Appendix hibws the significantly
independent sets of predictors and the correspgndifiF values after
multicollinearity diagnoses for each snake speitie3pain.

Table 3-2: Brief summary of environmental variablesof the observed snake species

s ~ = o 38

o 3 D= @ ) SU| a2

= 3 3 @ > D = D = o =

882|335/ 33 | 28 |38 88

as2|%28%| %5 | €T |32T| 21

cZ3(3g3| 2% | 85 |3%B| 58

23S|eagc| 53 @5 |25 25

8o |383| 28 | 25| §3| 83

~=z (=2 = | 2& o| 3

g3 |8° |2 |3 =7 3
Malool Mean 3 29 13 67 76 166
alpolon -
monsepessulanus | Minimum 0 13 7 10 15 64
Maximum 87 36 18 311 311 646
Mean 3 30 14 65 73 165
Rhinechis scalaris Minimum 0 18 50 12 17 65
Maximum 86 36 18 259 274 645
y hoi Mean 4 31 16 38 45 182
emorrnois L
hippocrepis Minimum 0 22 52 10 15 65
Maximum 85 36 18 180 216 404
3.1.2. Statistical Analysis and Spatial Modelling

Multiple logistic regressions of presence/absenaé dusing backward stepwise
procedure were performed on the subset of the thegukignificant predictor
variable (table 3-3) to obtain models where aliatales added significant predictive
power. The parameters in the logistic regressionatgn were estimated by
maximum likelihood and tested by the test of Walkglction 2-2-1).

To establish differences between favourable andawmifrable pixels, the
favourability values were assigned into three @asShus, pixels with predicted
favourability values higher than 0.8 were considees favourable areas for the
species, while those with values lower than 0.2ewawnsidered as unfavourable
(Munoz et al.,, 2005, Corsi et al.,, 2004). Remainsguares were assessed as
intermediate favourability areas (Real et al., 2005

3.1.2.1. Malpolon monspessulanus

Statistical procedure resulted in a final model $onn(Malpolon monspessulanus
species in the f6backward Wald step as below. Table 3-3 shows tmensary
results of the logistic regression analysis carded on GIS data layers f@&mn
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species. Figure 3.2 illustrates the environmera&brability of Smn Species in
Spain.
Y.

smn ~ Constant + B1 x (NDVI mid March) + B2 x (Prectption in March)
+B3 x (Precipitation in October) + B4 x (Maximum ngerature in
February) + B5 x (Mean temperature in January) + BdMean temperature
in December) + B7 x (Mean temperature in May) + B8 (Minimum
temperature in March) + B9 x (Minimum temperatuneFebruary) + B10 x
(Precipitation Seasonality) + B11 x (Annual meammfgerature) + B12 x
(Annual precipitation) + B13 x (Isothermality) + Bix (Elevation) + B15 x
(Slope)

Then:

P(Ysmn ~ logit (Yg,) = log (1/(1+exp(Yg,))
And:

I:Smm - P(YSmn)a

@ Number of presences and absences are equal

Table 3-3: Summary results of the logistic regressn analysis forMalpolon monspessulanus

Variables B SE B) Wald P
Constant -7.93621 1.672 22.524

NDVI mid March B1 0.00301 0.001 8.094 0.004
Precipitation in March (mm) B2 -0.02065 0.003 48.558 0.000
Precipitation in October (mm) B3 0.02016 0.004 27.753 0.000
Maximum temperature in February (°C x 10)B4 -0.00002 0.000 4.361 0.037

Mean temperature in January (°C x 10) B5 -0.00002 0.000 7.900 0.004
Mean temperature in December (°C x 10) | B6 0.00002 0.000 6.133 0.011

Mean temperature in May (°C x 10) B7 0.16461 0.014 137.364 0.000
Minimum temperature in March (°C x 10) | B8 -0.00001 0.000 8.269 0.004
Minimum temperature in February (°C x 10) B9 -0.00001 0.000 13.708 0.000
Precipitation Seasonality B10 0.02273 0.006 15.732 0.000
Annual mean temperature (°C) B11 -0.09784 0.011 81.304 0.000
Annual precipitation (mm) B12 -0.03692 0.005 45.243 0.000
Isothermality B13 -0.10116 0.029 12.178 0.000
Elevation (m) B14 0.00477 0.000| 134.584 0.00p
Slope (%) B15 0.02907 0.007 16.571 0.000

The AUC E0.717) and its standard error@.007 confident level 95Y%for the
performed model were calculated using non-paramapproaches. Cohen’s Kappa
was 0.457 ¢ut value= 0.3 which showed slight agreement. Overall accuraag w
72.0%, expected accuracy was 49.0% so the mod&rperd 23.0% better than a
random model.
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Figure 3-2: Environmental Favourability map of Malpolon monspessulanusin Spain

Table 3-4: Cross tabulation of field collected (Sepand Oct. 2008) samples ofMalpolon
monspessulanus and environmental favourability values generated § the model.

Sa_mple Date X v Note Favourability
point ID value from map
Smn 1 Sep-08| 267516 4052926 Road killed, Aftern@ouidy 0.68
Smn 2 Sep-08| 399888 4085313 Evening, Cloudy 0.75
Smn 3 Sep-08| 309576 4092942 Road killed, Aftern@oudy 0.59
Smn 4 Oct-08| 309899 4093590 Road killed, Noon, Rain 0.79
Smn 5 Oct-08| 375787 4085065 Road killed, Afternddoudy 0.69
Smn 6 Oct-08| 380061 4085008 Noon, Partly cloudy 90.6
Smn7 Oct-08| 379968 4081858 Afternoon, Sunny 0.72
Smn 8 Oct-08| 328478 4095861 Road killed, Afternddoudy 0.65
Smn 9 Oct-08| 325908 4083134 Road killed, Evenilgudy 0.63
Smn 10 Oct-08| 325373 4080943 Road killed, Afterndainy 0.67
Smn 11 Oct-08| 331443 4067373 Road killed, Afterndioudy 0.63
Smn 12 Oct-08| 364029 4094745 Road killed, MornRainy 0.71
Smn 13 Oct-08| 365300 4094243 Afternoon, Sunny 0.72
Smn 14 Oct-08| 365597 4094093 Road killed, Afterndartly 0.72
Smn 15 Oct-08| 36596% 4093835 Road killed, Afterndainy .72

To downscale the national scale model to localesdak final equation was applied
on the Malaga province geo-databank to obtain twir@nmental favourability map
for Malpolon monsepessulanust a higher spatuial resolution for the Malaga
province. To validate the downscaled map, collegieihts 6=15) during field
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work were cross tabulated by the favourability ealwof the corresponding pixels.
All the sampling points n(=15) were located in intermediate favourable areas

(Fsmm> 0.2). Table 3-4 shows the sample points andesponding favourability

values. Figure 3-3 illustrates the distributiontioé observed species points on the
environmental favourability map.
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Figure 3-3: Observation points and downscaled envinmental favourability map of Malpolon
monspessulanusin Malaga province.

3.1.2.2. Rhinechis scalaris

Statistical procedure resulted in the final modelSrs (Rhinechis scalarisspecies.
Table 3-5 shows the summary results of the logig@ression analysis carried on
GIS data layer foBrsspecies.

Ygs ~ Constant + B1 x (NDVI late May) + B2 x (NDVI dgrJuly) + B3 x

(NDVI late August) + B4 x (NDVI late November) + B5 (Maximum

temperature in February) + B6 x (Maximum tempera&un March) + B7 x

(Minimum temperature in April) + B8 x (Minimum teewature in February)
+ B9 x (Minimum temperature in November) + B10 xiflinum temperature
in October) + B11 x (Annual mean temperature) + BX2 (Minimum

temperature of the wettest quarter) + B13 x (Soets) + B14 x (Slope)
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Then:
P(Yq,s) ~ logit (Yg,s) = log (L/(1+exp(-Yg,s)))
And:

F - P(YSrs) / 2272+ P(YSrs)
o 1-P(Yg.) ) | 2658 1-P(Ys,)

The AUC E0.678) and its standard error@.008 confident level 95Y%for the
performed model were calculated using non-paramapproaches. Cohen’s Kappa
was 0.395 ¢ut value= 0.5. Overall accuracy was 71.0%, expected accuracy wa
52.0% so the model performed 19.0% better thannalom model. Figure 3.4
illustrates the environmental favourability ®fs Species in Spain.

Table 3-5: Summary results of the logistic regressn analysis forRhinechis scalaris

Variables B SE B) Wald P

Constant -0.30100 | 0.327 0.851 0.356
NDVI late May B1 | 0.01000 0.002 22.354| 0.000
NDVI early July B2 | -0.00500| 0.002 3.882 0.049
NDVI late August B3 | -0.00600| 0.002 7.858 0.005
NDVI late November B4 | -0.00600| 0.001 18.859| 0.000
Maximum temperature in February (°C x 10) B5 | -0.05200 | 0.008 41.075 0.000
Maximum temperature in March (°C x 10) B6 | -0.03700 | 0.009 16.296 0.000
Minimum temperature in April (°C x 10) B7 | -0.00021 | 0.000 7.774 0.00p
Minimum temperature in February (°C x 10) B8 | -0.00011 0.000 10.345 0.001
Minimum temperature in November (°C x 10) B9 | -0.00009 0.000 3.831 0.050
Minimum temperature in October (°C x 10) B10 | -0.0091 0.005 3.168 0.07p
Annual mean temperature (°C) B11 | 0.09901 0.012 66.945 0.000
Minimum temperature of the wettest quarter (°C) B12 | -0.00012 0.000 3.514 0.06
Southness (°) B13 | 0.00102 0.001 3.713 0.054
Slope (%) B14 | 0.03700 0.007 30.851 0.000

To downscale the national scale model to localesahk final equation were applied
on the Malaga province geo-databank to obtain twir@nmental favourability map
for Srs Species in Malaga province. To validate the dowlescanap, collected
points f=14) during field work were cross tabulated by thedfarability values of
the corresponded pixels. All 14 observed samplingints were located in

intermediate favourable are&§, > 0.2).

Table 3-6 shows the sample points and corresporfdivaurability values. Figure
3-5 illustrates the distribution of the observe@@ps points on the environmental
favourability map in Malaga province.
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Figure 3-4: Environmental Favourability map of Rhinechis scalarisin Spain

Table 3-6: Cross tabulation of field collected (Semnd Oct. 2008) samples dRhinechis scalaris and
environmental favourability values generated by modl.

Sel.mple Date X v Note Favourability
point ID value from map
Srs 1 Sep-08| 383322 4122328 Noon, Partly cloudy 6 0.6
Srs 2 Sep-08| 253560 4006120 Evening, Cloudy 0.59
Srs 3 Sep-08| 291438 4043153 Road killed, Aftern@oudy 0.52
Srs 4 Sep-08| 39219F 4109598 Road killed, Noon,yRain 0.64
Srs5 Sep-08| 317712 4097425 Road killed, Aftern@ouidy 0.44
Srs 6 Oct-08| 38035% 4087933 Noon, Partly cloudy 304
Srs 7 Oct-08| 379303 40875715 Afternoon, Sunny 0.47
Srs 8 Oct-08| 38991 4104702 Road killed, Afternddioudy 0.63
Srs 9 Oct-08| 348561 4067526 Evening, Cloudy 0.59
Srs 10 Oct-08| 328424 4095977 Road killed, Afternddoudy 0.63
Srs 11 Oct-08| 32820 4096619 Road killed, Afternddioudy 0.66
Srs 12 Oct-08| 325566 4081692 Afternoon, Sunny 0.75
Srs 13 Oct-08| 36539% 4094199 Road killed, Aftern@oudy 0.54
Srs 14 Oct-08| 383322 4122328 Evening, Cloudy 0.64
3.1.2.3. Hemorrhois hippocrepis

Statistical procedure resulted to the final moael $Shh (Hemorrhois hippocrep)s
species in the 1 step. Table 3-7 shows the summary results of tugstic
regression analysis carried on GIS data layeSfdrspecies.
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Figure 3-5: Observation points and downscaled envinmental favourability map of Rhinechis
scalarisin Malaga province.

YShh ~ Constant + B1 x (NDVI early July) + B2 x (NDVI latsugust) + B3 x (NDVI

early November) + B4 x (NDVI mid March) + B5 x (Predation in January) + B6 x
(Precipitation in June) + B7 x (Precipitation in @aber) + B8 x (Maximum
temperature in March) + B9 x (Mean temperature iandiary) + B10 x (Mean
temperature in December) + B11 x (Mean temperatarélay) + B12 x (Minimum
temperature in March) + B13 x (Mean Diurnal tempere range) + B14 x
(Isothermality) + B15 x (Minimum temperature of vesit quarter) + B16 x( Mean
temperature of the driest quarter) + B17 x( Slope)
Then:

P(Yspn) ~ logit (Yg,) = log (1/(1+exp(-Ygi)
And:

FShh:[ A j,( 992 . P(Yey) j
1_P(YShh) 2938 1- P(YShh)

The AUC E0.901) and its standard erroe=@.005 confident level 95¥%for the
performed model were calculated using non-paramepproaches. Cohen’s Kappa
was 0.81 ¢ut value= 0.5. Overall accuracy was 87.0%, expected accuracy wa
32.0% so the model performed 55.0% better thannadom model. Figure 3.6
illustrates the environmental favourability 8hhSpecies in Spain.

30



Table 3-7: Summary results of the logistic regressh analysis forHemorrhois hippocrepis

Variables B SE B) Wald P
Constant 0.13837 1.782 0.006 0.938
NDVI early July B1 -0.01569 0.003 23.447 0.000
NDVI late August B2 0.0133( 0.004 11.884 0.0p6
NDVI early November B3 -0.00571 0.003 4.938 0.000
NDVI mid March B4 0.01549 0.002 43.240 0.000
Precipitation in January (mm) B5 -0.02873 0.004 13@.| 0.000
Precipitation in June (mm) B6 -0.18202 0.01  283.000.000
Precipitation in October (mm) B7 0.05902 0.0p6 3.6 0.000
Maximum temperature in March (°C x 10) Bg -0.111060.016 45.346| 0.00(
Mean temperature in January (°C x 10) BP -0.05786 .01D 24.338| 0.004

Mean temperature in December (°C x 10)

10 0.05(9D.012 24.378| 0.00(

Mean temperature in May (°C x 10) B11 0.09831 0.01540.804| 0.019
Minimum temperature in March (°C x 10) B12 0.000p2 0.000 5.478| 0.014
Mean Diurnal temperature range (°C) B13 -0.01201 00%®. 5.775| 0.003

Isothermality B14 0.1173( 0.04p 8.746  0.0p1
Minimum temperature of wettest quarter B15 -0.000010.000 9.951| 0.003
Mean temperature of the driest quarter (°C) B16 00818 0.002 8.517 0.008
Slope (%) B17 0.03871 0.011 12.664 0.000
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Figure 3-6: Environmental Favourability map of Hemorrhois hippocrepisin Spain
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Table 3-8: Cross tabulation of field collected (Sepand Oct. 2008) samples oHemorrhois
hippocrepis and environmental favourability values generated bymodel.

Sa_mple Date X v Note Favourability
point ID value from map
Shh 1 Sep-08| 293034 4044852 Noon, Partly cloudy 00.9
Shh 2 Sep-08| 338986 4102306 Evening, Cloudy 0.64
Shh 3 Sep-08| 364398 4094515 Road killed, Aftern@aoudy 0.74
Shh 4 Sep-08]  36206p 4090863 Road killed, Noon,)Rain 0.69
Shh 5 Sep-08| 362101 4090862 Road killed, Aftern@ody 0.69
Shh 6 Oct-08| 389808 4102588 Noon, Partly cloudy 20.9
Shh 7 Oct-08| 366618 4114222 Afternoon, Sunny 0.78
Shh 8 Oct-08| 373462 4126417 Road killed, Afternd@oudy 0.78
Shh 9 Oct-08| 331541 4050315 Evening, Cloudy 0.87
Shh 10 Oct-08| 331538 4050241 Road killed, Afternd@@ioudy 0.87
Shh 11 Oct-08| 308871 4082686 Road killed, Afternd@@ioudy 0.89
Shh 12 Oct-08| 313631 4095748 Afternoon, Sunny 0.76
Shh 13 Oct-08| 379744 4078140 Evening, Cloudy 0.86
Shh 14 Oct-08| 386301 4095117 Road killed, Afternd@@ioudy 0.73
Shh 15 Oct-08| 38862 4098646 Road killed, Afternd2ioudy 0.74
Shh 16 Oct-08| 345567 4078616 Noon, Partly cloudy 810.
Shh 17 Oct-08| 327030 4072024 Evening, Cloudy 0.74
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Figure 3-7: Observation points and downscaled envinmental favourability map of Hemorrhois
hippocrepisin Malaga province.
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To downscale the national scale model to localesahk final equation were applied
on the Malaga province geo-databank to obtain tvir@nmental favourability map
for Hemorrhois hippocrepisn Malaga province. To validate the downscaled map
collected pointsi{=17) during field work were cross tabulated by thedfarability
values of the corresponded pixels. All the samplpgints (=17) located in

intermediate favourable ared-§.> 0.2). Table 3-8 shows the sample points and

corresponding favourability values. Figure 3-7 sthates the distribution of the
observed species points on the environmental fallity map in Malaga province.

3.1.3. Snake Species Models comparison

Comparison the method and expected accuracy of tBreake species models
revealed that although the method accurac$nmmand Srs show fair agreements
but the generated models improved a 50% expectedrate species models. The
distribution model for Shh performs better than tve other species by improving
55% overall accuracy (figure 3-8)
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Figure 3-8: Overall, expected and method attributedaccuracy of three snake speciegSmm:
Malpolon monsepessulanus, Srs: Rhinechis scaladi$hh: Hemorrhois hippocrepis)

3.2. Snakes Distribuion vs Eagle Foraging

Although the previous step generated a clear vielow the three snake species are
distributed in the study area, they have not arakgliance of being hunted by the
Short-toed Eagle. The snakes in the Short-toed eEfgriaging habitat are more
likely to be catch than the other snakes.

3.2.1. Hunting Preference Areas

Preference of snake eagles to hunt in differentideape types was obtained by
combining the Corine land cover classes (EEA, 208@h results from field
interviews. During field work in September and Qxetp 2008, 8 ornithologists were
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asked to rank the land cover classes from 0 todsder of suitability for snake eagle
hunting. To minimise the bias the ranked valuesewsmverted to Boolean dummy
variable. Therefore, the land cover classes whierewanked more than 2 by at least
by 4 ornithologists were assumed preferred foragingas. Table 3-9 shows a
summery of the results of the interviews and tmalfiranks that were assigned to
each land cover classes. Figure 3-9 illustratesptiederred foraging areas of the
Short-toed Eagle on the LandSat ETM+ 2002 imagesading areas cover 54.3%
of the Malaga province and are mainly located intlsavest Sierra de Rondaand
south Gierra de Mijas, Sierra de Malayafollowed by some fragmented areas on
east and central parts.

Table 3-9: Foraging preference of land cover classdor the Short-toed Eagle

Corine e Interviewees (ranks 0-5) Boolean
Land Cover Description

Code L[2]13[1]I15]16[17]18]| ranks
111 Continues Urban Fabric pb p O [0 (0 |0 |0 |O 0
112 Discontinues urban fabric D O 0O |0 |O 1 (0 |O 0
121 Industrial or commercial units D b p [0 [0 |0 |0 |O O
123 Port areas q @ D D o [0 |0 0
124 Airports 0 0 0 0 1 1 q q 0
131 Mineral extraction sites q | D 1 1 (1 |O 0
133 Construction sites ¢ D D 0O [0 1 |0 0
142 Sport and leisure facilities L 0O 0O 0 |0 |0 |0 |1 0

211 Non-irrigated arable land

212 Permanently irrigated facilities
221 | Vineyards

222 Fruit trees and berry plantations
223 Olive groves 1| 0o g (@ 1 D 0 0
Annual crop associated with

RN
o|lo| ~ »
w| | w| o,
MENIENES
NIENI NSRS
o|o| w| »
o|o|r|wu
NENENIES
NI

241 1]10| 3| 2| 3| 0 2 2 1
permanent crop

242 Complex cultivation patterns 10| 3| 3| 2| 0of 0| 2 1
243 | Principally occupied agriculture 4| 3| 5| 3| 4| 3| 5 1
244 | Agro-forestry areas 10| 3| 3| 2| 0of 0| 2 1
311 Broad-leaved forest ] D b p (1 [0 |0 |0 0
312 Coniferous forest 1 @ D L P [0 |0 0
313 Mixed forest 1| of o O 1 d ( D 0
321 Natural grassland 5|1 4| 5| 5| 5| 4| 5/ 5 1
323 Sclerophyllous vegetation 5|1 4| 5| 5| 5| 4| 5/ 5 1
324 Transitional woodland shrub 41 3| 4| 5| 3| 4| 3| 5 1
332 Bare rock 4| 4| 3| 5| 3| 4| 3| 5 1
333 Sparsely vegetated areas 415 5| 5| 5| 4|, 5/ 5 1
334 Burnt areas 41 4| 3| 5| 3| 4| 3| 5 1
511 Water courses t D D 0] (0] 0 0 0
512 Water bodies 0 d @ Db D P [0 0
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Arable lands such as non-irrigated arable landrogated facilities as well as
vineyards and semi dense fruit trees and berrytatiams were ranked as foraging
area for the Short-toed Eagle in Malaga provincetekbgeneous agricultural and
agro-forestry areas were also reported by Bakatoetlial (2001) and Tapia et al
(2008). Natural grassland, Sclerophyllous vegetaticansitional woodland shrub,
bare rock, sparsely vegetated areas and burnt are@sreported as the favourite
foraging sites in published papers. (Bakaloudialgt2001, Bakaloudis et al., 1998,
Bakaloudis et al., 2000, Bustamante and Seoanel, ZBiDand Pleguezuelos, 2001,
Moreno-Rueda and Pizarro, 2007, Rocamora, 1994¢cHearZapata and Calvo,
1999, Tapia et al., 2008, Vlachos and Papageordiae4)
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Figure 3-9: Areas considered as suitable for foragg for the Short-toed Eagle in Malaga province
on ETM 2002

3.2.2. Potential Food Availability

By combining the preferred foraging areas and ptedi distribution of snake
species a potential prey distribution map has esulted. In other word, the snake
is not necessarily a potential prey for the Shoetdt Eagle if the land cover is not
suitable for hunting and foraging. For instance snake is potentially a perfect prey
in Sclerophyllous vegetation, however in mixed #rié would not be seen by Short-
toed Eagle.
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Using the knowledge of feeding and diet preferenéethe Short-toed Eagle,
following weights (equation 3-1) were applied tongemte a potential food
availability map consist of three individual pregesies maps (Gil and Pleguezuelos,
2001). The weights were estimated by summarizirg gtobability of occurrence
from the logistic values in the study area alsoytleere cross checked by the
published paper (Vlachos and Papageorgiou, 199g)ré-3-10 illustrates potential
food availability map for the Short-toed Eagle imlslga province.

¥z =(05%2g,)+(03xZ,,)+(02xZg,) (3.1)
where Z is a summarized probability of occurrenteach snake species
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Figure 3-10: Potential food availability map for the Short-toed Eagle in Malaga province

3.3. Distribution Modelling of the Short-toed Eagle

Based on the collected nest positions32) (figure 2-4) the Maximum Entropy
Model was employed to generate a prediction modelsrief, the approach of
Maxent is to find the probability distribution ofaximum entropy (closest to the
uniform) subject to the constraints imposed by itffermation available regarding
the observed distribution of the species and thér@mmental conditions across the
study area (Suarez-Seoane et al.,, 2008). The medlssiins a probability of
occurrence to each cell grid in this area. The M&xaitput (model predictions) is
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presented as cumulative probabilities, where theevaf a given pixel is the sum of
that pixel and all others with equal or lower prbitisy, multiplied by 100 to give a
percentage. Note that using presence-only datds fenerally not possible to
calculate probabilities of presence; instead, aistpare relative likelihood of
presence (Pearce and Boyce, 2006).

3.3.1. Predictor Variable in Malaga Province

Multicollinearity a diagnosis was performed on thkalaga province explanatory
environmental variables dataset for the Short-teagle, as described in section 2-2-
1. From the resulting VIFs (equation 2-1), it wasmaduded that the existence of
multicollinearity was not significantly high sinagene exceeded 10 as the rule of
thumb. (Montgomery and Peck, 1982) and hence allviriables could be used in
subsequent analysis. Table 3-10 shows the significaindependent sets of
predictors and the corresponding VIF values afteltioollinearity diagnoses for the
Short-toed Eagle in Malaga province. NDVI for midugust, precipitation in
September, minimum temperature in March, minimumperature of the wettest
quarter, elevation, south direction, slope, ancepiidl food availability were set as
inputs to the modelling phase.

Table 3-10: Explanatory environmental variables use to model the Short-toed Eagle distribution
in Malaga province (Sources and references explained in section 2.2details, check Appendix | for list of variables)

ID Predictors Description VIF
Ecgl NDVI14 NDVI value mid August 5.75
Ecg2 PER9 Precipitation in September 3.16
Ecg3 TMIN3 Minimum temperature in March 1.78
Ecg4 BIO6_CL Minimum temperature of wettest quarter 1.15
Ecg5 ALT_CLIP Elevation 2.93
Ecg6 SOUTHNESS South direction 3.90
Ecg7 SLOPE Slope of steeps 2.81
Ecg8 food Potential Food Availability 1.772

3.3.2. All-inclusive Model

The regularized training gain for the all-inclusia®del (environmental variables
and potential food availability) generated with plesence records (n=32) was
0.832. From the Jackknife test of variable impartathe single most important
predictor in terms of the gain produced, was agtu@lt_clip) followed closely by
precipitation in Septembempér9 and minimum temperature in Marchmin3).
NDVI for mid August NDVI14) decreased the gain the most when it was omitted
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from the full model, which means it contained imf@tion that was not present in
the other predictors (figure 3-11).

According to the amount of decrease in model gdiema variable was omitted, the
order of excluded variable for the all inclusive debwas 1) minimum temperature
in March ¢min3), 2) altitude &lt clip), 3) potential food availability f¢od), 4)
precipitation in Septembepé¢r9), 5) slope, 6) south direction and 7) NDVI for mid
August NDVI14).

Jackknife of regularized training gain for nest

ALT_CLIF 4 Without variable =
With anly variable ®
»  BIOBCL 7 With all variables ®
E Food .
£
5 NDVI14 8
T J
g PERS
=
2 SLOPE 8
Z
Y SOUTHNESS 8
TMING 8

0.050.100.150.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
reqularized training gain

Figure 3-11: Jackknife of training gain for all-inclusive model built with all presence data

Following Philips (2006) and Yost (2008) binomiakt resulted that some of the
values from threshold categories of fixed cumukatialues 5 and 10 were less than
0.025 @=0.5) indicating that predictions were significantly ttee than random
regardless of the number of predictor variablesoBiial testp-values decreased
substantially when the threshold changed from ometen, meaning a higher
probability of rejecting the null hypothesis asetbinold increased to 10. (table 3-11)

Table 3-11:p_values from the binominal test for all-inclusive nodel

Number of Binominal test p-value for threshold
Variables 1 5 10 Excluded variables
8 0.07587 0.00154 0.00005
7 0.04212 0.00035 0.00717 Tmin3
6 0.19500 0.00396 0.00531 Altitude
5 0.10290 0.00381 0.00016 Food
4 0.06663 0.00210 0.00127 Per9
3 0.34040 0.06711 0.00666 Slope
2 0.20850 0.01347 0.00086 Southness
1 0.23270 0.03953 0.16360 NDVI14

38



The average test AUC values were relatively theesasymodel size decreased. It
increased slightly when altitude was omitted andpged with the one-variable
model containind3io06 (minimum temperature of the wettest quarter). aherage
training gain declined gradually as variables werm@oved. There was an average
ascent in the standard deviation (0.025 to 0.073h® test AUC values from the
eight-variable to the one variable. The variabilitgs lower in the behaviour of the
average test gain as model size decreased (figli®).3

‘EI Test AUC O Unregularized test gain O Training AUC @ Regularized training gain

1.2

AUC and Modelling Gain

Number of Predictor Variables

Figure 3-12: Values for the test AUC, unregularizedtest gain, training AUC and regularized
training gain in all-inclusive model.

Following Yost et al (2008) and Seoane et al (2008)n the higher sensitivity of
the average training gain relative to the averageCAvalue, the former metric was
employed to detect which of the performing modéiewd be used for mapping.
Therefore, the logical choice of best model was ¢me that had the fewest
predictors with an average training gain not sigaiftly different than the full
model or the model with highest training gain (Yestal., 2008, Suarez-Seoane et
al., 2008).

Using the overlap between 95% confidence interf@igest gain as the criteria for
significance the five-variable model containing thenimum temperature in the
wettest quarter, NDVI for mid August, precipitatiom September, slope and south
direction was not significantly different than these larger models but was
performing better than the remaining smaller madgitsally the five-variable model
was used to create the distribution of the Shatit&agle in the Malaga province
(figure 3-13).

3.3.3. Food Excluded Model

The regularized training gain for the seven-vagailbdel using all presence records
but without the potential food availability was 828 The relative importance of the
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predictor variables, according to the training gaas closely the same as when the
potential food availability was included in the nebd
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]
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Bl Low :0.12
@ Nest Location

Figure 3-13: Nest locations on the distribution mapof the Short-toed Eagle based on five-variable
model in Malaga province

NDVI for mid August and southness increase the ghé most when eliminated,
indicating it contained the most information notntained in the other variables
(figure 3-14). The order of variable eliminatiomfin the full model (food excluded)
was 1) minimum temperature in March, 2) minimum penature in the wettest
quarter, 3) altitude, 4) slope, 5) southness, 6)/Nbr mid August and precipitation
in September.

Jackknife of regularized training gain for nest
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Figure 3-14: Jackknife of training gain for food exluded model built with all presence data
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The interpretation of the binomial test showed tlwat average, all of the models
performed better than a random model (table 342je that the average test AUC
values were slightly higher than those for the ni@eéth potential food availability
and the decrease in value as variables were remesasdmall (figure 3-15).

Unlike the test AUC values the average test gais semsitive to the removal of the
predictors. There was a sharp decline in the aeetast gain for the six, four and
two-variable model as well as increase in averegjaihg gain for the three-variable
model followed by a steep ascent for the smalledei® The standard deviation of
the seven training gain averages ranged betwediT @uod 0.068.

Table 3-12:p-values from the binominal test for food-excluded radel

Number of Bionominal test p-value for threshold
Variables 1 5 10 Excluded variables
7 0.08523 0.01510 0.00091
6 0.23220 0.01326 0.00653 Tmin3
5 0.37590 0.01949 0.00896 Bio6
4 0.09051 0.01317 0.00047 Altitude
3 0.14400 0.00741 0.00509 Slope
2 0.27850 0.01035 0.07055 Southness
1 0.19500 0.06066 0.06445 NDVI14

Using the overlap between 95% confidence interf@istest gain averages as the
criteria for significance it appears that the mockhtaining NDVI for mid August,
south direction and precipitation in September wtaistically different from the
models with more variable predictors (figure 3-15).
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Figure 3-15: Values for the test AUC, unregularizedtest gain, training AUC and regularized
training gain in food excluded model.
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3.3.4.

Although potential food availability produced pogit linear response profiles, the
information given to model from this layer wereeady present in other variable
predators. By increasing the potential food avditgbthe probability of occurrence
increased form 0.25 to almost 0.6 (figure 3-16).n&ally an increase in
precipitation in September increases the probgbiit occurrence. Pixels with
precipitation more than 30 millimetres in Septemgain 0.6 onward. These results

Predictor Variables

were consistent with what could ecologically beeptpd.
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Figure 3-16: Response curves of environmental vali¢e when all presence point were used in all-

included model.
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Response curves show that the exponent value wiliclose to zero when a
minimum temperature in the wettest quarter is ctos0° Celsius. The value of the
logistic output started at 0.15 for the lowest esliof NDVI in mid August (40),
then increased to a little over 0.75 at the NDVlueaof 190. Practically south
direction was a difficult landscape feature to teea reliable predictor variable, as
far as generalization to 1km pixel size. The patgrggests that the Short-toed eagle
show a slight avoidance of west and east facingesdor nest sites. The thermal
benefit of early morning solar radiation to nesswat clear from curves. The slope
predictor variable performed poorly in the modetsl éhe response of the exponent
across the range of values was positive.

The analysis suggests that potential food avaitgbfbr snake eagles is not a
powerful predictor variable in this dataset. Intfabe average training gain for the
model containing just the potential food availdkili0.196) alone was significantly
lower than the other predictors. Nonetheless, mimimtemperature in early
migration session and NDVI in mid August emerged important ecological
features for the habitat suitability of the Sharéd Eagle in Malaga province. A
five-variable model built from the full set of 32sts locations was used to create
the distribution map of the Short-toed eagle in &gal province. The predictor
variables in this model included the minimum tenapere in the wettest quarter,
precipitation in September, south direction, ND\Wr fmid August and Slope.
(Figure 3-12). Visual inspection indicates strorgge@ment between nests and the
probability distribution map. The regions of highegst locations were accurately
associated with regions of high probability preditby the model. However, even
though Maxent predicted a relatively compact areaigh nesting potential there
were still a few nests placed in areas quantifietb& nesting potential.

3.3.5. More Measures to Compare the Models

According to the explanation of section 2-5-6, thkaike information criterion
(AIC) and the Schwartz information criterion (SI@gre employed to measures a
model’s suitability and goodness of fit (Koehledaiurphree, 1988). Here the all-
inclusive model (explanatory environmental varigbleand potential food
availability) and the food excluded model (Only Bommental variables) were
compared. Table 3-13 shows the summery of compariso

Maxent defined a value of 0.422 as the logistieshold value for the all-inclusive
model when training sensitivity and specify werei@qCorresponded value in food
excluded model was 0.377. The food-excluded moderktated a habitat suitability
map with 5197 suitable pixel versus 2274 unsuitgitels and 4 nest-locations out
of 32 located in unsuitable areas. The all-inclasinodel generated a habitat
suitability map with 5865 suitable pixels versusO@&6pixels and 29 nests were
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located in suitable area. Both AIC and SIC assigieethe food excluded model
were smaller than the all-inclusive model. The Io¥éC and SC are, the better the
specification. This result is consistent with thexdnt binominal test results that
potential food availability did not improve the dretive power of the model in this
case of study.

Table 3-13: Summary result of model comparison

Measures All inclusive Food excluded
8 7
Minimum temperature in the Minimum temperature in the
. wettest quarter, NDVI for mid wettest quarter, NDVI for mid
Predictors # August, Precipitation in Septembel, August, Precipitation in September,
Slope, South directions, Altitude, | Slope, South directions, Altitude &|
Minimum temperature in Mach & Minimum temperature in Mach
Potential food availability
Presence Points # 32 32
Akaike information criterion (AIC) 0.31 0.25
Schwartz information criterion (SIC) 0.27 0.19

Figure 3-17 shows how the probability of occurremdeanged by omitting the
potential food availability form all-inclusive moldéNests number 3, 7 and 29 were
located in an unsuitable zone based on the aligied model. Food-excluded model
tagged nests number 2, 7, 11, 27 in unsuitable.Zooeesponded pixels of the nest-
locations 3, 6, 7, 11, 27 and 29 had more than B#nges in probability of
occurrences by omitting potential availability frahe set of predictors.
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Figure 3-17: Changes in probability of occurrence xracted from suitability map to nest-sites
locations by omitting the potential food availabilty from all-inclusive model.
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4. Discussion

4.1. Generalist Species

The results from section 3-1 of this study - enminental favorability (Real et al.,
2006) of snake species in Spain - revealed thaioafth there are several
environmental parameters characterising ecologicalerences of the three snake
species, the contribution level of predictor valésbare very small. These generalist
species are able to thrive in a wide variety ofi@egical conditions and can make use
of a variety of different resources. Overlaying thistribution datasets dflalpolon
monsepessulanuand Rhinechis scalarioon explanatory environmental variables
(table 3-2)revealed that they widespread geographically coathém Hemorrhois
hippocrepisin Spain (Moreno-Rueda and Pleguezuelos, 2007k @dncurs with,
Hernandez et al. (2006) who confirmed the resuftotber researchers that the
ecological characteristics of species affects niodphccuracy, where species that
are widespread in both geographic and environmepiate, as is the case with the
all three selected snake species data, are genenalte difficult to model than
species with more specific spatial distributionbe¥ also confirmed that the ability
to model species effectively is strongly influencdry species ecological
characteristics independent of sample size (Araap New, 2007, Hernandez et al.,
2006, Araujo and Guisan, 2006).

Cohen’s Kappa test revealed tihdalpolon monsepessulanaad Rhinechis scalaris
are expected to be observed in almost 50% of piaets the distribution models
improved 23 and 19 percent method attributed acgureespectively. The
probability of observation in random pixels fefemorrhois hippocrepids 32%
which were improved by methods to 87% overall aacur(figure 3-8). Note that
the complicated predictive models with 15, 14 andirdidependent predictors for
each of these species were statistically signifiban very difficult to interpret from
ecological point of view.

Presence/absence distribution datasets of snakd@espwith more temporal and
spatial resolutions may improve the modelling gyallhese species are listed as
Least Concern in view of their wide distributiomldrance to a broad range of
habitats and presumed large population. They alikelyito decline fast enough to
qualify for listing in a more threatened categot@N, 2009). As far as these
species are listed as least concerned, eco-geagsmphd herpetologists were less
interested in them as well.
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4.2. Snakes Distribution To Prey Availability

The Short-toed Eagle has a highly specialized g¢hetying almost exclusively on
ophidians (Moreno-Rueda and Pizarro, 2007, Vlachaond Papageorgiou, 1994).
Three snake speciesMalpolon monsepessulanus, Rhinechis scalaard
Hemorrhois hippocrepigsomprise almost 95% of the diet, in both frequeacy
biomass (Gil and Pleguezuelos, 2001). Generallpldpg, snakes are usually very
elusive and therefore it could be assumed thatliftebution of the Short-toed eagle
is related to the accessibility to its primary pra@¥is raptor forages among shrub,
herbaceous vegetation associations, open spaceshetedogeneous agriculture
areas, avoiding forest, probably because snakectimieis easer in open lands
(Bakaloudis et al., 1998, Moreno-Rueda and Piza2i)7). It was assumed that
presence of the three above mentioned snake spaigés favour the distribution of
the Short-toed Eagle. Snake species distributiopsnaad foraging preference map
were compiled to generate the potential food alsdity of the Short-toed Eagle.

As it has discussed in section 3-1-3, two of thpeedicted distribution maps of
shake species had high level of uncertainties. cdigih the downscaled map to
Malaga province was evaluated successfully by igldviiork presence points, there
might be contradicting results if absence data ddwdve been available. Note that
93%, 88% and 94% of the Malaga province were diaslsas suitable foMalpolon
monsepessulanus, Rhinechis scalaaisd Hemorrhois hippocrepisrespectively
(figures 3-3, 3-5 and 3-7 also tables 3-4, 3-6 248].

Preferred foraging/hunting areas/sites of the Stomd eagle were minimally
studied. However, the published studies show thiatraptor prefers open spaces in
general (Tapia et al., 2008, Bakaloudis et al., 120Bakaloudis et al., 1998,
Bakaloudis et al., 2000, Moreno-Rueda and Piza2@)7, Sanchez-Zapata and
Calvo, 1999, Vlachos and Papageorgiou, 1994, Agposti al., 2002, Bustamante
and Seoane, 2004, Kumar, 1996, Rocamora, 1994lpaatornithologist confirmed
this general statement, but there were no cleanitieh of open space from the
Short-toed Eagle point of view. Given questionmair® local NGOs and
ornithologists were designed to cover up this gapdmking the Corine land cover
(EEA, 2000) classes, but the uncertainties ar¢ Htih. Overlaying the nest-site
locations and final foraging maps shows that adl tiests were located completely
within “forage-suitable” areas.

4.3. Indirect predictors

It is desirable to predict the spatial distributioh species based on ecological
parameters that are believed to be causal, drifonges for their distribution and
abundance (Guisan, 2000). However these paranmasften sampled from digital
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maps as they are difficult or expensive to measund tend to be less precise
(Omolo, 2006). Bioclimatic parameters those usethis research were developed
by elevation-sensitive spatial interpolations dimate station data (Hijmaret al,
2004) which introduce spatial uncertainties. Auséind his colleagues (2007)
consider climate as a direct predictor thus posingng distributional limits whereas
vegetation/habitat type (NDVI , Prey distributiacguld be considered as an indirect
predictor since it does not have direct physiolabicelevance for a specie’s
performance (Austin, 2007). In some cases of stcdpatic models have been
shown to predict the Short-toed Eagle and threg preake species distributions
more accurately (Guisan and Hofer, 2003, Beaumordl.e 2005, Carter et al.,
2006). The results of this research are consistétht these studies as the selected
eco-climatic parameters explained the Short-toegleEdistribution more efficiently
than prey distribution or NDVI in scale of curremsearch. In addition, potential
food availability explained less deviance than tliorate variables. It is plausible
that relative to climate, snake species distrimgiare of secondary importance to
the Short-toed Eagle species considered.

Yost and his colleagues (2008) discussed that eh@fsmodelling variables might
be insufficient to describe all the parameters spacies fundamental niche relevant
to its distribution at the grain of the modellirask (Yost et al., 2008). Therefore,
errors within the explanatory environmental prealictariables (e.g. potential food
availability) will directly affect model accuracyrhe results of this study would be
different, if presence/absence data with more ateuocation information had been
used.

4.4, Scale Issue

Questions on species distribution must adequasdly into the account the issue of
resolution and scale referring to the extent of shady area (Guisan and Hofer,
2003, Murwira et al., 2003). Integrity of the vdoi@ predictors and their possible
combinations might not have been retained wheneagged to 10x10 kilometre

absence/presents resolution. It could possiblyamplvhy both food-excluded and

all-inclusive models were not gain very high AUQues. Patthey (2003) discussed
in his work that a modelling study conducted atnzals scale (large extent) can
disclose environmental variables that best charigetehe overall species range
whereas, a second nested analysis at a large (scaddl extent) can disclose other
environmental predictors that best characterisetdtaft population or home range
level (Patthey, 2003). Nevertheless, it is impdrtanconsider that some predictors
could remain important at all scales. Multi-scaled®ls comparison perspectives
were not considered in the scope of this study;ehar, results clear it meantime.
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4.5, Different Habitats.

This research employed the application of predéctivodelling and mapping to the
Short-toed Eagle habitat with Maximum Entropy (Rbdl et al., 2006). The
relationships between the Short-toed Eagle ness$-sibcations and a set of
explanatory environmental variables were quantifisthg the Maxent software and
a probability distribution map was created thates the likelihood of the suitable
habitat. The objective was to identify a model witie fewest predictor variables
that explained the data satisfactorily basedthmn principle of parsimony and the
philosophy that models are only estimates of realitd that no single model is ever
“true” or likely to perform well in all applicatios (Hilborn and Mangel, 1997).

The statistical analysis and spatial modelling udeld creating a full model
containing all the predictors, identifying the leagormative predictor, omitting that
predictor, and repeating this process until onlg @ariable remained. At the end,
the model with the fewest predictors and an avetegring gain - not significantly
less than the model with highest training gain sveglected as the best model
(sections 3-3-2 and 3-3-3). The Maximum entropy eieconveyed through the
differences in training and test gain between n®aeintaining the potential food
availability and those without them, indicate thée full set of explanatory
environmental variables (all-inclusive model) cdmiting the habitat modelling
within the study area were sufficiently representgth the seven other predictor
variables (food excluded model).

This concurs with Moreno-Rueda (2007) who foundsignificant effect of snake
species richness on the distribution of the ShwettEagle. Their report also
indicated that the effect of snake species waslnetto the presence of these species
consumed by the eagle (Moreno-Rueda and Pizar@7)20he diet of the Short-
toed eagle, although based on snakes, possiblgsvaonsiderably among study
zones (Gil and Pleguezuelos, 2001). It suggeststhisraptor is a tropic generalist
within the order ophidians and this might explaihywthe three snake species did
not affect its distribution. It could be that difést snake species are distributed
structurally in time (throughout the day or throoghthe year) and that higher snake
species richness (several active snakes at a toregtes a larger window of
opportunity to hunt for the eagle (Moreno-Rueda #&idarro, 2007). Also it is
possible that in the zones with low potential safaility of the prey, eagles prey on
alternative snakes or even alternative sourcesad {e.g.Timon lepiduk Although
these possibilities and ecological interpretatiditsnot test in this research and final
distribution map of the Short-toed Eagle concurthveiurrently publishedtlas of
Raptor of Malaga provincéMufioz and Jiménez, 2008), the models predictods a
their contribution might change by considering abawentioned factors.
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4.6. Specifity of Models

All nest-site locations have some level of erraattban be biased by accessibility,
sampling barriers and variation in sampling effover space and time. The choice
of environmental explanatory predictors as inputs rhodels affects the level of
precision to which a model can be generalized heroareas and time periods.
Maximum Entropy as well as logistic regression effeely model ecological rather
than fundamental niches due to its intrinsic entrapd empirical nature. This can
vary spatially and temporally hence models fittedt the same species but in
different areas and/or at different resolutions bandifficult to compare (Guisan,
2000, Pearce and Ferrier, 2000, Phillips et al0620Therefore the models of this
research are only valid for the study scale, tempand spatial resolution under
which they have been developed.
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5. Conclusions and Recommandations

Understanding the quantitative relationship betwspecies and their surrounding
environment is fundamental to understand the géremralogical requirements of
species and their assemblages (Skidmore, 2002)didHng their potential
distributions in weak-sampled locations may leath&ir discovery or reveal factors
that might explain their absence (Omolo, 2006). &dmportantly from a
conservation and biodiversity management pointi@fvyit provides the opportunity
to assess the possible barriers that may keepespawiay from the area and thus
plan appropriate conservation tasks. As Omolo (2@@8cluded the relevance and
disparate methodologies for species distributiom@tiong are not in doubt, intrinsic
species-environment relationships still remain eatibus. A key debate amongst
eco-geographers has been the notion that at gestesjaécies, secondary predictors
such as food availability are better predictorpatential species distributions when
compared to other primary predictors such as cénaaid topography (Thomson et
al., 2007). Using snake species occurrence redar@pain, nest-sites locations in
Malaga province and statistical predictive techegju(Logistic regression and
Maximum Entropy), the specific objectives for thisidy were as outlined below;

The first objective aimed at establishing if thesere significant relationships

between the three prey snake species distribuiodseco-geographic parameters;
climatic- and topographic conditions, and NDVI. iStresearch revealed that
through significance tests and proportions of eixeld deviance, sets of independent
predictors were significantly correlated with smecidistributions. The results

indicated that climatic parameters explained a digtroportion of consistence for

species distributions compared to other predictors.

The second and third objectives tried to generatepasesentative map for prey
availability based on prey snake species distrilousind foraging site. This research
concluded that the generated map was not elucgl&iod availability and suffered

substantial biases.

The forth and fifth objectives, which formed theuxrof this research, were to

compare the relative predictive powers of potentiald availability versus other

explanatory environmental variables. These objestiwere to make spatial

predictions of the Short-toed Eagle based on tlestfit models and parsimony

philosophy in science and assess their accura®esrall, using Cohen’s Kappa,

50



AUC statistics, Akaike and Schwartz informationterion, it is concluded that

spatial distribution map derived from all-inclusiveodel performed better than
those derived from food-excluded model with the samumber of predictors. In

summary, these results are contrary to our expentatand do not support

established ecological theory that potential foedilability is a critical issue and

limiting factor. Nonetheless, some key perspectives this research are offered as
follows;

5.1. Specific Conclusions

1. At the study scale, potential food availability dosot improve the
predictive power of the Short-toed Eagle distribatmodels compared to
the food-excluded models. Although there were not multicollinearity
defined between potential food availability andestimdependent variables,
it seems that minimum temperature in March, sowthneslope and
precipitation in August contained the most inforimatcontain in food
predictor.

2. Overall, five-variable models (minimum temperatimehe wettest quarter,
precipitation in September, NDVI in mid August, 0 and southness)
better relates to actual nest-site location distitims than those based on
food availability or other predictors. These resukuggest that the
distributional limits of this migratory species anttheir respective
assemblages in the Malaga province may be largety by climatic
parameters in the beginning and end of migratiesise.

3. On a national scale, 10km spatial and annual teatp@solution of the
snake species presence/absence data is not suffithe be used in
distribution modelling of selected snake specieistribution modelling of
widespread species in both geographic and enviratahepace, as is the
case theMalpolon monspessulanuand Rhinechis scalarisspecies, are
generally more difficult and complicated than spscwith more specific
spatial distributions such &emorrhois hippocrepis

4. The applied method to generate potential food akdity did not result in
satisfactory representative. Bias and uncertaintiee high in both, snake
specie distribution and allocating foraging areas.
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5.2.

The above mentioned issues leads to the conclusiah hypothesis of

species-food distribution, at least as here intggar between the Short-toed
Eagle and three selected snake species, is imperantil fundamental

issues of scale and resolution are adequately itetheconsideration and

resolved.

The methodological framework employed in this stuehs simple, robust
and replicable. Environmental favourability functioand Maximum
Entropy Models provided a powerful basis for tegtihypothesis and
assessed possible impacts of considering the paitédodd availability on
the Short-toed Eagle distributions.

Recommandations

Re-test the hypothesis using hyper temporal reisoigpecies distribution
datasets and/or new potential food availability iéed (e.g. snake
richness/abundance) that may have physiologicelvagice for the Short-
toed Eagle and/or their assemblages.

Test the hypothesis that there is a spatio-tempaialtionship between
diurnal activities of the prey species and the Staed Eagle.

Test the hypothesis that the critical parametahefecosystem in breeding
habitat (nest-site location) may differ from fonaglhunting habitat of the
Short-toed Eagle.

In addition, a second nested analysis for the greke species at a local
scale (Malaga province extent) can reveal othetufea that characterise
habitat (species distribution) at a national levelmulti-scale perspective
may add new discernment to the current knowledgmtef-species (prey
and predator) relationships.
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7. Appendices
7.1 App. | — List of Variables
ID Layer Name | Definition Unit References
1 Tminl Minimum Temperature in January (°Cx10) 11
2 Tmin2 Minimum Temperature in February (°Cx10) 11
3 Tmin3 Minimum Temperature in March (°Cx10) 11
4 Tmin4 Minimum Temperature in April (°Cx10) 11
5 Tmin5 Minimum Temperature in May (°Cx10) 11
6 Tmin6 Minimum Temperature in June (°Cx10) 11
7 Tmin7 Minimum Temperature in July (°Cx10) 11
8 Tmin8 Minimum Temperature in August (°Cx10) 11
9 Tmin9 Minimum Temperature in September (°Cx10) 11
10 Tminl0 Minimum Temperature in October (°Cx10) 11
11 Tminll Minimum Temperature in November (°Cx10) 11
12 Tminl2 Minimum Temperature in December (°Cx10) 11
13 Tmax1 Maximum Temperature in January (°Cx10) 11
14 Tmax2 Maximum Temperature in February (°Cx10) 11
15 Tmax3 Maximum Temperature in March (°Cx10) 11
16 Tmax4 Maximum Temperature in April (°Cx10) 11
17 Tmax5 Maximum Temperature in May (°Cx10) 11
18 Tmax6 Maximum Temperature in June (°Cx10) 11
19 Tmax7 Maximum Temperature in July (°Cx10) 11
20 Tmax8 Maximum Temperature in August (°Cx10) 11
21 Tmax9 Maximum Temperature in September (°Cx10) 11
22 Tmax10 Maximum Temperature in October (°Cx10) 11
23 Tmax1l Maximum Temperature in November (°Cx10) 11
24 Tmax12 Maximum Temperature in December (°Cx10) 11
25 Tmeanl Mean Temperature in January (°Cx10) 11
26 Tmean2 Mean Temperature in February (°Cx10) 11
27 Tmean3 Mean Temperature in March (°Cx10) 11
28 Tmean4 Mean Temperature in April (°Cx10) 11
29 Tmean5 Mean Temperature in May (°Cx10) 11
30 Tmean6 Mean Temperature in June (°Cx10) 11
31 Tmean7 Mean Temperature in July (°Cx10) 11
32 Tmean8 Mean Temperature in August (°Cx10) 11
33 Tmean9 Mean Temperature in September (°Cx10) 11
34 Tmeanl0 Mean Temperature in October (°Cx10) 11
35 Tmeanll Mean Temperature in November (°Cx10) 11
36 Tmeanl2 Mean Temperature in December (°Cx10) 11
37 Prel Mean Precipitation in January (mm) 11
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ID Layer Name | Definition Unit References
38 Pre2 Mean Precipitation in February (mm) 11
39 Pre3 Mean Precipitation in March (mm) 11
40 Pre4 Mean Precipitation in April (mm) 11
41 Pre5 Mean Precipitation in May (mm) 11
42 Pre6 Mean Precipitation in June (mm) 11
43 Pre7 Mean Precipitation in July (mm) 11
44 Pre8 Mean Precipitation in August (mm) 11
45 Pre9 Mean Precipitation in September (mm) 11
46 Prel0 Mean Precipitation in October (mm) 11
47 Prell Mean Precipitation in November (mm) 11
48 Prel2 Mean Precipitation in December (mm) 11
49 Biol Annual Mean Temperature (°C) 11
50 Bio2 Mean Diurnal Range (Mean of monthly (max temp - min (°C) 11
51 Bio3 Isothermality (P2/P7) (* 100) (°C) 11
52 Bio4 Temperature Seasonality (standard deviatio0) (°Cc) 11
53 Bio5 Max Temperature of Warmest Month (°C) 11
54 Bio6 Mean Temperature of Wettest Quarter (°c) 11
55 Bio7 Temperature Annual Range (P5-P6) (°C) 11
56 Bio8 Mean Temperature of Wettest Quarter (°C) 11
57 Bio9 Mean Temperature of Driest Quarter (°c) 11
58 Biol0 Mean Temperature of Warmest Quarter (°C) 11
59 Bioll Mean Temperature of Coldest Quarter (°Cc) 11
60 Biol2 Annual Precipitation (mm) 11
61 Biol3 Precipitation of Wettest Month (mm) 11
62 Biol4 Precipitation of Driest Month (mm) 11
63 Biol5 Precipitation Seasonality (CoefficienMafriation) (mm) 11
64 Biol6 Precipitation of Wettest Quarter (mm) 11
65 Biol7 Precipitation of Driest Quarter (mm) 11
66 Biol8 Precipitation of Warmest Quarter (mm) 11
67 Biol9 Precipitation of Coldest Quarter (mm) 11
68 NDVI1 NDVI in early April Scaled 1-255 12
69 NDVI2 NDVI in mid April Scaled 1-255 12
70 NDVI3 NDVI in late April Scaled 1-255 12
71 NDVI4 NDVI in early May Scaled 1-255 12
72 NDVI5 NDVI in mid May Scaled 1-255 12
73 NDVI6 NDVI in late May Scaled 1-255 12
74 NDVI7 NDVI in early June Scaled 1-255 12
75 NDVI8 NDVI in mid June Scaled 1-255 12
76 NDVI9 NDVI in late June Scaled 1-255 12
77 NDVI10 NDVI in early July Scaled 1-255 12
78 NDVI11 NDVI in mid July Scaled 1-255 12
79 NDVI12 NDVI in late July Scaled 1-255 12
80 NDVI13 NDVI in early August Scaled 1-255 12
81 NDVI14 NDVI in mid August Scaled 1-255 12
82 NDVI15 NDVI in late August Scaled 1-255 12
83 NDVI16 NDVI in early September Scaled 1-255 12
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ID Layer Name | Definition Unit References
84 NDVI17 NDVI in mid September Scaled 1-255 12
85 NDVI18 NDVI in late September Scaled 1-255 12
86 NDVI19 NDVI in early October Scaled 1-255 12
87 NDVI20 NDVI in mid October Scaled 1-255 12
88 NDVI21 NDVI in late October Scaled 1-255 12
89 NDVI22 NDVI in early November Scaled 1-255 12
90 NDVI23 NDVI in mid November Scaled 1-255 12
91 NDVI24 NDVI in late November Scaled 1-255 12
92 NDVI25 NDVI in early December Scaled 1-255 12
93 NDVI26 NDVI in mid December Scaled 1-255 12
94 NDVI27 NDVI in late December Scaled 1-255 12
95 NDVI28 NDVI in early January Scaled 1-255 12
96 NDVI29 NDVI in mid January Scaled 1-255 12
97 NDVI30 NDVI in late January Scaled 1-255 12
98 NDVI31 NDVI in early February Scaled 1-255 12
99 NDVI32 NDVI in mid February Scaled 1-255 12
100 NDVI33 NDVI in late February Scaled 1-255 12
101 NDVI34 NDVI in early March Scaled 1-255 12
102 NDVI35 NDVI in mid March Scaled 1-255 12
103 NDVI36 NDVI in late March Scaled 1-255 12
References:

11-WorldClim http://www.worldclim.org/current.htm
12- Spot Vegetation http://www.spot-vegetation.com/

13- Shuttel Radar Topography Mission http://www2.jpl.nasa.gov/srtm/
14- Europian Environmental Agency, CORINE land cover http://www.eea.europa.eu/themes/landuse/clc-download
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7.2. App. Il — Independent preditors for Malpolon monspessulanus
ID Predictors Description VIF

Smmo01 ndvio6 Average NDVI in late May 8.190
Smm02 ndvil0 Average NDVI in early July 6.729
SmmO03 ndvil5 Average NDVI in late August 6.015
SmmO04 ndvi2l Average NDVI in late October 4771
SmmO05 ndvi35 Average NDVI in mid March 5.413
SmmO06 per3 Average precipitation in March 5.347
SmmO07 perl0 Average precipitation in October 7.119
SmmO08 tmax2 Maximum temperature in February 3.987
SmmO09 tmax3 Maximum temperature in March 1.889
Smm10 tmeanl Mean temperature in January 5.517
Smm11l tmean12 Mean temperature in December 7.p59
Smm12 tmean3 Mean temperature in March 4.327
Smm13 tmean5 Mean temperature in May 8.389
Smmi4 tmin4 Minimum temperature in April 5.486
Smm15 tmin3 Minimum temperature in March 3.210
Smm16 tmin2 Minimum temperature in February 4.267
Smm17 tminl12 Minimum temperature in December 3.312
Smm18 tminll Minimum temperature in November 4.0y6
Smm19 tmin10 Minimum temperature in October 2.579
Smm20 bioll_cl Mean temperature of coldest quarter 7.518
Smm21 biol5_cl Precipitation seasonality (Coedfitiof variation) 4.562
Smm22 biol_cl Annual mean temperature 1.404
Smm23 bio2_cl Mean diurnal temperature range 2.850
Smm24 bio3_cl Isothermality 1.573
Smm25 bio6_cl Minimum temperature of coldest Month 3.834
Smm26 bio8_cl Mean temperature of wettest quarter .903L
Smm27 bio9_cl Mean temperature of driest quarter 629.
Smm28 alt_clip Elevation 1.096
Smm29 slope Slope 1.450
Smm30 south_deg South direction, "southness" 1.012
Smm31 Corine Corine land cover 1.011
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7.3. App. lll — Independent preditors for Rhinechis scahris
ID Predictors Description VIF

Srs01 ndvio6 Average NDVI in late May 7.313
Srs02 ndvil0 Average NDVI in early July 6.909
Srs03 ndvils Average NDVI in late August 5.323
Srs04 ndvi21 Average NDVI in late October 3.568
Srs05 ndvi35 Average NDVI in mid March 5.101
Srs06 tmax2 Maximum temperature in February 5.478
Srs07 tmax3 Maximum temperature in March 3.284
Srs08 tmax9 Maximum temperature in September 2.029
Srs09 tmeanl Mean temperature in January 6.989
Srs10 tmean12 Mean temperature in December 6.047
Srs11 tmean3 Mean temperature in March 2.994
Srs12 tmin4 Minimum temperature in April 7.177
Srs13 tmin3 Minimum temperature in March 3.217
Srs14 tmin2 Minimum temperature in April 4.188
Srs15 tmin12 Minimum temperature in December 3.162
Srs16 tminll Minimum temperature in November 4.146
Srs17 tmin10 Minimum temperature in October 5.883
Srs18 bioll_cl Mean temperature of coldest quarter 8.147
Srs19 biol_cl Annual mean temperature 2.007
Srs20 bio6_cl Minimum temperature of wettest quarte 3.147
Srs21 bio8_cl Maximum temperature of wettest quarte 1.307
Srs22 bio9_cl Mean temperature of driest quarter 560.
Srs23 alt_clip Elevation 1.137
Srs24 South_deg South direction, "southness" 1.012
Srs25 slope Slope 1.326
Srs26 Corine Corine land cover 1.011
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7.4. App. IV —Independent preditors for Hemorrhois hippocrepis
ID Predictors Description VIF

Shho1 ndvio6 Average NDVI in late May 7.840
Shho02 ndvil0 Average NDVI in early July 7.580
Shh03 ndvil5 Average NDVI in late August 6.897
Shho4 ndvi22 Average NDVI in early November 4.718
Shho5 ndvi35 Average NDVI in mid March 4.553
Shh06 perl Average precipitation in January 5.769
Shho7 per4 Average precipitation in April 7.612
Shh08 peré Average precipitation in June 6.494
Shh09 perl0 Average precipitation in October 6.348
Shh10 tmax1 Maximum temperature in January 8.402
Shhil tmax3 Maximum temperature in March 2.001
Shh12 tmeanl Mean temperature in January 4.724
Shh13 tmean12 Mean temperature in December 6.p31
Shh14 tmean4 Mean temperature in April 8.991
Shhi5 tmean5 Mean temperature in May 8.806
Shh16 tmin4 Minimum temperature in April 5.01p
Shh17 tmin3 Minimum temperature in March 2.706
Shhi18 tmin2 Minimum temperature in February 4.787
Shh19 tmin12 Minimum temperature in December 3.361
Shh20 tminll Minimum temperature November 3.253
Shh21 tmin10 Minimum temperature in October 3.991
Shh22 bio2_cl Mean diurnal tempreture range 2.531
Shh23 bio3_cl Isothermality 1.388
Shh24 bio6_cl Minimum temperature of wettest quarte 4.406
Shh25 bio8_cl Maximum temperature of wettest quarte 1.865
Shh26 bio9_cl Mean temperature of driest quarter 401.
Shh27 alt_clip Elevation 1.096
Shh28 south_log Logarithmic South direction, "soets" 1.018
Shh29 slope Slope 1.481
Shh30 Corine Corine land cover 1.131
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