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Summary 
 

This research studies the use of Big Data Analytics technologies, in particular deep learning (DL) 

models, in the predictive maintenance (PdM) of railway systems. The specific aspect that it 

analyses is how inductive risk arises in this use. The inductive risk of DL is already studied by the 

philosophers of inductive risk and by the epistemologists of Machine Learning (ML) and DL. Also, 

the PdM of railway systems is a practice where inductive risk arises. In fact, (1) it is performed in 

systems that are safety-critical and, thus might impact human values; (2) it uses statistical analysis 

in its decision-making processes; (3) it requires the analysis of complex datasets, i.e., datasets that 

cannot be modelled by predetermined parameters, for making predictions and taking decisions. 

Therefore, this research aims to analyse in a synthetic way how the inductive risk assessment of 

Big Data Analytics can be used for assessing the inductive risk of the PdM of railway systems. 

This research uses an empirical analysis, specifically a two cases study, for answering this 

question. As the inductive risk of the use of DL for the PdM of railway systems is situated 

specifically in the inspection activities of these maintenance practices, it studies two technological 

solutions where DL models are used for improving these inspection activities of these practices. In 

the first place, this research defines the general concepts that guide the assessment of inductive risk 

in the use of DL for the PdM of railway systems. In the second place, it uses these concepts for 

systematically studying the technical documentation where these solutions are described and 

explained. Thus, it interprets these descriptions and explanations, and compares and contrasts these 

two cases at the light of these concepts. 

The major results of this research are two. In the first place, it reveals that the discussion of 

the inductive risk that arises in the use of DL for the PdM of railway systems is a discussion about 

how the processes for acquiring data that describes the physical status of these systems impact 

human values. In the second place, it shows that assessing inductive risk in this use consists in 

evaluating the possibilities and restrictions of managing the probabilities of inductive errors at the 

inspection activities of these maintenance practices. 

At the theoretical level, this research focuses on identifying those aspects of the PdM of 

railway systems that define the specific subtopics of inductive risk that must be used for assessing 

this risk in these maintenance practices. Also, it shows how these subtopics are reformulated when 

these practices are mediated by DL models. At the empirical level, it uses the concepts produced 
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in the theoretical analysis of how inductive risk appears in the use of DL for the PdM of railway 

systems for determining the aspects of the technical literature that must be studied for 

understanding this inductive risk. Also, it transforms the theoretical questions into question about 

how to assess the multiple technological features of these solutions for giving answers to the 

questions generated by the theoretical discussion of this risk. 

The major conclusions of this research are three: 1) The inductive risk that arises in the use 

of DL for the PdM of railway systems is a risk that must be managed at the three stages of the use 

of DL models: training, validating, and testing. Also, this management consists in identifying 

whether the contexts of these stages are context rich or poor in data. 2) This identification can be 

done by evaluating whether the inductive errors that might be produced in this use have equal costs 

or not. 3) Maintainers and other stakeholders involved in PdM practices can identify whether these 

inductive errors have equal costs by assessing how the inspection activities of these practices 

manage the probabilities of these errors through the combination of multiple data management 

methodologies, i.e., by the performance of design practices. 
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Chapter 1: Introduction 

 

1. Technological Context 

 

Industrial revolutions (Schiele et. al., 2021) are characterised as historical periods where 

technological change transforms the ways services are delivered and occupational activities are 

performed and socially organised. One specific feature of the actual fourth industrial revolution 

(4IR), or industry 4.0 is that Big Data in combination with machine learning (ML) and deep 

learning (DL) computation is used for enhancing the decision-making processes in management 

and professional activities. In the first place, Big Data is the technique of extracting, processing, 

and modelling complex data sets through computational and software technologies with the aim of 

finding patterns in these data that could be used for predictive purposes (Karaca, 2021). In the 

second place, ML computation is a paradigm of computer algorithmic models where the design of 

these models is not based solely on rules or programming procedures but on the data these models 

gather (Alpaydin, 2016). This integration of ML and Big Data is known as Big Data Analytics 

(Karaca, 2021). 

Two fundamental aspects of the application of Big Data Analytics to occupational and 

management activities are safety and risk (Chenariyan Nakhaee et. al., 2019; Xu et. al., 2013). 

Many services require that the professionals, managers, technicians, and other workers who deliver 

them take decisions that could put the life and health of the users of these services in danger. For 

example, if the turbine of a commercial aircraft is not maintained or repaired, then this vehicle 

could present failures during operation and possibly cause harm to the passengers1. Thus, if ML 

and DL algorithms aid this decision-making, then the implementation of these technologies in the 

delivery of these services can raise safety and risk concerns. 

Nowadays there is an increasing use of Big Data Analytics in the maintenance of railway 

systems (Davari et. al., 2021; Xie et. al., 2020; Le Nguyen et. al., 2020; Chenariyan Nakhaee et. 

al., 2019). In the first place, these maintenance procedures require the acquisition and modelling 

of complex data. In fact, railways are systems with many interrelated components and, also, they 

are exposed to dynamic environmental conditions and continuous use. In the second place, 

maintainers prefer predictive methods. Other strategies, such as reactive and preventive time-based 

 
1 Examples and technical characteristics that require long descriptions are presented as footnotes. 
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maintenance, are either dangerous or produce costs overruns (Davari et. al., 2021; Xie et. al., 2020; 

Chenariyan Nakhaee et. al., 2019). It is fundamental to indicate that railway systems are safety 

critical systems (SCS) (Davari et. al., 2021; Xie et. al., 2020; Le Nguyen et. al., 2020; Chenariyan 

Nakhaee et. al., 2019; Xu et. al., 2013). This means that their failure could cause catastrophic 

outcomes that generate huge human, economic, and environmental loses. A clear example of these 

catastrophic failures are derailments. Therefore, these systems must operate under the highest 

standards of safety and efficiency. ML and DL models can use these complex datasets for 

producing data patterns that accurately determine the functioning, anomalies, and remaining useful 

life (RUL) time, among other fundamental features of railway components, and transform them 

into clear decision procedures about when and how to maintain a component for preventing failure. 

These features made them ideal for attaining optimal levels of maintenance efficiency and safety. 

For this reason, the use of Big Data analytics in predictive maintenance (PdM) is a relevant topic 

from the historical perspective of the 4IR. 

 

 

2. Philosophical Relevance 

 

Predictive reasoning is based on scientific induction. It consists in the process of gathering 

statistical evidence for supporting the truth or falsehood of a hypothetical claim (Hempel, 1965). 

As the accuracy of the predictions made by railway maintainers determines whether human values 

such as safety, economic efficiency, environmental preservation, among others, are positively or 

negatively impacted by the railway systems, the predictive maintenance (PdM) of these systems is 

fundamental to the discussion about how scientific reasoning and processes impact human values. 

This discussion about the impact of the scientific inductive process on human or non-epistemic 

values is the topic known as inductive risk. Therefore, the PdM of railway systems is a context 

where inductive risk is present and can be philosophically studied. 

The threshold that assures scientists that a body of statistical evidence is sufficiently strong 

and, thus, can be used for supporting the truth or falsehood of a hypothesis might vary (Hempel, 

1965). In the scientific contexts where this threshold is subject to variation, scientists must 

formulate acceptance rules that justify a threshold choice and, thereby, whether the statistical 

evidence gathered is sufficient for supporting the truth or falsehood of this hypothesis. For this 
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reason, at these contexts, the outcomes of the scientific inductive process are four: 1) Scientists 

accept the truth of a statement based on sufficient statistical evidence (true positive); 2) scientists 

reject the truth of a statement based on sufficient evidence (true negative); 3) scientists accept the 

truth of a statement based on insufficient evidence (false positive); 4) scientists reject the truth of 

a statement based on insufficient evidence (false negative). In some of the contexts where scientific 

induction is risky, statistical thresholds and the rules that set them are subject to variation because 

each of these thresholds and rules is aimed to protect specific human values. Therefore, the set of 

thresholds depends on how the preservation of human values is articulated.  

This is the case of the PdM of railway systems, as at this context values such as efficiency 

and safety guide how predictive maintenance practices are implemented and performed (see section 

1). For this reason, the discussion of inductive risk at this maintenance context is a discussion about 

the management of this type of risk. This means that the topic of inductive risk at this context is 

about setting decision rules about which level of statistical evidence should be adequate for 

accepting or rejecting a hypothesis by analysing the impacts on human values of the outcomes of 

accepting or rejecting these hypotheses. Inductive risk is related to the philosophical topics of 

decision theory and statistical decision making. 

Additionally, in some cases, managing this risk must not be done solely during the testing 

of hypotheses, i.e., during the acceptance or rejection of these hypotheses (Karaca, 2021; 

Ohnesorge, 2020; Wilholt, 2009; Douglas, 2000). Also, scientists must manage it during the design 

of the tests of these hypotheses and during the evaluation of the methodological decisions used for 

designing these tests. The reason for this is that, in these cases, scientists performing inductive 

reasoning processes that impact human values also employ statistical evidence for supporting their 

test designs choices and their methods for evaluating these test designs. As all these decisions 

produce a specific outcome attached to a specific impact on human values, inductive risk is present 

in all these types of decisions. Therefore, inductive risk must be managed at the distinct stages of 

the scientific inductive process. 

This is the case of the PdM of railway systems. As indicated in the earlier section, these 

systems are SCS and, consequently, the decisions concerning the design and evaluation of the 

maintenance procedures performed at these systems impact human values as much as the 

performance of these procedures. Thus, in these systems statistical evidence is used at the multiple 

stages of the use of these systems (design, validation, and testing) and, because of this, inductive 
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risk is present and must be managed at all these moments. Hence, the discussion of the management 

of inductive risk in this context is philosophically related to the discussion of the connection 

between the multiple stages of the scientific process. 

Furthermore, two distinct philosophical perspectives propose two different methods to 

manage inductive risk at some of these value contexts, i.e., at some of the contexts where scientists 

seek to protect or preserve human values (Ohnesorge, 2020; Wilholt, 2009). As mentioned before, 

at value contexts, scientists must decide the rule for setting a statistical threshold based on how the 

scientific process might impact this preservation of values. Consequently, the abovementioned 

perspectives differ on how to decide this rule. Methodological conventionalism claims that this rule 

must be negotiated by all the stakeholders that represent each of the values that might be impacted 

by the scientific inductive process and embodied in a methodological convention (Wilholt, 2009). 

Permissive empiricism claims that, in some cases, conventions might be flawed because these 

stakeholders do not have the data that describes adequately the relationship between this process 

and these impacts. For this reason, for this second perspective, in these cases, conventions must 

guide the management of inductive risk temporarily. When new statistical evidence or data that 

models the relationship between scientific induction and the preservation of human values is 

available, these conventions should be revised and adjusted at the light of this new evidence 

(Ohnesorge, 2020). Therefore, the distinction between these two perspectives (Ohnesorge, 2020; 

Wilholt, 2009) shows that the management of inductive risk consists in differentiating those 

contexts where there are data that describes the relationship between scientific induction and the 

preservation of values from those contexts where there are no such data. This shows that the 

discussion about the management of inductive risk is a discussion about how the availability of 

data specifies how scientists must manage inductive risk. 

The PdM of railway systems is a context where the availability of data influences the 

decisions for managing inductive risk. As mentioned in the previous section, the environmental 

conditions and the continuous use of these systems produce data about these systems that is 

continually changing and, consequently, the availability of some of these data also changes; 

sometimes these data are available; sometimes they are unavailable. Therefore, this context is 

relevant for the philosophical discussion about the relationship between data and managing 

inductive risk. 
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3. Problem 

 

With the advent of the 4IR, different philosophers have studied how inductive risk arises in 

different Big Data Analytics societal applications. Among these applications, there are banking 

(Karaca, 2021), urban governance (Jansen, 2021), and justice administration (Biddle, 2020). A 

common pattern between these studies is that they acknowledge that inductive risk arises at the 

three stages of the use of them (training, validating, and testing). They also affirm that assessing 

inductive risk in these applications should aim at establishing decision procedures that protect the 

values of the users of these applications. Furthermore, they claim that these decision procedures 

should be framed under the constrains and possibilities given by the mediation by Big Data of 

societal governance and social activities. Hence, this shows that the assessment of inductive risk 

in Big Data Analytics must be approached through the lenses of (1) decision theory, (2) the multiple 

stages of scientific processes, and (3) how the availability of data regulates the use of Big Data 

Analytics. This type of analysis has not yet been done in the application of Big Data Analytics to 

the PdM of railway systems and of safety-critical systems (SCS) in general. As exposed in the 

previous section, inductive risk is also present in these maintenance practices, even in those that 

do not use Big Data Analytics applications. Also, this section reveals that the inductive risk existing 

in these maintenance practises must be approached through the three abovementioned conceptual 

frameworks. For this reason, on the one hand, there is a common framework that assesses two 

distinct scientific contexts where inductive risk arises and, on the other, these two contexts 

converge in the use of Big Data Analytics for the PdM of railway systems. This fact allows me to 

affirm that a fundamental question to be asked is how should the inductive risk assessment of Big 

Data analytics applications be used for assessing the inductive risk of the PdM of railway systems? 

 

Thesis: The inductive risk assessment of Big Data Analytics should transform the philosophical 

questions that arise in the assessment of inductive risk of the PdM of railways systems into design 

questions that must be responded by the engineers and maintainers of Big Data Analytics solutions 

for the PdM of railway systems with the aim of protecting the human values at stake in these 

maintenance practices. 
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For answering this research question and evaluating whether this thesis is true, it is necessary to 

answer the following sub-questions: 

 

Sub-question 1: How inductive risk arises in the PdM practices performed in railway systems?  

This question allows me to identify the questions that appear when I use the philosophical 

framework of inductive risk for describing the PdM practices of these systems. Using this 

framework shows that inductive risk is a type of risk present in these practices. Therefore, with this 

framework I will account for how the methodologies these practices use for maintaining railway 

systems produce inductive risks. 

 

Sub-question 2: How inductive risk is managed in the use of Big Data Analytics societal 

applications? By answering this question, I will produce the general framework that guides the 

assessment of inductive risk in all types of societal applications of Big Data Analytics. This means 

that, with this framework, I will be able to assess if it is possible to address the multiple inductive 

risks present in these distinct applications by using a common set of concepts and methods. Also, 

it will allow me to know which elements I should approach in the specific Big Data Analytics 

solutions designed for the PdM of railway systems if I aim to manage the inductive risk present in 

these solutions. 

 

Sub-question 3: How the specific design characteristics of Big Data Analytics solutions for the 

PdM of railway systems influence the management of inductive risk in these maintenance 

practices? The answer to this question will show the limitations of applying a general framework 

for assessing the inductive risk of Big Data analytics to specific contexts where Big Data analytics 

solutions are applied. Consequently, I will be able to integrate the concepts of this framework with 

the specific problems related to inductive risk that arise in these solutions. This integration consists 

in formulating the technical questions present in these solutions regarding the impact of human 

values in a terminology that can be addressed by this framework. Therefore, I will show that the 

specific technical problems related to inductive risk are part of a general philosophical reflection 

about this type of risk and its relation to the impact of Big Data analytics in societal activities such 

as maintenance. 
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4. Structure of the research 

 

In the second chapter I expose the methodological framework I use for answering the research 

question and sub-questions. As I employ an empirical research approach focussed on the analysis 

of technical literature, I describe and justify the sampling of this literature, the aspects that I 

examine in it, and the steps I follow in this analysis. In this way, I expose the connection between 

the methodological decisions and the research question and sub-questions. 

The first sub-question is answered in the sections 1 to 4 of the third chapter of this thesis. I 

expose the topic of inductive risk and analyse how it appears in the conceptualisation of PdM. First, 

I expose each of the sub-topics of inductive risk that are relevant to the PdM of railway systems. 

Second, I expose the main methodological features of this type of PdM. Third, I show how each of 

the categories described by these methodologies are related to these sub-topics. 

In the section 5 of the third chapter and in the fourth, fifth and sixth chapters, I answer the 

second and third questions. As I mention in the methodology chapter, the analysis of the technical 

writing and its relation to inductive risk and the societal applications of Big Data Analytics must 

be done at a general level and at a specific level. The reason for this is that the framework that 

connects the societal applications of Big Data Analytics and inductive risk is both used for shaping 

how inductive risk arises in these societal applications and for giving philosophical 

recommendations about how the users of these applications should manage this risk in order to 

protect their human or societal values. Furthermore, as inductive risk is present at the three 

principal stages of the use of these applications, training, validating, and testing, the answer to these 

questions must be done at these three stages. Therefore, in each of these chapters I address one of 

the stages (in the fourth chapter I address testing, in the fifth chapter I address validation, and in 

the sixth chapter I address training) and analyse the relation between inductive risk, PdM of railway 

systems, and the societal applications at the general level and at the specific level (in the section 5 

of the third chapter I introduce the concepts for doing the general analysis). At the general level, I 

analyse how inductive risk appears at each of the stages of the use of Big Data Analytics societal 

applications and which are the principles that users should follow for managing this risk and 

protecting their human values. At the specific level, I analyse two Big Data Analytics solutions and 

assess which of the technical features they propose are relevant to the discussion of how to use the 

inductive risk assessment of the societal applications of Big Data Analytics for characterising this 
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type of risk in the Big Data Analytics applications used in the PdM of railway systems. 

Additionally, I evaluate how the philosophical principles employed in this risk assessment can be 

used for interpreting the technical solutions related to inductive risk as philosophical answers about 

how to manage this type of risk in PdM. As both solutions might vary regarding both how to 

characterise and how to manage inductive risk, my analysis, besides interpreting these two 

solutions, consist in comparing and contrasting them. 

In the seventh chapter I present the conclusion of this thesis. I argue whether the thesis 

proposed is the adequate answer to the research question or not. Therefore, I expose which type of 

questions can be used by engineers and maintainers to assess and mitigate inductive risk in the use 

of Big Data Analytics for the PdM of railway systems and, hence, to protect the values of the users 

of these systems. 
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Chapter 2: Methodological Framework 

 

The methodological framework I use is based on the method of qualitative document analysis 

proposed by Altheide and Schneider (2013). Therefore, I use the categories and steps proposed by 

this method for structuring and justifying the methodological decisions I chose. In this chapter, I 

expose my methodological framework according to the four categories Altheide and Schneider use 

for explaining how researchers that use qualitative document analyses should justify their 

methodological decisions. 

 

 

1. Problematisation of the unit of analysis 

 

I use an empirical method. For this reason, I analyse the maintenance practices of railway systems 

where Deep Learning (DL)2 models are used. The source of data used for making this analysis is 

the technical literature or technical writings railway maintainers and engineers use for 

documenting and exposing these practices (Society for Technical Communication, 2021). 

Consequently, I use a document analysis methodology for approaching these practices. 

Following Bowen (2009:31), I use a document analysis methodology for three reasons. In 

the first place, technical documents present a stable source of data. This means that my inquiry 

does not alter the answers I can get during the investigation of the selected object of research. Due 

to the high number of mathematical formulas and diagrams required for studying inductive risk 

and DL (Karaca, 2021; Ohnesorge, 2020; Wilholt, 2009; Levi, 1962), I consider that other 

qualitative research methods could not gather and study the abstract expressions of these formulas 

and diagrams in a stable way. 

In the second place, technical documents are exact (Bowen, 2009:31). According to the 

Society of Technical Communicators (2021), technical documents communicate the details 

necessary for enabling a communication between distinct areas of expertise. In this case, these 

 
2 In the previous chapter I discuss the application of Big Data Analytics in the PdM of railway systems and its relation 

to inductive risk. In the philosophical discussion, the term “Big Data Analytics” is interchangeable with those of 

machine learning (ML) and deep learning (DL), as the philosophical inquiry about this technology is directed toward 

the epistemological features of ML and DL models, i.e., of algorithmic models used for the extraction of data from 

complex datasets (Karaca, 2021; Zednik, 2021). For this reason, from this point I refer to DL and inductive risk, and 

to DL and PdM. 
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areas of expertise are the philosophy of inductive risk, the epistemology of DL and Machine 

Learning (ML), computer science and artificial intelligence, and maintenance. For this reason, 

using technical documents facilitate the description and analysis of the common concepts, 

categories and terms found in these areas. 

In the third place, technical documents provide an ample coverage (Bowen, 2009:31; 

Society of Technical Communicators, 2021). This means that they express both the details of 

technical solutions, but also show the general concepts, categories, models, terms, and symbols 

used in the technical areas under discussion (for example, Serradilla, et. al. 2022 give a general 

picture of the use of DL in PdM; Marino, et. al., 2007 propose a specific technical solution). 

Furthermore, technical literature provides the state of the art and the evolution of a specific 

technology (Serradilla, et. al. 2022; Davari et. al., 2021; Xie et. al., 2020; Le Nguyen et. al., 2020; 

Chenariyan Nakhaee et. al., 2019). In this way, due to my research interest of analysing a general 

framework, i.e., the relationship between inductive risk, DL, and PdM by studying concrete 

maintenance methodologies and technical solutions, a qualitative research approach that provides 

at all conceptual levels data about the research object is adequate for my research. 

 

 

2. Constructing a protocol 

 

The three research sub-questions show that the analysis of inductive risk in the use of DL models 

for the PdM of railway systems must be approached at three levels. First, it is necessary to evaluate 

how inductive risk arises in the maintenance methodologies of railways. For this reason, I analyse 

a review about the use of DL in PdM (Serradilla, et. Al., 2022) and two reviews (Xie et. al., 2020; 

Le Nguyen et. al., 2020) and two surveys (Davari et. al., 2021; Chenariyan Nakhaee et. al., 2019) 

about the use of DL in the PdM of railway systems. For analysing these documents, I, first, expose 

the philosophical framework of inductive risk. Second, I expose the main concepts found in these 

documents that, from my perspective, are related to this philosophical framework. Third, I make 

explicit and discuss this relation between these frameworks and these concepts. I do this analysis 

at chapter 3. 
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Second, inductive risk is also a topic researched philosophically in the literature of the 

epistemology of ML and DL (Karaca, 2021; Jansen, 2021; Biddle, 2020). In the analysis done at 

chapter 3 where inductive risk and PdM are related, I explain why the inductive risk that exists in 

PdM must be analysed according to the three stages of scientific processes (external, planning, and 

internal). This analysis made at the three stages is also done by the epistemologists of ML and DL 

(Karaca, 2021). Consequently, as far as I analyse inductive risk in the PdM of railway systems that 

use ML and DL models, I must, in the first place, relate how inductive risk exists in PdM with how 

inductive risk exists in DL based on these three stages. In the second place, I must analyse how the 

specific characteristics of multiple DL solutions for the PdM of railway systems influence the way 

how the inductive risk of DL relates to the inductive risk of PdM. Thus, as this three-stages analysis 

is common to inductive risk in the PdM of railway systems and inductive risk in DL, at the chapters 

four, five, and six, I, first, analyse in a general way how the inductive risk of the PdM of railway 

systems is related to the inductive risk of DL according to each of the three stages (in chapter four 

I analyse the testing or external stage, in chapter five I analyse the validation or planning stage, and 

in chapter six I analyse the training or internal stage). Second, I analyse how two cases of specific 

solutions of DL for the PdM of railway systems materialise or make concrete this relationship 

between the inductive risk of the PdM of railway systems and the inductive risk of DL. As this 

materialisation varies, besides my analysis, I compare and contrast these two cases. This is the 

protocol that guides my research3. 

 

 

3. Themes and frames 

 

I use two different methods for accessing the technical literature I chose. I apply the first method 

to the analysis of the general framework of the use of PdM methodologies for the maintenance of 

railway systems in relation to inductive risk. This method consists in utilising the concepts of the 

inductive risk framework presented by Hempel (1965), Douglas, (2000), Wilholt (2009), 

Ohnesorge (2020), and Karaca (2021) for analysing the technical literature where this general 

framework of railway systems PdM methodologies is presented. Thus, I search the main concepts 

of the inductive risk framework that appear in this technical literature and associate and discuss the 

 
3 The additional technical literature I use is solely employed for clarifying the terms and concepts used in the principal 

technical literature. 
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descriptions and conceptualisations of these concepts done by the authors of this technical literature 

with the descriptions and conceptualisations done by the authors of the inductive risk framework. 

The second method has two steps. The first step consists in relating and discussing the 

concepts of inductive risk found in the technical literature that describes in a general way the 

methodologies for the PdM of railway systems with the concepts of the inductive risk that arises 

in the design of DL models. This relation and discussion allow me to identify the concepts that 

appear both in the discussion of the inductive risk of the PdM of railway systems and in the 

discussion of the inductive risk that arises in these design activities. The second step consists in 

searching for these common concepts in the technical literature that exposes the two DL models 

for the PdM of railway systems I chose. In this search, I assess how the specific factors of each of 

these solutions shape this relationship between the DL inductive risk and the railway systems PdM 

inductive risk. In this way, I analyse how the design decisions, definitions, and classifications made 

by the designers of these two models decide the specific features of how this relationship should 

be conceptualised and applied. 

As I mentioned before, the analysis of how DL inductive risk and railway systems PdM 

inductive risk are related must be done at the three stages of the scientific process. For this reason, 

the application of the second method is distributed in each chapter according to the stage I analyse 

in each of these chapters. It is important to highlight that I have found a pattern in the two technical 

solutions I chose. Both have a section where they address how they trained the DL modelling 

solution (description of the solution chapters), a section where they expose the contextual 

constrains that specify and, consequently, validate these design decisions (introduction), and a 

section where they test the solution and discuss the outcomes of this test (experimental results) 

(Santur, Kakaröse, and Akin, 2017; Marino et. al., 2007). For this reason, each of these sections is 

analysed at the chapter where I analyse each of the stages of the use of DL models and of scientific 

processes (testing/external; validating/planning; training/internal). In this way, the application of 

these methods and the order of their application are the frames that organise how the themes of this 

research are approached. 
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4. Theoretical samplings 

 

For selecting the sample of my research, I apply one sampling reasoning for selecting the 

documents required for the general study of railways systems PdM methodologies and a second 

one for selecting the cases that expose specific DL solutions. Regarding the first sampling 

reasoning, I use the general review of the application of DL in PdM done by Serradilla, et. al. 

(2022) for identifying the main concepts that are common to all PdM practices. These concepts 

allow me to understand in a more accurate way how DL is applied in the specific sector of railway 

systems maintenance. Also, I use these four reviews and surveys of the state of the art of the use 

of DL in the PdM of railway systems (Davari et. al., 2021; Le Nguyen et. al., 2020; Xie et. al., 

2020; Chenariyan Nakhaee et. al., 2019) because they are the most recently published documents 

according to the search that I did. Furthermore, four of these documents were sufficient for 

extracting the common concepts of the use of DL in the PdM of railways systems. 

Following Zainal’s (2007) view that claims that using multiple cases allows researchers to 

generalise their findings, I chose to study two cases where DL models are applied for the PdM of 

railway systems. Thus, I use these two cases for finding the general patterns that exist in this 

application. Also, following Zainal (2007), I use multiple cases for finding the differences between 

the cases regarding how they conceptualise and make concrete this application and, consequently, 

for understanding which are the limitations of these general patterns. Therefore, the analysis of 

these cases consists in comparing and finding the similarities between the two and in contrasting 

them and finding the differences. I limited the study to two cases for complying with the research 

length requirements. The reason for this is that, as I analyse the cases at the three stages of the use 

of DL models, I make a deep and comprehensive study of these cases. This is the second reasoning 

that I use for sampling the technical solutions. 

The first case that I chose is a digital camera inspection system used for improving the 

detection of missing fastening bolts in railways (Marino et. al. 2007)4. This system consists in an 

acquisition system mounted in a diagnostic train that films the railways. The DL model by means 

 
4 Before using computer vision systems (CVS) for inspecting tracks, maintainers did it manually. The inspector walked 

along the track and through visual inspection detected anomalies, in this case, missing fastening bolts. However, this 

process was unacceptably slow and lacked objectivity. Therefore, the decisions and predictions about when maintainers 

should apply a maintenance action were not taken and performed by them in the best way possible and produced an 

unacceptable rate of errors. Thus, using CVS for inspection reduces this error rate to the minimum (0.4%) and optimise 

the maintenance decision-making process. 
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of visual signal processing and real time visual inspection detects whether a bolt is positioned 

correctly or not. Missing bolts can cause failures in the rail track and the development of critical 

situations. For this reason, the system alerts railway maintainers that the tracks need maintenance. 

Therefore, the system aid maintainers in deciding and predicting when to perform a maintenance 

action in the track for avoiding critical situations. For more technical details of the system see 

Marino et. al. (2007). 

The second case that I chose is a laser camera system used for inspecting rail tracks and 

detecting faults in them (Santur, Kakaröse, and Akin, 2017)5. As the other case, the system is 

mounted in a diagnostic train. This system combines a normal camera that captures rgb colour 

signals and a laser camera that, through triangulation, analyses the deepness of the rail surfaces. 

While the normal camera makes a visual representation of the system, the laser camera measures 

the three-dimensional embeddedness of the rail surfaces. Abnormal changes in these surfaces are 

signals of faults. The normal camera avoids that the laser camera registers structural changes as 

abnormal, by constructing the three-dimensional profile of the rail. The data captured in this 

inspection is used by the DL model for classifying the rails as faulty or healthy. With this 

information, maintainers can decide whether to maintain a railway or not. Other technical details 

are specified at the paper written by Santur, Kakärose and Akin (2017) where their proposal is 

explained. 

Until this point, I have not indicated yet the difference between how to manage inductive 

risk in the PdM of railway systems and how to manage this type of risk in this type of maintenance 

applied to other systems that are also safety-critical, deployed in value contexts and affected by 

dynamic environmental conditions and continues use (I call them intensive-maintenance systems). 

The fundamental distinction is that these three characteristics of intensive-maintenance systems are 

specifically related to inspections in the case of railway systems6. By contrast, in other systems 

 
5 The purpose of the design of this system is also optimising inspection and, hence, aiding maintainers in their 

predictions and decisions about when to maintain a rail track. Nonetheless, the designers of this second system consider 

that using solely images is problematic, as oil and dust residues can be misclassified as faults and, hence, rails that are 

healthy, i.e., that do not have faults, can be classified as faulty. For this reason, they complement the visual inspection 

with a laser system. Therefore, both cases are inspection systems that use CVS for detecting, diagnosing and 

prognosing faults in rail tracks. The main difference is that, while the first one does not use a laser system, the second 

does. These inspection systems belong to the group of inspection systems for rail infrastructure (Santur, Kakaröse, and 

Akin, 2017; Marino et. al., 2007). The other group of inspections systems is the one aimed at inspecting vehicles 

(Davari et. al., 2021:10-12). 
6 In the PdM of railway systems, inspections are the activities by which maintainers acquire the data necessary for 

evaluating whether a system component is having an abnormal behaviour or presents abnormal characteristics, 

diagnosing which type of failure it might have due to these anomalies, and prognosing when it should be maintained 
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they might not be exclusively related to this type of maintenance activities7. Therefore, since I aim 

to study how to manage inductive risk in railway systems, I must focus my research on inspection 

activities8. For this reason, I selected two cases of DL models applied in the inspection activities 

of the PdM practices of railway systems. 

 

 

 

 

 

 

 

 

 

 
to avoid this failure (Davari et. al., 2021; Xie et. al., 2020; Chenariyan Nakhaee et. al., 2019). The method for 

performing these activities decides whether the railway systems PdM practices satisfy, at the same time, the standards 

of safety and efficiency (Marino et. al., 2007). For this reason, safety and efficiency are the values that guide the 

method for performing these activities in these systems. Also, these activities are safety critical, since ignoring a faulty 

component due to a mistaken inspection might lead to a catastrophic consequence (Ghofrani et. al., 2018). Finally, the 

dynamic environmental conditions and continuous use of the railway systems might influence how well these activities 

are performed. As Santur, Kakaröse and Akin (2017) show, oil and dust can appear as structural failures of a rail track. 

Therefore, the impact of the dynamic environment and continuous use in the PdM of rai lway systems occurs in its 

inspection activities. These facts shows that the PdM context, i.e., the context of intensive-maintenance systems, that 

specifies the type of inductive risk that is studied in this thesis is defined by the fundamental characteris tics of the 

inspection activities performed in this context. This is the reason why inspection must be the central activity to be 

studied if the objective of the thesis is to study the inductive risk that arises in the PdM of railway systems. 
7 Inspection activities, as other PdM activities, are classified according to the source from where the data necessary for 

making predictions are acquired. In the case of inspection, the source is the current physical state of a component of 

the system. Other data sources in PdM are the history of the component, the design data represented in the technical 

drawings of the system, the current and past operations performed in the system, reports about accidents and failures, 

among others (Ghofrani, et. al., 2018:232-233). Thus, these other sources configure other types of PdM activities. For 

example, when maintenance engineers combine the data produced in inspection activities with asset registration data 

(functional location, year of installation, technical details, etc.) they produce the notification datasets. Therefore, the 

sources of these datasets are two: the physical state and the registration procedure. Bukhsh, Saaed, and Stipanovic 

(2018) state that by analysing these notification datasets is also possible to predict when a railway component requires 

maintenance. Hence, notification analysis is another type of PdM activity. 
8 I cannot state whether in other intensive-maintenance systems the three fundamental characteristics that specify the 

type of inductive risk that arises at these PdM contexts converge in their inspection activities, or, perhaps, in other 

PdM activities. This would require a task that goes beyond the scope of this thesis: assess one by one these other 

intensive-maintenance systems and their PdM activities. However, I have demonstrated that, at least in the case of the 

PdM of railway systems, these three fundamental characteristics converge in inspection activities and, thereby, why, 

if I aim to study the inductive risk of these systems, I must approach these activities specifically. 
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Chapter 3. Predictive Maintenance of Railway Systems and Inductive Risk - a 

general framework 
 

In this chapter I expose the aspects of the inductive risk problem that can be used for analysing this 

type of risk in the PdM of railway systems. After this, I show how these aspects are also used for 

studying risk in societal applications of DL. The concepts produced by relating at a general level 

these three topics, inductive risk, PdM, and DL societal applications, structure the theoretical 

framework I use for analysing the two technical solutions at chapters four, five, and six. 

 

 

1. The inductive risk problem in predictive maintenance 

 

A) The inductive risk problem 

 

The inductive risk problem is a problem deeply discussed in the philosophy of science (Karaca, 

2021; Ohnesorge, 2020; Wilholt, 2009; Douglas, 2000; Hempel, 1965; Jeffrey, 1956; Rudner, 

1953). The term “inductive risk” was introduced by Carl Gustav Hempel (1965) in his work Science 

and Human Values. However, Richard Rudner (1953) was the first philosopher to discuss it. The 

fundamental question of this problem is how the inductive reasoning of scientists is related to the 

preservation and production of human values. This means that the discussion about inductive risk 

aims to investigate how this type of scientific reasoning is risky, i.e., can negatively affect human 

and societal values. 

Inductive reasoning is understood by philosophers of inductive risk as the process of using 

statistical evidence for supporting a scientific decision. Some of these scientific decisions are the 

acceptance or rejection of hypotheses, the choice of methodologies, and how to gather, 

characterise, and interpret data (Karaca, 2021; Ohnesorge, 2020; Wilholt, 2009; Douglas, 2000; 

Churchman, 1948). The employment of statistical evidence is inductive, as a statement can be 

validly claimed as a true statement if, and only if, most of the cases show that this statement is 

true9. Therefore, inductive reasoning consists in identifying whether the outcome of a decision 

 
9 For instance, a group of scientists must choose between accepting a scientific hypothesis or rejecting it. For taking 

this decision, these scientists must gather statistical evidence that can be employed for supporting either the acceptance 

or the rejection of this hypothesis. Suppose that this hypothesis claims that the molecule bisphenol-A (BPA) is 
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course is true in most of the cases and, therefore, that this decision course must be taken by 

scientists. 

 

 

B) Inductive risk in the predictive maintenance of railway systems 

 

In the same way as the maintenance of other systems, the maintenance of railway systems is an 

activity that has three goals (Serradilla et. al., 2022; Hu and Dai, 2021). The first goal is improving 

the components of the system. This type of maintenance is called improvement maintenance. The 

second goal consists in mitigating or eliminating in advance an abnormal behaviour of a component 

that could lead to a failure of the system. Thus, the goal is to avoid that a failure occurs. This type 

of maintenance is known as preventive maintenance. The third goal is repairing a component that 

has already failed; in other words, is restoring the function of the system. The name of this third 

type is corrective maintenance. 

As mentioned in the first chapter, the industry 4.0 made possible the use of Big Data 

Analytics in multiple professional activities. In the case of the maintenance of railway systems, this 

revolution improved preventive maintenance activities (Davari et. al., 2021; Xie et. al., 2020; Le 

Nguyen et. al., 2020; Chenariyan Nakhaee et. al., 2019). Before this revolution, preventive 

maintenance activities had to be managed in a timely manner. This means that they must be 

performed at regular time intervals. The reason for this is that maintainers could not capture and 

process all the complex data necessary for predicting when a component needed to be maintained. 

However, this produced costs overruns, as, on many occasions, components were maintained even 

if they did not present any abnormal behaviour. As mentioned in the first chapter, Big Data 

 
carcinogenic. BPA is a molecule used in the production of polycarbonate plastics. As these plastics are used in 

many everyday products, the fact that this molecule can produce harmful effects such as cancer is relevant from a 

scientific and regulatory point of view. For more details about the philosophical relevance of how scientists and 

regulatory agencies have approached these dangers see Ohnesorge (2020), Wilholt, (2009), and Douglas (2000). Thus, 

these scientists must construct an experiment where they expose laboratory rats to this molecule. If the bodies of these 

rats start to develop cancerous characteristics, e.g., they start to develop tumours, then these scientists can use this 

evidence to support their decision of claiming that their hypothesis is true. This evidence is statistical because scientists 

cannot use a sole case in their experiment. They must expose multiple rats to BPA and see how many of them develop 

carcinogenic characteristics. If most of the rats develop these characteristics, they can validly use this evidence for 

supporting the acceptance of the hypothesis. If only a few numbers of rats develop them, they cannot validly employ 

this evidence. 
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Analytics is a technology used for analysing complex data sets and made predictions based on the 

statistical evidence gathered in these analyses. Therefore, this technology, in the case of the 

maintenance of railway systems, helps maintainers to predict or forecast when to maintain a 

component and, consequently, to shift from a time-based approach to a condition-based one 

(Davari et. al., 2021; Xie et. al., 2020; Le Nguyen et. al., 2020; Chenariyan Nakhaee et. al., 2019). 

In other words, maintainers, with the aid of Big Data Analytics, can set conditions about when to 

maintain a component based on a statistical analysis of the complex data produced by railway 

systems; in this way, there is no more the need to perform maintenance in a cyclical manner. This 

use of Big Data analytics in railway maintenance frames this type of maintenance as a problem 

about how to apply inductive reasoning. In fact, the decision about whether to maintain a 

component is determined by statistical evidence. 

In the first chapter I have also mentioned that railway systems are Safety Critical Systems 

(SCS). This means that a failure in one of their components can affect negatively human values. 

For instance, a missing bolt in a rail track can cause a derailment, which, at the same time, can 

cause the death of passengers. In this case, the value of safe use of transportation systems is 

negatively impacted by the failure of the railway system. For this reason, railway systems are 

vulnerable to inductive risk. In the first place, their maintenance is based on statistical analysis and 

the use of statistical evidence. In the second place, their failure or malfunction can lead to negative 

societal consequences. 

 

 

2. Managing inductive risk 

 

A) Inductive risk and acceptance rules 

 

I have claimed that evidence can be used for supporting a scientific decision if, and only if, most 

of the cases that compose this body of evidence show that the statement is true. However, a question 

must be posed: how many cases would be most of the cases? If 100 rats were exposed to BPA, how 

many of them must exhibit carcinogenic characteristics if the scientists want to claim that the 

hypothesis that this molecule is carcinogenic is true? 60 rats? Or 51? Or 80? As there are multiple 

answers to this question, the use of statistical evidence shows that this type of evidence cannot 
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support a scientific decision conclusively (Karaca, 2021; Ohnesorge, 2020; Wilholt, 2009; Hempel, 

1965:90-93; Douglas, 2000). This means that additional elements must be involved in scientific 

decision-making for determining this statistical threshold that determines that most of the cases of 

a body of statistical evidence support this decision. 

Hempel (1965:90-93) claims that these additional elements are known as acceptance rules. 

Thus, an acceptance rule determines which is the threshold necessary for claiming that most of the 

cases of a body of evidence support a scientific decision. Hempel observes that, if there are rules 

that determine these thresholds, scientific decision-making have four outcomes. 1) Scientists 

follow a decision or action course based on sufficient evidence (true positive); 2) scientists do not 

follow an action course based on sufficient evidence (true negative); 3) scientists follow an action 

course based on insufficient evidence (false positive); 4) scientists do not follow an action course 

based on insufficient evidence (false negative)10.  

Also, Hempel (1965:90-93) observes that the four outcomes of a scientific decision-making 

process must be classified into two groups according to how they impact a human value. The reason 

for this is that, as the possible outcomes of a decision related to an impact on a human value are 

just two, either this decision impacts the value or not, then the four outcomes of scientific decision-

making must be classified in outcomes that cause this impact and outcomes that do not11.This 

shows that the management of inductive risk is done in two steps: (1) scientists identify which 

outcomes might negatively impact a human value or group of human values. (2) Based on this 

identification, scientists formulate the acceptance rules that reduce the probability of producing 

 
10 Following the previous example, a true positive would be claiming that BPA is carcinogenic based on observing 

carcinogenic effects in a number of rats that surpasses the threshold; if this threshold is 80 rats, then the scientists claim 

that BPA is carcinogenic because they observe carcinogenic characteristics in 84 rats. A true negative would be 

rejecting that BPA is carcinogenic, as just 50 rats presented carcinogenic characteristics. A false positive would be 

accepting that BPA is carcinogenic, even if only 50 rats presented these characteristics. A false negative would be 

rejecting that BPA is carcinogenic, even if more than 80 rats presented these characteristics. 
11 Following the case of the carcinogenicity of BPA, claiming that BPA is carcinogenic based on insufficient evidence 

(false positive) and rejecting that BPA is carcinogenic, even if there is sufficient evidence to prove this carcinogenicity 

(false negative) would put at risk the safe use of this molecule. BPA is a molecule used in the production of 

polycarbonate plastics. Thus, claiming that BPA is carcinogenic without sufficient evidence will create fears in the use 

of these plastics. Therefore, all the consumers that need to use these plastics would be negatively affected. Also, 

rejecting that BPA is carcinogenic, even if there is sufficient evidence that shows the opposite, would put at risk 

consumers. They could be using a product that might cause them cancerous diseases. Consequently, while the true 

positives and true negatives will promote the safe use of polycarbonate plastics, false positives and false negatives will 

put users at risk. In other words, whereas the former two results impact positively the values of safety and health, the 

latter impact them negatively. Hence, inductive risk is present in these two latter outcomes. 
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these undesired outcomes by establishing the thresholds that reduce the number of bodies of 

statistical evidence that these scientists are allowed to use for supporting these outcomes. 

 

 

B) Managing inductive risk in the predictive maintenance of railway systems 

 

Despite the fact that Big Data Analytics facilitates the performance of predictive or condition-based 

maintenance strategies in railway systems, corrective and preventive time-based maintenance are 

still necessary in these systems (Le Nguyen et. al., 2020:21-26). On the one hand, corrective 

maintenance is necessary because some failures are impossible to predict or to model. For example, 

the death of an animal in the rail track is impossible to predict. On the other hand, preventive time-

based maintenance is necessary because the data necessary for predicting some failures are either 

impossible or too costly to acquire. For instance, the data necessary for predicting when the paint 

of a train should be replaced. Therefore, two conditions must be met for applying predictive 

maintenance in railway systems (Davari et. al., 2021:3-5). 1) It should be possible to predict when 

the component will fail, i.e., the remaining useful life (RUL). 2) It should be possible to detect 

whether a component is having abnormal behaviour that would reduce its RUL. Whereas the first 

condition determines whether a failure is predictable, the second establishes if there are data that 

can be detected for predicting this failure12. 

This two-conditions criterion for applying PdM in railway systems shows that managing 

inductive risk in the context of railway maintenance is also a process of classifying four results into 

two groups. When deciding whether to apply PdM to a component, maintainers must establish, in 

the first place, whether the failures they aim to predict are predictable. In the second place, they 

must determine whether the data necessary for making this prediction can be acquired. If they 

confirm that a failure is predictable and successfully predict it through a statistical analysis, they 

will produce a true positive. The reason for this is that they are employing a data analysis 

 
12 For instance, predicting that the paint of a train will degrade and, hence, when this train requires a new layer of paint 

is possible. The problem is that acquiring the data for making this prediction has a very high cost. Consequently, the 

degradation of the paint of a train is an event that can be predicted but it is not possible to acquire the data for making 

such prediction. In other words, it meets the first condition, but not the second one. Instead, predicting than an animal 

will fall death in the middle of the rail track is very hard to predict, as this event has a very low chance of occurring 

for several reasons. Therefore, this second event does not meet neither the first nor the second conditions for being 

subject to PdM practices. 
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mechanism, i.e., an acceptance rule, adequately and, additionally, they are predicting a truly 

potential failure. If they deny that the failure is predictable and use a data analysis mechanism for 

showing that this failure is unpredictable, they will produce a true negative. In fact, they are 

adequately employing the data analysis mechanism for showing the impossibility of predicting a 

supposed failure. Correspondingly, if they make a prediction based on insufficient data or on 

wrongly applying a data analysis mechanism, they will produce a false positive; also, if they deny 

that a failure is predictable based on an inadequate data analysis, they will produce a false negative. 

Furthermore, correctly classifying a failure as unpredictable, will decrease the expenditure in 

technologies for predicting it and, simultaneously, will increase the expenditure in time-based and 

reactive maintenance. Also, if they predict a failure based on insufficient data, maintainers might 

perform a maintenance procedure when it is not necessary, or they might omit performing this 

procedure when it is necessary. In the first case, they will produce costs overruns and, in the second, 

they might put at risk the functioning of the system and, consequently, the safety of the users and 

the economic revenues produce by it. Thus, while true positives and true negatives will properly 

distribute the maintenance budget in the different strategies, as they truly state when PdM is 

possible and when not, false positives and false negatives will obstruct this cost optimisation 

procedure. Consequently, these two latter results will negatively impact the value of cost efficiency 

(besides impacting the value of safety; an impact produced by operating a system that is not 

properly maintained). 

 

 

3. Managing global inductive risk 

 

A) Inductive risk is present in the entire scientific process 

 

Hempel (1965:90-93) claims that inductive risk is a type of risk that must be managed in the testing 

of scientific hypotheses. This means that scientists must, first, identify which acceptances or 

rejections of hypotheses impact human values. Second, based on this identification, they must 

formulate acceptance rules that reduce the probability of producing these acceptances or rejections 

by establishing the thresholds that reduce the number of bodies of statistical evidence that are 

allowed to be used for supporting these acceptances and rejections. However, other philosophers 
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of inductive risk (Karaca, 2021; Ohnesorge, 2020; Wilholt, 2009; Douglas, 2000) have shown that, 

first, other scientific decision-making processes, besides the testing of hypotheses, use statistical 

evidence for supporting the choices made by scientists. Second, the outcomes of these other 

processes might also impact human values. Therefore, in these other processes inductive risk is 

also present and must be managed. 

Heather Douglas (2000) classifies scientific activities into two main categories: the 

scientific activities that are done at the internal stage of the scientific process and the scientific 

activities that are done at the external stage. The internal stage is the stage where scientists produce 

statistical evidence. Among the activities performed by scientists at these stages there are the choice 

of statistical methodologies, gathering and characterising data, and interpreting data. The external 

stage is the stage where scientists test hypotheses, i.e., where they establish whether the produced 

statistical evidence can be used successfully for proving the truth or falsehood of a hypothesis. 

Douglas claims that in the activities performed at the internal stage of science there is also inductive 

risk. The reason for this is that the methodological choices scientists follow at these stages 

determine whether there is sufficient statistical evidence for supporting a hypothesis13. 

Koray Karaca (2021), Miguel Ohnesorge (2020), and Torsten Wilholt (2009) state that there 

is a third stage where inductive risk is present. In fact, as the methodological decisions scientists 

take are constrained by the results they want to produce, scientists must assess not just how their 

decisions will affect the results of the scientific process, but also what happens if these beliefs about 

how a methodological decision produce a determinate outcome are false. Scientists can increase 

the probability of producing a result14. For this reason, scientists must acknowledge that the 

 
13 Following the case of the test of the carcinogenicity of BPA, Douglas (2000:569-572) claims that scientists working 

for the producers of polycarbonate plastics chose a strain of rat that is insensitive to oestrogens. BPA acts as an 

oestrogen since it can disrupt endocrine activity. As these disruptions are linked to the appearance of carcinogenic 

characteristics, choosing oestrogens-insensitive rats will decrease the probabilities of finding statistical evidence that 

supports the hypothesis that claims that BPA is carcinogenic. Thus, this methodological choice influences the results 

of the testing procedure. Since rejecting that BPA is carcinogenic and this rejection is in part based on a methodological 

choice, inductive risk is also present at the internal stages of science; choosing oestrogen-insensitive rats can affect the 

safety consumption of polycarbonate plastics. 
14 For example, they can use oestrogen-sensitive rats and increase the probability of finding that BPA is carcinogenic. 

However, they are not in complete control of this process of increasing the probability of this result. Suppose that BPA 

is carcinogenic just at a specific dose. Suppose also that there are no previous tests that register the connection between 

the dose of BPA and its carcinogenic effects. Therefore, even if scientists use oestrogen-sensitive rats, if they do not 

expose these test subjects to the adequate dose of BPA, they will not be able to increase the probability of finding that 

BPA is carcinogenic. As they do not know this because there is no prior empirical information about the relation 

between the dose and carcinogenic effects, then scientists will fail to increase the probability of their desired result: 

showing that BPA is carcinogenic. 
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connection between a methodological decision and a specific outcome is just probable and depends 

also on factors that they ignore. Consequently, they must consider the impact of following a 

methodological decision with the aim of producing a specific result in a situation where this 

connection between this decision and this result might not be true at all. As this consideration must 

be done before scientists decide how to perform a test, I call this stage where this consideration is 

made the planning stage of science. 

 

 

B) Managing global inductive risk in the predictive maintenance of railway systems 

 

PdM in railway systems, as in other systems, is a process that has four main stages. These stages 

are (1) anomaly detection, (2) failure diagnosis, (3) degradation prognosis and (4) mitigation 

(Serradilla et. al., 2022). Anomaly detection consists in evaluating whether the conditions under 

which a component is working are the normal conditions and whether this component is working 

correctly under these conditions. If the conditions under which the component works are not 

normal, the maintainer will register an anomaly. Also, if the conditions are normal, but the 

component does not work correctly, the maintainer will register an anomaly. For example, 

maintainers observe that part of a rail track is scratched. Therefore, they must determine whether 

these scratches should be considered signs of a future failure.  

Failure diagnosis (Serradilla et. al., 2022) aims to determine whether the anomaly found in 

the previous stage will evolve into a failure or not. This is done by analysing the different 

combinations between the behaviour of the component and its working conditions, and by 

determining whether some of these combinations will produce a failure in the future. Following 

the previous example, maintainers evaluate whether using the rail 25 times per day (working 

condition) would make deeper the scratches (behaviour of the component) until a point where the 

rail breaks.  

The degradation prognosis (Serradilla et. al., 2022) consists in modelling how, under the 

abnormal conditions or abnormal working, the damage of the component will evolve until it causes 

a failure. This prognosis is done by introducing the data gathered in the first stage in a mathematical 

model that represents the degradation evolution of the component and observing which are the 

outcomes: will the component fail under the present conditions? And, therefore, does it need 
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maintenance? For instance, maintainers introduce all the data from the scratched rail in a model of 

rail degradation and observe when, according to this model, the rail will break. Therefore, with the 

outcome of this model, maintainers can decide whether they need to maintain the component. 

Mitigation (Serradilla et. al., 2022) is the subprocess of determining, based on the 

information produced by the three previous stages, which actions ought to be performed to avoid 

the failure of the component. Since maintainers already have all the information that allows them 

to determine whether the component needs maintenance or not, the mitigation process consists in 

designing a maintenance procedure in the case the component needs maintenance. Maintainers 

know that the scratched rail will fail in two months. Therefore, they must plan how to maintain the 

rail. 

These four stages of the PdM process can be classified into the three stages of the scientific 

process, internal, external, and planning. In stage 1 (anomaly detection) maintainers evaluate 

whether the behaviour of a component is normal and whether the conditions under which it is 

working can be linked to a potential failure and, consequently, to the statement that this component 

needs to be maintained. Thus, as maintainers link possible interpretations of the working conditions 

and behaviour of the component with the truth or falsehood of hypotheses about whether to 

maintain it or not, this stage can be classified as a planning stage. In stage 2 (failure diagnosis), 

maintainers use the observations done in the first stage to evaluate whether the data gathered in 

these observations can confirm that the component needs to be maintained. As they analyse in this 

second stage the different combinations between the working conditions of the component and its 

behaviour or status, they evaluate how these different units of evidence can be articulated for 

claiming that a component needs to be maintained or for claiming that it does not require 

maintenance. For this reason, this stage can be classified as the internal stage. In stage 3 

(degradation prognosis), maintainers by means of degradation models test whether the gathered 

data can be used for stating that the component will fail and needs maintenance. Since the outcome 

of this model gives the answer whether to maintain the component or not, it is the instrument 

utilised by maintainers to test their hypotheses about the maintenance of a component. For this 

reason, this third stage can be classified as the external stage of the PdM process. As in stage 4 

(mitigation) maintainers already know whether to maintain a component or not, this stage does not 

need to be classified in the three stages of scientific processes. 
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4. Inductive risk, scientific modelling, and methodological paradigms 

 

A) Inductive risk data and methodological paradigms 

 

Karaca (2021), Ohnesorge (2020), and Wilholt (2009) claim that scientists must construct a 

mathematical model for mapping how a scientific decision impacts a human value and deciding 

the threshold for classifying a body of statistical evidence as adequate for supporting this decision. 

The reason for this is that a value is composed of sub-values and, consequently, scientists must 

evaluate how the impact on one of these sub-values affects the impact on the others. Therefore, if 

the negative impact on one of these sub-values entails the positive impact on other, scientists must 

establish a threshold that minimizes the impact on both, even if that means reducing the positive 

impact or increasing the negative impact on one of them15. 

Moreover, Karaca (2021), Ohnesorge (2020), and Wilholt (2009) claim that scientists must 

construct these models based on statistical evidence or data, as they cannot know in advance which 

sub-values compose a value. In fact, they need these data (inductive risk data) for mapping the 

correct relationship between the distinct impacts on these distinct values. This shows that scientists 

cannot know without statistical evidence which sub-values compose a value16. 

The need for inductive risk data that arises in the construction of inductive risk management 

models poses the following question: how scientists must manage this data acquisition? Wilholt 

(2009) indicates that, due to preference bias, scientists might ignore bodies of inductive risk data 

that are crucial for understanding the relationship between the impacts on multiple human values 

 
15 Consider the case of the production of a vaccine for a pandemic. The value that scientists seek to protect is health. 

This value is composed of two sub-values: safety and efficiency. A safe vaccine does not present toxic characteristics. 

Consequently, before distributing this vaccine among the persons that might be infected by the pathological agent, 

scientists must perform a toxicological test. If they situate the statistical threshold of this test at a higher point, the 

probability of the vaccine of being toxic will be higher and consumers will not be using a safe product. This event will 

impact their health negatively. Correspondingly, if they situate this threshold at a lower point, the probability of the 

toxicity of finding the vaccine toxic will be high. This will delay the distribution of the vaccine, as pharmaceutical 

producers will have to redesign various of its components and production methods for reducing this toxicity. This 

might cause more deaths by the disease and health will also be negatively affected. Thus, scientists must model the 

relationship between these two sub-values to find the optimal way to protect the value of health. In this case, this 

optimal solution would be situating the threshold neither high nor low. 
16 Wilholt (2009:93) mentions the case of the testing of the health hazards of vinyl chloride. He shows that in a first 

moment scientists believed that the health hazards of vinyl chloride were associated solely to toxicity and liver cancer. 

However, subsequent scientific studies demonstrated that these hazards were also related to other types of cancer, such 

as brain cancer. In other words, the pursuit of the value of health depended not just on the pursuit of the sub-values of 

liver health and zero levels of toxicity, but also on the sub-value of brain health. 



34 

 

that a scientific decision might have. Preference bias is defined by Wilholt as the fact that a specific 

risk management model is more beneficial for a scientist or a group of scientists17. For this reason, 

Karaca (2021), Ohnesorge (2020), and Wilholt (2009) consider that it is fundamental to regulate 

the behaviour of scientists regarding the acquisition of inductive risk data. 

Wilholt (2009) proposes a first methodological paradigm for regulating this behaviour. It 

is called methodological conventionalism18. According to this philosophical perspective, all the 

stakeholders that represent a human value that might be impacted by a scientific decision-making 

process should negotiate the rules that guide the establishment of statistical thresholds in this 

process. In this way, these stakeholders guarantee that scientists will not prefer an inductive risk 

management model over another and, consequently, that they will seek all the inductive risk data 

necessary for understanding how all these multiple values are related. Additionally, these rules 

must be integrated in a convention that dictates how scientists should perform a decision-making 

process. Consequently, this convention determines which sources of data scientists should consider 

and which they are allowed to ignore for constructing inductive risk management models free from 

preference bias. 

Ohnesorge (2020) finds that following methodological conventionalism is in some cases 

problematic. He states that this perspective does not consider the fact that conventions might be 

flawed and that, thereby, they might fail in regulating biased scientific behaviour. For this reason, 

conventions cannot always be used for regulating the behaviour of scientists regarding inductive 

risk data acquisition19.  

 
17 For example, toxicologists working in a pharmaceutical company that is producing a vaccine for a pandemic are 

benefited if the vaccine is distributed earlier among the persons at risk of contagion, as this will show the efficiency of 

these scientists and reduce the costs of the project. Therefore, they will claim that redundant toxicological tests do not 

warrant the safety of the vaccine and they will ignore the data that show that redundant testing is a sub-value of safety. 

This shows that they will prefer a model that does not consider redundancy as a sub-value that must be preserved and 

might neglect the acquisition of data that corroborate that this sub-value must be protected if safety is also to be 

protected. 
18 The debate between methodological conventionalism and permissive empiricism can be traced back to the discussion 

about measurement in science (Ohnesorge, 2020; Tal, 2020; Wilholt, 2009). This discussion is about the role of 

conventions in measuring and testing processes. On the one hand, conventionalism claims that measurement is possible 

only if scientists use measurement conventions. Instead, operationalism considers that how scientists perform 

measurement operations is what legitimizes these operations. 
19 Ohnesorge (2020) and Jacob Stegenga (2017) study the case of Randomised Control Trials (RCTs). These trials are 

performed by scientists working in pharmaceutical companies with the aim of testing how successful a drug is. As this 

successfulness is determined by how much benefits this drug brings and, at the same time, how harmless it is, scientists 

must balance the protection of the sub-value of being beneficial and the protection of the sub-value of being harmless 

for preserving the value of being successful. For this reason, they perform the following procedure: in the first phase 

of the trial, they give all the drugs under test to the human test subjects. The drugs that produced harmful effects in 

them are discarded. Instead, the drugs that were harmless are used in the second phase again. In this second phase, 
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Ohnesorge (2020) claims that the motive that leads the stakeholders whose values might be 

impacted by a scientific decision-making process to regulate the inductive risk data acquisition of 

this process by means of a convention is coordinative. This means that a convention seeks to map 

all the values that might be impacted by this process and, consequently, that scientists, during this 

process, do not need to assess whether this process is preserving these values in an optimal way. 

In other words, the convention makes possible that stakeholders focus on formulating the value 

judgements that decide how a scientific decision-making process might impact human values and 

scientists focus on gathering the data that supports these value judgements. However, as Ohnesorge 

and Stegenga (2017:134-150) show with the case of RCTs, stakeholders might not know which 

inductive risk data is necessary for constructing the inductive risk management models that 

adequately preserve their human values. The reason for this is that this information can only be 

obtained by applying the convention. Therefore, this lack of inductive risk data might lead them to 

the formulation of flawed or ineffective conventions20. For this reason, Ohnesorge agrees with 

methodological conventionalism that scientists should acquire inductive risk data according to how 

the convention dictates. However, he states that scientists, in the cases where there are no data 

 
scientists give the harmless drugs to the test subjects with the goal of evaluating whether the drugs produced benefits 

in them. In the third phase, scientists give the harmless drugs to a different group of human test subjects. This increases 

the probability of finding benefits. Ohnesorge and Stegenga indicate that the results of the first phase are not published 

because this would destroy the equilibrium between finding benefits and finding harms. In fact, as harmful molecules 

are product of mistaken pharmaceutical fabrication procedures, if other producers know these results, they would be 

discouraged of following these procedures. However, these procedures also produced the harmless and beneficial drugs 

tested in the second and third phase. Thus, if these other producers do not follow them, they would reduce the 

probability of discovering and producing harmless and, perhaps, beneficial drugs. For this reason, it is preferable to 

publish just the outcomes of the second and third phase, where the balance between benefits and harms is achieved. 

Therefore, in RCTs, the convention that guides scientific decision-making states that scientists should not publish the 

results of the first phase and, consequently, that these results are not relevant in the construction of inductive risk 

management models. 

However, Ohnesorge (2020) and Stegenga (2017:134-150) show that maintaining the outcomes of the first 

phase out of the public light can be problematic. The reason for this is that these results do not show solely which drugs 

are harmful but also which groups of molecules and groups of drugs might be harmful. It is necessary to indicate that 

the harmful drugs are composed of molecules. Thus, their harmfulness shows the potential harmfulness of drugs 

produced with similar or equal molecules. Consequently, every first phase of a RCT can gather new evidence of this 

group of molecules and this evidence increases progressively. Nonetheless, as this evidence is kept in secret, it cannot 

be used for producing new drugs. Therefore, the only evidence that new producers can gather is that produced in the 

first phase of their trials and that gathered in reports of the second and third phases of other RCTs. This could destroy 

the equilibrium or balance between finding benefits and harms, as, with this evidence that is inclined to show more 

benefits than harms, the probability of finding benefits will increase, but the probability of finding harms will remain 

the same. This shows that this convention leads scientists to ignore crucial data for understanding how to balance 

benefits and harms, and, hence, preserving successfulness. For this reason, it is flawed and cannot regulate adequately 

inductive risk data acquisition and avoid preference biases. 
20 In the case of RCTs, the performance of these trials multiple times will accumulate enough evidence to assess 

whether the design of these trials is the optimal for balancing benefits and harms or not. 
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regarding which inductive risk data are necessary for constructing adequate risk management 

models and, consequently, formulating effective conventions (from now on I will call them 

convention performance data), such as the RCTs, should also search and acquire these data that 

test the effectivity of these conventions. As the acquisition of this second type of data cannot be 

regulated by these conventions, Ohnesorge shows that the inductive risk data acquisition process, 

in the cases where there are no convention performance data of these conventions, should not be 

regulated solely by these conventions. Rather, in these cases, this process should also be regulated 

by what the application of these conventions tells scientists about the effectivity of them. 

This philosopher (Ohnesorge, 2020) proposes a second methodological paradigm: 

permissive empiricism. This perspective establishes that the behaviour of scientists regarding the 

acquisition of inductive risk data should follow two steps. First, scientists should follow the 

convention that regulates this data acquisition and consider the data that enable them to model the 

inductive risk of a scientific decision-making process according to the stakeholder negotiation that 

formulated this convention. Second, scientists should evaluate the application of this convention 

and search for the convention performance data that prove that it is flawed. If they find these data, 

they should give it to the stakeholders and these stakeholders should modify this convention. 

The distinction between these two methodological paradigms raises the question about how 

to identify those scientific contexts where stakeholders do not now the effectivity of their 

conventions, i.e., those contexts where there are no convention performance data (from now on I 

will call them poor-data contexts), and those where there are these data (rich-data contexts). As 

the management of inductive risk is a mathematical modelling process that requires the regulation 

of inductive risk data acquisition through effective conventions, this practice requires the 

answering of the previous question. Additionally, as I have mentioned in section 3-A, the 

management of inductive risk must be done at the planning, internal, and external stages of the 

scientific process. Thus, this question must be answered at these three stages. 

 

 

B) Methodological paradigms in the predictive maintenance of railways 

 

PdM of railway systems must be data driven (Davari et. al., 2021; Xie et. al., 2020; Le Nguyen et. 

al., 2020; Chenariyan Nakhaee et. al., 2019). On the one hand, these systems operate in varying 
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environmental conditions and are exposed to continuous use. Therefore, it is necessary to monitor 

constantly the working conditions and status of the components of the system. On the other hand, 

the decisions when and how to maintain a component must be fully accurate, since a failure in the 

system might cause a catastrophic damage, that affects the life and safety of the users of the system 

and cause deep economic losses as well (Xie et. al., 2020). For the previous reasons, the monitoring 

of railway systems must progressively try to include high number of parameters in the monitoring 

processes. This is achieved by maintainers by increasing the methods to inspect railway systems. 

Multiple sources of data are used in PdM. Among them, there are sensors localized in railways and 

in inspection and service trains, testing methods such as ultrasonic testing, patrols of human 

inspectors, and monitoring instruments such as cameras and detectors. Additionally, maintainers 

must know how to articulate all these data sources to produce reliable monitoring results. 

Therefore, maintainers use statistical models that are aimed to infer the true relationships between 

all these parameters or variables, and machine learning (ML) models that, through regression and 

classification processes, extract patterns from the complex datasets produced by all these multiple 

monitoring techniques. 

Each of these models, statistical and ML, adopt one of the two methodological paradigms 

explained in the previous section and, therefore, both are models used either at poor-data or rich-

data contexts. In the use of statistical or stochastic models, maintainers collect data that support a 

PdM decision, i.e., a statement about the PdM process21 (Xie et. al., 2020; Le Nguyen et. al., 

2020;17-18). Therefore, they utilise a function that models how the changes in a variable or 

parameter change this statement. Thus, if the function surpasses certain threshold, it indicates that 

the statement that can be done by maintainers should be different22. This statement assuredly 

depends on other variables. However, as these other variables might make more complex the 

understanding of the relationship between the statement that can be made by maintainers and the 

 
21 A maintenance decision (Serradilla, et. al., 2021) is a statement about one of the three steps of the PdM process: 

anomaly detection, diagnosis, and prognosis. A statement about the first step would be “this rail has X abnormal 

behaviour”. A statement about the second step would be “X is caused by the cracks that the rail has”. A statement 

about the third step would be “this type of cracks gives the rail α days of useful life”. 
22 For example, a function that models how the number of cracks of a rail degrade this component until its point of 

failure must represent how changes in the number of cracks increase the probability of failure of the component. Also, 

the function must express at which point the component enters a critical point where it can abruptly fail. Moreover, the 

function must represent how the time is related to the appearance of more cracks. Consequently, this function is 

calculating the remaining useful life (RUL) of the component based on the relation of the parameters ‘time’ and 

‘number of cracks’. 
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variable selected, they are excluded in the calculation23. Thus, stochastic modelling tries to 

understand the relationship between maintenance decisions and risky situations (the failure of the 

component) based on the selection of specific bodies of data or variables. Therefore, this type of 

modelling must follow conventions, i.e., predetermined assumptions about how a scientific 

decision impacts a human value and, hence, is risky, that regulate which data maintainers must use 

for designing the inductive risk management models of PdM processes. For this reason, statistical 

modelling in PdM adopts methodological conventionalism and is applied at poor-data contexts. 

By contrast, ML modelling adopts permissive empiricism and is applied at rich-data 

contexts. These models have the goal of modelling the relationships between an input dataset 

related to a railway system component and an output dataset related to a risky situation (Xie et. al., 

2020; Le Nguyen, et. al., 2020:17-18). Thus, they seek to answer the question “given these inputs, 

which outputs will be produced?”. Additionally, these modelling practices do not use necessarily 

conventions that establish which variables and complementary bodies of data must be used by 

maintainers in the modelling of these relationships. Instead, these models examine multiple 

functions that map in different ways these relationships and select that function that uses more data 

for mapping these relationships24. Therefore, in the sense that ML models aim to incorporate 

always more parameters, they aim to use each time more data or empirical evidence to adequately 

understand the relationship between a group of inputs and a group of outputs. For this reason, ML 

modelling adopts permissive empiricism. 

Until this point of the thesis, I have responded the first sub-question. In the first place, I 

have shown that the inductive risk that arises in the PdM of railway systems is an inductive risk 

that (1) must be managed through the identification of the two outcomes of scientific decision-

 
23 In the previous example, the degradation of the rail assuredly depends on other variables such as how many times a 

train uses this rail track, whether the rail is in a flat geography or not, the environmental conditions which the rail is 

exposed to, among others. However, as these other variables might make more complex the understanding of the 

relationship between time and cracks, they are excluded in this calculation. 
24 For example, in a supervised model, modelers give to the algorithm that performs the ML modelling a set of examples 

of the input-output relationship. Suppose that this model maps the relationship between number of cracks in a rail and 

the need for maintaining the rail in the following month. Modelers can give the algorithm certain images of both rails 

with cracks that needed to be maintained the next month and rails that did not. Based on these images the algorithm 

produces a function that maps the relationship. This function states “if the image shows more than 10 cracks, the rail 

must be maintained next month”. However, suppose that the modelers have an image of a rail that has 10 cracks but 

did not need maintenance in the following month. The reason for this is that the size of the cracks was exceedingly 

small. Thus, if the model integrates this image, then it would use additional data, i.e., the sizes of the cracks. The 

algorithm will produce the following function: “if the image shows more than 10 cracks that measure more than 10 

cm, the rail must be maintained next month”. This function is more accurate, since it can discriminate between small 

and big cracks and how this size affects the need for maintenance in the next month. 



39 

 

making processes that might impact negatively human values (false negatives and false positives). 

2) As the PdM practices of railway systems have the three stages of scientific processes, this risk 

must be managed at each of them. 3) This management consists in responding whether the context 

where each of the stages of this scientific decision-making process is being performed is a rich-

data or a poor-data context. In the second place, I have shown why the inductive risk of the PdM 

of railway systems must be managed globally and through the identification of poor-data and rich-

data contexts. First, the inductive risk of the PdM of railway systems must be managed because the 

principal goal of this PdM is to decide whether the statistical evidence gathered from a component 

might be used for claiming that this component should be maintained and, in this way, mitigating 

a negative impact of the system on human values, such as safety, efficiency, and environmental 

responsibility. Second, as the principal stages of the maintenance process are three, anomaly 

detection, diagnosis, and prognosis, these stages can be interpreted as the three stages of a scientific 

decision-making process (planning, internal, and external). Third, the management of the inductive 

risk of this PdM consists in the distinction between rich-data and poor-data contexts, since this 

maintenance practices manage the impact on human values based on data modelling processes. In 

the next sections I will respond the second and third sub-questions. 

 

 

5. Deep learning and inductive risk 

 

A) Inductive-risk-balanced and inductive-risk-imbalanced contexts 

 

Karaca (2021) and Biddle (2020) have used the philosophy of the societal applications of deep 

learning (DL) models25 for examining the relationship between inductive risk and the availability 

of data in scientific processes. These two philosophers indicate that these models are employed in 

professional or societal applications where inductive risk must be managed. They also highlight 

the fact that regarding the management of this type of risk these applications can be divided 

between those where this type of risk is imbalanced and those where is balanced. Thus, they divide 

between inductive-risk-balanced and inductive-risk-imbalanced contexts. Inductive-risk-

 
25 The discussion Karaca (2021) and Biddle (2020) do is about the societal applications of Machine Learning (ML). 

However, these philosophers state that DL is the most advanced form of ML. Therefore, for clarity purposes, I state 

that the discussion of Karaca and Biddle is a discussion about Deep Learning. 
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imbalanced contexts are those applications where the impact on human values of one of the false 

results (also called cost), either a false positive or false negative, is higher than the impact of the 

other error. Inductive-risk-balanced contexts are those applications where both errors have the 

same cost. For this reason, these authors claim that the aim of using DL models is, in the first place, 

to distinguish between these two types of contexts. Consequently, in the second place, at contexts 

where error costs are imbalanced, the aim of DL modelling is to balance them through the design 

of these models in a way that they tend to decrease the probability of the errors with higher cost. 

Instead, at contexts where error costs are balanced, the aim of DL modelling is to keep the 

probability of both types of error at the same level through the design of these models in a way that 

warrant that both types have the same probability of occurring. This shows that the main goal of 

the designers of DL models used in societal application where inductive risk must be managed is 

to differentiate between cost contexts, i.e., between inductive-risk-balanced and inductive-risk-

imbalanced contexts26. 

In the previous section, I have indicated that the management of inductive risk entails 

distinguishing between poor-data and rich-data contexts. Thus, in scientific decision-making 

processes that use DL models where this type of management is required, the use of these models 

must be related with this distinction. I have shown that the use of DL models in scientific decision-

making processes where inductive risk must be managed has the main goal of dividing these 

processes into inductive-risk-balanced and inductive-risk-balanced contexts. For this reason, 

understanding the management of inductive risk in the scientific decision-making processes that 

use DL models requires studying the relationship between distinguishing poor-data from rich-data 

contexts and distinguishing inductive-risk-balanced from inductive-risk-imbalanced contexts. 

In section 3-A, I have indicated that the management of inductive risk must be done at the 

three stages of scientific processes, planning, internal, and external. Karaca (2021) and Biddle 

 
26 For instance, in the use of a DL model for oncological diagnosis a false negative has a greater impact than a false 

positive (Karaca, 2021). Diagnosing a patient as healthy when she has cancer (false negative) will delay the treatment 

of this patient and might cause her death. Instead, diagnosing a patient as ill when she is healthy (false positive) might 

entail solely that this patient does additional tests to confirm her truthful health condition. Clearly, for the clinic where 

this model is implemented the cost of producing false negatives is much higher than the cost of producing false 

positives. For example, if the patient dies of untreated cancer, it will have to give her relatives a huge financial 

compensation. Instead, performing additional tests will signify a much lower cost. In this case, DL models are used 

for balancing or compensating such costs. Therefore, scientists should design a model that tend to produce less false 

negatives than false positives by lowering the threshold of statistical evidence required for diagnosing a patient as 

having cancer. Instead, at a context of application where false positives and false negatives have the same costs, 

scientists should design a model that has no tendency to produce one type of error more than the other; the probability 

of errors should be the same. 
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(2020) reveal that the societal applications of DL can be understood as three-stages scientific 

processes, that have a planning, an internal, and an external stage. The societal applications of DL, 

as other DL modelling activities, have the main goal of analysing complex datasets and discovering 

patterns in these datasets. At the training stage, the designers of these applications introduce in 

these models an input dataset and an output dataset (Karaca, 2021:6-9). The model must map or 

calculate the relationships between these inputs and these outputs. Therefore, these designers must 

find a function that adequately represents these relationships between these two datasets. This is 

the pattern that the models aim to discover: it states, given a specific input, which output is 

produced. Additionally, the designers must introduce in the model a set of possible functions that 

map this relationship. The model must select that function that represents this relationship in the 

most accurate way. Therefore, as the designers must decide which functions can be used by the 

model for mapping the relationship, the choices they do regarding these functions determine the 

outcome of the model. Consequently, the training stage is the internal stage. 

The second main goal of DL models is to generalise this function to other datasets distinct 

from those used in the training stage (Karaca, 2021:6-9). Thus, during the testing stage, the 

designers introduce additional datasets and observe whether the function found at the training stage 

maps adequately the input-output relationship of the new datasets. As the function is a hypothesis 

that specifies how the data of an input dataset is related to an output one, in the testing stage this 

hypothesis is tested. For this reason, the testing stage is the external stage. 

The third main goal of DL models is to optimise the generalisation function (Karaca, 

2021:6-9). As the exact input-output relationship cannot be found by the model because this would 

require the analysis of all the possible datasets that map this relationship, every function discovered 

by the model has an error margin. Additionally, as designers, at the testing stage, use the function 

discovered by the model to map new datasets, during this stage, the model can produce errors if 

this function does not adequately map the input-output relationships of these new datasets. 

Therefore, at the testing stage the model has also an error margin. If these two error margins are 

very distinct, it means that, during the training, the designers are introducing possible functions 

that do not consider all the parameters necessary for estimating the input-output relationship. 

Contrarily, if these two error margins are remarkably similar, it means that the model is using 

excessive parameters for finding the relationship. For this reason, the outcomes of the testing stage 

constrain the methodological decisions of the training stage; designers must find an equilibrium 
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between using insufficient parameters and using excessive parameters. The finding of this 

equilibrium is done at the validation stage. As the planning stage in science is the stage where 

scientists consider how outcomes constrain methodological decisions, the validation stage is the 

planning stage. 

Karaca (2021) states that at each stage of the use of DL models, designers have two methods 

for performing the stage. At the training stage, scientists can use either equal costs or different costs 

for determining the possible functions they will introduce in the model (Karaca, 2021:11-12). At 

the testing stage, scientists can use either the ROC or the F1 score metrics for evaluating the 

generalisation procedure of the model (Karaca, 2021:14-17). At the validation stage, scientists can 

use either a rule-based approach or a validation-set approach for finding the equilibrium between 

using insufficient and excessive parameters (Karaca, 2021:12-14). Since the contexts where global 

inductive risk must be managed are two (inductive-risk-balanced and inductive-risk-imbalanced), 

each of these methods corresponds to each of these two contexts. Therefore, the use of DL models 

in scientific decision-making processes where inductive risk must be managed consists in deciding 

which methods should be employed at each of the stages of these scientific decision-making 

processes. 

Eric Winsberg employs the conceptualisation of design made by Wimsatt, Tebaldi, and 

Knutti (2012:118;128) for understanding the relationship between inductive risk management and 

mathematical modelling. This conceptualisation claims that design is the process of combining 

multiple modelling methodologies, i.e., distributing each of them at the distinct stages of the 

scientific decision-making processes where inductive risk must be managed, and using this process 

for distinguishing between poor-data contexts from rich-data ones at each of these three stages of 

these processes. DL modelling used in these processes consists in employing one of two 

methodologies, the one used at inductive-risk-balanced contexts and the one used at inductive-risk-

imbalanced ones, at each of the stages of these processes for managing inductive risk. Therefore, 

scientists can utilise a design approach and, thereby, combine these two methodologies for 

distinguishing poor-data from rich-data contexts at each stage of these processes. Therefore, the 

study of the management of the inductive risk that arises in the societal applications of DL 

modelling consists in analysing how scientists and other stakeholders involved in these scientific 

decision-making processes approach this management as a design practice. Consequently, this 

study consists in analysing how these scientists and stakeholders employ the two abovementioned 
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modelling methodologies of DL modelling at each of the stages of the scientific process for 

distinguishing between rich-data and poor-data contexts. 

 

 

B) Deep learning in the predictive maintenance of railway systems 

  

The railway industry introduced the Internet of Things (IoT) framework (Davari et. al., 2021; Le 

Nguyen et. al., 2020; Xie et. al., 2020; Chenariyan Nakhaee et. al., 2019) for monitoring railway 

systems in an accurate and reliable way. The reason for this is that this information and 

communication technology framework indicates that it is possible to model engineering systems, 

such as railways, in real-time, i.e., in a way where every physical change in the system is reflected 

in the model. For example, if a rail is scratched, the model represents this physical alteration of this 

component of the railway system. This can be done by constructing and implementing a wireless 

network of varied sensing, data-processing, and data-visualisation devices, i.e., of varied data 

management devices, that acquires, integrates, and represents in an instantaneous way all the data 

that describes the physical status of the system in a single model (for a visual representation of the 

real-time railway system PdM model see figure 1; for a visual representation of the architecture of 

a data management network that implements the IoT framework for PdM see figure 2). Therefore, 

the IoT framework enabled maintainers of railway systems to monitor these systems. This is to say 

that these maintainers could model the physical behaviour of the railway systems that were 

constructed and regulated under this framework. 
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Figure 1: In this image it is possible to see how sensors embedded in the multiple components of the railway system 

share continuously to a unified network the data acquired from these components (Fraga-Lamas, Fernández-

Caramés and Castedo, 2017:4). 

Figure 2: This image shows how the data flow from the phase of acquisition into the phase of visualization in the 

data networks used in systems that perform PdM, and which devices are related in this data modelling process 

(Huang, Liu, and Tao, 2019:102). 
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The use of the IoT framework in the PdM of railway systems meets the first fundamental 

characteristic of the DL societal applications where inductive risk must be managed. This 

characteristic is that the management of inductive risk entails the distinction between the inductive-

risk-balanced and inductive-risk-imbalanced contexts of these applications. The railway industry 

uses this framework for differentiating, based on the monitoring of the physical elements of the 

system, the inductive-risk-balanced contexts from the inductive-risk-imbalanced ones in the PdM 

of railway systems and, consequently, balancing the costs of errors by managing the probability of 

them. In fact, the railway systems constructed and regulated under this framework reflect in the 

models of these systems how the physical changes in them affect their non-physical components, 

among them the human values that might be impacted by the PdM practices performed in them 

(safety, cost efficiency, environmental responsibility, usability, among others). For instance, they 

can represent how the scratches in a rail track in combination with its continuous use can increase 

the probability of a derailment and, hence, of threatening the lives of train passengers. Therefore, 

this framework enables maintainers to know how their scientific decision-making processes and 

their results which consists in physical alterations of the system impact these human values. In the 

previous case, an outcome can be avoiding maintenance of the scratched rail in a specific lapse of 

time. The important element to see is that the IoT framework shows that the costs of errors in 

relation to human values and the methods for balancing them depend on the monitoring of the 

physical components of the railway systems. 

A second feature of the implementation of the IoT framework in the PdM of railways is that 

it created the need for automatic pattern discovery in these practices (Davari et. al., 2021; Le 

Nguyen et. al., 2020; Xie et. al., 2020; Chenariyan Nakhaee et. al., 2019). Previous to the 

implementation of this framework in these practices, the modelling of these systems required pre-

processed datasets. This means that maintainers decided and selected one by one, in a manual way, 

the parameters necessary for modelling the relationship between physical changes in the systems 

and maintenance actions and the impacts on human values. Therefore, the inferential relationship 

between a maintenance action and a physical change and an impact depended on known features 

or parameters. After the parameters were selected, maintainers, through inspection activities, 

extracted or acquired the data that described the physical status of the system according to these 

parameters. However, with the introduction of data management devices (sensing, data-processing, 

and data-visualisation devices), the amount and combinations of data increased continuously and 
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became so vast that maintainers could no longer manually select these parameters. During 

inspection, DL models automatically select these parameters in this ever-changing data stream and 

analyse them for discovering patterns that describe the inferential relationships between the 

physical status of the system, maintenance actions, and the impacts on human values. Therefore, 

the IoT framework and the new data-management technologies transformed inspection into an 

automatic process. In this new process the data necessary for managing inductive risk is not 

acquired according to pre-selected parameters, but on models that, through the combination of 

multiple groups of parameters, found the best way to represent the impacts of the railway system 

on human values. 

This use of automatic pattern discovery shows that railway systems constructed and 

regulated under the IoT framework meet the second fundamental characteristic of DL societal 

applications where inductive risk must be managed. As indicated in the previous section, this 

characteristic is that the balancing of error costs must be employed by DL modellers to decide 

whether the context where inductive risk is being managed and where the DL societal application 

is being deployed is a rich-data or a poor-data context. As the IoT framework transformed the 

management of inductive risk into a process that consists in relating the physical changes in the 

system with the impacts on values, the data necessary for managing inductive risk are data that 

describe the physical characteristics of the system. For instance, a dataset used for predicting the 

failure of a rail track and its relation to the scratches of the rail contain data about the three-

dimensional configuration of the scratch. The dataset is made from numerical data about the height, 

width, length, size, and other variables necessary to represent this configuration (Santur, Kakaröse, 

and Akin, 2017). I have highlighted that DL models combine different parameters and, based on 

the data acquired during the inspection of the component of the system, discover patterns of failure 

and their relationships to the physical characteristics of this component described by these data. 

Therefore, the DL models do not rely on predetermined parameters but on the combinations 

between the parameters found in the data for finding these patterns. In this way, during the use of 

these models, maintainers employ the data gathered by the inspection activities, i.e., empirical data, 

for managing inductive risk and transforming the data contexts where the maintenance practices 

are performed from poor-data into rich-data. 
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The DL models used in the PdM of railway systems use multiple architectures or modelling 

methodologies for automatically discovering patterns (Davari et. al., 2021; Le Nguyen et. al., 2020; 

Xie et. al., 2020; Chenariyan Nakhaee et. al., 2019). Also, these architectures are classified 

according to the type of dataset that they use for automatically discovering patterns. These datasets 

are classified into two types: 1) the datasets composed of images and 2) the datasets composed of 

single measurements. The main difference between these two types is that, while in the use of the 

first type the DL model needs to analyse the representation done by the image of the physical status 

of the component of the system for discovering the pattern, in the use of the second type it needs 

to analyse a specific measure captured by the inspection device. As an image represent the multiple 

measurements applied to a component (e.g., the colour, the area, and the shape of the component), 

the main difference between these two types of architectures is that, whereas one uses a single 

measurement for constructing a dataset, the second uses multiple measurements. For this reason, 

DL architectures are classified in those that use single measurements for finding classification 

patterns (from now on I will call them separated architectures) and those that use multiple 

measurements (from now on I will call them integrated architectures). Additionally, the use of DL 

models for PdM of railway systems consists in employing these two types of DL architectures of 

automatic pattern discovery for detecting anomalous behaviour or conditions in the components of 

the system, classifying these anomalies into distinct types of faults, and prognosing the RUL of 

these components27. 

This classification of architectures meets the third characteristic of DL societal applications 

where inductive risk must be managed. This third characteristic is that in these applications 

modellers combine two modelling methodologies, the ones used at inductive-risk-balanced and the 

ones used at inductive-risk-imbalanced contexts, and use this combination for distinguishing rich-

data from poor-data contexts at the three stages of these scientific processes. As mentioned earlier, 

automatic pattern discovery transforms poor-data contexts into rich-data ones and, thereby, 

 
27 Both technical writers (Chenariyan Nakhaee et. al., 2021; Davari, et. al. 2021; Xie et. al., 2020) and philosophers 

(Karaca, 2021:19-23; Erasmus, Brunet, and Fischer, 2020) acknowledge that DL models have multiple architectures, 

such as the convolutional neural network (CNN), the recurrent neural network (RNN), and the generative adversarial 

network. The difference between these architectures lies on how they utilise and combine multiple mathematical 

functions for modelling the relationship between the input dataset and the output dataset at the different points or nodes 

where this relationship is modelled. In the case of the use of DL for the inspection activities of the PdM of railway 

systems, the architecture of DL models depends on the articulation of the multiple elements of these activities: which 

data are used, how these data are acquired, and which is the influence of these data on the decisions regarding 

maintenance. Thus, these elements classify these architectures into two types, integrated and separated. 
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manages inductive risk by combining the multiple parameters that describe the data gathered at the 

inspection activities. The construction of datasets composed of multiple measurements decreases 

the probability of one type of inductive error. The reason for this is that using two distinct 

measurements for finding the same pattern decreases the chance that the model fails in finding this 

pattern. For instance, if a model is used for detecting a faulty rail track and it uses both 

measurements about the structural properties of the rail and images of the rail, it has greater chances 

of truly detecting this failure than a model that uses solely a single measurement. Since the 

management of inductive risk depends on the finding of patterns, the use of integrated 

measurements for automatic pattern discovery depends on the costs of the failures to be discovered. 

Therefore, in the cases where these costs are the same, maintainers do not need to use a method 

that decreases the probability of producing one type of errors. Thus, in these cases maintainers can 

use DL separated architectures. By contrast, in the cases of costs imbalances, maintainers must use 

integrated architectures and reduce the probability of the errors with higher costs. In this way, 

maintainers use a design approach and combine the multiple DL architectures in order to manage 

error costs and, hence, inductive risk at the three stages of the scientific process where inductive 

risk is to be managed.  
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Chapter 4: Inductive risk, Deep Learning and Testing 
 

In this chapter I analyse the external or testing stage of the use of DL. In the first place, I observe 

how the use of testing methodologies is decided by the cost contexts where DL is used. In the 

second place, I assess how this distinction between cost contexts can justify the methodological 

testing decisions taken by the engineers who proposed the two solutions selected. 

 

 

1. Value contexts and testing of deep learning models 

 

DL models are tested according to how well they classify a new set of data based on a general 

pattern found in the training data (Karaca, 2021:6-9;14-17). The solutions to this generalisation 

problem are multiple, since they depend on which parameters are used by the algorithm in order to 

classify datasets. Therefore, the methodological decisions taken by the designers of the DL model 

are the aspects of these models that are tested. According to Karaca (2021:14-17), there are two 

ways for testing the generalisation process done by DL models. The first one is applying the metric 

known as receiver operating characteristic (ROC) that subtracts the ratio of all false positives 

divided by all negatives FP/N (false positive rate or FPR) with the ratio of all true positives divided 

by all positives TP/P (true positive rate or FPR; also called sensitivity). The formula is: TPR-FPR. 

The second applies the F1 score metric. This application consists in combining the result of this 

subtraction with the precision ratio, which is the division of true positives by all the instances 

classified as positive (TP/TP+FP). The formula this second metric use for combining these two 

quantities is: 2 * (Precision*Sensitivity)/(Precision+Sensitivity). Thus, the F1 score is formulated 

in the following way: F1 = 2 * (Precision*Sensitivity)/(Precision+Sensitivity). 

Karaca states that the F1 score metric should be used when the multiple model choices use 

highly imbalanced classes (2021:14-17). This means that most of the features of the dataset selected 

by the model for performing the generalisation procedure are not used by the other models. In this 

way, the greater the difference between the features selected by each model, the greater the use of 
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imbalanced classes by these models. Karaca also states that designers select these features based 

on the values or interests these scientists aim to defend with the construction of these DL models28. 

These two claims done by Karaca show that the methodological choices for testing DL 

models depend on the relationship between the different human values designers seek to obtain 

with the implementation of these models and the costs or impacts on these values of the errors that 

can be produced by these models. If the errors have balanced costs, then they should use the ROC 

metric. Contrarily, if these errors are imbalanced, they should use the F1 score. Therefore, I observe 

that, while the ROC is used in inductive-risk-balanced contexts, the F1 is used in inductive-risk-

imbalanced ones. 

In the following section, I analyse how these contexts are distinguished in the testing 

procedures of DL models used in the PdM of railway systems. For doing this, I analyse which 

criterion maintainers use for applying the ROC or the F1 score metric in both selected cases. As 

there are other metrics besides ROC and the F1 score (Hossin and Sulaiman, 2015), but that do not 

have relevance in the present philosophical discussion about cost contexts, I analyse the criterion 

maintainers use in these cases for distinguishing between inductive-risk-balanced and inductive-

risk-imbalanced contexts even if they do not mention these two metrics explicitly. The association 

of these two metrics with the two types of cost contexts (inductive-risk-balanced and inductive-

risk-imbalanced) is done for showing that maintainers follow testing choices that can be classified 

into two groups and that these groups are defined by the type of cost contexts where the DL model 

is being implemented. For this reason, the analysis in the following section is centred on how 

maintainers make testing choices based on how they differentiate between inductive-risk-balanced 

and inductive-risk-imbalanced contexts. 

 

 

 

 

 

 
28 For example, in the modelling of an oncologic DL model, scientists must choose a particular set of features in the 

visual characteristics of a tumour for determining how this algorithm will classify this tumour between the different 

classes of tumours. As some tumours require more urgent medical intervention than others, depending on this 

classification, a patient could receive treatment in less or more time. Thus, if these scientists are interested in preserving 

patients’ safety, they must choose a set of features that make the model classify most of the tumours in those categories 

that require urgent intervention.  
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2. Testing of DL models 

 

Case 1 - Digital Camera Inspection 

 

As mentioned in chapter 2 (see section 4), the goal of this inspection system is to aid maintainers 

in their decisions about when they should perform a maintenance action on a rail track. Maintainers 

should replace missing fastening bolts for avoiding critical situations. Therefore, detecting missing 

bolts indicates them whether a bolt is missing and requires replacement. In chapter 2 I also have 

mentioned that manual inspection is slow and subjective. Thus, the introduction of this automatic 

inspection system reduces the number of falsely detected missing bolts (false positives). For this 

reason, the goal of the DL model used in this system is to reduce these false positives that occur in 

the detection process of this inspection activity that consists in examining whether bolts are 

correctly positioned29. 

Marino et. al. (2007:425-428) tested how well this model generalises its classification 

function by utilising images of both hexagonal-headed and hook-headed fastening bolts recorded 

by a video camera30 . This test shows that the rate of false positives was significantly higher in the 

detection of hexagonal-headed occluded bolts (0.1% bolts were detected as correctly positioned) 

than in the detection of left hook-headed (47%) and right hook-headed (31%) bolts. The authors of 

the DL solution stated that this difference in rates is originated in the fact that the hexagonal-headed 

bolts are very similar to the stones of the ballast where the track is placed. As this factor was not 

considered by the authors for giving a higher cost to this false positive, i.e., classifying an occluded 

 
29 It is fundamental to indicate that aiming to decrease the number of false positives do not necessarily entail that this 

type of error has a higher cost in the DL model. The reason for this is that the model aims also to use a specific 

classification method and specific sets of data and of measurement procedures for understanding the relationship 

between these data acquisition processes and the probability of errors. Therefore, the costs of the errors depend on the 

relationship between an elected data acquisition process and how this election impacts the probability of each of these 

errors. 
30 In the case of hexagonal-headed bolts, the test consisted in examining a rail network that contained 3350 bolts (2469 

visible bolts; 721 occluded bolts; 21 absent or missing bolts). In the case of the hook-headed bolts, the test also 

consisted in examining a rail network but, in this case, this network employed hook-headed bolts both with the hook 

directed towards the left and with the hook directed towards the right (the authors do not specify neither how many 

bolts the network contained nor how many were visible, occluded, and absent). The results of the test shows that the 

percentage of detection of left hook-headed and right hook-headed visible bolts was of 100% and the percentage of 

hexagonal-headed visible bolts was of 96%; the percentage of detection of left hook-headed bolts was 47%, of right 

hook-headed occluded bolts was of 31%, and the percentage of hexagonal headed bolts was of 0.1%; the percentage 

of detection of absent left hook-headed and right hook-headed bolts was of 100% and the percentage of hexagonal 

bolts was of 95%. 
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hexagonal-headed bolt as a missing one, and, consequently, reducing the probability of this type 

of errors, in this testing stage the errors were balanced31. For this reason, it is an inductive-risk-

balanced context. 

The testing in this case is based on detecting a shape at a specific set of coordinates within 

a region (Marino et. al., 2007). In fact, the system searches for the bolt in the x axis at the distance 

intervals established by the measurement of the distance between the first detection of a bolt image 

and the second detection. However, the model does not discriminate between the different outlines 

of the shapes of the hexagonal and hook bolts. The type of the architecture of this model is a 

multilayer perceptron neural classifier (MLPNC) which performs better than other DL modelling 

methodologies in classifying images based just on topological features, e.g., the fact that a shape 

is inside a region. Consequently, the designers of the model can determine whether this model 

generalises well its classification function by determining how well it can detect a shape in a 

specific position or set of coordinates without using the outline of the shape as a parameter for 

making this detection. In other words, the geometrical features of the image are not required for 

deciding whether in a segment of the rail track a bolt is missing or not. Thus, the assumption that 

guides this testing method is that the outline (a geometrical feature) of a shape is not necessary for 

detecting the existence of a shape in an image if this image occupies the entire inspection area. The 

topological features perceived in the image are sufficient for detecting this shape. This shows that 

the DL model uses solely one type of measurement (topological features) for managing the 

inductive risk of the testing stage. Therefore, at the testing stage of this DL solution, the designers 

of the model use a DL architecture that measures just one feature for maintaining the probabilities 

of errors balanced. 

Marino et. al. (2007) indicate that the rate of false positives at the training stage is higher 

than this same rate at the testing stage, since the model is trained with images of rail tracks that use 

hexagonal-headed bolts and this type of bolts tends to be misclassified as stones and, hence, as 

missing bolts. Instead, the rate of false positives is lower at the testing stage, since the model, in 

addition to hexagonal-headed bolts, uses hook-headed ones who have lower probability of being 

 
31 It is important to mention that at this test stage the test dataset is composed of the images of the hexagonal -headed, 

the left hook-headed and the right hook-headed bolts. Thus, the false negatives produced in the testing of each of these 

subgroups of images must be summed to establish the general rate of false negatives. As the designers did not consider 

the fact that hexagonal-headed occluded bolts have lower chances of being detected and did not arrange the test for 

increasing this probability, the general rate of false negatives is not more costly for the designers than the rate of false 

positives. For this reason, this testing context is an inductive-risk-balanced one. 
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misclassified as stones. Thus, the probability of this false detection decreases. This shows that the 

testing method guarantees that the probability of false positives will always be lower at the testing 

stage than at the training stage. In other words, designers can guarantee that the probability of false 

positives will never be higher at the testing than at the training.  

I have indicated that the testing context of this DL model is an inductive-risk-balanced one, 

as false positives do not have a higher cost than false negatives and, consequently, the probability 

of the two types of errors can be kept unaltered. Therefore, as the designers of the model can keep 

the probability of false positives under a certain threshold by measuring solely the topological 

features of bolts, they know that they are at an inductive-risk-balanced testing context because they 

can use a separated DL architecture for keeping the probability of this type of error under this 

threshold. Thus, this possibility of keeping the probability of this type of errors under a certain 

threshold by using a separated architecture is the feature of the system that reveals designers that 

they are at an inductive-risk-balanced testing context. 

 

 

Case 2 - Laser Camera Inspection 

 

Santur, Karaköse, and Akin (2017) explain that for testing how well the model generalises they use 

three-dimensional (3d) graphics that represent how the surface of the rails are embedded in a 3d 

space32. Thus, the testing dataset is composed of these 3d graphics. They use three-dimensional 

similarities between the rail surfaces data and the 3d graphics for testing how well the model 

generalises its classification function because they consider that the faults in the rails are changes 

in the standard embeddedness of the surfaces of these rails. For this reason, using 3d graphics that 

represented faulty and healthy rails based on the variations in the embeddedness of the surfaces of 

these rails is accurate for testing the classification function of the model (see figure 3). 

 

 

 
32 These authors also evaluate the velocity of the algorithm for detecting faults, and for this procedure they use the 

ROC metric. However, I consider that this test is not directed toward the model, but toward its implementation. In this 

second test, the classification function is not being tested but how well the classification performs when the laser moves 

at a certain speed (100km/h) (Santur, Kakaröse and Akin, 2017). For this reason, this second test is not discussed. 
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Figure 3: This testing method is based on the geometric properties of three-dimensional images. As the laser is 

used for determining the presence of objects at different heights and the camera is used for detecting how these 

objects are distributed in the plane where the rail is located, the laser camera can produce a three-dimensional 

image of the rail. Depending on how the surfaces that define the limits of the rail are embedded in the three-

dimensional space, the model detects whether the rail presents a fault or not. The reason for this is that a f ault, 

such as a scratch, changes how these surfaces are embedded. For instance, if two rails with the same structure, one 

scratched and one in good condition, are compared, they will show that the way their surfaces are embedded in 

the three-dimensional space is not the same in each case. The reason for this is that the surface of the scratched 

face of the damaged rail has a different embeddedness if compared to the surface of the same face of the normal 

rail. Therefore, the assumption that guides this testing method is that the examination of the three-dimensional 

embeddedness of the surfaces of the rails is the fundamental parameter needed for detecting a fault in these rails. 

Consequently, the three-dimensional properties that are not related to this embeddedness are not important for this 

detection. This image shows how the system constructs the three-dimensional embeddedness of the track surface 

by aligning the measurements of depth done by the laser at each of the segments of the track (Santur, Kakaröse, 

and Akin, 2017). 
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Santur, Kakaröse and Akin (2017) state that the testing procedure consists in classifying the 

rails as healthy or faulty. Since these authors does not use datasets that represent physical rails but 

datasets of 3d graphics, in the testing procedure they must evaluate (1) how well the model 

generalises its classification procedure. Also, they must evaluate (2) how well the model 

generalises its classification by using a specific type of measurement: the three-dimensional 

embeddedness of the surfaces of physical and graphical rails. In this way, the testing procedure can 

produce four types of results: 1) the model finds a fault in the graphical rail and this fault is present 

in the physical rail represented by the graphical one (true positive). 2) The model does not find any 

fault in the graphical rail and the physical rail represented by this graphic is also healthy (true 

negative). 3) The model finds a fault in the graphical rail, but this fault is not present in the physical 

rail (false positive). 4) The model does not find any fault in the graphical rail, but the physical rail 

is faulty (false negative). 

This testing is an inductive-risk-imbalanced context. The reason for this is that false 

positives have a higher cost than false negatives. In fact, this inspection model is aimed to decrease 

the number of healthy rails classified as faulty. Also, it uses the measurement of three-dimensional 

properties for reducing these false positives. In the testing procedure, the designers do not use 

physical rails but graphical ones for evaluating how well this model classifies rails. Thus, they are 

evaluating both whether the function of the model generalises well and whether measuring three-

dimensional properties is an adequate method for classification. Moreover, whereas false positives 

indicate that measuring three-dimensional properties is adequate, since through the analysis of 

these measures the model can find faults, false negatives indicate the opposite. Furthermore, both 

false positives and negatives indicate that the model does not generalise well. Therefore, as false 

negatives indicate that measuring three-dimensional properties is inadequate for finding faults and 

that the model does not generalise well, this type of error has a higher cost. 

Since maintainers do not aim solely to test the classification model but the type of 

measurement it uses for making the classification (three-dimensional properties), in this case, the 

criterion for distinguishing inductive-risk-balanced and inductive-risk-imbalanced contexts at this 

testing stage is based on which are the aims of this testing. The aims in inductive-risk-imbalanced 

contexts are two: (1) testing the classification model by evaluating how well it generalises and (2) 

testing whether the measurement it uses is adequate for classification. Santur, Kakaröse, and Akin 

(2017) claim that the model uses a convolutional neural network (CNN) architecture at the testing 
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stage (see figure 4). As previously mentioned, errors have distinct costs at this testing stage, but 

the model uses just one type of measurement for classification. As the methodology that works for 

inductive-risk-imbalanced contexts is one that uses two measures, the methodology must be able 

to transform this measurement into two. This is achieved by the CNN, since it uses only a simple 

group of characteristics for classifying but reinforces this classification criterion by using complex 

datasets; both simplicity and complexity are features that it uses for classifying. Therefore, the 

CNN searches for common features in the datasets it classifies (first measurement) and evaluates 

the degree of complexity of these datasets (second measurement). For this reason, this DL solution 

shows that the possibility of applying a CNN to a testing procedure indicates the designers of the 

DL model for the PdM of railway systems that the testing context is inductive-risk-imbalanced. 

 

 

 

 

 

 

3. Comparison and contrast 

 

In both cases, the testing procedure uses solely part of the parameters that characterise the training 

and testing datasets for evaluating the generalisation ability of the model. In the first case, this 

parameter is how much a shape occupies a specific region. The outline of the figure is an excluded 

parameter. In the second case, this parameter is the three-dimensional embeddedness of the 

surfaces of the rail. The material characteristics of the rail are excluded parameters. In both cases, 

the testing data does not represent the same type of object represented in the training data. In the 

first case the training data represents hexagonal headed bolts, and the testing data represents hook 

Figure 4: The fundamental characteristic of CNN architectures or methodologies is that, in a first step, they 

decrease the characteristics necessary for performing a classification (sub-sampling or convolution). In a second 

step, they use these characteristics for classifying datasets with high number of dimensions (pooling). The model 

performs this process until it can find functions that use a low number of characteristics for classifying complex 

datasets and at the same time it does not suffer great perturbations or high rate of errors (Santur, Kakaröse, and 

Akin, 2017). 
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headed bolts. In the second case, the training data represents physical rails, and the testing data 

represents graphical ones. For this reason, these parameters selected in both cases are 

characteristics shared by both the training and the testing objects. As these parameters help 

maintainers to distinguish whether the testing context is an inductive-risk-balanced or an inductive-

risk-imbalanced context, in both cases the criterion for this distinction is based on the evaluation 

of the common features shared by the testing and training datasets. 

A difference between cases is that, while in the first case, the testing procedure is not 

evaluated, in the second case it is. Additionally, in the second case, the fact that the testing 

procedure is also evaluated is the criterion that allow maintainers to know they are on an inductive-

risk-imbalanced context. In the first case, the fact that the testing procedure is not evaluated is not 

necessary for determining that maintainers are at an inductive-risk-balanced context. As far as the 

model does not surpass a threshold in the general rate of classification error, the maintainers can 

establish that the classification model generalises well. Therefore, in the first case, the criterion for 

establishing that they are in an inductive-risk-balanced context is that they can use a statistical 

threshold for determining the acceptable rates of error, without having to assess whether the objects 

represented in the testing data and the objects represented in the training data are sufficiently 

similar for legitimising the testing procedure. Instead, this legitimation is evaluated in the second 

case, since maintainers are evaluating whether graphical representations of rails can be used for 

testing models that classify physical rails. 
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Chapter 5: Inductive risk in Deep Learning and the planning stage of science 

 

In this chapter I analyse the planning or validation stage of the use of DL. First, I show that each 

validation methodology is used at each type of cost context. Second, I reveal how the validation 

processes used in the two chosen solutions can be decided by distinguishing the cost context types 

where these solutions are deployed. 

 

 

1. The validation of deep learning models and value contexts 

 

As I mention in the third chapter, societal applications of DL, as other scientific processes, have 

three stages: the planning or validation stage, the internal or training stage, and the external or 

testing stage (Karaca, 2021). In the training stage, the designers of the DL model propose a 

classification function. For doing this, they introduce a set of proposed functions that approximate 

to the unknown ideal function that can map all the input-out relations or correct classifications. 

Also, they introduce a group of data, or a dataset, composed of inputs and outputs. The ideal 

function is unknown, and the proposed functions can just approximate to it because the data used 

for training the model is limited. Therefore, the model discovers a function based on incomplete 

information. Thus, the model, based on the analysis of this dataset, tries to find which function of 

the set of proposed functions is the one that approximates the most to the ideal function. As each 

of the proposed functions approximate in a specific way to the ideal function, they have various 

levels of approximation. Because the proposed functions can only approximate to the ideal 

function, designers expect that each of the functions produces classification errors. Also, as this 

error rate is inversely proportional to the level of approximation of the function, designers can 

calculate this rate based on the approximation level. Additionally, as designers know the data used 

by the model to select the function, they can know how much the function approximates to the 

ideal function when each of the inputs of these data is analysed by the model. This allows the 

designers to calculate the average of the approximation and, thus, of the error rate of each of the 

proposed functions. This average is called the loss function (Karaca, 2021:6-9). 
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At the test stage, designers evaluate whether the selected classification function is the 

function that effectively approximates the most to the ideal function. This observation consists in 

introducing a new dataset and performing the same selection process. The difference in the loss 

function of the training stage and the loss function of the test stage shows designers how well the 

model can use its classification system for new datasets. In other words, it shows how well the 

model generalises this classification pattern. This comparison allows designers to know whether 

they must change the proposed functions or not (Karaca, 2021:6-9). 

A significant difference between both loss functions, the training loss function and the test 

loss function, indicates that the proposed functions might be ignoring key features of the dataset 

that correctly map the input-output relation. This problem is called underfitting. Correspondingly, 

a minor difference between the two loss functions indicates that the model is using features of the 

data that are not necessary for correctly mapping the input-output relation. This problem is called 

overfitting. Therefore, the main goal of designers is to propose functions that keep an equilibrium 

between using excessive features and not using enough features for correctly mapping the input-

output relation. This process is done at the validation stage (Karaca, 2021:6-9).  

Additionally, underfitting errors can be considered false negatives because, on the one hand, 

both loss functions are very distinct (Karaca, 2021:6-17). This means that the test procedure 

considers that the training loss function is false. On the other hand, as this training loss function 

was produced using insufficient data, it did not use the adequate threshold of statistical evidence. 

For this reason, its rule of acceptance is false. Correspondingly, overfitting errors can be considered 

false positives because, in the first place, both loss functions are similar. This means that the test 

procedure considers this loss function as true. However, as the training procedure used excessive 

data for producing this loss function, it did not use the adequate threshold of evidence. 

As the outcomes of the testing stage decide whether the model is underfitted or overfitted 

and, hence, which methodological decisions should be taken by designers at the training stage for 

reducing these two types of testing results, these methodological decisions done at the training 

stage are constrained by the expected outcomes at the testing stage. In the third chapter, following 

Karaca (2021), Ohnesorge (2020), and Wilholt (2009), I have said that, at the planning stage of 

science, scientists must evaluate how the results they aim to produce with the performance of the 

scientific process should decide their methodological decisions at the internal stage. As taking a 

certain methodological decision does not necessarily assure that the outcome sought by this 
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decision will be obtained by scientists, these scientists must evaluate between multiple 

methodological decisions and select those that have higher probability of producing the result they 

expect to produce. This evaluation is done at the planning stage. Since, at the validation stage, the 

designers of DL models must choose between different methods for producing a model that is 

neither underfitted nor overfitted, the validation stage corresponds to the planning stage; designers 

must evaluate which is the methodological choice that have the highest probability of producing 

the perfect model, i.e., a model that, at the testing stage, will be neither underfitted nor overfitted. 

Avoiding underfitting and overfitting can be done through two principal methods (Karaca, 

2021: 6-9;11-12). 1) Fixing the number of dimensions used by the functions for performing the 

classification process. This fix is achieved by setting rules that determine the parameters all the 

functions can use for making the classification. 2) Estimating the test function loss by creating a 

validation dataset that has data of the training dataset and of the test data set. As this new set is 

different from the training set and from the test one, designers can predict, before testing, which 

will be the test loss function and how well the model will generalise33. 

The first method is used at inductive-risk-balanced contexts and the second method is used 

at inductive-risk-imbalanced contexts. Designers fix the number of dimensions used in the 

classification process with the aim of assuring that, if the test loss function is too similar or too 

different from the training loss function, this lack of balance in the use of dimensions is not a 

problem that exists in the ideal function but in the proposed functions. The ideal function ideally 

classifies all the data in the correct category and maps perfectly the input-output relationship 

between an input dataset and an output dataset. Therefore, all the proposed functions that 

approximate to this ideal function must imitate the input-output relationship mapped by this ideal 

function as much as possible. Thus, if a function uses more dimensions than the fixed, it is 

producing a false result. The same happens with functions that use an insufficient number of 

dimensions. As designers fix this number of parameters, they are establishing that underfitting and 

overfitting have the same error cost or weight. For this reason, false positives (using excessive 

 
33 Validation is a stage that not necessarily occurs always before or after the training stage. It can occur before the 

training stage for mitigating the risk of training a underfitted or overfitted model. However, it can occur after the 

training stage for understanding why the trained model is underfitted or overfitted (Wang and Zheng, 2013).  
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number of parameters) and false negatives (using insufficient parameters) have the same cost or 

weight; one of this group of errors is not prioritised over the other34. 

In contrast, if designers use a validation dataset for validating before testing how well the 

model generalises, they are assuming that the testing procedure can also choose the functions 

proposed in the training stage. Therefore, if the loss function of the validation procedure is like the 

training loss function, this means that overfitting actions have a bigger weight than underfitting 

actions. Contrarily, if the loss function of the validation procedure is significantly distinct from the 

training loss function, this means that underfitting actions are more problematic for finding an 

adequate model. For this reason, as inductive-risk-imbalanced contexts are contexts where errors 

or false results have different weights, the contexts where designers use validation datasets for 

validating models are inductive-risk-imbalanced. 

In the following section I analyse how these validation contexts are distinguished in the 

validation procedures of the application of DL models in the predictive maintenance (PdM) of 

railway systems. I will examine the criteria maintainers use for applying either the first or the 

second method exposed above. In the same way as the earlier chapter, in the cases I study 

maintainers do not mention explicitly which validation methods they apply. However, it is clear 

how they avoid underfitting and overfitting problems. Therefore, I analyse how they avoid these 

problems, and the criteria for applying the methods they used for avoiding them. 

 

  

2. Validating deep learning models in the predictive maintenance of Railway Systems 

 

Case 1 - Digital Inspection Camera 

 

Marino et. al. (2007:418-419) show that there are two types of applications of DL to visual 

inspection systems. On the one hand, there are DL modelling methodologies that recognise the 

geometrical shape of the object under inspection. For example, systems used for detecting missing 

fastening bolts in railways detect the geometric shape of the head of the bolt. On the other hand, 

there are methodologies, as the one exposed by Marino et. al. (2007), that detect whether a shape 

 
34 For example, in a DL model used for oncological diagnosis, designers can fix the dimensions for classifying images 

of tumours. They say that colour, tumour diameter, and shape are the three dimensions that should be used for 

classification. Thus, using less dimensions or using more will produce errors that have the same weight. 
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is positioned within a specified area. The main difference between these two methodologies is that, 

while the first needs that a human operator specifies the geometrical shape that must be searched 

by the DL model, the second does not need this specification35. 

Given these characteristics of these two methodologies, I can show that the first one uses a 

validation dataset36, i.e., the second method of validation, for validating the classification 

 
35 Costa and Gonzaga (1996) claim that in automatic visual inspection there are two main types of DL architectures. 

The first one is called moment invariant (MI) and it learns by defining a feature in the image (e.g., a specific geometrical 

shape) as a reference point that must be contained by all the images that will be classified into a specific class. Thus, 

the DL model uses this reference point as a moment, i.e., a segment in a mathematical function, that must be possessed 

by all the functions that represent the images that are part of the same class. For this reason, the architecture, first, 

searches this moment and, second, searches for the other moments of the optimal classification function. This point of 

reference is defined by the designers. Consequently, the moment that mathematically represent this point must be 

defined by the designers each time the model is trained. 

By contrast, the second type (called multilayer feedforward neural net or MFNN) do not utilize a fixed 

reference point for the classification. Instead, it propagates the numerical data throughout the layers of the net, from 

the input layer to the output layer, computing it in the hidden layer or layers according to the modelling choices done 

by the designers. At the output layer it compares the function it found with a set of classification examples. If the found 

function uses the same classification patterns as those of the examples, the training finishes. If these patterns are 

different, the model adjusts, in what is called a backpropagation action, these patterns with the aim of making them 

equal. Thus, it adjusts the modelling choices introduced by the designers in the hidden layer(s) (Costa and Gonzaga, 

1996). The important element to highlight in this second type is that the designers do not need to fix any reference 

point and moment each time the model is trained. Thus, in contrast to the first type, the training of the model does not 

require human intervention. 

Marino et. al. (2007:418) establish that their solution utilises the MFNN architecture. In fact, the DL model 

of this solution does not recognise the shapes of the bolts in the images by utilising a fixed point of reference or feature 

in the training procedure. One of the advantages of their model is that it does not require tuning, i.e., that a human 

designer define this feature each time the model is trained. 

Instead, the second type of DL application in visual inspection they mention uses the MI architecture. Stella 

et. al. (2002) state that, besides the DL applications that do not use predefined features in their training for discovering 

their classification functions, there is other type of application that uses these features. Marino et. al. indicate that in 

this other type of application human designers must tune the model. This means that they must select the features used 

by the model for discovering its function. For this reason, there are two basic types of DL applications in visual 

inspection when they are classified by the DL architecture they use. The first type are those applications that use a 

MFNN architecture. The second are those that use a MI architecture. 
36 Marino et. al. (2007:418) refer to their previous work for distinguishing the two abovementioned types of DL models 

applied to visual inspection. In this previous work they claim that both models use pre-processed image features. These 

features (Weinmann, 2013:1-13) can be classified into four main types: 1) colour and intensity, 2) shape (e.g., 

perimeter, compactness, eccentricity, polygonal approximations), 3) texture (e.g., uniformity, density, roughness), 4) 

local features, i.e., features that appear in specific segments of the image (e.g., convex blobs, points of inflection, 

junctions, or intersections). The pre-processing (Marino et. al. 2007:420) consists in turning these features into 

numerical quantities and store them in the datasets that will be analysed by the model. As each of these features 

produces a specific visual signal, they can be converted into numerical quantities by using mathematical techniques 

that analyse the specific features of these signals or waves. Thus, the mathematical features of the wave (amplitude, 

frequency, and time) are used for classifying it as a specific image feature. For instance, waves that have x amplitude 

and y frequency at a time are convex blobs. Therefore, the datasets used by the DL visual inspection models are 

composed of these numerical quantities that represent the image features. Also, the construction of these datasets is 

done by signal processing mathematical techniques that transform these signals into numerical quantities that are 

classified according to the correspondence between a wave feature and an image feature. For instance, the datasets 

used by Marino et. al. (420) utilise wavelet descriptors or transforms that are mathematical functions that describe the 

outline of a shape. Thus, in the pre-processing, the visual inspection system searches for these functions in the images 
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procedure. As the solution proposed by Marino et. al. uses this first methodology, I use it as an 

example for showing my point. As mentioned in the footnote 35, this methodology uses a MFNN 

architecture. For this reason, the model produced by this methodology must use during the training 

process datasets that work as classification examples. Though not mentioned by Marino et. al., in 

the solution they propose these datasets must contain images of bolts with multiple types of head, 

since using images of bolts with a single type of head might lead to overfitting the model37. Marino 

et. al. (2007:425-428) mention that at the training stage they use images of hexagonal-headed bolts 

and at the testing stage they use images of both hexagonal-headed and hook-headed bolts. The 

reason for this is that they state that the model must classify bolts with multiple types of head 

because railways do not always use bolts with the same type of head. Therefore, a validation 

dataset, i.e., a dataset that contains training and testing data, is, in this case, a dataset that contains 

both images of hexagonal-headed bolts and of bolts with other types of heads. Since the architecture 

of this solution, as in other DL applications in visual inspection that use this first methodology, is 

a MFNN, the training of this model requires using this validation dataset; the images of hexagonal-

headed bolts are the images used by the model to find the pattern and the images of bolts with 

multiple types of heads are used as training examples38. As this solution use this validation dataset, 

it uses the second method of validation: using datasets that contains training and testing data39. 

This solution proposed by Marino et. al. shows that in the design of DL models for the PdM 

of railway systems the criterion for distinguishing at the validation stage between inductive-risk-

balanced and inductive-risk-imbalanced contexts can be found by designers in the possibility these 

designers have of using the architecture of the model for validating it. Marino et. al. state that their 

 
and count how many of them exist in these images. Subsequently, it stores this quantity in the dataset under the 

parameter ‘wavelet descriptor’. 
37 Images with bolts of just one type of head might lead the model to use the geometry of the head as the pattern for 

classifying a bolt as positioned. However, as there are bolts with other types of head, this classification function cannot 

be generalized because it uses excessive parameters (the geometrical parameters). 
38 Marino et. al. (2007) do not mention specifically whether the training examples of their solution contain images of 

bolts with multiple types of heads. However, I claim that because the DL architecture of this solution and the type of 

data it will classify (images of bolts with distinct heads), this solution should use this type of images in its training 

examples. 
39 By contrast, the second DL modelling methodology exposed by Marino et. al. uses the first validation method. In 

fact, the model does not need test data for assuring before the testing procedure that it will perform well the 

generalisation. As the footnote 35 mentions, the architecture of the DL model (a MI architecture) is sufficient for 

assuring this correct generalisation. This means that the rules the architecture uses for performing the classification 

decide which parameters and dimensions, independently of the type of bolts inspected, are needed for classifying rails 

between those that miss bolts and those that do not; the architecture fix these dimensions and parameters; they cannot 

be changed in distinct classification contexts (hexagonal headed bolts detection, hook headed bolts detection, among 

others). 
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solution does not rely on an architecture that relies on fixed parameters for doing the classification 

(the MI architecture)40 but on one that requires the use of examples in its training stage and that 

these examples are composed of data that will be used at the testing stage (images of bolts with 

multiple types of heads); this architecture is the MFNN. As the second validation method requires 

that designers construct a hybrid dataset composed of training and testing data, this requirement 

coincides with the requirement of the MFNN architecture. As mentioned in the previous section, 

the second validation method is used in inductive-risk-imbalanced contexts, since the errors of the 

testing procedure are used for defining the possible classification functions of the training and, 

consequently, the probabilities of each type of errors these functions will have. Thus, using this 

architecture and, hence, this validation method, shows designers that they are at an inductive-risk-

imbalanced validation context41. 

It is fundamental to mention that the MFNN architecture used in the solution proposed by 

Marino et. al. is an integrated architecture. In fact, this architecture uses two types of data for 

finding the classification pattern, the training examples dataset composed of testing data (images 

of bolts with multiple types of heads) and the dataset that will be computed by the model for finding 

the classification pattern (images of hexagonal-headed bolts). In chapter 3 I have stated that 

integrated architectures are used in railway systems PdM practices performed at inductive-risk-

imbalanced contexts. Therefore, since the possibility of using this architecture indicates designers 

of DL model for the PdM of railway systems that they are at an inductive-risk-imbalanced 

validation context, this use of these two types of data is the fundamental feature through which 

these designers can know that they are at an inductive-risk-balanced validation context. 

 

 

 

 
40 See the previous note. 
41 By contrast, at inductive-risk-balanced validation contexts, designers do not have this possibility of using the 

architecture of the DL for validating the model. As they use a MI architecture, the training of the model does not 

depend on the mixing of distinct types of data, but on the selection of a group of features that must be shared by all the 

possible candidate classification functions. Therefore, the validation cannot be based on constructing hybrid datasets. 

In the previous section, I have claimed that the first method of validation is the one that fixes the number of dimensions 

in order to avoid the underfitting and overfitting of the model. Also, I have claimed that this method is used at inductive-

risk-balanced contexts, as this fix of the number of dimensions do not alter the probabilities of the errors that might be 

produced by the classification function. For this reason, as the MI architecture does not allow designers to use the 

second method, they must use this first validation method. As this method is the one that is used at inductive-risk-

balanced contexts, designers can know that, since they are using the MI architecture and, consequently, the first 

validation method, they are at an inductive-risk-balanced context. 
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Case 2 - Laser Camera Inspection 

 

Santur, Kakaröse, and Akin (2017) show that contact free inspection systems as the one they 

propose, in the sense that they use CVSs, can be divided into two groups42. On the one hand, there 

are methods that use normal cameras, i.e., cameras that solely capture colours of the rgb colour 

model. On the other hand, there are methods that use laser cameras. Lasers are used for capturing 

the three-dimensional profiles of rails by triangulating the reflected light and, thereby, measuring 

the height of each of the points that compose the measured rail surface. Santur, Kakaröse, and Akin 

claim that laser cameras are preferable because detecting faulty rails based on the analysis of rgb 

images can produce a high rate of false positives. The reason for this is that rail lines are surrounded 

by residues such as oil and dust. In the second chapter, I have mentioned that the railway visual 

inspection system proposed by Santur, Kakaröse, and Akin consists in detecting physical 

alterations in the surfaces of rails, such as scratches. As marks of dust and oil can be registered by 

the systems as if they were alterations or faults, the system might classify a normal or healthy rail 

as a faulty one. Since laser cameras calculate the height of each of the points of the rail surface, 

they ignore changes in the visual characteristics of rails that do not produce changes in these 

heights, such as the presence of a dust mark. In this way, lasers reduce the number of false positives. 

The fact that laser cameras are preferred by maintainers because they reduce the number of 

false positives shows that, in this second case, maintainers use the first type of validation procedure, 

i.e., they fix the dimensions that the DL model should employ for generalising its classification 

procedure. Santur, Kakaröse, and Akin (2017) show that the generalisation procedure done by the 

fault inspection model must be the same all the time. Conditions such as the dust over the rail track 

should not be considered as dimensions or parameters for performing the classification procedure. 

As far as the model can measure the same characteristics of the rail, i.e., the three-dimensional 

embeddedness of the surfaces of this rail, it will generalise well its classification procedure to 

 
42 Santur, Kakaröse, and Akin (2017) indicate that railway inspection methods can be divided into manual and 

automatic. Also, they distinguish in the category of automatic methods two subcategories, contact-based methods, and 

contact free methods. In contact-based methods, maintainers make a measurement instrument touch the surfaces of the 

rail and measure a physical quantity, such as friction, or the way ultrasound waves propagate through this rail. Contact 

free methods are methods based in computer vision systems (CVSs). Consequently, they are cameras, laser or digital, 

that film rail surfaces in the search for patterns that could represent anomalies in these rails. Santur, Kakaröse, and 

Akin consider that contact free methods should be preferred, because contact-based methods could damage the rail. 

The reason for this is that the continuous contact of the measurement instrument with the rail can degrade this second 

object. Thus, the contact methods can produce false negatives, i.e., classify faulty rails as healthy. 
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multiple rails. For this reason, classifying a healthy rail as a faulty one (false positive) and 

classifying a faulty rail as a healthy one (false negative) have the same weight. Both types of errors 

and the sources that cause them, such as environmental conditions, impede the success of the 

generalisation. For this reason, in this second case the first type of validation is used. Consequently, 

as this first type is used at inductive-risk-balanced contexts, the context exposed by Santur, 

Kakaröse, and Akin is an inductive-risk-balanced validation context. 

The criterion for identifying whether the validation of the laser camera inspection system 

is an inductive-risk-balanced or an inductive-risk-imbalanced context is defined by the type of 

interaction the inspection system has with the object inspected. On the one hand, cameras that 

capture just rgb colours do not alter the inspected object but can be confounded by this object. In 

fact, when the rail has residues, the camera detects faults that it does not have. On the other hand, 

mechanical inspection systems cannot be confounded but they alter the object (Santur, Kakaröse, 

and Akin, 2017). Therefore, the systems that guarantees that the model will not produce false 

positives or false negatives are systems that are able to measure tactile properties, such as the three-

dimensional embeddedness of rails, but that, at the same time, do not need tactile interaction. 

Therefore, the contexts of PdM of railway systems where these types of inspection systems are 

needed are inductive-risk-balanced contexts. 

Santur, Kakaröse, and Akin (2017) indicate that the pooling layer of the CNN used by the 

DL model they propose is used by the laser inspection system for selecting the features in the image 

captured. This layer performs a non-linear down-sampling that balances the costs of the datasets 

produced by the system during the inspection. As mentioned before, the convolution layer fixes 

the characteristics that the classification model must use for finding the classification pattern. 

Therefore, these two layers assure that all the features of the images captured have the same weight 

in the modelling of the classification function and select the features that must be used for finding 

this function. As the validation method used in inductive-risk-balanced context consists in fixing 

the parameters that must be used by all the possible classification solutions without considering the 

weight of these parameters, these two layers perform the validation procedure. 

As the inspection system captures an image and isolates the tree-dimensional characteristics 

of this image for finding the classification pattern, the convolution layer extracts these 

characteristics, and the pooling layer fixes them in the possible classification solutions. This shows 

that this joint operation of these two layers is the feature that reveals that this system uses a 
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separated DL architecture in the validation stage of its DL model. In fact, these two layers isolate 

the single measurement that the model uses for finding its classification pattern: the three-

dimensional properties of the surfaces of the rail tracks. 

 

 

3. Comparison and contrast 

 

Both cases show that inductive-risk-balanced validation contexts in the use of DL models for the 

PdM of railway systems are contexts where the inspected characteristics do not change. In the first 

case, the inspected characteristic is whether the bolt is correctly positioned in the rail track; this 

characteristic is the same for all types of bolts. In the second case, the inspected characteristic is 

the three-dimensional embeddedness of the surfaces of the rail. This characteristic is not altered by 

the environmental conditions. In fact, a laser camera inspection method can detect changes in this 

embeddedness even if the rail is polluted with dust. For this reason, both cases show that 

maintainers should evaluate whether the characteristics inspected by the inspection systems are 

unchangeable characteristics for knowing whether the context where these systems are being 

validated are inductive-risk-balanced or inductive-risk-imbalanced. 

The difference in these cases is that, while in the first one the tactile interaction needed in 

the inspection process is not a factor that decides whether the validation context is inductive-risk-

balanced or inductive-risk-imbalanced, in the second case this factor defines the type of value 

context. In fact, the criterion for validating the generalisation success of the digital camera 

inspection system consists in automating the way the model can shift between multiple geometric 

configurations (hexagonal, hook, among others). This is the only criterion that is used for validating 

the inspection system. Instead, in the second case, a successful inspection is an inspection that can 

measure a tactile quality of the railway without having contact with this rail. Therefore, besides 

analysing a quality that does not change, the inspection system must analyse a tactile quality. Since 

these tactile qualities can be altered if the inspection system has physical contact with them, a 

second criterion for a successful generalisation consists in being able to measure these qualities 

without having physical contact with them. The point of contrast between these two cases is that, 

while in the first case the type of properties measured by the system are sufficient for determining 

the validation method and, hence, the type of cost context, in the second case also how the 
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inspection system access and measures these properties is a fundamental factor in determining the 

type of cost context. 
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Chapter 6 - The internal stage of science, inductive risk, and deep learning 

models 

 

In this chapter, I analyse the internal or training stage of the use of DL. As the other stages, the two 

types of cost contexts decide which of the two training methods should be used by users of societal 

applications of DL. Thus, in this chapter I show which cost context corresponds to which method. 

Next, I argue how this distinction of cost context can be employed for taking design decisions 

related to the inductive risk problems that arise in the chosen solutions. 

 

 

1. Deep Learning models and the Bayes method 

 

When constructing societal DL models, designers associate the application of the Bayes method 

with the value-costs43 of errors (Karaca, 2021:1214; Elkan, 2001). This means that, while true 

positives and true negatives have utility 1, false positives and negatives vary in their level of utility 

 
43 It is fundamental to distinguish this definition of the term cost from the one that I introduced before. The first 

definition of cost I use refers to the impact that an inductive error, a false positive or a false negative, has on human 

values. For example, in a scientific organisation that seeks to protect consumers safety, falsely claiming that a drug is 

non-toxic is a false negative that has a greater cost than the false positive claim that states that the drug is toxic. Instead, 

the second definition of cost that I use refers to the impact that an inductive error has on a sub-value. For example, 

suppose that the abovementioned drug is for controlling a pandemic disease. The pharmaceutical scientists can develop 

and distribute the drug swiftly without doing thorough toxicity tests. This will protect the health of the population since 

it will prevent many people of getting infected. However, this will threat the safety of this population, as there is higher 

probability for the drug of being toxic. In contrast, if scientists perform thorough toxicity tests, they will assure that 

the drug is non-toxic, but they will delay the distribution of the drug. This will impact positively the safety of consumers 

but will negatively impact their health. Thus, the pursuit of health is inverse to the pursuit of safety and scientists must 

choose which value to prioritise. Suppose that safety and health are sub-values of the value of successfulness. This 

means that a drug is successful if it is safe, and it has been produced without delay. However, as in this situation 

pursuing health threats the pursuit of safety and pursuing safety threats the pursuit of health, in order to pursue 

successfulness, scientists can opt in their tests for prioritising the pursuit of safety and impacting negatively health or 

prioritising the pursuit of this latter value and impacting negatively the former. In this case, even though false positives 

and false negatives has the same cost for the value of successfulness, they have distinct costs in the prioritisation. In 

fact, making a thorough test and reducing the probability of false negatives impacts positively the value of safety but 

negatively the value of health. In the same way, making a swift testing and reducing the probability of false positives 

positively impacts the value of health but negatively the value of safety. Thus, the impacts are balanced and none of 

these errors impacts on a greater way the value of successfulness. However, if scientists perform the test by giving 

priority to the protection of health, the cost of false negatives is higher than the cost of false positives. For this reason, 

the cost of an error is different in relation to a value than in relation to a sub-value. The first definition of cost refers to 

this first impact. The second refers to this second impact. For distinguishing these two definitions I use the term “cost” 

for referring to the first definition and the term “value-cost” for referring to the second one. 
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depending on whether a false positive is more impactful than a false negative or vice versa. 

Therefore, the utility matrix of a DL classification model is the following44: 

 

Hypothesis The statement is true The statement is false 

Classify the statement as true 1 (no error, zero cost) False positive, cost-2 

Classify the statement as false False negative, cost-1 1 (no error, zero cost) 

 

 
44 The Bayes method is a method proposed by the statistician Thomas Bayes for calculating which action to follow 

based on the utility produced by this action and on the probability to be true of the assumptions or hypotheses that 

guide it (Levi, 1962:52-55). For example, a presidential candidate must decide whether to make a huge or just a 

moderate campaign in a region of the country where elections will be held. She also assumes that, if she makes a 

moderate campaign but more than 60% of the voters of this region support her, she will win the elections. Additionally, 

she assumes that, if she makes a huge campaign even if 60% or less of the voters support her, she will win the election. 

As this candidate must campaign also in other regions and have limited resources, she must decide what to do regarding 

how to campaign in this first region. Thus, she must analyse which action raises higher levels of utility, or is more 

useful, given the probability to be true of the hypotheses that guide this action. For doing this, the Bayes method 

proposes constructing the following matrix: 

 

Hypothesis More than 60% of the voters prefer 

her 

60% or less of the voters prefer her 

Action A: Make a huge campaign 8 9 

Action B: Make a moderate 

campaign 

10 7 

  

The highest level of utility is making a moderate campaign given than 60% of the voters prefer her, as she will save 

the funds of making a huge campaign. For this reason, she assigns a ‘10’ to this combination. The next choice, ‘9’, is 

making a huge campaign with 60% or less support, since she will guarantee her victory, but she will have to spend the 

funds of a huge campaign. After this choice, the next one is ‘8’, doing a huge campaign with more than 60% of support, 

as she will spend unnecessary resources, but she will secure her victory. Finally, ‘7’ is the less useful since her victory 

is not guaranteed (Levi, 1962:52-55). 

If the probability of the first hypothesis (more than 60% of the voters prefer her) is higher than the second 

(60% or less of the voters prefer her), the candidate must choose action B. Correspondingly, if the second hypothesis 

has higher probability, the candidate must choose action A. The reasoning process that the candidate applies for 

calculating the utility of the action is the following: Utility of action A = 8(p) +9(1-p), where p is the probability of the 

first hypothesis and 1-p is the probability of the second. Thus, supposing that the first hypothesis has 0.5 and the second 

has 0.25, the formula will be: 8(0.5) +9(1-0.25) (Levi, 1962:52-55). 

Isaac Levi (1962:52-55) observes that the Bayes method could be applied to scientific processes. However, 

he observes that, at this context, it is not possible to assign different utility values to the different combinations, since 

in science all errors have equal weights. This means that rejecting a true scientific statement has the same weight as 

accepting a false one. For this reason, the only two values that can be adopted by each of the combinations are 1 or 0, 

i.e., the scientist makes a correct action (1), or the scientist make an error (0). The matrix will be the next one: 

 

Hypothesis The statement is true The statement is false 

Decision A - Accept the statement 1 0 

Decision B - Reject the statement 0 1 
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This fact shows that there are two methods for determining the value-cost of an error 

(Karaca, 2021:12-14). The first method (the value-cost-sensitive method) compares the impacts of 

each error. For doing this comparison, designers must determine which value is more desirable or 

preferred for the users of the model45.  

In the cases where errors cannot have different value-costs (see note 45), designers must 

use the second method for assigning costs (the value-cost-insensitive method) (Karaca, 2021:1214; 

Elkan, 2001). This method applies the Bayes method. Hence, the cost46 of an error is dependent on 

the probability that this error occurs. For this reason, the probability of the error should be balanced 

with the cost of the error. Errors that have high probability should have low costs and errors that 

have low probability should have high costs. In this way, neither of these errors is prioritised. 

The cost-sensitive method is used at inductive-risk-imbalanced contexts and the cost-

insensitive method is used at inductive-risk-balanced contexts. In the third chapter, I have shown 

that the contexts where one type of false result has greater impact on human values than the other 

are inductive-risk-imbalanced contexts. Also, the contexts where errors have balanced impacts or 

costs are inductive-risk-balanced contexts. Therefore, when a value must be prioritised and 

designers must use the value-cost-sensitive method for prioritising the false result that has a lower 

impact on this value, they are at a training context where inductive errors are imbalanced, i.e., an 

inductive-risk-imbalanced training context. Correspondingly, when values do not need to be 

prioritised and designers can use the probability of the outcomes for estimating the costs of these 

 
45 For example, in a credit scoring system, if financial security and having high amounts of liquid assets are values 

prioritised by the bank using the system, the error of giving a loan to a person who has a risky profile has a higher cost 

than the error of not giving a loan to a person who has a conservative profile. 

Nevertheless, there are cases where it is not possible to give different costs to different errors. For instance, 

in a railway maintenance system, maintainers must take the decision whether to maintain a component or not. This 

decision is based on whether the component will fail in the next month. Thus, the possible errors are (1) maintaining 

a component even if it does not need maintenance and (2) omitting the maintenance of a component even if it needs 

maintenance. Also, the classification hypotheses that are tested by the model are “the component needs maintenance” 

and “the component does not need maintenance”. Moreover, the rule of acceptance is the prognosis that the component 

will fail in the next month. Therefore, the first error that rejects the first hypothesis without applying the acceptance 

rule is a false negative. Correspondingly, the second error that rejects the second hypothesis without applying the 

acceptance rule is a false positive. 

Designers could apply the following reasoning and give more weight to the false negative: if the component 

fails because it is not maintained, the life and safety of the users will be in danger. Also, a railway system where these 

incidents happen will be closed. However, even if maintaining a component that does not need maintenance in the 

short term is not problematic, in the long term this unnecessary maintenance might lead to costs overruns and the 

closure of the system. A system whose maintenance costs surpasses the profits made by this system is unsustainable. 

Hence, applying unnecessary maintenance might have the same consequence as not maintaining a component that will 

fail in the following month. This consequence is the closure of the system. 
46 The term of cost used in this sentence refers to the first definition of “cost” introduced previously. 
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outcomes, i.e., the value-cost-insensitive method, they are at an inductive-risk-balanced training 

context47. 

In the following section I will analyse how are the inductive-risk-balanced and inductive-

risk-imbalanced contexts distinguished at the internal or training stage of the use of DL learning 

models in the PdM of railway systems. For doing this, I analyse, compare, and contrast the cases 

of digital camera inspection and of laser camera inspection of railways. The engineers that propose 

these two models do not specify which value-cost assigning method they use for training the model, 

whether the value-cost-insensitive or the value-cost-sensitive. However, they discuss the distinct 

types of errors that can be made by the inspection system and how they design the system to decide 

the value-costs of these errors. In this way, I can establish how they distinguish inductive-risk-

balanced and inductive-risk-imbalanced contexts at the training stage of the use of these DL 

models. 

 

 

2. Training Deep Learning models, inductive risk, and cost contexts 

 

Case 1 - Digital camera inspection 

 

Marino et. al. (2007:419) claim that their solution alternates between an exhaustive and a jump 

search for saving computational time and making the inspection process more efficient48. 

 
47 Ohnesorge (2020) claims that the value free ideal (VFI) is a philosophical perspective that claims that the role of 

scientists at the internal stage of science is just assigning probabilities to the distinct results of the scientific process 

and not to preserve or pursue human values. It could be argued that, as I state that at inductive-risk-imbalanced contexts, 

the internal stage of science consists in taking methodological decisions based on probabilities, I am defending the 

VFI. However, this is not the case, since, at this context, scientists are motivated by the values they pursue in this use 

of probability for assigning costs to errors. I follow the line of thought exposed by Ohnesorge (2020) 

and Wilholt (2009) that claims that assigning probabilities to scientific outcomes is motivated by values. 
48 According to Marino et. al. (2007:418-419), the distance at which fastening bolts are positioned in a rail is constant 

for all the bolts. As the bolts fasten the rail to the sleeper, this constant distance is the distance between sleepers. For 

this reason, the digital camera inspection system consists in inspecting this vertical axis and assure that the bolt is 

correctly positioned. Programmers establish this distance as a constant parameter. Therefore, the camera always 

inspects the same parts of the rail in search for bolts. As the camera is mounted in an inspection train, while the train 

moves, it films the rail at the same vertical axis. Additionally, the camera performs at the beginning of the inspection 

process an exhaustive search. This means that it films constantly the vertical axis in search for bolts. Nevertheless, as 

soon as it measures the distance between the first and the second bolt in the same axis, it starts a jump search where it 

inspects just the segments of the axis that are located at the same distance as that measured between the first and the 

second bolt. If the system does not find a bolt in its place, it raises an alarm and goes back to the exhaustive search. 

For this reason, as the system, during the jump search, does not inspect all the rail but the segments it estimates, based 

on the measured distance between the first and the second bolt, which are the areas where the bolts are located, it is 
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Consequently, one of the values pursued by this inspection system is efficiency. In this system, the 

false negatives are the outcomes where the system claims that a bolt is in its correct position when 

it is not. Correspondingly, the false positives are the outcomes where the system claims that the 

bolt is not in its position when it is. The reason for this is that the hypotheses that the inspection 

system aims to accept are “the bolt is not correctly positioned (and the rail needs maintenance)” 

and “the bolt is correctly positioned (and the rail does not need maintenance)”. Also, the acceptance 

rule is the shape detected in the image captured. Therefore, if the system accepts the first hypothesis 

even if the camera registers a bolt, it produces a false negative. Also, if the system accepts the 

second hypothesis even if the camera does not register a bolt, it produces a false positive. As the 

system changes from the jump search to the exhaustive one when it produces a positive result, the 

probability that the system produces a false positive is higher than the probability that the system 

produces a false negative. Namely, as the exhaustive search inspects the entire rail, it has lower 

probability of not registering a missing bolt than the one had by the jump search. Therefore, false 

negatives are less probable in the exhaustive search than in the jump search. Additionally, as the 

jump search is applied as far as the system does not produce positive results, the probability of the 

false negatives of the jump search is conditioned by the probability of the exhaustive search of 

producing true results. Therefore, the times the system performs a jump search will always be fewer 

than the times the system performs an exhaustive search; performing a jump search happens just 

after the performance of an exhaustive search; the opposite will not happen. 

As the shift between the exhaustive and the jump search is a metrological49 feature 

introduced with the aim of achieving higher efficiency, the decrease of the probability of false 

negatives achieved by this feature is a consequence of this pursuit of efficiency. Marino et. al. 

(2007:418) claim that missing bolts can reduce safety. Consequently, as false negatives do not 

register missing bolts, if less false negatives are produced, the maintainers will apply less 

maintenance actions. Therefore, as the design of the system reduces the probability of false 

negatives, it reduces the number of maintenance actions. As the system also pursues safety, 

reducing the probability of false negatives and, consequently, of maintenance actions, is a method 

 
based on a probabilistic or predictive procedure; the system predicts the distance between bolts and inspects these 

areas. 
49 “Metrological” means that this feature is related to the method through which the system detects or measures a 

physical feature. In this case, the feature is whether a bolt is correctly positioned in the sleeper. For more information 

about the relationship between modelling and metrology see Tal (2020), and in particular about the relationship 

between modelling, metrology and inductive risk see Winsberg (2012). 
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for optimally pursuing efficiency and safety, i.e., for pursuing safety without negatively impacting 

the pursuit of efficiency and pursuing efficiency without negatively impacting the pursuit of safety. 

This shows that this training context is inductive-risk-balanced, as designers, following the value-

cost-insensitive method, decrease the probability of one type of error for preserving both safety 

and efficiency and not for prioritising the pursuit of one of these values. 

Inductive-risk-balanced contexts can be distinguished from inductive-risk-imbalanced ones 

at the training stage by assessing whether a metrological feature of the model can increase or 

decrease the probability of one of the results. Inductive-risk-balanced contexts are contexts where 

this artificial increase or decrease, i.e., this change in the probability of an outcome using a specific 

metrological method or feature as the one described above, is possible. By contrast, inductive-risk-

imbalanced contexts are contexts where it is not possible. When models cannot change this 

probability artificially, the designers of these DL models must assign error costs based on the value 

they pursue. However, when these models can change this probability artificially, the designers 

increase the probability of the outcome that favours the value they pursue. Nonetheless, they cannot 

increase indefinitely this probability, since each of the outcomes has already a preestablished 

probability defined by the characteristics of the system that are not controlled by the designers. For 

instance, the probability that the camera malfunctions and increases the probability of false 

positives is a factor that cannot be controlled by the designers. Therefore, increasing or decreasing 

probability artificially consists in summing these two types of probability, the artificial and the 

preestablished. Since this preestablished probability also defines the value that can be obtained by 

the system, this sum of probabilities is an equilibrium between the values they are related to. In 

other words, this sum is the optimal pursuit of these values. Consequently, maintainers must assess 

whether they can change the probability of one of the outcomes of the DL modelling process for 

knowing whether the training context is an inductive-risk-balanced or an inductive-risk-

imbalanced context50. 

 
50 It could be objected that designers could also alter the probability of an outcome at an inductive-risk-imbalanced 

training context. For instance, in a credit scoring system of a risky bank, the users of the system can construct the 

system in a way that this model increases the probability of false positives, i.e., of customers who are given a credit by 

the bank even if they do not fulfil the requirements for receiving a credit. This could increase the probability that the 

bank preserves its value of being financially risk-taking. However, if they do this, they will not need to assign a lower 

error cost to false positives. In this way, assigning costs based on the values prioritised by the model will not be 

necessary, as the designers before training already know the classification solution they need for prioritising the pursuit 

of one of the values. This cannot happen in inductive-risk-imbalanced contexts, since designers cannot increase or 

decrease the probability of an outcome without knowing first how this artificial change in the probability will affect 

the prioritisation of one value over another. 
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This possibility of artificially changing the probability of one of the outcomes of the DL 

modelling process is revealed by the architecture of this model. Marino et. al. (2007:421-422) 

indicate that the MLPNC has three layers: input, output, and hidden. Also, they indicate that the 

same activation function regulates the propagation of the data from the first layer to the second and 

from the second to the third. This activation function is a sigmoid activation function (f(x)=1/1+e-

x). For this reason, when finding the classification pattern, the model does not construct the function 

by combining the error rates linearly but by establishing a threshold that determines whether a 

certain error costs combination might be used for modelling the pattern or not (see figure 5). As 

these error rates combinations are created by the alternation between the exhaustive and jump 

search modes that determine how many false negatives can be produced for each false positive, 

these modes together with this architecture decide the probability of errors that will be used by the 

model for finding the classification pattern. Also, since the discovery of this pattern is based on 

this combination, the measurement used by the DL model for finding this pattern is solely this 

combination. Therefore, this system uses a separated architecture, and this type of architecture is 

the characteristic of the model that enables this system to change artificially the probability of one 

of the outcomes of the DL model and, consequently, to indicate designers that they are at an 

inductive-risk-balanced training context. 

 

 

 

 

 

 

 

Figure 5: The alternation between exhaustive and jump search modes defines the possible error combinations that 

the system can produce. Thus, in order to use these combinations to find the classification function that optimally 

pursues safety and efficiency, designers must define a threshold of combinations that do not prioritise safety or 

efficiency. This is done through a sigmoid function as the represented by the image. The combinations that are 

above the threshold can be used for finding the function and, thus, active the MLPNC. In this way, as this 

architecture is activated by these combinations, it uses them for discovering the classification function based on 

the data produced by the inspection system. 
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Case 2 - Laser camera inspection 

 

As in the first case, the false positives are the cases when the system classifies the rail as faulty 

when it is not. Also, the false negatives are the cases when the system classifies the rail as healthy 

or normal even if it is faulty. Furthermore, since the normal camera is introduced in the laser camera 

inspection system with the aim of avoiding false positives, this design choice has the goal of 

reducing the probability of this type of result. The normal camera tells the system that structural 

changes of the rail should not be classified as faults. Moreover, the designers of this system show 

that the laser camera inspection system is not affected by environmental conditions such as dust in 

the rails and, hence, that, with this type of measurement, the system will not classify healthy rails 

that have residues of dust that appear to the system as if they were faults as faulty (Santur, Kakaröse 

and Akin, 2017). Therefore, with this metrological choice, the designers are reducing the 

probability of false negatives51. Since both metrological choices are reducing the probabilities of 

both types of fault results, these choices are not introduced by designers with the aim of prioritising 

one result over the other. Therefore, they apply a cost-insensitive value-cost assigning method. In 

the conceptualisation of inductive-risk-balanced contexts done at the third chapter, I have shown 

that the contexts where neither false positives nor false negatives are prioritised and, consequently, 

designers follow a cost-insensitive value-cost assigning method are inductive-risk-balanced 

contexts. Thus, the training context of this case is inductive-risk-balanced. 

In this case designers can increase or decrease the probability of both false positives and 

false negatives by changing the metrological features of the DL model. Introducing a laser 

inspection system reduces the probability of false positives and introducing a rgb camera inspection 

system reduces the probability of false negatives. Santur, Kakaröse, and Akin (2017) claim that the 

financial cost of laser camera inspection systems is higher than rgb camera inspection. However, 

they also claim that reducing both false positives and false negatives makes the system more 

 
51 Santur, Kakaröse, and Akin (2017) claim that the laser camera inspection system consists of a laser camera and a 

normal rgb camera. The laser, by means of triangulation, can measure the changes in the deepness of the surfaces of 

the rails and make a profile of how these surfaces are embedded in the three-dimensional space. The rgb camera makes 

a structural profile of the rail. In this way, maintainers can know whether the changes of the surfaces of these rails are 

changes caused by the change in the structural profile or are faults such as a crack. For instance, the laser can point to 

a segment of the rail where a bolt is located. This will cause a change in the three-dimensional profile of the rail. 

However, this change is not due to a fault, but to the fact that in that segment of the rail there is a bolt. The normal 

camera aids the system in distinguishing this type of changes from changes caused by faults and, hence, in registering 

with greater accuracy the changes that occur due to faults. 
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accurate and, thus, safer. For this reason, I can interpret that their decision for decreasing false 

positives and false negatives by increasing the cost of the system is a way of prioritising safety 

over economic efficiency. 

Nevertheless, as they do not prioritise false positives over false negatives or false negatives 

over false positives, they are not prioritising the value of safety. The reason for this is that the 

occurrence of false negatives is more dangerous than the occurrence of false positives. This fact 

might present the designers’ decisions and goals as contradictory: they want to prioritise safety by 

reducing the probability of false results, but they are not giving more weight or a higher cost to 

false negatives, an action that would prioritise safety. They are not contradictory, though. The 

reason for this is that I can interpret that they do not want to prioritise safety over economic 

efficiency. Their goal is to find an optimal point where the pursuit of economic efficiency does not 

negatively impact the pursuit of safety. Consequently, I can state that this case shows that 

inductive-risk-balanced training contexts are contexts where designers can prioritise one value by 

increasing or decreasing simultaneously the probability of both false results with the aim not of 

prioritising the pursuit of this single value but of balancing the pursuit of multiple values. 

As in the other case, in this laser camera inspection system the possibility of decreasing the 

probability of false results by means of a metrological feature is revealed by the architecture of the 

DL model. As shown in figure 4, this architecture is a CNN composed of a convolutional and a 

pooling layer, and a set of fully connected layers. I have indicated in the analysis of the validation 

stage of this case that the first two layers filter the characteristics necessary for the classification 

and introduce these characteristics into the model. With this process, the model can use just one 

measurement for discovering the classification pattern. However, it still cannot discover the 

classification based on the values the system aims to protect. For doing this, it requires an 

architecture that enables it to assign costs to the possible outcomes of the training process in a way 

where none of these costs prioritises the pursuit of one of the values over the pursuit of another. As 

the third layer is a fully connected layer where all the nodes are uniformly connected, this layer 

does this value-cost-insensitive cost assigning. If this third layer were not fully connected, the 

model will prioritise those results produced by the nodes that are connected. As the data that enter 

all the nodes of the layer is produced by the joint work of the rgb camera and laser camera, a layer 

that is not fully connected might not combine these data in a balanced way and, consequently, will 

prioritise the pursuit of one value over the pursuit of the others. This shows that just an architecture 
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that combines in a balanced or uniform way all the data produced by this metrological feature can 

effectively accomplish the purpose of the introduction of these features: simultaneously regulate 

the probability of false negatives and false positives in a way where no value is prioritised. 

This CNN belongs to the separated architecture category. The reason for this is that the data 

produced by the metrological feature and processed by the convolution and pooling layers is solely 

the measurement of the three-dimensional configuration of the surface of the rail track. As the 

section of this architecture composed with the fully interconnected layers propagates solely the 

data processed in the pooling layer to the output layer, it also uses this single measurement. 

Therefore, this propagation is the feature that reveals that the architecture that must be used by the 

DL model at this training context is from the separated category and, consequently, that the 

possibility of regulating simultaneously the probabilities of false positives and false negatives with 

the aim of avoiding prioritising values is created by this architecture. 

 

 

3. Comparison and contrast 

 

Both cases show that inductive-risk-balanced training contexts can be distinguished from 

inductive-risk-imbalanced ones because, in the former contexts, the trainers of the DL model and 

the designers of the inspection system can increase or decrease artificially the probability of false 

negatives, false positives, or both by changing the metrological features of the system. In the first 

case, they reduce the probability of false positives by designing a system that alternates between 

an exhaustive and a jump search. In the second case, they reduce the probability of both false results 

by combining a laser inspection system with a rgb camera one. Therefore, the criterion maintainers 

should use for categorising a training context as either an inductive-risk-balanced or as an 

inductive-risk-imbalanced one consists in determining whether they can increase or decrease the 

probability of false results by means of changing the metrological features of the system. 

Both cases differ in the fact that, while, in the first one, maintainers can just decrease the 

probability of false negatives, in the second one, maintainers can decrease the probability of both 

false results. In the first case, designing a system that alternates between an exhaustive and a jump 

search reduces the probability of false negatives but does not reduce the probability of false 

positives. By contrast, in the second case, combining a laser system with a rgb camera reduces the 
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probability of both false positives and false negatives. Thus, whereas, in the first case, having the 

possibility of increasing or decreasing artificially the probability of one result is sufficient for 

labelling this training context as an inductive-risk-balanced context, in the second case, there are 

two criteria: 1) having the possibility of artificially increasing or decreasing the probability of a 

false result; 2) having the possibility of artificially increasing or decreasing the probability of both 

false results. 

Until this point of the thesis I have responded the second and third sub-questions. The 

section 3.5-A have shown that managing inductive risk in the societal applications of DL models 

is done by examining how the errors of the inductive processes performed in these societal 

applications impact human values and regulating the probabilities of these errors. Also, it shows 

that DL modelling is a three-stage process (training, validating, and testing) and that each of these 

stages can be identified with one of the stages of scientific decision-making processes. Moreover, 

it reveals that identifying the impacts of errors on human values and regulating their probabilities 

is a process that consists in choosing between two training, two validating, and two testing methods 

at each of the stages of this modelling process by identifying whether the errors that might be 

produced at the stage impact human values at the same degree or not. In other words, this process 

consists in choosing between these two methods at each stage by identifying the value context of 

these stages. The sections 4.1, 5.1, and 6.1 have shown which are the training, validating, and 

testing methods that correspond to each one of the multiple training, validating, and testing value 

contexts: 

Stage Inductive-risk-balanced 

contexts 

Inductive-risk-imbalanced 

contexts 

Training (internal) Value-cost-insensitive method Value-cost-sensitive method 

Validating (planning) Fixing dimensions method Validation dataset method 

Testing (external) ROC F1 score 

 

Therefore, since the management of inductive risk consists in distinguishing between rich-data and 

poor-data contexts at each of the stages of the scientific process where this risk arises, the inductive 

risk management practices of the societal applications of DL modelling follows a design approach, 

i.e., relates costs contexts with data contexts at the three stages of this scientific process. 

Consequently, these practices make this distinction of data-contexts by deciding between these two 
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types of methods at each of the stages of the scientific process where this risk is to be managed 

and, consequently, by identifying the value context at each of these stages. In this way, these 

sections have defined the common framework for assessing the inductive risk that arises in all 

societal applications of DL (Big Data Analytics) and, thus, answered sub-question 2. 

The section 3.5-B has shown that the use of DL modelling in railway systems PdM practices 

manages inductive risk by monitoring in real-time the impacts of maintenance decisions in human 

values. Also, it has shown that this monitoring is done by performing this modelling process in the 

inspection activities of these practices. Furthermore, it has revealed that this performance consists 

in selecting multiple DL architectures at each of the stages of this process by identifying the type 

of value context of each of these stages. As this identification depends on assessing how these 

inspection activities might determine the costs of the inductive errors of these PdM practices, this 

selection is decided by the study of the relationships between these activities and these costs. 

Therefore, this section reveals that, in order to explain how the management of inductive risk 

occurs in the use of DL modelling in the PdM of railway systems, it is necessary to study these 

relationships. The sections 4.2, 4.3, 5.2, 5.3, 6.2, and 6.3 (case study sections) study these 

relationships in two cases where DL modelling is used in the inspection activities of railway 

systems PdM practices. This study confirms that in these activities engineers and maintainers 

choose the DL architectures to be used at each of the stages of the DL modelling process based on 

their assessment of the relationships between error costs and the specific characteristics of these 

inspection activities. Thus, both section 3.5-B and the case study sections reveal that the analysis 

of the management of inductive risk in railway PdM practices that use DL modelling consists 

exclusively in assessing the relationships between inspection activities and the costs of errors at 

each of the stages of this modelling process. 
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Chapter 7: Conclusion 
 

I have shown that the inductive risk of the predictive maintenance (PdM) of railway systems must 

be analysed following the same framework and method for analysing the inductive risk of DL and 

Big Data Analytics. I have shown that the philosophical aspects of the inductive risk problem that 

pervade the inductive risk of these maintenance practices are the same as those present in the use 

of this technology and the performance of its modelling process. These are: 1) this inductive risk 

consists in identifying between four outcomes the pair that negatively impact human values; 2) this 

inductive risk is global and, consequently, is present at the three stages of the PdM of railway 

systems and of the use of DL in societal applications; 3) the identification of the risky outcomes 

depends on identifying whether the context where each of the stages of PdM and of this use of DL 

is performed is rich-data or poor-data. For this reason, I claim that the philosophical framework for 

analysing the inductive risk of this use of DL can be used for analysing the inductive risk of the 

PdM of railway systems. 

Moreover, I have established that maintainers and engineers can identify at each stage of 

the use of DL modelling for the PdM of railway systems whether this stage is being performed at 

a rich-data or at a poor-data context by distinguishing inductive-risk-balanced contexts from 

inductive-risk-imbalanced ones at the inspection activities of this use. Additionally, I have shown 

that this assessment is done by analysing the relationships between data contexts and value contexts 

revealed by the methodological features of these activities, such as the measurements they make, 

the fault detection processes they perform, the way the multiple data gathered at these activities are 

combined, among others. Therefore, I have demonstrated that, if the philosophical framework for 

analysing DL inductive risk is used for analysing the inductive risk of the PdM of railways systems, 

this use transforms the philosophical questions that address how to manage the inductive risk of 

these maintenance practices into design questions. In other words, I have shown that using this 

framework for analysing the inductive risk that arises in these maintenance practices consists in 

assessing how the modelling methodologies of the use of DL in this PdM reveal the relations 

between cost contexts and data contexts at each of the stages of this modelling process. 

I think that a fundamental question that arises is how to distinguish between those features 

of inspection activities that impact the cost context-data context relationships from those that do 

not have any impact. Eschenbach (2021) claims that the elements of DL societal applications that 
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impact human values are the elements used for taking high-risk decisions. Additionally, he states 

that high-risk decisions are those decisions where it is not possible to know prior to taking the 

decision which human values will be impacted by this decision, i.e., those decisions whose 

outcomes are opaque. As these relationships describe how these activities impact human values, I 

consider that it is necessary to determine which aspects of inspection are involved in high-risk 

decisions. For doing this I recommend: 

 

1) Making a distinction between inspection activities related to the use of a DL model and 

activities related to the implementation of a DL model. 

 

Winsberg (2012:127-129) claims that the models used for taking opaque decisions have some 

elements that can be removed from the model without affecting the effectivity of the model in 

representing the relationship between the decision and the values it might affect (implementation 

elements) and other elements that cannot be removed (use elements). Therefore, philosophers that 

analyse the inductive risk of the PdM of railway systems through the philosophical framework of 

the inductive risk of DL societal applications should examine which aspects of the inspection 

activities of these maintenance practices affect this relationship and which aspects do not affect it. 

Thus, they should remove each aspect and observe whether this representation changes. 

 

2) Analysing the path dependencies of these inspection activities 

 

Winsberg (2012:127-129) states that another fundamental feature of the models that represent the 

relationship between opaque decisions and the impact of these decisions on human values is that 

which decisions can be taken by modellers for constructing the model depend on other modelling 

decision taken before. Consequently, philosophers should analyse how the multiple inspection 

activities are conditionally interconnected or have path dependencies. Thus, they can isolate those 

activities that do not have any impact on human values and, additionally, that do not determine 

how other activities that impact human values must be performed.  

 

Word count: 23987 
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