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Management summary 

 

Energy prices have increased by a large amount in the last years. This has a large influence on 

companies that rely on electricity for their operations. LTE Europe is no exception. The 

company facilitates transportation of goods throughout Europe, primarily by cargo trains. With 

this large increase, options to decrease the costs of operations such as electricity to power 

freight trains are examined. In this research, a closer look is taken into the calculation of the 

used energy on behalf of the Dutch branch of LTE Europe, LTE Netherlands. As the costs for 

energy is related to how much energy is said to be used, a wrong calculation or estimation can 

have large effects. 

With the use of data available to the company, we have come up with a model that calculates 

the energy consumption for given transport sections, where a section is a part of the train 

journey from begin to end where the characteristics, such as composition and locomotive used, 

are the same. The current method for determining energy consumption is composed in a 

research into the necessary forces to make a train move and the characteristics of different 

locomotive types. This results in a formula to estimate the energy consumption, which takes 

the form of 𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑃 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝑄  , where P and Q are parameters dependent 

on the type of locomotive and type of grid. The goal of this research is to identify the factors 

in the data that have influence on the energy consumption of a transport, and to determine 

whether it is beneficial for LTE Netherlands to move from the current method of estimating 

the energy consumption to the actual measurements from meters located in the locomotives 

from an operating cost point of view.  

We examine different options for building this model. The decision has been made to use 

statistical learning methods in order to find a model that would predict the measurements as 

close as possible. By combining the information available to the company, one comprehensive 

dataset was created that included information from multiple sources. Information present in 

this dataset includes factors such as the weight, distance, type of current on the overhead wires, 

time of day, month, and a calculation of the measured energy use during the time a locomotive 

is on a certain grid. Although considered, no variables that could be derived from the available 

data, such as acceleration if the speed of locomotive is available, were added to the dataset. 

Two statistical learning methods have been used to create models. These methods are 

regression, which creates a linear model, and random forest, which results in a black box model 

that allows nonlinear relations. Both these models are trained on a subset of the dataset, with 

the complementing set used for testing of the model. This same part is also used on the current 

estimation of the model to give a fair comparison of the different models. It showed that the 

regression model consisting of selected single and combined variables performed best on the 

test data, with the random forest model followed closely. The current estimation model 

performed the worst of the three models, which indicates that this model is the least accurate. 
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Additionally to be the least accurate, we found the current estimation model to generally 

overestimate the actual energy use. As the outcome of this model determines the amount of 

energy that is paid for, it leads to the conclusion that it is cheaper for LTE to use the metered 

energy consumption sent from the locomotives to the infranet every 5 minutes for the 

determination. 

The main factors present in the data that influence the energy consumption are the weight, 

distance, type of locomotive, and type of current on the overhead wire. These factors determine 

the outcome of the regression model. From these, the weight and distance influence the energy 

consumption the most. 

Upon further analysis of the results of the best performing model, the regression model, we 

found some inconsistencies that would require further research to improve the prediction power 

of the model. In cases where the freight load and transport distance are both low, the model 

output produces unrealistic results. This has two possible explanations. The first is a bias in the 

training data set, which could have contained too little examples of this particular scenario. The 

second explanation is the determination of the energy consumption from the measurements. 

This information is sent out every 5 minutes. It is possible that, for small stretches, a 

measurement has been allocated to a different part of the transport. 

In summary, we find that weight and distance have the most effect on the energy consumption. 

The models predicting the energy consumption based on the available data showed that they 

are more accurate than the estimations of the model currently in use for determining the amount 

of energy to be billed, decreasing the root mean square error of the predictions by 32%. For 

LTE Netherlands, we recommend to use the meters in the locomotives for determining the 

amount of energy to be billed instead of the mathematical formula, as the energy consumption 

predictions resulting from our model are in general lower than those of the current estimation 

method. There are no implementation limitations as this is already possible within the current 

system after approval of the meters for this use. 

We determine several factors that influence the energy consumption of trains from real world 

data. Additionally, we have found an improved model for the prediction of energy consumption 

of freight trains using four characteristics, namely weight, distance, type of locomotive and 

type of grid. Further research can be used to improve accuracy of the models. An additional 

factor that has not been included in this research but that is interesting for the operation of LTE 

Netherlands is the composition of the freight, for example trains moving one type of wagon or 

one type of material compared to trains moving a plural of these types. External factors from 

the perspective of the company, for example natural effects such as heavy winds, have also not 

been discussed in this research, while the possible influence of such factors are of some interest. 

Finally, train movements not related to transporting freight have been ignored in the scope of 

this research. It can be worthwhile for LTE Netherlands to get insight in the factors that 

influence the energy needed for this activity.  
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1. Introduction 

 

1.1. Company introduction 

 

LTE Europe is a freight company that specializes in the transport of goods by train. The 

company has offices in 9 European countries, with operations spanning from the Netherlands 

to Central Europe to Romania. The company works with subsidiaries and affiliates for the 

transport of the goods as well as their own fleet of locomotives. Additionally, the company 

offers services for intermodal transportation. 

The profit margins in the rail cargo sector are slim. With a sizable number of competitors, it is 

increasingly hard to compete on price while making a profit. A net margin of 1 to 2 percent on 

a transport is a good result. As a result, any saving on the costs of the transport can have a large 

effect on the operational results.  

The energy costs of LTE Europe account for 10 to 20 percent of the costs of each transport. 

Most trains in the fleet of LTE Europe run on electricity. Compared to diesel locomotives, 

electric locomotives are eco-friendlier as well as more powerful, which are both factors that 

need to be taken into consideration to be able to operate in this sector. The electricity needed 

to power these locomotives is purchased in each country separately. The methods to determine 

how much energy is used can differ. Each locomotive in the fleet of LTE Europe carries a meter 

that determines how much electricity is used by the locomotives during their stay in a country, 

both while travelling and while idle. Some countries use the information from the electricity 

use measured by this meter to determine the amount of electricity for which has to be paid. 

Other countries use a formula to estimate the electricity used. In the Netherlands, the latter was 

the situation. However, the purchase of electricity by means of train meters has recently been 

allowed, provided that the meters has been approved by Erex, the organisation that controls the 

division of the costs related to the electricity on the overhead lines in the Netherlands.  

The purchasing of electricity for rail transport in the Netherlands is arranged by third parties, 

who charge associated members, including LTE, for their energy use. There are two 

organisations for the shared net operating under direct current voltage and the high voltage 

alternating current network. For the direct current network, associated members of the third 

parties are asked yearly for an estimation of the volume of energy they think they need. 

Companies pay an amount given this volume at a fixed price at the time of signing the contract. 

An estimation model determines how much energy is used for a transport. This model takes 

different factors into account for commuter and freight transports. When the energy used is 

higher than the estimates of each company, an additional invoice has to be paid based on the 

share of the volume each company uses. Activities such as shunting and stabling have an 

influence on the total energy consumption, however these are hard to calculate. For the 

alternating current net, this calculation is simpler. The total consumption on this network is 

allocated to each company making use of the net, based on their transports. Due to the lower 
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amount of energy needed for these activities, we will focus on the energy needed for freight 

transport in this research. 

 

1.2. Research plan 

 

1.2.1. Problem description 

 

LTE wants to lower their operational costs. An opportunity for this came up when in July 2020, 

a new calculation method for the energy use was introduced. The new method leans a 

theoretical, physics background. More interestingly, it is now allowed to use the meters in the 

trains for determining how much energy a train uses, provided that the meters in the train are 

approved. All the locomotives owned by LTE and their partners are already equipped with a 

meter. If the energy use measured by the meters is lower than the calculated energy use, LTE 

should take action to get these meters approved. However, it is uncertain if LTE would benefit 

from this as it is unknown whether the measured energy use is indeed lower.  

In recent times, energy costs have risen a lot. Calculations by the Dutch Central Bureau of 

Statistics (CBS) estimated an increase of 86 percent of the energy costs for a household (CBS, 

2022). With this increase in costs, changing the method of calculating the energy use can have 

a large impact. 

The offered possibility to allow measured energy use also raised questions about what else LTE 

can do to improve operations. Besides the direct possible savings from the purchase of energy, 

insight in what factors contribute to the energy use could be used to identify possibilities for 

energy savings. 

One part of the operating costs of LTE are the costs of purchasing energy for the movement of 

the transports. At the moment, the energy used for the part of the transport within the borders 

of the Netherlands is determined by a model that estimates the energy consumption. This model 

has been drafted by an external bureau on behalf of the railway operators active in the 

Netherlands and uses a theoretical approach, taking characteristics of types of locomotives and 

calculations of the forces necessary to move a train into account. It is unclear if freight 

transports executed by LTE perform in accordance with this model or not, therefore creating a 

possibility of cost saving for the company.  

From the problem cluster, the following problem statement can be derived: 

Because of a lack of insight in the composition of energy use, LTE faces operational costs that 

are possibly too high due to inefficient practices and high purchasing costs. 
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1.2.2. Research objectives 

 

The objective of the research is twofold, as can be seen from the problem cluster (Figure 1). 

The first objective is to provide insight in the composition of the energy use of trains and what 

influences this. With this information, new possibilities can be explored to determine whether 

the energy costs can be lowered. The second objective is to determine whether it would be 

beneficial for the company to push for their meters to be approved. The top row of the problem 

cluster shows a problem that is perceived by the company. With the current knowledge of the 

company, it is unclear whether putting in effort to use the metered energy use will yield lower 

costs. As the energy consumption is estimated per transport and metered per locomotive, the 

focus will be on providing insights on a transport level. 

Summarized, the objective of the research is: 

Find a model that explains the relationship different factors have on the energy consumption 

of a transport and compare the performance of the resulting model to the current used formula. 

 

 

Figure 1: Problem cluster 

 

1.2.3. Research questions 

 

The research questions can be divided in different subjects. 

Current process 

• What is the method currently in use to determine energy consumption? 

• What is the scope of the current method? 

• What critique can be given on this method? 

Previous research 

• What factors are known in literature to influence energy use of railway transport? 

Modelling methods 

• What methods are available to find an energy use model from available data? 
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• What metrics can be used for the evaluation of a formulated model and comparison to 

another model? 

• What methods can be used for validation of the model? 

• What is the performance of the current estimation model? 

Model performance 

• What features are important for the prediction of energy use? 

• What is the value of the prediction model resulting from the data in comparison to the 

current estimation model? 

 

1.3. Research approach 

 

The steps taken for this research is based on the Managerial Problem-Solving Method (MPSM) 

(Heerkens & Van Winden, 2017). The MPSM consists of seven steps: 

1. Problem identification (chapter 1) 

2. Problem approach (chapter 1) 

3. Problem analysis (chapter 2) 

4. Formulating solutions (chapter 3) 

5. Choosing a solution (chapter 4) 

6. Implementing the solution (chapter 5) 

7. Evaluating the solution (chapter 6) 

In the context of this research, the problem analysis will consists of reviewing the current 

methods as well as the data availability. Solutions will be formulated by means of a literature 

review. 
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2. Context Analysis 

 

2.1. Current estimation methods 

 

The calculation of the energy payments LTE makes in the Netherlands goes through two third 

parties which have their own method of calculating. These parties divide their areas between 

the conventional railway net with direct current overhead wires (VIVENS) and the separate 

alternate current routes (CIEBR). As the current has influence on the energy use, different 

calculation methods are used. Additionally, there are different calculation methods for rail 

freight transports and passenger transports. In the continuation of this report only rail freight 

transports will be taken into account. 

A commissioned independent research in 2019 has resulted in formulas for the energy use for 

both the direct current and the alternating current networks. Using simulations on the routes 

that are most-used for freight transport, the research found a base formula with parameters 

based on the type of locomotive and the simulated location. Weighted average parameters for 

the entire network, weighting the most-used routes heavier, are also given. The formula 

resulting from this research is given in equation 1: 

𝐸 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑃 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝑄        (1) 

where P and Q are fixed values given the type of locomotive and the type of network for the 

trip. We will analyze the performance of this method in section 4.3.2. 

The problem with this method is that it is unclear for LTE if the outcome of this formula aligns 

with the energy consumption of the trains as measured by the meters in the locomotives. As 

this information is available to LTE, they want to find out if the energy consumption 

predictions based on this information result in lower numbers and therefore lower costs, as well 

as other predictors in the data that have been excluded from this formula. 

 

2.2. Other factors 

 

In addition to the factors included in the formula, there are other things that have influence on 

the energy use of trains. From the above mentioned report, the calculated energy use can be 

influenced by a number of things. First, the train type can influence it. For freight transport this 

can mean the type of freight, thus whether the whole transport consists of the same type of 

wagons or if it consists of multiple types. The second thing is the way a driver drives the train. 

An example of this is whether a train brakes heavily or if it rolls to diminish speed. The third 

thing are unplanned stops. For each stop, a train has to start moving again, which costs more 

energy compared to a scenario where the train does not have to make a stop. Finally, a lower 

maximum allowed speed can influence the energy use. For a lower maximum speed, less energy 

is needed to reach this speed level. 
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Additionally, there are other factors not mentioned in the report, as the necessary data is either 

not available or difficult to obtain. Strong winds can disable a train from reaching maximum 

traction by pushing it to the edge of the rails, increasing friction, and thereby increase the 

energy needed for moving forward. The altitude of the location where the train is going can 

also influence the energy consumption as changes in elevation cause an increase in energy 

consumption when going uphill, or a decrease when going downhill. This factor is omitted for 

time constraint reasons. 

 

2.3. Data 

 

As the scope of this research is to find a model from data, it is also necessary to explore the 

available information. In this section the different datasets that are available are explained. 

The data available spans 5 months, from January to August 2021, and comes from three 

sources. This has some challenges which will be elaborated on later in this section. The sources 

are LTE, Erex, and ÖBB infra. Each source collects different information. In this section, the 

information from each source will be explained. Additionally, information that can be derived 

from each source will be highlighted, followed by how each source relates to one another. 

Finally, difficulties for the research will be identified. 

 

2.3.1. LTE dataset 

 

The first data source is LTE. LTE themselves keep track of the transports they execute. 

Information in this database has that focus and is not used to keep up with the locomotives in 

real time. Each entry covers one transport. A transport means a locomotive with carts that travel 

with the goal of either transporting goods or transporting empty carts to the requested place. 

The information entails among others a departure and arrival time and date, the destination, 

amount of carts involved in the transportation and much more. Some of the input in this dataset 

is non-numerical and contains information for planners. 

 

2.3.2. Erex 

 

The second source of data is the Erex system. Erex is a third-party system used by the 

association of railway transport companies in the Netherlands. As mentioned in the 

introduction, the payment of electricity for the locomotives is handled via third parties. To 

determine the amount that needs to be paid, the necessary calculations are made based on the 

information stored in Erex. The information is partly provided by the companies that make use 

of the railway network, partly metered, and the outcome of the calculations is also obtainable.  
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The data available in the Erex system is extensive and covers the weight of trains, the location 

at a time of day, energy consumption and plenty more. The information that is available and 

which can be used consists of train run data. A train run is a part of the transport that takes 

place under the same circumstances, which means that no changes in the train composition 

occur in this period. Similarly, the catenary voltage in a train run is the same as well. A transport 

can therefore consist of multiple train runs. 

Each entry in the data gathered from Erex entails a train part run. The entities in the train run 

dataset are the following: 

- Train ID – A unique ID for a train. 

- Operating day 

- Part start – The start time of the train run 

- Part end – The end time of the train run 

- Traffic category – Type of transport (e.g. goods) 

- Traction unit set – A unique identifier for a traction unit 

- Price category – Either peak or off-peak. This is used for the payment of energy used 

as energy during peak hours is more expensive. 

- Grid – Location of the train run (e.g. conventional rail network, Betuweroute) 

- Calculation type – Method of energy use calculation (e.g. estimated, metered) 

- Estimated consumption (kWh) – Estimated consumption of the transport during the train 

run part 

- Metered consumption (kWh) – Metered consumption of the transport during the train 

run part 

- Metered generation (kWh) – Metered generation of the transport during the train run 

part  

- Net consumption (kWh) – Net consumption during the train run part 

- Weight (tonnes) 

- Distance (km) 

- Start coordinate (latitude and longitude) – start position of the train part run (e.g. 

departure place of the train or place where the train switches from the conventional rail 

network to the Betuweroute) 

- End coordinate (latitude and longitude) – end position of the train part run (e.g. 

destination) 

- Train part result type – Calculation type used for payment 

In this dataset, the energy consumption is depicted in either estimated and metered 

consumption or net consumption. When the calculation type is estimated, the energy 

consumption will only show up under net consumption. If the energy consumption can be 

metered, this will show up in the metered consumption. The estimated consumption based on 

the formula for the given characteristics (grid, weight, distance) is given in that column. 

Additionally, locomotives can transfer some energy back to the overhead wire. This generated 
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amount is tracked under metered generation and subtracted from the metered consumption to 

give the net consumption. The net consumption is the variable that we want to predict. 

 

2.3.3. ÖBB infra data 

 

The final source of data is ÖBB infra. ÖBB is the Austrian federal railway. As the headquarters 

of LTE Europe are located in Austria, the meters in the locomotives are connected to their 

system. The data here is sent from the locomotives. The entities are: 

- Locomotive ID – The number on the locomotive 

- Latitude – Coordinates of the location of the train at the time of sending the data 

- Longitude – Coordinates of the location of the train at the time of sending the data 

- Average speed – Average speed during the 5 minutes since last sending data 

- kWh+ - Energy consumption during the 5 minutes since last sending data 

- kWh- - Energy generation during the 5 minutes since last sending data 

- kvarh+ 

- kvarh- 

- Country – 2-digit code representing the country where the locomotive is at time of 

sending the data 

This information is sent out every 5 minutes. The kvarh parameter is nonzero whenever the 

locomotive is connected to an alternate current (AC) catenary. The country parameter is 

followed as the locomotives of LTE Europe cross borders. Together with the latitude and 

longitude coordinates, the location of the border crossing can be determined. This can be 

depicted in the ÖBB infra system on a map. 

 

2.3.4. ProRail 

 

The final data source is the information as provided by ProRail. The information here is used 

as input for the information in Erex and is partly provided by LTE (weight) and partly collected 

or assigned (train number, travelled routes, actual departure times). 

 

2.3.5. Dataset conclusion 

 

In total, from these different sources we have information about 1,337 transports, cut up in 

6,855 train run parts, and information from 17 locomotives, resulting in 527,650 points in time 

with information.  
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2.3.6. Challenges 

 

The timeframe of all collected data is between January and August 2021. However, the LTE 

data is transport oriented; it gives information about the transport from a business perspective. 

The Erex data on the other hand is energy oriented; it keeps track of the (estimated) energy and 

energy costs of each transport by following the routes. Then, the ÖBB infra data is locomotive 

oriented; the data is sent from each locomotive from the moment it connects to a catenary to 

the moment it shuts down. From the earlier mentioned entities, one main challenge can be 

identified: 

- The timeframe of the sources is different 

This problem mainly arises with the ÖBB infra data. All information is given in 5 minute 

intervals. In general, the energy use per transport is wanted. 
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3. Literature review 

 

3.1. Energy consumption models 

 

Research in the area of energy consumption of vehicles have focused mainly on electric 

vehicles. Prediction models based on real world data and physics approaches are plenty 

available. This is however not the case for rolling stock. Most energy consumption models for 

trains are centred around passenger railway systems and have mainly been approached from a 

physics point of view. The resulting models are generally a backwards simulation of the power 

flow, looking from the vehicle dynamics back to the power unit. As traction energy is the 

largest factor in both passenger and freight railway (Su et al., 2016), methods for modelling the 

energy consumption for passenger railway can tell us relevant factors. However, traction 

energy does not account for the entirety of the energy consumption as energy here is also used 

for heating compartments. 

Yun et al. (2009) define traction energy as the energy used to overcome the work of resistance 

of the train, increase the kinetic energy to compensate for the kinetic energy loss resulting from 

braking, and supply for the gravitational potential difference. The total energy consumption 

depends on the traction and the energy efficiency. Su et al. (2016) use a model that includes 

the train speed, the maximum traction force and the relative traction force over the trip time for 

the Beijing metro system to find an optimal train control model. Additionally, the gradient of 

the track, the weight of the train, and the traction and braking force of the traction unit influence 

the energy consumption related to traction (Nespoulous et al., 2021; Wang & Rakha, 2017). 

External factors such as wind and contact forces also influence the energy consumption 

(Nespoulous et al., 2021). 

 

3.2. Machine learning 

 

Machine learning is an application of artificial intelligence that provides systems the ability to 

automatically learn and improve from experience without being explicitly programmed. It 

focuses on the development of computer programs that can access data and use it to learn for 

themselves. Machine learning enables analysis of massive quantities of data and while it 

generally delivers faster, more accurate results, it may also require additional time and resource 

for proper training. 

Different steps of the machine learning process will be explored in the following sections. 
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3.2.1. Characteristics of machine learning 

 

Four machine learning types are: 

- Supervised machine learning, which algorithms can apply what has been learned in the 

past to new data to predict future events. It can also compare output with the correct, 

intended output and find errors in order to modify the model accordingly. 

- Unsupervised machine learning algorithms are used when the information to train is 

neither classified nor labelled. It studies how systems can infer a function to describe a 

hidden structure from unlabelled data. It does not figure out the right output. 

- Semi-supervised machine learning algorithms use both labelled and unlabelled data for 

training. This is chosen when the acquired labelled data requires skilled and relevant 

resources in order to train it. 

- Reinforcement machine learning algorithms interact with its environment by producing 

actions and discovering errors or rewards. Trial and error search and delayed reward 

are the most relevant characteristics of reinforcement learning. It allows for 

determination of ideal behaviour within a specific context (What is Machine Learning? 

A Definition., 2020) 

To simulate unseen data for the trained model, available data is subjected to data splitting 

whereby it is split to 2 portions (train-test split). The training set is the larger set, accounting 

for 80% of the original data. The testing set accounts for the remaining 20%. The model trained 

by the training set is applied on the testing set to make predictions. Selection of the best model 

is made based on the performance of the model’s performance on the testing set. 

Hyperparameter optimization may also be performed to obtain the best possible model. 

Another method splits the data in a training, validation, and testing set. The validation set is 

used for evaluating the predictive model whereby predictions are made, model tuning can be 

made (hyperparameter optimization for example) and the best performing model can be 

selected (Nantasenamat, 2020).  

 

3.2.2. Data preprocessing 

 

Data pre-processing is the process by which the data is subjected to various checks and scrutiny 

in order to remedy issues of missing values, spelling errors, normalizing/standardizing values 

such that they are comparable, transforming data, et cetera. The quality of data is going to exert 

a big impact on the quality of the generated model. To achieve highest model quality, 

significant effort should be spent in the data pre-processing phase. (Nantasenamat, 2020).  

Additionally, exploratory data analysis can be performed to gain a preliminary understanding 

while getting acquainted with the dataset. Three approaches are descriptive statistics (mean, 

median, mode, standard deviation), data visualisations, and data shaping 

(pivoting/grouping/filtering data). 
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3.2.3. Modelling techniques 

 

There are several modelling techniques within machine learning. In this section we discuss 

these methods and look at the situations in which each method can be applied. As the two main 

reasons to find a function are prediction and inference, there is a trade-off between flexibility 

and interpretability of a model. Flexibility leads to better predictions, but the effect of the 

features on the outcome is less clear. A model that is easy to interpret has generally worse 

predictions. 

Linear regression is a very simple approach for supervised learning. It can be used to evaluate 

a range of possible formulas, which can include multiple variables as well as higher dimensions 

(polynomial regression). The downside of polynomial regression is that it allows wild behavior 

at the tail ends due to its global nature. Solutions to combat this behavior are regression splines 

and smoothing splines. Assessing the accuracy of the model can be done by means of the R2 

value and the residual standard error. 

Resampling methods involve fitting the same statistical method multiple times using different 

subsets of the training data. Two of the most commonly used resampling methods are cross-

validation and the bootstrap. In cross-validation (CV), a subset of the data is set aside and used 

for testing the model that results from the training data. It can be used to determine how well a 

single statistical learning method is performing with different flexibilities, for comparing 

different learning methods, or to determine how well a given learning procedure can be 

expected to perform. The MSE is used as an indication of validation set error. Alternative cross-

validation methods are of the k-fold cross-validation form, where the data is divided in k folds. 

Each fold of data is used once as a validation set and part of the training set when not. The 

estimate of the CV is the average of the validation set errors. Bootstrapping is a resampling 

method where n observations from the data set are selected with replacement to produce a 

bootstrap data set. It can be used to quantify the uncertainty associated with a given estimator 

or statistical learning method. It can be applied to a wide range of learning methods. 

Support vector machine is an approach that lends itself best for classification. A hyperplane in 

p-1 dimensions, where p is the amount of variables of the observations, separates the data points 

into two classes. The distance from an observation to the hyperplane, also called margin, is 

maximized to get the maximal margin hyperplane. Support vectors are observations close to 

the hyperplane that influence the position of the hyperplane. In general these are linear. For 

non-linear separation, a (higher-dimension) kernel function can be used. Support vector 

machines are computationally efficient and robust against overfitting, but are difficult to 

interpret. 

Tree-based methods segment the predictor space into a number of simpler regions. These 

methods can be used for both classification and regression. Tree-based methods are easy to 

interpret but lack prediction accuracy. By means of bagging, random forests and boosting, 

prediction accuracy can improve but interpretability will decrease. 
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A tree is created by binary splitting the data into two smaller regions, until each region has 

fewer than a set number of observations. The predictor and cut point at each step are selected 

such that the resulting tree has the highest accuracy. Each observation in a given region has the 

same predicted outcome or class. This method may lead to overfitting the data, but can be 

combatted by pruning the tree, where a trade-off is made between the complexity of the tree 

and the fit to the training data.  

Decision trees suffer from high variance. Random forests are a method to reduce the variance. 

A number of decision trees are assembled from a subset of data. This training data is 

bootstrapped from the observations. The difference between bagging and random forests is the 

amount of predictors considered at a split. Where bagging considers all predictors, therefore 

resulting in possibly correlated trees. Random forests prevent this by considering only a subset 

of the predictors, thereby decorrelating the trees. 

Another approach to build decision trees is by boosting. Boosting builds decision trees 

sequentially from a subset of data, where the training data is a modified version of the original 

data set using information from previously grown trees. Specifically, the insignificant part of 

the built trees is considered. This method often results in smaller trees, which improves 

interpretability but has a higher variance compared to random forests. (James et al., 2013). 

 

3.2.4. Feature selection 

 

Feature selection is applied to reduce the number of features in many applications where data 

has hundreds or thousands of features. Different feature selection methods can be broadly 

categorized in to the wrapper model and the filter model. The wrapper model uses the 

predictive accuracy of a predetermined learning algorithm to determine the goodness of the 

selected subsets. The filter model separates feature selection from classifier learning and selects 

features subsets that are independent of any learning algorithm.  

Features in an original set can be divided into four groups: completely irrelevant and noisy 

features; weakly relevant and  redundant features; weakly relevant and non-redundant feature; 

and strongly relevant features. Supervised feature selection should include the latter two 

groups. To achieve high efficiency, heuristically decide if a feature is relevant if it is highly 

correlated with the class. Selected features are subject to following redundancy analysis (Yu & 

Liu, 2004). 

Wrapper methods conduct a search of the predictors to determine which, when entered into the 

model, produce the best results. Many models are evaluated at each step in the determination 

of the best model. Examples of wrapper methods are forward selection, backward selection, 

stepwise selection, simulated annealing and genetic algorithms. 

Forward selection is a method that evaluates each predictor for inclusion in the current model. 

At each step, a new model is created for each not included predictor which includes said 
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predictor. Afterwards, the statistical significance of the new model is evaluated. If the smallest 

p-value is less than the inclusion threshold, the model is updated with the predictor that is the 

most statistically significant. This repeats until no statistically significant predictors are left out 

of the model. Stepwise selection is a modification of the forward selection where, after each 

candidate variable is added to the model, each term is reevaluated for removal from the model. 

This procedure makes the forward selection procedure less greedy.  

Backward selection is a similar method where from a starting model which consists of all 

available predictors, predictors that are not significantly attributing to the model are iteratively 

removed. Recursive feature elimination is a backward selection algorithm that avoids refitting 

many models at each step of the search by calculating predictor importance. Each evaluated 

model consists of a subset of the most important variables. The best performing model is 

selected for the next iteration of the algorithm. 

Filter methods evaluate predictors prior to training the model and, based on the evaluation, a 

subset of predictors are included in the model. Each predictor is evaluated independently from 

other predictors. As a result, significant but redundant predictors can be selected. Examples of 

metrics that can be used for this are ANOVA for numerical predictors and Fisher’s exact test 

for categorical predictors. MIC and the Relief algorithm are generic methods for quantifying 

predictor importance (Kuhn & Johnson, 2013). 

 

Shrinkage methods or regularization are another option to improve the fit of a model by limiting 

the effect of features on the model. Where feature selection methods limit the amount of 

features selected for a model, shrinkage methods include all predictors but shrink the 

coefficient estimates of insignificant predictors. This deliberately increases the bias of the 

model to reduce variance and improve model performance. It can also prevent overfitting. The 

most well-known techniques are ridge regression and lasso. Ridge regression penalizes the 

squared coefficients. Lasso penalizes the absolute value of the coefficients. This results in the 

possibility to have coefficients set to zero in lasso, whereas ridge regression will always include 

all of the variables in the model (James et al., 2013).  

 

3.2.5. Model evaluation 

 

Evaluation of machine learning models is a crucial step before application, as it is essential to 

assess how good a model will behave for every single case. Many machine learning models are 

good in overall results but have a bad distribution/assessment of the error. 

Common evaluation methods for regression are the mean squared error (MSE) or the mean 

absolute error (MAE). With a same result for a quality metric, two different models might have 

a different error distribution (Bella et al., 2010). 

Evaluation of the performance of regression models are performed to assess the degree at which 

a fitted model can accurately predict the values of input data (Nantasenamat, 2020). 
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- A common metric for evaluating the performance of regression models is the 

coefficient of determination (R2): 𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
, which is 1 minus the ratio of the 

residual sum of squares to that of the total sum of squares. 

- The mean squared error (MSE) and root mean squared error (RMSE): 𝑀𝑆𝐸 =

 
1

𝑛
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1  

 

3.3. Conclusion 

 

There is little information about the factors that influence energy use of freight trains. Literature 

finds several factors that are not easily measured and unavailable in the data we have at hand. 

Much of this is complicated to measure and is unavailable for use within the scope of this 

research. 

Several methods of machine learning have been discussed. For this research, we will use 

regression and random forest as techniques. By using two techniques, weaknesses of either 

technique can be combatted by the other technique, resulting in two models that minimize 

prediction errors in different ways. This allows for choice in the best suited model for this 

problem. 

We will process the data in chapter 4, and perform explanatory data analysis. The model 

training will take place in chapter 5, with a comparison between different models in section 

5.3. We will use the MSE and RMSE for this comparison as this is the easiest method for 

comparing models of different learning techniques.  



16 
 

4. Data analysis 

 

4.1. Example train 

 

To get an idea how energy consumption fluctuates over time, we take a closer look at an 

individual transport. The selected transport follows a route that is frequently used from the port 

of Rotterdam towards the German border near Bad Bentheim. The particular transport occurred 

on July 22nd, starting at 22:20 and ending at 04:05 on July 23rd where it crosses the border. In 

this period, we can identify several separate periods: 

i) The startup phase. In this period, the locomotive has been switched on but the 

transport has not started yet. Shunting also happens in this period 

ii) Transport over the harbor line of the Betuweroute 

iii) Transport over conventional net, connecting the harbor line and the main line of the 

Betuweroute 

iv) Standstill near Kijfhoek 

v) Transport over the main line of the Betuweroute 

vi) Transport over conventional net between Betuweroute and the German border 

By identifying these different parts, we can examine if things stand out at certain points and 

look for explanations connected to the activities. The information we compare are the net 

energy consumption, average speed, and the change in average speed. The information is 

gathered in 5 minute intervals and taken from the ÖBB data. 

 

Figure 2: Speed and energy use over time of example train 

From Figure 2 we see that the train is idle for 70 minutes before it starts moving. Before 

beginning the transport, the locomotive extracts 86.5 kWh which is used for starting up the 
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locomotive and whatever shunting is needed. This is extracted from the alternating current grid 

present in the harbor of Rotterdam. This is lower than the average energy consumption in a 5 

minute interval while this locomotive is in motion, which is 107 kWh. 

The energy consumption in the phases as mentioned compared to the change in speed between 

the intervals shows that during startup more energy is used compared to standing still at the 

conventional net near Kijfhoek, where little to no energy is used, as can be seen in the left of 

Figure 3. Furthermore, the energy consumption on the Betuweroute (alternating current grid or 

AC) is lower than on the conventional (direct current or DC) grid. However, the speed on the 

Betuweroute is much more constant which likely has a positive influence. In general, peaks in 

energy consumption can be found when the locomotive is accelerating, but not limited to just 

those periods. 

 

Figure 3: Net kWh usage in different phases 

 

4.2.  Data processing 

 

The data as described in chapter 2 requires transformation before it can be used in a regression 

or machine learning model. Each dataset has its own format, which does not align with the 

formats of the other sources. The steps taken to get a finite dataset will be highlighted in this 

section. 

First, we select which sources to include in the model. As mentioned in section 2.3.1 and 2.3.4, 

the LTE dataset is used for the ProRail data. Additionally, the LTE data is gathered with a 

focus for operational users. The measured information is passed on to ProRail. Therefore, for 

creating the dataset that will be used for the model, we incorporate only the information from 

ProRail. 
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As the scope of the research is to find a model that explains the factors that influence the energy 

use as well as evaluate the resulting model against the current formula in use, we decide to 

format the finalized dataset in a similar format. We divide transports into train runs as they are 

put in the data pulled from Erex. The separating factors for different inputs are i) the start of a 

transport; ii) the end of a transport; and iii) a change of network (e.g. from alternating current 

to direct current or vice versa). 

The data from ProRail and Erex are combined on the unique combination of train identification 

number and traffic date. The resulting dataframe is condensed to remove columns that do not 

present categorical or numerical information. We add separate variables that describe the time 

of day in which a transport started and the month of the traffic date. Any seasonal factors can 

be determined if they appear within the available data. The combined database consists of 

approximately 2,700 entries, or transport parts.  

The locomotive data pulled from ÖBB infranet has been filtered to only include entries sent 

from the Netherlands. The ÖBB data consists of every entry sent by the locomotive when it is 

in the Netherlands, which are approximately 80,000 entries for 17 locomotives. These entries 

also include time periods where the locomotive is either idle or preparing for transport, also 

called stabling and shunting. This data is divided in two parts. The measured energy 

consumption of a locomotive that is connected to a transport part is added up over all 5-minute 

entries that fall within the start and end time of the transport part and added to the combined 

training dataset. All the data entries that cannot be assigned to a transport based on the above 

mentioned criteria are put together in a second dataset which will be used to analyze the energy 

consumption during these activities. 

Outliers are identified by means of the rejection criteria as set by Erex. These criteria deem all 

measurements that are less than 50% or over 250% of the estimate of the energy consumption 

invalid. For these measurements, the estimation will be taken for the payment. Combined with 

the possibility for erroneous values used in the dataset due to the interval in which information 

is sent out, these percentages are deemed to be valid to be used as cut-off points for outliers. 

 

4.3. Preliminary analysis 

 

After creating the training dataset, we perform some preliminary statistics and visualizations 

to see how the data behaves. This is two parted. First, we explore how the measured energy 

consumption behaves compared to certain variables. This allows us to see whether unusual 

things occur. Second, we can compare the measured energy consumption against the predicted 

energy consumption from the formula mentioned in section 2.1. This comparison allows us to 

get a feeling on whether the estimations from the formula exceed or undermine the 

measurements. 
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4.3.1. Visualisations 

 

To get a first feeling what could influence the energy consumption, we compare several 

variables to the measured energy consumption. We also compare some combined factors, 

specifically categorical variables with another categorical variable or a continuous variable 

(e.g. “Network type” with “Distance” or “Time of Day”. 

 

4.3.1.1. Distance 

 

The first effect we analyse is that of distance on the measured energy consumption. Logically, 

to move a further distance would take more energy. It is therefore interesting to see that there 

appears a decrease in the trendline of energy consumption in the plot in figure X between a 

distance of approximately 150 and 180 km. Additionally, we see that there are certain distances 

that have a lot of measurements. This shows some routes that are used more often than not. 

Given that little to no rail freight transport occurs solely within the Dutch borders, there are 

certain corridors to (mainly) the German border that are travelled. Therefore, these distances 

coincide with the length of certain train parts. For example, the maximum distance on the 

Betuweroute-havenspoorlijn (the port of Rotterdam) is fixed. Similarly, there are certain 

“exits” a freight train on the Betuweroute-A15 (main track between Rotterdam and the border 

with Germany) can take depending on the destination. 

The decrease is unexpected with the notion that further distances account for higher energy 

consumption. This would indicate that other factors influence the energy consumption in 

addition to distance. 
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Figure 4: Relation between the measured energy consumption and transport distance 

 

4.3.1.2. Weight 

 

The weight compared to the measured energy consumption shows a less clear correlation as 

the distance. This can be explained by separate entries in the dataset of the same transport. As 

these are cut in train parts where the characteristics stay the same, weight is often the one 

characteristic that stays the same. Therefore, the same transport can show up multiple times in 

the plot, at completely separate heights. 

Several clusters are present. Three of these clusters occur in the middleweight category 

between approximately 1250 and 1750 tonnes. The first one concentrates between 

approximately 0 and 500 kWh. The second cluster consists of measurements between 

approximately 1000 and 2000 kWh. The third cluster contains measurements between 3000 

and 4000 kWh. Additionally, there are two smaller clusters for heavyweight transports. These 

are spread out between low energy consumption (0-1000 kWh) and high energy consumption 

(5000-6000 kWh). The reasons for these spreads cannot be determined from this plot alone. 

Finally, there appears a clear correlation between weight and the energy consumption when 

looking at weight in isolation. 
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Figure 5: Relation between measured energy consumption and transport weight 

 

4.3.1.3. Network 

 

The freight transports occur over both the 25 kV alternating current (AC) and the 1500 V direct 

current (DC) network. Given that both networks have different parties that handle the payment 

of energy, it is interesting to see what the effects on the energy use the different voltages have. 

It shows that the energy consumption of transport parts on the AC networks (harbor line and 

A15 line) is lower than on the direct current network. This could partly be explained by the 

shorter distances of the AC network, however it seems unlikely that all the difference comes 

from that. In section 4.3.1.7 we will examine closer what the effect of distance is on the energy 

consumption. 
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Figure 6: Boxplot distribution of measured energy consumption on different network types 

 

4.3.1.4. Locomotive type 

 

LTE has two types of electric locomotives which they use for their transports, of which data is 

available. These types of locomotives, also called ‘Baureihes’, have different characteristics in 

terms of their working (e.g. different brake power, difference in engine power). This can have 

effects on the energy consumption. 

Looking at the locomotive type in isolation, it is unknown whether one is more often used for 

certain transports that require more energy than the other. We observe that locomotives of type 

‘BR193’ has generally lower energy consumptions compared to transports executed by 

locomotives of type ‘BR186’. This would indicate that the type of locomotive has some 

influence on the energy consumption. 
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Figure 7: Boxplot distribution of measured energy consumption and locomotive types 

 

4.3.1.5. Months 

 

It is hard to identify external causes of energy consumption, for which no data is available. One 

way to possibly factor it in is by taking a look at the energy consumption during the months of 

the data. The underlying assumption for any conclusion that can be made from this reasoning 

is that the type of transports are equal each month, thereby having external factors be a large 

factor in the discrepancy of energy consumption during the months. Although this is unlikely 

in reality due to the nature of demand for transport changing, visualizing the energy 

consumption for each month could show unusual things. 

The energy consumption in the first four months seems to be higher compared to those in the 

latter four months. This could indicate that there is a seasonal effect taking place. As we have 

seen in the previous sections, locomotive type and network also appear to have an effect. If a 

beneficial combination of those was used more often in these months, this could explain 

differences between the months. The effect this has will be explored when training the model. 
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Figure 8: Boxplot distribution of measured energy consumption over different months 

 

4.3.1.6. Time of day 

 

It is known that frequent acceleration and deceleration influences the energy consumption of a 

locomotive in a negative way. It is very much preferred to keep a non-fluctuating speed. It is 

difficult to determine the acceleration and deceleration of a train due to the format in which 

data relating to the speed of a train is sent by the locomotive to the infranet. We try to solve 

this issue by looking at the time of day. The time of day can indicate heavy traffic, as during 

the day there is more interference from passenger trains, especially on the DC network, 

resulting in more decelerations and accelerations. 

The tail of evening transports shows considerable lower energy consumptions compared to 

other times in the day.  
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Figure 9: Boxplot distribution of measured energy consumption over times of day 

 

4.3.1.7. Combined variables 

 

We have seen in the past sections some trends when plotting the measured energy consumption 

against some variables. This does not take interaction effects. To get an insight in the possible 

presence of these effects, we take a closer look at the effects of distance combined with type of 

locomotive and distance with type of network, as well as type of network and type of 

locomotive. We do not use weight for this visual examination as it showed that the correlation 

between weight and the measured energy consumption is difficult to identify without diving 

deeper into the data. Plotting weight given other factors does not give clarity into underlying 

interaction effects. Additionally, there are only two types of network and two types of 

locomotive, making these variables easy to use for a visual examination as the amount of graphs 

will be manageable. 

In Figure 10 we have plotted the effect of type of locomotive on the energy consumption over 

an increasing distance. On the left side, we observe a curve in the trendline after 100 km. This 

can be accounted to other variables or to characteristics of the locomotive. The trendline on the 

right side for locomotives of type BR193 appears to be more straight in comparison. Between 
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the two sides, small differences can be observed. It appears that the energy consumption for 

transports executed by locomotives of type BR193 is slightly lower over middle and long range 

distances, albeit a small difference. 

Continuing, we observe that on the AC network only smaller distances are travelled. 

Additionally, it appears that the energy consumption on this network is slightly below that 

when travelling a similar distance on the DC network. However, this comparison is hard to 

make based on this visual (Figure 11). 

Finally, we can see from Figure 12 that the measured energy consumption on the AC network 

is much lower compared to the DC network, likely to do with the shorter distances travelled as 

discussed above. Additionally, we can conclude that for the DC network the measured energy 

consumptions are lower for locomotives of type BR193. This can be explained by the 

locomotive characteristics, but can also have to do with the distribution of trips over the 

different locomotive types. 

 

 

Figure 10: Correlation between measured energy consumption and transport distance given type of locomotive 
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Figure 11: Correlation of measured energy consumption and transport distance given a type of network 
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Figure 12: Boxplot distribution of measured energy consumption given types of locomotives and networks 

In conclusion, we can see some trends by visual examination which indicate an increase in 

energy consumption when distance increases, with lower energy consumptions for transports 

executed on the AC network and with locomotives of type BR193. Interaction effects can have 

influence on the energy consumption and will therefore be included in the steps when building 

the model. 

 

4.3.2. Analysis of current method and measurement data 

 

As we have values for both the estimation from the current method and the measurements as 

sent by the locomotives, we can get a first indication about the accuracy of the estimations. By 

simply dividing the value of the measurement with the value of the estimations, we get the 

ratios as depicted in Table 1. It shows that the measurements in general are 87.6% of the 

estimations, indicating that the energy consumption is estimated at a higher value than the 

actual situation. Noteworthy is that the measurements for the grid “G-VL” is higher than the 

estimation. This goes against the results of the other grids. This can be explained by the 

characteristics of this grid and the way the value of the measured energy consumption is 

gathered. As the data is sent out by the locomotive every 5 minutes, and the grid section can 

be crossed within 5 minutes, it gives an inaccurate measurement as the allocated energy 
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consumption consists of energy that has been consumed at a different grid. Therefore, the 

possibility is there that a high measurement compared to the estimation is caused by the 

characteristics on a different location. 

Grid Measurement in percentage of estimation 

BR-A15 78.6% 

BR-HVSPL 84.8% 

CONV 89.8% 

G-VL 102.6% 

Overall 87.6% 

Table 1: Measurement of energy consumption as a percentage of the estimated energy consumption 

To dive deeper in the differences between locations, we consider a boxplot (Figure 13) for each 

of the abovementioned grids. We see for the grids on the AC network, being BR-A15 and BR-

HVSPL a lower measurement than the estimation in the majority of the cases. For the remaining 

grids, we observe that the estimations from the equation overestimate the energy consumption 

given the measurements when the distance and time travelled is long enough to be considered 

realistic, as we already discussed is not necessarily the case for the G-VL grid. 

 

 

Figure 13: Boxplots of measurements expressed as percentage of estimations 
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5. Model training 

 

The two methods we select for training a model are regression and random forest. Regression 

can result in a easy to understand final model which allows room for good interpretability while 

also possibly being accurate. Random forest lacks interpretability, but has the possibility for 

high accuracy. By comparing these two methods in addition to the model that is currently in 

place, we can determine whether the used estimation model is accurate or whether it can be 

improved. 

Other techniques mentioned in section 3.4 were considered as well. However, we believe that 

they are either not suitable for this specific problem or lack accuracy in comparison to the 

chosen methods. Therefore, this research will only consider the aforementioned techniques. 

 

5.1. Regression 

 

First, the data is divided in a training and a test dataset, split 80% for training and 20% for 

testing. 

To find which variables can influence the energy consumption, we first perform a linear 

regression of all variables included in the filtered dataset. The variables considered are: 

- Net 

- Weight (ton) 

- Distance (km) 

- Baureihe 

- Months 

- Part of Day 

- Peak 

The grids have been dropped due to the characteristics being broadly similar on each network. 

Because of this similarity, a choice between network or grid has to be made so a model can be 

found.  

The result of this regression results in the following: 

 

Call: 

lm(formula = Gem_Net_kWh ~ . - Grid, data = train_data) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-2329.0  -229.1   -45.9   151.0  4004.8  

 

Coefficients: (2 not defined because of singularities) 

                     Estimate Std. Error t value Pr(>|t|)     
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(Intercept)        -829.18198   59.64638 -13.902  < 2e-16 *** 

NetDC network       225.12740   24.40776   9.224  < 2e-16 *** 

Ton                   0.51309    0.02207  23.247  < 2e-16 *** 

Distance.km          16.90359    0.16177 104.493  < 2e-16 *** 

BaureiheBR193       -77.94021   21.82989  -3.570 0.000367 *** 

Price.categoryPeak    8.81095   30.03146   0.293 0.769260     

MonthAugust         -57.94323   44.38063  -1.306 0.191871     

MonthFebruary        25.58171   42.72792   0.599 0.549447     

MonthJanuary        -64.83287   43.26329  -1.499 0.134177     

MonthJuly            -8.81385   44.47169  -0.198 0.842921     

MonthJune           -71.60884   42.40319  -1.689 0.091453 .   

MonthMarch          -13.06167   40.25564  -0.324 0.745625     

MonthMay            -25.80630   42.45500  -0.608 0.543370     

Part_DayEvening      74.24504   36.58069   2.030 0.042554 *   

Part_DayMorning      -0.40259   32.13371  -0.013 0.990005     

Part_DayNight       -35.84698   41.44862  -0.865 0.387244     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 438.6 on 1659 degrees of freedom 

Multiple R-squared:  0.9041, Adjusted R-squared:  0.9032  

F-statistic:  1043 on 15 and 1659 DF,  p-value: < 2.2e-16 
Figure 14: Output of regression training without interaction variables 

We set the cut-off percentage for significance at 5%. Therefore, we will drop the effects of 

peak and the month on the energy consumption as this shows to be insignificant. We add a 

binary variable to the dataset that shows if an entry took place in the evening (1) or not (0) to 

determine the effects this has. 

Re-running the model with interaction effects gives the following result: 

Call: 

lm(formula = Gem_Net_kWh ~ Net * Ton * Evening * Baureihe * Distance.km,  

    data = train_data) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-1463.0  -138.3   -29.6    66.1  3687.8  

 

Coefficients: 

                                                      Estimate Std. Error t value Pr(>|t|)    

(Intercept)                                          5.765e+01  1.748e+02   0.330  0.74165    

NetDC network                                       -2.563e+02  2.272e+02  -1.128  0.25943    

Ton                                                  8.900e-03  1.136e-01   0.078  0.93758    

Evening                                             -3.517e+01  3.202e+02  -0.110  0.91254    

BaureiheBR193                                       -1.538e+02  2.126e+02  -0.723  0.46951    

Distance.km                                          4.739e+00  2.854e+00   1.660  0.09706 .  

NetDC network:Ton                                    1.648e-01  1.469e-01   1.122  0.26219    

NetDC network:Evening                                8.687e+00  3.890e+02   0.022  0.98219    

Ton:Evening                                         -8.546e-03  2.001e-01  -0.043  0.96594    

NetDC network:BaureiheBR193                          1.444e+02  2.785e+02   0.518  0.60424    

Ton:BaureiheBR193                                    8.906e-02  1.336e-01   0.667  0.50517    

Evening:BaureiheBR193                                1.183e+02  3.932e+02   0.301  0.76350    

NetDC network:Distance.km                            6.980e+00  3.010e+00   2.319  0.02050 *  

Ton:Distance.km                                      5.938e-03  1.828e-03   3.247  0.00119 ** 

Evening:Distance.km                                 -4.719e-01  6.038e+00  -0.078  0.93772    

BaureiheBR193:Distance.km                            6.012e+00  3.651e+00   1.647  0.09981 .  

NetDC network:Ton:Evening                            9.620e-02  2.516e-01   0.382  0.70225    

NetDC network:Ton:BaureiheBR193                     -1.011e-01  1.756e-01  -0.576  0.56482    
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NetDC network:Evening:BaureiheBR193                  1.381e+02  4.809e+02   0.287  0.77400    

Ton:Evening:BaureiheBR193                           -5.123e-02  2.477e-01  -0.207  0.83615    

NetDC network:Ton:Distance.km                       -2.186e-03  1.929e-03  -1.133  0.25722    

NetDC network:Evening:Distance.km                   -1.122e-01  6.254e+00  -0.018  0.98569    

Ton:Evening:Distance.km                              9.649e-04  3.714e-03   0.260  0.79505    

NetDC network:BaureiheBR193:Distance.km             -8.284e+00  3.837e+00  -2.159  0.03099 *  

Ton:BaureiheBR193:Distance.km                       -3.994e-03  2.249e-03  -1.776  0.07596 .  

Evening:BaureiheBR193:Distance.km                   -3.057e+00  7.505e+00  -0.407  0.68382    

NetDC network:Ton:Evening:BaureiheBR193             -1.722e-01  3.100e-01  -0.556  0.57855    

NetDC network:Ton:Evening:Distance.km                2.039e-04  3.867e-03   0.053  0.95794    

NetDC network:Ton:BaureiheBR193:Distance.km          5.186e-03  2.370e-03   2.188  0.02878 *  

NetDC network:Evening:BaureiheBR193:Distance.km      2.469e+00  7.797e+00   0.317  0.75151    

Ton:Evening:BaureiheBR193:Distance.km                1.880e-03  4.654e-03   0.404  0.68631    

NetDC network:Ton:Evening:BaureiheBR193:Distance.km -2.371e-03  4.850e-03  -0.489  0.62504    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 381.2 on 1643 degrees of freedom 

Multiple R-squared:  0.9283, Adjusted R-squared:  0.9269  

F-statistic: 685.8 on 31 and 1643 DF,  p-value: < 2.2e-16 
Figure 15: Output of regression training without selected variables, including interaction variables 

Again taking the significance of 5% gives the following (interaction) variables. 

- Network * Distance 

- Weight * Distance 

- Network * Baureihe * Distance 

- Network * Weight * Baureihe * Distance 

- Network 

- Distance 

- Weight 

- Baureihe 

These are the variables we consider for the final regression model. 
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Coefficients: 

Intercept 5.057e+01 

NetDC network -2.212e+02 

Ton 1.584e-03 

Distance.km 4.517e+00 

BaureiheBR193 -1.370e+02                                       

NetDC network:Distance.km 6.914e+00   

Ton:Distance.km 6.350e-03                                       

NetDC network: BaureiheBR193 1.980e+02   

Distance.km:BaureiheBR193 5.795e+00                                       

NetDC network:Ton 1.646e-01   

Ton:BaureiheBR193 8.661e-02                                      

NetDC network:Distance.km:BaureiheBR193 -8.237e+00   

NetDC network:Ton:Distance.km -2.125e-03                                      

NetDC network:Ton:BaureiheBR193 -1.483e-01   

Ton:Distance.km:BaureiheBR193 -3.914e-03                                       

NetDC network:Ton:Distance.km:BaureiheBR193 4.897e-03   

Table 2: Output of regression training model with coefficients 

The resulting formula looks as follows: 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 50.57 − 221.2𝑥1 + 0.001584𝑥2 + 4.517𝑥3 − 137𝑥4 

+6.914𝑥1𝑥3 + 0.00635𝑥2𝑥3 + 198𝑥1𝑥4 + 5.795𝑥3𝑥4 + 0.01646𝑥1𝑥2 

+0.08661𝑥2𝑥4 − 8.237𝑥1𝑥3𝑥4 − 0.002125𝑥1𝑥2𝑥3 − 0.1483𝑥1𝑥2𝑥4 

−0.003914𝑥2𝑥3𝑥4 + 0.004897𝑥1𝑥2𝑥3𝑥4 

Where: 

𝑥1 = 1, 𝑖𝑓 𝐷𝐶 𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  

𝑥2 = 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑡𝑜𝑛) 

𝑥3 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑘𝑚) 

𝑥4 = 1 𝑖𝑓 𝐵𝑎𝑢𝑟𝑒𝑖ℎ𝑒 𝐵𝑅193, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

5.2. Random Forest 

 

The second method we use to get a model for the prediction of the energy consumption is the 

random forest. We discussed what random forests are in the discussion of modelling 

techniques in section 3.4. 
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The resulting model cannot be visualized due to its complex nature. The model therefore 

remains a black box that provides a result when given a set of data. In comparison to the 

regression model, no additional data processing has taken place in any step of the model 

training as all variables are considered. The output of the model after finalizing the training is 

depicted below. 

Random Forest 

               Type of random forest: regression 

                     Number of trees: 500 

No. of variables tried at each split: 2 

          Mean of squared residuals: 169058.5 

                    % Var explained: 91.49 

A benefit of the random forest model is that the variable importance can be easily obtained. 

The variable importance graph shows which variables have the most impact on the final 

prediction within the decision trees used in the random forest model. It shows that the distance 

is by far the most important variable in this model, followed by Grid and Net. What is 

interesting is the relative low importance of the “Baureihe” variable, the type of locomotive. 



35 
 

 

Figure 16: Variable importance of trained model using random forest 

 

5.3. Model comparison 

 

The goal of the research as stated in the beginning is to find the factors that influence the energy 

consumption of transports and to determine the accuracy of the prediction formula that is used 

to determine it. The first goal has been researched in the past sections. In this section, we will 

compare the different models to each other. First, we compare the models on a test dataset 

taken from the available data before training of the models. This data is used to predict the 

energy consumption on both models. For the real world prediction model, the estimation is 

known. The (root) mean square error can be calculated for each model, which are shown in 

Table 33. 

Model MSE RMSE 

Regression 131657.6 362.8465 

Random Forest 140304.1 374.5719 

Current Method 286439.3 535.2003 

Table 3: Comparison of performance of three models on test dataset 
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Besides the total value of the (R)MSE, we can also explore the spread of prediction errors. 

These are depicted in Figure 17. The regression model has a limited spread of prediction errors, 

with the smallest box of the three models. The current method has a larger spread. Furthermore, 

the spread of the current method tends to be an overestimation in most cases, which can be 

seen by the largest part of the box being above the “0” line. Random Forest has a prediction 

error spread slightly larger than the regression model, but the predictions are more accurate 

than the current method. 

 

Figure 17: Spread of prediction errors for current method, regression model, and random forest 

For further examination of the performance of the models, the effects of a changing variable 

are plotted for each model. We compare for three different grids the effect of increasing the 

weight and the distance for both types of locomotives taken into account in this study on the 

value of the prediction of the energy consumption. Additionally, the estimation of the energy 

consumption for a given combination is plotted. When increasing the weight, the distance has 

been set at 100 km. When increasing the distance, the weight has been set at 1500 tons. The 

graphs can be found in Appendix A: Model comparison. 

It shows that the models obtained by training put out a higher predicted energy consumption at 

lower weights compared to the estimation model, while at higher weights the outcomes are 
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lower. This could indicate that the estimation model overestimates the energy needed for the 

transport of heavy freights. This trend shows in comparison to both the random forest and the 

regression models in all combinations of grid and locomotive type. 

When comparing the outcomes over distance, we see a similar trend where the current method 

predicts lower consumptions than the random forest model at smaller distances and similar 

consumptions as the regression model, but predicting higher numbers when the distance 

increases.  

Based on the previous graphs, it would suggest that the estimation model overestimates the 

energy consumption. This could be a result of circumstance with the values chosen for testing 

in the previous comparisons. To give more certainty about the outcome of the models, we 

compare the performance of the regression model and the estimation model when both weight 

and distance increase. We do this on a 3 by 3 scale with a low/medium/high value for both 

weight and distance to limit the number of combinations. The regression model is chosen due 

to the better performance as per Table 3, as well as the better interpretability of the random 

forest. The values chosen for this test are depicted in Table 44. 

Distance  Weight  

Low 10 Low 200 

Medium 50 Medium 1200 

High 150 High 2500 

Table 4: Values of variables for evaluation of regression model 

The results have been plotted and can be found in Appendix B: Test case for regression 

model. The outcome of this test show a few interesting things. First, the regression model 

allows for a negative prediction of energy consumption when both weight and distance are low 

on the direct current network. Furthermore, the depiction of higher predictions of the estimation 

models does not reoccur when the weight is low. In these cases, the regression model gives 

higher predictions as output. The same can be seen in cases where the distance is low, 

regardless of network. When neither distance or weight are in the “low” category, the 

prediction of the estimation model is similar or higher than the regression model. 

In conclusion, the regression model performs the best on the test data of the three models that 

were compared. The random forest performed slightly worse, while the estimation model 

scored even worse. Upon further investigation, the regression model can give impossible 

outputs in certain scenarios such as negative energy consumption. Certain trends can be 

discovered when comparing predictions, such as high predictions of the estimation model when 

certain factors are increased. The outcome of the estimation model on the test data could be a 

result of overestimation in cases where the weight and distance of the transport are on the 

higher end, whereas the possible underestimation of the regression model in the cases where 

weight or distance is on the lower end is less severe.  
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6. Conclusion and Discussion 

 

6.1.

 

Conclusion 

 

In the past sections, we have found that there are four main characteristics that influence the 

energy consumption, being the distance of the transport, the weight of the transport, the type 

of network where the train travels during the transport, and the type of locomotive that pulls 

the transport. Which variables are the most important for a model can differ slightly based on 

the method. Other potential factors present in the available data did not show any significant 

effect on the prediction of the energy consumption. 

We have found a regression model that improves on the theory-based estimation model that is 

currently implemented for estimating the energy consumption. Given the comparison between 

the estimation and the measured consumption in chapter 4 and the comparison between the 

different models in chapter 5, we conclude that the estimation model generally overestimates 

the energy consumption. As the regression model proved to be more accurate over a randomly 

selected subset of the available data, the predictions from this model are generally lower than 

the estimation model. 

The goal of this research for LTE Netherlands was to determine whether approving the 

measurements of locomotive meters for the payment of the energy consumption would be 

beneficial for the company. The resulting regression model in this research models these 

measurements and have shown to be lower than the estimations of the currently used model. 

Therefore, using the actual measurements would be beneficial as the used energy consumption 

is lower than the amount they are billed for. Our recommendation is to get the meters approved 

and used for the payment of the energy consumption. 

 
6.2.

 

Discussion 

 

Although we have found that the regression model performs the best of all considered models, 

there is still room for improvement. For the scope of the research, this model suffices. However, 

it is not flawless. We already showed that for certain cases the prediction output could be 

negative. This is a very unlikely situation. A possible explanation for this is too little similar 

cases in the training data, resulting in an underfit of this area in the model. A different method 

of data selection could remedy this situation, as well as increasing the amount of data used for 

training. Additionally, a different model that performs better for these cases could be made. 

The research has focused solely on the data that was available for finding the model. It got a 

little insight in which factors influence the energy consumption. However, it did not go deeper 

into the data to discover additional variables. Interesting variables such as accelerations and 
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braking into standstills were not considered due to necessary data missing or not easily 

obtainable. Geographical characteristics such as inclines were also not taken into account to 

keep the focus on the scope of the research. Additional research into these areas could be 

interesting in order to get a fuller picture of what influences the energy needed to perform 

actions or overcome situations. 

Within this research, we have kept the type of locomotive as a factor of its own. A locomotive 

is a complicated machine with its own characteristics. We have shown that the type of 

locomotive can influence the energy consumption. This does not delve deeper into which parts 

of a locomotive increase the energy needed or which part decrease it. Further research into this 

area could result into insights in the energy consumption of specific locomotives, which freight 

carriers can use to determine what locomotives to purchase, if energy consumption is a main 

trait they are interested in. 
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Appendix 

 

Appendix A: Model comparison 

 

Appendix A- 1: Prediction of energy consumption for different models with increasing weight on CONV grid 

 

 

Appendix A- 2: Prediction of energy consumption for different models with increasing distance on CONV grid 
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Appendix A- 3: Prediction of energy consumption for different models with increasing weight on BR-HVSPL grid 

 

 

Appendix A- 4: Prediction of energy consumption for different models with incrasing distance on BR-HVSPL grid 
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Appendix A- 5: Prediction of energy consumption for different models with increasing weight on BR-A15 grid 

 

 

 

Appendix A- 6: Prediction of energy consumption for different models with increasing distance on BR-A15 grid 
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Appendix B: Test case for regression model 

 

 

Appendix B- 1: Results of test case for regression model on DC network 

 

Appendix B- 2: Results of test case for the regression model on AC network 
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