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Abstract 

The seagrasses, a unique group of aquatic plants, create complex, extremely 
diversified and productive ecological systems in the littoral coastal zones. The only 
flowering plant in the world that is able to live completely submerged, seagrasses 
play vital role in the marine ecosystems of the World Ocean. Seagrasses are the most 
important component in the environmental food chain of the coastal ecosystems, 
being a vital food source for various marine species (e.g. fish, dugongs, turtles, 
swans), and a producer of organic matter, which is the very basis of the food web. 
The P.oceanica seagrass is an endemic for the Mediterranean region, and a main 
species in the marine coastal environment of Greece. Meadows of P.oceanica are 
subjected to the human activities, because they occur in coastal areas, where they are 
affected both by anthropogenic and by climatic and environmental factors.  
Nowadays P.oceanica is in the alarming state of regression, because of the 
deterioration of the environment in the Mediterranean Sea. Due to these reasons, 
P.oceanica is a protected species since 1988 in some European countries (France). 
Monitoring P.oceanica is therefore an important contribution to the saving and 
protecting the environment of Mediterranean region. 
The current MSc thesis focuses on the monitoring of seagrass P.oceanica along the 
northern coasts of Crete Island, Greece, and investigates the application of the 
remote sensing techniques for the seagrass mapping.  
This research was articulated in two parts, where the first one involves an ecological 
approach to the seagrass distribution in various regions around the globe and the 
experience of seagrass monitoring nowadays. The second part of this work has 
technical character and investigates the application of the remote sensing techniques 
towards seagrass mapping. It, furthermore, focuses on the optical properties of the P. 
oceanica and other seafloor cover types, and studies distinguishability of various 
seafloor cover types. Studies of the optical characteristics of separate seafloor cover 
types were made with purpose to clarify, whether their spectral properties change 
with varying environmental conditions.  
Special attention has been drawn on the role of environmental factors on the 
distribution of P.oceanica along the coasts of Crete, and in particular, how the 
optical properties of the seafloor cover types, i.e. spectral reflectance, are being 
changed under varying external conditions, e.g. water column, amount of suspended 
particles and sediments in the seawater, and water temperature. For this purpose we 
studied differences in the spectral reflectance of P.oceanica and other bottom cover 
types at three distinct depths. The diverse spectral values entail variations in optical 
properties of the seafloor cover types at changing environmental conditions. We 
applied WASI simulation techniques for the modelling of the optical parameters of 
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various seafloor cover types by various spaceborne imaging spectrometers (MERIS, 
SeaWiFS, CZCS and MODIS), in order to understand their suitability and possible 
limitations for the seagrass mapping. 
Fieldwork research sites were presented by separate locations on the northern coast 
of Crete region (Ligaria, Agia Pelagia, Xerocampos). The additional measurements 
of the reflectance spectra of the seawater with and without sediments have been 
made in aquarium tank in 2009 by means of Trios-RAMSES spectroradiometer. 
Parallel to the collection of spectra signatures, we captured the imagery for the 
seagrass mapping, which consists of the aerial images from the Google Earth 
website and the satellite Landsat TM and Landsat ETM+ scenes.  
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Document Outline: Structure of the MSc Thesis 

Chapter 1 is an introductory section. It describes general background of the research 
problem, outlines the need and actuality of the problem (including the environmental 
vulnerability of the seagrasses), and highlights limitations and possibilities of the 
remote sensing application for the current work. In this chapter we also set up 
research objectives, put research questions for hypothesis testing and sketch research 
approach for the proposed work. 

In Chapter 2 we review the existing literature and reported research experience on 
the similar problem: studies of spectral separability of various seafloor types, 
limitations and advantages of the remote sensing techniques applied for seagrass 
mapping seagrass ecology and mapping seagrass environment. We considered not 
only the Mediterranean environment, but also papers from Australian and Chinese 
scientists, because seagrass monitoring is most actively developed in the southern 
regions of our planet. The review of the existing RTM algorithms for the retrieval of 
the optical parameters, as well as description of various tools for the spectrometric 
measurements - are given in the same Chapter as well. More close attention has been 
given to the imaging hyperspectral radiometer Trios RAMSES, used for the data 
collection. 

Chapter 3: Materials and methods deals with the methods and materials used in 
current work. We start our discussion from the fieldwork area location and describe 
tools and instruments used during the fieldwork, as well as sampling design. 
Procedures of the data pre-processing and capturing imagery from the Google Earth 
are also presented in the same chapter.  

Chapter 4: Results presents to the reader the main results of the current MSc work, 
obtained during the processing fieldwork and other collected data. It starts from the 
review of the collected data from different sources, then describes the modelling 
component of the research, namely WASI colour simulation and plotted resulting 
graphs. We also discuss here the particularities of various sensors, suitable enough 
for deriving radiometric information to discriminate sand from the seagrass. 
Furthermore, this chapter includes analysis of the spectral signatures of various 
seafloor cover types in conditions of changing environment, possibility and 
limitations for P.oceanica spectral discrimination, statistical analysis of the data sets 
and mapping based on images processing. 

Chapter 5: Discussion and conclusions summarizes and briefly discusses again the 
main results, reported in detail in a previous chapter. This chapter proposes some 
final discussions to the reader, and comes to the main research outcomes. 
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Finally, we suggest some recommendations for any further research focusing on the 
seagrass environment along the coasts of Crete (or other Mediterranean areas) in the 
final Chapter 6: "Recommendations". 

A lot of plotted graphs, statistical outcomes, tables, auxiliary (yet relevant to our 
research) pictures and images, illustrating our work - are collected in the 
Appendices. Due to the standard editorial limitations of the current MSc work, it was 
not possible to include all them to the main chapters. However, we tried to make the 
structure of the Appendices most clear and easy-readable as possible, by dividing the 
Appendices into 10 various sub-sections and referencing to them from the main text 
where necessary.  

The Bibliography section includes literature and internet resources used for the 
current work. The cross-referencing and web hyper-referencing are used in the 
whole document to make reading more quick, effective and informative. 

All persons mentioned in the current document are listed in the Index of People. 

An Index of Concepts is placed in the end of the Document to help the reader find 
what he is looking for. 
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1 Introduction 

1.1 Summary 

The seagrasses, a unique group of aquatic plants growing submerged in the sea 
water, with root-like structures (rhizoms) buried in the sediments and vertical 
elongate leaves. A flowering plant, completely adapted to marine environment, they 
are however, more closely related to the lily family (Liliaceae) than to the true grass, 
despite their name “seagrass”, caused by the ribbon-like, grassy leaves [90]. 

Seagrasses create unique, complex, extremely diversified and productive ecological 
systems in the littoral coastal zones between 0-50 meters in shallow waters all over 
the world [58], and serve as valuable environmental indicators for the marine 
ecosystems health. Seagrasses are closely connected and linked with complex 
interactions to other vegetation types, e.g. mangroves, coral reefs, etc. An important 
constructing component of littoral ecosystems, seagrass contributes significantly to 
their structure and functioning.  

The adaptation to the salt waters is evidently influenced the global distribution of the 
seagrasses, limiting it to shallow coastal areas. A number of critical conditions 
determine growth of the seagrass, including general climatic characteristics of the 
area, i.e. temperature, day length, geological and geomorphological conditions, e.g. 
soft type of sediments (sand or mud), shallow depths, as well as chemical and 
physical parameters of the water: salinity, waves [85]. The seagrass Posidonia 
oceanica (further P.oceanica) is a key species to inhabit littoral of the Mediterranean 
Sea, see Fig. 1.1  

 

   
Figure 1.1: Seagrass Posidonia Oceanica 

 
and is widely spread along the coasts of Crete [33] . It plays an important role in a 
number of geomorphological and ecological processes. Namely, it is a source of 
food for herbivorous fauna as well as helter zones for fish and other marine 
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organisms; it contributes to the nutrient recycling; it provides sediments stability by 
reducing the degree of water movements, etc [40]. 

The purpose of current MSc research work aims to apply methods of remote sensing 
analysis, including Radiative Transfer Models (RTM), GIS-based spatial analysis, 
processing and classification of satellite and aerial photos, as well as videometric 
underwater footage, towards mapping and environmental monitoring of seagrass P. 
oceanica along the selected locations of the northern coasts of Crete island, Greece. 
The technical implementation is based on WASI RTM software, GIS (ILWIS, Erdas 
Imagine and ArcGIS), using aerial and satellite images and the results of the 
underwater videometric measurements.  

1.2 Background 

1.2.1 Global distribution of the seagrasses 
Globally, there are 58 recognized and described seagrass species (Fig. 1.2, Fig.1.4), 
belonging to two orders (Hydrocharitales and Najadales), four families 
(Hydrocharitaceae, Posidoniaceae, Cymodoceaceae and Zosteraceae), and 12 
genera (Enhalus, Thalassia, Halophila, Posidonia, Syringodium, Halodule, 
Cymodocea, Amphibolis, Thalassodendron, Zostera, Heterozostera and 
Phyllospandix) [71].  

Figure 1.2. Distribution of seagrasses in the world.  

Source:[48] 

The distribution of the seagrasses is 
strongly influenced by several 
environmental factors, which include 
climate (mostly, tropical and temperate 
areas), bathymetry (shallow shelf zones), 

hydrological particularities (chemical content of water, nutricient availability and 
turbidity of waves), and geological characteristics - sedimentation and cover types of 
the seafloor [88]. There are four European seagrass species in Mediterranean area 
[12]: Zostera marina, Zostera noltii, Cymodocea nodosa and P.oceanica. In Greece, 
the common species are P.oceanica (L.) Delile, Cymodocea nodosa (Ucria) 
Ascherson, Zostera noltii Hornemann and Halophila stipulacea [3]. These species 
differ in morphological and phenological features (Fig. 1.3) as well as in structure 
and dynamics. Thus, Cymodocea nodosa is considered the pioneer species of 
P.oceanica beds, the latter species forming the last stage. When P. oceanica beds 
regresses, C. nodosa often replaces them [53]; as a result, P.oceanica, C. nodosa, 
and Z. noltii do not form mixed persistent stands [16].  
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1.2.2 Ecological significance of the seagrasses 
Seagrass plays vital role in the marine ecosystems of the world ocean. Seagrasses are 
the only flowering plant in the world that is able to live completely submerged. 
Seagrass is a habitat for numerous marine fish species [103], source of primary 
production and food for fish, turtles and other organisms, which gives them special 
environmental value [104]. 
Figure 1.3: Morphology of different types of seagrasses.  

Seagrass meadows produce enormous quantities 
of organic matter (leaves, epiphytes), which 
constitutes the basis of the food web both within 
and outside the ecosystem [45].  

Finally, seagrasses are an important component 
in the environmental "food chain" of the coastal 
ecosystems, being the food source for dugongs, turtles, swans and various fish [18]. 
Due to their wide distribution, meadows size, easy collection and abundance, 
sensitivity to the modifications of the coastal zone and their important role in 
maintaining coastal water quality and clarity, seagrass is perfect indicator and 
descriptor of the environmental health of marine ecosystems, and is highly suitable 
for the environmental monitoring [118].  

Being often confused with marine “algae”, “seagrasses” are vastly different from 
them. There are fundamental differences between both marine organisms, the major 
of them should be briefly mentioned: first, seagrasses are true plants with root 
system and leaves which photosynthesise, have complex structure and create 
landscape-similar vast formations on the colonised seafloor areas with soft sediment, 
whereas algae are simple organisms that can only holdfast; secondly, seagrasses are 
complex vascular plants with reproductive mechanism such as fruits, seeds and 
spores, while algae have simple few cell structure with spores and gametes; finally, 
seagrasses uptake nutrient through root system, while algae nourish directly from the 
water column [31]. There are other differences between “seagrass” and “algae” but 
they go beyond the scope of this work.  

1.2.3 Environmental vulnerability of the seagrasses 

Meadows of P. oceanica are subjected to the human activities, as they occur in 
coastal areas, where they can be affected both directly [92] or indirectly, through the 
impact on the quality of waters and sediments [32]. As P.oceanica is a long-living 
plant with a slow growth rate, the anthropogenic modifications of the coastal zone, 
happening more rapidly than the capacity of the plant to adapt to these changes, 
reduce its distribution area [95]. One of the main drivers of seagrass decline is, for 
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instance, the location of the fish farming near the seagrass meadows. The negative 
effects of the sedimentation of waste particles in the farm vicinities on P.oceanica 
meadows are diverse and complex, and may cause benthic deterioration, 
accumulation of organic matter and seagrass decline [60]. Seagrasses are subject to 
anthropogenic nutrient (N and P) loading, which may occasionally cause 
morphological (e.g. leaf length) and physiological (e.g. chlorophyll and nitrogen 
content of the leaves) responses towards changed environmental conditions [72, 73]. 
Figure 1.4: Distribution of seagrass in relation to  
mean ocean temperature. Source: [107] 
The detailed research of the fish farm-
induced decline of the seagrass 
meadows [29]reports the relationships 
of fish farm organic and nutrient content 
in the sediments with dynamics of the 
key seagrass species (P. oceanica) in the 
Mediterranean Sea. Nowadays P.oceanica is in the alarming state of regression due 
to the deterioration of the environment in the Mediterranean Sea [122]. Due to these 
reasons, P.oceanica is a protected species since 1988 in some European countries 
[40], and its presence serves as an indicator of a stable healthy environment. Among 
other negative factors, affecting both growth and status of the seagrasses the 
environmental contaminants can be mentioned, e.g. thermal, sewage, dredging and 
chemical pollution as well as any other kind of maritime works, e.g. trawling and 
anchoring of boats [122]. Other human activities that cause degrading of the 
seagrass are recreational boating, commercial overexploitation of coastal resources, 
eutrophication [88]. 
Besides anthropogenic factors, various biochemical, climatic and environmental 
processes can cause negative influence on seagrass distribution. Seagrass is exposed 
to threats from the global climate and environmental change, i.e. increases in sea 
surface temperature; sea level rise; increased frequency and intensity of storms and 
waves; local decrease of water quality, increased sedimentation, contamination and 
nitrification; desiccation; salinity fluctuations; nutrient changes; suspended 
sediments [11]. These stress-drivers can alone result in large-scale seagrass 
degradation, but often seagrass undergo simultaneous affects from several of these 
factors together. It naturally increases the environmental pressing and leads to 
drastic loss of very large areas of seagrass globally [107]. In tropical areas, where 
most of seagrasses are located (Fig.1.4), seagrasses are subject to catastrophic 
extinction and loss, due to the cyclones, typhoons, storms, regular floods and 
increased rainfalls. Recovery from such events can take up to several years and often 
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it is only possible by means of the seed reserves from the local environmental 
surveys [89].  
Other threats for seagrasses in tropical areas are increased nutrient availability in the 
coastal zones, increased eutrophication and invasive macroalgae. These processes 
have strong affect on the status of the seagrass meadows, and often lead to their 
complete disappearance [59]. Other environmental threat for the seagrasses arises as 
a result of the environmental struggle and competition for existence among species. 
Thus, meadows of P.oceanica in the Mediterranean Sea (Fig.1.5) are presently 
facing invasion by alien algal species, particularly in areas where P.oceanica is 
already degrading, stressed, have gaps and patchy structure in meadows and show 
other signs of regression [97].  
Seagrasses are vulnerable fragile species, important for the marine coastal 
ecosystems, especially for the protection of the beach structure. However, the facts 
about seagrass global degrading sound worrying: about 54 percent of the total 
seagrass meadows have lost any part of their area; the areas, where the seagrass 
ecosystems are degrading or lost, are not located in a specific area or continent, but 
registered globally; since 1980s global losses of the seagrasses on our planet is equal 
to two football fields per hour [94].  

1.2.4 General characteristics of Posidonia oceanica 

Morphology of P.oceanica. The endemic Mediterranean seagrass Posidonia 
oceanica (further P.oceanica), is a main species in marine coastal environment of 
Greece, forming, despite its slow growth, the largest, most widespread, 
homogeneous and dense meadows (Fig.1.1) 
in the Mediterranean between 5 and 40 m 
depth [52].  
Figure 1.5: Geographical distribution of P.oceanica. 
Source: [12]. 
The dominant and most productive coastal 
ecosystem of the Mediterranean, P.oceanica 
is spatially restricted to the Mediterranean 
area (Fig.1.5), with its extension limited by 
the western part of the Mediterranean Sea where cold Atlantic waters enter Gibraltar 
and mix with warm Mediterranean waters, thus decreasing its temperature. 
Morphologically P.oceanica consists of long, 5-12 mm broad, “hairy-like” leaves, 3-
4 mm thick roots and short rhizomes (0.5-2.0 mm). The leaves are, perhaps, the most 
particular characteristics of  
P.oceanica, making it highly recognizable and 
distinguishable from other seagrasses (Fig.1.6): having 
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usual length of 20-40 cm, in some cases they can reach up to 1 m [12] (Fig.1.8).  
Figure 1.6: P.oceanica. Source [77] 
Growing P.oceanica make a meadows which, in turn, consist of smaller patches, 
called “matte” (Fig.1.7), a monumental construction made by the growth of 
rhizomes and leaves with entangled roots and entrapped sediment [39]. Representing 
one of the most productive Mediterranean ecosystems, P.oceanica usually serves as 
a perfect biological indicator for the assessment of the quality of waters and 
environmental health [14]. Some authors [49, 96] used status and population 
dynamics of P.oceanica as indicators for the evaluation  
of the meadow health status.  
There are several environmental factors, determining the 
growth of the P.oceanica.  
Figure 1.7: Scheme of matte structure of P.Oceanica. Source [116] 

Phenology of P.oceanica The adaptation to dry-summer 
subtropical climate reduces its extension to 
Mediterranean area only (Fig.1.5). Besides, the distribution of the seagrasses 
changes with water depth: it is noticed [34] that the highest flowering density is 
usually in the 4-7 m depth. P.oceanica flowers appeared in shallow stands in 
September while in November only in stands deeper than 15 m. This time delay is 
caused by the different maximum summer temperatures at those depths [16].  
The phenology of P.oceanica is also affected by the coastal bathymetry: in the 
isolated meadows in shallow waters plants have 
shorter and falciform leaves, compared to ones in the 
deeper and central areas [34]. In P.oceanica flower 
abundance is related to the structure of the meadow 
with the maximal flower density in the densest 
stands, while the occurrence of flowering is regulated 
by environmental factors [16].  

Figure 1.8: Structure and components of P.oceanica. Source [28] 

Phenology of the P.oceanica undergoes modifications with varying seasons during 
the year: during the flowering period (ca 3 months long) the number of leaves on the 
flowering shoots decrease. Changes of the leaf growth also appear in the flowering 
shoots with longer oldest leaves and shorter and narrower leaves induced during the 
flowering [46].  

1.3 Research problem 

Monitoring of the marine benthic ecosystems of seagrasses is essential for the 
environmental assessment of the coastal zones. It increases our knowledge of the 
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seagrass ecology, highlights threats to the seagrass and preventing them from 
possible losses and degrading and improves techniques and methods of the 
underwater-based observations. Mapping the seagrass contributes to the evaluating 
of the seagrass current distribution, analysis of its dynamics and changes over time, 
as well as estimations of the degrading of seagrass meadows for the purpose of the 
coastal management. Precise, correct and up-to-date information about the 
distribution of P.oceanica is necessary for the sustainable conservation of the marine 
environment and ecosystems in Mediterranean area, being an important contribution 
to the environmental coastal zone management [117]. However, mapping the 
seagrass has limitations due to the specific location and characteristics of the 
research object. The remote sensing techniques have traditionally been widely used 

for the seagrass monitoring.  
Figure 1.9: Spectra of the seagrass on different depths (0 - 
15m). Source [35] 

The general overview of the application of 
various remote sensing data types (colour, 
infrared, and black and white images) for the 
seagrass monitoring shows its high suitability 
and potential as a research method [112, 84]. 
The using of the aerial photographs as base 

maps for the seagrass meadows mapping is, perhaps, the most traditional application 
[86, 68, 111] . The results of the image processing of colour aerial photographs for 
the monitoring of littoral environment with seagrass beds have been reported by 
several authors [67, 138, 47] . Satellite imagery processing has also being used for 
the seagrass monitoring, due to their accuracy, repeatability and information value as 
a source of data [27], enabling regular temporal coverage over the large remote areas 
and providing a cost-effective approach for the mapping of the remotely located 
feature, such as underwater vegetation [64]. Satellite images provide with detailed 
information on seagrass canopy and other environmental indicators [41]. Various 
research papers report successful application of the image processing for the 
seagrass mapping [20,  26,  38,  47,  62,  64,  68,  78,  82,  83,  
99, 112, 111, 109, 117, 120, 122, 129, 138]. The application of the remote sensing 
data towards seagrass mapping is based on the spectral reflectance characteristics of 
the P.oceanica seagrass, which enable its spectral discrimination from spectra of 
other seafloor types. It is proved [132] that the spectral signatures of different 
species of tropical seagrasses are well distinguishable from each other.  
The application of the methods of images classification for seagrass mapping is 
based on the classifying the pixels on the image according to their spectral 
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reflectance values (Fig.1.7) [38], so that the seafloor can be divided into several 
types: sand, rock, P. oceanica, other vegetation, etc. Other example of monitoring of 
P.oceanica using remote sensing techniques [20] reports the application of the 
CZCS images towards the case study of the Italian coast and shows successful 
results of the neural-based classification using Isodata method of supervised 
classification. In case of P.oceanica meadows aerial and satellite images are 
particularly suited for the surveying shallow waters [110] enabling to distinguish 
seagrass formations and dynamics of the temporal evolution of seagrass meadows 
over the research area [112]. However, using space borne satellite imagery for the 
seagrass mapping has certain limitations, due to the uncertainties of the spectral 
signature of the seagrass at higher depths (Fig.1.7), as well as some optical 
particularities, e.g. light refraction under water, unevenness of the water surface, 
depths, etc. Some problems can also arise in the images interpretations, as quite 
different objects may have similar spectral reflectance, e.g. seagrass, dark-coloured 
bottom patches (mud), macroalgae. The in-situ fieldwork including underwater 
videographic measurements is an important part of the seagrass monitoring, and has 
been successfully applied towards seagrass mapping [51]. The underwater 
measurements are used to validate the results and to receive detailed, accurate and 
precise data for the selected locations. The underwater measurements cannot be 
applied for the whole research area, however it provides with detailed monitoring 
along the route of the boat. Therefore, in the selected locations it becomes a useful 
tool for the assessment of the distribution, density and coverage of the seagrass 
along the track log. Besides, the underwater observations using scuba diving 
equipment have been conducted for the measurements of depths.  

1.4 Research objective 

The current MSc research aims to explore the environmental conditions for the 
spatial distribution of  P.oceanica seagrass along the northern coast of Crete Island, 
based on the remote sensing and GIS techniques, knowledge about the coastal 
environment in Crete and integration of various data from the following sources:  

i. spectra of P.oceanica, carbonate sand, silt and other seafloor types  
ii. satellite imagery: Landsat TM, Landsat ETM+ 

iii. aerial photos: Google Earth  
iv. in-situ fieldwork data of underwater videographic measurements  
v. vector GIS layers.  

Although there are a variety of environmental factors that contribute to the spectral 
reflectance, the most important ones are water column height and seafloor fraction. 
It is because spectra of the seagrass P.oceanica vary qualitatively over the depths 
interval of 0.5–4 m, and secondly, the content and cover fraction of the seafloor have 
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the most distinctive effect on the spectral reflectance of the water. In the 
environmental conditions of Crete Island, P.oceanica may grow at depths up to six 
meters; however, the most usual depth is four meters, which caused our decision to 
focus on depths up to 4 meters and use these depths for further WASI modelling. 
Therefore, in the current research we focus on these two major factors, and study the 
response of the water reflectance towards changing conditions of the water column 
depth and seafloor bottom cover fraction (seagrass and carbonate sand).  
The research aims to explore the limitations of the application of the Radiative 
Transfer Models (further RTMs) and remote sensing techniques towards the study of 
the environmental properties of the P.oceanica meadows distribution over the 
selected locations of northern Crete. The main research objective is monitoring the 
seagrass P.oceanica in selected areas of Crete and analyzing the environmental 
conditions for the growth of P.oceanica.  
This research is supported by the in-situ measurements in two selected locations of 
the northern coast of Crete (Ligaria beach in Agia Pelagia district and Xerocampos), 
using following methods of the remote sensing techniques: spectral modelling by 
means of the RTM Water Colour Simulator WASI, underwater videometric 
measurements made by Olympus camera, aerial Google Earth and satellite images 
from different sources, spatial GIS and statistical analysis.  

1.4.1 General objective 

The main objective of this study is to analyse the optical properties of the seagrass 
P.oceanica and other seafloor types, and to apply the remote sensing techniques 
towards the investigation of the seagrass distribution in selected locations along the 
northern coast of Crete.  General objectives:  

1) Analysing spectral reflectance of P.oceanica and other seafloor cover types 
by means of radiative transfer model tools (RTMs), using WASI. 

2) Mapping spatial distribution of the seagrass P.oceanica over selected 
locations along the northern coasts of Crete Island. 

1.4.2 Specific objectives 

a) To study narrow-band spectral reflectance properties of 
P.oceanica and other seafloor cover types (sand and silt) using 
WASI water colour simulation software  

b) To use methods of the in situ diving observations and underwater 
videometric measurements by Olympus camera in order to receive 
large-scale imagery of the P.oceanica mattes  
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c) To apply remote sensing data (Google Earth aerial images, 
Landsat TM and ETM+ satellite images) for the monitoring of the 
seagrass meadows distribution  

d) To perform supervised images classification for the thematic 
mapping of the P.oceanica seagrass distribution along the selected 
locations over the coasts of northern Crete.  

1.5 Research questions 

1. Is P.oceanica spectrally distinct from carbonate sand with varying 
in-situ environmental conditions?  

2. Do broadband and hyperspectral sensors provide enough 
radiometric information for spectral discrimination of seagrass, 
and therefore, can be used for mapping of P.oceanica?  

1.6 Hypotheses 

A statistical testing will be used to compare between the spectral responses of the 
different seafloor cover types (i.e. sand and P. oceanica), whether it is spectrally 
distinct and at least one pair is statistically different at every spectral band.  

For the research question 1 the Hypothesis Ho claims: seagrass types are not 
spectrally distinct from other seafloor types with varying in-situ conditions, which 
means Ho: μ1 =μ2 =μ3=...= μn. The alternative Hypothesis Ha claims the opposite 
statement: seagrass is spectrally distinct with varying in-situ conditions, Ho: 
μ≠μ2≠μ3≠ ... ≠μn.  

For the research question 2 the Hypothesis Ho claims: broadband and hyperspectral 
remote sensing data cannot be used for the mapping of P.oceanica, because they do 
not provide enough radiometric information to discriminate sand from seagrass, 
which means Ho: μ1 =μ2 =μ3=...= μn. The alternative Hypothesis Ha claims the 
opposite statement: broadband and hyperspectral sensors do prove to provide enough 
radiometric information to discriminate sand from seagrass, Ho: μ≠μ2≠μ3≠ ... ≠μn, 
and can therefore be used for the seagrass mapping.. 

The distribution of the spectral responses at every spectral band is assumed to be 
normal, as well as the equality of the statistical variances. The hypothesis testing is 
suggested to be carried out using the ANOVA statistical test. The purpose of 
ANOVA test is to visualize in an effective and quick way the spectral differences 
between seagrass species and their spatial distribution. Thus, the key hypotheses of 
the research will be tested to prove whether the results of the research are accurate, 
reasonable and correct.  
1.7. Assumptions 
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The general research assumption, used in this work, in order to make feasible 
application of the remote sensing methods, includes some statements about the in-
situ atmospheric conditions, viewing angle, wave backscattering and other optical 
properties of the environment. They all definitely play a certain role and impact final 
results of optical measurements, but for practical reasons we have chosen to ignore 
their contribution in the spectral separability of seafloor cover types. We briefly list 
below general research assumptions for the optical properties of the environmental 
variables used in this study.  

Weather conditions for the measurements are assumed to be perfect: clear, sunny, 
windless days. Otherwise wind roughens water surface causing sun glitter, and 
values of spectral reflectance may contain disturbances. Sky radiance might be 
influenced by multiple reflectances between the sea surface albedo and the 
atmosphere and in general, the sky radiance increases rapidly while viewing zenith 
angle is near to 90º (i.e. in the evening hours). Therefore, ideally measurements 
should be done at noon, with as low zenith angle (Fig. A.3) as possible; otherwise, if 
the solar zenith angle is too high (e.g. approaching 60-70 degrees), received data 
may contain noise. For WASI simulations reflection factor of sky radiance is taken 
as 0.0201 with simulated ideal conditions: viewing angle (0º = nadir). The interval 
of water temperature taken as default lies in the diapason 17-25 degrees as to 
simulate the conditions of the Mediterranean Sea. However, in real time conditions 
the sun zenith angle of 45º has been accepted as suitable. 

 The anisotropy factor of upwelling radiation or the quality (Q-) factor, showing the 
directionally dependency of the radiance, is taken as 5. We accepted some values of 
model-specific optical parameters as default values at WASI simulator which are 
shown in the Table 3.1.  Thus, the concentration of phytoplankton is accepted at the 
interval of 0.035 – 0.089 mg-1 and concentration of large suspended particles is 
given to 8. Reference wavelength for CDOM (Gelbstoff) absorption is equal to 440. 
The backscattering is accepted to be 0.00144m-1.  The coefficient of attenuation 
remains equal to 1.0546, as set up by default at WASI.  

We also assume that concentration of non-chlorophyll particles (absorption at λ0) as 
well as concentration of small suspended particles is equal to zero, so we do not 
count them in this work. Exponent of CDOM (Gelbstoff) absorption is accepted as 
0.0140. Finally, the BDRF of bottom reflectance (sand), which defines the reflection 
of light is at an opaque surface (Fig.A.7), is assumed to be 0.318 sr -1. 

1.8. Research approach 

Seagrass consistent monitoring and mapping is necessary and important for the 
sustainable coastal development and conservation measures. Earlier, many seagrass 
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meadows have been destroyed by human activities in the coastal zone, mainly due to 
the ignorance of their existence, because information on the seagrass bed exact 
location was not available [22]. Well-time seagrass observations and mapping 
enables precise control of its spatial distribution, detection of any changes in the 
seagrass landscapes, highlights potential environmental threats in the coastal zone 
(e.g. declining of meadows) before they become unmanageable for the coastal 
management services. Choosing the right and most effective approach method for 
the seagrass monitoring is essential. Remote sensing methods alone, though having 
evident advantages, are insufficient, because satellite images of underwater habitats 
are notoriously difficult to identify and interpret. The best research method should 
be based on the integrated approach, well described in various scientific works 
[13, 98, 70] , which includes combination of various techniques of the seagrass 
monitoring, i.e. remote sensing imagery classification of aerial and satellite images, 
GIS-based spatial analysis and ground in-situ surveys.  

 
Figure 1.10: General methodological approach for the analysis of spectral signatures. ArgoUML. 

The current study is based on the application of the remote sensing data, broadband 
satellite imagery, aerial images and the results of the underwater videographic 
measurements towards seagrass mapping (Fig.A.51 Image classification is based on 
the principle of the differentiation between the spectral signatures of various seafloor 
cover types (Fig.1.8). The spectrum of light coming up from the ocean surface in 
shallow waters keeps information on the optical properties of the seawater 
components and benthic substrate which can be read from their spectral signatures 
[139]. The pre-processing of the images includes imagery corrections for 
atmospheric noises and effects of the water column. Reflectance spectra of the 
seagrass canopy at different depths of the water-column are analysed for the 
discrimination of their spectral signatures, enabling to separate various seafloor 
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types during classification. The results of the of imagery classification are analysed 
for the detection of the dynamics in P.oceanica seagrass distribution along the 
northern coasts of Crete. Aerial imagery from Google Earth with high spatial 
resolution (Fig.A.52), suitable for the large-scale detailed mapping of seagrass 
mattes, is used for the improvement of the accuracy of large seagrass meadows and 
separate mattes within the meadows. The in situ underwater videometric 
measurements of the seafloor are collected during the fieldwork in Crete, for the 
validation of the classification results and to determine the exact current distribution 
of the P.oceanica meadows. The image processing includes steps of the remote 
sensing techniques, i.e. calibration, masking from land and cloud, atmospheric 
correction, sea surface glint and depth effects correction as recommended [83]. 
During the image classification working step the training sites for the supervised 
classification methods are designed, as well as its control and trials of different 
classification approaches (Unsupervised, K-means or Isodata; Supervised, 
Maximum Likelihood).  

2 Seagrass monitoring: overview of literature and research resources 

2.1 Seagrass global monitoring: history and perspectives 

Mapping and monitoring the seagrass is important for the environmental assessment 
of the marine ecosystems in coastal areas. Regular tracking of current distribution of 
seagrass meadows, based on correct information and cartographic visualization of 
seagrasses, is a preventive environmental management, which helps to analyse 
potential environmental risks of coastal areas, decrease of the number of species, 
loss of meadows and patches of the seagrasses. The tradition of global seagrass 
mapping though has not a very long history comparing to the terrestrial cartography, 
due to the technical difficulties of underwater observations.  
However, nowadays is has become a rapidly developing, increasingly popular and 
challenging research branch. Regular observations and monitoring of the seagrasses 
are known since 1960s, mainly in tropical regions (Australia). Since that time 
traditional methods of the seagrass monitoring and common recommendations are 
being elaborated. The development of the underwater SCUBA diving equipment and 
devices enabled to conduct underwater detailed measurements and observations 
largely contributed to the improvement of the traditional in-situ observations of 
seagrass. From the other side, development of the remote sensing methods and data 
acquisition from space contributed to the new methods of seagrass mapping, using 
distance approach and generally based on images classification. 
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Various global seagrass survey organizations organize and provide regular 
monitoring of the seagrass species distribution, health and environmental 
sustainability. We list below the most known seagrass research institutions: 
� Global-scaled: Global Seagrass Monitoring Network and the World 
Seagrass Association; The World Atlas of Seagrasses is published by the UNEP. 
� Australian Seagrasswatch (perhaps, the best organization, regularly 
publishing informative reports) 
� European: the Mediterranean association Seagrass-2000, the Mediterranean 
Institute for Advanced Studies and Seagrasses.org; 
� US American seagrass recovery campaign by the Seagrassgrow, Seagrass 
Ecosystems Research Laboratory in South Florida, Seagrass.LI and Florida Seagrass 
organisation; 
� Asian: UNEP/GEF South China Sea Project, Marine Conservation 
Cambodia and Sosmalaysia.org. 
All these organizations aim at the global seagrass monitoring, providing with 
research results and reporting guidelines and manuals with standardized methods 
and recommendations, specific for the seagrass research and monitoring. There are 
also university marine centres and research institutes conducting seagrass 
monitoring and as a particular part of their research and reporting various 
approaches for the monitoring and mapping of the seagrasses, including remote 
sensing applications. Their reports and guidelines were used for references in the 
current research. 
2.2 Measuring optical properties of benthic vegetation:  hyperspectral 
radiometers 
 
The application of the remote sensing data for seagrass mapping is based on our 
knowledge of the spectral reflectance properties of the target objects, and using it for 
the classification of these objects on the image. In case of seagrasses it is spectral 
reflectance of the seafloor cover types, which can be analysed using measurements 
of optical properties of sea water: radiance and irradiance. Optical remote sensing 
methods can get through the clear waters to approximately 15–30 m [102]. When 
sunlight enters the waters and goes down into the water column, parts of the 
electromagnetic energy are absorbed and scattered, which is determined by the 
optical and physical properties of the water, e.g. concentration of suspended 
particles, chlorophyll, coloured dissolved organic matter (Gelbstoff) that make up 
the water content [1]. Besides, light is strongly dependent on wavelengths, i.e. it is 
greater in blue wavelengths (400 nm) than in others.  
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(a) RAMSES-ACC-UV - Hyperspectral UVA/UVB (b) RAMSES-ARC - Hyperspectral UV-VIS  

Irradiance Sensor: 280-500 nm     Radiance Sensor: 320-950 nm.  
Figure 2.1: RAMSES Hyperspectral Sensors. Source: Trios 

 
The optical properties of the sea water vary with different environmental conditions 
and reflect current chemical content and physical specifics of the water, revealing 
the variability and distribution of colour of the sea waters, determined by the 
material in the water, e.g. chlorophyll, as well as its physical properties, e.g. water 
absorption, attenuation, backscattering [80].  
Shallow waters generally contain more dissolved substances and suspended 
particles, which directly influences the transparency and colour of the waters of shelf 
zones [65]. Being highly dynamic environments, coastal waters experience a variety 
of processes which alter their optical properties incessantly. The effects of these 
processes influence application of the hyperspectral remote sensing and reinforce 
other processes [81]. Thus, waves and tides increase sedimentation processes, which 
in turn, may change micro relief properties and topology.  
The optical properties of the water are best reflected in the values of its radiance and 
irradiance, which can be converted into spectral reflectance, or reflectivity. The 
spectral irradiance (E) is a radiant flux of the electromagnetic solar radiation energy, 
received per surface unit area in a given time (W·m−2·nm−1), while radiance (L) 
characterizes total emission or reflection that passes through or is emitted from a 
particular area (W·sr−1·m−2). Therefore, the spectral reflectance, or the reflectivity 
of the object, can be estimated by the direct mathematical division of these first two  
characteristics, and is expressed in percentage. The irradiance and radiance of the 
water thus should be measured, in order to estimate spectral reflectance of the 
various seafloor cover types.  
The optical measurements of the irradiance and radiance of the sea water and bottom 
cover types of the seafloor can be received by the means of the optical sensor 
spectroradiometers. There are several companies producing radiometers with various 
characteristics and adjusted for different purposes, e.g. portable and miniature 
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spectrometers from StellarNet, Hyperspectral Ocean Colour Radiometer 
(HyperOCR) sensor by Satlantic, traceable spectroradiometers by Orbotronix and 
lots of others. Among other radiometers there are ones designed by the Trios 
company producing optical sensors, GER-Series Field portable spectroradiometers 
from SpectraPartners, etc. Trios-RAMSES hyperspectral radiometers (Trios-
RAMSES Hyperspectral UVA/UVB Irradiance Sensor and RAMSES-ARC 
Hyperspectral UV- VIS Radiance Sensor) are small-sized, low power-consuming, 
flexible for fieldwork yet with high level of precision, specially calibrated for air and 
for water application as well as colour measurements (Fig.2.1). These products have 
been used for the radiance and irradiance measurements in Agia Pelagia bay, Crete 
Island, 2009. 
 
2.3. Radiative Transfer Models (RTM) for the simulation of water optical 
properties: a brief review of existing software tools 
Understanding radiance distribution within a water column is necessary for the 
studies of the underwater visibility, because scattering properties of the water body 
naturally vary with changing depth, wavelength and environmental conditions.  
Simulation of the radiance quantities for natural water bodies enables to analyse 
seafloor color remote sensing properties. Therefore, the artificial modelling of the 
seawater optical properties by means of the Radiative Transfer Modelling (further 
RTM) is used when water optics is studied under changing environment (e.g., depths, 
sun angle, suspended particles in water column). In such cases a retrieval of water 
optical parameters from the remote measurements should be tested and analyzed.  
We briefly list below the most effective RTM software and algorithms, suitable for 
underwater radiance simulations, from a range of various best-known up-to-date 
tools.  
a) The Second Simulation of a Satellite Signal in the Solar Spectrum, version 1 

(6SV1) (http://6s.ltdri.org/ ) is a US atmospheric correction algorithm, 
developed in the University of Maryland; adjusted for the NASA MODIS 
satellite imagery (http://modis.gsfc.nasa.gov/ ) lookup tables. The 6S algorithm 
has been implemented by the GRASS software for the atmospheric correction 
http://grass.osgeo.org/grass64/manuals/html64_user/i.atcorr.html  

b) Another example of the RTM adjusted for a specific imagery is a German 
KOPRA RTM (http://www.imk-asf.kit.edu/english/312.php), fitted for 
MIPAS/ENVISAT imagery. 

c) The HydroLight RTM commercial software is an advanced model for oceanic 
radiative transfer calculations, developed by the Sequoia Scientific, Inc., USA. It 
is designed to solve a wide range of problems in optical oceanography and 
limnology.   (http://www.sequoiasci.com/products/Hydrolight.aspx) 
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d) The British RTTOV-9 RTM is a radiative transfer model, developed for nadir 
viewing atmospheric sounders and imagers. It includes a number of useful tolls, 
e.g. can compute sea-surface emissivity for each channel, enables, to specify 
cloudiness for radiance calculations, etc.  This program runs under Unix/Linux 
platforms and is open source.  
http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/  

e) The Rapid Radiative Transfer Model (RRTM) is one more RTM freeware 
(http://rtweb.aer.com/ ), designed in the USA, Massachusetts.  

f) The MODTRAN, a commercial software (http://www.modtran.org/) from 
Spectral Sciences Inc., is another example of the RTM. Among its newest 
updates is generation of atmospheric correction data; it also has an option to 
write spectral output in binary, and convert it to ASCII. 

g) The Community Radiative Transfer Model, CRTM is designed by the JCSDA, 
NASA (http://www.jcsda.noaa.gov/projects_crtm.php) and includes Surface 
Emissivity/Reflectivity Models, Cloud Absorption/Scattering Model and 
Gaseous Absorption Model. 

For our purpose we have chosen the WASI RTM software, due to its effectiveness, 
adaptability for the Mediterranean environment, open source availability, coverage 
of necessary wavebands and clear, user friendly interface enabling us to adjust 
various environmental parameters. 

2.4. The in-situ observations of the seagrass meadows 

The traditional methods of in-situ seagrass monitoring include in general the 
following standard scheme [87]. The seagrass is being sampled on the selected sites 
using transect lines, quadrant frame, single point markers, markers, GPS and other 
equipment. The seagrass sampling is taken on the regular way with observation 
points covering the study area with normal distribution (Fig.A.25, Fig.A.24). During 
the measurement process, the vertical photograph of the measurements frame is 
taken, and the following points are traditionally estimated: percentage of the 
seagrass cover within the quadrate, species composition, sediment composition, 
canopy height, epyphyte abundance, algae percent cover, count of microfauna and a 
specimen of seagrass is being taken. This scheme, well described by McKenzie [87] 
is widely used and well-known among the marine biologists and seagrass 
researchers. Applications of the in-situ seagrass observations of the structuring 
epiphyte community composition in the P.oceanica ecosystems in Mediterranean 
Sea is, for example, described by Villegas [136]. Realization of traditional methods 
for mapping seagrass usually involves intensive and time-consuming in-situ 
observations during the fieldwork, as, for example, reported by Iverson and Bittaker 
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[61]. The results of the in-situ measurements and observation are usually managed 
and treated using integrated GIS approach, as, e.g. reported by Schmieder [127]. 
Other methods of seagrass in-situ monitoring are based on the application of the 
active hydro-acoustic sonar sensors that send towards a sea floor a signal of energy 
and then collect the return echoes for the analysis (Fig.A.5). One of the examples of 
the acoustic sonar sensor designed for seabed classification is the British RoxAnn 
system, which application for the seafloor mapping is very well described on the 
OzCoasts website. However, the application of the acoustic methods requires 
specialized expensive equipment and is mostly used in the deep open waters, 
combined with bathymetric measurements. Another limitation of the acoustic 
techniques is that, initially intended for the bathymetric surveying, acoustic 
equipment is mostly designed for the geomorphological and geological studies of the 
underwater substratum and are, therefore, more adjusted for the benthic habitat 
discrimination, and they are not effective for the identifying of the biological species 
composition or even the presence of aquatic vegetation such as seagrasses and 
seaweeds [139]. The current study is based on the application of the remote sensing 
optical measurement techniques, due to their effectiveness, non-destructive nature 
and availability of necessary tools: spectral radiometers and RTM. 
2.5. Application of the remote sensing data towards seagrass mapping 
Various methods and approaches have been applied towards mapping of the 
seagrasses, based on digitized aerial photographs, GPS data, remote sensing and 
SCUBA-based fieldwork measurements. SCUBA-based (Fig.A.54) in-situ 
observations, though providing high resolution and accuracy results in seagrass 
mapping, is limited in application, because of their time consumption, weather-
dependency and unsuitability for the case of monitoring large areas of water for 
small-scale mapping. The underwater videography with a GPS is a tool of seagrass 
monitoring which has certain advantages, i.e. high spatial and visual resolution, non-
destructive sampling, effectiveness at all depths and rapid data collection in the field 
[128]. However, it cannot cover large areas for small-scale mapping. Remote 
sensing techniques offer clear advantages over other methods of in-situ field 
measurements and seagrass observations, mentioned above. Preference of the remote 
sensing methods consists in their weather-independency, cost-effectiveness, 
accuracy and spatial coverage, which enables periodic monitoring of the seagrass 
meadows and gives access to the distant and unapproachable areas. Integrated 
together with GIS vector layers and maps, remote sensing data enable historical 
mapping [19, 5] and assessment of change detection. However, application of the 
remote sensing techniques for mapping of submerged vegetation, seafloor cover 
types and benthic vegetation, inter alia seagrasses, are still in their development.  
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Figure 2.2: In situ optical reflectance  
spectra of seagrass. Shaded areas - % of 
spectra lying within the range of reflectance.  
White lines - mean spectra. Source: [57] 
 
Approaches and methods for the seagrass 
protection and monitoring still remain 
location-specific or, at least, nation-specific, 
depending to large extent on the tools 
available for the researchers [93]. Universal, 
international, standardized methods for seagrass directly for seagrasses as such still 
should be developed. Various case studies have been performed, yet their mostly 
report methods adjusted for particular areas, without evaluating standard general 
algorithms that could be extrapolated towards other regions.  
Application of the remote sensing towards seagrass mapping is generally based on 
the assumption that various types of the seafloor bottom have different 
characteristics of the reflectivity, which is visually expressed in distinct colours of 
the objects. In its turn, reflectivity of the 
sediments is affected by the water optical 
properties and content. For example, Stephens 
[131] prove that microalgae biomass and 
community structure affect hyperspectral 
reflectance of sediments, which enable to 
estimate total microalgae biomass from 
measurements of hyperspectral reflectance.  
Figure 2.3: Difference between broadband multispectral 
and hyperspectral resolution of spectral signatures. Source: 
[23] 
Spectral measurements of the target objects are made by means of the radiometers 
(Fig.2.1), which receive and register the amounts of energy (radiance and irradiance) 
from the objects.  Measuring optical properties of the seawater allows to calculate 
spectra of the objects and to discriminate them on the aerial and satellite images. 
Thus, various scientists report success in spectral discrimination of submerged 
vegetation and other seafloor cover types on imagery using hyperspectral optical 
properties of the sea water for the assessment of benthic habitats [75, 76, 25, 139]. 
Studies of spectral reflectance of the different seagrass species comparing to the 
spectra of sand and other seafloor cover types [134] prove that spectra of green, 
brown and red benthic macroalgae differ from each other, as well as from sand and 
deep water reflectance spectra. These differences are well detectable by the means of 
the remote sensing research methods. Comparing to the terrestrial plants, aquatic 
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vegetation inter alia seagrass cannot be detected using red edge of the spectrum, as 
these wavelengths are significantly absorbed by water [69], as well as by scattering 
and absorption by phytoplankton. Some authors [30] also use spectrally based 
radiative transfer approach to quantitatively estimate shallow-water bathymetry and 
leaf area index (LAI) of the seagrass. The spectral reflectance in general is the result 
of the spectral absorption in different bands, typical for each target object. Spectral 
reflectance of the seagrass (Fig.2.2) is largely influenced by the water depth where it 
is located, and is generally decreasing in values by increasing depths. The most 
important spectral diapason for marine mapping of submerged vegetation and, 
particularly, for seagrass, is 350-800 nm [7]. Using airborne imagery for 
retrospective data (before 1970s) together with the most recent imagery allows to 
detect changes in seagrass distribution on over different years and to analyse 
dynamics of the seagrass distribution [6].  
Another important advantage of the application of the remote sensing data for 
mapping of submerged aquatic vegetation has commercial nature: using remote 
sensing data and methods enables more low-cost and up-to-date seagrass mapping 
[100], and is especially useful for the areas where the fieldwork data capturing is 
unavailable. 

 
Table 2.1: Characteristics of selected ocean-colour sensors 

Seagrass meadows may reach spatial scales from several up to hundreds of metres, 
therefore they are susceptible by the means of satellite imagery from remote sensors, 
both with moderate resolution (e.g., Landsat MSS, Landsat TM, Landsat ETM+, 
MERIS, ASTER, MODIS) and high resolution as well (e.g., IKONOS, Quickbird, 
SPOT, CASI). The possibility of their application towards seagrass mapping varies 
and is limited by the technical 
characteristics (Table 2.1) and resolution 
of these sensors (Fig.2.3). In the next 
paragraphs we briefly discuss limitations 
and research experience of the using of 
various imagery for the seagrass 
mapping.  Figure 2.4: Band coverage of ASTER 
and Landsat channels on the e/m spectrum. 
Source:[66] 
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In the next paragraphs (“Review of multispectral imagery...” and “Review of 
hyperspectral imagery”) we will briefly discuss research experience of the 
application of satellite imagery towards seagrass mapping, its advantages and 
limitations, reported by various researchers. 

2.5.1 Review of multispectral imagery used for seagrass mapping 

Seagrass mapping using remotely sensed data from multispectral sensors is based on 
the classification and discrimination of the seafloor types using their spectral 
characteristics in different wavebands. Perhaps, the most known imagery, widely 
used in the remote sensing mapping, is received from the group of Landsat sensors, 
known for its historical, pioneer role in the satellite industry. Being the longest 
running satellite system, lunched in 1972, Landsat is the only source of archival data 
going back to 1984 at a sufficient spatial resolution [27], which makes its data 
desirable for historical mapping or environmental analysis of change detection of the 
seagrass landscapes. The Landsat TM and Landsat ETM+ data, with the most recent 
from sensor Landsat 7 – an advanced and multispectral scanning, launched in 1999, 
prove to be feasible and useful for the mapping of submerged vegetation, such as 
seagrasses or coral reefs. The successful applications of the imagery Landsat TM 
towards the seagrass mapping, were reported in numerous research works 
[108, 50, 137, 10, 36, 121].  
Figure 2.5: Multispectral vs. hyperspec- 
tral band coverage. Source: [125] 

The Landsat data are particularly suitable 
for the case of change detection of seagrass 
landscapes at a decadal scale, because being 
the main sensor onboard the Landsat 
satellites, the Thematic Mapper (TM) 
provides the longest time series available 
for change detection analysis over 
submerged vegetation [108].  
Another well-known multispectral sensor, 
SPOT provides multispectral imagery with 
a spatial resolution of 10 m, covering 
covers a surface area of 3600 km² (60*60 
km swath), 26-day orbital repeat cycle for nadir viewing and imagery with a spatial 
resolution 20 - 2.5 m [106]. SPOT imagery was used for mapping beds of Posidonia 
oceanica in the Mediterranean Sea [113] . The IKONOS, offering multispectral and 
panchromatic imagery, was the first to collect publicly available high-resolution 
imagery at 1- and 4-meter resolution from Geoeye. IKONOS imagery has been 
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applied for the seagrass mapping due to its high resolution and accessibility. Thus, 
the results of image classification in case study of shallow-water marine 
environment [101] made using IKONOS, Landsat TM, and CASI, show that in the 
blue part of the spectrum, the best results are achieved by the IKONOS and CASI, 
while Landsat TM has not high enough resolution. It may be caused to some extent 
by the loss of the radiance contrast, atmospheric Rayleigh scattering and defects of 
scattering. However, comparing between CASI and IKONOS, the same authors 
prove that CASI enable to receive still more accurate results of the classification 
than IKONOS [101]. Another comparative analysis of the application of CASI, 
Landsat and Quickbird imagery [119] demonstrates high suitability of CASI images 
for the fine-scale mapping of the seagrass landscapes. Thus, CASI and Quickbird-2 
images enable to identify even separate seagrass species with small width and 
heterogeneous nature of the seagrass patches, which could not be detected using 
Landsat TM images with their 30*30m resolution.  
Advanced Spectrometer for Thermal Emission and Reflection Radiometer (ASTER), 
launched in 1999 onboard Terra sensor, provides high-resolution images of the Earth 
in 15 different bands of the electromagnetic spectrum, ranging from visible to 
thermal infrared light (Fig.2.4). It has diverse subsystems for the visible near 
infrared (VNIR) with 15 m resolution, shortwave infrared (SWIR), and thermal 
infrared (TIR) wavelength regions [66]. For each channel there is separate onboard 
calibration (OBC) system, telescope with independent pointing and different 
detector technology [4]. This makes ASTER imagery especially suitable for the 
application towards detailed mapping of surface temperature, emissivity and 
reflectance of objects and bathymetric elevations as well. Successful application of 
the ASTER imagery towards mapping of submerged vegetation reported, for 
example, by Hirose [55].  

Figure 2.6: Reflectance spectra of sea- 
Grass Thalassia; Rrs(0-) - subsurface RS 
reflectance; Rrsb - the bottom reflectance. 
Source:[140] 
Other multispectral images have also 
been used for the seagrass interpretation. 
For example, the success of using 
imagery from the multispectral airborne 
scanner Daedalus AADS1268 is reported 
by Heege et al [54] where they aim at 
classification of macrophytes in shallow waters of the Lake Constance.  

In regard to the methods chosen for the image interpretation, the supervised 
classifications proves to be the most worthy in a majority of case studies [108, 114] . 
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While often methods of the unsupervised classification are used as a tool for 
classifying submerged object and features on the multispectral images and aerial 
imagery [37], it still does not provide common algorithms that can be applied to 
other images and regions. Thus, the strength of the optical signal coming from the 
various types of the seafloor is strongly influenced by the effects of the water 
column, its depth and chemical properties. Yet methods of the unsupervised 
classification overleap mixed spectral effects of the water column which shift the 
real values of the spectra, with the pure reflectance from the benthos; as a result, it 
may cause significant errors [30].  

For the accurate assessments of various seafloor cover types, water column depth 
and its optical properties, methods of supervised classification should be preferably 
used as being more suitable in classification and interpretations of imagery. 
However, it is only true if spectrally distinct regions of the spectrum are covered by 
a space-born sensor and if the atmospheric distortion and viewing geometry is not 
degrading the radiometric quality at essential wavelengths. While this and other 
studies [119] demonstrated the advantages and success of the application of 
multispectral imagery for the spectral discrimination of the seafloor cover types and 
mapping the submerged landscapes on the basis of pixels classification, the 
application of data from hyperspectral sensors has better potential due to their higher 
resolution (Fig.2.5).  

2.5.2 Review of hyperspectral imagery used for seagrass mapping 

The application of the hyperspectral sensors is most effective and provide more 
accurate classification results (Fig.2.5), due to their higher spectral resolution [15] 
with interval narrows to 10 nanometres, while broadband sensors are limited to the 
spectral width of ca 150 nm (Fig.2.3). Hyperspectral imagery is acquired through the 
simultaneous acquisition of images in many narrow, contiguous spectral bands from 
hyperspectral scanners (mostly) cover the 400- to 2500-nm spectral bands [126]. 
Perhaps, the most advantageous and general characteristics of hyperspectral imagery 
is its high spectral resolution, desirable for the case of seagrass monitoring. The 
most suitable scanner fit for detailed seagrass mapping would cover bands of 550-
750 nm and have a spectrum resolution of 5-15 nm [42], which exactly characterizes 
typical airborne and hyperspectral satellite scanners. Important features may be 
detected in the narrow wavelengths of hyperspectral imagery, while this information 
can be lost in the broader wavelengths of other sensors. With its 126 spectral bands, 
HyMap imagery enables to distinguish features of interest, i.e. seagrass types [115], 
which is the major advantage of the of hyperspectral data for mapping landscapes of 
the seagrasses. While comparing multispectral imagery with airborne hyperspectral, 
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the last one showed higher overall accuracies [119]. Several, regular and narrow (10 
nm) spectral bands, specific for hyperspectral imagery, are strong tool enabling to 
detect even slight and subtle differences in the spectral reflectance between various 
seafloor types, e.g. different seagrass species at diverse depths, algae, corals, dark-
coloured sands or other types of sediments [56]. Therefore, there is great potential of 
the application of hyperspectral remote sensing imagery towards seagrass mapping 
at species level, as long as they are distinguishable spectrally (Fig.2.6) which, for 
example, has been tested in the case study of Australian marine ecosystems by Fyfe 
[42]. Application of various classifications methods, inter alia maximum likelihood, 
minimum distance and means, towards hyperspectral imagery [114], combined with 
fieldwork measurements ensures accurate mapping results with the maximum 
likelihood methods producing the best results. Therefore, accurate mapping of the 
seagrass landscapes and other seafloor types using remote sensing approaches 
requires application of high-spatial resolution (higher than 5 m) or hyperspectral 
imagery. Comparative analysis of the application of hyperspectral and multispectral 
imagery towards the seafloor types classification [56] demonstrates that coral, 
seagrasses and sand very well distinguishable in their spectra with an overall 
classification accuracy of 98 percent. However, the use of data from various sensors, 
both hyperspectral and multispectral, is possible and reasonable, as soon as it meets 
the research specific objective. Thus, the use of multispectral imagery with high 
spatial resolution is preferable to using hyperspectral medium resolution data in case 
of mapping benthic vegetation in areas where the spatial heterogeneity is very high 
[135].  
2.5.3. Comparison of seagrass spectra  
The reflectance spectra from different seagrass species reported in various research 
works demonstrate diverse spectral signatures which are dependent on the mixture 
of environmental conditions as well as individual characteristics of the seagrass.  
In the current work we have compiled an extensive measurements dataset (up to 400 
single spectral profiles) of the reflectance spectra from various seafloor cover types 
(P.oceanica and carbonate sand) in the coastal waters of Crete Island, which is 
partly visualized on the plotted graphs  (Fig. 4.2, 4.6, A.27, A.28, A.30, A.35, A.36. 
Having analyzed reflectance spectra received in previous works by other researchers 
and compared them with our results, obtained in the current work, we noticed some 
general trends in the character of reflectance spectra of various seafloor cover types. 
We mention below some general conclusions and observed tendencies in the profiles 
and patterns of spectra of P.oceanica and carbonate sand (as for Crete Island).  
Measured remote sensing spectral reflectance is highly variable with changing 
environmental conditions, such as water physical content (amounts of suspended 
particles and organic matter, salinity, chemical content), water column depth, 



25 

atmospheric conditions (incl. sun zenith angle) and individual features on the plant, 
e.g. morphology and colour pigmentation of the leaves, differed in various plant's 
health and age conditions.  
The maximal values of the spectral reflectance of P.oceanica, received both in the 
current work and by previous researchers, lies in wavelength interval of 500-600 nm, 
as, for example, shown on Fig.2.2, Fig.2.6, and can be clearly seen in our results as 
well (Fig. 4.2, 4.6, 4.8, A.35). Comparison f the remote sensing reflectance spectra 
of various seagrass species, e.g. P.oceanica (Fig. 4.4) and Thalassia testudinum 
(Fig.2.6), sows that P.oceanica is in generally brighter in the wavelength interval 
500-600 nm which can be caused by various colour pigmentation. The plotted 
graphs with spectra of the seagrasses P.oceanica and Thalassia testudinum 
demonstrate that the dip in the spectral reflectance after ca 600 nm is more 
pronounced in case of P.oceanica seagrass beds (Fig.4.4) than in those with 
Thalassia testudinum (Fig.2.6), due to absorption caused by pigment of green leaves.  
The remote sensing of the bottom albedo of P.oceanica and carbonate sand (Fig.4.7) 
shows clear difference between the carbonate sand and P.oceanica, which is 
evidently much darker. To estimate and further analyze particularities of the 
P.oceanica remote sensing reflectance spectra over regions with different 
bathymetry (0.5, 1.5 and 2.5 meters column depth) we used WASI RTM software, 
which incorporates measurements of the seafloor reflectance and water column 
optical properties. 

3 Materials and methods 

In the section Seagrass monitoring: overview of literature and research resources we 
briefly discussed main existing cartographic methods and tools for seagrass 
mapping. In the current research we try to combine various techniques from 
mentioned above for the assessment of the seagrass distribution in the Mediterranean 
environment, for the case study of Crete. We mentioned in the List of Tools the 
software that we used for logically separated research sections, which required 
various approach. Thus, for example, spectral analysis and assessment of spectral 
signatures is technically based on WASI, statistical analysis of series of 
experimental raw data has been made by means of statistical software, such as Gretl 
and SPSS; mapping has been made using ArcGIS; images processing and 
classification were made using Erdas Imagine software by means of Google Earth 
and Landsat imagery. ArcGIS 10.0 software is used for the spatial analysis, general 
mapping and cartographic layout presentation; the raster processing techniques are 
applied for the detection of seagrass spatial distribution using supervised 
classification. The research data include Google Earth aerial images and scenes from 
the Landsat TM and ETM+ covering research period of 10 years in the same year 
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time, taken from USGS, GloVis, NOAA and The Earth Science Data Interface. The 
satellite imagery provides vital information of the most recent changes in P.oceanica 
within the coastal areas, as well as the condition (poor or destroyed). The raster 
processing includes making mosaic-like covering for the whole research area. The 
Google Earth images are most appropriate for the detailed mapping than satellite 
than Landsat or ASTER enabling to produce accurate maps with correct results. 
Therefore, the main set of images for the current work is Google Earth aerial images. 
The Landsat images are used for the general overview. Besides aerial and satellite 
photographs, data acquired during the fieldwork (three weeks in September - 
October) are necessary addition to the mapping helping to solve problems of 
interpretation during the images classification [109]. Therefore, this work includes 
sampling of the in-situ measurements of the seagrass distribution. The sampling 
stations were located in two candidate places on the northern (Ligaria) and southern 
(Xerokampos) parts of Crete island, as these regions are well suitable for the 
seagrass, due to the annual mean water temperatures and geological factors, i.e. 
seafloor conditions and sediments.  The field campaign has been carried out during 
the September-October period 2010. The information about the location of the 
seagrass (mostly represented by the P.oceanica species) is useful for the 
understanding of the relationship between the spatial distribution of the seagrass and 
the environment of the selected areas of Cretan beaches. The results of the 
videographic measurements are used for the seafloor types detection, because the 
objects represented on the photos can be well distinguished and classified according 
to the following well-known characteristics [17]: size (yet some measurements are 
necessary for the similar-looking objects); shape (the general form is most reliable 
evidence for identification); colour (common and reliable object indicator); texture 
(when changes in tone are too small to be distinguishable, texture may assist 
identification, e.g., stippled, granular, rough, smooth, etc.); associated features (those 
usually found near other objects, e.g., rocks and soil).  

3.1 Study area 

General area: Island of Crete, Greece (Fig.3.1). The study area of the current MSc 
research is located in the shallow areas of the Ligaria beach, Agia Pelagia and 
Xerocampos, Crete island, Greece (Fig.3.2).  
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 Figure 3.1: Study area: Crete Island 

These shelf areas have maximal depth of four meters. Seagrass sampling has been 
performed at two stations at a depth of 4 meters, in the following selected areas:  
1. Ligaria beach (Agia Pelagia district), 36°20´N 22°59´E  
2. Xerokampos, 35°12´N 26°18´E 3. Agia Pelagia, 36°20´N 22°59´E. 

3.2 Fieldwork data collection 

Seagrass sampling has been performed at two research stations at Crete island - 
Ligaria beach (36°20´N 22°59´E) and Xerokampos (35°12´N 26°18´E), at depths 
lesser than 4 meters.  

 
Figure 3.2: Study area: Ligaria beach, Crete Island 

The Ligaria Beach is a narrow, sandy and pebble beach (Fig.3.2), located ca 15 km 
north-west from Heraklion. The in-situ measurements were conducted during the 
fieldwork in the period 21.09.2010-11.10.2010. The fieldwork on seagrass 
monitoring included visual estimations and photo- and video footage of the above-
ground seagrass patches, sediment seafloor cover types, species compositions, water 
depth and geographic locations recorded using GPS.  

3.2.1 Fieldwork equipment 

The research materials and equipment were provided by the Natural History 
Museum of Crete, the University of Crete and the ITC, and included the following 
items (Fig.3.3): 1) three iPAQs (Fig.3.3a); 2) three GPS (Fig.3.3c); 3) Three 
underwater video cameras, Olympus ST 8000 (Fig.3.3d), suitable for photographing 
up to up to 33 foot depths and high-resolution 12.0-Mpixel image sensor; 4) Markers 
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and cords for the depths measurements (Fig.A.56); 5) Waterproof plastic Otterbox 
(Fig.3.3b) for keeping the iPAQ dry; 6) SCUBA Diving equipment, taken from the 
Ligaria Diving Centre; 7) Boat (Fig.3.4);  

   
(a) iPAQ, HP (b) Waterproof Otterbox (c) GPS (d) Olympus waterproof camera 

Figure 3.3: Fieldwork equipment 
A GPS and iPAQ have been used for detection of the geodetic coordinates and 
keeping the tracklogs along the boat route for GIS project.  

  
Figure 3.4: Boat used for the fieldwork measurements on Crete Island. 2010 

3.2.2 Sampling design 

The sampling design of the fieldwork was aimed at surveying of the spatial 
distribution of the meadows of P.oceanica, and spatial pattern of the seagrass 
meadows consisted from separate patches. The fieldwork included several routes of 
the boat in the Ligaria beach sampling site, nine routes in total, in the directions 
parallel to the coastline, ca 180-200 m long each one, thus enabling the course plot 
to cover the area of growing seagrass: shelf areas not deeper than four meters. The 
measurements of the seafloor cover types have been made using underwater video 
cameras Olympus ST 8010 (Fig.3.3(d)), mounted under the boat to capture video 
footage and imagery (Fig.A.53). The data records were made along each path using  
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Figure 3.5: Scheme of the depths measurements; fieldwork on Ligaria beach. 

 
these cameras. A videographic approach, tested previously [105], was applied during 
the fieldwork on Crete island, for collecting information on benthic cover types and 
distribution of the seagrass patches from photo transects, in order to use for the 
calibration of mapping approaches.  

 
Figure 3.6: Scheme of placements of the Olympus cameras during the measurements 
Three underwater video cameras, located on the bottom of the boat (Fig.A.53), 
provided videometric measurements of the seafloor during the track (Fig.A.9), and 
resulted in a series of consequent overlapping images of the sea bottom under the 
boat path. The general locations of the sampling sites and routes were selected on 
the basis of the visual examination of the seagrass beds during snorkelling and 
SCUBA diving (Fig.A.54, Fig.A.55), recommendations from the Greek 
collaborators of the Natural History Museum of Crete, and available maps covering 
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the research area. To ensure even and objective selection of sampling sites we used 
transect sampling method, i.e. photographs were taken along the research path.  
Transect method (Fig.3.5) is a common sampling technique in studies of the seagrass 
monitoring [130], enabling the occurrences of the seagrass meadows to be recorded 
and counted in a systematic and accurate way, detect spatial distribution of the single 
seagrass mattes to be properly identified, without location bias (Fig.A.12).  
The videographic measurements and photos, enabling to detect types of the seafloor, 
were captured by means of three underwater digital video cameras Olympus ST 
8000 (Fig.3.3d), at five minutes interval along the tracklog path (Fig.A.9). research 
sampling design also included measurements of depths (Fig.3.5), because 
bathymetry is one of the most determining factors for the seagrass locations. 
Measurements of depths were performed during the fieldwork using cord, iPAQs, 
and markers (Fig.A.57) in order to assure that the videometric measurements are 
taken at depths not more than four meters, in the shelf area. As a result, nine 
transects were established of one m wide and 20 m long track, to cover seagrass beds 
with videographic measurements.  
The GPS allowed to capture measurement locations on the iPAQ, encapsulated in a 
plastic waterproof Otterbox (Fig.3.3b). The camera were adjusted horizontally by a 
leveller and mounted under the bottom of the boat (Fig.A.53) to capture video 
footage and imagery (Fig.3.6). The data were taken at proper weather conditions: 
sunny, serene and cloud-free days with glassy sea state. The locations of the route 
were randomly selected in the areas of the Ligaria beach, to ensure most dense 
coverage of the seagrass meadows in the research area. The underwater 
measurements of the seagrass coverage were carried out by taking video footage and 
photos of ca 0.5 m2 size each (Fig.A.12, Fig.A.57). The results of the underwater 
videometric measurements include series of digital images helping to classify 
seafloor cover types (Fig.A.58) and seagrass meadows, according to the differences 
in the structure, colour, texture and shapes of the depicted objects. There are several 
types of the seagrass landscapes along Ligaria beach, namely, seagrass meadows 
continuously covering vast areas (Fig.A.38 (a)), aggregated seagrass patches, 
represented by separate mattes with short irregular channels between them (Fig.A.8 
(b)) and isolated seagrass patches, or mattes, which located separately from broad 
meadows (Fig.A.8 (c), Fig.A.58). The results of the underwater videometric 
measurements of the Olympus cameras made during the ship route include nine total 
tracklog routes in the selected research area, including series of consequent images, 
completely covering the area under the boat path. The received data contain 
information on seagrass presence within the study area, distribution of seagrass 
P.oceanica meadows and nature of the seafloor cover types: rocks, sandy, mixed 
(Fig. A.11, Fig.A.10, Fig.A.8). Seagrass species on the Ligaria and Agia Pelagia 
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beach consist of P.oceanica. The types of sediment on the Ligaria vary from coarse 
sand, P.oceanica patches, sand, mud, rock gravel and fine sand (Fig.A.11).  

3.3. Review of the collected data 

The remote sensing imagery was collected for the Crete island area covering the 
research period and area, enabling the field data to be used for the calibration and 
validation. The available aerial and satellite imagery are commonly used for the 
mapping of seagrass landscapes and their application is proven by various research 
papers. The imagery includes satellite multi-spectral imagery (Landsat-TM, ETM+) 
and aerial imagery from the Google Earth. The overview of the collected data 
enables to summarize their following types:  

� Optical spectra of P.oceanica, carbonate sand, seawater with sediments and 
seawater measured in aquarium tank, without sediments, at different 
environmental conditions (e.g., Fig.A.20)  

� Aerial imagery from the Google Earth  
� Satellite images from various open sources (e.g. Landsat, Tab A.19) 

(previews: Fig.A.43)  
� Results of underwater videometric measurements of the Olympus cameras 

made during the ship route 

The available satellite (Fig.A.344, Tab.A.31) and aerial images are read into the 
ArcGIS project. The available broadband and hyperspectral remote sensing data are 
used for the mapping of the seagrass in shelf areas no deeper than 4.0 meters 
(Fig.A.45, Fig.A.45, Fig.A.47, Fig.A.48), for the environmental monitoring in order 
to detect the spatial distribution of the seagrass along Crete during the past ten years 
using different satellite images for 2000-2010 (Fig.3.7).  

  
Figure 3.7: Work flow for the data acquisition, Dia display 

 
The spatial resolution of Landsat ETM+ image is 30 m in the visible and near 
infrared bands (bands 1-5 and 7); the spatial resolution of ASTER 15 m for the 
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visible and near-infrared bands. IKONOS acquires data in 3 visible channels and 
NIR, with spatial resolution of 1-4 meters. ASTER and IKONOS images are 
suggested to be included as soon as available, in addition to the Landsat. The 
research includes fieldwork in-situ measurements of the seagrass distribution along 
the northern and south-eastern coasts of Crete in chosen locations. 
The optical measurements of the irradiance and radiance of the sea water and bottom 
cover types of the seafloor have been received by the means of the optical sensors 
Trios-RAMSES Hyperspectral UVA/UVB Irradiance Sensor and RAMSES-ARC 
Hyperspectral UV-VIS Radiance Sensor (Fig. 2.1), both adjusted for the 
measurements of the irradiance and radiance (see appendices: Tab. A.1, Tab. A.2).  
These products have been used for the radiance and irradiance measurements in at 
the Hellenic Centre for Marine Research (HCMR) at the Institute of Aquaculture, 
Crete Island, 2009 by Ms Sylvia Noralez using following workflow. The 
spectrometer was adjusted for automatic measurements mode, with measurements 
taken as fast as possible. The spectrometer head was held submerged, and the 
sampling was controlled by an operator (Ms S.Noralez) on the surface boat. The 
head of the sensor was pointed downward at an angle of 0 (nadir) in order to capture 
the spatial discernibility in the radiance for the benthic cover types. The frame was 
held at 45 degree angle in order to keep sensor looking down at 0 degree (nadir 
view). A waterproof camera was attached to the platform to assist with the 
identification of the target object  being measured (Noralez, 2010). 
The highest measured values are located in the diapason of 410-730 nm for the water 
irradiance (Fig. A.19), and 430-650 nm for the water radiance (Fig.A.16). 
Afterwards, the measured values of the radiance and irradiance, respectively, have 
been used for the computation of the spectral reflectance properties of the sea water 
and bottom cover types (Fig.A.30). The spectral range of radiance cover diapason of 
320-950 nm, and irradiance measurements are covered in the interval of 280-500 
nm, which is suitable for characteristics of seagrass reflectance. Different curves on 
the reflectance, radiance and irradiance graphs for example, on Fig.A.27, or 
Fig.A.29, enlarged) represent several series of the measurements. The values of the 
spectral reflectance are received from the computations of these values using 
mathematical formulae. The graphs shown on Fig. 4.2, Fig.A.20, Fig. A.33, Fig. 
A.18 display values of the radiance and irradiance of the sea water in Agia Pelagia, 
with and without sediments and suspended particles, respectively. Graph on Fig. 
A.28 displays statistical analysis of the measured sets of observations, i.e. shows the 
midspread of the statistical quartiles (Q1-Q3), mean and extreme values.   

3.4. Data pre-processing  

3.4.1. Auxiliary data: spectral dataset 
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A collection of visible spectra of two seafloor cover types - P.oceanica and 
carbonate sand - consist of multiple measurement sets of P.oceanica made by means 
of RAMSES hyperspectral radiometer: 1-350 for 15th October (fragment on Tab. 
A.11), 1-445 for 14th October 2009 for P.oceanica; 1-106 for water without 
sediments, measured in aquarium tank, 1-27 for seawater with sediments measured 
in aquarium tank; 1-75 for carbonate sand (Tab. A.17). Measurements of 2009 has 
been used for the database and statistical analysis, because 2010 data pool was not 
available. All these data have been analysed and statistically tested. We measured 
mean, extreme values (min-max), median and statistical quartiles, in order to 
visualise distribution of the values at various spectral wavelengths. Carbonate sand 
was measured at wavelengths 402-750 nm, while P.oceanica - at the interval 318-
951 nm. We visualised the behaviour of different spectra on relevant graphs (Fig. 
4.3, A.39, A.37). The available collected data were tested for the spectral variability 
and separability under varying conditions of different environmental constituents 
(e.g. depth, water content, sun angle), in order to determine the potential that it may 
have on the approaches for further images processing and classification. Behaviour 
of the spectra of P.oceanica have been tested using datasets for various depths: 0.5, 
1.5 and 2.5 meters (Tab. A.9, Tab. A.710). The raw initial data of measurements of 
the spectral reflectance have been pre-processed and statistically analysed thereafter 
with graphs visualising mean spectra and Q1-Q3 interval, instead of the series of 
single observations which is illustrated, for example, on Figures A.17, 4.6, 4.1). 
These data have been measured using different step of the wavebands: some 
measurements were made with 3 nm interval, while others – using 4 and 1 nm step. 
Therefore, these data had to be interpolated (Fig.A.15) and standardized to one 
format, which is values of spectral reflectance with one nm step. For the 
interpolation we used script written on Python programming language that allowed 
receiving more detailed data by interpolating them from 3 and 4 nm step up to 2 nm 
(Fig.A.13). The interpolated data contained spectral measurements of the seagrass 
P.oceanica (measured at Agia Pelagia beach, Crete), sand (measured at Agia Pelagia 
beach, Crete), silt and default artificial spectrum of constant albedo at WASI 
(Fig.A.14).  
 
3.4.2. Modelling method: WASI water colour simulator 
To estimate and further analyze particularities of the P.oceanica remote sensing 
reflectance spectra over regions with different bathymetry (0.5, 1.5 and 2.5 meters 
column depth) we used WASI RTM software, which incorporates measurements of 
the seafloor reflectance and water column optical properties. We have chosen WASI 
RTM software among other aquatic RTM (2.3. Radiative Transfer Models....) due to 
its effective cognitive approach and because it is specifically adjusted and developed 
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for the purpose of aquatic optical modelling. Consistency of simple and logical GUI 
(Fig.5.1) let the researcher to easily define model parameters, which can be changed 
directly in the main window tools menu, and to choose between forward or inverse  
calculations. Besides other important advantages of WASU we would mention its 
learnability: available documentation, supporting materials, learning curve with hints 
and tips, as well as its user-friendly GUI, enabling to learn this product in a most 
effective and prompt way in a tight schedule of MSc studies. Technically, WASI 
need for system memory is minimised and the installation is simple and easy. 
To create sensor-specific reflectance spectra using WASI, spectral responses of 
MERIS, MODIS, CZCS and SeaWiFS sensors were applied for simulation of 
seagrass spectral signatures in full-resolution spectra.  
We also included measurements of other seagrass species - Thalassia seagrass 
(measured at Southern Chinese Sea by C.Yang and D.Yang) in order to compare 
spectral reflectance of different seagrasses under various environmental conditions. 
The most suitable wavebands for the seagrass monitoring usually lay between 400 
and 700 nm, which can be concluded by the visual examination, comparison and 
analysis of the different spectra of the seagrasses. Therefore, we have chosen the 
spectra 400-750 as the most appropriate range for further research experiment. The 
results of the linear interpolation (Fig.A.39) demonstrate values of the sand spectral 
reflectance with 1 nm interval covering the wavelength diapason of 400-750 nm.  
 
3.4.3. Implementation of statistical analysis 
The initial measured data were stored in raw-oriented format, so that re-formatting 
them into the column-based layout was done using “transpose” command in Open 
Office or Excel (Fig. A26). The next step included calculation of the median, mean, 
quartiles and other statistical values at every data set (see appendices, Fig.A.35, Tab. 
A.17). After the preliminary analysis, the measured data were visualised using 
Gnuplot program, which enables fine plotting of various datasets together: Fig 4.3, 
Fig.A.17, Fig.4.51. The most acceptable method of interpolation was Bézier curve 
(Fig. A.19, Fig. A.16), as it has trend-friendly graph better showing the general 
behaviour of the curves at different wavebands comparing to splines (see appendices 
for more results). Therefore, after several experiments with various interpolation 
techniques (Fig.A.30, Fig.A.20), we have chosen Bézier curves interpolation 
(Fig.A.19) which contains convex hulls made on its control points, and therefore is 
best suitable for our case: analysis of optical properties of seawater.  
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Figure 3.8: Work Flowchart Diagram illustrating algorithm of the Statistical 

Analysis applied towards the observation dataset (StarUML) 
To analyse average values of spectral reflectance of P.oceanica by means of the 
measured sets we calculated mean values for the total set of measurements 1 – 350 
(15th October): mean of min and max values, mean of average for each waveband, 
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mean for statistical quartiles for each wavelength and mean for median, respectively. 
The adjusted averages evaluate mean values, needed for statistical analysis of the 
datasets (Fig.A.21). The outcome of this calculations is shown in the Tab.A.6 and 
Tab.A.47 (appendices). As a result, we received mean values of spectral reflectance 
of P.oceanica for extreme, average (Fig.A.23, A.22), median and both quartiles, 
independent of the individual sets 1-350.  
We used several statistical methods (Fig.3.8) to asses data received as a result of 
measurements. The Student-t test, one of the most commonly used techniques for 
testing a hypothesis on the basis of a difference between sample means, is used for 
the data analysis. In our case the Student t-test demonstrates, if the variation between 
two analysed groups – values of spectral reflectance of seagrass P.oceanica and sand 
- is significant. Therefore, we use Student t-test to compare two sets of quantitative 
data of spectral reflectance of P.oceanica and sand, respectively, with samples 
collected independently of one another. The Student-t test can be performed 
knowing just the means, standard deviation, and number of data points. Therefore, 
we used the data (appendices) of means of spectral reflectance of the both cover 
types within data sets, their standard deviation, and the number of data points. 

3.5. Spectral simulation of aquatic objects 

The main aim of this part of research is to clarify if the bottom reflectance of the 
different seafloor types including patches of the seagrass P.oceanica meadows, silt 
and carbonate sand differ and can be clearly discriminated while mapping. A study 
is based on three seafloor types containing silt, carbonate sand and seagrass, as well 
as mixed types, where the spectral signatures were examined. WASI software 
(Fig.5.1) is used to simulate spectral reflectance and colour discrimination of water, 
affected by presence of P.oceanica and other factors, under various environmental 
conditions which influence its colour.  

 
Figure 3.9: Sea water physical properties, modelled by WASI 
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The data provided with the model was determined at freshwater of the Boddensee 
[44], yet the model was adjusted for the marine environment, so that its parameters 
(concentration of chlorophyll, concentration of small particles, yellow substance, 
etc) now perfectly simulate the Mediterranean water conditions. The remote sensing 
reflectance has been compared under the conditions of different water depths and 
cover fraction of the seafloor, in order to assess spectral signatures of the seagrass 
and carbonate sand as major seafloor types. WASI enables to use forward or inverse 
calculation for the spectrum types at a diapason of 350-800 nm with a 1nm spectral 
resolution. For the spectral analysis we applied forward calculations, i.e. a 
computing and plotting of series of spectra according to specified parameter settings, 
with exactly defined depths and cover fraction.  
The specific parameters have been chosen for the simulation of the environmental 
conditions where seagrass grow. The adaptations to life in salt sea water requires 
various physical and chemical parameters which include salinity, temperature of 17-
25°C, light requirements with 10-20 % on average, ranging from 4.4% minimal up 
to 29 % [91], so that the zenith angle is taken as 35- 45° and reflection factor 0.0201. 
P.oceanica. These values, simulating the environment of the Mediterranean Sea, are 
fixed (Tab.3.1) among WASI user-defined parameters. The calculations are done for 
the spectrum 350-800 nm, covering the most important part of the RS spectrum: 1) 
Blue-green 0.45 - 0.5 μm; 2) Green 0.5 - 0.6 μm; 3) Red 0.6 - 0.7 μm; 4) Red-NIR 
0.7 - 0.8 μm (Fig.3.9).  
 
3.5.1. Model parameters: depth and bottom cover fraction 
Although seagrass P.oceanica can be found until depth limits down to 40 m depth 
[52], the most preferable limits of its distribution in the Mediterranean Sea are 
shallow waters until 4 meters of depth.  
The increase of depths (zB) influences weakening of light and thus directly affects 
production of chlorophyll, because when light passes through the water and 
suspended particles, it is being largely modified through the absorption and 
scattering before it finally reaches plant canopy of the seagrass. Therefore, the most 
healthy and suitable areas for the seagrass grow are located at depths lesser than 4 
meters (Fig.4.5). 

3.6. Google Earth aerial imagery for the seagrass mapping 

Apart from the satellite imagery, the aerial photographs from the Google Earth 
provide a powerful tool for seagrass mapping, because they are important, reliable, 
detailed and up-to-date source of imagery. Perhaps, the clearest advantage of the 
Google Earth imagery is its high resolution (15 m in land areas and lower in the 
oceans). Obtained from the airborne platforms, Google Earth images have general 
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spatial resolution of several meters (though varying in different areas), which allows 
very detailed habitat and seafloor types discrimination, comparing with images 
acquired from the space-borne satellite platforms.  

 
Table 3.1: Model-specific parameters of water WASI adjusted to simulate environment of the 

Mediterranean Sea along Crete 
The spatial coverage of the Google imagery is lesser comparing to space-borne 
images, but this can be solved as well: while in general providing smaller area 
coverage than satellites images, the Google Earth images can be stitched to the 
composite maps of the acceptable spatial extent, using script written on Python 
(Fig.A.1) and Geospatial Data Abstraction Library (GDAL) technologies (Fig.A.2) 
for the Google grabbing process (Fig.A.52) which allows multiple overlapping of 
single images over the flight paths, and generates mosaics.  
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3.7. Image processing using Erdas Imagine 

The analysis of the imagery of Cretan coasts is based on the images classification 
and is aimed to investigate the distribution of the seagrass P.oceanica within the 
research area. In the image processing part of the research supervised classification 
has been applied to the aerial and satellite images. Seagrass meadows and other 
seafloor cover types were evaluated through a detailed examination of the imagery.  
Seagrass beds are clearly visible in color aerial Google Earth photographs (Fig.A.42, 
Fig.A.43), contrasting against slightly-yellow and brownish sand bottom. The 
seagrass areas are detected using different bands combinations, masked and studied 
for the estimation of the changes in the areas. The classification is based on the 
properties of the P.oceanica, such as brightness, colour, texture and structure of the 
seagrass mattes (Fig.3.10a). The raster-based mapping includes supervised 
classification with training sites of seagrasses (10-15 set areas) in different bands for 
each photograph by classification a series of polygons characteristic of each of the 
sea floor bottom types: sandy surface, seagrass bed for each species including 
P.oceanica (meadows), patchy seagrass bed and algae on rock, rocks, muddy 
surface, etc (Fig.3.10b).  

  
small-scaled (1:54,000) 

 
enlarged (1:10,000) 

Figure 3.10: Seafloor types of the Arina beach: P.oceanica, sand, rocks. Google Earth images 
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On the basis of the image processing and classification, applied to the northern coats 
of Crete, the marine bottom types between 10 m depth has been mapped, including 
the limit depths of the of the seagrass meadows provided on the basis of the 
available and collected field data. The classification has been completed using ENVI 
and Erdas Imagine software.  
 
 
 
 

4 Results 

4.1. Analysis of spectral signatures 

The distinguishing spectral signatures for various seafloor types (e.g. seagrass 
species, coral reefs, various types of sand, mud, other sediments, (Fig.4.3) exist in 
well-defined and narrow (10–20 nm) wavelength ranges.  

  
Figure 4.1: Statistical comparison of spectral reflectance of P.oceanica and carbonate sand. Selected 

measurements sets. Gnuplot graph 
 
The values of their spectral reflectance are accepted as constant. The results of 
spectral measurements enable to analyse, whether P.Oceanica is spectrally distinct 
from other sea floor types with changing environmental conditions, using the 
differences in their spectral signatures on the graphs in a WASI, the Water Colour 
Simulator software. The Water Colour Simulator WASI, a software tool for 
analysing and simulating the most common types of spectra [44], is highly suitable 
for the seagrass spectral analysis. There are several environmental characteristics, 
included in WASI interface (Fig.5.1), which influence the results of water spectral 
reflectance, e.g. different bottom depths, concentration of suspended particles in 
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water column, water temperature, sun angle, concentration of Gelbstoff (coloured 
dissolved organic matter), concentration of phytoplankton, aerosol scattering, 
exponent of backscattering by small particle [43]. The backward-scattering 
coefficient (bb), also included in WASI, is a fundamental optical property which 
plays a central role in the ocean-colour remote sensing, providing the remotely 
sensed optical signal, as well as suspended particle distributions, water clarity, and 
underwater visibility [79]. WASI enables simulation of backscattering of pure water, 
large and small particles. The values of all these parameters can be redacted and 
changed manually. However, the most important, major factors affecting the in-situ 
conditions are water depth (Fig.4.5) and cover fraction of the seafloor types: 
P.oceanica and carbonate sand.   

 
Figure 4.2: Optical properties of the sea water with sediments, measured in aquarium 

tank. Agia Pelagia district, Crete. Gnuplot 
 
Seagrass P.oceanica can be mapped using remotely acquired spectral imagery, if it 
has distinctive reflectance signatures at different depths. Therefore, the depths of the 
shelf area are the first variable condition for this research question. The depths 
values chosen for the current research are lesser than 3.5 meters, covering shelf 
zone, and providing the best environmental conditions for the seagrass P.oceanica: 
0.5, 2.0 and 3.5 meters with an interval of 1.5 meters.  
The 3.5 m depth limit was chosen based on the analysis of the separability of 
seagrass reflectance signatures, received by the means of previous in-situ 
measurements (year 2009) of the radiance and irradiance of water in Agia Pelagia 
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bay, which indicated that P.oceanica seagrass could be only well separated within 
depths of 3.5 m. A statistical analysis of WASI-simulated spectral reflectance has 
been used in order to answer the first research question: whether the P.oceanica 
spectra is spectrally distinct at varying environmental in-situ conditions, and if 
P.oceanica remains spectrally distinct with the increasing water column depth. To 
answer this research question, different seafloor cover types are discriminated using 
data of the broadband remote sensing.  

  
Figure 4.3: Multiplot showing spectral reflectance of the seawater with sediments, measured in aquarium 

tank, Agia Pelagia district, Crete. Gnuplot.  
Two complimentary graphs below show the results of the statistical analysis. 

 
The results enable to study reflectance properties of the seagrass and other seafloor 
types. Application of the optical radiative transfer model WASI is suggested to 
simulate remote sensing sensors (MODIS, ASTER, MERIS and SeaWiFS), (Fig.4.4, 
Fig.A.34). In order to focus on the factors of primary importance, other and less 
influencing factors are excluded, i.e. sun angle, concentration of the suspected 
particles in the water column, content of Gelbstoff, etc. For these factors default 
values of WASI are accepted. Under normal conditions by independent water colour 
sampling, values of the remote-sensing reflectance can vary by 12–24 per cent [133], 
and these variations in the radiometric determinations are mainly caused by the 
variety of the environmental factors.  
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Different factors influence colour and spectral reflectance of water, among which 
different bottom depths, concentration of suspended particles in water column, water 
temperature, sun angle, concentration of Gelbstoff (coloured dissolved organic 
matter), concentration of phytoplankton, aerosol scattering, exponent of 
backscattering by small particles, cloudiness, viewing geometry and wind speed 
(which is, however, not the major source of uncertainty). All these environmental 
components increase the absorption and scattering of light which, in its turn, results 
in a complex relationship between their concentrations and the radiance of water that 
finally influence its spectral reflectance.  
 

 
Figure 4.4: Simulated remote sensing reflectance of P.oceanica at various sensors, iterated over three 

depths: 0.5, 1.5 and 2.5 meters 
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4.2. Spectral discrimination of P.oceanica 

 

 
Figure 4.5: Remote sensing reflectance of P.oceanica at various depths simulated for broadband sensors. 
An analysis of the spectral reflectance of P.oceanica is done using the WASI 
simulations in order to determine, which wavebands can be still used to identify 
P.oceanica. The analysis of spectra shows that the appropriate wavebands for 
seagrass mapping lay between 500 and 600 nm and has also peaks at around 700 nm, 
ca between 680 and 710 nm (Fig.4.6). The highest values of the bottom reflectance 
are at spectra of 500-600 nm. The most appropriate depths at which the spectral 
signatures of the seagrass could still be discriminated are lesser than 2.5 meters.  
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The patches of white sandy bottoms of the seafloor, studied in the fieldwork in 
Ligaria beach, are much brighter than mattes of P.oceanica (Fig.A.11, A.10): 
seafloor types in Ligaria), which can be clearly seen at the graph comparing values 
of the spectral reflectance of the carbonate sand (Fig.A.39) and that of P.oceanica 
(Fig.A.37). The graph is received in excel spreadsheet using mean values of spectral 
reflectance of sand (Fig.4.10) and seagrass (Fig.A.39), respectively, which have 
been calculated from measurements of radiance and irradiance received in Agia 
Pelagia bay.  

  
Figure 4.6: Statistical analysis of the spectral reflectance of P.oceanica: min-max, average values (red 

bold points), Q1-Q3 areas (green vertical dashed) and measured values (dotted):  
multiplot of measurement sets 200-300. Gnuplot 
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Figure 4.7: Bottom albedo of carbonate sand and P.oceanica, Agia Pelagia 

 
 
 

4.2.1. Statistical analysis of the observational data and hypothesis testing 

The total amount of measured data was large and included following datasets made 
using hyperspectral radiometer Ramses: 350 measurement sets of P.oceanica 
reflectance for 14th Oct (Tab.A.28), 400 sets of P.oceanica reflectance for 15th Oct 
(Tab.A.11), 84 datasets for seawater reflectance with sediments, 105 datasets for 
seawater reflectance without sediments, 87 sets for spectral reflectance of carbonate 
sand. A statistical approach is evidently necessary for the proper processing of such 
amounts of data. The schematic view of the statistical approach used for the data 
processing can be seen on Fig.3.8. Statistical pre-processing of large sets of serial 
data enables to generalize data by using the most typical and predicted values of 
spectral reflectance for further calculations, and to get rid of the extreme values, 
noise and errors. The statistical calculators were mainly made by means of Gretle 
and SPSS. The Open Office was used for preliminary data view and pre-processing, 
and included following computations at each data set (for example, Fig.A.26) with 
summary outcome of mean, median, Q1 and Q3, standard deviation, min and max 
values (Tab.4.1, Tab.A.11). The statistical pre-processing and analysis were made to 
display the mean values of spectral reflectance, which were used for comparison 
with reflectance data of various seafloor cover types as well as seawater with and 
without sediment (e.g. Fig..A.16). In the statistical analysis of the raw observed data 
pool of the values of spectral reflectance (about 400 single measurements for 
P.oceanica, e.g. Tab.A.11), we summarize their complexity by concentrating on 
some simple numerical characteristics that they possess, i.e. parameters. Examples 
are the mean and variance of a probability distribution of measurements dataset (for 
example, Tab.A.5). We divided the total data pool into datasets of 25 measurements 
for more probability distribution of spectral reflectance describes the average value 
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of the random variable over all of its possible realizations (appendices). 
Conceptually, there are an infinite number of such realizations, therefore parameters 
are not known to us. However, in the statistical analysis of the observed data our 
goal is to estimate these parameters using a finite amount of information available to 
us: fieldwork observations. Thus, we collected a number of realizations (a sample of 
25 measurements for both sand and P.oceanica) and then estimate the statistical 
parameters (appendices).  
Finally we analysed about 400 datasets totally (example of carbonate sand on 
Fig.4.9, P.oceanica - on Fig.4.8) made during different days. Since the actual values 
that measured variables of spectral reflectance take on are not actually known before 
we observed them, they are random. Thus, we analysed the statistical distribution of 
the spectral reflectance values of seafloor cover types using common mathematical 
formulae, implemented in Gretl software (Tab.A.3). Their probability expresses 
uncertainty about the possible values of the spectral reflectance of P.oceanica and 
sand, respectively. There is a distinction to be made between variables whose values 
are not yet observed (random variables) and those whose values have been observed 
(observations). Each time we observe the outcome of a random variable of spectral 
reflectance, we obtain an observation, which is hence no longer random. We applied 
various methods of statistical analysis towards data pool (some examples of the 
selected tables are in the appendices: Tab.A.18, Tab.A.25, Tab.A.23, Tab.A.24, 
Tab.A.29), in order to analyse the distribution of values of spectral reflectance of 
P.oceanica. A probability distribution, a mathematical statement about the possible 
values that the random observations of spectral reflectance can take on, displays the 
relative frequency with which each possible value of spectral reflectance is 
observed. The least absolute deviations (LAD), a popular optimization technique, 
were used to show the main trend of the distribution of spectral reflectance values 
along the spectra (Tab.A.4). Non-linear logistic analysis is applied to specify and 
estimate a model of spectral distribution, in which the dependent variable (i.e. the 
value of spectral reflectance for each single observation) is not continuous, but 
discrete and independent for each case (Tab.A..12). 
As the observations were made in a repeated way, we also analysed the data pool 
using autocorrelation as well: Tab.A.19 and Tab.A.14 for P.oceanica and Tab.A.27 
for carbonate sand. The autocorrelation, a cross-correlation of an observed value 
with itself, made on two different days (14th and 15th October), shows the similarity 
between observations as a function of the time separation between them, as can be 
seen on Fig.A.32, Fig.A.31 and Fig.A.41, it is a useful tool for finding repeating 
patterns for a single value of observations, such as the presence of a periodic signal 
which has been buried under noise. The autocorrelation analysis has been performed 
using both SPSS and Gretl software (Fig.A.27). The method of least squares 
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minimizes the sum of the squares of the errors made in solving every single 
observation made. We tried different approaches of the least squares methods: 
Tab.A.15, Tab.A.18, WLS: Tab.A.26, OLS: Fig.A.15. 

 
Figure 4.8: Multiplot display of spectral reflectance of P.oceanica. Series 1-100. Shown midspread of the 
statistical quartiles Q1 and Q3 (vertical dashes) and mean value within the range (red bold dots). 
To focus on the relationship between a dependent variable (each single observation 
of the spectral reflectance) and independent variables (three various depths: 0.5, 1.5 
and 2.5 meters) we used the regression analysis, which enables modelling and 
analyzing values of the spectral reflectance at several depths: Tab.A.6, Tab.A.47, 
Tab.A.8. The summary of the values of spectral reflectance properties on various 
depths is presented on the Tab.A.10. The k-means cluster analysis has been used for 
partitioning observation sets into k clusters (Tab.A.19, Tab.A.20, Tab.A.21, 
Tab.A.212) in which each observation belongs to the cluster with the nearest mean. 
It enables to highlight the main areas of the location of values of spectral reflectance 
along the spectra. To estimate spectral density of optical measurements we used 
periodogram function (Tab.A.30), which corresponds to the general spectrum of the 
observations with representation of a variable quantity. Thus, the periodogram 
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(Fig.A.40) of the series of observation highlights so-called “dead spots” of low 
power between the frequencies we wish to exclude (can be seen clearly at the end of 
the graphs, e.g. Fig.A.27 ) and the frequencies we want to retain (the general profile 
that lies in the 450-850 nm, Fig.A.29, enlarged part of 500-660nm).  
The visualization of the data plotting was made by means of Gnuplot software, 
which enables fine drawing and advanced displaying of large amounts of serial data, 
ultimate control over graph properties, the simplicity of plotting and the ease of 
scripting (see Fig.4.8, appendices).  

 
Figure 4.9: Multiplot of spectral reflectance of carbonate sand. Series 1-75. Shown mid spread of the 

statistical quartiles Q1 and Q3 (vertical dashes) and mean value within the range (red bold dots).  
The graphs illustrating spectral signatures of various seafloor cover types display the 
mean values and areas of quartiles (Q1, Q3, Fig.A.38, and shaded areas on graph, 
Fig. 4.6, Fig.4.9), which cover most probable data distribution (spectral reflectance) 
for each spectral band. In x-axis displayed are the areas of 400 – 950 nm in spectra, 
where the measurements were done; the y-axis was adjusted for the better 
visualisation of the P.oceanica spectra: as its spectral values are mostly located in 
the lower part of the spectra (usually no more than 0.20 nm, except for borders), we 
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did not extend the y-scale up to 100 percent, in order to focus on the most necessary 
area of spectral values (Fig.4.9, Fig.4.3 and appendices). The mean values are 
highlighted using bold red points, as we used these values for plotting the final graph 
of P.oceanica spectra in Ligaria beach, Agia Pelagia.   

 
Figure 4.10: Multiplot display of spectral reflectance of P.oceanica. Measurement 
sets 126-150, 15th October. Bold red dots show the mean values within each dataset; 
vertical areas: quartiles Q1-Q2. 
A statistical hypothesis test has been applied for the making decision and controlling 
the wealth of the observational data of the hyperspectral measurements of the water 
reflectance. The received results are statistically significant if they are unlikely to 
have occurred by chance alone, according to a pre-determined threshold probability, 
the significance level. Therefore, we applied critical tests of significance to analyse 
the measured data according to their significant value.  
Answering the first research question, we suggest the following statement. If the 
Hypothesis Ho is true, then the spectral distinguishability of the seagrass P.oceanica 
from other seafloor types (carbonate sand) is not changing with varying in-situ 
conditions, Ho: μ1 =μ2 =μ3=...= μn.  The alternative Hypothesis Ha claims the 
opposite statement: “the spectral discernibility of the seagrass P.oceanica is 
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distinctly changing with varying in-situ conditions, i.e. increasing depth, Ho: 
μ≠μ2≠μ3≠ ... ≠μn“. Two statistical approaches have been used for confirmatory data 
analysis and hypothesis testing.  
 
 
ANOVA-testing  
We applied ANOVA (ANalysis Of Variance) testing for the analysis of the 
probability of the spectral reflectance of P.oceanica to be more or less spectrally 
distinct from other seafloor cover types with changing depth. W are checking the 
statement Hypothesis Ho, is true, which is “the spectral distinguishability of the 
seagrass P.oceanica from other seafloor types is not changing with varying in-situ 
conditions, Ho: μ1 =μ2 =μ3=...= μn.” which gives the following outcome. P(reject 
H0|H0 is valid)= P(X>c|p=)=.05 where c comes for critical values and 
p=probability. The result P=.05 is (Tab.A.9), hence, very small, which makes the 
statement of Hypothesis Ho highly unlikely (less than 1 in a 10 chance). The one-
way ANOVA highlighted a significant difference between data of spectral 
reflectance of P.oceanica and carbonate sand at different depths, and proved spectral 
discernibility of seagrass P.oceanica from carbonate sand (Fig.5.1), i.e. true is the 
opposite statement: Hypothesis Ha=“the spectral discernibility of the seagrass 
P.oceanica is distinctly changing, and seagrass can be spectrally discriminated from 
carbonate sand with varying in-situ conditions, i.e. increasing depth, Ho: μ≠μ2≠μ3≠ 
... ≠μn“.  
As a result of the statistical testing, we came to the following conclusion. The 
Hypothesis Ha is true, which claims that the spectral discernibility of the seagrass 
P.oceanica is distinctly changing and can be discriminated from other seafloor cover 
types (carbonate sand) with varying in-situ conditions, i.e. increasing depth, Ho: 
μ1≠μ2≠μ3≠...≠ μn, which positively answers first research question. Statistical 
results are illustrated with Error bars made using Excel’s vertical box and Whisker 
Charts (Box Plots). The graphs were plotted on the basis of the following statistical 
data calculated from the sampling measurements data: Tab.A.11, Tab.A.28 , Tab.A.5 



52 

 
Table 4.1: Statistical analysis of the measurements of spectral reflectance of P.oceanica (fragment) 
The abbreviations stand for the following values: Mean: Average of the data to be 
plotted, AVERAGE data St Dev: Standard deviation, STDEVdata Median: Median 
of the data, MEDIANdata Calculating interquartile ranges: Q1=First quartile, 
PERCENTILE(data*0.25) and Q3=Third quartile, PERCENTILE(data*0.75) 
Minimum: Minimum value, MINdata Maximum: Maximum value, MAXdata 25th 
Pct: Plotting value of first quartile = Q1 50th Pct: Plotting value of median = 
Median-Q1 75th Pct: Plotting value of third quartile = Median-Q3 Min: Lower error 
bar length=Q1 - Minimum Max: Upper error bar length=Maximum - Q3 The 
statistical analysis is displayed on the Graph 1.1 which compares the spread in sets 
of measurement data of spectral reflectances of under various environmental 
conditions (depth).  

4.2.2 Remote sensing application 

The in situ spectral reflectance data of P.oceanica and sand were used to model 
these seafloor cover types as the different sensors would percept them: MODIS, 
ASTER, MERIS, SeaWiFS and CZCS. These sensors vary in technical 
characteristics and therefore, have different spectral sensitivity, which we briefly 
illustrated in a small summary table (Tab.2.1) These models simulate spectral views 
of the chosen sensors, how these sensors will "see" seagrass (Fig.4.51) and sand as 
pixels, with accepted default atmosphere and water column effects (given by WASI 
software). In such a way we defined an empirical upper limit to the discriminative 
potential of these sensors. The analysis of the remote sensing reflectance simulated 
by these sensors shows that the measured spectra of seagrass P.oceanica (Fig.4.8, 
Fig.4.10) were statistically different at most of the spectral bands (Fig.A.35, 
Fig.A.36, ), with a 95% confidence level (p value < 0. 05).  The F values of the test 
(F=8.477 as on Tab.A.7) are greater than F critical value, which is 2.64 at 0.05 
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confidence level. This proves that broadband and hyperspectral sensors enable 
spectral discrimination of seagrass. Therefore, we answer the second research 
question positively, i.e. broadband and hyperspectral sensors (Fig.4.4 and Fig.A.34) 
provide enough radiometric information for spectral discrimination of seagrass and 
can therefore be used for P.oceanica mapping. 
 
4.3. GIS mapping of seagrass 
4.3.1. Data integration 
The integrated approach used in this research work has high potential as a means to 
monitor changes in seagrass landscape occurring in shallow waters over Crete area. 
It encompasses the integration of high resolution aerial color Google Earth 
photography, spaceborne satellite imagery, assessment of spectral signatures using 
WASI software, image processing by means of Erdas Imagine (Fig:A.50, Fig.A.49) 
and ArcGIS based mapping. The use of GIS for data incorporation (Fig.4.11), 
storage, analyses, visualizing and mapping enables to analyze environmental 
changes within seagrass landscapes based on data from various sources: aerial and 
satellite images, geographically referenced maps of Crete Island and results of 
images classification showing areas of seagrass distribution. The final mapping has 
been supported in ArcGIS through the data exporting, conversion and integration of 
various data in one GIS-project (Fig.4.11). Data collected during the fieldwork, 
imagery of the seagrass distribution are added into a GIS dataset for the assessment 
and spatial analysis. 

 
Figure 4.11: Google aerial images incorporated into the GIS project: fragment of ArcGIS layout 

4.3.2. Accuracy assessment 
We prepared the error confusion matrices (Fig.A.32 and Fig.A.33) using kappa 
statistics to assess and evaluate accuracy of the classification. The accuracy 
assessment has been done using Erdas Imaging function Classifier/Accuracy 
Assessment. In the Accuracy Assessment viewer we have chosen utility Edit in order 
to generate random points throughout the classified image, and then chosen the 
Create or add random points dialog. After the points were generated, we entered the 
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class values for the reference points from the supervised classification. In order to 
perform a proper accuracy assessment we needed about 300 points so that we 
defined the number of points for the selection. From the option parameters for points 
distribution we have chosen "stratified random" as better representing the variables. 
Then we evaluated the location of the points and determined their class value, which 
was done with ground truth points from Google Earth aerial photos for various data 
and seafloor imagery and with reference to the signature file, to find the numeric 
value that has been assigned to each class previously. Finally, to print the errors 
matrix, we selected Accuracy Assessment viewer again and chosen there Report/ 
Options with turned on Error Matrix, Kappa Statistics and Accuracy Total. The 
error matrix is just comparing reference points of various seafloor cover types to the 
classified points (i.e. seagrass, carbonate sand, various land cover types on the 
coast). The Kappa coefficient takes into account chance agreement and thus, shows 
the reduction in errors generated by a classification process compared with the errors 
which could be received by a completely random classification – in other words, it 
evaluates quality of the classification. The overall map accuracy by supervised 
classification is 72% (Fig.A.33), which means that 72% of the pixels are classified to 
the correctly chosen seafloor cover type in case, and in case of unsupervised 
classification we received result of 64% (Fig.A.32) which proves that supervised 
classification is preferable method for seagrass mapping. 
 
 

5 Discussion 

5.1. Remote sensing for seagrass mapping 

An approach of the seagrass spectral analysis, monitoring and mapping has been 
taken in this work, which integrates various research techniques and tools, 
combining remote sensing methods of spectral analysis of the seafloor cover types, 
and knowledge of the ecology of P.oceanica, with the aim to develop a method of 
seagrass spectral optical discrimination for the seagrass mapping based on the aerial 
imagery classification.  

In Chapter 1 we discussed main objective of this MSc thesis, which was to study 
possibilities of seagrass mapping, based on the application of the remote sensing 
measurement of the seawater optical properties using hyperspectral radiometers.  
The relationship between the optical properties (spectral reflectance) of the seafloor 
cover types and hydrological parameters of the environment has been studied in 
order to analyse limitations and capabilities of broadband and narrowband sensors 
under the conditions of altering environmental parameters. For the retrieval of 
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hydrological parameters - seawater radiance, irradiance and spectral reflectance of 
various seafloor cover types, - spectral optical field measurements were carried out 
in 2009 at the testing sites in Agia Pelagia, Heraklion and Ligaria beach, Crete 
Island using Trios-RAMSES spectroradiometers. 
Further in Chapter 1, 1.8 Research assumptions, we assume the constant values of 
the optical properties of the seawater, phytoplankton, total amount of suspended 
particles and solids, atmospheric conditions, as well as coloured dissolved organic 
matter (CDOM), which have been set up in modelling part of this work, during 
WASI simulations of various remote sensors. 
The second Chapter: Seagrass monitoring: overview of literature and research 
resources starts from the review of the available research resources and then 
discusses various RTM and reported experience of the remote sensing application 
towards seagrass mapping. In section 2.2 of Chapter 2, Measuring water optical 
properties: hyperspectral radiometers, the RAMSES-ACC-UV and RAMSES-ARC 
spectroradiometers of Trios-RAMSES Hyperspectral Sensor series are described.  
The instruments Trios-RAMSES have been used during the fieldwork 
measurements-2009 for the collection of the reflectance spectra. The RAMSES-
ACC-UV measures spectra in the wavelength domain between 280 nm and 500nm, 
the RAMSES-ARC, suitable for UV and visible spectra, covers diapason of 320-950 
nm with spectral accuracy of 0.3nm (better than 6%), typical saturation (at 200nm) 
of  1Wm-2nm-1sr-1 in 256 channels with a sampling interval of 3.3 nm/pixel and a 
field of view is 7 degrees. The spectral reflectance of the seawater with and without 
sediments was calculated by the ratio of the radiance and irradiance values.  
The reflectance spectra of P.oceanica show (Fig.4.6, A.27, A.28, A.35, A.36) a 
values maximum between 450 nm and 600 nm, first, because of the chlorophyll 
absorption peak at 465 and 665nm (Fig.A.4), secondly, because of the weakening of 
CDOM (or Gelbstoff) in the blue part of the VIS spectrum, as it most strongly 
absorbs short wavelength light in blue to ultraviolet range, and finally, because the 
absorption of the seawater increases in the red part of the VIS spectra. The decrease 
in spectral reflectance values of P.oceanica after 660 nm (Fig.A.28) is caused by the 
second absorption peak of phytoplankton. The magnitude of the reflectance 
maximum slightly varies at single variables between about 8 % and 12 % (as on 
Fig.A.27) and is probably related to the individual pigmentation and colour 
composition of single leaves, their structure and geometric orientation, which 
naturally causes variations in radiance values.  
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Figure 4.7: WASI water color spectral simulation modeller:  
Spectral reflectance of P.oceanica and 
silt at 0.5-4.0m 
The ecological variables, 
specific to the field 
environmental conditions, 
were factored into the WASI-
based simulation models. 
Through the WASI simulation 
process, imitating spectral 
properties of P.oceanica and 
carbonate sand for various 
broadband and narrowband 
sensors, models were created 
that accounted for not only 
atmospheric conditions (i.e. sun zenith angle), but also height of water column, thus 
approaching it to the Mediterranean conditions, and chemical content of the seawater 
(i.e. amount of suspended particles, Gelbstoff, etc), which results in models of 
optical properties of “seawater with sediments” and “seawater without sediments”. 

The in-situ field large-scale matte-level level of seafloor monitoring was then 
upscaled to airborne Google Earth aerial imagery interpretation, to provide a 
meadow-level view of seagrass landscapes. An attempt of the small-scale mapping is 
designed on an example of Landsat satellite imagery. However, in upscaling to this 
third, small-scale mapping level further environmental variables need to be 
considered: health conditions of the seagrass, presence of other underwater 
vegetation (e.g. other seagrass species), hydrological specifications (e.g. direction 
and speed of currents, amplitude of tidal waves, etc), season, date and times of the 
image taken. Therefore, we focused on the first two levels in the current work. These 
different levels have been individually considered in terms of the seagrass spectral 
discernibility for monitoring and mapping, from which the first two levels have been 
brought together, to provide a roundup of the achieved results and an overview of 
what still has to be done in P.oceanica seagrass mapping by future researchers (see 
Recommendations).  

In Chapter 3: Materials and Methods, describing data collection, a videographic 
approach tested in previous works, has been applied during the summer fieldwork, 
when we captured imagery and video footage of the seafloor on several routes of the 
boat in the Ligaria beach. 

The finding of Chapter 4: Results showed that the relationship between the spectral 
reflectance of various seafloor cover types was tied to depth, i.e. water column 
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height. Thus, the results of the in-situ fieldwork measurements revealed that spectral 
reflectance of P.oceanica undergo alterations at depths of 0.5, 2.0 and 3.5m 
(Fig.4.5). The analysis of the spectral signatures of the seagrass P.oceanica and sand 
clearly shows (Fig.A.17) that seagrass has spectral reflectance much lesser than that 
of a carbonate sand, in general not increasing values of 10% reflectance in spectra of 
500-600 nm, while sand has spectral reflectance approaching 33% in its highest 
values. These results indicate that seagrass P.oceanica can in general be detected and 
discriminated from other seafloor cover types with varying environmental 
conditions, i.e. water column height, by hyperspectral spectroradiometers (Trios-
RAMSES), which positively answers the first research question of this thesis (“Is 
P.oceanica spectrally distinct from carbonate sand with varying in-situ conditions 
?”). Further in Chapter 4: Results, studies of the broadband and narrowband sensors 
demonstrate that simulated spectra of the seagrass, made using WASI modeller, 
have the best results at CZCS scanner, especially devoted to the measurement of 
ocean color. The spectrum of P.oceanica reflectance, simulated for CZCS, covers 
the wavelength interval of 400-800 nm, and is distinctive for various depths. Other 
remote sensors (MODIS, SeaWiFS) may also be used for the seagrass mapping, 
because their technical characteristics enable to spectrally discriminate P.oceanica 
seagrass from other seafloor cover types (Fig.4.4), particularly carbonate sand as 
tested in the current work. Therefore, the second research question of this MSc 
thesis (“Do broadband and hyperspectral sensors provide enough radiometric 
information for spectral discrimination of seagrass, and therefore, can be used for 
mapping of P.oceanica ?”) is answered with “yes” and the most suitable sensor is the 
Coastal Zone Color Scanner CZCS. The graphs showing optical properties of 
seawater with and without sediments (Fig.4.3, A.17, 4.2) focused on spectral 
variability of the water with changed physical and chemical content. The alterations 
in the individual spectral signatures of single measurements (e.g. on Fig.4.8, 
Fig.A.35, Fig.4.10, Fig.A.37) reflect individual health properties of leaves: different 
nitrogen and chlorophyll content causing diverse colour pigmentation and light 
absorption, water content in leaves and plant physiological conditions, which vary 
across seagrass meadow, shoot morphology, etc. The differences in spectral 
reflectance values of the measurements taken on various days might have been 
caused by the impact of atmospheric conditions, such as solar radiation and sun 
illumination by different zenith angle. 
For further development of the remote sensing based monitoring and mapping of the 
seagrass and other seafloor cover types it is desirable to consider upscale mapping 
with concern to bathymetry. Studies of the substratum and underwater relief in a 
more detailed way, i.e. bathymetric properties of the testing sizes, gives information 
about seagrass landscape distribution, because changes in relief directly cause and 
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reinforce the colonisation process of P.oceanica meadows. Thus, the depression and 
valleys in relief in general stimulate increase of the sedimentation process. In turn, it 
enables accumulation of necessary nutrient for seagrass plant growth, increases 
resource allocation to the seagrass roots for better exploitation of pore-water 
nutrients by the P.oceanica shoots. While studying size of patterns and patchiness in 
seagrass landscapes, we would stress that anthropogenic caused disturbances (e.g. 
ocean trawling) should be considered as a main source P.oceanica landscapes 
fragmentation. 

5.2 Upscale mapping of the seagrass landscapes 

Although ocean pelagic landscapes have a high degree of spatial variance and less 
structurally complex, comparing to the terrestrial ones, the landscape-level 
phenomena have similar features, and there are accepted definitions of landscapes 
elements within the seagrass meadows [124]. In general, the structure of seagrass 
landscape is simpler than that of the terrestrial ecosystems in biodiversity and 
complexity; however, seagrass landscapes show variation in spatial patterns over 
different special scales (Fig.5.2). The complexity of the landscape of seagrass 
meadow is shown by the measure of patches in size and shape, expressed in ratio of 
patch perimeter to area. The fragmentation of the seagrass landscapes is expressed in 
contiguity displaying patch aggregation within meadows.  
The general principles of the hierarchy within the seagrass landscapes are based 
upon the quantitative analysis of the spatial patterns, consisted by components and 
separate elements. Thus, bunches of individual shoots construct patches, the first 
hierarchical level. Patches are arranged into discrete clumps of mattes (at a scale of 
centimetres to meters) which, in turn, make up beds with l-100m in diameter. 
Finally, seagrass beds are arranged into meadows that may extend over kilometre-
wide areas, historically defined as landscapes [124].  

 
Figure 4.18: Variations in spatial structure of the seagrass landscapes 

Besides spatial structure of the seagrass meadows, there are strong and complex 
patterns of depth zoning, specific to individual seagrass species, but such detailed 
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classification goes beyond the scope of the current study. Unique feature of seagrass 
meadows, most characteristic for shallow areas, is dynamics of their landscapes. 
Homogeneous, continuous seagrass meadows can reach in size up to 40 m2 
(Fig.3.10a), however they are often interrupted by gaps and channels of open spaces 
generated by the complex, disturbing sedimentation processes, turbulence and 
turbidity regime of waters and landscape dynamics, which form gaps and channels 
within meadows, making them “patchy-looking”, i.e. diversified by separate mattes 
(Fig.3.10 b). The traditional definition for gap in vegetation cover is “disturbance 
generated openings in either floral or faunal cover” [24].  
Formation and increase of these gaps within the mosaic of seagrass meadows is 
caused by different reasons. The most probable drivers for the process of gaps 
formation within seagrass meadows are removal of interior vegetation, differential 
growth of seagrass meadows and increased sedimentation. Thus, storms lead to 
severe deposition of sediments, burying parts of seagrass meadow, the same effect 
has movements and deposition of sediments during and after floods[9]. Increased 
nutrient sedimentation, especially phosphorus, were explored [63] as a potential 
mechanism for increasing patch dynamics and morphological plasticity within 
seagrass meadows. Finally, increasing the degree of fragmentation of the landscapes 
of P.oceanica meadows can be caused by the invasion of alien species, such as 
Cymodocea nodosa, Caulerpa prolifera, Caulerpa taxifolia. Invaders are in general 
strong colonizers comparing to native P.oceanica: they occupy much greater habitat 
space within the regressed meadows of stressed native seagrass [97]. However, on 
the northern coasts of Crete the only dominating seagrass species is P.oceanica. 
Morphological differences in scale of seagrass landscape formations, discussed 
above, cause need for the different-scale mapping. Therefore, the investigation of the 
seagrass meadows at different levels is performed using underwater videometric 
measurements, aerial and satellite imagery.  
 
6. Conclusion 

The goal of this MSc research was to explore the perspectives, advantages and 
limitations of the narrow-band and broadband sensors for the environmental 
mapping and monitoring of P.oceanica seagrass along the coasts of Crete Island. 
The research outcome demonstrated that the application of the remote sensing data 
from the broadband sensors is highly advantageous for the seagrass mapping, the 
spectral discrimination of P.oceanica from other seafloor cover types is possible at 
diverse and changing environmental conditions, and that P.oceanica is spectrally 
distinct from other seagrass species (Thalassia testudinum), Fig.2.6.  
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The RTM software is a powerful means for analyzing spectral signatures of various 
seafloor types and enabling simulations of data received from broadband and 
narrowband remote sensors. The example of application of WASI RTM, given in 
this work, is an achievement of the research insight towards the spectral properties 
of P.oceanica and other bottom cover types, enabling to discriminate them from 
each other with changing environmental conditions. The research shows that spectral 
signatures of P.oceanica are distinct at various depths.  

The methodology of the spectral discrimination of seafloor cover types is designed 
in the frame of this research and is based on the application of the remote sensing 
RTM techniques, data from broadband sensors, hyperspectral radiometers for 
measurements of optical properties of the seawater, categorical and continuous 
statistical analysis for the data processing and GIS raster based software for images 
visualization, classification and analysis. Technically, we used different software, 
adjusted for diverse research purposes, to manage, integrate and process data from 
various origin and resources, and finally to receive accurate research results.  

The marine coastal ecosystems are complex, constantly changing and developing. 
Using flexibility of GIS combined with RS methods and application of data from 
broadband sensors is therefore advantageous for the monitoring of coastal areas. 
Besides Mediterranean area, the methodology of the seagrass environmental studies 
can be applied towards other shelf areas with dominating seagrass landscapes.  

More than 50 % of the world population lives within one km of the coast, which 
results in continued anthropogenic pressure on the coastal regions. Therefore, 
management of coastal resources and shelf zone protection become increasingly 
important nowadays, and require large-scale monitoring and mapping of the shelf 
areas as a vital instrument for the environmental assessment.  

This research is a contribution to the development of the methodology of seagrass 
mapping with aim of the environmental monitoring, and a case study of P.oceanica 
seagrass, dominating in underwater ecosystems along the coasts of Crete Island. 

6. Recommendations 

To make further studies of P.oceanica more effective we would suggest the 
following recommendations to be considered by the future researchers: 
1. To extend the research area towards the eastern part of the Crete Island, in order 

to received more regular observations of the seagrass locations. 
2. To use different sources of imagery and thus, to increase the total collection of 

scenes covering the research area. 
3. To extend the temporal period of the imagery coverage, once the data are 

available. The current work only includes images covering short temporal period 
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(ca 10-year); further estimation of the dynamics of P.oceanica along the coasts 
of Crete would increase our understanding of the long-scale temporal variations 
of the seagrass distribution. 

4. To apply various classifications methods for the available imagery in order to 
compare the results received by means of various techniques 

5. To simulate various environmental conditions while modelling optical properties 
of different seafloor cover types. Not only the depths and the chemical content of 
the seawater should be considered, but also other factors determining the effect 
of the ecology and health of P. oceanica. 

6. To consider seafloor geomorphology among other factors determining seagrass 
distribution. If possible, to find out bathymetric data for the research area, and to 
overlay them with existing images and maps, in order to analyse correlation 
between spatial distribution of seagrass P. oceanica and underwater relief along 
Cretan coasts.  

7. In upscaling to the small-scale mapping level further environmental variables 
need to be considered: health conditions of the seagrass (usually, indicated by the 
number of leaves per shoot), presence of other underwater vegetation, hydrology 
(e.g. direction and speed of currents, amplitude of tides and waves), season, date 
and times of the image taken. 

8. Other RTM software may be tested and the modelling outcomes compared. 
9. Application of various open source GIS (ILWIS, GRASS) could be very useful 

for the validation of the cartographic results, assessment of accuracy and 
comparison of various classification methods.  

10. The analysis of the health indicators of the seagrass (such as number of leaves 
per shoot, biomass estimation within the single shot, etc) was not considered in 
the current work, as it would go beyond the scope of the MSc thesis. However, 
ecological investigations could be used for the assessment of the vulnerability of 
the seagrass meadows in various locations on Crete.  

11. A flexible combination of the multi-scale mapping and results of the fieldwork 
measurements with GPS-referenced underwater footage would enable more 
profound analysis of the coastal environment on Crete.  
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Appendices 

A.1 Capturing aerial imagery from the Google Earth: grabbing process 

 
Figure A.1: Capturing aerial imagery from the Google Earth: grabbing process 
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Figure A.2: Script command of FWTools2.4.7 enabling to reduce the size of the 

aerial images, from .tif to .ecw format. 
 

A.2 Illustrations of some concepts and principles of the remote sensing, relevant 
for this work 

 
Fig. A.3. Schematic illustration of the solar zenith angle and viewing zenith angle 
for observations from satellite-based instrument. Source: http://sacs.aeronomie.be/  
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Figure A.4. Absorbance spectra of free chlorophyll a (green) and b (red) in a solvent. 
The spectra of chlorophyll molecules are slightly modified in vivo depending on 

specific pigment-protein interactions. Source: Wikipedia.org.  
 
 

 
Figure A.5: Example of sonar beam acoustic systems used for mapping seagrasses 
habitat boundaries. Source: Reef Research.  
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Figure A.6: Example of wave backscattering from the vegetation. Source: Yoshio 
Inoue, http://cse.niaes.affrc.go.jp/miwa/esid/highlight/microwave-backscatter.html  

 

 
Figure A.7: BRDF is a ratio of reflected radiance along ωo to the irradiance from 
direction ωi, all parameterized by azimuth angle φ and zenith angle θ. 
Source: Wikipedia.org 
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A.3. Instrumental adjustment and tuning  (Trios-RAMSES setup) 

 
Table A.1: Attributes of the Trios-RAMSES hyperspectral radiometer during 

measurement sets. Selected examples (14. X, set 1 and 15.X, set 4). 
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Table A.2: Attributes of the Trios-RAMSES hyperspectral radiometer during 

measurement sets. Selected examples (15. X, set 1 and 14.X, set 4). 
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A.4. Types of seagrass structural patterns, Ligaria beach, Crete 

 
Figure A.8: Types of seagrass structural patterns, Ligaria beach, Crete 

 

 

 
Figure A.9: Locations of the video measurements and GPS tracklogs, Ligaria 
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A.5. Results of videographic measurements: seafloor types on Crete Island 

  
Figure A.10: Ligaria beach, Crete: seafloor types 

 

  
Figure A.11: Various seafloor types; Ligaria beach, Crete 
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Figure A.12: Measurement underwater equipment 
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A.6. Data pre-processing 

 
Figure A.13: Script written on Python, for the interpolation raw data of the Trios-

RAMSES measurements 
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Figure A.14: Fragment of Bottom.R file: values of spectral measurements of the 
seagrasses (various species), sand, silt and artificial spectrum of constant albedo 
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Figure A.15: Interpolation of the spectral measurements by means of Open Office 
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A.7. Data processing and statistical evaluation: measurements of the seafloor 
optical properties. 

Table A.3: Basic mathematical formulae used for statistical analysis of the 
measurement set of the spectral reflectance. 

 
 
 

 
Figure A.16: Radiance of the seawater with sediments. Measured in 
aquarium tank. Bezier Interpolation. Gnuplot 
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Figure A.17. Multiplot graph showing spectral reflectance of the seawater without sediments, 
measured in aquarium tank, Agia Pelagia district, Crete. Gnuplot. Two complimentary graphs 
below show the results of the statistical analysis 

 
Figure A.18: Irradiance of the seawater, measured in aquarium tank. Smooth 

Splines interpolation. Visualization in Gnuplot 
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Table A.4: Robust estimation of the seawater radiance (measured in aquarium tank, 
Heraklion): results of the least absolute deviation (LAD), Series:V16. Gretl 

 
Model 6: LAD, using observations 1:01–8:23 (T = 191). Dependent variable: v16 

 
 Coefficient  Std. Error  t-ratio  p-value  
[1ex] const  0.738911  0.0862011  8.5719  0.0000  
v1  -0.000775186  0.000114010  -6.7993  0.0000  

 
Median depend. var  0.227857  S.D. dependent var  0.205031  
Sum absolute resid  30.22342  Sum squared resid  8.059632  
Log-likelihood  28.74727  Akaike criterion  -53.49454  
Schwarz criterion  -46.99000  Hannan–Quinn  -50.85990  

 
 

 
Figure A.19: Irradiance of the seawater, measured in aquarium tank. Smooth Bezier 

interpolation. Visualization in Gnuplot 
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Figure A.20: Spectral reflectance of the seawater with sediments. Bezier 
interpolation. Mean value is shown by the vertical impulses linestyle. Gnuplot 

 
 

 
Figure A.21: Plot illustrating polynomial trend for spectral reflectance of seawater 

without sediments (Ligaria Beach), variable V15. Gretl modelling visualization 
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Figure A.22: Plot illustrating polynomial trend for spectral reflectance of seawater 
with sediments (Ligaria Beach), variable V15. Gretl modelling visualization 
 

  
Figure A.23: Exponential moving average of spectral reflectance of seawater with 
sediments (Ligaria Beach), variable V15. Gretl modelling visualization 
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Figure A.24: Frequency normality test against gamma distribution: radiance of the 
seawater, measured in aquarium tank. Visualization in Gretl 

 
 
Figure A.25. Frequency normality test against normal distribution: radiance of the 
seawater, measured in aquarium tank. Visualization in Gretl 
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A.7.1 Data processing and statistical evaluation: P.oceanica 

 
Figure A.26: Values of spectral reflectance of seagrass P.oceanica (fragment) 

 
 

 
Figure A.27: Spectral reflectance of P.oceanica.  

Measurement series 401-420. Gnuplot 
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Figure A.28: Statistical analysis of the measurement data: spectral reflectance of the 
P.oceanica. Visualisation of the interquartile ranging. Example of data set 401-420. 
Shown midspread of statistical quartiles Q1 and Q3, min and max values within the 
range. Gnuplot 

 
Figure A.29: Enlarged fragment of the statistical analysis of the measurement data. 
Example of data set 401-420. Visualisation of the inter-quartile ranging and plotted 
together with measurement data. Gnuplot 
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Table A.5. Results of the statistical analysis of spectral reflectance of P.oceanica, 

with average values (for sets 1 - 350). Generalisation up to step 20 nm 
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Table A.6: Model summary of the regression analysis: curve estimation and 
ANOVA table tested for single observations within one measurement set: spectral 
reflectance of P.oceanica. SPSS 

 
The independent variable is wavelength.  
 
Table A.7: ANOVA table: exponential curve estimation in the regression analysis, 
tested for single observations within one measurement set: spectral reflectance of 
P.oceanica. SPSS 

 
The independent variable is wavelength.  
 
 
Table A.8: Coefficients of the regression analysis (exponential curve estimation) of 
the spectral reflectance of P.oceanica. SPSS 
 

 
 
The underlying process assumed is independence (white noise). 
Based on the asymptotic chi-square approximation.  
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Figure A.30: Fragment of the statistical analysis of the P.oceanica reflectance. 
Example of data set 401-420. Visualisation of the measured data together with 
statistical values: inter-quartile ranging, medians, means. Gnuplot 
 
 
 
 

 
Table A.9: Results of the ANOVA one-way analysis: results of the single factor 
(depth) testing of the radiance of P.oceanica at various depths: 0.5, 1.5 and 2.5 
meters. SPSS 
 
P more than .05, which means that there is a significant difference in radiance of 
P.oceanica at three different depth (0.5, 1.5 and 2.5).  
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Table A.10. Summary of the ANOVA one-way analysis: results of the single factor 
(depth) testing of the radiance of P.oceanica at various depths: 0.5, 1.5 and 2.5 
meters. SPSS 
 
P>0.05, which means that there is a significant difference in radiance of P.oceanica 
at three different depth (0.5, 1.5 and 2.5).  
 
 
 
Table A.11: Results of the statistical analysis of spectral reflectance of P.oceanica, 
sets 1-350). Wavelength step: 3 nm. Measured on Agia Pelagia beach, 15th October 
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Table A.12: Nonlinear model: results of the logistic analysis of the seawater 
radiance with sediments (15.X.), Series:V16. Gretl 

 
Model 2: Logistic, using observations 1:01–8:23 (T = 191) 

Dependent variable: v16, ŷ = 1⁄(1+e-X ) 
 

 Coefficient  Std. Error  t-ratio  p-value  
[1ex] const  1.58324  0.407258  3.8876  0.0001  
v1  -0.00512630  0.000615503  -8.3286  0.0000  

Statistics based on the transformed data:  
 

Sum squared resid  462.8481  S.E. of regression  1.564906  
R2  0.268481  Adjusted R2  0.264610  
F(1,189)  69.36634  P-value(F)  1.63e–14  
Log-likelihood  -355.5467  Akaike criterion  715.0935  
Schwarz criterion  721.5980  Hannan–Quinn  717.7281  
  0.980662  Durbin–Watson  0.020351  

Statistics based on the original data:  
 
Mean dependent var  0.262542  S.D. dependent var  0.205031  
Sum squared resid  10.80565  S.E. of regression  0.239108  
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Table A.13: Results of the partial autocorrelation analysis of the measurement set 1-
16 of the spectral reflectance of P.oceanica (15.X.), Series:V3. SPSS 
 
 

 
Figure A.31: Partial correlation analysis of the measurement set 1-16 of the spectral 

reflectance of P.oceanica (15.X.). Visualization in SPSS 
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Table A.14: Results of the autocorrelation analysis of the measurement set 1-16 of 
the spectral reflectance of P.oceanica (15.X.), Series: V3. SPSS.  
The underlying process assumed is independence (white noise). 
Based on the asymptotic chi-square approximation.  

 

 
Figure A.32: Autocorrelation analysis of the measurement set 1-16 of the spectral 
reflectance of P.oceanica (15.X.). Visualization in SPSS 
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Table A.15: Ordinary Least Squares: results of the OLS analysis of the measurement 
set 326-350 of the spectral reflectance of P.oceanica (15.X.). Gretl. Model 2: OLS, 

using observations 326–350. Dependent variable: v20 
 

 Coefficient  Std. Error  t-ratio  p-value  
[1ex] const  0.414957  0.0299342  13.8623  0.0000  
v1  -0.000441803  4.52185e–005  -9.7704  0.0000  

 
Mean dependent var  0.134005  S.D. dependent var  0.140653  
Sum squared resid  2.497416  S.E. of regression  0.114951  
R2  0.335585  Adjusted R2  0.332070  
F(1,189)  95.46076  P-value(F)  1.65e–18  
Log-likelihood  143.1678  Akaike criterion  -282.3357  
Schwarz criterion  -275.8311  Hannan–Quinn  -279.7010  
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Figure A.33: Spectral reflectance of the seawater without sediments. Interpolation 
graph. Gnuplot display 
 

 
Figure A.34: WASI-simulated remote sensing reflectance of P.oceanica at various 
sensors 
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Table A.16: Summary statistics of measurements set: 301-325.  
Example of selected variables 12-22. Gretl. Summary Statistics, using the 
observations 301–325 
 

Variable  Mean  Median  Minimum  Maximum  
[1ex] v12  0.221475  0.139032  0.00101700  0.780730  
v13  0.217074  0.139285  0.00108700  0.754430  
v14  0.167442  0.110878  0.000348000  0.575242 
v15  0.155908  0.111737  0.0125650  0.483602  
v16  0.158329  0.111647  0.0101590  0.498096 
v17  0.167575  0.111349  0.000836000  0.579004  
v18  0.125868  0.0863670  0.000662000  0.417701  
v19  0.179261  0.117898  0.000935000  0.612021  
v20  0.141302  0.0932400  0.000714000  0.478343  
v21  0.228822  0.143105  0.00149500  0.800529  
v22  0.174892  0.114994  0.000343000  0.592146  

 
Variable  Std. Dev.  Coef.Var.  Skewness  Ex. kurtosis  
[1ex] v12  0.246134  1.11134  0.930598  -0.393370  
v13  0.239324  1.10250  0.910879  -0.440017  
v14  0.181797  1.08573  0.884089  -0.466508 
v15  0.151811  0.973718  0.796534  -0.646866  
v16  0.155834  0.984241  0.832126  -0.587890  
v17  0.182383  1.08837  0.901570  -0.435120  
v18  0.134253  1.06662  0.820573  -0.603688  
v19  0.195217  1.08901  0.873615  -0.515800  
v20  0.152787  1.08128  0.863700  -0.525357  
v21  0.252696  1.10434  0.924172  -0.408867  
v22  0.189797  1.08523  0.858809  -0.546215  
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Table A.17: Summary of the table with values of the spectral reflectance of 
P.oceanica measured on three different depths, R. 
 
From: DepthData <- read.table(file="Three-Depths.dat", sep="", header=T); 
summary(DepthData). 
 
 

 
Figure A.35: Spectral reflectance of P.oceanica. Measurement series 25-50.  

Gnuplot display 
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Figure A.36: Remote sensing reflectance of P.oceanica. Series 1-25.  
Shown midspread of the statistical quartiles Q1 and Q3 (vertical dashes) and mean 
value within the range. Gnuplot 
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Table A.18: Two-Stage Least Squares: results of the TSLS analysis of the 
measurement set 1-191 of the spectral reflectance of P.oceanica (15.X.). Gretl 
Model 1: TSLS, using observations 1–191.  
Dependent variable: const Instrumented: v17 Instruments: v12 
 

 Coefficient  Std. Error  z  p-value  
[1ex] v17  6.88502  0.527503  13.0521  0.0000  

 
Mean dependent var  1.000000  S.D. dependent var  0.000000  
Sum squared resid  97.51535  S.E. of regression  0.716407  
Log-likelihood  -237.5799  Akaike criterion  477.1598  
Schwarz criterion  480.4121  Hannan–Quinn  478.4771  

Hausman test – Null hypothesis: OLS estimates are consistent  

Asymptotic test statistic: χ2(1) = 13.2834 with p-value = 0.000267768 
Weak instrument test – First-stage F(1,190) = 16670.2 
 
 
Table A.19: Initial Cluster Centers: results of the K-means analysis of the 
measurement set 201-236 of the spectral reflectance of P.oceanica (15.X.). SPSS 
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Table A.20: Iteration History(a): results of the K-means analysis of the measurement 
set 201-236 of the spectral reflectance of P.oceanica (15.X.). SPSS 

 
 
Convergence achieved due to no or small change in cluster centres. The maximum 
absolute coordinate change for any centre is .000. The current iteration is 4. The 
minimum distance between initial centres is 1.435.  
 
Table A.21: Number of Cases in each Cluster: results of the K-means analysis of the 
measurement set 201-236 of the spectral reflectance of P.oceanica (15.X.). SPSS 

 
 
 
Table A.22: Final Cluster Centers: results of the K-means analysis of the 
measurement set 201-236 of the spectral reflectance of P.oceanica (15.X.). SPSS 
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Table A.23: Results of the tobit analysis with censored dependent variable (2) from 

the selected dataset Series 151-175 of the s. reflectance of P.oceanica. Gretl 
Model 2: Tobit, using observations 1:01–8:23 (T = 191) 
Dependent variable: v12 
 

 Coefficient  Std. Error  z  p-value  
[1ex] const  -0.00413795  0.0502867  -0.0823  0.9344  
v2  0.890117  0.957730  0.9294  0.3527  
  

 
 

Mean dependent var  0.035372  S.D. dependent var  0.053185  
Censored obs  1  sigma  0.050920  
Log-likelihood  295.1357  Akaike criterion  -584.2715  
Schwarz criterion  -574.5147  Hannan–Quinn  -580.3195  
  -0.032865  Durbin–Watson  2.065699  
  

Test for normality of residual – Null hypothesis: error is normally distributed 

Test statistic: χ2(2) = 190.404 with p-value = 4.51226e-042 
  

  
Table A.24: Results of the Prais-Winsten estimation applied towards variables 15 
from the selected dataset 151-175 of the spectral reflectance of P.oceanica. Gretl 

Model 3: Prais–Winsten, using observations 1:01–8:23 (T = 191) Dependent 
variable: v12  = -0.0343656 

 
 Coefficient  Std. Error  t-ratio  p-value  
[1ex] const  -0.00498439  0.00977709  -0.5098  0.6108  
v2  0.912742  0.205904  4.4328  0.0000  
  

Statistics based on the rho-differenced data:  
 

Mean dependent var  0.035372  S.D. dependent var  0.053185  
Sum squared resid  0.490951  S.E. of regression  0.050967  
R2  0.086511  Adjusted R2  0.081678  
F(1,189)  19.67163  P-value(F)  0.000016  
  -0.001888  Durbin–Watson  2.003741  
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Figure A.37: Multiplot of spectral reflectance of P.oceanica. Series 151-200. Shown 

midspread of the statistical quartiles Q1 and Q3 (vertical dashes) and mean value 
within the range (red bold dots). Gnuplot visualization 

 
Table A.25: Results of the Principal Components Analysis: measurement variables 

1-7 from the selected dataset 301-325 of the spectral reflectance of P.oceanica 
(15.X.). Gretl 

Eigenanalysis of the Correlation Matrix 
 

 
Eigenvectors (component loadings) 

 



103 

 
 
 
 

Table A.26: Results of the Weighted Least Squares Analysis applied towards 
variables 12-20 from the selected dataset 301-325 of the spectral reflectance of 

P.oceanica. Gretl 
Model 1: WLS, using observations 1–95. Dependent variable: v20 

Variable used as weight: v12 
 

 Coefficient  Std. Error  t-ratio  p-value  
[1ex] const  0.239525  0.0771338  3.1053  0.0025  
v1  0.000120809  0.000147131  0.8211  0.4137  
  

Statistics based on the weighted data:  
 

Sum squared resid  0.290924  S.E. of regression  0.055930  
R2  0.007197  Adjusted R2  -0.003478  
F(1,93)  0.674200  P-value(F)  0.413691  
Log-likelihood  140.1579  Akaike criterion  -276.3158  
Schwarz criterion  -271.2081  Hannan–Quinn  -274.2519  
  

Statistics based on the original data:  
 

Mean dependent var  0.136154  S.D. dependent var  0.149193  
Sum squared resid  5.689669  S.E. of regression  0.247344  
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A.7.2 Data processing and statistical evaluation: carbonate sand 
 
 
Table A.27: Results of the autocorrelation analysis of the measurement set 51-75 of 
the spectral reflectance of carbonate sand, Gretl 

 
 

 
Figure A.38: Normal Q-Q plot: estimated versus observed values of the 

measurement of carbonate sand, variable 27. Series 51-75.  Gretl modelling 
visualization 

 
 
 



105 

Table A.28: Results of the statistical analysis of spectral reflectance of carbonate 
sand, with average values (for sets 1-3). Wavelength step: 3 nm. Measured on Agia 

Pelagia beach, 14th October 
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Figure A.39: Spectral reflectance of carbonate sand on A.Pelagia beach. Results of 
single measurement set made by spectroradiometer Trios-RAMSES. Gnuplot 

 
Table A.29: Results of the Quantile estimates: measurements 51-75 of the spectral 

reflectance of carbonate sand, Gretl 
Model 2: Quantile estimates, using observations 1:01–5:09 (T = 105) 
Dependent variable: v27 τ = 0.5 Asymptotic standard errors assuming IID errors 
 

***  Coefficient  Std. Error  t-ratio  p-value  
[1ex] const  0.837827  0.0386417  21.6820  0.0000  
v1  -0.00111120  6.60949e–005  -16.8122  0.0000  

 
Median depend. var  0.191024  S.D. dependent var  0.135439  
Sum absolute resid  8.625039  Sum squared resid  1.370360  
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Log-likelihood  84.64508  Akaike criterion  -165.2902  
Schwarz criterion  -159.9822  Hannan–Quinn  -163.1393  

 
 
Table A.30: Results of the periodogram for v30 of the measurement set 51-75 of the 
spectral reflectance of carbonate sand, Gretl 
 
 
 

 
 
Number of observations = 105  
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Figure A.40: Plot illustrating periodogram for v30 from measurements of carbonate 

sand, series 51-75. Gretl modelling visualization 

 
Figure A.41: Graph of the autocorrelation analysis of the measurements of carbonate 

sand. Series 51-75, variable 27. Gretl visualization 
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A.8. Satellite and aerial images covering research area of Crete island: selected 
examples 

 

 
Figure A.42: Locations of selected measurements, visualization on Google Earth 
 

 
Figure A.43: Random mosaic of selected aerial Google Earth images 
 



112 

 
Table A.31: Available broadband Landsat satellite images covering the research area 

of Crete Island 
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Figure A.44: Landsat imagery, Crete Island. Previews 
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A.9. Analysis and classification of the satellite and aerial images 

 

 
Figure A.45: The point querying shows the selected points and their coordinates 
within the area of seagrass meadow (green). OpenEV 
 

 
Figure A.46: Logarithmic Enhancment to Raster, applied to the aerial Google Earth 
image: the seagrass meadow can now be easily seen as a bright spot of purple color. 
OpenEV 
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Figure A.47. Raster properties dialog: visualisation and spatial info about the image 
(projection UTM, zone 35, datum WGS-84, etc.) OpenEV. 
 

 
 
Figure A.48: Color composite image composed of 3 images of Cretan shelf, Google 
Earth. ILWIS.  
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Figure A.49: Results of the unsupervised classification  of the seafloor cover types 
and land structure, Agia Pelagia; raster layer read into the ArcGIS project 

 
Figure A.50: Results of the image classification in Erdas Imagine:  seagrass 

distribution in Bali area, Crete. 
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A.10. Accuracy assessment 
Table A-32. Confusion matrix-2, between the classified Google Earth aerial image 
and fieldwork data, for Fig.A.43 

 
 
Overall Kappa (k) accuracy is calculated using the formula: ∑A/N, where A is 
number of correctly mapped points (172) and N is the total number of points (270). 
Thus, according to the results we received overall accuracy= 172/270= 0.6370, 
which is 64%. Overall k accuracy for unsupervised classification =64%. 
Users accuracy (Reliability of classes) varies between 0.22 and 0.94 depending on 
class, which proves that supervised classification (see next table: Tab.A.33) has 
better results for seagrass mapping than the unsupervised classification.  
Producer accuracy lies in interval between 0.52-0.77 according to class as well. 
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Table A-32. Confusion matrix-1, between the classified Google Earth aerial image 
and fieldwork data, for Fig.A.44 

 
Overall accuracy is calculated using the formula:  ∑A/N, where A is number of 
correctly mapped points (226) and N is the total number of points (285). Thus, 
according to the results we received overall accuracy= 226/285= 0.79298, which is 
72%.  Overall accuracy=72%. User’s accuracy (Reliability of classes) varies 
between 0.59 and 0.88. Producer accuracy lies in interval between 0.66-0.87.  
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A.11. Research general workflow. 

 
 

 
 

Figure A.51: General methodological research approach. Inkscape 
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A.12. Some snapshots of the working process 

 
Figure A.52: Google Earth aerial imagery grabbing, Heraklion, the University of 

Crete 
 

 
Figure A.53: Adjusting waterproof Olympus cameras for underwater seafloor 

videometric measurements.  

Dr. Petros Lymberakis (left) and Dr. Bert Toxopeus (right) 
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Figure A.54: SCUBA gear diving equipment necessary for seagrass monitoring. 

Source: Aquanauts.com. 

 

 
Figure A.55: ...and it’s me, learning diving skills on Ligaria beach, Crete, 2010. On 
the photo: left. 
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Figure A.56: Sticking the marker into the seafloor bottom in mattte of P.oceanica for 

depth measurements 

 
Figure A.57: Placing the 0.5m circle and depth marker in the mattte of P.oceanica 

for photo capture 

 
Figure A.58. Monitoring different seafloor cover types: matte of P.oceanica vs 

carbonate sand. Ligaria beach. 
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