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Abstract

The scagrasses, a unique group of aquatic plants, create complex, extremely
diversified and productive ecological systems in the littoral coastal zones. The only
flowering plant in the world that is able to live completely submerged, scagrasses
play vital role in the marine ecosystems of the World Ocean. Seagrasses are the most
important component in the environmental food chain of the coastal ecosystems,
being a vital food source for various marine species (e.g. fish, dugongs, turtles,
swans), and a producer of organic matter, which is the very basis of the food web.
The P.oceanica seagrass is an endemic for the Mediterranean region, and a main
species in the marine coastal environment of Greece. Meadows of P.oceanica are
subjected to the human activities, because they occur in coastal areas, where they are
affected both by anthropogenic and by climatic and environmental factors.
Nowadays P.oceanica is in the alarming state of regression, because of the
deterioration of the environment in the Mediterranecan Sea. Due to these reasons,
P.oceanica is a protected species since 1988 in some European countries (France).
Monitoring P.oceanica is therefore an important contribution to the saving and
protecting the environment of Mediterranean region.

The current MSc thesis focuses on the monitoring of seagrass P.oceanica along the
northern coasts of Crete Island, Greece, and investigates the application of the
remote sensing techniques for the seagrass mapping.

This research was articulated in two parts, where the first one involves an ecological
approach to the seagrass distribution in various regions around the globe and the
experience of seagrass monitoring nowadays. The second part of this work has
technical character and investigates the application of the remote sensing techniques
towards seagrass mapping. It, furthermore, focuses on the optical properties of the P.
oceanica and other seafloor cover types, and studies distinguishability of various
seafloor cover types. Studies of the optical characteristics of separate seafloor cover
types were made with purpose to clarify, whether their spectral properties change
with varying environmental conditions.

Special attention has been drawn on the role of environmental factors on the
distribution of P.oceanica along the coasts of Crete, and in particular, how the
optical properties of the seafloor cover types, i.e. spectral reflectance, are being
changed under varying external conditions, e.g. water column, amount of suspended
particles and sediments in the seawater, and water temperature. For this purpose we
studied differences in the spectral reflectance of P.oceanica and other bottom cover
types at three distinct depths. The diverse spectral values entail variations in optical
properties of the seafloor cover types at changing environmental conditions. We
applied WASI simulation techniques for the modelling of the optical parameters of




various seafloor cover types by various spaceborne imaging spectrometers (MERIS,
SeaWiFS, CZCS and MODIS), in order to understand their suitability and possible
limitations for the seagrass mapping.

Fieldwork research sites were presented by separate locations on the northern coast
of Crete region (Ligaria, Agia Pelagia, Xerocampos). The additional measurements
of the reflectance spectra of the seawater with and without sediments have been
made in aquarium tank in 2009 by means of Trios-RAMSES spectroradiometer.
Parallel to the collection of spectra signatures, we captured the imagery for the
seagrass mapping, which consists of the aerial images from the Google Earth
website and the satellite Landsat TM and Landsat ETM+ scenes.




Document Outline: Structure of the MSc Thesis

Chapter 1 is an introductory section. It describes general background of the research
problem, outlines the need and actuality of the problem (including the environmental
vulnerability of the seagrasses), and highlights limitations and possibilities of the
remote sensing application for the current work. In this chapter we also set up
research objectives, put research questions for hypothesis testing and sketch research
approach for the proposed work.

In Chapter 2 we review the existing literature and reported research experience on
the similar problem: studies of spectral separability of various seafloor types,
limitations and advantages of the remote sensing techniques applied for seagrass
mapping seagrass ecology and mapping seagrass environment. We considered not
only the Mediterranean environment, but also papers from Australian and Chinese
scientists, because seagrass monitoring is most actively developed in the southern
regions of our planet. The review of the existing RTM algorithms for the retrieval of
the optical parameters, as well as description of various tools for the spectrometric
measurements - are given in the same Chapter as well. More close attention has been
given to the imaging hyperspectral radiometer Trios RAMSES, used for the data
collection.

Chapter 3: Materials and methods deals with the methods and materials used in
current work. We start our discussion from the fieldwork area location and describe
tools and instruments used during the fieldwork, as well as sampling design.
Procedures of the data pre-processing and capturing imagery from the Google Earth
are also presented in the same chapter.

Chapter 4: Results presents to the reader the main results of the current MSc work,
obtained during the processing fieldwork and other collected data. It starts from the
review of the collected data from different sources, then describes the modelling
component of the research, namely WASI colour simulation and plotted resulting
graphs. We also discuss here the particularities of various sensors, suitable enough
for deriving radiometric information to discriminate sand from the seagrass.
Furthermore, this chapter includes analysis of the spectral signatures of various
seafloor cover types in conditions of changing environment, possibility and
limitations for P.oceanica spectral discrimination, statistical analysis of the data sets
and mapping based on images processing.

Chapter 5: Discussion and conclusions summarizes and briefly discusses again the
main results, reported in detail in a previous chapter. This chapter proposes some
final discussions to the reader, and comes to the main research outcomes.




Finally, we suggest some recommendations for any further research focusing on the
seagrass environment along the coasts of Crete (or other Mediterranean areas) in the
final Chapter 6: "Recommendations”.

A lot of plotted graphs, statistical outcomes, tables, auxiliary (yet relevant to our
research) pictures and images, illustrating our work - are collected in the
Appendices. Due to the standard editorial limitations of the current MSc work, it was
not possible to include all them to the main chapters. However, we tried to make the
structure of the Appendices most clear and easy-readable as possible, by dividing the
Appendices into 10 various sub-sections and referencing to them from the main text
where necessary.

The Bibliography section includes literature and internet resources used for the
current work. The cross-referencing and web hyper-referencing are used in the
whole document to make reading more quick, effective and informative.

All persons mentioned in the current document are listed in the Index of People.

An Index of Concepts is placed in the end of the Document to help the reader find
what he is looking for.
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1 Introduction

1.1 Summary

The seagrasses, a unique group of aquatic plants growing submerged in the sea
water, with root-like structures (rhizoms) buried in the sediments and vertical
elongate leaves. A flowering plant, completely adapted to marine environment, they
are however, more closely related to the lily family (Liliaceae) than to the true grass,
despite their name “seagrass”, caused by the ribbon-like, grassy leaves [90].

Seagrasses create unique, complex, extremely diversified and productive ecological
systems in the littoral coastal zones between 0-50 meters in shallow waters all over
the world [58], and serve as valuable environmental indicators for the marine
ecosystems health. Seagrasses are closely connected and linked with complex
interactions to other vegetation types, e.g. mangroves, coral reefs, etc. An important
constructing component of littoral ecosystems, seagrass contributes significantly to
their structure and functioning.

The adaptation to the salt waters is evidently influenced the global distribution of the
seagrasses, limiting it to shallow coastal areas. A number of critical conditions
determine growth of the seagrass, including general climatic characteristics of the
area, i.e. temperature, day length, geological and geomorphological conditions, e.g.
soft type of sediments (sand or mud), shallow depths, as well as chemical and
physical parameters of the water: salinity, waves [85]. The seagrass Posidonia
oceanica (further P.oceanica) is a key species to inhabit littoral of the Mediterranean
Sea, see Fig. 1.1

Figure 1.1: Seagrass Posidonia Oceanica

and is widely spread along the coasts of Crete [33] . It plays an important role in a
number of geomorphological and ecological processes. Namely, it is a source of
food for herbivorous fauna as well as helter zones for fish and other marine




organisms; it contributes to the nutrient recycling; it provides sediments stability by
reducing the degree of water movements, etc [40].

The purpose of current MSc research work aims to apply methods of remote sensing
analysis, including Radiative Transfer Models (RTM), GIS-based spatial analysis,
processing and classification of satellite and aerial photos, as well as videometric
underwater footage, towards mapping and environmental monitoring of seagrass P.
oceanica along the selected locations of the northern coasts of Crete island, Greece.
The technical implementation is based on WASI RTM software, GIS (ILWIS, Erdas
Imagine and ArcGIS), using aerial and satellite images and the results of the
underwater videometric measurements.

1.2 Background

1.2.1 Global distribution of the seagrasses

Globally, there are 58 recognized and described seagrass species (Fig. 1.2, Fig.1.4),
belonging to two orders (Hydrocharitales and Najadales), four families
(Hydrocharitaceae, Posidoniaceae, Cymodoceaceae and Zosteraceae), and 12
genera (Enhalus, Thalassia, Halophila, Posidonia, Syringodium, Halodule,
Cymodocea,  Amphibolis,  Thalassodendron,  Zostera,  Heterozostera and
Phyllospandix) [71].

. ; 2 Figure 1.2. Distribution of seagrasses in the world.

Source:[48]
The distribution of the seagrasses is
SN . strongly influenced by several
= iy \ - environmental factors, which include
? climate (mostly, tropical and temperate
- areas), bathymetry (shallow shelf zones),
hydrological particularities (chemical content of water, nutricient availability and
turbidity of waves), and geological characteristics - sedimentation and cover types of
the seafloor [88]. There are four European seagrass species in Mediterranean area
[12]: Zostera marina, Zostera noltii, Cymodocea nodosa and P.oceanica. In Greece,
the common species are P.oceanica (L.) Delile, Cymodocea nodosa (Ucria)
Ascherson, Zostera noltii Hornemann and Halophila stipulacea [3]. These species
differ in morphological and phenological features (Fig. 1.3) as well as in structure
and dynamics. Thus, Cymodocea nodosa is considered the pioneer species of
P.oceanica beds, the latter species forming the last stage. When P. oceanica beds
regresses, C. nodosa often replaces them [53]; as a result, P.oceanica, C. nodosa,
and Z. noltii do not form mixed persistent stands [16].




1.2.2 Ecological significance of the seagrasses
Seagrass plays vital role in the marine ecosystems of the world ocean. Seagrasses are
the only flowering plant in the world that is able to live completely submerged.
Seagrass is a habitat for numerous marine fish species [103], source of primary
production and food for fish, turtles and other organisms, which gives them special
environmental value [104].

Figure 1.3: Morphology of different types of seagrasses.
Seagrass meadows produce enormous quantities
of organic matter (leaves, epiphytes), which

constitutes the basis of the food web both within
and outside the ecosystem [45].

Finally, seagrasses are an important component
in the environmental "food chain" of the coastal
ecosystems, being the food source for dugongs, turtles, swans and various fish [18].
Due to their wide distribution, meadows size, easy collection and abundance,
sensitivity to the modifications of the coastal zone and their important role in
maintaining coastal water quality and clarity, seagrass is perfect indicator and
descriptor of the environmental health of marine ecosystems, and is highly suitable
for the environmental monitoring [118].

LEINT3

Being often confused with marine “algae”, “seagrasses” are vastly different from
them. There are fundamental differences between both marine organisms, the major
of them should be briefly mentioned: first, seagrasses are true plants with root
system and leaves which photosynthesise, have complex structure and create
landscape-similar vast formations on the colonised seafloor areas with soft sediment,
whereas algae are simple organisms that can only holdfast; secondly, seagrasses are
complex vascular plants with reproductive mechanism such as fruits, seeds and
spores, while algae have simple few cell structure with spores and gametes; finally,
seagrasses uptake nutrient through root system, while algae nourish directly from the
water column [31]. There are other differences between “seagrass” and “algae” but
they go beyond the scope of this work.

1.2.3 Environmental vulnerability of the seagrasses

Meadows of P. oceanica are subjected to the human activities, as they occur in
coastal areas, where they can be affected both directly [92] or indirectly, through the
impact on the quality of waters and sediments [32]. As P.oceanica is a long-living
plant with a slow growth rate, the anthropogenic modifications of the coastal zone,
happening more rapidly than the capacity of the plant to adapt to these changes,
reduce its distribution area [95]. One of the main drivers of seagrass decline is, for




instance, the location of the fish farming near the seagrass meadows. The negative
effects of the sedimentation of waste particles in the farm vicinities on P.oceanica
meadows are diverse and complex, and may cause benthic deterioration,
accumulation of organic matter and seagrass decline [60]. Seagrasses are subject to
anthropogenic nutrient (N and P) loading, which may occasionally cause
morphological (e.g. leaf length) and physiological (e.g. chlorophyll and nitrogen
content of the leaves) responses towards changed environmental conditions [72, 73].

Figure 1.4: Distribution of seagrass in relation to

mean ocean temperature. Source: [107]

The detailed research of the fish farm-
induced decline of the secagrass
meadows [29]reports the relationships
of fish farm organic and nutrient content

in the sediments with dynamics of the

‘.Dohar (<4°C) M Temperate (-24°C) [ Tropical (>24°C) oSesgrassdismhulion‘

key seagrass species (P. oceanica) in the

Mediterranean Sea. Nowadays P.oceanica is in the alarming state of regression due
to the deterioration of the environment in the Mediterranean Sea [122]. Due to these
reasons, P.oceanica is a protected species since 1988 in some European countries
[40], and its presence serves as an indicator of a stable healthy environment. Among
other negative factors, affecting both growth and status of the seagrasses the
environmental contaminants can be mentioned, e.g. thermal, sewage, dredging and
chemical pollution as well as any other kind of maritime works, e.g. trawling and
anchoring of boats [122]. Other human activities that cause degrading of the
seagrass are recreational boating, commercial overexploitation of coastal resources,
eutrophication [88].
Besides anthropogenic factors, various biochemical, climatic and environmental
processes can cause negative influence on seagrass distribution. Seagrass is exposed
to threats from the global climate and environmental change, i.e. increases in sea
surface temperature; sea level rise; increased frequency and intensity of storms and
waves; local decrease of water quality, increased sedimentation, contamination and
nitrification; desiccation; salinity fluctuations; nutrient changes; suspended
sediments [11]. These stress-drivers can alone result in large-scale seagrass
degradation, but often seagrass undergo simultaneous affects from several of these
factors together. It naturally increases the environmental pressing and leads to
drastic loss of very large areas of seagrass globally [107]. In tropical areas, where
most of seagrasses are located (Fig.1.4), seagrasses are subject to catastrophic
extinction and loss, due to the cyclones, typhoons, storms, regular floods and
increased rainfalls. Recovery from such events can take up to several years and often




it is only possible by means of the seed reserves from the local environmental
surveys [89].

Other threats for seagrasses in tropical areas are increased nutrient availability in the
coastal zones, increased eutrophication and invasive macroalgae. These processes
have strong affect on the status of the seagrass meadows, and often lead to their
complete disappearance [59]. Other environmental threat for the seagrasses arises as
a result of the environmental struggle and competition for existence among species.
Thus, meadows of P.oceanica in the Mediterranean Sea (Fig.1.5) are presently
facing invasion by alien algal species, particularly in areas where P.oceanica is
already degrading, stressed, have gaps and patchy structure in meadows and show
other signs of regression [97].

Seagrasses are vulnerable fragile species, important for the marine coastal
ecosystems, especially for the protection of the beach structure. However, the facts
about seagrass global degrading sound worrying: about 54 percent of the total
seagrass meadows have lost any part of their area; the areas, where the seagrass
ecosystems are degrading or lost, are not located in a specific area or continent, but
registered globally; since 1980s global losses of the seagrasses on our planet is equal
to two football fields per hour [94].

1.2.4 General characteristics of Posidonia oceanica

Morphology of P.oceanica. The endemic Mediterranean seagrass Posidonia
oceanica (further P.oceanica), is a main species in marine coastal environment of

Greece, forming, despite its slow growth, the largest, most widespread,
homogeneous and dense meadows (Fig.1.1) %
in the Mediterranean between 5 and 40 m
depth [52].
Figure 1.5: Geographical distribution of P.oceanica.
Source: [12].

The dominant and most productive coastal
ecosystem of the Mediterranean, P.oceanica

is spatially restricted to the Mediterranean { }f f- el
area (Fig.1.5), with its extension limited by o v g A

the western part of the Mediterranean Sea where cold Atlantic waters enter Gibraltar
and mix with warm Mediterrancan waters, thus decreasing its temperature.
Morphologically P.oceanica consists of long, 5-12 mm broad, “hairy-like” leaves, 3-
4 mm thick roots and short rhizomes (0.5-2.0 mm). The leaves are, perhaps, the most
particular characteristics of

P.oceanica, making it highly recognizable and
distinguishable from other seagrasses (Fig.1.6): having




usual length of 20-40 cm, in some cases they can reach up to 1 m [12] (Fig.1.8).
Figure 1.6: P.oceanica. Source [77]
Growing P.oceanica make a meadows which, in turn, consist of smaller patches,

called “matte” (Fig.1.7), a monumental construction made by the growth of
rhizomes and leaves with entangled roots and entrapped sediment [39]. Representing
one of the most productive Mediterranean ecosystems, P.oceanica usually serves as
a perfect biological indicator for the assessment of the quality of waters and
environmental health [14]. Some authors [49, 96] used status and population
dynamics of P.oceanica as indicators for the evaluation
of the meadow health status.
There are several environmental factors, determining the
growth of the P.oceanica.

Figure 1.7: Scheme of matte structure of P.Oceanica. Source [116]

Phenology of P.oceanica The adaptation to dry-summer
subtropical ~ climate reduces its extension to
Mediterranean area only (Fig.1.5). Besides, the distribution of the scagrasses
changes with water depth: it is noticed [34] that the highest flowering density is
usually in the 4-7 m depth. P.oceanica flowers appeared in shallow stands in
September while in November only in stands deeper than 15 m. This time delay is
caused by the different maximum summer temperatures at those depths [16].

The phenology of P.oceanica is also affected by the coastal bathymetry: in the
isolated meadows in shallow waters plants have
shorter and falciform leaves, compared to ones in the

deeper and central areas [34]. In P.oceanica flower t\ \ f {
k

dead rhizome

abundance is related to the structure of the meadow
with the maximal flower density in the densest

vertical rhizome
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Figure 1.8: Structure and components of P.oceanica. Source [28]

Phenology of the P.oceanica undergoes modifications with varying seasons during
the year: during the flowering period (ca 3 months long) the number of leaves on the
flowering shoots decrease. Changes of the leaf growth also appear in the flowering
shoots with longer oldest leaves and shorter and narrower leaves induced during the
flowering [46].

1.3 Research problem

Monitoring of the marine benthic ecosystems of seagrasses is essential for the
environmental assessment of the coastal zones. It increases our knowledge of the




seagrass ecology, highlights threats to the seagrass and preventing them from
possible losses and degrading and improves techniques and methods of the
underwater-based observations. Mapping the seagrass contributes to the evaluating
of the seagrass current distribution, analysis of its dynamics and changes over time,
as well as estimations of the degrading of seagrass meadows for the purpose of the
coastal management. Precise, correct and up-to-date information about the
distribution of P.oceanica is necessary for the sustainable conservation of the marine
environment and ecosystems in Mediterranean area, being an important contribution
to the environmental coastal zone management [117]. However, mapping the
scagrass has limitations due to the specific location and characteristics of the
research object. The remote sensing techniques have traditionally been widely used
for the seagrass monitoring.

Blue Green Red Infra-red

Figure 1.9: Spectra of the seagrass on different depths (0 -
15m). Source [35]

The general overview of the application of
various remote sensing data types (colour,

Reflectance

infrared, and black and white images) for the
seagrass monitoring shows its high suitability

and potential as a research method [112, 84].

Wavelength

The using of the aerial photographs as base
maps for the seagrass meadows mapping is, perhaps, the most traditional application
[86, 68, 111] . The results of the image processing of colour aerial photographs for
the monitoring of littoral environment with seagrass beds have been reported by
several authors [67, 138, 47] . Satellite imagery processing has also being used for
the seagrass monitoring, due to their accuracy, repeatability and information value as
a source of data [27], enabling regular temporal coverage over the large remote areas
and providing a cost-effective approach for the mapping of the remotely located
feature, such as underwater vegetation [64]. Satellite images provide with detailed
information on seagrass canopy and other environmental indicators [41]. Various
research papers report successful application of the image processing for the
seagrass mapping [20, 26, 38, 47, 62, 64, 68, 78, 82, 83,
data towards seagrass mapping is based on the spectral reflectance characteristics of
the P.oceanica seagrass, which enable its spectral discrimination from spectra of
other seafloor types. It is proved [132] that the spectral signatures of different
species of tropical seagrasses are well distinguishable from each other.

The application of the methods of images classification for seagrass mapping is
based on the classifying the pixels on the image according to their spectral




reflectance values (Fig.1.7) [38], so that the seafloor can be divided into several
types: sand, rock, P. oceanica, other vegetation, etc. Other example of monitoring of
P.oceanica using remote sensing techniques [20] reports the application of the
CZCS images towards the case study of the Italian coast and shows successful
results of the neural-based classification using Isodata method of supervised
classification. In case of P.oceanica meadows aerial and satellite images are
particularly suited for the surveying shallow waters [110] enabling to distinguish
seagrass formations and dynamics of the temporal evolution of seagrass meadows
over the research area [112]. However, using space borne satellite imagery for the
seagrass mapping has certain limitations, due to the uncertainties of the spectral
signature of the seagrass at higher depths (Fig.1.7), as well as some optical
particularities, e.g. light refraction under water, unevenness of the water surface,
depths, etc. Some problems can also arise in the images interpretations, as quite
different objects may have similar spectral reflectance, e.g. seagrass, dark-coloured
bottom patches (mud), macroalgae. The in-situ fieldwork including underwater
videographic measurements is an important part of the seagrass monitoring, and has
been successfully applied towards seagrass mapping [51]. The underwater
measurements are used to validate the results and to receive detailed, accurate and
precise data for the selected locations. The underwater measurements cannot be
applied for the whole research area, however it provides with detailed monitoring
along the route of the boat. Therefore, in the selected locations it becomes a useful
tool for the assessment of the distribution, density and coverage of the seagrass
along the track log. Besides, the underwater observations using scuba diving
equipment have been conducted for the measurements of depths.

1.4 Research objective

The current MSc research aims to explore the environmental conditions for the
spatial distribution of P.oceanica seagrass along the northern coast of Crete Island,
based on the remote sensing and GIS techniques, knowledge about the coastal
environment in Crete and integration of various data from the following sources:
1. spectra of P.oceanica, carbonate sand, silt and other seafloor types

il. satellite imagery: Landsat TM, Landsat ETM+

iil. aerial photos: Google Earth

iv. in-situ fieldwork data of underwater videographic measurements

v. vector GIS layers.
Although there are a variety of environmental factors that contribute to the spectral
reflectance, the most important ones are water column height and seafloor fraction.
It is because spectra of the seagrass P.oceanica vary qualitatively over the depths
interval of 0.5-4 m, and secondly, the content and cover fraction of the seafloor have
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the most distinctive effect on the spectral reflectance of the water. In the
environmental conditions of Crete Island, P.oceanica may grow at depths up to six
meters; however, the most usual depth is four meters, which caused our decision to
focus on depths up to 4 meters and use these depths for further WASI modelling.
Therefore, in the current research we focus on these two major factors, and study the
response of the water reflectance towards changing conditions of the water column
depth and seafloor bottom cover fraction (seagrass and carbonate sand).

The research aims to explore the limitations of the application of the Radiative
Transfer Models (further RTMs) and remote sensing techniques towards the study of
the environmental properties of the P.oceanica meadows distribution over the
selected locations of northern Crete. The main research objective is monitoring the
seagrass P.oceanica in selected areas of Crete and analyzing the environmental
conditions for the growth of P.oceanica.

This research is supported by the in-situ measurements in two selected locations of
the northern coast of Crete (Ligaria beach in Agia Pelagia district and Xerocampos),
using following methods of the remote sensing techniques: spectral modelling by
means of the RTM Water Colour Simulator WASI, underwater videometric
measurements made by Olympus camera, acrial Google Earth and satellite images
from different sources, spatial GIS and statistical analysis.

1.4.1 General objective

The main objective of this study is to analyse the optical properties of the seagrass
P.oceanica and other seafloor types, and to apply the remote sensing techniques
towards the investigation of the seagrass distribution in selected locations along the
northern coast of Crete. General objectives:
1) Analysing spectral reflectance of P.oceanica and other seafloor cover types
by means of radiative transfer model tools (RTMs), using WASI.
2) Mapping spatial distribution of the seagrass P.oceanica over selected
locations along the northern coasts of Crete Island.

1.4.2 Specific objectives

a) To study narrow-band spectral reflectance properties of
P.oceanica and other seafloor cover types (sand and silt) using
WASI water colour simulation software

b) To use methods of the in situ diving observations and underwater
videometric measurements by Olympus camera in order to receive
large-scale imagery of the P.oceanica mattes




c) To apply remote sensing data (Google Earth aerial images,
Landsat TM and ETM+ satellite images) for the monitoring of the
seagrass meadows distribution

d) To perform supervised images classification for the thematic
mapping of the P.oceanica seagrass distribution along the selected
locations over the coasts of northern Crete.

1.5 Research questions

1. Is P.oceanica spectrally distinct from carbonate sand with varying
in-situ environmental conditions?

2. Do broadband and hyperspectral sensors provide enough
radiometric information for spectral discrimination of seagrass,
and therefore, can be used for mapping of P.oceanica?

1.6 Hypotheses

A statistical testing will be used to compare between the spectral responses of the
different seafloor cover types (i.e. sand and P. oceanica), whether it is spectrally
distinct and at least one pair is statistically different at every spectral band.

For the research question 1 the Hypothesis Ho claims: seagrass types are not
spectrally distinct from other seafloor types with varying in-situ conditions, which
means Ho: pl =p2 =p3=...= pn. The alternative Hypothesis Ha claims the opposite
statement: seagrass is spectrally distinct with varying in-situ conditions, Ho:
PAU2FU3F ... Fun.

For the research question 2 the Hypothesis Ho claims: broadband and hyperspectral
remote sensing data cannot be used for the mapping of P.oceanica, because they do
not provide enough radiometric information to discriminate sand from seagrass,
which means Ho: pl =u2 =p3=...= un. The alternative Hypothesis Ha claims the
opposite statement: broadband and hyperspectral sensors do prove to provide enough
radiometric information to discriminate sand from seagrass, Ho: p#Au2#u3# ... #un,
and can therefore be used for the seagrass mapping..

The distribution of the spectral responses at every spectral band is assumed to be
normal, as well as the equality of the statistical variances. The hypothesis testing is
suggested to be carried out using the ANOVA statistical test. The purpose of
ANOVA test is to visualize in an effective and quick way the spectral differences
between seagrass species and their spatial distribution. Thus, the key hypotheses of
the research will be tested to prove whether the results of the research are accurate,
reasonable and correct.

1.7. Assumptions
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The general research assumption, used in this work, in order to make feasible
application of the remote sensing methods, includes some statements about the in-
situ atmospheric conditions, viewing angle, wave backscattering and other optical
properties of the environment. They all definitely play a certain role and impact final
results of optical measurements, but for practical reasons we have chosen to ignore
their contribution in the spectral separability of seafloor cover types. We briefly list
below general research assumptions for the optical properties of the environmental
variables used in this study.

Weather conditions for the measurements are assumed to be perfect: clear, sunny,
windless days. Otherwise wind roughens water surface causing sun glitter, and
values of spectral reflectance may contain disturbances. Sky radiance might be
influenced by multiple reflectances between the sea surface albedo and the
atmosphere and in general, the sky radiance increases rapidly while viewing zenith
angle is near to 90° (i.e. in the evening hours). Therefore, ideally measurements
should be done at noon, with as low zenith angle (Fig. A.3) as possible; otherwise, if
the solar zenith angle is too high (e.g. approaching 60-70 degrees), received data
may contain noise. For WASI simulations reflection factor of sky radiance is taken
as 0.0201 with simulated ideal conditions: viewing angle (0° = nadir). The interval
of water temperature taken as default lies in the diapason 17-25 degrees as to
simulate the conditions of the Mediterranean Sea. However, in real time conditions
the sun zenith angle of 45° has been accepted as suitable.

The anisotropy factor of upwelling radiation or the quality (Q-) factor, showing the
directionally dependency of the radiance, is taken as 5. We accepted some values of
model-specific optical parameters as default values at WASI simulator which are
shown in the Table 3.1. Thus, the concentration of phytoplankton is accepted at the
interval of 0.035 — 0.089 mg-1 and concentration of large suspended particles is
given to 8. Reference wavelength for CDOM (Gelbstoff) absorption is equal to 440.
The backscattering is accepted to be 0.00144m-1. The coefficient of attenuation
remains equal to 1.0546, as set up by default at WASI.

We also assume that concentration of non-chlorophyll particles (absorption at A0) as
well as concentration of small suspended particles is equal to zero, so we do not
count them in this work. Exponent of CDOM (Gelbstoff) absorption is accepted as
0.0140. Finally, the BDRF of bottom reflectance (sand), which defines the reflection
of light is at an opaque surface (Fig.A.7), is assumed to be 0.318 sr -1.

1.8. Research approach

Seagrass consistent monitoring and mapping is necessary and important for the
sustainable coastal development and conservation measures. Earlier, many seagrass
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meadows have been destroyed by human activities in the coastal zone, mainly due to
the ignorance of their existence, because information on the seagrass bed exact
location was not available [22]. Well-time seagrass observations and mapping
enables precise control of its spatial distribution, detection of any changes in the
seagrass landscapes, highlights potential environmental threats in the coastal zone
(e.g. declining of meadows) before they become unmanageable for the coastal
management services. Choosing the right and most effective approach method for
the seagrass monitoring is essential. Remote sensing methods alone, though having
evident advantages, are insufficient, because satellite images of underwater habitats
are notoriously difficult to identify and interpret. The best research method should
be based on the integrated approach, well described in various scientific works
[13, 98, 70] , which includes combination of various techniques of the seagrass
monitoring, i.e. remote sensing imagery classification of aerial and satellite images,
GIS-based spatial analysis and ground in-situ surveys.

General methodological approach for the analysis of spectral reflectances

In-Situ_Measuremetns Epzial tellertance Lharadleralice Spectral simulations - WASI

T ]
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N Sea floor cover types Depths:0.5, 1.5, 2.5m.

l l Spectral analysis \,/ \,/
Data processing

Variables modelling

Plotting graphs Statistical anlysis = Roecral signahures : carbonate sand P.oceanica

Figure 1.10: General methodological approach for the analysis of spectral signatures. ArgoUML.

The current study is based on the application of the remote sensing data, broadband
satellite imagery, aerial images and the results of the underwater videographic
measurements towards seagrass mapping (Fig.A.51 Image classification is based on
the principle of the differentiation between the spectral signatures of various seafloor
cover types (Fig.1.8). The spectrum of light coming up from the ocean surface in
shallow waters keeps information on the optical properties of the seawater
components and benthic substrate which can be read from their spectral signatures
[139]. The pre-processing of the images includes imagery corrections for
atmospheric noises and effects of the water column. Reflectance spectra of the
seagrass canopy at different depths of the water-column are analysed for the
discrimination of their spectral signatures, enabling to separate various seafloor

12



types during classification. The results of the of imagery classification are analysed
for the detection of the dynamics in P.oceanica seagrass distribution along the
northern coasts of Crete. Aerial imagery from Google Earth with high spatial
resolution (Fig.A.52), suitable for the large-scale detailed mapping of seagrass
mattes, is used for the improvement of the accuracy of large seagrass meadows and
separate mattes within the meadows. The in situ underwater videometric
measurements of the seafloor are collected during the fieldwork in Crete, for the
validation of the classification results and to determine the exact current distribution
of the P.oceanica meadows. The image processing includes steps of the remote
sensing techniques, i.e. calibration, masking from land and cloud, atmospheric
correction, sea surface glint and depth effects correction as recommended [83].
During the image classification working step the training sites for the supervised
classification methods are designed, as well as its control and trials of different
classification approaches (Unsupervised, K-means or Isodata; Supervised,
Maximum Likelihood).

2 Seagrass monitoring: overview of literature and research resources

2.1 Seagrass global monitoring: history and perspectives

Mapping and monitoring the seagrass is important for the environmental assessment
of the marine ecosystems in coastal areas. Regular tracking of current distribution of
seagrass meadows, based on correct information and cartographic visualization of
seagrasses, is a preventive environmental management, which helps to analyse
potential environmental risks of coastal areas, decrease of the number of species,
loss of meadows and patches of the seagrasses. The tradition of global seagrass
mapping though has not a very long history comparing to the terrestrial cartography,
due to the technical difficulties of underwater observations.

However, nowadays is has become a rapidly developing, increasingly popular and
challenging research branch. Regular observations and monitoring of the seagrasses
are known since 1960s, mainly in tropical regions (Australia). Since that time
traditional methods of the seagrass monitoring and common recommendations are
being elaborated. The development of the underwater SCUBA diving equipment and
devices enabled to conduct underwater detailed measurements and observations
largely contributed to the improvement of the traditional in-situ observations of
seagrass. From the other side, development of the remote sensing methods and data
acquisition from space contributed to the new methods of seagrass mapping, using
distance approach and generally based on images classification.
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Various global seagrass survey organizations organize and provide regular
monitoring of the seagrass species distribution, health and environmental
sustainability. We list below the most known seagrass research institutions:

4 Global-scaled: Global Seagrass Monitoring Network and the World
Seagrass Association; The World Atlas of Seagrasses is published by the UNEP.

4 Australian Seagrasswatch (perhaps, the best organization, regularly
publishing informative reports)

v European: the Mediterranean association Seagrass-2000, the Mediterranean
Institute for Advanced Studies and Seagrasses.org;

4 US American seagrass recovery campaign by the Seagrassgrow, Seagrass
Ecosystems Research Laboratory in South Florida, Seagrass.LI and Florida Seagrass
organisation;

v Asian: UNEP/GEF South China Sea Project, Marine Conservation
Cambodia and Sosmalaysia.org.

All these organizations aim at the global seagrass monitoring, providing with
research results and reporting guidelines and manuals with standardized methods
and recommendations, specific for the seagrass research and monitoring. There are
also university marine centres and research institutes conducting seagrass
monitoring and as a particular part of their research and reporting various
approaches for the monitoring and mapping of the seagrasses, including remote
sensing applications. Their reports and guidelines were used for references in the
current research.

2.2 Measuring optical properties of benthic vegetation: hyperspectral
radiometers

The application of the remote sensing data for seagrass mapping is based on our
knowledge of the spectral reflectance properties of the target objects, and using it for
the classification of these objects on the image. In case of seagrasses it is spectral
reflectance of the seafloor cover types, which can be analysed using measurements
of optical properties of sea water: radiance and irradiance. Optical remote sensing
methods can get through the clear waters to approximately 15-30 m [102]. When
sunlight enters the waters and goes down into the water column, parts of the
electromagnetic energy are absorbed and scattered, which is determined by the
optical and physical properties of the water, e.g. concentration of suspended
particles, chlorophyll, coloured dissolved organic matter (Gelbstoff) that make up
the water content [1]. Besides, light is strongly dependent on wavelengths, i.e. it is
greater in blue wavelengths (400 nm) than in others.
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(a) RAMSES-ACC-UV - Hyperspectral UVA/UVB (b) RAMSES-ARC - Hyperspectral UV-VIS
Irradiance Sensor: 280-500 nm Radiance Sensor: 320-950 nm.
Figure 2.1: RAMSES Hyperspectral Sensors. Source: Trios

The optical properties of the sea water vary with different environmental conditions
and reflect current chemical content and physical specifics of the water, revealing
the variability and distribution of colour of the sea waters, determined by the
material in the water, e.g. chlorophyll, as well as its physical properties, e.g. water
absorption, attenuation, backscattering [80].

Shallow waters generally contain more dissolved substances and suspended
particles, which directly influences the transparency and colour of the waters of shelf
zones [65]. Being highly dynamic environments, coastal waters experience a variety
of processes which alter their optical properties incessantly. The effects of these
processes influence application of the hyperspectral remote sensing and reinforce
other processes [81]. Thus, waves and tides increase sedimentation processes, which
in turn, may change micro relief properties and topology.

The optical properties of the water are best reflected in the values of its radiance and
irradiance, which can be converted into spectral reflectance, or reflectivity. The
spectral irradiance (E) is a radiant flux of the electromagnetic solar radiation energy,
received per surface unit area in a given time (W'm_z'nm_l), while radiance (L)
characterizes total emission or reflection that passes through or is emitted from a
particular area (W'Sr_l'm_2). Therefore, the spectral reflectance, or the reflectivity
of the object, can be estimated by the direct mathematical division of these first two
characteristics, and is expressed in percentage. The irradiance and radiance of the
water thus should be measured, in order to estimate spectral reflectance of the
various seafloor cover types.

The optical measurements of the irradiance and radiance of the sea water and bottom
cover types of the seafloor can be received by the means of the optical sensor
spectroradiometers. There are several companies producing radiometers with various
characteristics and adjusted for different purposes, e.g. portable and miniature
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spectrometers from StellarNet, Hyperspectral Ocean Colour Radiometer
(HyperOCR) sensor by Satlantic, traceable spectroradiometers by Orbotronix and
lots of others. Among other radiometers there are ones designed by the Trios
company producing optical sensors, GER-Series Field portable spectroradiometers
from SpectraPartners, etc. Trios-RAMSES hyperspectral radiometers (Trios-
RAMSES Hyperspectral UVA/UVB Irradiance Sensor and RAMSES-ARC
Hyperspectral UV- VIS Radiance Sensor) are small-sized, low power-consuming,
flexible for fieldwork yet with high level of precision, specially calibrated for air and
for water application as well as colour measurements (Fig.2.1). These products have
been used for the radiance and irradiance measurements in Agia Pelagia bay, Crete
Island, 2009.

2.3. Radiative Transfer Models (RTM) for the simulation of water optical

properties: a brief review of existing software tools

Understanding radiance distribution within a water column is necessary for the

studies of the underwater visibility, because scattering properties of the water body

naturally vary with changing depth, wavelength and environmental conditions.

Simulation of the radiance quantities for natural water bodies enables to analyse

seafloor color remote sensing properties. Therefore, the artificial modelling of the

seawater optical properties by means of the Radiative Transfer Modelling (further

RTM) is used when water optics is studied under changing environment (e.g., depths,

sun angle, suspended particles in water column). In such cases a retrieval of water

optical parameters from the remote measurements should be tested and analyzed.

We briefly list below the most effective RTM software and algorithms, suitable for

underwater radiance simulations, from a range of various best-known up-to-date

tools.

a) The Second Simulation of a Satellite Signal in the Solar Spectrum, version 1
(6SV1) (http://6s.]tdri.org/ ) is a US atmospheric correction algorithm,
developed in the University of Maryland; adjusted for the NASA MODIS
satellite imagery (http://modis.gsfc.nasa.gov/ ) lookup tables. The 6S algorithm

has been implemented by the GRASS software for the atmospheric correction
http://grass.osgeo.org/grass64/manuals/html64 user/i.atcorr.html

b) Another example of the RTM adjusted for a specific imagery is a German
KOPRA RTM (http://www.imk-asf.kit.edu/english/312.php), fitted for
MIPAS/ENVISAT imagery.

c¢) The HydroLight RTM commercial software is an advanced model for oceanic
radiative transfer calculations, developed by the Sequoia Scientific, Inc., USA. It
is designed to solve a wide range of problems in optical oceanography and
limnology. (http://www.sequoiasci.com/products/Hydrolight.aspx)
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d) The British RTTOV-9 RTM is a radiative transfer model, developed for nadir
viewing atmospheric sounders and imagers. It includes a number of useful tolls,
e.g. can compute sea-surface emissivity for each channel, enables, to specify
cloudiness for radiance calculations, etc. This program runs under Unix/Linux
platforms and is open source.
http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/

e) The Rapid Radiative Transfer Model (RRTM) is one more RTM freeware
(http://rtweb.aer.com/ ), designed in the USA, Massachusetts.

f) The MODTRAN, a commercial software (http://www.modtran.org/) from
Spectral Sciences Inc., is another example of the RTM. Among its newest

updates is generation of atmospheric correction data; it also has an option to
write spectral output in binary, and convert it to ASCII.

g) The Community Radiative Transfer Model, CRTM is designed by the JCSDA,
NASA (http://www.jcsda.noaa.gov/projects_crtm.php) and includes Surface
Emissivity/Reflectivity Models, Cloud Absorption/Scattering Model and
Gaseous Absorption Model.

For our purpose we have chosen the WASI RTM software, due to its effectiveness,
adaptability for the Mediterranean environment, open source availability, coverage
of necessary wavebands and clear, user friendly interface enabling us to adjust
various environmental parameters.

2.4. The in-situ observations of the seagrass meadows

The traditional methods of in-situ seagrass monitoring include in general the
following standard scheme [87]. The seagrass is being sampled on the selected sites
using transect lines, quadrant frame, single point markers, markers, GPS and other
equipment. The seagrass sampling is taken on the regular way with observation
points covering the study area with normal distribution (Fig.A.25, Fig.A.24). During
the measurement process, the vertical photograph of the measurements frame is
taken, and the following points are traditionally estimated: percentage of the
seagrass cover within the quadrate, species composition, sediment composition,
canopy height, epyphyte abundance, algae percent cover, count of microfauna and a
specimen of seagrass is being taken. This scheme, well described by McKenzie [87]
is widely used and well-known among the marine biologists and seagrass
researchers. Applications of the in-situ seagrass observations of the structuring
epiphyte community composition in the P.oceanica ecosystems in Mediterranean
Sea is, for example, described by Villegas [136]. Realization of traditional methods
for mapping seagrass usually involves intensive and time-consuming in-situ
observations during the fieldwork, as, for example, reported by Iverson and Bittaker
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[61]. The results of the in-situ measurements and observation are usually managed
and treated using integrated GIS approach, as, e.g. reported by Schmieder [127].
Other methods of seagrass in-situ monitoring are based on the application of the
active hydro-acoustic sonar sensors that send towards a sea floor a signal of energy
and then collect the return echoes for the analysis (Fig.A.5). One of the examples of
the acoustic sonar sensor designed for seabed classification is the British RoxAnn
system, which application for the seafloor mapping is very well described on the
OzCoasts website. However, the application of the acoustic methods requires
specialized expensive equipment and is mostly used in the deep open waters,
combined with bathymetric measurements. Another limitation of the acoustic
techniques is that, initially intended for the bathymetric surveying, acoustic
equipment is mostly designed for the geomorphological and geological studies of the
underwater substratum and are, therefore, more adjusted for the benthic habitat
discrimination, and they are not effective for the identifying of the biological species
composition or even the presence of aquatic vegetation such as seagrasses and
seaweeds [139]. The current study is based on the application of the remote sensing
optical measurement techniques, due to their effectiveness, non-destructive nature
and availability of necessary tools: spectral radiometers and RTM.

2.5. Application of the remote sensing data towards seagrass mapping

Various methods and approaches have been applied towards mapping of the
seagrasses, based on digitized aerial photographs, GPS data, remote sensing and
SCUBA-based fieldwork measurements. SCUBA-based (Fig.A.54) in-situ
observations, though providing high resolution and accuracy results in seagrass
mapping, is limited in application, because of their time consumption, weather-
dependency and unsuitability for the case of monitoring large areas of water for
small-scale mapping. The underwater videography with a GPS is a tool of seagrass
monitoring which has certain advantages, i.c. high spatial and visual resolution, non-
destructive sampling, effectiveness at all depths and rapid data collection in the field
[128]. However, it cannot cover large areas for small-scale mapping. Remote
sensing techniques offer clear advantages over other methods of in-situ field
measurements and seagrass observations, mentioned above. Preference of the remote
sensing methods consists in their weather-independency, cost-effectiveness,
accuracy and spatial coverage, which enables periodic monitoring of the seagrass
meadows and gives access to the distant and unapproachable areas. Integrated
together with GIS vector layers and maps, remote sensing data enable historical
mapping [19, 5] and assessment of change detection. However, application of the
remote sensing techniques for mapping of submerged vegetation, seafloor cover
types and benthic vegetation, inter alia seagrasses, are still in their development.
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Figure 2.2: In situ optical reflectance seagrass
spectra of seagrass. Shaded areas - % of n =341
spectra lying within the range of reflectance.
White lines - mean spectra. Source: [57]

Approaches and methods for the seagrass

protection and monitoring still remain
location-specific or, at least, nation-specific,
depending to large extent on the tools

available for the researchers [93]. Universal,
international, standardized methods for seagrass directly for seagrasses as such still
should be developed. Various case studies have been performed, yet their mostly
report methods adjusted for particular areas, without evaluating standard general
algorithms that could be extrapolated towards other regions.

Application of the remote sensing towards seagrass mapping is generally based on
the assumption that various types of the seafloor bottom have different
characteristics of the reflectivity, which is visually expressed in distinct colours of
the objects. In its turn, reflectivity of the
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Figure 2.3: Difference between broadband multispectral ’ T a3
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and hyperspectral resolution of spectral signatures. Source:
[23]

Spectral measurements of the target objects are made by means of the radiometers
(Fig.2.1), which receive and register the amounts of energy (radiance and irradiance)
from the objects. Measuring optical properties of the seawater allows to calculate
spectra of the objects and to discriminate them on the aerial and satellite images.
Thus, various scientists report success in spectral discrimination of submerged
vegetation and other seafloor cover types on imagery using hyperspectral optical
properties of the sea water for the assessment of benthic habitats [75, 76, 25, 139].
Studies of spectral reflectance of the different seagrass species comparing to the
spectra of sand and other seafloor cover types [134] prove that spectra of green,
brown and red benthic macroalgae differ from each other, as well as from sand and
deep water reflectance spectra. These differences are well detectable by the means of
the remote sensing research methods. Comparing to the terrestrial plants, aquatic
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vegetation inter alia seagrass cannot be detected using red edge of the spectrum, as
these wavelengths are significantly absorbed by water [69], as well as by scattering
and absorption by phytoplankton. Some authors [30] also use spectrally based
radiative transfer approach to quantitatively estimate shallow-water bathymetry and
leaf area index (LAI) of the seagrass. The spectral reflectance in general is the result
of the spectral absorption in different bands, typical for each target object. Spectral
reflectance of the seagrass (Fig.2.2) is largely influenced by the water depth where it
is located, and is generally decreasing in values by increasing depths. The most
important spectral diapason for marine mapping of submerged vegetation and,
particularly, for seagrass, is 350-800 nm [7]. Using airborne imagery for
retrospective data (before 1970s) together with the most recent imagery allows to
detect changes in seagrass distribution on over different years and to analyse
dynamics of the seagrass distribution [6].

Another important advantage of the application of the remote sensing data for
mapping of submerged aquatic vegetation has commercial nature: using remote
sensing data and methods enables more low-cost and up-to-date seagrass mapping
[100], and is especially useful for the areas where the fieldwork data capturing is

unavailable.
Satellite Sensor: Landsat SPOT ENVISAT Terra GeoEye | Nimbus 7
Origin USA France Europe (ESA) USA (NASA) USA USA
Instrument TM, ETM+ Pan, XS MERIS MODIS SeaWiFS | CZCS
Number of ck 1 8 6 15 36 8 5
Wavelength coverage 185-1700 500-1750 412.5- 900 469-1640 412-865 | 443-750
Ground resolution (nadir), m | 15-pan,30(MS),60 (TIR) | 2.5, 5, 10,20 | 1.2 km/300 m 1.0 km 1.13km |825m
Band Width (nm) 0.45-10.4 10,20 2.5,7.5,9,10 14,20 | 0.18,0.3,0.5,10 - 50 | 20,40 20,100
Launched 1972, 1999 1986 2002 1999 1997 1978
Recurrent period, days 16 24 35 16 16 16

Table 2.1: Characteristics of selected ocean-colour sensors

Seagrass meadows may reach spatial scales from several up to hundreds of metres,
therefore they are susceptible by the means of satellite imagery from remote sensors,
both with moderate resolution (e.g., Landsat MSS, Landsat TM, Landsat ETM+,
MERIS, ASTER, MODIS) and high resolution as well (e.g., IKONOS, Quickbird,
SPOT, CASI). The possibility of their application towards seagrass mapping varies
and is limited by the technical

Aster - 15m Aster - 30m Aster - 90m

characteristics (Table 2.1) and resolution [wr | swr || erma ]

of these sensors (Fig.2.3). In the next
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paragraphs we briefly discuss limitations
and research experience of the using of

various imagery for the seagrass
mapping. Figure 2.4: Band coverage of ASTER

and Landsat channels on the e/m spectrum. e
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In the next paragraphs (“Review of multispectral imagery...” and ‘“Review of
hyperspectral imagery”) we will briefly discuss research experience of the
application of satellite imagery towards seagrass mapping, its advantages and

limitations, reported by various researchers.
2.5.1 Review of multispectral imagery used for seagrass mapping

Seagrass mapping using remotely sensed data from multispectral sensors is based on
the classification and discrimination of the seafloor types using their spectral
characteristics in different wavebands. Perhaps, the most known imagery, widely
used in the remote sensing mapping, is received from the group of Landsat sensors,
known for its historical, pioneer role in the satellite industry. Being the longest
running satellite system, lunched in 1972, Landsat is the only source of archival data
going back to 1984 at a sufficient spatial resolution [27], which makes its data
desirable for historical mapping or environmental analysis of change detection of the
seagrass landscapes. The Landsat TM and Landsat ETM+ data, with the most recent
from sensor Landsat 7 — an advanced and multispectral scanning, launched in 1999,
prove to be feasible and useful for the mapping of submerged vegetation, such as
seagrasses or coral reefs. The successful applications of the imagery Landsat TM
towards the seagrass mapping, were reported in numerous research works

Figure 2.5: Multispectral vs. hyperspec- l}a;dzat T4M - 7'Bands . -

tral band coverage. Source: [125] A — —
HyMap Hyperspectral Scanner - 126 Bands

The Landsat data are particularly suitable _
S

for the case of change detection of seagrass Sy

landscapes at a decadal scale, because being
the main sensor onboard the Landsat
satellites, the Thematic Mapper (TM)
provides the longest time series available

Reflectance, %

for change detection analysis over
submerged vegetation [108].
Another well-known multispectral sensor,

SPOT provides multispectral imagery with o , ;
. . . o|§ Refl d/IR/W' l /:/v/
a spatial resolution of 10 m, covering E S e e R e
0.50 1.00 1.50 2.00 2.50
covers a surface area of 3600 km? (60*60 Wavelength, jm

km swath), 26-day orbital repeat cycle for nadir viewing and imagery with a spatial
resolution 20 - 2.5 m [106]. SPOT imagery was used for mapping beds of Posidonia
oceanica in the Mediterranean Sea [113] . The IKONOS, offering multispectral and
panchromatic imagery, was the first to collect publicly available high-resolution
imagery at 1- and 4-meter resolution from Geoeye. IKONOS imagery has been
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applied for the seagrass mapping due to its high resolution and accessibility. Thus,
the results of image -classification in case study of shallow-water marine
environment [101] made using IKONOS, Landsat TM, and CASI, show that in the
blue part of the spectrum, the best results are achieved by the IKONOS and CASI,
while Landsat TM has not high enough resolution. It may be caused to some extent
by the loss of the radiance contrast, atmospheric Rayleigh scattering and defects of
scattering. However, comparing between CASI and IKONOS, the same authors
prove that CASI enable to receive still more accurate results of the classification
than IKONOS [101]. Another comparative analysis of the application of CASI,
Landsat and Quickbird imagery [119] demonstrates high suitability of CASI images
for the fine-scale mapping of the seagrass landscapes. Thus, CASI and Quickbird-2
images enable to identify even separate seagrass species with small width and
heterogeneous nature of the seagrass patches, which could not be detected using
Landsat TM images with their 30*30m resolution.

Advanced Spectrometer for Thermal Emission and Reflection Radiometer (ASTER),
launched in 1999 onboard Terra sensor, provides high-resolution images of the Earth
in 15 different bands of the electromagnetic spectrum, ranging from visible to
thermal infrared light (Fig.2.4). It has diverse subsystems for the visible near
infrared (VNIR) with 15 m resolution, shortwave infrared (SWIR), and thermal
infrared (TIR) wavelength regions [66]. For each channel there is separate onboard
calibration (OBC) system, telescope with independent pointing and different
detector technology [4]. This makes ASTER imagery especially suitable for the
application towards detailed mapping of surface temperature, emissivity and
reflectance of objects and bathymetric elevations as well. Successful application of
the ASTER imagery towards mapping of submerged vegetation reported, for
example, by Hirose [55].

Figure 2.6. Reflectance spectra of sea-

Grass Thalassia; Rrs(0-) - subsurface RS
reflectance; Rrsb - the bottom reflectance.
Source:[140]

Other multispectral images have also
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by Heege et al [54] where they aim at
classification of macrophytes in shallow waters of the Lake Constance.

In regard to the methods chosen for the image interpretation, the supervised
classifications proves to be the most worthy in a majority of case studies [108, 114] .
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While often methods of the unsupervised classification are used as a tool for
classifying submerged object and features on the multispectral images and aerial
imagery [37], it still does not provide common algorithms that can be applied to
other images and regions. Thus, the strength of the optical signal coming from the
various types of the seafloor is strongly influenced by the effects of the water
column, its depth and chemical properties. Yet methods of the unsupervised
classification overleap mixed spectral effects of the water column which shift the
real values of the spectra, with the pure reflectance from the benthos; as a result, it
may cause significant errors [30].

For the accurate assessments of various seafloor cover types, water column depth
and its optical properties, methods of supervised classification should be preferably
used as being more suitable in classification and interpretations of imagery.
However, it is only true if spectrally distinct regions of the spectrum are covered by
a space-born sensor and if the atmospheric distortion and viewing geometry is not
degrading the radiometric quality at essential wavelengths. While this and other
studies [119] demonstrated the advantages and success of the application of
multispectral imagery for the spectral discrimination of the seafloor cover types and
mapping the submerged landscapes on the basis of pixels classification, the
application of data from hyperspectral sensors has better potential due to their higher
resolution (Fig.2.5).

2.5.2 Review of hyperspectral imagery used for seagrass mapping

The application of the hyperspectral sensors is most effective and provide more
accurate classification results (Fig.2.5), due to their higher spectral resolution [15]
with interval narrows to 10 nanometres, while broadband sensors are limited to the
spectral width of ca 150 nm (Fig.2.3). Hyperspectral imagery is acquired through the
simultaneous acquisition of images in many narrow, contiguous spectral bands from
hyperspectral scanners (mostly) cover the 400- to 2500-nm spectral bands [126].
Perhaps, the most advantageous and general characteristics of hyperspectral imagery
is its high spectral resolution, desirable for the case of seagrass monitoring. The
most suitable scanner fit for detailed seagrass mapping would cover bands of 550-
750 nm and have a spectrum resolution of 5-15 nm [42], which exactly characterizes
typical airborne and hyperspectral satellite scanners. Important features may be
detected in the narrow wavelengths of hyperspectral imagery, while this information
can be lost in the broader wavelengths of other sensors. With its 126 spectral bands,
HyMap imagery enables to distinguish features of interest, i.e. seagrass types [115],
which is the major advantage of the of hyperspectral data for mapping landscapes of
the seagrasses. While comparing multispectral imagery with airborne hyperspectral,
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the last one showed higher overall accuracies [119]. Several, regular and narrow (10
nm) spectral bands, specific for hyperspectral imagery, are strong tool enabling to
detect even slight and subtle differences in the spectral reflectance between various
seafloor types, e.g. different seagrass species at diverse depths, algae, corals, dark-
coloured sands or other types of sediments [56]. Therefore, there is great potential of
the application of hyperspectral remote sensing imagery towards seagrass mapping
at species level, as long as they are distinguishable spectrally (Fig.2.6) which, for
example, has been tested in the case study of Australian marine ecosystems by Fyfe
[42]. Application of various classifications methods, inter alia maximum likelihood,
minimum distance and means, towards hyperspectral imagery [114], combined with
fieldwork measurements ensures accurate mapping results with the maximum
likelihood methods producing the best results. Therefore, accurate mapping of the
seagrass landscapes and other seafloor types using remote sensing approaches
requires application of high-spatial resolution (higher than 5 m) or hyperspectral
imagery. Comparative analysis of the application of hyperspectral and multispectral
imagery towards the seafloor types classification [56] demonstrates that coral,
seagrasses and sand very well distinguishable in their spectra with an overall
classification accuracy of 98 percent. However, the use of data from various sensors,
both hyperspectral and multispectral, is possible and reasonable, as soon as it meets
the research specific objective. Thus, the use of multispectral imagery with high
spatial resolution is preferable to using hyperspectral medium resolution data in case
of mapping benthic vegetation in areas where the spatial heterogeneity is very high
[135].

2.5.3. Comparison of seagrass spectra

The reflectance spectra from different seagrass species reported in various research
works demonstrate diverse spectral signatures which are dependent on the mixture
of environmental conditions as well as individual characteristics of the seagrass.

In the current work we have compiled an extensive measurements dataset (up to 400
single spectral profiles) of the reflectance spectra from various seafloor cover types
(P.oceanica and carbonate sand) in the coastal waters of Crete Island, which is
partly visualized on the plotted graphs (Fig. 4.2, 4.6, A.27, A.28, A.30, A.35, A.36.
Having analyzed reflectance spectra received in previous works by other researchers
and compared them with our results, obtained in the current work, we noticed some
general trends in the character of reflectance spectra of various seafloor cover types.
We mention below some general conclusions and observed tendencies in the profiles
and patterns of spectra of P.oceanica and carbonate sand (as for Crete Island).
Measured remote sensing spectral reflectance is highly variable with changing
environmental conditions, such as water physical content (amounts of suspended
particles and organic matter, salinity, chemical content), water column depth,
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atmospheric conditions (incl. sun zenith angle) and individual features on the plant,
e.g. morphology and colour pigmentation of the leaves, differed in various plant's
health and age conditions.

The maximal values of the spectral reflectance of P.oceanica, received both in the
current work and by previous researchers, lies in wavelength interval of 500-600 nm,
as, for example, shown on Fig.2.2, Fig.2.6, and can be clearly seen in our results as
well (Fig. 4.2, 4.6, 4.8, A.35). Comparison f the remote sensing reflectance spectra
of various seagrass species, e.g. P.oceanica (Fig. 4.4) and Thalassia testudinum
(Fig.2.6), sows that P.oceanica is in generally brighter in the wavelength interval
500-600 nm which can be caused by various colour pigmentation. The plotted
graphs with spectra of the seagrasses P.oceanica and Thalassia testudinum
demonstrate that the dip in the spectral reflectance after ca 600 nm is more
pronounced in case of P.oceanica seagrass beds (Fig.4.4) than in those with
Thalassia testudinum (Fig.2.6), due to absorption caused by pigment of green leaves.
The remote sensing of the bottom albedo of P.oceanica and carbonate sand (Fig.4.7)
shows clear difference between the carbonate sand and P.oceanica, which is
evidently much darker. To estimate and further analyze particularities of the
P.oceanica remote sensing reflectance spectra over regions with different
bathymetry (0.5, 1.5 and 2.5 meters column depth) we used WASI RTM software,
which incorporates measurements of the seafloor reflectance and water column
optical properties.

3 Materials and methods

In the section Seagrass monitoring: overview of literature and research resources we

briefly discussed main existing cartographic methods and tools for seagrass
mapping. In the current research we try to combine various techniques from
mentioned above for the assessment of the seagrass distribution in the Mediterranean
environment, for the case study of Crete. We mentioned in the List of Tools the
software that we used for logically separated research sections, which required
various approach. Thus, for example, spectral analysis and assessment of spectral
signatures is technically based on WASI, statistical analysis of series of
experimental raw data has been made by means of statistical software, such as Gretl
and SPSS; mapping has been made using ArcGIS; images processing and
classification were made using Erdas Imagine software by means of Google Earth
and Landsat imagery. ArcGIS 10.0 software is used for the spatial analysis, general
mapping and cartographic layout presentation; the raster processing techniques are
applied for the detection of seagrass spatial distribution using supervised
classification. The research data include Google Earth aerial images and scenes from
the Landsat TM and ETM+ covering research period of 10 years in the same year

25



time, taken from USGS, GloVis, NOAA and The Earth Science Data Interface. The
satellite imagery provides vital information of the most recent changes in P.oceanica

within the coastal areas, as well as the condition (poor or destroyed). The raster
processing includes making mosaic-like covering for the whole research area. The
Google Earth images are most appropriate for the detailed mapping than satellite
than Landsat or ASTER enabling to produce accurate maps with correct results.

Therefore, the main set of images for the current work is Google Earth aerial images.
The Landsat images are used for the general overview. Besides aerial and satellite
photographs, data acquired during the fieldwork (three weeks in September -
October) are necessary addition to the mapping helping to solve problems of
interpretation during the images classification [109]. Therefore, this work includes
sampling of the in-situ measurements of the seagrass distribution. The sampling
stations were located in two candidate places on the northern (Ligaria) and southern
(Xerokampos) parts of Crete island, as these regions are well suitable for the
seagrass, due to the annual mean water temperatures and geological factors, i.e.
seafloor conditions and sediments. The field campaign has been carried out during
the September-October period 2010. The information about the location of the
secagrass (mostly represented by the P.oceanica species) is useful for the
understanding of the relationship between the spatial distribution of the seagrass and
the environment of the selected areas of Cretan beaches. The results of the
videographic measurements are used for the seafloor types detection, because the
objects represented on the photos can be well distinguished and classified according
to the following well-known characteristics [17]: size (yet some measurements are
necessary for the similar-looking objects); shape (the general form is most reliable
evidence for identification); colour (common and reliable object indicator); texture
(when changes in tone are too small to be distinguishable, texture may assist
identification, e.g., stippled, granular, rough, smooth, etc.); associated features (those
usually found near other objects, e.g., rocks and soil).

3.1 Study area

General area: Island of Crete, Greece (Fig.3.1). The study area of the current MSc
research is located in the shallow areas of the Ligaria beach, Agia Pelagia and
Xerocampos, Crete island, Greece (Fig.3.2).
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Figure 3.1: Study area: Crete Island
These shelf areas have maximal depth of four meters. Seagrass sampling has been
performed at two stations at a depth of 4 meters, in the following selected areas:
1. Ligaria beach (Agia Pelagia district), 36°20'N 22°59°E
2. Xerokampos, 35°12'N 26°18°E 3. Agia Pelagia, 36°20'N 22°59°E.

3.2 Fieldwork data collection

Seagrass sampling has been performed at two research stations at Crete island -
Ligaria beach (36°20'N 22°59°E) and Xerokampos (35°12°'N 26°18E), at depths
lesser than 4 meters.

Figure 3.2: Study area: Ligaria beach, Crete Island
The Ligaria Beach is a narrow, sandy and pebble beach (Fig.3.2), located ca 15 km

north-west from Heraklion. The in-situ measurements were conducted during the
fieldwork in the period 21.09.2010-11.10.2010. The fieldwork on seagrass
monitoring included visual estimations and photo- and video footage of the above-
ground seagrass patches, sediment seafloor cover types, species compositions, water
depth and geographic locations recorded using GPS.

3.2.1 Fieldwork equipment

The research materials and equipment were provided by the Natural History
Museum of Crete, the University of Crete and the ITC, and included the following
items (Fig.3.3): 1) three iPAQs (Fig.3.3a); 2) three GPS (Fig.3.3c); 3) Three
underwater video cameras, Olympus ST 8000 (Fig.3.3d), suitable for photographing

up to up to 33 foot depths and high-resolution 12.0-Mpixel image sensor; 4) Markers
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and cords for the depths measurements (Fig.A.56); 5) Waterproof plastic Otterbox
(Fig.3.3b) for keeping the iPAQ dry; 6) SCUBA Diving equipment, taken from the
Ligaria Diving Centre; 7) Boat (Fig.3.4);

(a) iPAQ, HP (b) Waterproof Otterbox (¢c) GPS  (d) Olympus waterproof camera
Figure 3.3: Fieldwork equipment
A GPS and iPAQ have been used for detection of the geodetic coordinates and

keeping the tracklogs along the boat route for GIS project.

Figure 3.4: Boat used for the fieldwork measurements on Crete Island. 2010

3.2.2 Sampling design

The sampling design of the fieldwork was aimed at surveying of the spatial
distribution of the meadows of P.oceanica, and spatial pattern of the seagrass
meadows consisted from separate patches. The fieldwork included several routes of
the boat in the Ligaria beach sampling site, nine routes in total, in the directions
parallel to the coastline, ca 180-200 m long each one, thus enabling the course plot
to cover the area of growing seagrass: shelf areas not deeper than four meters. The
measurements of the seafloor cover types have been made using underwater video
cameras Olympus ST 8010 (Fig.3.3(d)), mounted under the boat to capture video
footage and imagery (Fig.A.53). The data records were made along each path using
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Figure 3.5: Scheme of the depths measurements; fieldwork on Ligaria beach.

these cameras. A videographic approach, tested previously [105], was applied during
the fieldwork on Crete island, for collecting information on benthic cover types and
distribution of the seagrass patches from photo transects, in order to use for the
calibration of mapping approaches.

{a) view from below {b) view en-face {c) view from above
Figure 3.6: Scheme of placements of the Olympus cameras during the measurements
Three underwater video cameras, located on the bottom of the boat (Fig.A.53),
provided videometric measurements of the seafloor during the track (Fig.A.9), and
resulted in a series of consequent overlapping images of the sea bottom under the
boat path. The general locations of the sampling sites and routes were selected on
the basis of the visual examination of the seagrass beds during snorkelling and
SCUBA diving (Fig.A.54, Fig.A.55), recommendations from the Greek
collaborators of the Natural History Museum of Crete, and available maps covering
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the research area. To ensure even and objective selection of sampling sites we used
transect sampling method, i.e. photographs were taken along the research path.
Transect method (Fig.3.5) is a common sampling technique in studies of the seagrass
monitoring [130], enabling the occurrences of the seagrass meadows to be recorded
and counted in a systematic and accurate way, detect spatial distribution of the single
seagrass mattes to be properly identified, without location bias (Fig.A.12).

The videographic measurements and photos, enabling to detect types of the seafloor,
were captured by means of three underwater digital video cameras Olympus ST
8000 (Fig.3.3d), at five minutes interval along the tracklog path (Fig.A.9). research
sampling design also included measurements of depths (Fig.3.5), because
bathymetry is one of the most determining factors for the seagrass locations.
Measurements of depths were performed during the fieldwork using cord, iPAQs,
and markers (Fig.A.57) in order to assure that the videometric measurements are
taken at depths not more than four meters, in the shelf area. As a result, nine
transects were established of one m wide and 20 m long track, to cover seagrass beds
with videographic measurements.

The GPS allowed to capture measurement locations on the iPAQ, encapsulated in a
plastic waterproof Otterbox (Fig.3.3b). The camera were adjusted horizontally by a
leveller and mounted under the bottom of the boat (Fig.A.53) to capture video
footage and imagery (Fig.3.6). The data were taken at proper weather conditions:
sunny, serene and cloud-free days with glassy sea state. The locations of the route
were randomly selected in the areas of the Ligaria beach, to ensure most dense
coverage of the seagrass meadows in the research area. The underwater
measurements of the seagrass coverage were carried out by taking video footage and
photos of ca 0.5 m2 size each (Fig.A.12, Fig.A.57). The results of the underwater
videometric measurements include series of digital images helping to classify
seafloor cover types (Fig.A.58) and seagrass meadows, according to the differences
in the structure, colour, texture and shapes of the depicted objects. There are several
types of the seagrass landscapes along Ligaria beach, namely, seagrass meadows
continuously covering vast areas (Fig.A.38 (a)), aggregated seagrass patches,
represented by separate mattes with short irregular channels between them (Fig.A.8
(b)) and isolated seagrass patches, or mattes, which located separately from broad
meadows (Fig.A.8 (c), Fig.A.58). The results of the underwater videometric
measurements of the Olympus cameras made during the ship route include nine total
tracklog routes in the selected research area, including series of consequent images,
completely covering the area under the boat path. The received data contain
information on seagrass presence within the study area, distribution of seagrass
P.oceanica meadows and nature of the seafloor cover types: rocks, sandy, mixed
(Fig. A.11, Fig.A.10, Fig.A.8). Seagrass species on the Ligaria and Agia Pelagia
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beach consist of P.oceanica. The types of sediment on the Ligaria vary from coarse
sand, P.oceanica patches, sand, mud, rock gravel and fine sand (Fig.A.11).

3.3. Review of the collected data

The remote sensing imagery was collected for the Crete island area covering the
research period and area, enabling the field data to be used for the calibration and
validation. The available aerial and satellite imagery are commonly used for the
mapping of seagrass landscapes and their application is proven by various research
papers. The imagery includes satellite multi-spectral imagery (Landsat-TM, ETM+)
and aerial imagery from the Google Earth. The overview of the collected data
enables to summarize their following types:

e Optical spectra of P.oceanica, carbonate sand, seawater with sediments and
seawater measured in aquarium tank, without sediments, at different
environmental conditions (e.g., Fig.A.20)

e Aecrial imagery from the Google Earth

e Satellite images from various open sources (e.g. Landsat, Tab A.19)
(previews: Fig.A.43)

e Results of underwater videometric measurements of the Olympus cameras
made during the ship route

The available satellite (Fig.A.344, Tab.A.31) and aerial images are read into the
ArcGIS project. The available broadband and hyperspectral remote sensing data are
used for the mapping of the seagrass in shelf areas no deeper than 4.0 meters
(Fig.A.45, Fig.A .45, Fig.A.47, Fig.A.48), for the environmental monitoring in order
to detect the spatial distribution of the seagrass along Crete during the past ten years
using different satellite images for 2000-2010 (Fig.3.7).
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Figure 3.7: Work flow for the data acquisition, Dia display

The spatial resolution of Landsat ETM+ image is 30 m in the visible and near
infrared bands (bands 1-5 and 7); the spatial resolution of ASTER 15 m for the
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visible and near-infrared bands. IKONOS acquires data in 3 visible channels and
NIR, with spatial resolution of 1-4 meters. ASTER and IKONOS images are
suggested to be included as soon as available, in addition to the Landsat. The
research includes fieldwork in-situ measurements of the seagrass distribution along
the northern and south-eastern coasts of Crete in chosen locations.
The optical measurements of the irradiance and radiance of the sea water and bottom
cover types of the seafloor have been received by the means of the optical sensors
Trios-RAMSES Hyperspectral UVA/UVB Irradiance Sensor and RAMSES-ARC
Hyperspectral UV-VIS Radiance Sensor (Fig. 2.1), both adjusted for the
measurements of the irradiance and radiance (see appendices: Tab. A.1, Tab. A.2).
These products have been used for the radiance and irradiance measurements in at
the Hellenic Centre for Marine Research (HCMR) at the Institute of Aquaculture,
Crete Island, 2009 by Ms Sylvia Noralez using following workflow. The
spectrometer was adjusted for automatic measurements mode, with measurements
taken as fast as possible. The spectrometer head was held submerged, and the
sampling was controlled by an operator (Ms S.Noralez) on the surface boat. The
head of the sensor was pointed downward at an angle of 0 (nadir) in order to capture
the spatial discernibility in the radiance for the benthic cover types. The frame was
held at 45 degree angle in order to keep sensor looking down at 0 degree (nadir
view). A waterproof camera was attached to the platform to assist with the
identification of the target object being measured (Noralez, 2010).

The highest measured values are located in the diapason of 410-730 nm for the water
irradiance (Fig. A.19), and 430-650 nm for the water radiance (Fig.A.16).
Afterwards, the measured values of the radiance and irradiance, respectively, have
been used for the computation of the spectral reflectance properties of the sea water
and bottom cover types (Fig.A.30). The spectral range of radiance cover diapason of
320-950 nm, and irradiance measurements are covered in the interval of 280-500
nm, which is suitable for characteristics of seagrass reflectance. Different curves on
the reflectance, radiance and irradiance graphs for example, on Fig.A.27, or
Fig.A.29, enlarged) represent several series of the measurements. The values of the
spectral reflectance are received from the computations of these values using
mathematical formulae. The graphs shown on Fig. 4.2, Fig.A.20, Fig. A.33, Fig.
A.18 display values of the radiance and irradiance of the sea water in Agia Pelagia,
with and without sediments and suspended particles, respectively. Graph on Fig.
A.28 displays statistical analysis of the measured sets of observations, i.e. shows the
midspread of the statistical quartiles (Q1-Q3), mean and extreme values.

3.4. Data pre-processing

3.4.1. Auxiliary data: spectral dataset
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A collection of visible spectra of two seafloor cover types - P.oceanica and
carbonate sand - consist of multiple measurement sets of P.oceanica made by means
of RAMSES hyperspectral radiometer: 1-350 for 15th October (fragment on Tab.
A.11), 1-445 for 14th October 2009 for P.oceanica; 1-106 for water without
sediments, measured in aquarium tank, 1-27 for seawater with sediments measured
in aquarium tank; 1-75 for carbonate sand (Tab. A.17). Measurements of 2009 has
been used for the database and statistical analysis, because 2010 data pool was not
available. All these data have been analysed and statistically tested. We measured
mean, extreme values (min-max), median and statistical quartiles, in order to
visualise distribution of the values at various spectral wavelengths. Carbonate sand
was measured at wavelengths 402-750 nm, while P.oceanica - at the interval 318-
951 nm. We visualised the behaviour of different spectra on relevant graphs (Fig.
4.3, A.39, A.37). The available collected data were tested for the spectral variability
and separability under varying conditions of different environmental constituents
(e.g. depth, water content, sun angle), in order to determine the potential that it may
have on the approaches for further images processing and classification. Behaviour
of the spectra of P.oceanica have been tested using datasets for various depths: 0.5,
1.5 and 2.5 meters (Tab. A.9, Tab. A.710). The raw initial data of measurements of
the spectral reflectance have been pre-processed and statistically analysed thereafter
with graphs visualising mean spectra and Q1-Q3 interval, instead of the series of
single observations which is illustrated, for example, on Figures A.17, 4.6, 4.1).
These data have been measured using different step of the wavebands: some
measurements were made with 3 nm interval, while others — using 4 and 1 nm step.
Therefore, these data had to be interpolated (Fig.A.15) and standardized to one
format, which is values of spectral reflectance with one nm step. For the
interpolation we used script written on Python programming language that allowed
receiving more detailed data by interpolating them from 3 and 4 nm step up to 2 nm
(Fig.A.13). The interpolated data contained spectral measurements of the seagrass
P.oceanica (measured at Agia Pelagia beach, Crete), sand (measured at Agia Pelagia
beach, Crete), silt and default artificial spectrum of constant albedo at WASI
(Fig.A.14).

3.4.2. Modelling method: WASI water colour simulator

To estimate and further analyze particularities of the P.oceanica remote sensing
reflectance spectra over regions with different bathymetry (0.5, 1.5 and 2.5 meters
column depth) we used WASI RTM software, which incorporates measurements of
the seafloor reflectance and water column optical properties. We have chosen WASI
RTM software among other aquatic RTM (2.3. Radiative Transfer Models....) due to
its effective cognitive approach and because it is specifically adjusted and developed
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for the purpose of aquatic optical modelling. Consistency of simple and logical GUI
(Fig.5.1) let the researcher to easily define model parameters, which can be changed
directly in the main window tools menu, and to choose between forward or inverse
calculations. Besides other important advantages of WASU we would mention its
learnability: available documentation, supporting materials, learning curve with hints
and tips, as well as its user-friendly GUI, enabling to learn this product in a most
effective and prompt way in a tight schedule of MSc studies. Technically, WASI
need for system memory is minimised and the installation is simple and easy.

To create sensor-specific reflectance spectra using WASI, spectral responses of
MERIS, MODIS, CZCS and SeaWiFS sensors were applied for simulation of
seagrass spectral signatures in full-resolution spectra.

We also included measurements of other seagrass species - Thalassia seagrass
(measured at Southern Chinese Sea by C.Yang and D.Yang) in order to compare
spectral reflectance of different seagrasses under various environmental conditions.
The most suitable wavebands for the seagrass monitoring usually lay between 400
and 700 nm, which can be concluded by the visual examination, comparison and
analysis of the different spectra of the seagrasses. Therefore, we have chosen the
spectra 400-750 as the most appropriate range for further research experiment. The
results of the linear interpolation (Fig.A.39) demonstrate values of the sand spectral
reflectance with 1 nm interval covering the wavelength diapason of 400-750 nm.

3.4.3. Implementation of statistical analysis

The initial measured data were stored in raw-oriented format, so that re-formatting
them into the column-based layout was done using “transpose” command in Open
Office or Excel (Fig. A26). The next step included calculation of the median, mean,
quartiles and other statistical values at every data set (see appendices, Fig.A.35, Tab.
A.17). After the preliminary analysis, the measured data were visualised using
Gnuplot program, which enables fine plotting of various datasets together: Fig 4.3,
Fig.A.17, Fig.4.51. The most acceptable method of interpolation was Bézier curve
(Fig. A.19, Fig. A.16), as it has trend-friendly graph better showing the general
behaviour of the curves at different wavebands comparing to splines (see appendices
for more results). Therefore, after several experiments with various interpolation
techniques (Fig.A.30, Fig.A.20), we have chosen Bézier curves interpolation
(Fig.A.19) which contains convex hulls made on its control points, and therefore is
best suitable for our case: analysis of optical properties of seawater.
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Figure 3.8: Work Flowchart Diagram illustrating algorithm of the Statistical
Analysis applied towards the observation dataset (StarUML)
To analyse average values of spectral reflectance of P.oceanica by means of the
measured sets we calculated mean values for the total set of measurements 1 — 350
(15th October): mean of min and max values, mean of average for each waveband,
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mean for statistical quartiles for each wavelength and mean for median, respectively.
The adjusted averages evaluate mean values, needed for statistical analysis of the
datasets (Fig.A.21). The outcome of this calculations is shown in the Tab.A.6 and
Tab.A.47 (appendices). As a result, we received mean values of spectral reflectance
of P.oceanica for extreme, average (Fig.A.23, A.22), median and both quartiles,
independent of the individual sets 1-350.

We used several statistical methods (Fig.3.8) to asses data received as a result of
measurements. The Student-t test, one of the most commonly used techniques for
testing a hypothesis on the basis of a difference between sample means, is used for
the data analysis. In our case the Student t-test demonstrates, if the variation between
two analysed groups — values of spectral reflectance of seagrass P.oceanica and sand
- is significant. Therefore, we use Student t-test to compare two sets of quantitative
data of spectral reflectance of P.oceanica and sand, respectively, with samples
collected independently of one another. The Student-t test can be performed
knowing just the means, standard deviation, and number of data points. Therefore,
we used the data (appendices) of means of spectral reflectance of the both cover
types within data sets, their standard deviation, and the number of data points.

3.5. Spectral simulation of aquatic objects

The main aim of this part of research is to clarify if the bottom reflectance of the
different seafloor types including patches of the seagrass P.oceanica meadows, silt
and carbonate sand differ and can be clearly discriminated while mapping. A study
is based on three seafloor types containing silt, carbonate sand and seagrass, as well
as mixed types, where the spectral signatures were examined. WASI software
(Fig.5.1) is used to simulate spectral reflectance and colour discrimination of water,
affected by presence of P.oceanica and other factors, under various environmental
conditions which influence its colour.

Femote sensing reflectance (1) amicled ecia  Remote sensing reflectance fs1™1] sinulaled ectia
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at depths 0.5 8.0 m 0.5-4.0 meters

Figure 3.9: Sea water physical properties, modelled by WASI
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The data provided with the model was determined at freshwater of the Boddensee
[44], yet the model was adjusted for the marine environment, so that its parameters
(concentration of chlorophyll, concentration of small particles, yellow substance,
etc) now perfectly simulate the Mediterranean water conditions. The remote sensing
reflectance has been compared under the conditions of different water depths and
cover fraction of the seafloor, in order to assess spectral signatures of the seagrass
and carbonate sand as major seafloor types. WASI enables to use forward or inverse
calculation for the spectrum types at a diapason of 350-800 nm with a 1nm spectral
resolution. For the spectral analysis we applied forward calculations, ie. a
computing and plotting of series of spectra according to specified parameter settings,
with exactly defined depths and cover fraction.

The specific parameters have been chosen for the simulation of the environmental
conditions where seagrass grow. The adaptations to life in salt sea water requires
various physical and chemical parameters which include salinity, temperature of 17-
25°C, light requirements with 10-20 % on average, ranging from 4.4% minimal up
to 29 % [91], so that the zenith angle is taken as 35- 45° and reflection factor 0.0201.
P.oceanica. These values, simulating the environment of the Mediterranean Sea, are
fixed (Tab.3.1) among WASI user-defined parameters. The calculations are done for
the spectrum 350-800 nm, covering the most important part of the RS spectrum: 1)
Blue-green 0.45 - 0.5 um; 2) Green 0.5 - 0.6 um; 3) Red 0.6 - 0.7 um; 4) Red-NIR
0.7 - 0.8 um (Fig.3.9).

3.5.1. Model parameters: depth and bottom cover fraction

Although seagrass P.oceanica can be found until depth limits down to 40 m depth
[52], the most preferable limits of its distribution in the Mediterranean Sea are
shallow waters until 4 meters of depth.

The increase of depths (zB) influences weakening of light and thus directly affects
production of chlorophyll, because when light passes through the water and
suspended particles, it is being largely modified through the absorption and
scattering before it finally reaches plant canopy of the seagrass. Therefore, the most
healthy and suitable areas for the seagrass grow are located at depths lesser than 4
meters (Fig.4.5).

3.6. Google Earth aerial imagery for the seagrass mapping

Apart from the satellite imagery, the aerial photographs from the Google Earth
provide a powerful tool for seagrass mapping, because they are important, reliable,
detailed and up-to-date source of imagery. Perhaps, the clearest advantage of the
Google Earth imagery is its high resolution (15 m in land areas and lower in the
oceans). Obtained from the airborne platforms, Google Earth images have general
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spatial resolution of several meters (though varying in different areas), which allows
very detailed habitat and seafloor types discrimination, comparing with images
acquired from the space-borne satellite platforms.

Parameter, | Name and description Values

WASI

CL Concentration of large suspended par- 8
ticles

@ =0-5 Concentration of Phytoplankton 0.035-0.089 ug -

1

bbS Specific backscattering for small parti- 0.005 m2g-1
cles

W Temperature of water 17-25 C

n Exponent of Backscattering by small 0.005 m2g-1
particles

Q Anigotropy factor of upwelling radia- 5.00
tion (¥ Q-factor”)

sigma-L Reflection factor of sky radiance 0.0201

bl Backscattering coefficient of saline wa- 0.00144 m-1
ters

0 Reference Wavelength for Gelbstoff ab- 440
sorption

sun Sun zenith angle 45.0

zB Bottom depth 4.00

=075 Areal fraction of bottom surface type 01/10/10
number n

Ko Coefficient of Attentuation 1.0546

view Viewing angle (0 = nadir) 0

CX Concentration of non-chlorophyllous 0
particles {absorption at 0)

3 Reference wavelength for scattering of 500
small particles

C-3 Concentration of small suspended par- 0
ticles

3 Exponent of Gelbstoff absorption 0.0140

CY Concentration of Gelbstoff {absorption  0.400
at 0)

Bn BDRF of bottom reflectance {sand) 0.318 st -1

Table 3.1: Model-specific parameters of water WASI adjusted to simulate environment of the
Mediterranean Sea along Crete

The spatial coverage of the Google imagery is lesser comparing to space-borne
images, but this can be solved as well: while in general providing smaller area
coverage than satellites images, the Google Earth images can be stitched to the
composite maps of the acceptable spatial extent, using script written on Python
(Fig.A.1) and Geospatial Data Abstraction Library (GDAL) technologies (Fig.A.2)
for the Google grabbing process (Fig.A.52) which allows multiple overlapping of
single images over the flight paths, and generates mosaics.
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3.7. Image processing using Erdas Imagine

The analysis of the imagery of Cretan coasts is based on the images classification
and is aimed to investigate the distribution of the seagrass P.oceanica within the
research area. In the image processing part of the research supervised classification
has been applied to the aerial and satellite images. Seagrass meadows and other
seafloor cover types were evaluated through a detailed examination of the imagery.
Seagrass beds are clearly visible in color aerial Google Earth photographs (Fig.A.42,
Fig.A.43), contrasting against slightly-yellow and brownish sand bottom. The
seagrass areas are detected using different bands combinations, masked and studied
for the estimation of the changes in the areas. The classification is based on the
properties of the P.oceanica, such as brightness, colour, texture and structure of the
scagrass mattes (Fig.3.10a). The raster-based mapping includes supervised
classification with training sites of seagrasses (10-15 set areas) in different bands for
each photograph by classification a series of polygons characteristic of each of the
sea floor bottom types: sandy surface, seagrass bed for each species including
P.oceanica (meadows), patchy seagrass bed and algae on rock, rocks, muddy
surface, etc (Fig.3.10b).

enlarged (1:10,000
Figure 3.10: Seafloor types of the Arina beach: P.oceanica, sand, rocks. Google Earth images
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On the basis of the image processing and classification, applied to the northern coats
of Crete, the marine bottom types between 10 m depth has been mapped, including
the limit depths of the of the seagrass meadows provided on the basis of the
available and collected field data. The classification has been completed using ENVI
and Erdas Imagine software.

4 Results

4.1. Analysis of spectral signatures

The distinguishing spectral signatures for various seafloor types (e.g. seagrass
species, coral reefs, various types of sand, mud, other sediments, (Fig.4.3) exist in
well-defined and narrow (10-20 nm) wavelength ranges.
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Figure 4.1: Statistical comparison of spectral reflectance of P.oceanica and carbonate sand. Selected
measurements sets. Gnuplot graph

The values of their spectral reflectance are accepted as constant. The results of
spectral measurements enable to analyse, whether P.Oceanica is spectrally distinct
from other sea floor types with changing environmental conditions, using the
differences in their spectral signatures on the graphs in a WASI, the Water Colour
Simulator software. The Water Colour Simulator WASI, a software tool for
analysing and simulating the most common types of spectra [44], is highly suitable
for the seagrass spectral analysis. There are several environmental characteristics,
included in WASI interface (Fig.5.1), which influence the results of water spectral
reflectance, e.g. different bottom depths, concentration of suspended particles in
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water column, water temperature, sun angle, concentration of Gelbstoff (coloured
dissolved organic matter), concentration of phytoplankton, aerosol scattering,
exponent of backscattering by small particle [43]. The backward-scattering
coefficient (bb), also included in WASI, is a fundamental optical property which
plays a central role in the ocean-colour remote sensing, providing the remotely
sensed optical signal, as well as suspended particle distributions, water clarity, and
underwater visibility [79]. WASI enables simulation of backscattering of pure water,
large and small particles. The values of all these parameters can be redacted and
changed manually. However, the most important, major factors affecting the in-situ
conditions are water depth (Fig.4.5) and cover fraction of the seafloor types:
P.oceanica and carbonate sand.

Spectral reflectance of the seawater with sediments.
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Figure 4.2: Optical properties of the sea water with sediments, measured in aquarium
tank. Agia Pelagia district, Crete. Gnuplot

Seagrass P.oceanica can be mapped using remotely acquired spectral imagery, if it
has distinctive reflectance signatures at different depths. Therefore, the depths of the
shelf area are the first variable condition for this research question. The depths
values chosen for the current research are lesser than 3.5 meters, covering shelf
zone, and providing the best environmental conditions for the seagrass P.oceanica:
0.5, 2.0 and 3.5 meters with an interval of 1.5 meters.

The 3.5 m depth limit was chosen based on the analysis of the separability of
seagrass reflectance signatures, received by the means of previous in-situ
measurements (year 2009) of the radiance and irradiance of water in Agia Pelagia
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bay, which indicated that P.oceanica seagrass could be only well separated within
depths of 3.5 m. A statistical analysis of WASI-simulated spectral reflectance has
been used in order to answer the first research question: whether the P.oceanica
spectra is spectrally distinct at varying environmental in-sifu conditions, and if
P.oceanica remains spectrally distinct with the increasing water column depth. To
answer this research question, different seafloor cover types are discriminated using
data of the broadband remote sensing.

Spectral reflectance of seawater with sediments. Statistical analysis: Q1 and Q2 areas, average and extreme values

Results of measurement sets: 1-27. Bezier interpolation
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012 [ ‘maximal = median, max and min values

= T T T
"33 400 500 600 700 800 900

mean Valiie, Q1 and Q3 areas

] -~ . 1 L L I et
300 400 500 600 700 800 900

Figure 4.3: Multiplot showing spectral reflectance of the seawater with sediments, measured in aquarium
tank, Agia Pelagia district, Crete. Gnuplot.
Two complimentary graphs below show the results of the statistical analysis.

The results enable to study reflectance properties of the seagrass and other seafloor
types. Application of the optical radiative transfer model WASI is suggested to
simulate remote sensing sensors (MODIS, ASTER, MERIS and SeaWiFS), (Fig.4.4,
Fig.A.34). In order to focus on the factors of primary importance, other and less
influencing factors are excluded, i.e. sun angle, concentration of the suspected
particles in the water column, content of Gelbstoff, etc. For these factors default
values of WASI are accepted. Under normal conditions by independent water colour
sampling, values of the remote-sensing reflectance can vary by 12-24 per cent [133],
and these variations in the radiometric determinations are mainly caused by the
variety of the environmental factors.

42



Different factors influence colour and spectral reflectance of water, among which
different bottom depths, concentration of suspended particles in water column, water
temperature, sun angle, concentration of Gelbstoff (coloured dissolved organic
matter), concentration of phytoplankton, aerosol scattering, exponent of
backscattering by small particles, cloudiness, viewing geometry and wind speed
(which is, however, not the major source of uncertainty). All these environmental
components increase the absorption and scattering of light which, in its turn, results
in a complex relationship between their concentrations and the radiance of water that
finally influence its spectral reflectance.

Simulated remote sensing reflectance of P.oceanica at various sensors,
iterated over three depths (0.5, 1.5 and 2.5 meters)
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Note: for visibility reasons and to enable better comparison, we placed spectral bands covered by sensors
as 4 different lines with band stripes. However, the vertical scale is the same for cach sensor and should start from zero.

Figure 4.4: Simulated remote sensing reflectance of P.oceanica at various sensors, iterated over three
depths: 0.5, 1.5 and 2.5 meters
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4.2. Spectral discrimination of P.oceanica
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Figure 4.5: Remote sensing reflectance of P.oceanica at various depths simulated for broadband sensors.
An analysis of the spectral reflectance of P.oceanica is done using the WASI
simulations in order to determine, which wavebands can be still used to identify
P.oceanica. The analysis of spectra shows that the appropriate wavebands for
seagrass mapping lay between 500 and 600 nm and has also peaks at around 700 nm,
ca between 680 and 710 nm (Fig.4.6). The highest values of the bottom reflectance
are at spectra of 500-600 nm. The most appropriate depths at which the spectral
signatures of the seagrass could still be discriminated are lesser than 2.5 meters.
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The patches of white sandy bottoms of the seafloor, studied in the fieldwork in
Ligaria beach, are much brighter than mattes of P.oceanica (Fig.A.11, A.10):
seafloor types in Ligaria), which can be clearly seen at the graph comparing values
of the spectral reflectance of the carbonate sand (Fig.A.39) and that of P.oceanica
(Fig.A.37). The graph is received in excel spreadsheet using mean values of spectral
reflectance of sand (Fig.4.10) and seagrass (Fig.A.39), respectively, which have
been calculated from measurements of radiance and irradiance received in Agia
Pelagia bay.

Statistics of spectral reflectance of P.oceanica: min-max, Q1 - Q3 areas, average and measured sets (dotted)

Spectral reflectance Spectral reflectance

GO0 R0

Measurement sets: 276-300,

300 400 500 600 700 800 900
wavelength, nm

Spectral reflectance Spectral reflectance

Figure 4.6: Statistical analysis of the spectral reflectance of P.oceanica: min-max, average values (red
bold points), Q1-03 areas (green vertical dashed) and measured values (dotted):
multiplot of measurement sets 200-300. Gnuplot
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Figure 4.7: Bottom albedo of carbonate sand and P.oceanica, Agia Pelagia

4.2.1. Statistical analysis of the observational data and hypothesis testing

The total amount of measured data was large and included following datasets made
using hyperspectral radiometer Ramses: 350 measurement sets of P.oceanica
reflectance for 14th Oct (Tab.A.28), 400 sets of P.oceanica reflectance for 15th Oct
(Tab.A.11), 84 datasets for seawater reflectance with sediments, 105 datasets for
seawater reflectance without sediments, 87 sets for spectral reflectance of carbonate
sand. A statistical approach is evidently necessary for the proper processing of such
amounts of data. The schematic view of the statistical approach used for the data
processing can be seen on Fig.3.8. Statistical pre-processing of large sets of serial
data enables to generalize data by using the most typical and predicted values of
spectral reflectance for further calculations, and to get rid of the extreme values,
noise and errors. The statistical calculators were mainly made by means of Gretle
and SPSS. The Open Office was used for preliminary data view and pre-processing,
and included following computations at each data set (for example, Fig.A.26) with
summary outcome of mean, median, Q1 and Q3, standard deviation, min and max
values (Tab.4.1, Tab.A.11). The statistical pre-processing and analysis were made to
display the mean values of spectral reflectance, which were used for comparison
with reflectance data of various seafloor cover types as well as seawater with and
without sediment (e.g. Fig..A.16). In the statistical analysis of the raw observed data
pool of the values of spectral reflectance (about 400 single measurements for
P.oceanica, e.g. Tab.A.11), we summarize their complexity by concentrating on
some simple numerical characteristics that they possess, i.e. parameters. Examples
are the mean and variance of a probability distribution of measurements dataset (for
example, Tab.A.5). We divided the total data pool into datasets of 25 measurements
for more probability distribution of spectral reflectance describes the average value
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of the random wvariable over all of its possible realizations (appendices).
Conceptually, there are an infinite number of such realizations, therefore parameters
are not known to us. However, in the statistical analysis of the observed data our
goal is to estimate these parameters using a finite amount of information available to
us: fieldwork observations. Thus, we collected a number of realizations (a sample of
25 measurements for both sand and P.oceanica) and then estimate the statistical
parameters (appendices).

Finally we analysed about 400 datasets totally (example of carbonate sand on
Fig.4.9, P.oceanica - on Fig.4.8) made during different days. Since the actual values
that measured variables of spectral reflectance take on are not actually known before
we observed them, they are random. Thus, we analysed the statistical distribution of
the spectral reflectance values of seafloor cover types using common mathematical
formulae, implemented in Gretl software (Tab.A.3). Their probability expresses
uncertainty about the possible values of the spectral reflectance of P.oceanica and
sand, respectively. There is a distinction to be made between variables whose values
are not yet observed (random variables) and those whose values have been observed
(observations). Each time we observe the outcome of a random variable of spectral
reflectance, we obtain an observation, which is hence no longer random. We applied
various methods of statistical analysis towards data pool (some examples of the
selected tables are in the appendices: Tab.A.18, Tab.A.25, Tab.A.23, Tab.A.24,
Tab.A.29), in order to analyse the distribution of values of spectral reflectance of
P.oceanica. A probability distribution, a mathematical statement about the possible
values that the random observations of spectral reflectance can take on, displays the
relative frequency with which each possible value of spectral reflectance is
observed. The least absolute deviations (LAD), a popular optimization technique,
were used to show the main trend of the distribution of spectral reflectance values
along the spectra (Tab.A.4). Non-linear logistic analysis is applied to specify and
estimate a model of spectral distribution, in which the dependent variable (i.e. the
value of spectral reflectance for each single observation) is not continuous, but
discrete and independent for each case (Tab.A..12).

As the observations were made in a repeated way, we also analysed the data pool
using autocorrelation as well: Tab.A.19 and Tab.A.14 for P.oceanica and Tab.A.27
for carbonate sand. The autocorrelation, a cross-correlation of an observed value
with itself, made on two different days (14th and 15th October), shows the similarity
between observations as a function of the time separation between them, as can be
seen on Fig.A.32, Fig.A.31 and Fig.A.41, it is a useful tool for finding repeating
patterns for a single value of observations, such as the presence of a periodic signal
which has been buried under noise. The autocorrelation analysis has been performed
using both SPSS and Gretl software (Fig.A.27). The method of least squares
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minimizes the sum of the squares of the errors made in solving every single
observation made. We tried different approaches of the least squares methods:
Tab.A.15, Tab.A.18, WLS: Tab.A.26, OLS: Fig.A.15.
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Figure 4.8: Multiplot display of spectral reflectance of P.oceanica. Series 1-100. Shown midspread of the
statistical quartiles Q1 and Q3 (vertical dashes) and mean value within the range (red bold dots).

To focus on the relationship between a dependent variable (each single observation
of the spectral reflectance) and independent variables (three various depths: 0.5, 1.5
and 2.5 meters) we used the regression analysis, which enables modelling and
analyzing values of the spectral reflectance at several depths: Tab.A.6, Tab.A.47,
Tab.A.8. The summary of the values of spectral reflectance properties on various
depths is presented on the Tab.A.10. The k-means cluster analysis has been used for
partitioning observation sets into k clusters (Tab.A.19, Tab.A.20, Tab.A.2l,
Tab.A.212) in which each observation belongs to the cluster with the nearest mean.
It enables to highlight the main areas of the location of values of spectral reflectance
along the spectra. To estimate spectral density of optical measurements we used
periodogram function (Tab.A.30), which corresponds to the general spectrum of the
observations with representation of a variable quantity. Thus, the periodogram
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(Fig.A.40) of the series of observation highlights so-called “dead spots” of low
power between the frequencies we wish to exclude (can be seen clearly at the end of
the graphs, e.g. Fig.A.27 ) and the frequencies we want to retain (the general profile
that lies in the 450-850 nm, Fig.A.29, enlarged part of 500-660nm).
The visualization of the data plotting was made by means of Gnuplot software,
which enables fine drawing and advanced displaying of large amounts of serial data,
ultimate control over graph properties, the simplicity of plotting and the ease of

scripting (see Fig.4.8, appendices).
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Figure 4.9: Multiplot of spectral reflectance of carbonate sand. Series 1-75. Shown mid spread of the
statistical quartiles Q1 and Q3 (vertical dashes) and mean value within the range (red bold dots).

The graphs illustrating spectral signatures of various seafloor cover types display the
mean values and areas of quartiles (Q1, Q3, Fig.A.38, and shaded areas on graph,
Fig. 4.6, Fig.4.9), which cover most probable data distribution (spectral reflectance)
for each spectral band. In x-axis displayed are the areas of 400 — 950 nm in spectra,
where the measurements were done; the y-axis was adjusted for the better
visualisation of the P.oceanica spectra: as its spectral values are mostly located in
the lower part of the spectra (usually no more than 0.20 nm, except for borders), we
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did not extend the y-scale up to 100 percent, in order to focus on the most necessary
area of spectral values (Fig.4.9, Fig.4.3 and appendices). The mean values are
highlighted using bold red points, as we used these values for plotting the final graph
of P.oceanica spectra in Ligaria beach, Agia Pelagia.

Spectral reflectance of P.oceanica (15.X). Measurement sets: 126-150
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Spectral reflectance of P.oceanica (15.X). Measurement sets: 100-125

Spectral reflectance, R
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Figure 4.10: Multiplot display of spectral reflectance of P.oceanica. Measurement
sets 126-150, 15™ October. Bold red dots show the mean values within each dataset;
vertical areas: quartiles Q1-02.

A statistical hypothesis test has been applied for the making decision and controlling
the wealth of the observational data of the hyperspectral measurements of the water
reflectance. The received results are statistically significant if they are unlikely to
have occurred by chance alone, according to a pre-determined threshold probability,
the significance level. Therefore, we applied critical tests of significance to analyse
the measured data according to their significant value.

Answering the first research question, we suggest the following statement. If the
Hypothesis Ho is true, then the spectral distinguishability of the seagrass P.oceanica
from other seafloor types (carbonate sand) is not changing with varying in-situ
conditions, Ho: pl =p2 =pu3=..= pun. The alternative Hypothesis Ha claims the
opposite statement: “the spectral discernibility of the seagrass P.oceanica is
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distinctly changing with varying in-situ conditions, i.e. increasing depth, Ho:
uAU2#U3# ... #un”. Two statistical approaches have been used for confirmatory data
analysis and hypothesis testing.

ANOVA-testing

We applied ANOVA (ANalysis Of Variance) testing for the analysis of the
probability of the spectral reflectance of P.oceanica to be more or less spectrally
distinct from other seafloor cover types with changing depth. W are checking the
statement Hypothesis Ho, is true, which is “the spectral distinguishability of the
seagrass P.oceanica from other seafloor types is not changing with varying in-situ
conditions, Ho: pul =p2 =u3=...= un.” which gives the following outcome. P(reject
HOHO is valid)= P(X>c|p=)=.05 where c¢ comes for critical values and
p=probability. The result P=.05 is (Tab.A.9), hence, very small, which makes the
statement of Hypothesis Ho highly unlikely (less than 1 in a 10 chance). The one-
way ANOVA highlighted a significant difference between data of spectral
reflectance of P.oceanica and carbonate sand at different depths, and proved spectral
discernibility of seagrass P.oceanica from carbonate sand (Fig.5.1), i.e. true is the
opposite statement: Hypothesis Ha="“the spectral discernibility of the seagrass
P.oceanica is distinctly changing, and seagrass can be spectrally discriminated from
carbonate sand with varying in-sifu conditions, i.e. increasing depth, Ho: u#p2#u3+#
oo FUNS

As a result of the statistical testing, we came to the following conclusion. The
Hypothesis Ha is true, which claims that the spectral discernibility of the seagrass
P.oceanica is distinctly changing and can be discriminated from other seafloor cover
types (carbonate sand) with varying in-situ conditions, i.e. increasing depth, Ho:
pl#u2#u3#..# un, which positively answers first research question. Statistical
results are illustrated with Error bars made using Excel’s vertical box and Whisker
Charts (Box Plots). The graphs were plotted on the basis of the following statistical
data calculated from the sampling measurements data: Tab.A.11, Tab.A.28 , Tab.A.5
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Statistical values 318.19 | 418.3448 518.8361 619.3662 |

Mean 0.034521 | 0.049235 0.076088  0.085287
3t Dewv 0.019849 | 0.030338  0.042587  0.046569
Median 0.033035 | 0.046197 0.07704 0.080277

Q1 0.019293 | 0.023706 0.045606 0.049468
Q3 0.042477 | 0.057934 0.092289 0.114191
Minimum 0.007898 | 0.010087 0.021373 0.022691
Maximum 0.076835 | 0.110906 0.18938 0.216231
25th [Pet; 0.019293 | 0.023706 0.045606 0.049468
50th Pet 0.013743 | 0.022491 0.031435 0.030808
75th Pet 0.009441 | -0.01174 -0.01525 -0.03391
Min 0.011395 | 0.013618  0.024232  0.026777
Max 0.034358 | 0.052972  0.097091 0.1

Table 4.1: Statistical analysis of the measurements of spectral reflectance of P.oceanica (fragment)

The abbreviations stand for the following values: Mean: Average of the data to be
plotted, AVERAGE data St Dev: Standard deviation, STDEVdata Median: Median
of the data, MEDIANdata Calculating interquartile ranges: QIl=First quartile,
PERCENTILE(data*0.25) and Q3=Third quartile, PERCENTILE(data*0.75)
Minimum: Minimum value, MINdata Maximum: Maximum value, MAXdata 25th
Pct: Plotting value of first quartile = Q1 50th Pct: Plotting value of median =
Median-Q1 75th Pct: Plotting value of third quartile = Median-Q3 Min: Lower error
bar length=Q1 - Minimum Max: Upper error bar length=Maximum - Q3 The
statistical analysis is displayed on the Graph 1.1 which compares the spread in sets
of measurement data of spectral reflectances of under various environmental
conditions (depth).

4.2.2 Remote sensing application

The in situ spectral reflectance data of P.oceanica and sand were used to model
these seafloor cover types as the different sensors would percept them: MODIS,
ASTER, MERIS, SeaWiFS and CZCS. These sensors vary in technical
characteristics and therefore, have different spectral sensitivity, which we briefly
illustrated in a small summary table (Tab.2.1) These models simulate spectral views
of the chosen sensors, how these sensors will "see" seagrass (Fig.4.51) and sand as
pixels, with accepted default atmosphere and water column effects (given by WASI
software). In such a way we defined an empirical upper limit to the discriminative
potential of these sensors. The analysis of the remote sensing reflectance simulated
by these sensors shows that the measured spectra of seagrass P.oceanica (Fig.4.8,
Fig.4.10) were statistically different at most of the spectral bands (Fig.A.35,
Fig.A.36, ), with a 95% confidence level (p value < 0. 05). The F values of the test
(F=8.477 as on Tab.A.7) are greater than F critical value, which is 2.64 at 0.05
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confidence level. This proves that broadband and hyperspectral sensors enable
spectral discrimination of seagrass. Therefore, we answer the second research
question positively, i.e. broadband and hyperspectral sensors (Fig.4.4 and Fig.A.34)
provide enough radiometric information for spectral discrimination of seagrass and
can therefore be used for P.oceanica mapping.

4.3. GIS mapping of seagrass

4.3.1. Data integration

The integrated approach used in this research work has high potential as a means to
monitor changes in seagrass landscape occurring in shallow waters over Crete area.
It encompasses the integration of high resolution aerial color Google Earth
photography, spaceborne satellite imagery, assessment of spectral signatures using
WASI software, image processing by means of Erdas Imagine (Fig:A.50, Fig.A.49)
and ArcGIS based mapping. The use of GIS for data incorporation (Fig.4.11),
storage, analyses, visualizing and mapping enables to analyze environmental
changes within seagrass landscapes based on data from various sources: aerial and
satellite images, geographically referenced maps of Crete Island and results of
images classification showing areas of seagrass distribution. The final mapping has
been supported in ArcGIS through the data exporting, conversion and integration of
various data in one GIS-project (Fig.4.11). Data collected during the fieldwork,
imagery of the seagrass distribution are added into a GIS dataset for the assessment
and spatial analysis.
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Figure 4.11: Google aerial images incorporated into the GIS project: fragment of ArcGIS layout
4.3.2. Accuracy assessment

We prepared the error confusion matrices (Fig.A.32 and Fig.A.33) using kappa
statistics to assess and evaluate accuracy of the classification. The accuracy
assessment has been done using Erdas Imaging function Classifier/Accuracy
Assessment. In the Accuracy Assessment viewer we have chosen utility Edif in order
to generate random points throughout the classified image, and then chosen the
Create or add random points dialog. After the points were generated, we entered the
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class values for the reference points from the supervised classification. In order to
perform a proper accuracy assessment we needed about 300 points so that we
defined the number of points for the selection. From the option parameters for points
distribution we have chosen "stratified random" as better representing the variables.
Then we evaluated the location of the points and determined their class value, which
was done with ground truth points from Google Earth aerial photos for various data
and seafloor imagery and with reference to the signature file, to find the numeric
value that has been assigned to each class previously. Finally, to print the errors
matrix, we selected Accuracy Assessment viewer again and chosen there Report/
Options with turned on Error Matrix, Kappa Statistics and Accuracy Total. The
error matrix is just comparing reference points of various seafloor cover types to the
classified points (i.c. seagrass, carbonate sand, various land cover types on the
coast). The Kappa coefficient takes into account chance agreement and thus, shows
the reduction in errors generated by a classification process compared with the errors
which could be received by a completely random classification — in other words, it
evaluates quality of the classification. The overall map accuracy by supervised
classification is 72% (Fig.A.33), which means that 72% of the pixels are classified to
the correctly chosen seafloor cover type in case, and in case of unsupervised
classification we received result of 64% (Fig.A.32) which proves that supervised
classification is preferable method for seagrass mapping.

5 Discussion
5.1. Remote sensing for seagrass mapping

An approach of the seagrass spectral analysis, monitoring and mapping has been
taken in this work, which integrates various research techniques and tools,
combining remote sensing methods of spectral analysis of the seafloor cover types,
and knowledge of the ecology of P.oceanica, with the aim to develop a method of
seagrass spectral optical discrimination for the seagrass mapping based on the aerial
imagery classification.

In Chapter 1 we discussed main objective of this MSc thesis, which was to study
possibilities of seagrass mapping, based on the application of the remote sensing
measurement of the seawater optical properties using hyperspectral radiometers.

The relationship between the optical properties (spectral reflectance) of the seafloor
cover types and hydrological parameters of the environment has been studied in
order to analyse limitations and capabilities of broadband and narrowband sensors
under the conditions of altering environmental parameters. For the retrieval of
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hydrological parameters - seawater radiance, irradiance and spectral reflectance of
various seafloor cover types, - spectral optical field measurements were carried out
in 2009 at the testing sites in Agia Pelagia, Heraklion and Ligaria beach, Crete
Island using Trios-RAMSES spectroradiometers.

Further in Chapter 1, 1.8 Research assumptions, we assume the constant values of
the optical properties of the seawater, phytoplankton, total amount of suspended
particles and solids, atmospheric conditions, as well as coloured dissolved organic
matter (CDOM), which have been set up in modelling part of this work, during
WASI simulations of various remote sensors.

The second Chapter: Seagrass monitoring: overview of literature and research
resources starts from the review of the available research resources and then
discusses various RTM and reported experience of the remote sensing application
towards seagrass mapping. In section 2.2 of Chapter 2, Measuring water optical
properties: hyperspectral radiometers, the RAMSES-ACC-UV and RAMSES-ARC
spectroradiometers of Trios-RAMSES Hyperspectral Sensor series are described.
The instruments Trios-RAMSES have been wused during the fieldwork
measurements-2009 for the collection of the reflectance spectra. The RAMSES-
ACC-UV measures spectra in the wavelength domain between 280 nm and 500nm,
the RAMSES-ARC, suitable for UV and visible spectra, covers diapason of 320-950
nm with spectral accuracy of 0.3nm (better than 6%), typical saturation (at 200nm)
of IWm-2nm-1sr-1 in 256 channels with a sampling interval of 3.3 nm/pixel and a
field of view is 7 degrees. The spectral reflectance of the seawater with and without
sediments was calculated by the ratio of the radiance and irradiance values.

The reflectance spectra of P.oceanica show (Fig.4.6, A.27, A.28, A.35, A.36) a
values maximum between 450 nm and 600 nm, first, because of the chlorophyll
absorption peak at 465 and 665nm (Fig.A.4), secondly, because of the weakening of
CDOM (or Gelbstoff) in the blue part of the VIS spectrum, as it most strongly
absorbs short wavelength light in blue to ultraviolet range, and finally, because the
absorption of the seawater increases in the red part of the VIS spectra. The decrease
in spectral reflectance values of P.oceanica after 660 nm (Fig.A.28) is caused by the
second absorption peak of phytoplankton. The magnitude of the reflectance
maximum slightly varies at single variables between about 8 % and 12 % (as on
Fig.A.27) and is probably related to the individual pigmentation and colour
composition of single leaves, their structure and geometric orientation, which
naturally causes variations in radiance values.
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Figure 4.7: WASI water color spectral simulation modeller:
Spectral reflectance of P.oceanica and
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atmospheric conditions (i.e. sun zenith angle), but also height of water column, thus
approaching it to the Mediterranean conditions, and chemical content of the seawater
(i.e. amount of suspended particles, Gelbstoff, etc), which results in models of
optical properties of “seawater with sediments” and “seawater without sediments”.

The in-situ field large-scale matte-level level of seafloor monitoring was then
upscaled to airborne Google Earth aerial imagery interpretation, to provide a
meadow-level view of seagrass landscapes. An attempt of the small-scale mapping is
designed on an example of Landsat satellite imagery. However, in upscaling to this
third, small-scale mapping level further environmental variables need to be
considered: health conditions of the seagrass, presence of other underwater
vegetation (e.g. other seagrass species), hydrological specifications (e.g. direction
and speed of currents, amplitude of tidal waves, etc), season, date and times of the
image taken. Therefore, we focused on the first two levels in the current work. These
different levels have been individually considered in terms of the seagrass spectral
discernibility for monitoring and mapping, from which the first two levels have been
brought together, to provide a roundup of the achieved results and an overview of
what still has to be done in P.oceanica seagrass mapping by future researchers (see
Recommendations).

In Chapter 3: Materials and Methods, describing data collection, a videographic
approach tested in previous works, has been applied during the summer fieldwork,
when we captured imagery and video footage of the seafloor on several routes of the
boat in the Ligaria beach.

The finding of Chapter 4: Results showed that the relationship between the spectral
reflectance of various seafloor cover types was tied to depth, i.e. water column
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height. Thus, the results of the in-situ fieldwork measurements revealed that spectral
reflectance of P.oceanica undergo alterations at depths of 0.5, 2.0 and 3.5m
(Fig.4.5). The analysis of the spectral signatures of the seagrass P.oceanica and sand
clearly shows (Fig.A.17) that seagrass has spectral reflectance much lesser than that
of a carbonate sand, in general not increasing values of 10% reflectance in spectra of
500-600 nm, while sand has spectral reflectance approaching 33% in its highest
values. These results indicate that seagrass P.oceanica can in general be detected and
discriminated from other seafloor cover types with varying environmental
conditions, i.e. water column height, by hyperspectral spectroradiometers (Trios-
RAMSES), which positively answers the first research question of this thesis (“Is
P.oceanica spectrally distinct from carbonate sand with varying in-sifu conditions
7). Further in Chapter 4. Results, studies of the broadband and narrowband sensors
demonstrate that simulated spectra of the seagrass, made using WASI modeller,
have the best results at CZCS scanner, especially devoted to the measurement of
ocean color. The spectrum of P.oceanica reflectance, simulated for CZCS, covers
the wavelength interval of 400-800 nm, and is distinctive for various depths. Other
remote sensors (MODIS, SeaWiFS) may also be used for the seagrass mapping,
because their technical characteristics enable to spectrally discriminate P.oceanica
seagrass from other seafloor cover types (Fig.4.4), particularly carbonate sand as
tested in the current work. Therefore, the second research question of this MSc
thesis (“Do broadband and hyperspectral sensors provide enough radiometric
information for spectral discrimination of seagrass, and therefore, can be used for
mapping of P.oceanica ?”) is answered with “yes” and the most suitable sensor is the
Coastal Zone Color Scanner CZCS. The graphs showing optical properties of
seawater with and without sediments (Fig.4.3, A.17, 4.2) focused on spectral
variability of the water with changed physical and chemical content. The alterations
in the individual spectral signatures of single measurements (e.g. on Fig.4.8,
Fig.A.35, Fig.4.10, Fig.A.37) reflect individual health properties of leaves: different
nitrogen and chlorophyll content causing diverse colour pigmentation and light
absorption, water content in leaves and plant physiological conditions, which vary
across seagrass meadow, shoot morphology, etc. The differences in spectral
reflectance values of the measurements taken on various days might have been
caused by the impact of atmospheric conditions, such as solar radiation and sun
illumination by different zenith angle.

For further development of the remote sensing based monitoring and mapping of the
seagrass and other seafloor cover types it is desirable to consider upscale mapping
with concern to bathymetry. Studies of the substratum and underwater relief in a
more detailed way, i.e. bathymetric properties of the testing sizes, gives information
about seagrass landscape distribution, because changes in relief directly cause and
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reinforce the colonisation process of P.oceanica meadows. Thus, the depression and
valleys in relief in general stimulate increase of the sedimentation process. In turn, it
enables accumulation of necessary nutrient for seagrass plant growth, increases
resource allocation to the seagrass roots for better exploitation of pore-water
nutrients by the P.oceanica shoots. While studying size of patterns and patchiness in
seagrass landscapes, we would stress that anthropogenic caused disturbances (e.g.
ocean trawling) should be considered as a main source P.oceanica landscapes
fragmentation.

5.2 Upscale mapping of the seagrass landscapes

Although ocean pelagic landscapes have a high degree of spatial variance and less
structurally complex, comparing to the terrestrial ones, the landscape-level
phenomena have similar features, and there are accepted definitions of landscapes
elements within the seagrass meadows [124]. In general, the structure of seagrass
landscape is simpler than that of the terrestrial ecosystems in biodiversity and
complexity; however, seagrass landscapes show variation in spatial patterns over
different special scales (Fig.5.2). The complexity of the landscape of secagrass
meadow is shown by the measure of patches in size and shape, expressed in ratio of
patch perimeter to area. The fragmentation of the seagrass landscapes is expressed in
contiguity displaying patch aggregation within meadows.

The general principles of the hierarchy within the seagrass landscapes are based
upon the quantitative analysis of the spatial patterns, consisted by components and
separate elements. Thus, bunches of individual shoots construct patches, the first
hierarchical level. Patches are arranged into discrete clumps of mattes (at a scale of
centimetres to meters) which, in turn, make up beds with 1-100m in diameter.
Finally, seagrass beds are arranged into meadows that may extend over kilometre-

wide areas, historically defined as landscapes [124].

=

J

(a) Meadows of the seagrass. {b) Patches {mattes) of the seagrass.
Source: Google Earth Source: in-situ videometric measure-
ments

Figure 4.18: Variations in spatial structure of the seagrass landscapes
Besides spatial structure of the seagrass meadows, there are strong and complex
patterns of depth zoning, specific to individual seagrass species, but such detailed
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classification goes beyond the scope of the current study. Unique feature of seagrass
meadows, most characteristic for shallow areas, is dynamics of their landscapes.
Homogeneous, continuous seagrass meadows can reach in size up to 40 m2
(Fig.3.10a), however they are often interrupted by gaps and channels of open spaces
generated by the complex, disturbing sedimentation processes, turbulence and
turbidity regime of waters and landscape dynamics, which form gaps and channels
within meadows, making them “patchy-looking”, i.e. diversified by separate mattes
(Fig.3.10 b). The traditional definition for gap in vegetation cover is “disturbance
generated openings in either floral or faunal cover” [24].

Formation and increase of these gaps within the mosaic of seagrass meadows is
caused by different reasons. The most probable drivers for the process of gaps
formation within seagrass meadows are removal of interior vegetation, differential
growth of seagrass meadows and increased sedimentation. Thus, storms lead to
severe deposition of sediments, burying parts of seagrass meadow, the same effect
has movements and deposition of sediments during and after floods[9]. Increased
nutrient sedimentation, especially phosphorus, were explored [63] as a potential
mechanism for increasing patch dynamics and morphological plasticity within
seagrass meadows. Finally, increasing the degree of fragmentation of the landscapes
of P.oceanica meadows can be caused by the invasion of alien species, such as
Cymodocea nodosa, Caulerpa prolifera, Caulerpa taxifolia. Invaders are in general
strong colonizers comparing to native P.oceanica: they occupy much greater habitat
space within the regressed meadows of stressed native seagrass [97]. However, on
the northern coasts of Crete the only dominating seagrass species is P.oceanica.
Morphological differences in scale of seagrass landscape formations, discussed
above, cause need for the different-scale mapping. Therefore, the investigation of the
seagrass meadows at different levels is performed using underwater videometric
measurements, aerial and satellite imagery.

6. Conclusion

The goal of this MSc research was to explore the perspectives, advantages and
limitations of the narrow-band and broadband sensors for the environmental
mapping and monitoring of P.oceanica seagrass along the coasts of Crete Island.
The research outcome demonstrated that the application of the remote sensing data
from the broadband sensors is highly advantageous for the seagrass mapping, the
spectral discrimination of P.oceanica from other seafloor cover types is possible at
diverse and changing environmental conditions, and that P.oceanica is spectrally
distinct from other seagrass species (Thalassia testudinum), Fig.2.6.
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The RTM software is a powerful means for analyzing spectral signatures of various
seafloor types and enabling simulations of data received from broadband and
narrowband remote sensors. The example of application of WASI RTM, given in
this work, is an achievement of the research insight towards the spectral properties
of P.oceanica and other bottom cover types, enabling to discriminate them from
each other with changing environmental conditions. The research shows that spectral
signatures of P.oceanica are distinct at various depths.

The methodology of the spectral discrimination of seafloor cover types is designed
in the frame of this research and is based on the application of the remote sensing
RTM techniques, data from broadband sensors, hyperspectral radiometers for
measurements of optical properties of the seawater, categorical and continuous
statistical analysis for the data processing and GIS raster based software for images
visualization, classification and analysis. Technically, we used different software,
adjusted for diverse research purposes, to manage, integrate and process data from
various origin and resources, and finally to receive accurate research results.

The marine coastal ecosystems are complex, constantly changing and developing.
Using flexibility of GIS combined with RS methods and application of data from
broadband sensors is therefore advantageous for the monitoring of coastal areas.
Besides Mediterranean area, the methodology of the seagrass environmental studies
can be applied towards other shelf areas with dominating seagrass landscapes.

More than 50 % of the world population lives within one km of the coast, which
results in continued anthropogenic pressure on the coastal regions. Therefore,
management of coastal resources and shelf zone protection become increasingly
important nowadays, and require large-scale monitoring and mapping of the shelf
areas as a vital instrument for the environmental assessment.

This research is a contribution to the development of the methodology of seagrass
mapping with aim of the environmental monitoring, and a case study of P.oceanica
seagrass, dominating in underwater ecosystems along the coasts of Crete Island.

6. Recommendations

To make further studies of P.oceanica more effective we would suggest the

following recommendations to be considered by the future researchers:

1. To extend the research area towards the eastern part of the Crete Island, in order
to received more regular observations of the seagrass locations.

2. To use different sources of imagery and thus, to increase the total collection of
scenes covering the research area.

3. To extend the temporal period of the imagery coverage, once the data are
available. The current work only includes images covering short temporal period
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(ca 10-year); further estimation of the dynamics of P.oceanica along the coasts
of Crete would increase our understanding of the long-scale temporal variations
of the seagrass distribution.

To apply various classifications methods for the available imagery in order to
compare the results received by means of various techniques

To simulate various environmental conditions while modelling optical properties
of different seafloor cover types. Not only the depths and the chemical content of
the seawater should be considered, but also other factors determining the effect
of the ecology and health of P. oceanica.

To consider seafloor geomorphology among other factors determining seagrass
distribution. If possible, to find out bathymetric data for the research area, and to
overlay them with existing images and maps, in order to analyse correlation
between spatial distribution of seagrass P. oceanica and underwater relief along
Cretan coasts.

In upscaling to the small-scale mapping level further environmental variables
need to be considered: health conditions of the seagrass (usually, indicated by the
number of leaves per shoot), presence of other underwater vegetation, hydrology
(e.g. direction and speed of currents, amplitude of tides and waves), season, date
and times of the image taken.

Other RTM software may be tested and the modelling outcomes compared.

. Application of various open source GIS (ILWIS, GRASS) could be very useful

for the validation of the cartographic results, assessment of accuracy and
comparison of various classification methods.

10. The analysis of the health indicators of the seagrass (such as number of leaves

11.

per shoot, biomass estimation within the single shot, etc) was not considered in
the current work, as it would go beyond the scope of the MSc thesis. However,
ecological investigations could be used for the assessment of the vulnerability of
the seagrass meadows in various locations on Crete.

A flexible combination of the multi-scale mapping and results of the fieldwork
measurements with GPS-referenced underwater footage would enable more
profound analysis of the coastal environment on Crete.
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Appendices

A.1 Capturing aerial imagery from the Google Earth: grabbing process
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Figure A.1: Capturing aerial imagery from the Google Earth: grabbing process
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cd C:'Program Files'\FWTools'bin

edal_manslate -of ECW -Co "TARGET=0" -C0 "DATUM=WGS84"
“C:\Users'Polina'Docinnents'MSc GEM'Google
grabbing'APelagia_WNS_Krimanet_2007- 2009, tif"
“C:\Users'Polina'Documents'MSce GEM'Google grabbing'APelagia. WMS_Krimaner 2007-
2009.ecw*™

C:'Program  Files\FWTools2.4.7'bin>gdal_tanslate -of GTiff -co "DATUM=WGSE4" "C:
\Users'Polina\Documents MS¢ GEMHOLLAND'DISSER MSc'Crele'ArcPad_crete'APela
gia_google 15un2002.ecw”
"C:\Users'Polina'Documents'MSc GEMHOLLAND'DISSER MSc'Crete' ArcPad_crete'A
Pelagia google 15juin2002.11

Figure A.2: Script command of FWTools2.4.7 enabling to reduce the size of the
aerial images, from .tif to .ecw format.

A.2 Illustrations of some concepts and principles of the remote sensing, relevant

for this work
Zenith
Satellite

Wewing
Zenith
Angle

Sun

Where you are

Center of the Earth

Fig. A.3. Schematic illustration of the solar zenith angle and viewing zenith angle
for observations from satellite-based instrument. Source: http://sacs.aeronomie.be/
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Figure A.4. Absorbance spectra of free chlorophyll a (green) and b (red) in a solvent.
The spectra of chlorophyll molecules are slightly modified in vivo depending on
specific pigment-protein interactions. Source: Wikipedia.org.

Conical beam transducer

Figure A.5: Example of sonar beam acoustic systems used for mapping seagrasses
habitat boundaries. Source: Reef Research.
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Figure A.6: Example of wave backscattering from the vegetation. Source: Yoshio
Inoue, http://cse.niaes.affrc.go.jp/miwa/esid/highlight/microwave-backscatter.html
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Figure A.7: BRDF is a ratio of reflected radiance along wo to the irradiance from
direction i, all parameterized by azimuth angle ¢ and zenith angle 6.

Source: Wikipedia.org
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A.3. Instrumental adjustment and tuning (Trios-RAMSES setup)

|

Parameters | 15 October, set 1 | 14 October, set 4

Version 1 1

IDData 78B1-2009-10-15- 78B1-2009-10-14-15-15-59-342-
08-56-22-280-272 726

IDDevice SAM-820C SAM-8204

IDDataType SPECTRUM SPECTRUM

IDDataTypeSubl CALIBRATED CALIBRATED

DateTime 2009-10-15 08:56:22 | 10/14/2009, 15:15:59

PositionLatitude

35.2451=351429.435

3594752 =35 14:51.072"

PositionLongitude

25.01269=250"45.683

25.0098 = 250'35.2794"

Comment P.oceanica, P.oceanica,

CommentSubl 0.5m depth 2.5m depth

CommentSub2 diffuse diffuse

Comment3ub3 Agia Pelagla Agia Pelagla site 2, close to rocks

IDMethodType SAM Control SAM Control

MethodName SAM-820C SAM-8204

Mission No Mission No Mission

MissionSub 1 1

RecordType 0 0

CalFactor 1 1

IDDataBack DLAB-2008-02-06- | DLAB-2008-01-25-20-42-29-607-
14-13-18-865-675 062

IDDataCal DLAB-2008-02-06- | DLAB-2008-01-28-08-40-24-220-
14-23-00-187-767 395

IntegrationTime 512 1024

P31 -1 -1

P3le 0 0

PathLength +INF +INF

RAWDynamic 65535 65535

Temperature +NAN +NAN

Unitl 0101  Wavelength | 1 1 Wavelength nm
nm

Unit2 03-06 Intensity | 03 03 Intensity mW/(m2 nm Sr)
mW/(m2nm)

Unit3 f0-06 Error | 3-3 Error mW/(m2 nm Sr)
mW/(m2 nm)

Unit4 f1-00 Status f1-00 Status

Table A.1: Attributes of the Trios-RAMSES hyperspectral radiometer during
measurement sets. Selected examples (14. X, set 1 and 15.X, set 4).

66




Parameters

| 14 October, set 1

15 October, set 4

" Version 1 1
" IDData 78B1-2009-10-14 78B1-2009-10-15-10-36-02-217-
15-32-02-078-323 136
IDDevice SAM-820C SAM-8204
 IDDataType SPECTRUM SPECTRUM
IDDataTypeSubl CALIBRATED CALIBRATED
" DateTime 2009-10-14 15:32:02  2009-10-15 10:36:02
" PositionLatitude 35.24752= 35.245071=3514'42 2556”
3514'51.0727
PositionLongitude | 25.0088= 25.012661=25045.5796"
25035.2794”
- Comment P.oceanica P.oceanica
" CommentSubi 3.5m depth 1.5m depth
CommentSub?2 diffuze diffuze
- CommentSub3 Agia Pelagia, Agia Pelagia site 1, cloge to rocks
IDMethodType SAN Control SAM Control
" MethodName SAM-820C SANM-8204
* Mission No IMiasion No Miasion
MizsionSub 1 1
~ RecordType 0 0
~ CalFactor 1 1
IDDataBack DLAB-2008-02-06-  DLAB-2008-01-25-20-42-29-607-
14-13-18-865-675 062
" IDDataCal DLAB-2008-02-06-  DLAB-2008-01-28-08-40-24-220-
14-23-00-187-767 395
IntegrationTime 84 32
[zl -1 -1
 P3le 0 0
PathLength +INF +INF
" RAWDynamic 85535 65535
' Temperature +INAN +INAN
Unitl 01-01 Wavelength 01-01 Wavelength nm
nm
~ Unit2 03-08 Intensity 03 03 Intensity mW /{m2 nm Sr)
mW /{m2nm)
" Unit3 f0-08 Error 0-03 Error mW/(m2 nm Sr)
mW /{m2 nm)
Unit4 £1-00 Status f1-00 Status

Table A.2: Attributes of the Trios-RAMSES hyperspectral radiometer during
measurement sets. Selected examples (15. X, set 1 and 14.X, set 4).
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A.4. Types of seagrass structural patterns, Ligaria beach, Crete

(a) Fragment  of (b) Apggregated sea- (c) Isolated patch of
meadow grass patch S6a,grass

Figure A.8: Types of seagrass structural patterns, Ligaria beach, Crete
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Figure A.9: Locations of the video measurements and GPS tracklogs, Ligaria
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A.5. Results of videographic measurements: seafloor types on Crete Island

Figure A.10: Ligaria beach, Crete: seafloor types

Seafloor type: rocks

Microrelief of the sgx[loor

Seafloor type: sand & gravel
Seafloor type: seagrass
coverage

Seafloor type: gravel & rocks

Figure A.11: Various seafloor types; Ligaria beach, Crete
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Figure A.12: Measurement underwater equipment
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| Fer=cnel firewsall =oftware may warn sbout the conmection IDLE
nakes to its subprocess using this ccoputer’'s internal lcopback
intexface. This connection i not visible on any extexnal
intevface no data iz sent to or yeceived I the Imternec.

A A AR A AR R AR AR R AR,

IDLE 2.6.4
|| >»> typorz asv

.Dcn- 18]

Reader = cav.zreader(cgen('data,txt®, 'zb'}), delimiter=" ’,guoting=csv.QUOTE_NONE)
for row in Reader:
! Daca += [{xow[0], row({2], int{flcac(row(0})), float(xaw{2]})]

fi =0
waile 3 < len(Date) - 1:
prins Datafi](2], Davaf1}[1]
diff = Daca{i+2]{2] - Dazaii) (2}
akew = (Data[i+1)[3] - Daca[i}[3])/date

3 prine diff skew
’ Print diff, “ssssnt
e

while 3 < diff:
princ Datafi]{2)e3, “+I* & (Data[L][S]e(akev*l))
=2

xint Daca[il[2], Dacafij(l}
33>

|
)
|
f
)
)
L
|
f
! b PR ol §
f
i
|
|

File Edit Formst Run Ogtioms Windows Help
Pyzhon 2.6.5 (r265:7%0%6, Mar 19 2010, 21:148:26) {M5C w.1500 32 bit (Intel)] on win3d2 _‘1
Type "copyright!, "oredita" or “"licens=e|)" Zor more informaction.

5]

[ 37/Cok 0]

Figure A.13: Script written on Python, for the interpolation raw data of the Trios-

RAMSES measurements
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Mo Gar Sercs Vmw incecg lunguage Teinge Mace Ran TedfX Phgm Wk T
o BEB v HR 4Lk D cianl 22 BERIRIER 0N BEI% sy G
ESERE! 1 eorrour Jilsn]

Bortew lbede spectra X BaBu/fd

Cuta ace waing A FAMSEE cneter

The 5 zn data inservals were limearly interpolazed 3o X ANTATVals,
The data of sefl a3 been at . atep.

COAT = BITAfIGLAL Specurim OF COSATAST albesd

ailt - fize-graized sediment in ' om wWarer Septh cloaw o the axcreline of Szarzkerger Sas
814 = sand Trom AyLa Pelagia Deaoh, Crese, Mediserransan Sea

thal= Thalasais 3cegrersy from Scuth Chize Zee, Focific Coean

POR = JIay XOAgraas "Poaldocis coeanioat from Agia Pelagia beach, Crete, Mediterrazean Jea

-
L R Ve

Y
i

consz  ailz

bength: 10143 fres: 30 Le: ) Col:32 Sel:0 DovWindawa ANSL

Figure A.14: Fragment of Bottom.R file: values of spectral measurements of the

seagrasses (various species), sand, silt and artificial spectrum of constant albedo
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penOffice.org Calc

File Edit View Inset Format Tools Data Window Help
E'EE%EEB "@@X B-¢ B-0- @NN By HOEEQ O
[@J | calibri n [z] BZ U = B% B W s O-2-4A-
F10 ] &xE =] ) initial_sand.txt - Notepad _| Interpolated_sand.txt - Notepad
A T B T C T ) I E File Edit Format View Help File Edit Format View Help
ENVI ASCII Plot File [Tue Feb 16 04:21:39| | nm sand, A Pelagia
1 i Colurn 12 XAote 400.000000 0.968726
| nm const silt chara posocean Column 2: Sand bt:C2~~3 401.000000 0.978998
2| a00 0.10000 003840 | 0.013770 | 0.04228 402.000000 1.000000 402.000000 0.988526
3] ao 0.10000 0.03898 | 0013770 | 0.04232 405.000000 0987680 403.000000 0.995893
[4 ] a0 0.10000 0.03956 | 0.013770 | 0.04235 408.000000 0.972124 404.000000 0.991787
5 203 010000 | 0.04014 | 0.013770 | 0.04241 412.000000 0.944728 405.000000 0.987680
6 | a0a 0.10000 004072 | 0.013770 | 0.04247 415.000000 0.938243 igg gggggg g g%gg
[7 | aos 0.10000 0.04130 | 0.013770 0.04253 418.000000 0.934035 : -
s | 406 010000 | 004202 | 0013776 | 0.04250 422.000000 0.925094 405000000 Sdrata
- 425.000000 0935390 409.000000 0.965275
9 407 0.10000 0.04274 | 0013782 | 0.04243 o diboh ferr 410.000000 0.958426
o 0.10000 0.04346 | 0.013788 0.04237 [ 432.000000 0943196 411.000000 0.951577
|11 | 409 0.10000 0.04418 | 0013794 | 0.04229 435.000000 0.957380 412.000000 0.944728
12 410 0.10000 004430 | 0.013800 | 0.04217 438000000 0.965781 413.000000 0.942566
[13 ] 411 0.10000 0.04556 0.013794 0.04205 442.000000 0.967214 414.000000 0.940405
14| a2 0.10000 0.04622 | 0.013788 | 0.04194 445.000000 0.970427 415.000000 0938243
15| a13 0.10000 0.04683 | 0.013782 | 0.04130 448.000000 0.968774 416000000 a0
[16 | 414 010000 | 004754 | 0013776 | 0.04186 462.000000 0.954180 411000000 93338
208 455.000000 0.947281 418.000000 0.934035
17| a5 0.10000 0.04820 | 0.013770 | 0.04183 oD 1o 419.000000 0.931800
[18 | 416 0.10000 0.04896 0.013790 0.04179 462.000000 0.920594 420.000000 0.929564
19| a7 0.10000 004572 | 0013810 | 0.04174 465.000000 0.910810 421.000000 0.927329
0| a8 0.10000 005048 | 0.013830 | 0.04170 469.000000 0.892398 422.000000 0.925094
2| a9 0.10000 0.05124 0.013850 0.04167 472.000000 0.881714 ﬁz 333333 3 gg?gég
2 420 0.10000 0.05200 | 0.013870 | 0.04166 475.000000 0.873206
3| an 0.10000 0.05280 | 0.013910 | 0.04165 479.000000 0.862935 425000000 0335090
[2a | a2 010000 | 005360 | 0.013950 | 0.04164 482.000000 0.865458 ﬁg 333333 g m%?
|5 | a2 0.10000 0.05440 | 0.013990 0.04169 Ay Jogon & dv
|6 | 424 0.10000 0.05520 | 0.014030 0.04174 ARS,000000 57601 etnads o]
o | < s & & 492.000000 0.876551 429.000000 0.949134
|22 | a2 0.10000 0.05600 | 0.014070 | 0.04178 495000000 0.888168 430.000000 0.948821
|8 a2 0.10000 0.05683 | 0.014090 | 0.04182 499000000 0897362 431.000000 0.948509
2 427 0.10000 005776 | 0.014110 | 0.04184 502.000000 0.906839 432.000000 0.948196
[30 | a2 0.10000 0.05864 | 0.014130 | 0.04187 505.000000 0.911362 :gjgggggg gggg?;
[3| a2 0.10000 0.05952 | 0.014150 | 0.04187 509.000000 0.912245
32| a3 010000 | 006040 | 0.014170 | 0.04180 512.000000 0.924067 35000000 S3080
e 515.000000 0937489 436.000000 0.961180
2] an 0.10000 0.06124 | 0014190 | 0.04172 S0 ToAseis 437.000000 0.964981
[3a | a2 0.10000 006208 | 0.014210 | 0.04164 55 00000 Gt 438.000000 0968781
[35 | 433 0.10000 0.06292 | 0.014230 | 0.04159 526.000000 0.957941 439.000000 0.968389
|36 | a3 0.10000 0.06376 | 0.014250 | 0.04155 529.000000 0.968515 440.000000 0.967998
7 435 0.10000 0.06360 | 0.014270 | 0.04150 532.000000 0.978359 441.000000 0.967606
[38] a3 0.10000 0.06550 | 0.014310 | 0.04151 536.000000 0.982857 ﬁg gggggg g-gggg
[39 | a37 0.10000 0.06640 | 0.014350 | 0.04157 539.000000 0.992011 5
[0 | a3 010000 | 006730 | 0.0143% | 0.04163 542000000 0.997759 ﬁ gggggg g 33332?
an 439 0.10000 0.06820 0.014430 0.04170 S opon 8 y 7
14| - . . a 549.000000 0999104 446.000000 0.969876
[2 | as0 0.10000 006910 | 0.014470 | 0.04180 15 00000 1 00ADDG 447000000 0969325
3] am 0.10000 0.07010 | 0.014556 | 0.04190 556.000000 0999265 448.000000 0.968774
[ | as2 0.10000 0.07110 | 0.014642 | 0.04200 559.000000 1.000000 449.000000 0.965126
[00)01)\Sheet1 (Sheet2 {Shees / ||« || 562000000 1000000 450.000000 0.961477

Figure A.15: Interpolation of the spectral measurements by means of Open Office
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A.7. Data processing and statistical evaluation: measurements of the seafloor
optical properties.

Table A.3: Basic mathematical formulae used for statistical analysis of the
measurement set of the spectral reflectance.

Basic Statistics Math Formulae
Mean D{w;fn=7)
Variance — S{e;— &) = s,
Standard Deviation s =g
Coefficient of Variation s/&
Skewness L B(ws— )/s°
Excess Kurtesis - Bles— 2) /st -3

Radiance of seawater, measured in aquarium tank. Smooth Bezier interpolation. Visualization in GNUplot
1.6 T T T T T

T
Bezierl
Bezier2
Bezier3
14 Bezier4
Bezier5 -
Bezieré
Bezier7
Bezierg8 |
Bezier9
Bezierl0 ——
Bezierll ——
Beziert2 — 7]
Bezierld ——
Bezierl4 -
Bezierl5
Bezierls —— |
Bezierl7 ——
Bezierl8 ——
Bezierl9 ——

08 [mesvs

radiance

Bezier20 ——
Mean value

0.6 [~

0.4

0.2

300 400 500 600 700 800 900
wavelength, nm

Figure A.16: Radiance of the seawater with sediments. Measured in

aquarium tank. Bezier Interpolation. Gnuplot
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Spectral reflectance of seawater without sediments (aquarium tank). Statistical analysis: Q1, Q2, mean and extreme values (min-max)
0.06 T T T T T T

Results of measurement sets: 1-27. Bezier interpolation

0.04

0.08
0,07'320 .

0.06 [~

T
400

median,:max and min values :

0.05
0.04
0.03
0.02
0.01
0.0
0.06
0.05
0.04
0.03
0.02
0.01

0
300 400

i

Figure A.17. Multiplot graph showing spectral reflectance of the seawater without sediments,
measured in aquarium tank, Agia Pelagia district, Crete. Gnuplot. Two complimentary graphs
below show the results of the statistical analysis

Trradiance of seawater, measured in aquarium tank. Smooth Splines interpolation. Visualization in GNUplot
600 T T T T T

T
Splines2
Splines3
splines4
Splines5
Splines6 -
500 B H : Splines7 7
spliness
Splines9
Splines10 ——
splines11 ——
L i ; Splines12 —— |
400 i Splines13 ——
Splines14 ——
Splines15
Splines16
Splines17 ——
Splines18 —— |
splines19 ——
Splines20 ——
Mean value ——

300

Irradiance

200

0 i i I i i
300 400 500 600 700 800 900

wavelength, nm

Figure A.18: Irradiance of the seawater, measured in aquarium tank. Smooth
Splines interpolation. Visualization in Gnuplot
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Table A.4: Robust estimation of the seawater radiance (measured in aquarium tank,
Heraklion): results of the least absolute deviation (LAD), Series:V16. Gretl

Model 6: LAD, using observations 1:01-8:23 (T = 191). Dependent variable: v16

Coefficient Std. Error t-ratio  |p-value
[lex] const |0.738911 0.0862011 8.5719  10.0000
vl -0.000775186  0.000114010  |-6.7993 |0.0000

Median depend. var 0.227857  |S.D. dependent var 0.205031
Sum absolute resid 30.22342  |Sum squared resid 8.059632
Log-likelihood 28.74727  |Akaike criterion -53.49454
Schwarz criterion -46.99000 |Hannan—Quinn -50.85990

Irradiance of seawater, measured in aquarium tank. Smooth Bezier interpolation. Visualization in GNUplot

600 T
Bezier2
Bezier3
Bezier4
Bezier5s ——
Bezieré
500 [ : Bezier7 7
Beziers
Bezierd
Bezierl0
Bezierll
Bezier12
4% : Bezierl3 }
Bezierl4
Bezierl5
o Bezierl6
= Bezierl7
& 300} Bezier18 =
g Bezierl9
= Bezier20
Mean value ——
200
100 -
0 i i
300 400 500 600 700 800 900

wavelength, nm

Figure A.19: Irradiance of the seawater, measured in aquarium tank. Smooth Bezier
interpolation. Visualization in Gnuplot
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Spectral reflectance of the seawater with sediments. Bezier interpolation. Mean value is shown by the vertical impulses linestyle. GNUplot
014 T T T T T T

Spectral reflectance

wavelength, nm

Figure A.20: Spectral reflectance of the seawater with sediments. Bezier
interpolation. Mean value is shown by the vertical impulses linestyle. Gnuplot

v15 (aniginal data) ——
v15 (smoothed) ——

003 [ Creheal component of vis

0.02
3

Figure A.21: Plot illustrating polynomial trend for spectral reflectance of seawater
without sediments (Ligaria Beach), variable V15. Gretl modelling visualization
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V15 (original data) ——
N 15 (smoothed)
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Figure A.22: Plot illustrating polynomial trend for spectral reflectance of seawater
with sediments (Ligaria Beach), variable V15. Gretl modelling visualization

V15 (onignal data) ——
V15 (smoothed) ——

Figure A.23: Exponential moving average of spectral reflectance of seawater with
sediments (Ligaria Beach), variable V15. Gretl modelling visualization
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Test statistic for gamma: v23 mmm
-3.061 pvalue = 0.00220 gamma(:6181,0.26011) —

Density

Figure A.24: Frequency normality test against gamma distribution: radiance of the
seawater, measured in aquarium tank. Visualization in Gretl

v23 mmm

Test statistic for normality:
N(0.25908,0.20367) ——

Chi-squared(2) = 34.995 pvalf

3.5

25

Density
~N

0.5

Figure A.25. Frequency normality test against normal distribution: radiance of the
seawater, measured in aquarium tank. Visualization in Gretl
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A.7.1 Data processing and statistical evaluation: P.oceanica
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Figure A.27: Spectral reflectance of P.oceanica.
Measurement series 401-420. Gnuplot
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‘Statstical visualzation of spectral reflectances of P.oceanica a dfferent wavelength. Measurement series 401-420

Quarties =1

spectral reflectance

wavelength, nm

Figure A.28: Statistical analysis of the measurement data: spectral reflectance of the

P.oceanica. Visualisation of the interquartile ranging. Example of data set 401-420.
Shown midspread of statistical quartiles Q1 and Q3, min and max values within the

range. Gnuplot

Statistical visualization of spectral reflectances of P.oceanica at diferent wavelength. Measurement senes 401-420

spectral reflectance

wavelength, om

Figure A.29: Enlarged fragment of the statistical analysis of the measurement data.
Example of data set 401-420. Visualisation of the inter-quartile ranging and plotted
together with measurement data. Gnuplot
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Wawvelength, nm mean Q1L min Q3 max median
318.23354 0.030467 0.038907 0.029764 0.069762 | 0.116100 0.048984
338.29900 0.033560 0.043030 0.032847 0.076252 | 0.128290 0.054334
358.37932 0.039897 0.051320 0.039131 0.091143 | 0.154409 0.066354
378.47247 0.045786 0.058849 0.045039 0.105993 | 0.177150 0.078339
308.57640 0.052346 0.066859 0.051625 0.122328 | 0.201038 0.091905
418.68905 0.058942 0.074842 0.058240 0.138984 | 0.226028 0.106207
438.80838 0.070690 0.089761 0.069999 0.167825 | 0.267712 0.130580
458.93235 0.080107 0.102089 0.079392 0.191424 | 0.304933 0.149762
479.05891 0.086278 0.110348 0.085546 0.207940 | 0.332934 0.162881
499,18600 0.098498 0.126592 0.097689 0.239161 | 0.380603 0.188192
519.31159 0.110222 0.143976 0.109022 0.265948 | 0.421370 0.210237
530.43363 0.125694 0.166156 0.124310 0.302678 | 0.475842 0.240492
559.55006 0.131844 0.175865 0.130257 0.319385 | 0.503907 0.253726
579.65885 0.121915 0.166084 0.120186 0.302078 | 0.485661 0.237873
5990.75794 0.077236 0.111113 0.075669 0.200557 | 0.343876 0.154016
619.84529 0.057038 0.085386 0.055588 0.154781 | 0.281737 0.117003
639.91885 0.050841 0.077438 0.049432 0.141810 | 0.265181 0.106188
659.97657 0.038118 0.059971 0.036997 0.110774 | 0.223366 0.082411
680.01641 0.032892 0.052265 0.032012 0.095789 | 0.198389 0.071686
700.03633 0.034756 0.058426 0.033643 0.101504 | 0.215413 0.075789
720.03426 0.026287 0.047084 0.025162 0.082940 | 0.193535 0.061184
740.00817 0.009740 0.022355 0.010145 0.042861 | 0.132244 0.029414
750.95601 0.008651 0.020234 0.009191 0.039371 | 0.128165 0.026558
779.87573 0.006019 0.014157 0.006397 0.028320 | 0.100314 0.019322
799.76528 0.008607 0.020030 0.009050 0.037323 | 0.118123 0.026535
819.62263 0.008777 0.020295 0.009288 0.037598 | 0.118055 0.026799
830.44571 0.002562 0.008010 0.002864 0.017472 | 0.076515 0.011432
850.23249 0.002653 0.006921 0.002897 0.016121 | 0.070377 0.009889
878.98001 0.002327 0.008080 0.002821 0.018625 | 0.082462 0.011617
808.68893 0.004077 0.013098 0.0047089 0.031217 | 0.101146 0.019767
018.35451 0.006215 0.020162 0.007229 0.045213 | 0.199711 0.029950
937.97559 0.005783 0.026132 0.007307 0.065475 | 0.195072 0.040848
051.03058 0.002296 0.026581 0.002380 0.067924 | 0.265845 0.041483

Table A.5. Results of the statistical analysis of spectral reflectance of P.oceanica,

with average values (for sets 1 - 350). Generalisation up to step 20 nm
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Table A.6: Model summary of the regression analysis: curve estimation and
ANOVA table tested for single observations within one measurement set: spectral
reflectance of P.oceanica. SPSS
R R square Adjusted R square I Std. Error of the Estimate |
2771 077 068126692 I 462 |

The independent variable is wavelength.

Table A.7: ANOVA table: exponential curve estimation in the regression analysis,
tested for single observations within one measurement set: spectral reflectance of
P.oceanica. SPSS

| Sum of squares | df Mean Square F Sig.

Regreasion 1.810 1 1.810 8.477 .004
 Residual 21.781 102 214
Total 23.592 103

The independent variable is wavelength.

Table A.8: Coefficients of the regression analysis (exponential curve estimation) of
the spectral reflectance of P.oceanica. SPSS

| Unstandardized Coefficients |

B Std.Error Stand. Coef. Beta I b Sig.
" wavelength -.001 .000 -.277 -2.912  .004
" constant 484 121 3.821  .000

The underlying process assumed is independence (white noise).
Based on the asymptotic chi-square approximation.
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Statistical visualization of spectral reflectances of P.oceanica at different wavelength. Measurement series 401-420
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02r

01
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Figure A.30: Fragment of the statistical analysis of the P.oceanica reflectance.

Example of data set 401-420. Visualisation of the measured data together with

statistical values: inter-quartile ranging, medians, means. Gnuplot

Source of Variation SS df MS F P value F crit
] Between Groups 373841.7048 2 186920.8524 407.85359 1.11677 3.01153
Within Groups 261233.1668 570 4583038014
Total 635074.8716 572

Table A.9: Results of the ANOVA one-way analysis: results of the single factor
(depth) testing of the radiance of P.oceanica at various depths: 0.5, 1.5 and 2.5
meters. SPSS

P more than .05, which means that there is a significant difference in radiance of
P.oceanica at three different depth (0.5, 1.5 and 2.5).
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Groups Count Sum Average Variance

Column 1 191 760.126692  3.9797209 18.6948048
Column 2 191 4527.214218 23.7026922 251.4863978
Column 3 191 12465.19972  65.2628257 1104.7302015

Table A.10. Summary of the ANOVA one-way analysis: results of the single factor

(depth) testing of the radiance of P.oceanica at various depths: 0.5, 1.5 and 2.5
meters. SPSS

P>0.05, which means that there is a significant difference in radiance of P.oceanica
at three different depth (0.5, 1.5 and 2.5).

Table A.11: Results of the statistical analysis of spectral reflectance of P.oceanica,
sets 1-350). Wavelength step: 3 nm. Measured on Agia Pelagia beach, 15th October

‘ wl mean | Q1 min | Q3 I max median
318.23354 | 0.030467 0.038907 | 0.029764 0.069762 0.116100 | 0.048984
' 821.57666 | 0.028128 0.037310 | 0.027965 0.066572 0.110918 | 0.046450
324.92025 | 0.030163 0.038570 | 0.029502 0.068216 0.114120 | 0.047710
 328.26428 | 0.030457 0.038936 | 0.020789 0.068098 0.116080 | 0.048574
' 331.60876 | 0.031407 0.040192 | 0.030731 0.071247 0.119681 | 0.050299
334.95367 | 0.032480 0.041545 | 0.031781 0.073494 0.123651 | 0.051941
- 338.29900 | 0.033560 0.043030 | 0.032847 0.076252 0.128290 | 0.054334
 341.64474 | 0.034087 0.043938 | 0.033356 0.077587 0.131152 | 0.055508
344.99089 | 0.035346 0.045272 | 0.034616 0.080212 0.135395 | 0.057653
' 348.33743 | 0.036199 0.046719 | 0.035465 0.082716 0.139820 | 0.059655
' 351.68436 | 0.037336 0.048027 | 0.036587 0.085082 0.144101 | 0.061509
355.03166 | 0.038611 0.049598 | 0.037852 0.087963 0.149193 | 0.063835
- 358.37932 | 0.039897 0.051320 | 0.039131 0.091143 0.154409 | 0.066354
' 361.72735 | 0.040712 0.052408 | 0.039951 0.093252 0.157952 | 0.068034
365.07572 | 0.041541 0.053517 | 0.040782 0.095491 0.161650 | 0.069682
' 368.42442 | 0.042378 0.054625 | 0.041622 0.007634 0.164944 | 0.071524
371.77346 | 0.043682 0.056205 | 0.042926 0.100782 0.169458 | 0.074006
 375.12281 | 0.044525 0.057191 | 0.043779 0.102916 0.172533 | 0.075888
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wl

mean

| Q1

| min

Q3

| max

| median

378.47247

0.045788

0.058849

0.045030

0.105903

0177150

0.078330

381.82243
385.17269
388.52322
391.87402
395.22508
398.57640
401.92796

0.047361
0.048457
0.049503
0.051271
0.052033
0.052348
0.053248

0.060858
0.062087
0.063533
0.065536
0.066436
0.066850
0.067563

0.046615
0.047717
0.048767
0.050520
0.051208
0.051625
0.052517

0.109681
0.112447
0.115361
0119310
0121231
0122328
0.124750

0182421
0.186097
0.190440
0196818
0199547
0.201038
0.204526

0.081219
0.083586
0.086143
0.089165
0.000884
0.091805
0.093840

405.27975

0.054472

0.069505

0.053749

0.127847

0.200718

0.006463

408.63176
411.98399
415.33642
418.68905
422.04186
425.39485
428.74801

0.055482
0.056331
0.057682
0.058842
0.060504
0.082547
0.084817

0.070852
0.071703
0.073235
0.074842
0.076815
0.078376
0.082141

0.054773
0.055621
0.056976
0.058240
0.058805
0.061847
0.064115

0.130382
0.132628
0.135758
0.1385884
0.142833
0147773
0.153137

0.213406
0.216892
0.221309
0.226028
0.231707
0.238302
0.246681

0.098620
0.100545
0.103354
0.108207
0.108487
0113584
0118128

432.10132

0.086664

0.084493

0.065967

0157743

0.253230

0.122003

435.45478
438.80838
442.16211
445.51596
448.86992
452.22397
455.57812

0.088616
0.070680
0.072701
0.074550
0.076158
0.077581
0.079008

0.086826
0.089761
0.092380
0.094801
0.096885
0.098785
0.100824

0.067925
0.069999
0.072010
0.073855
0.075496
0.076876
0.078296

0.162414
0167825
0.172808
0177420
0181512
0.184875
0.188518

0.259765
0.267712
0.275027
0.282203
0.288621
0.294309
0.300251

0.126002
0130580
0134721
0138517
0141853
0.144634
0147486

458.93235

0.080107

0.102089

0078382

0151424

0.304033

0148762

462.28665
465.64102
468.99543
472.34990
475.70439
479.05891
482.41344

0.081264
0.082366
0.0833186
0.084182
0.085122
0.086278
0.088011

0.103609
0.108087
0108273
0107427
0108714
0110348
0112712

0.080545
0.081658
0.082589
0.083464
0.084392
0.085546
0.087275

0.154453
0.197351
0.189757
0.202075
0.204674
0.207940
0.212533

0.300837
0.314862
0.318033
0.323294
0.327802
0.332834
0.340090

0.152238
0.154601
0.158521
0.158350
0160310
0.162881
0.166505

485.76798

0.080084

0115285

0.089321

0.217585

0.348041

0170644

489.12252
492.47704
495.83154
499.18600
502.54043
505.89480

0.091822
0.093583
0.095851
0.098488
0.100487
0.101834

0117878
0.120058
0123152
0126582
0.120243
0.131089

0.091073
0.092835
0.095072
0.097689
0.090648
0.100939

0.222210
0.226915
0.232757
0.239161
0.243018
0.246062

0.355070
0.361882
0.370879
0.380803
0.387852
0.302456

0174440
0178261
0.182979
0.188192
0.192036
0.194588

500.24911

0.103004

0.133022

0.102139

0.249066

0.397001

0196047

512.60336

0.1049588

0.136080

0103967

0.254523

0.404017

0.200556

515.95752
519.31159
522.66557
526.01943
520.37318

0.107481
0.110222
01128581
0.115788
0118504

0.139807
0.143876
0.148080
0.152266
0156156

0.106364
0.108022
0.111650
0.114534
0117302

0.250086
0.285948
0.272217
0.278042
0.285384

0.412790
0.421370
0.430485
0.440382
0.450045

0.205238
0.210237
0.215339
0.220046
0.226407
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wl

mean

[at

| min

Q3

[ max

| median

532.72680

0121111

0.159680

0119784

0.201401

0.458864

0.231403

536.08029
539.43363
542.78681
546.13983
549.49267
552.84533
556.19780

0.123518
0.125684
0127313
0.128383
0.129388
0.130182
0131149

0.163083
0166156
0.168524
0170285
0171844
0173187
0174662

0.122189
0.124310
0.125887
0.126044
0.127887
0.128678
0.129587

0.287338
0.302678
0.306828
0.300747
0.312256
0.3145329
0217126

0.467779
0475842
0.482311
0.487098
0.491208
0.495323
0.499790

0.236144
0.240492
0.243819
0.246131
0.248155
0.249936
0.251984

559.55006

0.131844

0.175865

0.130257

0.319385

0.502807

0.253726

562.90211
566.25394
569.60554
572.95690
576.30800
579.65885
583.00043

0.132088
0.131944
0121138
0120337
0.126457
0121815
0.116464

0176510
0176786
0176171
0174497
0171261
0.166084
0.158695

0.130479
0.130273
0.129458
0127827
0.124730
0120188
0114741

0.320731
0.321450
0.320617
0.317523
0311678
0.302078
0.280885

0.506858
0.508802
0.508857
0.505482
0.498350
0.485661
0.468210

0.254511
0.254781
0.252650
0.250781
0.245834
0.237873
0.227888

586.35972

0110124

0152038

0108417

0.275585

0.448538

0.216028

589.70973
593.05945
596.40885
599.75794
603.10670
606.45513
609.80321

0102719
0.084713
0.086028
0.077238
0.070071
0.064972
0.061747

0142788
0132871
0.121887
0111113
0102079
0.085380
0.091151

0.101038
0.093083
0.084418
0.075689
0.068539
0.063485
0.060257

0.288779
0.240283
0.220594
0.200557
0.183062
0172189
0.164863

0.425248
0.399506
0.372134
0.343876
0.320865
0.304873
0.205132

0.201888
0.186687
0170438
0.154016
0.140543
0.131080
0.125235

613.15094

0.089707

0.088656

0.058235

0.160355

0.280194

0121614

616.49830
619.84529
623.19189
626.53811
629.88392
633.22032
636.57430

0.058283
0.057038
0.055088
0.055200
0.054388
0.053288
0.052033

0.086915
0.085386
0.084129
0.083282
0.082234
0.080880
0.079147

0.056821
0.055588
0.054556
0.053783
0.052031
0.051889
0.050611

0157314
0154781
0.182607
0.1510868
0.149414
0147176
0.144415

0.285336
0.281737
0.278854
0.277016
0.275056
0.271850
0.268135

0119181
0117003
0115243
0113879
0.112433
0110512
0.108222

639.91885

0.050841

0.077438

0.049432

0.141810

0.265181

0.106188

643.26296
646.60662
649.94982
653.20255
656.63481
659.97657

0.049737
0.048487
0.046782
0.044482
0.041366
0.038118

0.0758977
0.074330
0.072058
0.068366
0.064447
0.059971

0.048338
0.047076
0.045387
0.043158
0.040108
0.026807

0.139466
0.136488
0.132378
0.126837
0118561
0110774

0.263230
0.260596
0.255761
0.248247
0.236638
0.223268

0.104485
0.102251
0.099006
0.094730
0.0888688
0.082411

663.31784

0.035847

0.056353

0.034750

0.104541

0.212843

0.077618

666.65861

0.034385

0.054006

0.033356

0100478

0.208602

0.074822

669.00886
673.33858
676.67777
680.01641
683.36451

0.033576
0.033122
0.032887
0.032882
0.033331

0.052732
0.052033
0.051884
0.052265
0.053301

0.032804
0.032194
0.032003
0.032012
0.032432

0.058108
0.086838
0.095851
0.085789
0.087053

0.201320
0108744
0197694
0.188388
0.201578

0.072881
0.072021
0.071800
0.071686
0.072478
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wl

mean

| QL

[ min

Q3

[ max

| median

686.69203

0.033823

0.054840

0.032870

0.098577

0.206179

0.073481

690.02899
693.36536
696.70114
700.03633
703.37090
706.70485
710.03817

0.034458
0.0344386
0.034685
0.034758
0.034209
0.033056
0.031680

0.056488
0.056844
0.057874
0.058426
0.058330
0.057120
0.055368

0.033426
0.033329
0.033554
0.033843
0.033208
0.031989
0.030589

0.089738
0100112
0.100594
0.101504
0.101601
0.100262
0.097286

0.200885
0.211708
0.213188
0.215413
0.215888
0.213853
0.200716

0.074120
0.074987
0.075367
0.075789
0.075487
0.073782
0.071411

713.37085

0.030077

0.053314

0.028058

0.083025

0.206402

0.068082

716.70288
720.03426
723.36497
726.69500
730.02435
733.35299
736.68094

0.028935
0.026287
0.0231186
0.019755
0.016355
0.013247
0.010923

0.050808
0.047084
0.041882
0.037276
0.032688
0.028377
0.024633

0.027789
0.025182
0.022182
0.019223
0.016188
0.013325
0.011200

0.089358
0.0825840
0.075244
0.067583
0.089600
0.082370
0.046727

0.202502
0.193835
0.182883
0171817
0159449
0147552
0138634

0.066018
0.061184
0.055250
0.049522
0.042677
0.036034
0.032350

740.00817

0.009740

0.022385

0.010148

0.042861

0122244

0.020414

743.33467
746.66045
749.98548
753.30975
756.63327
759.95601
763.27797

0.008848
0.008788
0.007817
0.007533
0.007777
0.008851
0.008355

0.020756
0.0158615
0.018631
0.017851
0.018787
0.020234
0.020033

0.009205
0.009272
0.008305
0.008013
0.008273
0.008151
0.008883

0.040084
0.038166
0.036577
0.035542
0.036601
0.039371
0.038779

0127367
0123288
0119280
0116242
0119181
0128168
0.126588

0.027450
0.025856
0.024701
0.023067
0.024621
0.026858
0.026438

766.50014

0.007232

0.017224

0.007708

0.033862

0113056

0.022658

769.91951
773.23907
776.55781
779.87573
783.19280
786.50903
789.82440

0.005575
0.006016
0.005801
0.006018
0.006138
0.006558
0.007038

0.015235
0.014264
0.013886
0.014157
0.014643
0.015475
0.016900

0.008870
0.006407
0.006189
0.008397
0.006524
0.006867
0.007440

0.020884
0.028277
0.027878
0.028320
0.028548
0.030261
0.031880

0103584
0100504
0.099285
0100314
0101978
0104960
0107764

0.020196
0.019270
0.0190588
0.019322
0.019578
0.021034
0.022351

793.13891

0.007588

0.017689

0.008021

0.033662

0111651

0.023008

796.45254
799.76528
803.07713
806.38808
809.69811
813.00722

0.008137
0.008607
0.009078
0.009205
0.009528
0.009575

0.018812
0.020030
0.020835
0.021600
0.022082
0.022239

0.0085586
0.009050
0.009544
0.009772
0.009504
0.010086

0.0356821
0.037323
0.038749
0.030885
0.040470
0.040354

0114780
0118123
0.120889
0122278
0.124400
0124681

0.025289
0.026535
0.027588
0.028669
0.020071
0.020112

816.31539

0.010059

0.021517

0.010572

0.039928

0.124380

0.028547

819.62263

0.008777

0.020285

0.009288

0.037508

0118055

0.026789

822.92891
826.23423
820.53858
832.84195
836.14433

0.007647
0.006887
0.005932
0.004547
0.003285

0.017861
0.015734
0.013286
0.010824
0.009222

0.008133
0.007343
0.006340
0.005281
0.003567

0.034147
0.030561
0.026347
0.022855
0.019407

0112749
0104482
0.095880
0.087424
0.080007

0.024238
0.021328
0.018276
0.015281
0.013080
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wl

mean

[ Q1

| min

Q3

| max

| median

839.44571

0.002562

0.008010

0.002864

0.017472

0.076515

0.011432

842.74608
846.04544
849.34376
852.64105
855.93730
859.23249
862.52661

0.002580
0.002121
0.002719
0.002742
0.002840
0.002653
0.002825

0.007522
0.007283
0.008935
0.006733
0.007120
0.006921
0.006848

0.002084
0.003442
0.002861
0.002894
0.002106
0.002897
0.003153

0.016318
0.015688
0.016018
0.015849
0.015818
0.016121
0.016877

0.073901
0.080570
0.076860
0.070643
0.074262
0.070377
0.078344

0.010511
0.010185
0.009526
0.000824
0.010103
0.009838
0.009543

865.81966

0.002808

0.007308

0.002710

0.016408

0.073265

0.010238

8690.11162
872.40249
875.69226
878.98091
882.26844
885.55484
888.84010

0.002322
0.001873
0.001769
0.002327
0.001861
0.002840
0.002827

0.007310
0.007289
0.007640
0.008080
0.008815
0.008588
0.009126

0.002832
0.002842
0.001769
0.002821
0.002284
0.002400
0.003467

0.017118
0.017948
0.017881
0.018625
0.019452
0.021344
0.022626

0.081434
0.086487
0.074717
0.082482
0.079564
0.080998
0.089420

0.010382
0.010688
0.010812
0.011617
0.011896
0.012489
0.013847

892.12421

0.002523

0.010281

0.002897

0.023568

0120197

0.015324

895.40716
898.688093
901.96953
905.24894
908.52716
911.80416
915.07995

0.001578
0.004077
0.004560
0.004187
0.002801
0.003841
0.003120

0.010879
0.013088
0.0142095
0.014788
0.015618
0.018708
0.018093

0.001578
0.004708
0.005228
0.004248
0.002586
0.004308
0.003805

0.025648
0.031217
0.032824
0.034809
0.037403
0.043272
0.045688

0.081357
0101148
0.141000
0.135645
0.150828
0115375
0.135804

0.016328
0.019787
0.020899
0.022285
0.024065
0.027328
0.027234

0918.35451

0.006215

0.020162

0.007220

0.045213

0199711

0.020850

921.62783
924.89991
928.17074
931.44030
934.70859
937.97559
941.24130

0.004688
0.003051
0.002855
0.002678
0.002446
0.005783
0.005209

0.021630
0.019678
0.021413
0.023349
0.023228
0.026132
0.024802

0.005940
0.002957
0.004277
0.004028
0.004285
0.007307
0.006147

0.047785
0.051741
0.053042
0.057574
0.058088
0.085475
0.058814

0.245588
0.127083
0.266342
0.225003
0.549429
0195072
0.281685

0.032131
0.022278
0.035277
0.036074
0.037722
0.040848
0.039602

944.50571

0.003354

0.025094

0.004209

0.084521

0.232462

0.041118

947.76881
951.03058

0.003158
0.002288

0.023476
0.028581

0.003813
0.002380

0.059538
0.067524

0.246008
0.265845

0.037035
0.041483

90



Table A.12: Nonlinear model: results of the logistic analysis of the seawater
radiance with sediments (15.X.), Series:V16. Gretl

Model 2: Logistic, using observations 1:01-8:23 (T = 191)
Dependent variable: v16, y = 1/(1+e'X )

Coefficient Std. Error t-ratio -value
[lex] const [1.58324 0.407258 3.8876 10.0001
v1 -0.00512630 10.000615503  |-8.3286 [0.0000

Statistics based on the transformed data:

Sum squared resid 462.8481  |S.E. of regression 1.564906
R2 0.268481  |Adjusted R2 0.264610
F(1,189) 69.36634  |P-value(F) 1.63¢—14
ILog-likelihood -355.5467 |Akaike criterion 715.0935
Schwarz criterion 721.5980  [Hannan—Quinn 717.7281

0.980662  |[Durbin—Watson 0.020351

Statistics based on the original data:

Mean dependent var 0.262542  S.D. dependent var 0.205031
Sum squared resid 10.80565 S.E. of regression 0.239108
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Table A.13: Results of the partial autocorrelation analysis of the measurement set 1-

Lag Partial Autocorrelation | 2td error |
1 844 072
1 358 072
3 217 072
4 125 072
5 -.093 072
6 003 072
7 310 072
8 -.403 072
9 - 117 072
10 033 072
11 -.104 072
12 023 072
13 248 072
14 -.164 072
15 084 072
16 152 072

16 of the spectral reflectance of P.oceanica (15.X.), Series: V3. SPSS

059

oo

Partial ACF

-0.57

Figure A.31: Partial correlation analysis of the measurement set 1-16 of the spectral

T T 1 T 1T 1T T T 1
4 5 6 7 B8 8 10 11 12 13 14 15 16

Lag Number

O Coefficient
— Upper Confidence Limit
— Lower Confidence Limit

reflectance of P.oceanica (15.X.). Visualization in SPSS
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Box-Ljung Statistic

Lag Autocorrelation Std error(a)  Value df  Sig (b)
1 844 071 141324 1 000
2 816 071 273208 2 000
3 .789 071 400323 3 000
4 780 071 522217 4 000
5 723 070 627372 & 000
6 700 070 726581 6 .000
7 745 070 830623 7 000
8 624 070 519336 8 000
] 584 070 880540 O 000
10 562 089 1054920 10 000
i1 522 089 1111681 11 000
12 484 089 1156603 12  .000
13 A5 089 1204.314 138 000
14 483 089 1249.726 14 000
is 401 089 1283946 1S 000
18 380 088 1316.427 16 000

Table A.14: Results of the autocorrelation analysis of the measurement set 1-16 of
the spectral reflectance of P.oceanica (15.X.), Series: V3. SPSS.

The underlying process assumed is independence (white noise).
Based on the asymptotic chi-square approximation.

O Coefficient
— Upper Confidence Limit
— Lower Confidence Limit

0.0

ACF

L ale o 4 % E ot il ok Bk ol 23
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Lag Number

Figure A.32: Autocorrelation analysis of the measurement set 1-16 of the spectral
reflectance of P.oceanica (15.X.). Visualization in SPSS
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Table A.15: Ordinary Least Squares: results of the OLS analysis of the measurement
set 326-350 of the spectral reflectance of P.oceanica (15.X.). Gretl. Model 2: OLS,
using observations 326—350. Dependent variable: v20

Coefficient Std. Error t-ratio p-value
[lex] const |0.414957 0.0299342 13.8623 |0.0000
\a! -0.000441803  [4.52185e-005  |-9.7704 |0.0000
Mean dependent var 0.134005 S.D. dependent var 0.140653
Sum squared resid 2.497416  S.E. of regression 0.114951
R2 0.335585  |Adjusted R2 0.332070
F(1,189) 95.46076  [P-value(F) 1.65e-18
Log-likelihood 143.1678  |Akaike criterion -282.3357
Schwarz criterion -275.8311 |Hannan—Quinn -279.7010
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Spectral reflectance of the seawater without sediments. Interpolation graph. GNUplot display
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Figure A.33: Spectral reflectance of the seawater without sediments. Interpolation

graph. Gnuplot display
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Table A.16:
Example of selected variables
observations 301-325

Summary

statistics

of

measurements

set:

301-325.

12-22. Gretl. Summary Statistics, using the

\Variable  [Mean Median Minimum Maximum
[lex] v12 (0.221475 0.139032 0.00101700 0.780730
v13 0.217074 10.139285 0.00108700 0.754430
v14 0.167442 |0.110878 0.000348000 [0.575242
v15 0.155908 [0.111737 0.0125650 0.483602
v16 0.158329 [0.111647 0.0101590 0.498096
v17 0.167575 (0.111349 0.000836000  {0.579004
v18 0.125868 10.0863670 [0.000662000 (0.417701
v19 0.179261 |0.117898 0.000935000 [0.612021
v20 0.141302 {0.0932400 [0.000714000 [0.478343
v21 0.228822 |0.143105 0.00149500 0.800529
v22 0.174892 |0.114994 0.000343000 {0.592146
\Variable Std. Dev. |Coef.Var. [Skewness |Ex. kurtosis
[lex]v12 0.246134 |1.11134 0.930598  |-0.393370
v13 0.239324 [1.10250 [0.910879 [-0.440017
v14 0.181797 |1.08573 0.884089 |-0.466508
v15 0.151811 [0.973718 [0.796534 |-0.646866
v16 0.155834 |0.984241 10.832126 |-0.587890
v17 0.182383 |1.08837  [0.901570 [-0.435120
v18 0.134253 [1.06662  [0.820573  |-0.603688
v19 0.195217 {1.08901 0.873615 |-0.515800
v20 0.152787 |1.08128  [0.863700 [-0.525357
v21 0.252696 [1.10434  [0.924172 |-0.408867
v22 0.189797 |1.08523 0.858809 |-0.546215
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wl X0.5m | X1.5m X25m

Min. :318.2 Min. :0.00000 Min, : 0.7792 Min. :0.005098

1st Qu.d476.9  1st Qu.:0.02308 | 1st Qu.14.4084  1st Qu.:0.001878
Median :6836.1 IMedian :0.10055 [ Median :22.4621 Median :0.260328
Mean :635.6 Mean :0.11302 Mean :10.6800 Mean :0.301121
3rd Qu.794.5  3rd Qu.0.17108 | 2rd Qu.:25.8785  3rd Qu.:0.421055

Max. :050.0 Max. :0.32037 Mazx. :20.0573 Max. :0.081314
Table A.17: Summary of the table with values of the spectral reflectance of
P.oceanica measured on three different depths, R.

From: DepthData <- read.table(file="Three-Depths.dat", sep="", header=T);
summary(DepthData).

Spectral reflectance of the seawater without sediments. Measurements No 26-50, 15th October.

Spectral reflectance

wavelength, nm

Figure A.35: Spectral reflectance of P.oceanica. Measurement series 25-50.
Gnuplot display




Spectral reflectance of the seawater without sediments. Measurements No 1-25, 15th October.

'150ct-1-25-STAT.txt' using 1:2:3:4:5 ———

D —
Y —

e

5 —

6

S ——

Bt
9 ——

10—

1] s=—s

S —

21—

14, ==

15

0.25

02

0.15 [~

2ouepayal [epads

i
-
=}

800

700

500

400

300

wavelength, nm

Figure A.36: Remote sensing reflectance of P.oceanica. Series 1-25.

Shown midspread of the statistical quartiles Q1 and Q3 (vertical dashes) and mean

value within the range. Gnuplot
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Table A.18: Two-Stage Least Squares: results of the TSLS analysis of the
measurement set 1-191 of the spectral reflectance of P.oceanica (15.X.). Gretl
Model 1: TSLS, using observations 1-191.

Dependent variable: const Instrumented: v17 Instruments: v12

Coefficient [Std. Error |z p-value
[lex] v17 [6.88502 0.527503  |13.0521 |0.0000

Mean dependent var 1.000000 |S.D. dependent var 0.000000
Sum squared resid 97.51535  |S.E. of regression 0.716407
Log-likelihood -237.5799  |Akaike criterion 477.1598
Schwarz criterion 480.4121  [Hannan—Quinn 478.4771

Hausman test — Null hypothesis: OLS estimates are consistent

Asymptotic test statistic: xz(l) = 13.2834 with p-value = 0.000267768
Weak instrument test — First-stage F(1,190) = 16670.2

Table A.19: Initial Cluster Centers: results of the K-means analysis of the
measurement set 201-236 of the spectral reflectance of P.oceanica (15.X.). SPSS

Cluster Cluster
1 2 i 2

© V2 | 352010 000644 V16 | 240001 .000374
© V3 | 271510 000304 V17 | 270306 .000435

W4 | 273504 000644 V18 | 196188 000211

V5 | 406525 000527 V1B | 301485 .000370
V6 | 344073 000500 V20 | 178575 .000328
C VT | 305117 000846 V21 | 231708 000440
- V8 | 254642 000352 V22 | 186403 000365
© VO | 288881 000267 V23 | 261761 .000418
C V10 | 101850 000255 V24 | 282032 .000264
© W11 | 240462 000323 V25 | 180703 000375

V12 | 200622 000414 V28 | 177432 000206

V13| 218312 000206 V27 [ 185104 .000268
S V14 | 177432 000268 V28 | 256630 000386
VIS | 184836 000223 V20 | 283744 000436
' W30 | 406525 000646
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Table A.20: Iteration History(a): results of the K-means analysis of the measurement
set 201-236 of the spectral reflectance of P.oceanica (15.X.). SPSS

| Change in Cluster

Tteration i 2
i 206 208
2 024 010
3 008 003
4 000 000

Convergence achieved due to no or small change in cluster centres. The maximum
absolute coordinate change for any centre is .000. The current iteration is 4. The
minimum distance between initial centres is 1.435.

Table A.21: Number of Cases in each Cluster: results of the K-means analysis of the
measurement set 201-236 of the spectral reflectance of P.oceanica (15.X.). SPSS

Cluster 1 | 55,000

Cluster 2 | 136.000
Vahd | 101.000

Tfssing | 000

Table A.22: Final Cluster Centers: results of the K-means analysis of the
measurement set 201-236 of the spectral reflectance of P.oceanica (15.X.). SPSS

| Cluster Cluster
0 1 2
V2 0265141 | 0.04680686 V16 | 0181385 0.033101
V3 0.202643 | 0.0236088 V17 [ 0.202608 0.036614
V4  0.20800 | 0.037780 V18 | 0.149384 0.028217
V5 0208075 | 0.052158 V10 | 0.225452  0.040193
Ve 025015 | 0.045968 W20 | 0135163 0.025508
V7 0203508 | 0.049314 W21 | 0175176 0.031866
V8 0.103202 | 0.036402 V22 [ 0.142205 0.027148
VO 0215848 | 0.038738 V23 | 0.10514 0.034553
V10 0147708 | 0.027480 V24 | 0.214046 0.038321
Vil 0188055 | 0.034031 V25 | 0148585 0.027665
V12 0157947 | 0.020310 W26 | 0134787 0.024812
V13 0165877 | 0.020061 V27 | 0140217 0.028326
Vid4 0137140 | 0.02626 W28 | 0.103388 0.0349599
V15 0140863 | 0.026211 V20 | 0.214436 0.038433
V30 | 0.200183 0.053451
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Table A.23: Results of the tobit analysis with censored dependent variable (2) from
the selected dataset Series 151-175 of the s. reflectance of P.oceanica. Gretl

Model  2:  Tobit, using observations  1:01-8:23 (T = 191)
Dependent variable: v12
Coefficient Std. Error |z -value
[lex] const |-0.00413795 10.0502867 |-0.0823 10.9344
v2 0.890117 0.957730  10.9294  |0.3527
Mean dependent var 0.035372  |S.D. dependent var 0.053185
Censored obs 1 sigma 0.050920
ILog-likelihood 295.1357  |Akaike criterion -584.2715
Schwarz criterion -574.5147 |Hannan—Quinn -580.3195
-0.032865 |Durbin—Watson 2.065699

Test for normality of residual — Null hypothesis: error is normally distributed

Test statistic: x2(2) =190.404 with p-value = 4.51226¢-042

Table A.24: Results of the Prais-Winsten estimation applied towards variables 15
from the selected dataset 151-175 of the spectral reflectance of P.oceanica. Gretl
Model 3: Prais—Winsten, using observations 1:01-8:23 (T = 191) Dependent
variable: v12 =-0.0343656

Coefficient Std. Error t-ratio -value

[lex] const [|-0.00498439 10.00977709  |-0.5098 [0.6108

v2 0.912742 0.205904 4.4328 0.0000

Statistics based on the rho-differenced data:

Mean dependent var 0.035372  |S.D. dependent var 0.053185
Sum squared resid 0.490951  |S.E. of regression 0.050967
R2 0.086511  |Adjusted R2 0.081678
F(1,189) 19.67163  |P-value(F) 0.000016
-0.001888  |Durbin—Watson 2.003741
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Spectral reflectance of P.oceanica (15.X). Measurement sets: 176-200
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Figure A.37: Multiplot of spectral reflectance of P.oceanica. Series 151-200. Shown
midspread of the statistical quartiles Q1 and Q3 (vertical dashes) and mean value
within the range (red bold dots). Gnuplot visualization

Table A.25: Results of the Principal Components Analysis: measurement variables
1-7 from the selected dataset 301-325 of the spectral reflectance of P.oceanica
(15.X.). Gretl
Eigenanalysis of the Correlation Matrix

Component  Eigenvalue | Proportion Cumulative

1 6.4848 0.9264 0.9264
2 0.4949 0.0707 0.9971
3 0.0140 0.0020 0.9991
4 0.0052 0.0007 0.9998
5 0.0008 0.0001 1.0000
6 0.0002 0.0000 1.0000
7 0.0001 0.0000 1.0000

Eigenvectors (component loadings)

vl -0308 | -0.880 0334 -0.126 | 0.033 -0.042 | 0.006
v2 0383 | -0295 -0.512 -0.230 | -0.365 -0.370 | -0.425
v3 0383 | -0300 -0.465 -0.010 | 0.562  0.307 | 0.370
Cv4 0390 | -0.145 0203 0714 | -0.129 -0.415 | 0.293
v5 0392 | -0.091 0300 0.262 | 0.020 0.568 | -0.597
Cv6 0392 | -0.011 0259 0410 | -0.543 0299 | 0.476
V7 0390 | 0.138 0460 -0.429 | 0.488 0427 | -0.113

Eigenvectors (component loadings)
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Table A.26: Results of the Weighted Least Squares Analysis applied towards
variables 12-20 from the selected dataset 301-325 of the spectral reflectance of
P.oceanica. Gretl
Model 1: WLS, using observations 1-95. Dependent variable: v20
Variable used as weight: v12

Coefficient Std. Error t-ratio -value
[lex] const [0.239525 0.0771338 3.1053 (0.0025
v1 0.000120809  [0.000147131 |0.8211 1(0.4137

Statistics based on the weighted data:

Sum squared resid 0.290924  |S.E. of regression  |0.055930
R2 0.007197  |Adjusted R2 -0.003478
F(1,93) 0.674200  |P-value(F) 0.413691
Log-likelihood 140.1579  |Akaike criterion -276.3158
Schwarz criterion -271.2081 |[Hannan—Quinn -274.2519

Statistics based on the original data:

Mean dependent var 0.136154 |S.D. dependent var 0.149193
Sum squared resid 5.689669 [S.E. of regression 0.247344
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A.7.2 Data processing and statistical evaluation: carbonate sand

Table A.27: Results of the autocorrelation analysis of the measurement set 51-75 of

the spectral reflectance of carbonate sand, Gretl
LAG  ACF PACF Qstat  [pvalue] ||

0.0851 *** 00851 ** 104803  [0.000]
0.0857 *t% 01508 *** 0065423  [0.000
0.0400  FFF 01387 % 3040787 [0.000
00144 ¥ 01107 ** 3070040  [0.000
0.8835  **% 00005 *** 4840333  [0.000]
0.8408  *+* 00732 *** 5668791  [0.000]
0.8181  **% 00565 *** 6426707  [0.000]
0.7748  **% 00423 *** 7121033 [0.000]
O 07350 *tt 00317 ** 7754114 [0.000]
10 06041 ¥t 00280 *** 3303307  [0.000
11 06504 *F 00001 *** 3830508 [0.000
10 06103 *F 00107 ** 0030405  [0.000
13 08679 ** 00170+t 0676280  [0.000]
14 0525 **% 00162 ** 10017381  [0.000]
15 04835 *+% _00184 ** 10300037  [0.000]
16 0.4418 *+% 00172 *** 10555534  [0.000]
17 0.4v004 **+ 00106 *** 10760231  [0.000
13 0.35v04  **% 00216 *** 10027041  [0.000
10 04180 *F 00004 ** 11050011 [0.000
%0 0.0788 FFF 00260 ¢ 11160670  [0.000

00 =1 O Ul | 03| ND

Q-Q plot for v27

-3 -2 -1 0
Normal quantiles

Figure A.38: Normal Q-Q plot: estimated versus observed values of the

-
N
w

measurement of carbonate sand, variable 27. Series 51-75. Gretl modelling
visualization
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Table A.28: Results of the statistical analysis of spectral reflectance of carbonate
sand, with average values (for sets 1-3). Wavelength step: 3 nm. Measured on Agia
Pelagia beach, 14th October
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wl | min | a1 | mean Q3 | max | median

402  0.001522 0.108252 0.110264 | 0.125100 0.156262 0.120855
405  0.004120 0.111507 0.126300 | 0.130560 0174128 0.124623
408 0.006608 0.114474 0120816 | 0.143488 0178780 0.127983
412  0.008703 0.117306 0.1233108 | 0.147164 0183248 0.131282
415 0101803 0.120880 0.137375 | 0.151792 0.180020 0.135571
418 0105012 0124746 0141910 | 0.156037 0.195073 0.1401386
422 0108840 0120140 0.147168 | 0.162721  0.202021 0145237
425 0113279 0134815 0.1523679 | 0.168990 0.210668 0.151906
428 0118544 0.141149 0.160085 | 0.178050 0.220194 0.159402
432 0122087 0.146844 0.167650 | 0.185518 0.228841 0166154
435 0127011 0.152280 0.174248 | 0.192060 0.237370 0.172836
438 0.132310 0.158310 0.181427 | 0.201160 0.246705 0.180044
442 0136621 0.162674 0.187881 | 0.208310 0.255343 0.186472
445 0140316 0.168266 0.103508 | 0.214558 0.262074 0.192106
448 0143322 0.172017 0.108207 | 0.218703 0.260568 0.186700
452 0145845 0174901 0201955 | 0.223770 0274973 0.200387
455  0.148101 0178031 0.205747 | 0.227928 0.280378 0.204052
450 0.140044 0.180846 0.208805 | 0.220017 0.284050 0.207178
482 0151978 0.183204 0.212228 | 0.234461 0.280830 0.210556
485 0136264 0184985 0.214436 | 0.238727 0.204286 0.212490
480 0.155248 0.187804 0.217720 | 0.240237 0.208004 0.215026
472  0.156554 0.180708 0.220128 | 0.242760 0201445 0.218201
475 0.1538230 0.102110 0.223000 | 0.246279 0.205677 0221116
479 0160611 0.105242 0.226840 | 0.250810 0.210061 0.224984
482 0184012 0.200152 0.232478 | 0.257220 0.318555 0.220589
485 0.163472 0.205823 0.238038 | 0.264573 0.327001 0.237010
480 0172440 0.211132 0.245045 | 0.2714468 0334981 0.243087
402 0176260 0.216078 0.250075 | 0.278260  0.242800 0.240133
495 0180050 0.222148 0.258178 | 0.286460 0.252048 0.256243
499  0.186000 0.228774 0.265843 | 0.205200 0.261808 0.263884
502 0.1808506 0.233500 0.271417 | 0.301562 0.263882 0.260130
505 0.101587 0.236300 0.274828 | 0.305379 0372817 0.272281
500 0.103250 0.238538 0.277706 | 0.200448 0376347 0.275357
512 0106153 0.242820 0.282441 | 0.315177 0.281048 0.279800
515 0.200015 0.248183 0.288410 | 0.322126 0.280045 0.285037
510 0.204120 0.253081 0.204768 | 0.320524 (0.208706 0.281707
522 0.208548 0.250760 0.3012307 | 0.327066 0.407960 0.208231
526 0.213382 0.266241 0.308821 | 0.245426 0.418276 0.305207
520 0.218205 0.272715 0.316126 | 0.353740 0.428320 0.212514
532 0.222568 0.278565 0.322872 | 0.361518 0.437755 0.219122
536 0.226780 0.284405 0.320470 | 0.360010 0.446804 0.325558
530 0.230711 0.280790 0.335482 | 0.376082 0.455017 0.331317
542 0.233458 0.203802 0.340066 | 0.381580 0.461345 0.235018
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wl | min | Q1 | mean Q3 | max | median

546 0235103 0.206532 0.343224 | 0.385560 0.465508 0.338854
540  0.226680 0200381 0.245018 | 0.283000 0.469140 0.241258
552 0237760 0.301722 0.348107 | 0.301858 0.472206 0.343234
556 0.230247 0.304604 0.350051 | 0.305307 0.476036 0.345633
550  0.240200 0.308984 0.253200 | 0.208254 0.479382 0.247674
562 0240654 0208165 0.354506 | 0.400054 0.481185 0.248907
566 0240416 0.308874 0.355162 | 0.401224 0.481807 0.348020
560 0238748 0.307064 0.353688 | 0.400427 0.480263 0.347042
572  0.235026 0.302640 0.340433 | 0.305080 0.475648 0.342058
576 0.212260 0.204628 0.340050 | 0.388378 0.486085 0.234751
570 0210835 0.283103 0.320664 | 0.375185 0.450805 0.324215
583 0208055 0.268530 0.314500 | 0.350047 0.432720 0.3087860
586 0106370 0.252380 0.206060 | 0.338330 0.411550 0.200283
580 0181828 0233326 0.276040 | 0.216600 0.386565 0.267500
503 0166276 0.212016 0.253544 | 0.203700 0.250268 0.243004
506 0148323 0.101055 0.220373 | 0.267668 0331353 0.217166
500 01232182 0160324 0.205072 | 0.241088 0.202079 0101137
603 0117805 0.151271 0.185181 | 0.210420 0.280528 0170074
606 0107440 0138360 0.171146 | 0.203807 0.264634 0155317
609 0101008 0130206 0.162388 | 0194168 0.254754 0.146260
613 0.007084 0.1285265 0157073 | 0.188174 0.248485 0.140671
616 0004383 0121087 0.153502 | 0.184340 0.244702 0.137070
610 0.002105 0.110150 0.150566 | 0.180848 0.241217 0.134371
623 0.000017 0.116792 0.147800 | 0.177856 0.238265 0.1310097
626 0088364 0114626 0145734 | 0.175448 0.236222 0.128638
620 0086562 0.112565 0.143418 | 0.1731235 0232625 0126183
633 0084448 0.100785 0.140480 | 0.170056 0.230251 0.123206
636 0.082208 01068766 0.137216 | 0.166407 0.226502 0.118990
630  0.079025 0103852 0.134122 | 0162051 0.222721 0.116886
643 0077870 0.101305 0.131468 | 0.150078 0.210800 0.114008
646 0075563 0.008621 0.128400 | 0.156518 0.216573 0110812
649 0.072328 0.095004 0.124254 | 0151735 0212143 0.106458
653 0.068455 0.080876 0.118520 | 0.145085 0.205574 0.100544
656 0.063138 0.083138 0110767 | 0.135000 0.106204 0.002816
660 0057800 0076562 0.102010 | 0.126826 0186370 0.085030
663 0.054237 0.071651 0.007286 | 0.120246 0170417 0.070514
666 0051717 0068781 0.003827 | 0.116423 0175195 0.076101
670 0080172 0.066600 0.001500 | 0.113854 0172561 0.073023
673 0048823 0064001 0.080610 | 0.111550 0170358 0.071085
676 0.047230 0.063165 0.087474 | 0100078 0167774 0.089807
680 0045818 0.061108 0.085168 | 0.106421 0165043 0.067486
683 0.044262 0.058046 0.082782 | 0.102620 0162579 0.065041
686 0.041886 0.058055 0.079261 | 0.080441 0.158648 0.081599
600 0.040081 0.051306 0.074010 | 0.002741 0152034 0.055806
603  0.0347832 0.045555 0.067241 | 0.084820 0.142105 0.0801186
606 0.020004 0.029507 0.060070 | 0.076166 0133838 0.043600
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Table 4.20: Spectral reflectance of carbonate sand {continued from prewious page)

wl | min | Q1 | mean Q3 | max | median

700 0.025480 0.033281 0.052660 | 0.066020 0124164 0.026027
703 0020752 0.027050 0.045008 | 0.057107 0112843 0.020173
706 0.016243 0.021080 0.037520 | 0.047681 0.103304 0.023549
710 0.012303 0.015914 0.0307091 | 0.038860 0.003244 0.017824
713 0.007533 0.011641 0.025112 | 0.031338 0.084822 0.013233
716 0.006371 0.008236 0.020172 | 0.024328 0.077202 0.00821 4
720 0.004247 0.005386 0.015711 | 0.018057 0.060074 0.006121
723 0.002773 0.003524 0.012150 | 0.012000 0.061638 0.003826
726 0.001812 0.002104 0.009537 | 0.000237 0.055408 0.002543
730 0.001248 0.001453 0.007627 | 0.006800 0.040434 0.001720
733 0.000801 0.001018 0.006264 | 0.004722 0.044850 0.001208
736 0.000182 0.000855 0.005270 | 0.003743 0.042007 0.000854
740 0.000471 0.000718 0.004811 | 0.003055 0.020009 0.000816
743 0.000508 0.000644 0.004410 | 0.002001 0.037332 0.000740
748 0.000211 0.000582 0.004282 | 0.002808 0.036080 0.000715
750 0000318 0.000857 0.003037 | 0.002175 0.033062 0.000667

Figure A.39: Spectral reflectance of carbonate sand on A.Pelagia beach. Results of
single measurement set made by spectroradiometer Trios-RAMSES. Gnuplot
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Table A.29: Results of the Quantile estimates: measurements 51-75 of the spectral
reflectance of carbonate sand, Gretl
Model 2: Quantile estimates, using observations 1:01-5:09 (T = 105)
Dependent variable: v27 1= 0.5 Asymptotic standard errors assuming IID errors

ok x Coefficient Std. Error t-ratio p-value
[lex] const |0.837827 0.0386417 21.6820 |0.0000
vl -0.00111120  16.60949e-005  |-16.8122 |0.0000

Median depend. var 0.191024  [S.D. dependent var 0.135439
Sum absolute resid 8.625039  |Sum squared resid 1.370360
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Log-likelihood 84.64508  |Akaike criterion -165.2902
Schwarz criterion -159.9822  [Hannan—Quinn -163.1393

Table A.30: Results of the periodogram for v30 of the measurement set 51-75 of the
spectral reflectance of carbonate sand, Gretl

omega scaled fre- periods log spec- | omega scaled fre- periods log  spec-
quency tral den- quency tral den-
sity sity

0.05984 1 105.00 -1.2466 1.61868 27 3.89 -11.111
0.11968 2 52.50 -5.8761 1.67852 28 375 -11.170
0.17952 3 35.00 -4.0657 1.73536 29 3.62 -11.208
0.23936 4 26.25 -7.1031 1.79520 30 3.50 -11.461
0.29920 5 21.00 -6.1742 1.85504 31 3.39 -11.380
0.35904 [ 17.50 -T.2772 1.91488 32 3.28 -11.686
0.41888 18 15.00 -8.7802 1.97472 33 318 -11.624
0.47872 3 13.13 -7.6306 2.03456 34 3.09 -11.724
0.533856 9 11.67 -8.4848 2.09440 35 3.00 -11.818
0.59840 10 10.50 -8.5764 2.15423 36 2.92 -11.805
0.65324 11 9.55 -0.4643 2.21407 37 2.84 -12.002
0.71808 12 875 -0.0368 2.27301 33 2.76 -11.930
0.77792 13 8.08 -9.3608 2.33375 39 2.69 -12.010
0.83776 14 T.50 -6.9332 2.39359 40 2.63 -12.124
0.89760 15 7.00 -0.6336 2.45343 41 2.56 -12.190
0.95744 16 6.56 -10.00 2.51327 42 2.50 -12.248
1.01728 17 6.13 -0.8994 2.57311 43 2.44 -12.306
107712 18 5.83 -10.188 2.63205 44 2.39 -12.323
1.13696 19 5.53 -10.197 2.69279 45 2.33 -12.353
1.19680 20 5.25 -10.467 2.75263 46 2.28 -12.420
1.25664 21 5.00 -10.505 2.81247 47 2.23 -12.382
1.31648 22 477 -10.641 2.87231 48 2.19 -12.487
1.37632 23 4.87 -10.906 2.93215 49 2.14 -12.433
1.43616 24 4.38 -10.957 2.99199 50 2.10 -12.608
1.49600 25 4.20 -10.785 3.05183 51 2.06 -12.410
311167 52 2.02 -12.477

Number of observations = 105
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Figure A.40: Plot illustrating periodogram for v30 from measurements of carbonate
sand, series 51-75. Gretl modelling visualization
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Figure A.41: Graph of the autocorrelation analysis of the measurements of carbonate
sand. Series 51-75, variable 27. Gretl visualization
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A.8. Satellite and aerial images covering research area of Crete island: selected
examples

A LA Ve

Figure A.43: Random mosaic of selected aerial Google Earth images
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No Image cource [ Data Name
1 Landsat ETM+ 2008 /May /04 WRS2p181r035L71181035-035-
20050504-ETM-GL 32005
2 Landsat THM 2008 /Nov/07 WRS2p181r03615181036-036-
20061107-TM-GLS2005
3 Landsat ETM+ 2005/Apr/25 WRS2p182r035L71182035-035-
20050425-ETM-GL 32005
4 Landsat ETM+ 2000/Tul/09  WRS2p181r026-7dx-20000708-
ETM-GLS32000
5 Landsat THM 1987/Jun/10  LandsatWRS2p183r035p183r035-
5dx-19870610-TM-GLS1950
3 Landsat ETM+/ | 1999/4ug/08 071-261Moesaic-LandsatN-35N-
Earth Sat 35-35ETM-EarthSat-MrSID-
19990808-20020624
7 Landsat ETM+/ | 1999/Aug/08 071-260Mosaic-LandsatN-356N-
Earth Sat 35-30ETM-EarthSat-MrSID-
19900808-20020617
8 Landsat ETM+ 2000/Jun/30  WRS2pl82r036-7x-20000830-
ETM-EarthSat
9 Landsat MSS /| 1975/Jul/26  LandsatWRS1pl196r35-2m-
Earth Sat 19750726-M35-EarthSat
10 Landsat TM /| 1987/Jun/10 012-807LandsatWRS2p183r3s-
Earth Sat 5t-10870610-TM-EarthSat
11 Landsat ETM+ 2000/Jun/30 LandsatWRS2p182r036- 7dx-
20000630-ETM-GL 32000
12 Landsat ETM+ 2005/Apr/08  LandsatWRS2p182r036L 71182036
036-20050409-ETM-GL 32008

Table A.31: Available broadband Landsat satellite images covering the research area
of Crete Island
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(a) Landsat 2008 1i- {b) Landsat-2008 0d (c) Mosaic-Landsat-
O7-TM 09 ETM-1999-08.08

{d) Landsat 2000-07- {e) Landsat 2000-06 (f) Landsat 198706
09 ETM 30 ETM 10-TM

() Landsat-200%-0%- {h) Landsat-197% 0% (i) Landsat TM
04-ETM o6

(i)  Mosaic- Landéat— -
ETM-1999-08-08

Figure A.44: Landsat imagery, Crete Island. Previews
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A.9. Analysis and classification of the satellite and aerial images
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Figure A.45: The point querying shows the selected points and their coordinates
within the area of seagrass meadow (green). OpenEV
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Figure A.46: Logarithmic Enhancment to Raster, applied to the aerial Google Earth

image: the seagrass meadow can now be easily seen as a bright spot of purple color.
OpenEV

114



I ——— e ——— T LT

B Properies
‘Geosral| Raste Source Draw Stte | Comvinate System image |

ename. UMPY —DAXCFB08
[Size. 1841P x 11500 x 1Bands
Pver Numeric Python Anay
forg: 266439740333 3916915 65351

[Povel Size: 173846079857 x -1 T6R4607955T

Projecton
IPROUCS['UTM Zone 35, Northeen Hemisphsrs”,
GEOGCS{WGS 84",

DA _1984°
SPHEROID[WGS 84° 6378137.238 267223563
TOWGS34{0.0,0.0.0.0.0],

PRIMEM[ Greswich ]

UNIT degres’,0 0174532925 199433

CTION T

PROJE e _Mercator',
PARAMETERS 0]
PARAMETER] y

P 2996]

UNTT Meter” 1]]
lBand 1 Typa=Byte.

Figure A.47. Raster properties dialog: visualisation and spatial info about the image
(projection UTM, zone 35, datum WGS-84, etc.) OpenEV.
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Figure A.48: Color composite image composed of 3 images of Cretan shelf, Google
Earth. ILWIS.
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Figure A.49: Results of the unsupervised classification of the seafloor cover types
and land structure, Agia Pelagia; raster layer read into the ArcGIS project
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Figure A.50: Results of the image classification in Erdas Imagine: seagrass
distribution in Bali area, Crete.
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A.10. Accuracy assessment
Table A-32. Confusion matrix-2, between the classified Google Earth aerial image

and fieldwork data, for Fig.A.43

E - - = 173 = H‘E ;
W = £ =l = £ vy _ &
i g § g 2|3 A B &L £
z = 8 8§ s |l# g5 = 8 |= g g
£ |E|s & g 5|58 5 E B |° = 2
2|l |2 & 2 S| a2 = 4|&§ 5§ 5 ¢ |2 |2 |3
2 ] g s E s |2 g = 8 ] 2 3 g g 2 | &
Correctly 2|z |2 & & & |a & 2 2 |& © & & |& = |«
classified
Rocky 14 |2 0 0 3 0 0 0 0 1 0 0 1 1 24 | 0.58
bottom
Shelf, <3m 0 12 | 0 3 1 2 0 1 0 0 1 0 0 20 | 0.60
Healthy sea- 0 1 10 3 2 0 0 0 1 0 2 0 0 0 0 19 | 0.52
grass
Seagrass 0 1 1 i 0 1 0 0 1 0 2 0 0 1 1 21 0.62
Poceanica
Carbonate 2 0 0 0 16 0 0 0 0 0 0 2 0 0 0 20 | 0.80
sand

Shelf  wa- 0 3 0 0 0 9 2 0 0 0 0 0 0 0 0 14 | 0.64
ters, 0-3m

Shelf  wa- 1 2 0 0 0 3 8 1 0 0 0 0 0 0 0 15 | 0.53
ters, 3-7m

Deep  wa- 1 1 0 0 1 2 3 16 0 0 1 0 0 0 0 25 | 0.64
ters, > 7m

Fields: corn, 0 0 0 0 0 0 0 0 4 0 0 0 0 3 4 21 | 0.66
greens

Roads: as- 1 0 0 0 1 0 0 0 0 S) 2 0 0 0 1] 9 0.55
phalt+ground

Seagrass, 0 0 0 3 0 0 0 0 0 0 208 2 0 1 1 31 | 0.77
other> 3m

Ground 1 0 0 0 0 0 0 0 0 0 0 11 3 1 1 17 | 0.65
Buildings 0 0 0 0 2 0 0 0 0 0 0 0 9 g 3 16 | 0.56
(roofs)

Trees 0 0 2 0 0 0 0 0 0 0 0 0 0 T 3 12 | 0.58
Bushes 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 6 0.66
Total 20 (22 (13 22 26 17 [13 17 17 6 31 17 13 18 | 18 270

K user's ac- 0.70| 0.55| 0.77 0.59 0.62 0.53| 0.62 0.94 0.82 0.83| 0.77 0.65 0.69 0.39| 0.22f - 0.64

curacy

Overall Kappa (k) accuracy is calculated using the formula: > A/N, where A is
number of correctly mapped points (172) and N is the total number of points (270).
Thus, according to the results we received overall accuracy= 172/270= 0.6370,
which is 64%. Overall k accuracy for unsupervised classification =64%.

Users accuracy (Reliability of classes) varies between 0.22 and 0.94 depending on
class, which proves that supervised classification (see next table: Tab.A.33) has
better results for seagrass mapping than the unsupervised classification.

Producer accuracy lies in interval between 0.52-0.77 according to class as well.
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Table A-32. Confusion matrix-1, between the classified Google Earth aerial image
and fieldwork data, for Fig.A.44

= g
= £

3 T p a1 Ll =+ B
&} # & = = = 2 7 2 = R z = v
Seagrass 22 0 0 0 0 0 2 1 0 1 1 (27 [ os1
Poceanica

Roads 0 18 0 3 1 2 0 0 0 0 0 24 0.75
Fields 0 1 10 0 3 0 0 0 1 0 0 15 0.66
Earth 0 1 1 13 0 1 0 0 1 0 0 17 | 076
Forest 0 1 1 1 9 0 0 0 1 0 0 [ 13 [ 0.69
Buildings 0 0 2 0 1 24 0 0 1 0 0 28 0.85
Seagrass-2 3 0 0 0 0 0 33 2 0 2 2 [ 42 [ 0.78
Seagrass-3 1 0 0 0 0 0 1 27 0 1 1 (RS 0.87
Terrace 0 2 3 1 0 1 0 0 19 0 0 26 0.73
Seagrass-4 1 0 0 0 0 0 2 0 37 f | 43 [ 0.86
Water 2 0 0 0 0 0 1 1 0 1 4 [ 19 [o074
Total 29 23 17 18 14 28 39 33 23 2 19 [ 285 [ -

K user's ac- 076 | 078 059 | 072 064 |08 085 |08 083 |08 074 [ - [ 0.72
curacy

Overall accuracy is calculated using the formula: ) A/N, where A is number of
correctly mapped points (226) and N is the total number of points (285). Thus,
according to the results we received overall accuracy= 226/285= 0.79298, which is
72%. Overall accuracy=72%. User’s accuracy (Reliability of classes) varies
between 0.59 and 0.88. Producer accuracy lies in interval between 0.66-0.87.
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A.11. Research general workflow.
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Figure A.51: General methodological research approach. Inkscape
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A.12. Some snapshots of the working process

Figure A.52: Google Earth aerial imagery grabbing, Heraklion, the University of
Crete

Figure A.53: Adjusting waterproof Olympus cameras for underwater seafloor
videometric measurements.

Dr. Petros Lymberakis (left) and Dr. Bert Toxopeus (right)
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Figure A.54: SCUBA gear diving equipment necessary for seagrass monitoring.
Source: Aquanauts.com.

Figure A.55: ...and it’s me, learning diving skills on Ligaria beach, Crete, 2010. On
the photo: left.
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Figure A.56: Sticking the marker into the seafloor bottom in mattte of P.oceanica for
depth measurements

Figure A.57: Placing the 70.5m circle and depth marker in the mattte of P.oceanica

for photo capture

Figure A.58. Monitoring different seafloor cover types: matte of P.oceanica vs
carbonate sand. Ligaria beach.
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