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ABSTRACT

Understanding the status of air pollution concentration is of great importance due to severe effects to
human health and environments. Different countries in Europe have several monitoring stations that
collect information about pollutants continuously in time. These stations use different measurement
techniques and different calibration practices are usually applied to measurements. However due to cost
implication these stations are limited in space and therefore knowing air pollution at every point in space
requires interpolation techniques. Geostatistical methods have been reported in various research to
produce accurate maps because they incorporate spatial variability in observations. Recent research have
shown that incorporating information that are correlated with in situ observations using appropriate

techniques increases accuracy of resulting maps.

Country by country PM10 daily annual mean concentration for 2006 were explored to understand effect
of combining data from different countries. Two groups of data were explored; combined data from
different countries measured by all techniques and combined data from different countries measured by
one technique (beta ray attenuation) followed by country to country data exploration. Results shows that
there are slightly differences in variability between two groups but relatively have similar spatial structures.

It was difficult to obtain reliable spatial structure for some country due to small number of measurements.

Geostatistical methods known as regression kriging (RK) and cokriging (CK) were applied to integrate in
situ measurements (PM10), models (PM2.5) and remotely sensed data (AOT) to predict PM10 daily
annual mean concentration for the year 2003. Accuracy assessment done at validation points has shown
that regression kriging (RK) gave better results having lower RMSE equals 0.096 as compared to RMSE
0.099 obtained by CK. RK increased R from 0.40 to 0.71. Comparing to performance of ordinary kriging
(OK) and universal kriging (UK), results shows that both RK and UK gave similar results of RMSE
(0.096) and correlation (0.72). But RK was less biased as compared to UK. These results were obtained

using exponential model.

Hole effect model was used in this study due to hole effect emerged on estimated variograms. Hole effect
model fitted better the estimated variograms than exponential model at shorter distance but gave poor
prediction results as compared to exponential model. RK of PM10 on AOT and PM2.5 using exponential
model resulted to RMSE equals 0.096 as compared to RMSE value equals to 0.105 when hole effect

model were used. However hole effect model was less biased as compared to exponential model.

Change of support was evaluated using universal block kriging. The results showed that lower RMSE were
obtained for block sizes less or equal to10 km by 10 km and high RMSE for block sizes greater than 10
km by 10 km. SSE was more sensitive to change of block size as compared to RMSE.

Key words: Air pollution, Cokriging, Regression kriging, hole effect model, exponential model, block kriging, nniversal
kriging, ordinary kriging.
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GEOSTATISTICAL ANALYSIS OF AIR POLLUTION USING MODELS, IN SITU AND REMOTE SENSED DATA

1. INTRODUCTION

1.1.  Motivation and problem statement

Air pollution is a2 major problem for human health and a particular concern is respiratory illness (Zhang et
al., 2010). People are affected through inhaling when exposed to polluted environment (indoor or
outdoor) and have caused thousands of death due to cancer and lung diseases (Fischer et al., 2004;
Stedman, 2004) . Detailed explanations about individual pollutants’ sources and health effects are found in
Dickey (2000).

Many studies are concerned on spatial distribution of particulate matter (PM10) concentrations because it
is one of the principal indicators of air quality and is believed to have more effect to human health (Emili
et al,, 2010; Schaap et al., 2009a; van de Kassteele, 2006). “PM10” is composed of solid and liquid particles
sourcing from sea salt, volcanic ashes, dust from wind bowl, industries emissions, traffic emission, forest
burnings etc having a diameter less than 10 pgm-3 (Emili et al., 2010).

Due to problems associated with air pollution to human health and ecosystem, there is significant
importance to understand the spatial distribution of air pollution at any given point in time and accurate
mapping of its concentration. Air pollution concentration maps are generated from various data sources;
in situ measurements, model outputs and remotely sensed images. These three sources measures air
pollution concentration directly and indirectly at different spatial and temporal scales (Emili et al., 2010;
van de Kassteele et al., 2000).

In situ measurements are considered to be accurate and precise in measuring air pollution as they make
ditect measurements (Cinzia Mazzetti and Todini, 2002; van de Kassteele, 2006). However, measutements
from this source are sparsely located thus fail to capture pollution concentration at every area of interest
due to their scarcity. Also being sparsely located limits prediction accuracy of air pollution maps using
insitu data due to high spatial uncertainties (Bayraktar and Turalioglu, 2005; Beelen et al., 2009; Diem and
Comrie, 2002; van de Kassteele and Stein, 2006; van de Kassteele et al., 2006). However, their scarcity is
due to cost involved in handling them (Bayraktar and Turalioglu, 2005; van de Kassteele, 20006). For
example, in the Netherlands, background stations were reduced from 73 to 32 in 1980s hence increased
spatial uncertainties (van de Kassteele and Stein, 2006). Therefore interpolation techniques have been used
for mapping pollution concentration at unmonitored locations (Beelen et al., 2009; Emili et al., 2010; van
de Kassteele and Stein, 2000).

Apart from in situ measurements, there exist other data sources for mapping air pollution. For example air
pollution maps are also produced from model outputs. For example PM 2.5 modelled by Chemical
Transport Model (CTM) LOTOS-EUROS. Concentration maps are simulated by these models basing on
knowledge of chemical and physical processes (Schaap et al., 2009b; van de Kassteele, 2006). However,
model outputs have some limitations; e.g. Models requires detailed information of pollution source
distributions, height of the source, meteorological condition e.g. Boundary Height Layer (BHL), Relative
Humidity (RH) etc, terrain surface, emission etc (Beelen et al., 2009). In addition to that; models tends to
under estimate pollutants concentration; for example LOTOS-EUROS model tends to underestimate
PM2.5 (Denby et al.,, 2008; van de Kassteele et al., 2006). Moreover model output maps are also available
at coarser resolution grid of 0.5° by 0.25°, approximately 35 km by 25 km in Europe (Schaap et al.,
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2009b). Furthermore, models are always subject to uncertainty due to uncertainties from inputs and the
tinal predicted map will, therefore, be inaccurate (van de Kassteele et al., 2000).

Remotely sensed data has emerged as another important source for mapping air pollution. This does not
measure PM10 directly but products derived from remote sensed data have shown to have correlation
with air pollutants and has been useful information in prediction air pollution (Emili et al., 2010). The
commonly remote sensing derived product correlated with PM10 concentration is Aerosols Optical
Thickness (AOT) (Emili et al., 2010). The spatial coverage and temporal resolution of remotely sensed
data makes this source important when mapping large area (Emili et al., 2010). The downside of it on the
other hand is that, annual mean AOT is not fully representative of the year because its retrieval relies on
cloud and snow free conditions and needs correct estimation of surface reflectance (Emili et al., 2010).

Incorporating data from other sources with insitu measurements has shown to be successful in increasing
prediction accuracy of air pollution maps significantly (Singh et al., 2011; van de Kassteele and Stein, 2000;
van de Kassteele et al., 2000). van de Kassteele & Stein (2000) used Kriging with External Drift (KED) to
predict concentration of NOy in which the Operational Priority Substances (OPS) model outputs were
used as covariate. Their approach aimed in improving the quality of air pollution maps by merging data
from different sources and incorporated uncertainty of input data. Generally inclusion of dispersion model

outputs improved prediction accuracy.

van de Kassteele et al. (2006) used linear modelling to standardize and predict PM10 concentration
observed by in situ measurements over Western Europe. They used two secondary information; PM2.5
from dispersion models and AOT from MODIS. In their approach, PM2.5 was downscaled by bilinear
interpolation to the MODIS grid and monitoring station locations for data matching. Their methods
improved the prediction accuracy significantly. However, the issue of change of support was not

addressed.

Cokriging is one among kriging techniques which is used to predict data at unsampled area using limited
sampled data by the help of densely correlated variable known as covariate (Webster and Oliver, 2008). It
differs to other kriging techniques explained so far in that not only variograms of primary variable is
estimated but also the variograms of secondary data is required too. Finally, cross variograms model is
built from the variograms of primary data and secondary data and used in prediction of primary variable at
unsampled location using collocated values of secondary variables. It has been used in various research; in
image integration for example, and has shown valuable contribution in increasing prediction accuracy. In
addition, it has ability to account for different supports and to incorporate ancillary data in the process
(Atkinson et al., 2008; Pardo Iguzquiza et al., 20006).

Most studies have not covered the effect of spatial scale in integrating dataset taking into account change
of support. In this research, geostatistics will be used to analyse and predict PM10 concentration at
background levels by integrating 3 datasets obtained at different spatial scale.

1.2.  Research objectives

This section provides research orientation in which objectives and research questions are addressed. The
research will be achieved by answering these questions. Innovations and related work will be put in
context as well.
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1.2.1.  Overall research objectives

To develop and apply geostatistical techniques to integrate in situ measurements, remote sensed data and
air quality model output to provide accurate air pollution maps taking into account of different spatial

scale
1.2.2.  Specific objectives
i.  To develop and apply geostatistical methods to integrate in situ data, model output and remotely

sensing data to model and map air quality.

ii.  To predict concentrations of pollutants in between in situ stations using remotely sensed data and

model output.

1.3.  Research questions

Objective no Research questions
1 1.1 What is the spatial distribution in the data?
1.2 How should the 3 sources be integrated?
1.3 How to model different data sources taking into consideration different spatial supports?

2 2.1. Which kriging methodology is most accurate in predicting at unsampled location?
2.2. How can predictions be validated?

Table 1-1. Research objectives with specific research questions

1.4. Innovation

The novelty of this research aims at developing geostatistical approach for integrating data of different
spatial scale. More, is to integrate 3 rather than 2 variables by cokriging.

1.5. Thesis structure

This thesis comprises of 7 chapters. Chapter 1 enlightens the rationale of the study in which the
motivation, problem and objectives and research questions of this study are addressed. Chapter 2 provides
literature review and some related works. Chapter 3 is about study area and data description. Chapter 4
explains methodologies adopted on this study. Chapter 5 provides results obtained. Discussion of results

and analysis is presented in chapter 6. Chapter 7 concludes and provides recommendation for further
studies
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2. GEOSTATISTICAL METHODS

2.1. Introduction

Geostatistical methods are a collection of statistical techniques which interpolates locations that are not
sampled using limited available data. Methods comprise three steps; estimation of sample variograms,
modelling of sample variograms and kriging. Goovaerts (1999) defines kriging as a family of generalized
least squares regression algorithms. Kriging represents interpolation techniques based on regionalized
variables and accounts for variation in the phenomena (Beelen et al., 2009). Variations in the phenomena
comprises three components (i) broad scale trend (drift) (ii) local spatially structured variation and (iii) non
spatial random variation and therefore various techniques of kriging exists to model these variations
(Beelen et al., 2009).

In this chapter; a berief explanation on some geostatistical methods and their application in air pollution
mapping will be put into context. Some related works which applied these methods in air pollution
mapping and in other fields will be highlighted under respective sections. Section 2.2 is about Ordinary
Kriging (OK) and Universal Kriging (UK). Section 2.3 is about kriging methods which employ use of
ancillary data during kriging. These methods are Regression Kriging (RK) and Cokriging (CK). Under this
section linear regression is outlined. Section 2.4 explains the concept of change of support in prediction.
Block Kriging (BK) is addressed.

2.2.  Kriging of target variable only

Otrdinary kriging and universal kriging predict the values of primary variable at unsampled locations based
on availability of primary variable observations. Otrdinary kriging is the most commonly used type of
kriging which assumes constant but unknown mean which interpolates values at unsampled locations by
weighting the available observations (Denby et al., 2008). The method takes into account only local
variation of the variable of interest (Beelen et al., 2009). Armstrong (1984) describes OK as a method for
estimating stationary phenomena and suitable in mining,

Universal kriging is the method which is applicable to random field with varying mean whereby drift is
modelled as a function of coordinates (Hengl et al., 2007). It accounts for long range variation of the
phenomena (Beelen et al., 2009).

These methods has been applied before in air pollution mapping and showed to produce better results.
Beelen et al. (2009) conducted an assessment of UK, OK and RK in prediction of air pollution across
Europe and found that UK gives more accurate maps than OK and RK. He worked with rural and urban
background stations but they were modelled separately and the final map was obtained by combining
(stamping) urban maps onto rural maps.

2.3.  Kriging the target variable using ancillary information

RK and CK are kriging techniques which makes use of ancillary data in prediction of primary variable.
Applicability of these methods in air pollution analysis is explained in this section. Ordinary linear
regression is explained in this section in order to avoid confusion with regression kriging.
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2.3.1.  Ordinary linear regression

Otrdinary linear regression is a method used to establish a mathematical relationship between the primary
variable and secondary information (Goovaerts, 1999; Hengl et al., 2007). It is based on associating data at
collocation and finding a function that relate the variables under consideration. During prediction, the
equation/function formulated is used to predict primary variable at unsampled location taking advantage
of availability of secondary information i.e. prediction of primary variable using secondaty variable as
input to the function. General formula for linear regression is presented in equation 2-1

f(x) = Bo + Bixj+ -+ BuXp t € (2-1)

Where;

f(x) is the map of PM10 produced (response)

yi are the predictors value at a particular location (PM2.5 and AOT)
Bo intercept.

Bi are the model coefficients (weight)

€ is the error.

However linear regression has limitation that predicting a value of primary variable at location (s,) is a
computed using secondary variable at location (s,) without taking into account of neighbouring secondary
values at location (si). This means, linear regression does not consider spatial dependence within data
(Goovaerts, 1999). Goovaerts (1999) generated annual erosivity map by linear model by associating
limited daily read rain gauge stations (36 stations) and digital elevation model. For clarity, using established
relationship between erosivity and elevation, values of erosivity was computed from elevation at each
point.

Emili et al. (2010) used simple linear regression and multi-linear regression relationship to investigate the
capability of satellite imagery to predict ground PM10 concentrations and studied the effect of spatial and
temporal resolution in prediction. They used two datasets; geostationary Spinning Enhanced Visible and
InfraRed Imager (SEVIRI) having course spatial resolution (25 km) but high temporal resolution (15 min)
and MODIS having 10 km spatial resolution while gives two measurement per day. Using simple linear
regression and multi-linear regression relationship between PM10 and Aerosols Optical Thickness (AOT),
they found out SEVIRI had high correlation 0.7 while MODIS had 0.6 with regard to 24 h, however with
regard to houtly time series observation both sensors showed low correlation with PM10 0.42 and 0.46
respectively reason behind assumed to be pixel to point comparison. They concluded that frequency of
observations plays important role in PM10 while high spatial resolution does not generally improve PM10
estimation. Importantly, estimation of AOT depends on estimation of surface reflectance and cloud and
snow free conditions

2.3.2. Regression kriging (RK)

Regression Kriging (RK) is in principle an extension to linear regression. But it accounts for spatial
dependence between observations which is modelled by variograms (Goovaerts, 1999). In RK, prediction
is done by modelling a relationship between primary variable and secondary information found in co
location and then apply the model to predict values at unsamped location using the values of secondary
variables. It usually performed into two steps, prediction of drift and residual differently and then adding
them together (Hengl et al., 2007). Similar method was used by Denby et al. (2008) after linear regression
for assessing PM10 exceedances on the European scale and provided better results compared to OK of
observations. As part of RK; van de Kassteele & Stein (2006) used KED to predict concentration of NOx
in which the operational priority substances (OPS) model outputs were used as covariate. Their approach
aimed at improving the quality of air pollution maps by merging data from different sources and intended
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to incorporate uncertainty of input data. Generally inclusion of dispersion model outputs improved
prediction accuracy.

Bourennane et al (2000) made a comparison study between ordinary linear regression and KED for soil
mapping whereby digital elevation model was used as covariate. He found that KED results were better
for 38% as compared to ordinary linear regression.

2.3.3. Cokriging (CK)

Cokriging (CK) is one among kriging techniques which is used to predict data at unsampled area using
limited primary variable sampled data by the help of highly correlated and more densely sampled covariate
(Olea, 1991; Stein and Corsten, 1991; Webster and Oliver, 2008). Goovaerts (1999) defined cokriging as
an estimate that is a linear combination of neighboring primary and secondary data. The most significant
feature of CK relies on its mathematical concept. As opposed to other kriging methods, CK requires
establishment of variograms of each data set involved and modelling cross variograms, a process which is
termed as coregionalization. (Atkinson et al., 1992; Webster and Oliver, 2008)

Goovaerts (1999) used cokriging in mapping of rainfall erosivity where elevation was used as secondary
information. Elevation in his case study was a data which is found everywhere in the study area hence
being ideal covariate. He indicated that cokriging always gives better prediction results compared to other
kriging techniques but it is more demanding in calculation as two autocovariance functions and cross
variance function needs to be inferred.

In a very recent research; Singh et al. (2011) used cokriging to construct air pollution maps in the Milan
Italy. In his approach he predicted daily mean PM10 concentration using PM10 simulated by deterministic
model as a covariate.

24.  Change of support

Data integration normally uses data from different sources. There are several challenges pertaining to data
integration, one among them having data at different support i.e. different spatial or temporal resolution.
There exist several classical methods that are used to put data in the same support before integration. In
this section block kriging and downscaling cokriging “geostatistical techniques” are put into context.
Mathematical details of these techniques is found in Webster and Oliver (2008) and Atkinson et al. (1992).

Block kriging is one of kriging techniques used to facilitate change of support of the measurements
(Wenxia et al.,, 2008). The term originates from mining whereby data collected at point support are
normally aggregated to area units/blocks (Webster and Oliver, 2008). It can be used in combination with
standard kriging or multivariate kriging methods to aggregate or disaggregate predictions into different
spatial support.

Wenxia et al. (2008) used block kriging to interpolate airborne laser scanning point clouds to generate
dense point cloud. They indicated that the technique provides change of support as data change from
point support to area (block) support. Cinzia Mazzetti & Todini (2002) used block kriging for regularizing
rain gauge data for the purpose of integrating with images. In principle, block kriging is an unbiased
predictor which uses the value of the block to represent grid value.

Downscaling cokriging (DSCK) is the process of increasing the spatial resolution of course resolution
image using information obtained from secondary data. According to Atkinson et al. (2008) and Pardo
Iguzquiza et al. (2006); DSCK takes into account correlation and cross correlation of images, it accounts
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for different supports and explicitly takes into account the point spread function of the sensor. In
addition, ancillary data can be incorporated in the process. Finally, they concluded by saying; the success
of cokriging depends on the estimation of point support covariance and cross covariance.

The method has been used in various research; in remote sensing for example, and has shown valuable
contribution in increasing spatial resolution and prediction accuracy. In addition, it has ability to account
for different supports and to incorporate ancillary data in the process (Atkinson et al., 2008; Pardo
Iguzquiza et al.,, 2006). Downscaling cokriging which is in the field of remote sensing is also referred to
super resolution mapping is becoming an important operation where finer resolution image is produced
from course input image by superimposing courser image to another image of the same variable acquired
under different condition. According to Atkinson (2008) super resolution mapping (downscaling) refers to
interpolation procedure where unsampled points are predicted at finer spatial resolution.

Pardo Iguzquiza et al. (2006) used downscaling cokriging for image sharpening. They successful increased
spatial resolution of a courser resolution band using spatial resolution of another finer resolution band. In
their case, the targeted spatial resolution was equal to spatial resolution of one of inputs. Landsat
Enhanced Thematic Mapper Plus was used in that project.

Atkinson et al. (2008) developed work done by Pardo Iguzquiza et al. (2006). The coarser resolution
images were downscaled by cokriging method in super resolution mode. Meaning, the predicted image had
finer spatial resolution than any input images used in prediction. In order to verify applicability of the
method, they worked with degraded image and used original image for validation. Landsat Enhanced
Thematic Mapper Plus was used in their project.

In this research block kriging was employed to examine the effect of change of support in prediction.
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3. STUDY AREAAND DATA DESCRIPTION

3.1. Introduction

The study area and datasets used in this study namely insitu measurement, model outputs and satellite
imagery are explained in this section.

3.2.  Studyarea

The study area covers a total area of 2,505,074 km2 and lies in between longitude 5.90 W to 15.919 E
and latitude of 42.351 to 54.978 N consisting Germany, Netherlands, France, Austria, Belgium,
Switzerland, Check Republic, North Italy, South Great Britain, Slovenia and Luxembourg (Figure 3-1).
The choice of the study area is due to availability of different data sources for mapping air pollution. Also,
the area have large network of monitoring stations and the region occupies many industries which makes
the area suitable for study (van de Kassteele, 20006). Also there exists deterministic model called LOTOS-
EURO which provides air pollution concentration maps across Europe.
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3.3.  Data description

Three dataset have been used in this study. Section 3.3.1 provides description of insitu measurements.
Section 3.3.2 describes model outputs and section 3.3.3 gives brief explanation of AOT derived from
MODIS satellite.

3.3.1.  In situ measurements (PM10)

In situ data are available through airbase database (European-Topic-Centre-on-Air-and-Climate-Change,
2011). Data are available in two formats CSV and XML. CSV has been prepared per country and contains
3 sub files; stations, statistics and measurement configurations. Stations contain spatial attributes of each
monitoring station in longitude and latitude, altitude, station European code, local name etc. Statistics file
contains information about air pollution including statistic name, statistic percentage, statistic value,
statistic number, statistic year, and measurement Buropean group code and statistic average groups.
Measurement configurations file provides information about techniques used in measuring each air
pollution component, calibration frequency and methods, sampling time, measurement start date etc.

Measuring techniques

Different countries use different techniques and practices in measuring insitu measurements (PM10). Also,
other measurement techniques apart from gravimmetry are subjected to artefacts and therefore
calibrations are usually applied to observed data (van de Kassteele et al, 2006). For example beta
absorption techniques is mostly used by Germany and Italy, oscillating microbalance is used mostly by
Germany, Austria, Great Britain and Belgium, beta ray attenuation commonly used by the Netherlands,
France and Czech Republic and tapered element oscillating microbalance is being used by Germany,
Slovenia, Switzerland, Italy, Austria, Great Britain and Belgium. van de Kassteele (2006) reported that
observations made by other instruments rather than gravimetry are subjected to artifacts therefore
practices like calibration, sampling height of measurements, corrections applied to observation are not
uniform for all countries.

PM10 daily annual mean concentrations for 2006

Daily annual mean concentration of PM10 for 2006 was used to explore the effect of combining data
from different countries using different measuring techniques. Data were downloaded from Airbase and
classified into two groups. First group combined data from all countries under study area without
considering measurement technique. This group had 746 measurements. The second group comprised
homogeneous data i.e. measured by one technique (beta ray attenuation). Six countries were found using
this technique and consisted 237 measurements. Table 3-1 summaries numbers of stations per
measurement techniques a country possess.

Technique DE | SI SWI |IT |AT |CZ |GB |FR | BE | NL
Beta absorption 30 3 43
Beta ray attenuation 116 3 4 47 1 38 4 24
Gravimmetry 9 9 17 8 28 3
Oscillatimg microbalance 8 179
Tapered element oscillating 28 7 3 1 32 47 16
microbalance
Nephelometry 2 6
Chromatography
Concuctimetry
Unknown 23 1 4
209 |7 16 83 44 75 51 217 | 20 24

Table 3-1. Number of stations per measurement techniques per country for the year 2000.

10
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PM10 daily annual mean concentrations for 2003

PM10 daily annual mean concentrations maps were produced based on data for the year 2003. This was
due to availability of secondary data for 2003. Total of 607 background measurement stations were
involved and are summarized in Table 3-2 and their distribution on Figure 3-2. Locations of air pollution
monitoring stations across Burope for the year 2003. These 607 measurements stations were obtained
after data cleaning according to defined criteria. The criteria among others were statistic year=2003,
pollutant=PM10, statistic value=mean, statistic average group=daily etc. Therefore 3 files were
downloaded for each country. Data cleaning was carried out to obtain targeted component PM10, area of
interest, station type, statistic year and statistic average group for each table and they were linked together
using primary key. From these tables houtly, 3 hour, 8 hour, daily, weekly and 2 weeks mean values from
continuous observation are usually calculated for the user.

Background station type | Number of stations
Rural 147
Sub rural 194
266
Urban

Table 3-2. Summary of background stations used for the year 2003

3600000
2000000 3200 000

2600000

Figure 3-2. Locations of air pollution monitoring stations across Europe for the year 2003

Stations shown are background stations which observe PM10 concentrations across in the study
area. Geometric symbol triangles and crosses present stations used in prediction and for accuracy

assessment respectively.

3.3.2.  Satellite image data (AOT)

Aerosols Optical Thickness (AOT) is an aerosol parameter which quantifies the attenuation of aerosol
with electromagnetic radiation in the atmospheric column at a given wavelength (Emili et al., 2010; van de

11
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Kassteele et al., 20006). According to Hutchison et al. (2005) and van de Kassteele et al. (2006) annual
averages of AOT is correlated to ground measurement concentration hence making them significant
secondary information in studying air pollution.

AOT daily annual averages for 2003 were used in this study. They were provided by van de Kassteele and
shown in Figure 3-3. AOT daily annual averages derived from MODIS projected to LAEA 1989 at spatial
resolution of 10 km by 10 km square grid.. They were derived from MODerate resolution Imaging
Spectroradiometer (MODIS) at a spatial resolution of 0.1° by 0.1° grids approximately 10 km square grid
in Burope.

Figure 3-3. AOT daily annual averages derived from MODIS projected to LAEA 1989 at spatial resolution of 10 km
by 10 km square grid.

3.3.3.  Model outputs (PM2.5)

PM2.5 from LOTOS-EUROS, the deterministic model were used in this study. The model calculates air
quality concentration basing on chemical, empirical and physical process. The model calculates
concentration and deposition takings into account height of emission source, transport, dispersion, wet
and dry deposition, wind direction and deposition. It also predicts air pollutants at fine temporal
resolution but relatively low spatial resolution compared to AOT derived from MODIS. Figure 3-4 (left) is
the resulting model outputs gridded at 0.5° (longitude) by 0.25° (latitude) in geographical coordinates
system (Denby et al., 2008; Schaap et al., 2009b; van de Kassteele, 2000) projected at spatial resolution of
30 km by 30 km. Figure 3-4 (right) presents PM2.5 downscaled by bilinear interpolation to AOT grid i.e.
spatial resolution of 0.1° by 0.1° by van de Kassteele et al. (2006) and projected at spatial resolution of 10
km by 10 km.

Figure 3-4. Monthly annual averages PM2.5 modelled by LOTOS-EUROS for 2003 projected to LAEA 1989
coordinates system at 30 km by 30 km square grid (left) and to 10 km by 10 km square grid (right).

12
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Figure 3-4 left is the PM2.5 at coarser resolution 0.5° by 0.25° projected at spatial resolution of 30 km by
30 km square grid. On the right is PM2.5 downscaled by bilinear interpolation to 0.1° by 0.1° followed
by projection to 10 km by 10 km square grid.
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4.  METHODOLOGY

41.  Data preprocessing

Data pre processing in this study is referred to applying appropriate algorithm to derive AOT from
MODIS and calculation of annual mean PM2.5 concentration from model outputs at a spatial resolution
of 0.5° by 0.25°. PM2.5 annual mean concentrations were calculated by averaging the monthly
concentrations. These processes were done by van de Kassteele et al. (2006). Furthermore, PM2.5
concentrations were downscaled by bilinear interpolation to 0.1° by 0.1° square grid (MODIS grid) so that
they have the same support as AOT.

4.2, Data projection

PM10, PM2.5 and AOT dataset had geographical coordinate system which is not suitable in prediction
due to distance differences in North-South and East-West directions. Hence, they were projected to
European conventional Terrestrial Reference System Lambert Azimuth Equal Area 1989 (ETRS LAEA
1989). Downscaled PM2.5 by bilinear interpolation and AOT were projected to LAEA 1989 in ARCGIS
at spatial resolution of 10 km square grid. Also the coarser PM2.5 was projected at spatial resolution of 30
km square grid corresponding to its original dataset. According to Annon et al. (2001); ETRS LAEA 1989
is the best projection to be used for statistical mapping in the Europe. The projection has been used
before for statistical mapping of air pollution by Denby et al. (2008). There is distortion in distance which
is critical in statistical mapping but in comparison with the extent covered, the reference is suitable for
statistical mapping (Annon et al., 2001).

4.3. Data exploration

Prior to data exploration, dataset were imported to R software by gdal package. PM10 was projected in R
using gdal package. Quantitative and descriptive data analyses were used to understand nature of data on
hand. Combinations of summary statistics, histogram, normal probability plots and bubble plots were
employed during data exploration. This procedure was important for sound decision making in data
transformation.

4.4, Country by country data exploration for 2006

Country by country data exploration was conducted to explore the effect of combining data from different
countries measured by different techniques. PM10 measurements for 2006 were used for this analysis. As
usual; histograms, normal probability plots and descriptive summary statistics were used to explore data of

each country. To understand the impact, the following category of data exploration were achieved

1) Exploring PM10 spatial structure of PM10 from different countries measured by different
techniques.
if) Exploring spatial structure of PM10 from different countries measured by a common
measurement technique (beta ray attenuation).
1) Individual country data exploration for (i) and (ii)
4.5, Subsetting in situ measurements

Before start of modelling; the in-situ data for 2003 were divided into two groups; one for prediction
containing 455 stations (pml0.extra) and the other for accuracy assessment containing 152 stations
(pm10.valid). The procedure for sub setting data was in a way that one data was picked after every 4 rows
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in data series. Despite being a systematic way of subsetting the dataset, still there is good representative of
data as shown in Figure 3-2 in which stations with geometric symbol triangle were used prediction and
those with cross were used for accuracy assessment.

4.6. Modelling

The process involved estimation and fitting of appropriate model to variograms.

4.6.1. Empirical variograms

The power of geostatistical methods lies on its ability to model spatial variations in the phenomena.
Methods use knowledge of underlying spatial relationship in the data. The underlying spatial relationship is
normally modelled by means of variograms (Bayraktar and Turalioglu, 2005). “Variograms” is described as
a half semivariance plotted as a function of distance between point pairs. Equation 4-1 was used to
calculate sample empirical variograms; i.e. half difference square of attribute of a random field separated
by distance h on space.

v (h) = s Ty [a(x) — 20k + D2 (4-1)

y* is the estimated semivariogram from observations; z(xi) is the observed attribute value at location xi,
z(xi+h) is observed attribute value at location xi+h, h is the separation distance between two points.

PM10, PM2.5 and AOT empirical variograms were calculated in R using gstat package. It has default
function to calculate vatiograms whereby cut off is normally 1/3 of the maximum distance of the study
area and width is usually cut off divided by 15, where 15 is the number of variograms formed by default.
Hence changing cut off and width provided an opportunity to explore and understand spatial structure in
data e.g. spatial behaviour at longer distances.

4.6.2. Modelling the variograms

Fitting a model to experimental variograms was done in R using gstat package. First, model parameters
(nugget, range and sill) were estimated by eye from plotted variograms. These estimates were used as initial
values by model to calculate model parameters which best fit variograms with minimum variance using
least squares algorithms. This process enabled calculation of model parameters which are the range,
nugget and sill. The intention has to be paid on giving more weight to points which are near to prediction
location than those far apart. This can be achieved by having large range for exponential models (Webster
and Oliver, 2008).

4.6.3. Selection of variograms model

Different models are usually fitted to empirical variograms. The commonly used models are exponential,
spherical and Gaussian model functions, each of them combined with nugget model. The choice depends
on knowledge of underlying sample process or by experimenting all of them and choosing one which
provides minimum error. In this research, the choice of model relied on the second approach. The
variograms of the same cut off and width were fitted with exponential model, spherical model and
Gaussian model. Standard kriging was done and Mean Error (ME), Sum Square Error (SSE) and Root
Mean Square Error (RMSE) were calculated for each model. These statistical error measures were used to
determine the model function to be used.

4.6.4. Modelling the hole effect.

Empirical variograms of PM10 concentrations showed clear deep hole effect at 400 km and 800 km. It
was dropping after reaching partial sill then rises. This may be an indication of periodicity or repeated
pattern in the phenomena. An alternative model that could fit better this phenomena was the hole effect
model. The cut off of 1000 km and width of 60 km were maintained in order to compare two model
functions applied in prediction (exponential and hole effect models).
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4.7. Prediction

Different kriging methods were used to predict air pollution concentration at unsampled locations. PM10
daily annual mean concentration observations from 455 measurements stations were used in kriging.
Methods applied were ordinary kriging (OK) and universal kriging (UK) ordinary linear regression,
regression kriging (RK) and cokriging (CK).

4.71.  Kriging of PM10 only
Ordinary kriging and universal kriging were used in kriging of PM10 daily annual mean concentration
observations only. While OK considers local variations, UK considers long range variations whereas

coordinates were used as covariates.

4.7.2.  Universal block kriging

The block size of 2 km, 5 km, 10 km, 20 km and 30 km were used in UK of PM10 daily annual mean
concentration observations. This was achieved by adding block size in universal kriging code. A reason for
doing block kriging is to know its efficiency in prediction of points to area units compared to punctual

kriging.

4.7.3.  Ordinary linear regression

The relationship between PM10 daily annual mean concentration observations and secondary information
were established using linear model function found in R software. The linear system of equation was
established between known corresponding values of PM10 and that of secondary information found on
co locations. This was achieved by overlaying PM10 data with secondary data (Figure 4-1). This system of
equations was used to calculate unknown parameters 83, 31, B2 and e as presented in equation 2-1. The
computed parameters are then used in computing PM10 at unsampled location using values of secondary
information at that location (Goovaerts, 1999)

4.7.4. Regression kriging (RK)

Regression kriging is an extension of linear regression applicable when residuals of the linear model are
normal distributed (Denby et al., 2008). Creating concentration map by regression kriging was done using
R in two steps; ordinary linear regression (regressed map) and kriging of residuals (kriged residual
map)(Hengl et al., 2004). Then kriged residuals map output was added to regressed map output to produce
air pollution concentration maps (Hengl et al., 2004). Two models were fitted to residual variograms,
exponential and hole effect maps. These models were all used in predictions to evaluate their
performances. The general methodology adopted for ordinary linear regression and regression kriging is
presented in Figure 4-2

AOT image with PM10 measurements PM2.5 model outputs with PM10 measurements

350000

3200000 4

260509 4

3500000 4000000 4500000

Figure 4-1. Overlay of PM10 daily annual mean concentration observations with secondary information for 2003;
AOT overlaid with PM10 (left) and PM2.5 overlaid with PM10 (right)
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Refer Figure 4-1 left is the AOT image at spatial resolution of 10 km square grid overlaid with PM10. On
the right are the PM2.5 model outputs at 10 km spatial resolution overlaid with PM10. PM2.5 was
downscaled by bilinear interpolation to match AOT grid. All data were projected using LAEA 1989
projection.

PM10 (Point map) Secondary information (Raster maps)

Bring to same grid size

A

Projection

A 4

A 4

Subset in situ data

v v

Validation set Prediction set

Data exploration

A 4

Transformation

Overlay

A 4

;qea: modelling

!

Regression residuals < Trend estimates

v

Interpolate residuals

A 4

Figure 4-2. Methodology for linear regression and regression kriging (Adopted from (Hengl et al., 2004))

\ 4

Geographical coordinates were projected to LAEA 1989 coordinate system. Downscaling by bilinear
interpolation and resampling process were used to bring secondary data into same support.
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4.7.5. Cokriging (CK)

This process takes into account the spatial structure of covariate. The process involved three steps,
(i) modelling spatial structure of primary and secondary dataset, (ii) modelling of coregionalization and (iii)
prediction.

Modelling spatial structure of each data set

Apart from variograms model of PM10 concentrations, variograms model for PM2.5 and AOT were
established. The variograms of each data set were estimated at co located points. To achieve this dataset
were overlaid. Coincident data points were used to estimate and model variograms.

Model of co regionalization

This is a process of forming cross variograms and fitting model to it which is then used in prediction by
cokriging method. Estimated variograms of PM10, AOT and PM2.5 were used as an input for this task.
linear model of coregionalization (LMC) was used to fit a model to the resulting cross variograms while
ensuring they lead to a positive definite cokriging system (Webster and Oliver, 2008). The LMC enforces
the range of both models to be the same while allowing nugget and partial sill to vary.

Cokriging prediction
Three maps were produced by cokriging predictions; between PM10 and AOT; PM10 and PM2.5; PM10
and (AOT and PM2.5). General methodology used for kriging is presented in Figure 4-3.

Primary variable (point data) Secondary information (Raster map)

PM10
PM2.5 AOT
I
|
|
p| Projection | Common support
Data exploration
Validation data [ |
YES NO
Transfromation

A 4

Data overlay

A 4

Modelling

Prediction

A

A\ 4

Accuracy assessment

Figure 4-3. General methodology for kriging
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4.8. Uncertainty assessment

Accuracy assessment is the process of counter checking the results of a model. Precision of prediction is
often reliable when assessed by independent data set. Validation dataset (pml0.extra) contained 152
stations whose PM10 concentration is known and they compared with predicted value at validation point
(Bourennane et al., 2000). Equations 4-2, 4-3, 4-4 presents Mean Error (ME), Sum of Square Error (SSE),
Root Mean Square Error (RMSE) respectively which were used to evaluate models used in this study.

ME =31 2°(x) — 2(x) (4-2)
SSE = Zil(z*(xi) —z(x7))? (4-3)
RMSE = [ Y (2" (x)) — 2(x))2]°° (4-4)

z*(x;) is the estimated value at location x; and z(x;) is the observed value at location x;
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5. RESULTS

5.1. Country by country data analysis for 2006

Daily annual mean PM10 concentrations for 2006 were explored to understand the effect of combining
data from different countries measured by different techniques. The results of exploration for two groups
of data as described in section 4.4 are presented. It is important to know that PM10 data for 2006 was not

used in kriging but only for mentioned reason.

Measurement | Raw data Log 10 transformation
technique

min | median | mean | max | std min | median | mean | max std
All tech. 10.45 | 24.17 25.87 | 67.00 | 8.55 | 1.02 | 1.38 1.39 | 1.83 0.13
Beta ray tech 11.15 | 24.74 26.10 | 64.19 | 8.63 | 1.05 | 1.39 1.40 | 1.81 0.13

Table 5-1. Summary statistics of PM10 daily annual mean for 2006.

Table 5-1 revealed that the summary statistics for combined data from different countries measured by all
techniques “All tech” is almost similar to summary statistics for combined data from different countries

measured by beta ray absorption techniques.

A B

PM10 daily annual mean (2006); for stations using Log10 tranformation of PM10 daily annual mean (2006);
all measuring techniques for stations using all measuring techniques

25 — B —

20

Frequecy
.

Frequecy

T T T T T T
0 20 30 40 50 B0 70 10 12 14 18 18
PM10 concentration Transformed PM10 concentration

Figure 5-1. Histograms for combined PM10 daily annual mean concentration measured by all techniques. A-raw data,
B-log 10

Figure 5-1 presents histograms of daily annual mean concentration of PM10 for the year 2006 for
combined data from different countries measured by different techniques. (A) is histogram of raw data
and it can be seen to be positively skewed and (B) is histogram of transformed data to base 10 logarithmic
scale showing to be normally distributed.
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PM10 daily annual mean (2006); for stations using
beta ray attenuation measuring technique

Log10 tranformation of PM10 daily annual mean (2006);
for stations using beta ray attenuation measuring technique
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Figure 5-2. Histograms of combined PM10 daily annual mean concentration measured by beta ray technique for the
year 2006

Figure 5-2 present histograms for combined PM10 daily annual mean concentration for 2006 measured by
beta ray attenuation technique in different countries. Figure 5-2 (A) is the histogram of raw data which
positively skewed and Figure 5-2 (B) is the base 10 logarithmic transformed data histogram showing to be
normally distributed.

Log10 transfromation of PM10 daily annual mean (2006); Log10 transfromation of PM10 daily annual mean (2006);
for stations using all measuring techniques for stations using beta ray attenuation measuring technique
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Figure 5-3. Log10 normal probability plots of PM10 daily annual mean concentration for 2006. (A) combined PM10
data measured by all techniques and (B) combined PM10 data measured by beta ray attenuation technique for the
year 20006.

From Figure 5-3 it can be seen that data measured by different techniques tends to be closer to normal
distribution than those measured by beta ray attenuation techniques.

The spatial structures between these two groups of data were also explored. Due to skewedness in dataset,
base 10 logarithmic scale was applied during estimation of empirical variograms. Cut off and bin width
were maintained for comparison purposes between two structure. Figure 5-4 (A) presents estimated
empirical variograms model for combined data measured by different technique. Figure 5-4 (B) is the
estimated empirical variograms model for combined data measured by beta ray attenuation. There is small
difference in range and total sill between two structures (Table 5-2), but the spatial structure is relatively
similar.
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Figure 5-4. Variograms models for PM10 concentration for the year 2006: A-for combined PM10 data measured by
all techniques and B-for data measured by beta ray technique.

Model psill range cutoff width
Casel Nug 0.003 0.00 850 50
Exp 0.019 434.489
Case2 Nug 0.005 0.00
Exp 0.012 273.693

Table 5-2. Computed exponential model parameters of PM10 daily annual mean concentration for 2006

From Table 5-2, casel are computed model parameters for combined PM10 daily annual mean
concentration measured using all techniques and case2 are the model parameters for combined PM10
daily annual mean concentration measured by beta ray attenuation technique for the year 2006.

Observations from country to country data exploration for the year 2006

In general combining data measured by different techniques gave almost the same structure with those
measured by beta ray attenuation techniques. Consider Table 5-1, it is clear that two groups have almost
similar statistics. Figure 5-1 (A) and Figure 5-2 (A) shows the histograms of raw data and Figure 5-1 (B)
and Figure 5-2 (B) base-10 logarithm transformed data to be almost similar. Figure 5-3 shows normal
probability plot of base-10 logarithmic scale transformation between two groups of data to be similar. The
spatial structure presented in Figure 5-4 (A and B) also shows small difference in structure between two
groups but not significant different.

Further investigation was done on spatial structure in data for individual countries (Appendix A and B).
However, due to low number of stations and other factors that have not been identified, it was difficult to
have reliable spatial structure for some countries e.g. The Netherlands. Following this exploration it was
decided to use data measured by all measuring techniques for this study without considering
standardization (Denby et al., 2008).

5.2. Data exploration for 2003

PM10 daily annual mean concentration for 2003 was the target variable in this study. The selection of the
year was due to availability of secondary data for the year 2003 i.e. AOT and PM2.5. Data exploration
results for PM10, AOT and PM2.5 for 2003 are presented in this section. It is important to understand
that from this section and rest of sections described below are associated with data for the year 2003.
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5.21.  PM10 daily annual mean concentration for 2003

Descriptive data analysis results are shown in Figure 5-5 and Figure 5-6 where; Figure 5-5 (a) is the
histogram of the raw data showing to be slightly positively skewed. Figure 5-5 (b) is histogram of log10
transformed data showing to be normally distributed, Figure 5-5 (c) is the histogram of natural logarithm
transformed data also showing to be normally distributed. Figure 5-6 (a), (b) and (c) are normal probability
plots of the raw data, log10 and natural logarithm transformed data respectively.

a) raw data b)log10
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Figure 5-5. Histograms of PM10 daily annual mean | Figure 5-6. Normal probability plots of PM10 daily

measurements for the year 2003; (a) raw data, (b) annual mean measurements for the year 2003 (a) raw
log10 and (c) natural log data, (b) log10 and (c)natural log
Summary statistics
Min. 1st Qu. Median Mean 3rd Qu. Max.
a) Raw data 5.501 21.370 25.820 26.830 30.750 58.350
b) log10 0.740 1.330 1.412 1.409 1.488 1.766
¢) Natural logarithm 1.705 3.062 3.251 3.244 3.426 4.067

Table 5-3. Descriptive summary statistics for PM10 annual daily mean concentration for 2003

It is difficult to make decision on whether data transformation should be done or not using normal
probability plots. The distribution of raw data and transformed data deviate from normally distribution
(refer Figure 5-6 (a), (b) and (¢)). Histogram of raw data Figure 5-5 (a) shows the distribution being slightly
positively skewed. The skewedness is also shown by descriptive summary statistics Table 5-3(a) in which
minimum, mean, median, maximum and inter-quartile values are shown. It can be seen that logl0
transformation has almost similar mean and mode than raw data and natural logarithmic scaled data.

Therefore PM10 data used in this study were transformed by base-10 logarithmic transformations. The in
situ measurements skewness were also found by Denby et al. (2008) and Beelen et al. (2009). They
transformed their data to base-10 and natural logarithmic scales transformation respectively.

5.2.2.  PM2.5 monthly annual mean averages for 2003

PM2.5 used as covariate in this study was obtained by downscaling original model outputs PM2.5 at 0.5°
by 0.25" to 0.1° by 0.1° by bilinear interpolation. The product was then projected to LAEA 1989 at 10 km
square grid using ARCGIS.

PM2.5 monthly annual mean concentration was found to be positively skewed as shown in Figure 5-7 (A).
Summary statistics of raw data and base-10 logarithmic transformed data are presented in Table 5-4. It is

24



GEOSTATISTICAL ANALYSIS OF AIR POLLUTION USING MODELS, IN SITU AND REMOTE SENSED DATA

difficult to use summary statistics in this case to know whether data are skewed or not. Data were
transformed to base-10 logarithmic scale and it was found to be normally distributed as shown in Figure
5-7 (B).This was important for cokriging since it requires estimation of covariates variograms (Webster
and Oliver, 2008).

A B

hist flog10(PM2.5
histogram of PM2.5 {raw data) Istogram of log10(PM2.3)
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Figure 5-7. Histograms of PM2.5 monthly annual mean concentration averages for 2003. (A) is the PM2.5 raw data
histogram which is positively skewed. (B) is the histogram of base-10 logarithm transformed PM2.5 showed to be
normally distributed.

Raw data Base 10 logarithm transformation
Min | 1stQu | Median | Mean | 3td Qu. | Max. | Min | 1st Qu | Median | 3rd Qu | Max | Min

3.66 | 7.28 9.57 9.86 11.49 25.82 ] 0.56 | 0.86 0.98 0.97 1.06 | 1.41
Table 5-4. Summary statistics of PM2.5 data and its corresponding base-10 logarithmic transformed data.

From summary statistics (Table 5-4), it is hard to know whether PM2.5 is normally distributed or not.
Histogram in Figure 5-7 (A) has been more informative in describing distribution of PM2.5 than summary

statistics

5.2.3. AOT daily annual averages for 2003

AOT was found normally distributed as shown by the histogram of raw values presented in Figure 5-8
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Figure 5-8. Histogram of AOT daily annual averages for 2003.
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5.3. Spatial data analysis

The PM10 monitoring stations extend from 2000 km to 3750 km north and 3000 km to 5000 km east
(Figure 3-2). Figure 5-9 presents bubble plot which show that daily annual averages of PM10 in the study
area for 2003 ranging from 5.5 pgm-3 to 58.35 pgm-3

mean

© 5501

. 21194
s 25665
* 30958
* 58355

Figure 5-9. Bubble plot of insitu measurements showing
PM10 concentration

“mean” as used here refers to PM10 daily annual mean concentration for 2003.

5.4. Variogram models

5.4.1. Selection of variograms model

Figure 5-10 shows three model functions fitted to experimental variograms. These models were fitted on
estimated variograms of the same cutoff and width. Then, they were applied in kriging. Accuracy
assessment was done using independent validation dataset. The resulting errors are also shown in Figure
5-10. Exponential model had lower RMSE as compared to spherical and Gaussian models. Thus it was
selected to be used in prediction.

Model Exponential model Spherical model Gausian model
2 »s}j- /’_M;U-L 245 5/2,[!)!37 - l](ws'y ! '33’”“12."7 5?’\!8317 'H‘:r ! '.zw,uil‘ﬁ
P b T oy R0 . e and0 T e and
e o5y | ) #a53 . 8853
Jes13 ,’z’m otz
s 8 | fen 8 Lém
ME 0.009 0.009 0.009
SSE 1.417 1.490 1.569
RMSE 0.096 0.099 0.102

Figure 5-10. Selecting variograms model for PM10 concentration for 2003
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5.4.2. Exponential variograms model of PM10 daily annual mean concentration for the year 2003

Different cut off and widths were experimented to explore the spatial structure of PM10 daily annual
mean concentration at longer and shorter distances. The number of point pairs forming variograms was
investigated. Cut off 1000 km and width of 60 km were finally selected for modelling. Exponential model
fitted to empirical variograms is shown in Figure 5-11. Computed model parameters are shown in Table
5-5. The model was used in OK, UK and in universal block kriging of PM10. Also it was used in

calculation of cross variograms for cokriging with other secondary information.

0.015 o /

0.010 o )/
/

semivariance

0.005 -

T T T
200 100 600 800
distance

Figure 5-11. Exponential variograms model of PM10
daily annual mean concentration for the year 2003.

Model parameters

psill range
Nug 0.0086 0.0000
Exp 0.0096 121.9784

Table 5-5. Computed exponential model parameters
for PM10 daily annual mean concentration for the year

2003.

5.5. Kriging of PM10 only

In total 455 out of 607 measurements stations were used in kriging. Maps created by different kriging
techniques are presented in this section. Measurements were kriged by ordinary kriging and universal
kriging. Figure 5-12 and Figure 5-13 presents resulting PM10 concentration maps (left) and kriging
variance (right) produced by ordinary kriging and universal kriging of measurements only respectively.

ordinary kriging predictions of PM10 using measurements only
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Figure 5-12. PM10 daily annual mean concentrations map for the year 2003 produced by OK of in situ

measurements.
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Universal kriging predictions of PM10 using measurements only Universal kriging variance of PM10 using measurements only
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Figure 5-13. PM10 daily annual mean concentrations map for the year 2003 produced by UK of in situ
measurements.

5.6. Universal block kriging

Universal block kriging was applied at block sizes of 2 km, 5 km, 10 km, 20 km and 30 km. Figure 5-14
and Figure 5-15 presents block kriged predictions of PM10 measurements at block size of 10 km by 10 km
and 30 km by 30 km respectively. Block kriged predictions at block size of 2 km, 5 km and 20 km are not
presented here.

A B

Universal block kriging predictions of PM10 Universal block kriging variance of PM10
using measurements only using measurements only
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Figure 5-14. PM10 daily annual mean concentrations map for the year 2003 produced by universal block kriging of in
situ measurements at the block size of 10 km by 10 km. (A) is the prediction map at area support (B) is the kriging
variance
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Universal bl_ock kriging predictions of PM10 Universal block kriging variance of PM10
using measurements only using measurements only
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Figure 5-15. PM10 daily annual mean concentrations map for the year 2003 produced by universal block kriging of in
situ measurements at the block size of 30 km by 30 km. (A) is the prediction map at area support (B) is the kriging
variance

5.7. Kriging of PM10 using ancillary data

5.7.1.  Ordinary linear regression

Three models were established using ordinary linear modelling. Table 5-6 presents the summary of the
linear model between PM10 and secondary data. Three models were found significant having p-
value<<0.01. However, R? was small meaning only 0.16 to 0.20 of variability in PM10 was explained by
secondary data.

N=455 model Standard tvalue | Pr(>|t]) Residual R?model | r
coefficient | etror (SE) standard error
(RSE)
)
intercept 1.148 0.028 41.05 <2e-16
AOT 1.047 0.111 9.46 <2e-16 0.122 0.163 0.40
B)
intercept 1.234 0.019 65.879 | <2e-16
PM2.5 0.015 0.002 9.686 <2e-16 0.121 0.170 0.41
0
intercept 1.142 0.027 41.846 | <2e-16
AOT 0.626 0.137 4.553 < 6.80e-06
PM2.5 0.009 0.002 4.950 < 1.05e-06 | 0.118 0.204 0.45

Table 5-6. Ordinary linear regression model results for (A) PM10 regressed on AOT, (B) PM10 regressed on PM2.5
and (C) PM10 regressed on both AOT and PM2.5

From Table 5-6, predictors were AOT and PM2.5. Coincident number of observation (N) between PM10
and secondary data were 455. The deterministic model coefficient (R?) increased when PM10 regressed on
both covariates.

Mathematical relation between PM10 and secondary data
From linear model parameters presented in Table 5-6, mathematical relationship between PM10 and
secondary data were established as presented by equations 5-1, 5-2 and 5-3.
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PM10 = 1.148 + 1.047 AOT (5-1)
PM10 = 1.234 + 1.015 PM, 5 (5-2)
PM10 = 1.142 + 0.551 AOT + 0.011 PM, (5-3)

Maps by ordinary linear regression model
Relationship between PM10 and secondary data modelled by equations 5-1, 5-2 and 5-3 were used to
produce maps presented in Figure 5-16, Figure 5-17 and Figure 5-18 respectively.

Ordinary linear regression of PM10 regressed on AOT Ordinary linear regression variance of PM10 regressed on AOT
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3500000 4 ¥ 2 I 3500000 L

0.0160
0.0158
3000000 Trar I 15 3000000 0.0156

0.0154

0.0152
2500000 - A P = - 2500000
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Figure 5-16. PM10 daily annual mean concentration map for 2003 produced by ordinary linear regression of PM10
regressed on AOT. AOT was an input to equation 5-1.

Ordinary linear regression predictions of PM10 regressed on PM2.5 ordinary linear regression variance of PM10 regressed on PM2.5
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Figure 5-17. PM10 daily annual mean concentration map for 2003 produced by ordinary linear regression of PM10
regressed on PM2.5. PM2.5 was an input was an input to equation 5-2.
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Ordinary linear regression predictions of
PM10 regressed on AOT and PM2.5
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Figure 5-18. PM10 daily annual mean concentration map for 2003 produced by ordinary linear regression of PM10

regressed on AOT and PM2.5. AOT and PM2.5 were inputs to equation 5-3.

5.7.2. Regression kriging using exponential model

Regression kriging of PM10 on AOT

Refer to summary of the linear model between PM10 and AOT presented in Table 5-6, the deterministic

model coefficient (R?) between PM10 and AOT was found to be 0.16 ie. only 0.16 of variability in

measurements is being explained by AOT. Figure 5-19 shows the scatter plot describing relationship

between PM10 and AOT. The diagnostic plots presented in Figure 5-20 shows residuals are normally

distributed.

Residual modelling was done in R software to be used in RK. Figure 5-21 shows exponential variograms

model of residuals showing hole effect. Computed residual model parameters used for kriging of residuals
are presented in Table 5-7. Figure 5-22 is the PM10 concentrations map created by RK between PM10 as

response and AOT as explanatory variable.
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Figure 5-19. Regression line between PM10

Figure 5-20. Regression diagnostic plot of PM10
and AOT
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Figure 5-21. Variograms model of residual between
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Model psill range
1 Nug 0.0079 0.0000
2 Exp 0.0063 103.8616

Table 5-7. Residual model parameters of PM10
regressed on AOT (range in km)
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Figure 5-22. PM10 daily annual mean concentration map for 2003 produced by RK of PM10 regressed on AOT

Regression kriging of PM10 on PM2.5

Refer to linear model between PM10 and PM2.5 summarized in Table 5-6, the R2 between PM10 and
PM2.5 was found to be 0.17. This means that; only 0.170f variability in PM10 is being explained by
PM2.5. The scatter plot presented in Figure 5-23 describes the relation between variables along regression
line. Figure 5-24 presents the diagnostic plots between PM10 and PM2.5 from which residuals are shown

to be normally distributed.
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Figure 5-23. Regression line between PM10 and
PM2.5. There is poor correlation as depicted by

regression line

Figure 5-24. Regression diagnostic plot of PM10 and
PM2.5. Residuals shows high correlation though
deviates from normal distribution (see residual vs
fitted and normal probability plot)

Residual modelling was done in R software and was used in RK to produce map presented in Figure 5-26(left).

Figure 5-25 show the variograms model of residuals showing hole effect at 400 km and computed residual model

parameters used in RK are presented in Table 5-8

semivariance

200 400 600 800
distance

model psill range
1 Nug 0.008 0.000
2 Exp 0.006 75.946

Table 5-8. Residual model parameters of PM10
regressed on PM2.5 (range in km)

Figure 5-25. Exponential variograms model of
residual between PM10 and PM2.5 (distance in km)
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Regression predictions of PM10 regressed on PM2.5 Regression variance of PM10 regressed on PM2.5
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Figure 5-26. PM10 daily annual mean concentration map for 2003 produced by RK of PM10 regressed on PM2.5

Regression kriging of PM10 on AOT and PM2.5

The regression model of PM10 regressed on AOT and PM2.5 resulted to R2 of 0.2 (refer to Table 5-6).
This means that 20% of variability in measurements was explained by secondary information. The
diagnostic plots of regression model residual are normally distributed (Figure 5-27).
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Figure 5-27. Diagnostic plot of PM10 regressed on both covariates (AOT and PM2.5).

Figure 5-28 show the variograms model of residuals showing hole effect at 400 km. Computed residual
model parameters are presented in Table 5-9. Figure 5-29 (left) is the PM10 concentrations map produced
by RK of PM10 regressed on AOT and PM2.5.

34



GEOSTATISTICAL ANALYSIS OF AIR POLLUTION USING MODELS, IN SITU AND REMOTE SENSED DATA

0us . - model psill range
R 1 Nug 0.008 0.000
2 Exp 0.006 79.759

Table 5-9. Residual model parameters of PM10
- regressed on PM2.5 and AOT (range in km)

0010

semivariance

0005 -

T T T T
200 400 600 800

distance

Figure 5-28. Exponential variograms model of
residuals between PM10 regressed on PM2.5
and AOT (distance in km)

Regression kriging predictions of PM10 regressed on AOT and PM2.5 Regression kriging variance of PM10 regressed on AOT and PM2.5
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Figure 5-29. PM10 daily annual mean concentration map for 2003 produced by RK of PM10 regressed on AOT and
PM2.5

5.7.3.  Kriging using hole effect model

Measurement only

The hole effect model was fitted to empirical variograms of PM10 daily annual mean concentration for the
year 2003 due to hole effect at 400 km and 800 km. Figure 5-30 shows the hole effect model and its
computed model parameters for PM10 concentrations. The model was then used to predict two maps
shown in Figure 5-31 by ordinary kriging (A) and universal kriging (B).
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model psill range
1 Nug 0.011 0.000
oo 2 Hol 0.006 49.497

0010

semivariance

0.005

T T T T
200 400 600 800

distance

Figure 5-30. Hole effect model variograms (left) and computed model parameters (right) of PM10 daily annual mean
concentration for the year 2003

A B

Ordinary kriging predictions of PM10 using measurements only Universal Kriging predictions of PM10 using measurements only
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Figure 5-31. PM10 daily annual mean concentration predicted maps using hole effect model. Predictions presented
in (A) were produced by OK and predictions presented in (B) were produced by UK using PM10 available
observations. Both methods used model presented in figure 5-30

RK using hole effect model

Variograms of residuals showed hole effect. Therefore hole effect model was fitted to variograms of
residuals of PM10 regressed to AOT, PM2.5 and both covariates. Then these models were used in RK of
PM10 and secondary data. Figure 5-32, Figure 5-33 and Figure 5-34 presents hole effect models and
corresponding RK maps of PM10 regressed on AOT, PM10 regressed on PM2.5 and PM10 regressed on
AOT and PM2.5 respectively. The hole effect model fitted better estimated empirical variograms at
shorter distances up to 400 km compared to exponential model.
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Figure 5-32. Hole effect model fitted to residuals of PM10 regressed on AOT and its corresponding RK map (right)
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Figure 5-33. Hole effect model fitted to residuals of PM10 regressed on PM2.5 and its corresponding RK map (right)

on AOT and PM2.5

g ion kriging p! i of PM10 reg

model  psill range
1 Nug 0.010 0.000
2 Hol  0.004 48.416

Figure 5-34. Hole effect model fitted to residuals of PM10 regressed on AOT and PM2.5 (Left) and is its

corresponding RK map (right)
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5.74.  Cokriging (CK)

Table 5-10, Table 5-11 and Table 5-12 shows the cross variograms model parameters between PM10 and
AOT, PM10 and PM2.5 and PM10 with AOT and PM2.5 respectively. Figure 5-35, Figure 5-37 and
Figure 5-39 show the cross variograms models for PM10 and AOT, PM10 and PM2.5 and PM10 with
AOT and PM1.5 respectively. Kriging predictions produced by three cokriging models are presented in
Figure 5-306, Figure 5-38 and Figure 5-40 on left and their corresponding cokriging variance on the right.

PM10 cokriged with AOT

Table 5-10 show the cross variograms model parameters between PM10 and AOT. Figure 5-35 show the
cross variograms models for PM10 and AOT. Cokriging predictions produced by this model is presented
in Figure 5-36.

(g <- gstat(g, id = "PM10", model =m , fill.all=T)) (g <- fitlmc(v.cross, g))
data: data:
PM10 : formula = log10(mean)~1 ; data dim = 455x 1 | PM10 : formula = logl0(mean)~1 ; data dim = 455 x 1
AOT : formula = AOT~1 ; data dim = 455x 3 AOT : formula = AOT~1 ; data dim = 455x 3
variograms: variograms:

model psill range model  psill range
PM10[1] Nug 0.0086 0.0 PM10[1] Nug 0.0076 0.0
PM10[2] Exp 0.0096 121978.4 PM10[2] Exp 0.0109 121978.4
AOT(1] Nug 0.0086 0.0 AOTI(1] Nug 0.0005 0.0
AOT(2] Exp 0.0096 121978.4 AOT|2] Exp 0.0020 121978.4
PM10.AOT[1] Nug 0.0086 0.0 PM10.AOT[1] Nug 0.0004 0.0
PM10.AOT[2] Exp 0.0096 121978.4 PM10.AOT[2] Exp 0.0027 121978.4

Table 5-10. Cross variograms model parameters between PM10 and AOT

“Mean” as defined when building variograms object represents PM10 daily annual mean concentration.
Base 10 logarithm transformation of PM10 (mean) was applied due to skewedness of raw data.

|
PM10

0000 0005 0010 0015

PM10.AOT AOT

semivariance
0.002 0.003

0.001

0.000

distance

Figure 5-35. Cross variograms model between PM10 and AOT
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Figure 5-36. PM10 daily annual mean concentration map for 2003 produced by cokriging of PM10 with AOT.
the cokriging predictions and (B) is the cokriging variance.

PM10 cokriged with PM2.5
Table 5-11 shows the cross variograms model parameters between PM10 and PM2.5. Figure 5-37 show
the cross variograms models PM10 and PM2.5. Cokriging predictions produced by this model are
presented in Figure 5-38 on left and their corresponding cokriging variance on the right.

data:

variograms:

model
PM10[1] Nug
PM10[2] Exp
PM25[1] Nug
PM25[2] Exp

PM10.PM25[1] Nug
PM10.PM25[2] Exp

psill

0.0086
0.0096
0.0086
0.0096
0.0086
0.0096

> (g <- gstat(g, id = "PM10", model =m , fill.all=T))

PM10 : formula = logl0(mean)~1 ; data dim = 455 x 1
PM25 : formula = logl0(PM2.5)~x + v ; data dim = 455x 3

range
0.0
121978.4
0.0
121978.4
0.0
121978.4

> (g <- fitImc(v.cross, )
data:

PM10 : formula = logl0(mean)~1 ; data dim = 455 x 1

PM25 : formula = logl0(PM2.5)~x + y ; data dim = 455 x 3

variograms:

model
PM10[1] Nug
PM10[2] Exp
PM25]1] Nug
PM25|2] Exp

PM10.PM25[1] Nug
PM10.PM25[2] Exp

psill
0.0076
0.0109
0.0002
0.0112
-0.0011
0.0072

range
0.0
121978.4
0.0
121978.4
0.0
121978.4

Table 5-11. Cross variograms model parameters between PM10 and PM2.5.
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Figure 5-37. Cross variograms model between PM10 and PM2.5

Cokriging predictions of PM10 and PM2.5

3500000 -

3000000 -

2500000

1.7

T
3500000 4000000 4500000

Cokriging variance of PM10 and PM2.5

3500000

3000000

2500000 1

e

T
3500000

T
4000000

4500000

0018

0.016

0.014

0.012

0.010

0.008

Figure 5-38. PM10 daily annual mean concentration map for 2003 produced by cokriging of PM10 with PM2.5.
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PM10 cokriged with AOT and PM2.5

Table 5-12 shows the cross variograms model parameters between PM10 with AOT and PM2.5. Figure
5-39 show the cross variograms model between PM10 with AOT and PM2.5. Cokriging predictions
produced by this model are presented in Figure 5-40 on the left and their corresponding kriging variance

on the right.

(g <- gstat(g, id = "PM10", model =mm , fill.all=T)) | (g <- fitlmc(v.cross, g))

data: data:

PM10 : formula = log10(mean)~1 ; data dim = 455 x | PM10 : formula = log10(mean)~1 ; data dim = 455 x
1 1
AOT : formula = AOT~1 ; data dim = 455x 3 AOT : formula = AOT~1 ; data dim = 455x 3
PM25 : formula = logl0(PM2.5)~x + y ; data dim = PM25 : formula = logl0(PM2.5)~x + y ; data dim =
455x 3 455x 3
variograms: variograms:

model  psill range model psill range

PM10[1] Nug 0.0086 0.0 PM10[1] Nug 0.0076 0.0
PM10[2] Exp 0.0096 121978.4 PM10[2] Exp 0.0109 121978.4
AOTI1] Nug 0.0086 0.0 AOTI1] Nug 0.0005 0.0
AOT[2] Exp 0.0096 121978.4 AOT[2] Exp 0.0020 121978.4
PM25[1] Nug 0.0086 0.0 PM25[1] Nug 0.0002 0.0
PM25[2] Exp 0.0096 121978.4 PM25|2] Exp 0.0112 121978.4
PM10.AOT[1] Nug 0.0086 0.0 PM10.AOT[1] Nug 0.0004 0.0
PM10.AOT[2] Exp 0.0096 121978.4 PM10.AOT[2] Exp 0.0027 121978.4
PM10.PM25[1] Nug 0.0086 0.0 PM10.PM25[1] Nug -0.0011 0.0
PM10.PM25[2] Exp 0.0096 121978.4 PM10.PM25[2] Exp 0.0072 121978.4
AOT.PM25[1] Nug 0.0086 0.0 AOT.PM25[1] Nug -0.0002 0.0
AOT.PM25[2] Exp 0.0096 121978.4 AOT.PM25[2] Exp 0.0031 121978.4

Table 5-12. Cross variograms model parameters of PM10 with AOT and PM2.5.

It was important to calculate PM2.5 variograms with trend using coordinates because it provided relatively

similar structure with other variables used in estimation of cross variograms.
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Figure 5-39. Cross variograms model between PM10 with AOT and PM2.5.
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Collocated pixels with PM10 stations values were used in estimation of individual variograms models and
hence cross variograms

Cokriging predictions of PM10 with AOT and PM2.5 Cokriging variance of PM10 with AOT and PM2.5
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Figure 5-40. PM10 daily annual mean concentration map for 2003 produced by cokriging of PM10 with AOT and
PM2.5

5.8. Using coarse model outputs

5.8.1. RKof PM10 regressed on courser PM2.5

The linear model results between PM10 and coarser PM2.5 is presented in Table 5-13. The model was
significant but R? was small (0.16). Table 5-14 (A) shows the scatter plot between variables. The model
residuals were normally distributed as presented by diagnostic plot in Table 5-14 (B). Variograms model of
residuals and the calculated residual model parameters are shown in Table 5-14 (C and D) respectively.
The model was applied in RK to predict map shown in Figure 5-41.

Call:
Im(formula = logl0O(mean) ~ PM2.5, data = as.data.frame (pmlQO.extraproj))

Residuals:
Min 10 Median 3Q Max
-0.70524 -0.06468 0.00327 0.07368 0.39854

Coefficients:

Estimate Std. Error t value Pr(>]|t])
(Intercept) 1.244118 0.018157 68.522 <2e-16 **x*
PM2.5 0.013841 0.001465 9.448 <2e-16 **x*

Signif. codes: 0O ‘*x**’ (0,001 ‘**’ 0.01 *" 0.05 ‘.7 0.1 ' 1

Residual standard error: 0.1216 on 453 degrees of freedom
Multiple R-squared: 0.1646, Adjusted R-squared: 0.1628
F-statistic: 89.26 on 1 and 453 DF, p-value: < 2.2e-16

Table 5-13. Regression model between PM10 and coarser resolution PM2.5 at 30 km square grid.

42



GEOSTATISTICAL ANALYSIS OF AIR POLLUTION USING MODELS, IN SITU AND REMOTE SENSED DATA

Residuals vs Fitted Normal @-Q
2 3
H 5
& ]
2
= »
@ P -
< T T T T T T R e e e R
130 135 140 145 150 155 160 3 2 4 0 1 2 3
= Fitted values Theoretical Quantiles
3
E
=3
g - Scale-Location Residuals vs Leverage
B o <
T o | -
S o R
o o o = - -
- 2 24 3 o ¢ =
o o B 3 ac
s 2 % oo
] z v
© =
o 7 2 @ |
° o | @ — --“2Cook’s distance e
S .
T T T T T T T T
T T T T T
130 135 140 145 150 155 1.60 0.000 0.010 0.020 0.030
5 10 15 20 25
Fitted values Leverage
PM2.5
model  psill range
. . L
o
1 Nug 0.0084 0.000
0.015 . o 3 o r
PR -
LT A 2 Exp 00064  78.07860
/
/
.l',,
.f
q
/
ETRY!
g |
B2 I
&
=
£
&
0.005 F
T T T
200 400 500 810
distance

Table

5-14: RK model and predicted map when PM10 regressed on courser PM2.5 at 30 km grid.
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Figure 5-41. PM10 daily annual mean concentration for 2003 produced by RK of PM10 regressed to coarser PM2.5

at spatial resolution of 30 km.
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5.8.2.  Cokriging of PM10 with coarser PM2.5

Using PM2.5 at 30 km square grid, modelling and cokriging between PM10 and PM2.5 was performed.
Table 5-15 (A) presents cross variograms model between PM10 and coarser PM2.5. Table 5-15 (B)
presents the cross variograms model parameters which then were used to produce cokriged map between
PM10 and coarser PM2.5 presented in Table 5-15 (C). Table 5-15 (D) presents the model performance at
validation points.

A B
(g <- gstat(g, id = "PM10", model =m , fill.all=T))
n - data:
g PM10 : formula = log10(mean)~1 ; data dim = 455 x 1
2] PM25 : formula = logl0(PM2.5)~x + y ; data dim =
g 455x 2
s ;7 variograms:
% ) B e model  psill range
e & _ PM10]1] Nug  0.0086 0.0
d RN S PM10[2] Exp  0.0096 121978.4
§ PM25[1] Nug  0.0086 0.0
§ ;' PM25[2] Exp  0.0096 121978.4
° P P P ' ' ' PM10.PM25[1] Nug 0.0086 0.0
e PM10.PM25[2] Exp 0.0096 121978.4
(g <- fitlmc(v.cross, g))
data:
PM10 : formula = log10(mean)~1 ; data dim = 455 x 1
PM25 : formula = log10(PM2.5)~x + y ; data dim =
455x 2
variograms:
model psill range
PM10[1] Nug 0.0076 0.0
PM10[2] Exp 0.0109 121978.4
PM25[1] Nug 0.0002 0.0
PM25]2] Exp 0.0125 121978.4
PM10.PM25[1] Nug -0.0012 0.0
PM10.PM25[2] Exp 0.0074 121978.4
C D
Residuals:
Min 10 Median 30 Max
Cokriging predictions of PM10 and PM2.5 -0.42142 -0.04725 0.00236 0.05351 0.22361
3500000 - Coefficients:
16 Estimate Std. Error t value Pr(>|t])
(Intercept) -0.1971 0.1426 -1.382 0.169
s PM10.pred 1.1454 0.1012 11.321 <2e-16
" Signif. codes: 0 ‘***7 0,001 ‘**’/ 0.01 ‘*’ 0.05
2500000 - ! 0 1l
Residual standard error: 0.09941 on 150 degrees of
' freedom
o0 foeoeen “ea00e Multiple R-squared: 0.4607, Adjusted R-
squared: 0.4571
F-statistic: 128.2 on 1 and 150 DF, p-value: <
2.2e-16

Table 5-15: Cokriging of PM10 daily annual mean concentration with coarser PM2.5 at 30 km square grid for 2003
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5.9. Accuracy assessment

This section presents error measure indicators for each kriging method used. Table 5-16 presents accuracy
assessment of different kriging methods that used “exponential model” in prediction. Table 5-17 presents
accuracy assessment of kriging methods when “hole effect model” was used in prediction. Table 5-18
presents accuracy assessment for universal blocking at different sizes. Table 5-19 gives comparison
between ordinary linear regression and RK. These results are based on independent dataset (152
measurement stations). Thus it was the comparison between predicted values and known values at these
stations. ME, SSE and RMSE were calculated using observed values and predicted values at validation
points.

5.9.1.  Prediction using exponential model

a
: Modelled mean | ME SSE RMSE R Secondary variable
OK 1.406 0.009 1.425 0.097 0.72 -
UK 1.406 0.009 1.417 0.096 0.72 coordinates
RK
1.409 0.006 1.390 0.096 0.71 AOT
1.405 0.010 1.449 0.098 0.71 PM2.5
1.407 0.008 1.398 0.096 0.72 AOT+PM2.5
CK
1.407 0.007 1.421 0.097 0.71 AOT
1.405 0.009 1.496 0.099 0.69 PM2.5
1.406 0.009 1.500 0.099 0.68 AOT+PM2.5
b)
Modelled mean | ME SSE RMSE R Secondary variable
RK 1.404 0.010 1.512 0.100 0.69 PM2.5
CK 1.405 0.010 1.547 0.101 0.67 PM.25

Table 5-16. Accuracy assessment for results of PM10 predictions for 2003 when employing exponential model. Table
5-16 (a) AOT andPM2.5 used were at 10 km square grid and table 5-16 (b) PM2.5 used was at 30 km square grid.
The observed mean equals 1.407.

PM2.5 used in table (a) was obtained by downscaling PM2.5 at 0.5 by 0.25° to 0.1° by 0.1° by bilinear
interpolation to match AOT derived from MODIS, then projected at 10 km square grid. PM2.5 used in
table (b) was obtained by projecting PM2.5 at 0.5° by 0.25° to 30 km square grid. Resulting RMSE and R
were better for CK and RK of PMI10 with resampled PM2.5 than with coarser PM2.5. However
differences were small but are noticeable.

5.9.2.  Prediction using hole effect model

Modelled ME SSE RMSE | R Secondary variable
mean

OK 1.406 0.008 | 1.741 | 0.107 0.63 | -

UK 1.406 0.009 | 1.703 | 0.106 0.63 | coordinates

RK 1.410 0.004 | 1.692 | 0.105 0.62 | AOT
1.405 0.010 | 1.707 | 0.106 0.63 | PM2.5
1.407 0.007 | 1.682 | 0.105 0.63 | AOT+PM2.5

Table 5-17. Accuracy assessment for results of PM10 predictions for 2003 when employing hole effect model. AOT
and PM2.5 were at 10 km square grid. The observed mean equals 1.407

From Table 5-17, Small RMSE equals to 0.105 was found for RK of PM10 regressed to AOT and PM10
regressed to both covariates. But the correlation between predicted values and observed values was better
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for RK of PM10 regressed to both covariates (0.63) compared to RK of PM10 regressed to AOT (0.62).
Also considering modelled mean, It can be concluded that for hole effect model, RK of PM10 regressed
to both covariates gave relatively better results than other methods.

5.9.3. Block kriging

Table 5-18 presents results of uncertainty assessment when different block sizes were applied. The trend
is clear, the uncertainties increases as the block size increases

Block sizes in km

2 5 10 20 30
ME 0.009 0.009 0.009 0.0099 | 0.009
SSE | 1.417 1.418 1.419 1.426 | 1436
RMSE | 0.0966 0.0966 | 0.0966 0.0968 | 0.0972

Table 5-18. Accuracy assessment of universal block kriging at different block sizes

Change of support from point to area has shown that as the block size increases, the uncertainties
increases. SSE is more sensitive to change of support than RMSE. There is no change of RMSE from
point to block size of 10 km while SSE has been changing (Table 5-18).

5.9.4.  Ordinary linear regression and RK
Ordinary linear regression Regression kriging
Meas. & Meas. & Meas. & Meas. & AOT | Meas. & PM2.5 Meas. &
AOT PM2.5 AOT+PM2.5 AOT+PM2.5
R 0.364 0.358 0.401 0.712 0.708 0.715
SSE 2.390 2432 2.326 1.390 1.449 1.398
ME 0.005 0.015 0.011 0.006 0.010 0.008
RMSE 0.125 0.126 0.124 0.096 0.098 0.096
Modelled 1.410 1.399 1.404 1.409 1.405 1.407
mean

Table 5-19. Model performance comparison between ordinary linear regression and RK. The observed mean equals
1.407.

From Table 5-19 it is cleatly shown that RK performed better than ordinary linear regression. The
difference in results is due to difference in mechanism of methods. RK considers of spatial structure in the
data modelled by variograms while ordinary linear regression does not. Hence these results indicates
importance of understanding spatial structure in data (Goovaerts, 2000).
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6. DISCUSSION

This chapter discusses in details the results obtained in this study. Discussion is based on data exploration,
performance of various kriging methods used and model functions applied.

Investigating spatial distribution in data, two groups of data were explored. Combined PM10
concentration from different countries measured by different techniques and combined PM10
concentration by beta ray absorption technique. Both descriptive and quantitative data analysis were
performed and were helpful to see the effect of combining data from different countries. Histogram
showed both data are skewed Figure 5-1and Figure 5-2. Although summary statistics for raw data between
two groups were slightly different; base-10 logarithm transformed data showed similar statistics for both
groups (Table 5-1). Spatial structures for two groups are presented in Figure 5-4 and model parameters in
Table 5-2. Despite of small difference on nuggets, partial sill and range between two groups; the general
spatial structures of two groups are relatively similar. However, it was not possible to get reliable spatial
structure for some countries due to small number of observations and other factors not explored. Basing
in exploration results it was decided to use combined data from different countries measured by different
techniques in this study.

Data exploration showed that PM10 daily annual mean concentration for 2003 ranged from 5.5 pgm- to
58.35 pgm3. PM2.5 monthly annual averages for 2003 ranged from 2.521 pgm3 to 25.815 ugm=3. The
AOT wvalues ranged from 0.0 to 0.449. When explored using quantitative and descriptive statistics AOT
was normally distributed while PM10 and PM2.5 were positively skewed. They were transformed using
base-10 logarithm transformation. Skewedness in PM10 and PM2.5 was also found by van de Kassteele et
al. (2006) and were transformed by base-10 logarithm and natural logarithm transformation respectively.
Transformation of PM2.5 was important especially in cokriging because of a need to estimate variograms
and cross variograms which usually require normally distributed data (Webster and Oliver, 2008).

Ordinary linear model results between observed PM10 concentration and covariates (AOT and PM2.5)
are presented in Table 5-6. The model between PM10 and covariates was found significant (p-
value<<0.01) but deterministic model coefficient (R2?) was small for both cases. R? between PM10 and
PM2.5 was found to be 0.17 and 0.16 for PM10 and AOT. On the other hand linear model of PM10 and
both covariates (AOT and PM2.5) resulted at R? of 0.204. Denby et al. (2008) obtained R2 of 0.21 between
PM10 and PM2.5 for the year 2003 but only 127 rural background stations were used as opposed to this
study whereby 607 urban, sub urban and rural background stations have been used. So inclusion of urban
and suburban stations has increased uncertainties. Also according to scale of rural background, model

outputs were capable to capitalize the local variation in PM10.

Preliminary linear model results suggested that incorporating these covariates in prediction of PM10
could improve accuracy of resulting maps. This was found true for predicted maps that used hole effect
model (Table 5-17) but the trend was not clear for exponential model (Table 5-16). Accuracy assessment
of results at validation points show that hole effect model gave results that reflected correlation between
observed PM10 and secondary data. For example RK using hole effect model of PM10 regressed on both
covariates (AOT and PM2.5) gave better results compared to PM10 regressed on individual covariates
(Table 5-17). Furthermore, there were improvements in results when covariates were used compared to
OK and UK of PM10 only though the difference was small to honour the use of covariates.
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Though correlation (R) for PM10 regressed on PM2.5 was better (0.41) than for PM10 regressed on AOT
(R=0.40), for exponential model RK of PM10 regressed to AOT after ordinary linear regression gave
better results than using PM2.5. For example map produced by RK of PM10 regressed on AOT provided
a lower RMSE value (0.096) as compared to PM10 regressed on PM2.5 (0.098). Both models R increased
from 0.40 to 0.71 and 0.41 to 0.71 for RK of PM10 regressed on AOT and RK of PM10 regressed on
PM2.5 respectively. Combining both covariates in RK of PM10 gave similar results but less biased to UK
(Table 5-16(a)).

Table 5-16 (b) presents results of RK and CK when PM10 kriged using PM2.5 at 30 km spatial resolution
as covariate. RK of PM10 regressed on PM2.5 downscaled by bilinear interpolation were better than RK
of PM10 regressed to coarser PM2.5. But R? for PM10 regressed to coarser PM2.5 (Table 5-13) and PM10
regressed to fine PM2.5 (Table 5-6) was relatively similar. On the other hand, the results for cokriging of
PM10 with PM2.5 downscaled by bilinear interpolation was better than with coarser resolution. The
results for RK were better than for CK. The results contradicts an assumption that cokriging always gives
good results (Goovaerts, 1999). Poor performance of cokriging is due to low correlation and coarser
spatial resolution of covariate (PM2.5). As observed by (Stein and Corsten, 1991) that CK performs well
when target variable is high correlated with intensively sampled covariates. These conditions are not met
for CK of PM10 and PM2.5 as correlation is low and there is an uncertainty in sampling of PM2.5 due to
its spatial resolution. Even if PM2.5 downscaled by bilinear interpolation improved RK and CK of PM10
results compared to coarser resolution, a better downscaling techniques “Downscaling cokriging” is
required which not only pixel size will be increased but also the detail in order to improved CK
performance. Downscaling by bilinear interpolation neither account for spatial structure in data nor
covariates on its downscaling process.

Both RK and CK were able to integrate three dataset at different support but not explicitly. It was
required to put data into same support by applying resampling techniques and ovetlaying of
measurements. Modelling was done using collocated values. RK was found to perform better than CK
when three dataset were integrated. However, the contribution of ancillary data in prediction of PM10 by
RK or CK was not valuable as optimal results were similar to results obtained by OK and UK. The
performance of RK and CK as compared to OK and UK can be improved by adding more covatiates.
For example Emili, et al. (2010) found high correlation between PM10 and AOT from SEVIRI and
MODIS to be higher to 24 h aggregated data. These improvements on 24 h aggregation was obtained at
expense of including meteorological data i.e. Relative Humidity (RH) and Boundary Layer Height (BLH).
Therefore considering model variables could improve results

Opverall accuracy assessment has shown predicted results to have agreement with observation for 0.63 to
0.72 for the all kriging methods used (excluding ordinary linear regression). RK provided relatively good
results compared to other methods, however it is slightly different from OK and UK. This contradicts the
results by (Beelen et al., 2009) who obtained good results with UK in his methods comparison study in air
pollution mapping across European union. These results agrees with results found by Denby et al. (2008)
who used data for the year 2003 but only 127 rural background were considered.

Two model functions were used to fit estimated empirical variograms; exponential model and hole effect
model. The use of two model function was due to hole effect emerged on the estimated variograms of
PM10 concentration for 2003. Visually hole effect model fitted much better the empirical variograms
specifically at shorter distance up to 400 km compared to exponential model. Assessment done at
validation points show that prediction maps by kriging methods which used exponential model resulted at
low RMSE and high correlation between observed and predicted PM10 values compared to hole effect
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model. However results from hole effect model were less unbiased as compared to those of exponential
model (compare the ME for Table 5-16 and Table 5-17)

Universal block kriging was performed at block size of 2 km, 5 km, 10 km, 20 km and 30 km. Accuracy
assessment at validation points showed RMSE to be low for block size less or equal to 10 km. RMSE
increased as block size greater than 10 km. The limitation of block kriging is that on accuracy assessment
as observations are at point support while predicted values are at area support.
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7.  CONCLUSION AND RECOMMENDATIONS

71. Conclusions

The objectives of the study was to develop and apply geostatistical methods to integrate in situ data,
model output and remotely sensing data to model and map air quality. Also it intended to predict
concentrations of pollutants in between in situ stations using remotely sensed data and model output. To
achieve these objectives five research questions were formulated (Table 1-1). From results obtained and

discussion made, the research questions are addressed to conclude the findings.

What is spatial distribution in the data?

Employing both descriptive and quantitative data analysis e.g. histogram, summary statistics and
variograms modelling, two groups of data were explored for 2006. Combined data from different
countries measured by different techniques and combined data from different countries measured by beta
ray attenuation techniques. It was found that two groups of data had relatively similar data behaviour.
They are all positively skewed, having almost the same summary statistics when transformed to base-10
logarithmic scale (Table 5-1) and the nugget and partial sill were relatively similar. Data measured by all
techniques showed more variability having slightly long range compared to data measured by beta ray
attenuation. Therefore despite of small difference on nuggets, partial sill and range between two groups;

the general spatial structures of two groups were found are relatively similar.

How should 3 data sources be integrated?

Two approaches were used to integrate 3 data sources. RK after ordinary linear regression was applied.
Linear model residuals were analysed and variograms of residuals estimated. Two maps residual map and
ordinary linear regression map were added to give PM10 daily annual mean concentration map. Second
approach was cokriging. This involved estimation of individual variograms of each dataset using values at
collocation. These variograms were used to calculate cross variograms using LMC. This model was used in
prediction to produce PM10 daily annual mean concentration map. RK gave better results than CK when
3 data sources were integrated. However the use of covariates gave disappointing results in general as
methods gave almost similar results to kriging using independent measurement by UK and OK. This was

due to low correlation between PM10 and covariates.

How to model different data sources taking into consideration different spatial support

In order to model dataset, first AOT and PM2.5 were put on the same spatial support. PM2.5 at 35 km by
25 km square grid were downscaled by bilinear interpolation to AOT spatial resolution of 10 km square
grid. Opverlay of secondary data with in situ measurements were made to obtain corresponding values of
AOT and PM2.5 at collocated points with in situ measurements. The corresponding/collocated values
were used in modelling i.e. either for linear modelling between PM10 and covariates or for estimation of

empirical variograms for each dataset and cross variograms between dataset.

Downscaling by bilinear interpolation approach is a simple resampling technique in sense that grids are
sub divided into finer grids but the information of resulting pixels remains almost similar to that of large
pixel. This was observed when PM10 were regressed on coarser PM2.5 at 30 km square grid. The resulting
R? was almost similar to R? obtained when PM10 were regressed on PM2.5 downscaled by bilinear
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interpolation as shown in Table 5-6 and Table 5-13. Downscaling cokriging which use point variograms
estimated from empirical variograms by deconvolution to downscale data would be appropriate

techniques to downscale coarse covariates to finer grid.

Which kriging methodology is more accurate in predicting at unsampled locations?
Overall RK using exponential model gave accurate results. However use of covariates gave almost similar
results obtained when predicting independent measurements using UK and OK. Therefore the value of

covariates was not honoured in this study.

How can predictions be validated?

Predictions were assessed using independent dataset. Criteria used were the correlation coefficient (R) and
RMSE between predicted values and observed values at validation points. Predictions were considered
better if it provides higher R and lower RMSE value. Also ME was used to assess prediction results. This
is an appropriate approach and has been used in various research (Beelen et al., 2009; Bourennane et al.,
2000).

7.2. Recommendations
Basing on the findings of this study, I would recommend application of downscaling cokriging to
downscale PM2.5 before being used as covariate. This could improve information to a targeted pixel size

hence capitalize local scale variations.
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Appendix F: Code for cokriging.

#CODES FOR COKRIGING

#libraries used

require (rgdal)

library (sp)

library (lattice)

trellis.par.set(sp.theme()) # plots the final predictions using blue-pink-yellow legend
#Reading model output

PM25= readGDAL ("D:\\NEW DATA\\pml1O\\PM10 Jan\\pm25 ProjectRaster.img")# FROM arcgis
model.PM25=PM25

projdstring (model.PM25) <- CRS("+init=epsg:3035")

#Reading remotely sensed data

AOT= readGDAL ("D:\\NEW DATA\\pml1O0\\PM10 Jan\\aot ProjectRaster.img") # FROM arcgis
modis.aot=A0T

projdstring (modis.aot) <- CRS("+init=epsg:3035")

#combine PM2.5 and AOT in one

combine PM25.A0T=model.PM25

combine PM25.A0T$AOT=modis.aot$bandl

combine PM25.A0T$PM2.5=model.PM25Sbandl

str (combine PM25.A0T)

#Reading in situ data

pmlOb=read.table ("D:\\NEW_DATA\\pmlO\\PM10 Jan\\PMlOe.txt", header=T) #t

class (pml0b) #this is data.frame

pml0insitu=pml0b #copying

#Subsetting data for prediction (pmlO.extra) and for validdation (pmlO.valid)
#pml0.extra data for predition while pmlO.valid is data for validation

pmlO.valid <- pmlOinsitu[ seq(l, length(pmlOinsitu$mean), by=4),c("mean","x", "y")]
pmlO.extra <- pmlOinsitu[setdiff (rownames (pmlOinsitu), rownames (pmlO.valid)),c("mean","x",
"y") ]

write.table(pml0.valid, file="D:\\NEW DATA\\pmlO\\PM10 Jan\\pmlOvalid latlong.txt")
#Modeling spatial structure of the data

#Change data.frame to spatialpointdata

#spatialpointdata~x km+y km

coordinates (pmlOinsitu) <- ~x+y

coordinates (pml0.extra) <- ~x+y

coordinates (pml0.valid) <- ~x+y

projdstring (pmlOinsitu) <- CRS("+proj=longlat +datum=WGS84")

projdstring (pml0.extra)<-CRS ("+proj=longlat +datum=WGS84")

proj4string (pml0.valid)<- CRS ("+proj=longlat +datum=WGS84")

#Projecting coordinates ready for modeling and prediction
pml0.extraproj<-spTransform(pmlO.extra, CRS("+init=epsg:3035"))

# Display of in situ data with secondary data

print (spplot (combine PM25.A0T, scales=list (draw=T),

sp.layout=list ("sp.points", pml0.extraproj, pch="+"),main="Overlay of PM2.5 and PM10"))
#Overlay

model.PM25.A0T.ov = overlay(combine PM25.A0T, pmlO.extraproj) # create grid-points overlay
str (model.PM25.A0T.ov@data)

#correlation

cor (logl0 (pml0.extra$mean),1ogl0 (model.PM25.A0T.ovS$PM2.5))

plot (1logl0 (pml0.extra$mean), 1logl0 (model.PM25.A0T.0vS$PM2.5))

cor (1logl0 (pml0.extra$mean) ,model.PM25.A0T.ovSAOT)

plot (1logl0 (pml0.extra$mean) ,model.PM25.A0T.ovSAOT)

#EMPERICAL VARIOGRAM

require (gstat)

v.logl = variogram(loglO (mean)~1, data=pml0O.extraproj, cutoff=1000000,width=60000)
v.log2 = variogram( (AOT)~1, data=model.PM25.A0T.ov,cutoff=1000000,width=60000)
v.log3 = variogram(loglO (PM2.5)~x+y, data=model.PM25.A0T.ov,cutoff=1000000,width=60000)
#scaling of distance for variogram ploting.

vb.scl=v.logl

vb.scl$dist=v.logl$dist/1000

vb.scl

plot (vb.scl)
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vb.sc2=v.log2

vb.sc2$dist=v.1log2$dist/1000

vb.sc2

plot (vb.sc2)

vb.sc3=v.log3

vb.sc3%dist=v.1log3$dist/1000

vb.sc3

plot (vb.sc3)

FHAHH A
# Variogram modelling

FHEH AR H AR
require (lattice)

v.log.expl = fit.variogram(vb.scl, vgm(0.01, "Exp", 150, 0.005))
plot(vb.scl, model=v.log.expl, col="black")

v.log.exp2 = fit.variogram(vb.sc2, vgm(0.0, "Exp", 500, 15))
plot (vb.sc2, model=v.log.exp2, col="black")

v.log.exp3 = fit.variogram(vb.sc3, vgm(0.005, "Exp", 200, 0.015))
plot (vb.sc3, model=v.log.exp3, col="black")

# compare variogram structure to target variable
v.log.expl$range[2]; v.log.exp2$Srange[2];v.log.exp3Srange([2]
round(v.log.expl$psill[1l]/sum(v.log.explS$psill),2)

round (v.log.exp2$psill[1l]/sum(v.log.exp2$psill),2)

round (v.log.exp3$psill[1l]/sum(v.log.exp3$psill),2)

#model cross variogram

(g <- gstat(NULL, id = "PM10", form = 1logl0O(mean)~ 1, data=pml0.extraproj))
(g <- gstat(g, id = "AOT", form = AOT~ 1, data=model.PM25.A0T.ov))
(g <= gstat(g, id = "PM25", form = loglO(PM2.5)~x+y, data=model.PM25.A0T.oV))

v.cross <- variogram(g)

str(v.cross)

plot(v.cross)

#Fitting model of co regionalization

mm <- vgm( 0.009563601 ,"Exp", 121978.4, 0.008629772)

(g <- gstat(g, id = "PM10", model =mm , fill.all=T))

(g <= fit.lmc(v.cross, g))

#plot the cross variogram model

plot (variogram(g), model=g$model)

#cokriging prediction

k.c <- predict.gstat(g, combine PM25.AO0T)

#IMPORTING SHAPE FILES

nlboundry<- readOGR ("D:\\EURO_ 0711\\SHP FILES\\NL", "wce bound2")

x11 ()

plot (nlboundry)

nlboundry@ proj4string

nlbound<-nlboundry

nlbound.ETRS<-spTransform(nlbound, CRS("+init=epsg:3035"))

#Plot cokriging predictions

ibrary (sp)

library(lattice)

trellis.par.set (sp.theme())

spplot(k.c ,"PM10.pred",do.log = TRUE, key.space=1list (x=0.2,y=0.9,corner=c(0,1)),
scales=list (draw=T),

main="Cokriging predictions of PM10 with AOT and PM2.5",

more = TRUE,sp.layout = list("sp.lines", as(nlbound.ETRS, "SpatiallLines")))
spplot(k.c ,"PM10.var",do.log = TRUE, key.space=1list (x=0.2,y=0.9,corner=c(0,1)),
scales=list (draw=T),

main="Cokriging variance of PM10 with AOT and PM2.5",

more = TRUE,sp.layout = list("sp.lines", as(nlbound.ETRS, "SpatiallLines")))
#VALIDATION

pred.raw= overlay(k.c, pmlO.validproj)

pred.raw$Smean=10gl0 (pml0.validproj$mean)
dif.sg.error=(pred.rawSmean-pred.raw$PM10.pred) "2

SSE=sum(dif.sqg.error)
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RMSE=(SSE/152) 0.5
ME= (sum (pred.rawSmean-pred.raw$SPM10.pred)) /152
cor (pred.rawSmean, pred.raw$PM10.pred)
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