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ABSTRACT

Building footprint detection from VHR remote sensing images is an important application to supply
fundamental data for GIS application and topographical mapping. Automatic detection of shape and size
of the building is a challenging task due to the spectral limitation of the VHR MS images and the spatial
limitation of the VHR panchromatic image. The integration of spectral and spatial data of VHR MS and
panchromatic images is a solution for above limitation. The integration of those data can be done using
the image fusion techniques and the MRF based SRM techniques. As the image fusion affects the original
reflectance data or the DN value of the image, MRF based SRM is better to preserve the original
reflectance value of the images in data integration. Also the MRF based SRM is sensitive to the shape and
size of the objects. Therefore this study is carried out to detect the building footprint with the integration
of spectral and spatial data of VHR images using MRF based SRM. The study area for the research is
Lampuuk village in Indonesia and images are a 4m spatial resolution MS image with four spectral bands
and 1m spatial resolution panchromatic images of KOMPSAT -2.

This method is based on the MRF based SRM technique following soft classification. Soft classification is
applied to the VHR MS image to get the land cover proportion images. Then the initial SRM is generated
using the proportion images produced from the soft classification and the scale factor 4. The initial SRM
is optimized with the posterior probability of the pixel. According to the MRF and Gibbs equivalence the
energy is optimized instead of optimization of probability. The maximization of posterior probability is
equivalent to the minimization of posterior energy. The posterior energy is modelled using contextual
information and the likelihood energy is modelled using the class statistics from MS and panchromatic
images. Then the optimization was done with Maximum A Posterior (MAP) solution which is reached
with simulated annealing (SA) algorithm. The optimization with SA is compared with the Iterated
Conditional Modes (ICM). Finally the validation of the method is done in pixel based and object based
analysis. This method was compared with the conventional MLC.

The pixel based accuracy assessment of the SRM optimized with SA shows the user accuracy 68%,
producer accuracy 65%, overall accuracy 87% and the kappa value 0.584. Those values of the SRM
optimized with ICM are 69%, 64%, 87% and 0.581 respectively. The same measures from MLC with
fused image are 50.86 %, 68.69%, 62.11% and 0.483 respectively. The object area based accuracy
assessment of SRM with SA showed the over identification 0.436, under identification 0.23 and total error
0.493. Those from SA with ICM are 0.419, 0.24 and 0.483 respectively. The same measures from MLC
with fused image are 0.550, 0.252 and 0.605 respectively. Then the building object wise validation also
done and it showed that the MRF based SRM method detected 276 building footprints out of 292
building footprints in the reference image. According to that MRF based SRM has detected 95% of the
buildings in the study area.

According to two types of accuracy measures it can be concluded that both the SA and ICM algorithms
produced almost the same accurate SR maps and detected the same percentage of buildings in the study
area. Secondly it can be concluded that MRF based SRM provides more accurate results than image fusion
for the integration of spectra and spatial data of VHR images in building detection. Third conclusion is
that the MS image with panchromatic image provides more accurate SR map for the building footprint
detection. The overall conclusion of this study is that MRF based SRM is more accurate than the
conventional MLC for the building footprint detection from VHR satellite images.

Key words:- Super Resolution Mapping (SRM), Markov Random Field (MRF), Soft classification, Linear Spectral
Unminixg, Maximum Likelibood Classification, Maximum A Posterior solution (MAP), Simulated Annealing (SA)
and Iterative Conditional Modes (ICM).
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INTEGRATION OF SPECTRAL AND SPATIAL DATA OF VERY HIGH RESOLUTION IMAGES FOR BUILDING FOOTPRINT DETECTION USING SRM

1. INTRODUCTION

1.1.  Motivation and problem statement

With the development of very high resolution (VHR) images, the detail extraction of objects on the Earth
surface becomes a topic of active research in the field of Remote Sensing. One of the interesting studies
from VHR images is the building footprint detection. It is a very useful application in the automation of
cartographic mapping and updating the existing vector data of a geographical information system (San &
Turker, 2005). Among the necessary data for a geographical information system, the building footprint is
one of the fundamental data (K. Zhang et al., 20006). According to Zhang et al. (2006) the building
footprint information is useful for the estimation of energy demands, life quality, urban population and
property taxes. The integration of building footprint data with height of the buildings helps to generate the
three dimensional building models for the visualization. An interesting application of building footprint
data is the investigation of financial corruption and transparency of building contraction projects launched
by the funding organizations after natural disasters like tsunami and earthquake which demolished the
buildings(Du et al., 2009). For the various purposes, the government and private organizations in any
country needs up to date building information efficiently. For that Remote Sensing has advantages over
other data sources. The recent satellite imaging sensors such as IKONOS, Geoeye-1 and Quick Bird
provide a valuable data source for the building footprints detection. In the past, the building extraction
from images was done manually. It is time consuming, labour intensive, costly and it is difficult to
reproduce. The automatic building detection reduces these limitations.

The building detection from Remote Sensing images depends on the spatial resolution. According to the
spatial resolution, there are four types of images. Those are low resolution (more than 1km), medium
resolution (between 100m and 1km), high resolution (between 10m and 100m) and very high resolution
(Iess than 10m) images (URL-1).It is difficult to identify the buildings from low and medium resolution
images due to the poor spatial resolution. In the case of high and very high resolution images, very high
resolution images are better than high resolution images as it enables to detect the smaller and irregular
building footprints. The building footprint detection can also be done using aerial images. But the aerial
images have some limitations due to less spatial coverage and availability compared to the VHR space
images. The acquisition of aerial images is time consuming. VHR images may also not be available
everywhere due to the cloud problem and limited recording time per orbit and if it is not in the archive
already then they do have acquisition time as well, depending on orbit, weather and operating station.
However the acquisition time for the VHR images is usually smaller than the airborne images. At present
VHR optical sensors provide the images with spatial resolution in the aerial image resolution domain.
Therefore the use of VHR space images has more advantages.

Several methods have been developed for building detection using VHR space images with different
techniques. The maximum Likelithood Classifier (MLC) with normalized digital surface model (nDSM) can
be used to detect the buildings (San and Turker, 2005). This method works only for regularly developed
urban areas. Another building detection technique is the integration of structural, contextual and spectral
information with differential morphological profile (DMP) but this method has shown low accuracy in
building extraction due to the significant misclassification(Jin & Davis, 2005). The building detection has
been done using the classification techniques based on segmentation and shape which was based on
Hough transformation(Scott et al., 2003) but the result was not satisfactory due to the misclassification of
roofs and roads. One of the latest building extraction approaches is based on the object oriented image
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analysis (Du et al., 2009; Durieux et al., 2008; Rutzinger et al., 2008). However the identification of
connected buildings is not satisfactory due to the spatial and spectral limitation of VHR multispectral (MS)
and panchromatic images. The VHR images have two different properties namely high spatial resolution
of the panchromatic image and relatively high spectral resolution from the MS image. The combination of
these two properties facilitates a better interpretation of the objects from remote sensing images.
Therefore those properties can be integrated to overcome the spatial and spectral limitation of VHR MS
and panchromatic images in building identification and it helps to improve the accuracy of the building
detection.

The MLC which assigns a class label per pixel has been used for the MS image classification in the
building detection. MLLC does not classify individual land cover classes present in the mixed pixel that has
been resulted due to the reflectance from different objects within the instantaneous field of view (IFOV)
of the sensor and also from the surrounding objects of IFOV on the Earth surface (Cracknell, 1998).
Therefore these mixed pixels pose a problem in conventional land cover classification as the conventional
classification technique assigns one class label to the pixel. In the building detection process mixed pixels
pose a problem in MS image classification with MLC and also it affects the building detection accuracy.
The integration of the spatial and spectral resolutions of VHR MS and panchromatic images is a solution
for mixed pixel problem. The integration of spatial and the spectral data can be performed using an image
fusion or using the super resolution mapping (SRM) method based on Markov Random Field (MRF)
proposed by Tolpekin et al., (2010).

The image fusion technique can be used for the integration of spatial and spectral data of VHR MS and
panchromatic images. The image fusion combines the observed spatial and spectral data of images to
generate the fused image with more detail information than the input sources (Jixian Zhang, 2010). The
fused image is used for the classification in the building detection process from VHR images. Therefore
the classification is not on the original spectral data of the MS image. The SRM is a land cover
classification technique that generates a finer resolution thematic map from a coarse resolution input
image. This is a step beyond the sub pixel classification. The sub pixel classification resolves the mixed
pixels in the image to proportions of land cover classes. Then SRM arranges the location of the individual
land cover class proportions in an optimized way to form the land cover classes in the image. The location
of the land cover proportion in mixed pixels is carried out with the help of posterior probability which is
the product of prior and likelihood probabilities. The prior probability is modelled using MRF with the
spatial context of the Remote Sensing images and likelihood probability is calculated using both MS image
and panchromatic image. Therefore SRM based on MRF offers a solution for locating the proportions of
land cover classes in the mixed pixels in coarse resolution image and it will solve the spatial limitation of
multispectral image for the detection of building footprint. In the SRM, the integration of spatial and
spectral data is carried out after the soft classification technique. The soft classification is over the original
spectral data. Then integration of spectral and spatial data based on MRF and SRM does not affect the
land cover classification. Therefore SRM is better than the image fusion for spectral and spatial data
integration in building footprint detection.

SRM locates the sub pixels within the coarse pixels in an optimized way to maintain the spatial context
between the sub pixels. The spatial context is the correlation between spatially adjacent sub pixels in the
neighbourhood (Solberg et al., 1996). The location of sub pixels is done by maximizing the posterior
probability of the sub pixel in pixel labelling. The posterior probability is the product of prior and
likelihood probability. The prior probability is modelled from the contextual information of the pixels in
the image using MRF. There are different sizes of objects such as trees, buildings in a Remote Sensing
image. Larger object size has more context than the smaller object as larger objects consist of more pixels
than the smaller objects. The accuracy of the SRM is related to the size of the objects. Larger objects
results into more accurate SRM as larger objects provide higher prior probability (Kassaye, 2006). The

2
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quality of the SRM also relates to the resolution of the image. The low resolution images provide poor
context to the pixels of an object in neighbourhood as the objects represents with less number of pixels in
low resolution images. High resolution images provide the richer context for the pixel in neighbourhood
to model the ptior probability. Therefore higher resolution images results into more accurate SRM. The
large objects are heterogeneous and are not reliable for high quality SRM as the spatial context of pixel is
different.

The combination of panchromatic image with MS image in SRM has advantages as the panchromatic
image provides finer spatial resolution for the pixels to have higher probability to belong to a land cover
class. An object in panchromatic image has more observed spatial detail for the likelihood probability
calculation while MS image provides more spectral information for the calculation of likelihood
probability in pixel labelling. The combination of more spatial detail from panchromatic image and more
spectral information from MS image results the pixel to have higher likelihood probability for the correct
labelling. This would be useful for the identification of the shape of the individual building in clustered
built up area. Therefore the integration of panchromatic and MS images in SRM leads to obtain a more
accurate SR map than the SR map only from MS image.

The existing methods for the building footprint detection from VHR images have some limitation due to
the limited spatial resolution of VHR MS image and the mixed pixels. It limits the identification of
individual buildings. But soft classification followed by SRM based on MRF method (Tolpekin et al.,
2010) is a solution for the mixed pixel problem and it integrates the spatial and spectral data of MS and
panchromatic images for the calculation of likelihood probability in pixel labelling. Therefore SRM based
on MRF will be a solution for those limitations in building detection. These factors motivate the study of
building footprint detection using super resolution mapping approach by integrating the spectral and
spatial data of very high resolution space borne imagery. Therefore this research will be carried out to
develop a method for the building footprint detection using MRF based SRM by integrating the spectral
and spatial data of VHR MS and panchromatic images.

1.2 Research identification

According to the above discussion the building footprint detection from VHR space imagery is a very
important tool for different applications of geodata. Therefore the building detection techniques still
remain as a significant field for research. One of the reasons for less accurate result in building detection is
due to the presence of mixed pixel. This mixed pixel can be classified by soft classification as land cover
proportion. The location of the land cover proportion within pixel can be arranged by the SRM. The soft
classification followed by SRM can be applied to improve the accuracy of building detection from VHR
images. Therefore this study will focus on the development of building footprint detection technique
using the super resolution mapping by integrating the spectral and spatial resolution of VHR MS and
panchromatic images.

1.3.  Research objectives

The objective of this study is to develop a method based on MRF and SRM for building footprint
detection by integration of VHR MS and panchromatic images.

1.4. Research questions

The study will answer the following research questions in order to attain the research objective.
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1. Which energy optimization method is more suitable to obtain the most accurate result from MRF
based SRM: Simulated Annealing (SA) or Iterated Conditional Modes (ICM) in building footprint
detection?

2. How do the simulated annealing parameters affect the accuracy of MRF based SRM result in building
footprint detection?

3. Which accuracy measure is more suitable for the accuracy assessment of building footprint detection
from VHR MS and panchromatic images: object based or pixel based accuracy measure?

4. Is SRM based building footprint detection technique with MS and panchromatic image more accurate
than the ML.C based building footprint detection technique from fused image?

1.5.  Research approach

The research approach in this study is based on the integration of spatial and spectral data in
panchromatic and multispectral images using MREF and SRM. The building detection is carried out with
the optimization of SRM followed by soft classification of the VHR MS image. The soft classification is
used to produce the land cover proportion maps for each land cover classes including the building
footprints. Then the SRM and MRF are applied for the optimization of spatial dependency in the
classified image with the integration of spatial and spectral data in VHR MS and panchromatic images.
The validation is done in both pixel based and object based accuracy assessments. Finally the result from
the MRF based SRM is compared with the result from MLC classification.

1.6. Structure of the thesis

The thesis contains eight chapters. The first chapter consists of motivation and problem statement,
objective, research questions, research approach and the structure of the thesis. The second chapter will
be focused on the literature review of the building footprint detection from VHR images. The SRM based
on MRF technique will be discussed in the third chapter. The fourth chapter will be described with the
study area and data preparation. Fifth chapter will be described the methodology applied for the research.
Then the results obtained from this study will be discussed in the sixth chapter and chapter seven is on the
discussion of the result. The chapter eight will elaborate on the conclusions drawn from this research and
recommendation for further study on the building footprint detection.
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2. REVIEW OF BUILDING FOOTPRINT DETECTION
TECHNIQUES

2.1. Introduction

At present the object extraction and the updating of existing GIS data base are more important in various
application domains such as town planning, property taxation, designing communication network, and
planning and management of services in a country or a region. The traditional mapping methods for the
objects on the Earth surface are tedious, time consuming and costly. The availability of the very high
resolution satellite images is a solution for limitation of traditional object extraction methods. The recently
launched high resolution sensors such as IKONOS, Quick Bird, KOMPSAT, and Geoeye provide the
finer resolution images with fine details. Those images facilitate the extraction of the objects like
buildings(Durieux et al., 2008), trees crowns (Tolpekin et al., 2010) and roads (Haris et al., 1998; Hay &
Castilla, 2008). The high resolution satellite images are rich with finer details that could be extracted for
updating of GIS data bases and developing the new GIS. One of the important objects that could be
extracted from high resolution images for GIS is the building footprints. The building extraction from
satellite images has been done in different approaches and it is still an active research topic in the field of
remote sensing. The prevailing building extraction methods from Remote Sensing images are based on
different techniques such as image classification, object oriented image Analysis method and Artificial
Neural Network method. These methods are described in detail in the following sections.

2.2.  Building footprint detection using image classification techniques.

Most building detection methods are based on image classification technique. A widely used image
classification method for the building detection is maximum likelihood classification though there are
different image classification methods such as parallelepiped, minimum distance to mean classification,
box classification. The maximum likelihood classification (MLC) is popular for the image classification in
various applications as it is statistical and supervised classification technique(San & Turker, 2010).
Therefore it is also used for the MS image classification in the building detection approaches. The building
footprint extraction is to carry out with MLC classification and separates from other features such as road
and vegetation incorporating the other techniques such as normalized Digital Surface Model and
Normalized Difference Vegetation Index(San & Turker, 2005). The maximum likelihood classification is
a supervised statistical approach for the recognition of patterns in the remotely sensed images. The MLC
is based on the assumption that the likelihood probability follows the normal distribution. It considers the
class mean vector and the covariance matrix of the land cover classes in the pixel classification process.
MLC algorithm calculates the probability of a pixel that belongs to set of user defined classes. Then the
pixel is assigned to the class for which the likelihood probability (conditional probability) is highest.

2.2.1. Applications of MLC in building detection and extraction

The MLC has been applied for image classification in the building detection approaches from high
resolution satellite images (Elshehaby & Taha, 2009; Hajime et al., 2001; San & Turker, 2005). San and
Turker., (2005) developed a method for the building extraction using MLC. First the pan-sharpened MS
image was classified with MLC and separation of building from other ground features was done using
normalized Digital Surface Model (nDSM) which is the difference between Digital Surface Model (DSM)
and the Digital Elevation Model (DEM). After the separation of building from other ground features
Normalized Difference Vegetation Index (NDVI) was used to differentiate the building from trees. Then
the building was extracted as a vector layer after applying the canny edge detector. Elshehaby and Taha,
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(2009) applied the MLC to compare three building extraction methods. They applied the MLC to classify
the multispectral image only. Second approach is the classification of MS image with MLC and extraction
of building was carried out with the help of height information from LiIDAR data. For the third approach
they applied the MLC for image classification and improved the result using the knowledge of the
elevation data and the spectral information with the knowledge engineer in ERDAS IMAGINE.
According to this study the third approach was satisfactory for the building detection from high resolution
satellite images. Another application of MLC for the building detection was the identification of damaged
building from satellite images after the earthquake of Kobe, Japan in 1995 (Hajime et al., 2001). Hajime et
al., (2001) used the image characteristics such as hue, saturation, brightness, edge intensity and intensity
variance to separate the damaged and intact buildings from post-earthquake images after the image
classification with MLC. The result of this study was satisfied with the actual building damaged area.

2.3.  Building footprint detection using object oriented Analysis

The Remote Sensing images consist of set of pixels which represent the objects on the Earth surface.
Normally objects are different in shape and the size and they do not exactly fit with the pixels. Therefore
the conventional image classification techniques such as MLLC have the limitation to preserve the shape of
the objects in the classification process and also the pixel based classification produces less accurate results
because of the heterogeneous spectral property of the pixels within the objects. As a solution for these
limitations in traditional image classification, a new image classification approach referred to as Object
Oriented Analysis (OOA) has been developed in recent years. The OOA is an automated image partition
methods which segment a Remote Sensing image into meaningful image objects and assesses their
characteristics using the spatial, spectral and temporal dimensions to produce an output which is new
geographic information suitable for GIS (Hay & Castilla, 2008). The OOA technique uses the idea that
homogeneous objects can be derived with the help of the shape, smoothness, compactness and colour.
The OOA technique consists of two sub techniques which are image segmentation and the classification.

The image segmentation is the main step of the object based feature extraction method. The image
segmentation is the process of dividing an image into non-overlapping objects or regions based on the
spectral homogeneity of the pixels in Remote Sensing image. There are two type of segmentation methods
widely used in object oriented automatic feature extraction from Remote Sensing images. Those are edge
based segmentation and region based segmentation(Haris et al., 1998). The edge based segmentation is
done by thresholding of image gray values and applying the differentiation filters to segment the image in
to objects. It produces the image of edge and non-edge regions. This segmentation is reliable for the linear
feature extraction. The region based segmentation is carried out using region growing algorithms in which
the regions are detected cither by growing a seed pixel with homogeneous neighbouring pixels or splitting
the whole image in to regions and then merging the homogeneous area to form the regions or objects.
This type of segmentation is better for the identification of area objects like buildings, water bodies and
land use. Then the segmented objects are labelled with a classification algorithm. This classification is not
like conventional image classification as it is based on the objects or the regions resulted from the
segmentation. The object oriented classification also differs in the use of image properties from the
conventional classification. It uses the spectral, textural, contextual, spatial and semantic information while
conventional classification uses only the spectral information.

2.3.1. Application of OOA for building footprint detection

One of the latest approaches for the detection of building from high resolution satellite images is object
oriented image analysis. It has been applied for the verification of transparency in housing reconstruction
projects in Banda Aceh, Indonesia after the tsunami 2004(Du et al., 2009). Du et al., (2009) applied the
segmentation algorithm in eCognition to segment the KOMPSAT-2 image then applied the object
oriented classification based on decision tree to detect the building footprint. This study has proven that
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the OOA can be applied successfully for the building footprint detection from high resolution
multispectral satellite image. Another application of OOA for building identification was the monitoring
of the urban sprawl using high resolution Spot 5 images of Reunion Island in the Indian Ocean (Durieux
et al., 2008). The bottom-up region growing algorithm was applied for the segmentation of the image in
this approach. The separation of building from other objects was done with the help of contextual and
scale information. The disadvantage of this method is that it detects only the brightest part of the
buildings.

The class guided building extraction approach was introduced with segmentation using the high resolution
multi spectral and panchromatic IKONOS images of Camp Lejeune, North Carolina (Scott et al., 2003).
In this method the multispectral image was classified using the ECHO classifier to identify the
approximate shape and location of the buildings. Then the exact buildings were detected with the
segmentation of panchromatic image and the shape of the buildings was generated with the Hough
transformation. This approach showed the satisfactory result but misclassification of buildings and road
affects the accuracy of the building detection. There are few applications of OOA for the identification of
buildings from high resolution images in the literature.

2.4.  Building footprint detection using Artificial Neural Network

Another technique used in building detection from high resolution satellite images is the Artificial Neural
Network (ANN). The Artificial Neural Network is mathematical model which is designed to perform a
desired function. There are different types of ANN such as back-propagation networks, multilayer Feed-
forward networks, local minima and counter-propagation networks. The neural network is capable of
pattern recognition and object extraction from the remote sensing images(Hamid & Lari, 2007). The
execution of ANN consists of two phases such as learning phase and the application phase. The learning
phase is the very important phase in which the ANN is trained with a test data set. After the ANN is
properly trained to identify the building footprint from the satellite image it can be used to detect the
building footprints from the interested area of satellite image. In this approach training is the crucial step

for the detection of buildings.

Several studies have been done for the building detection using Artificial Neural Network. Hamid and
Lari, (2007) applied the three layer perception neural network with supervised learning for the building
extraction using the very high resolution (Im) IKONOS image of Kashan area in Iran. Around 80% of
the buildings in the study area were identified with this method. After a disaster it is very important to
assess the number of building damaged within short period. The ANN application for the detection of
damaged buildings due to the Bam earthquake was done with combination of co-occurrence matrix using
the high resolution Quick Bird image(Ahadzadeh et al, 2008). The texture of the buildings in the
QuickBird images was calculated using co-occurrence matrix and the damaged buildings were identified
with ANN using the change of texture after the earthquake. The majority of damaged buildings could be
identified with this method according to Ahadzadeh et al., (2008).

2.5.  Building footprint detection from other techniques

For the building detection from the high resolution remote sensing images other approaches have been
developed using different techniques such as contextual analysis, snake methods and morphological
filtering. One of such methods is the automated building detection approach with a combination of
Support Vector Machines (SVM) and Hough transform. It was used for the extraction of rectangular and
circular shaped buildings from high resolution Remote sensing images of Batikent district in Turkey(San &
Turker, 2010). San and Turker, (2010) applied the binary Support Vector Machines (SVM) classification to
identify the building patches with normalized Difference Vegetation Index and the normalized Digital
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Surface Model. Then the vector building layer was generated using Hough transform after applying the
Canny edge detection algorithm on the building patches. The disadvantage of this approach is that it could
detect only the rectangular and circular buildings.

Mayunga et al., (2005) have developed a semi-automated building extraction method with active contour
models also known as “snakes” and a radial casting algorithm using high resolution Quick Bird images of
Dar Es Salaam city, Tanzania and Oromocto Township in New Brunswick. The active contour model is
an energy minimization function which uses to identity the building footprints in Remote sensing image.
The involvements of the human operator are for the measurements of approximate centre of the building
and for the rejection or acceptance of the generated snake contours. The minimization of energy in the
neighbourhood for the accepted contours is iteratively carried out with the 3 by 3 search window. The
building outline is generated when the outline fits with the snake contour. This method came up with
highly reliable results and increased the speed of the building extraction compared to the manual
photogrammetric object extraction method and is also applicable for structured and unstructured urban
areas. This method has been improved to extract irregular shape buildings also by using the circular
casting algorithm instead of a radial casting algorithm(Lau, 2000).

In 2007 an automated building extraction method was developed from a Digital Elevation Model to
extract rectangular buildings with a marked point process(Ortner et al., 2007). A marked point process is a
random variable which adds the marks to each point. The approach was developed with the combination
of a Baysian model with energy minimization. The method is applicable for the urban areas and the
disadvantage is that the method is slow even for small areas. A modified machine vision approach has
been applied for the building detection with a digital elevation model generated using Synthetic Aperture
Radar (SAR) interferometric data(Gamba et al., 2000). This method is recommended for large commercial
buildings but it is not satisfactory for small building footprint detection.

Kim and Muller, (1994) proposed an automated building detection method using graph constructed from
lines and line relation with high resolution images. The depth first graph traversal algorithm was applied to
generate the buildings by finding the closed loops in the graph. This method works successtully with the
complicated buildings in aerial images and the large buildings in high resolution satellite images. The
wavelet analysis which can detect the intensity variation at edges and corners of objects in an image with
Canny edge detection has been used for the building detection with high resolution panchromatic
IKONOS image(Selvarajan & Tat, 2001). The advantage of this method is that it is very fast and simple.

2.6.  Data integration for feature extraction

The acquisition of Remote sensing images is carried out in different spatial and spectral resolution with
different sensors such as IKONOS, QuickBird, KOMPSAT and Geoeye. These images have to be
combined for various applications such as feature extraction, identification, pattern recognition,
classification, and change detection. The combination of different type of images can be done with data
integration techniques which are also known as image fusion or data merging (Thurmond et al., 2000).
The data integration is the process of combining two or more different images or data type such as remote
sensing data and vector data to produce a new spatial information using a certain algorithm (Genderen &
Pohl, 1994). According to Genderen & Pohl, (1998) the image fusion can be categorized in to three
different levels such as pixel or data level, feature level and decision level. The pixel level image fusion is
the integration of unprocessed data of different sources into single image that is more informative than
the input images. The combination of different features like lines, corners and edges extracted from two
or more images to form a one or more feature maps is the feature level image fusion. The decision level
data fusion is the merging of the results obtained from several algorithms to produce a fused decision map
(Jixian Zhang, 2010). According to Jixian Zhang, (2010) the pixel level image fusion techniques are
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applied to the panchromatic and multispectral optical images while the feature level and decision level
fusion techniques are applicable to the data from different sources such as LIDAR, field data, geographical
information, optical data and synthetic Aperture Radar (SAR). This study is based on the pixel level data
integration to extract the building features.

2.6.1.  Pixel level image fusion

The pixel level data integration methods are very important tools for the application of optical images as
they provide the capability to improve the spatial resolution, structural and textural detail and to preserve
the spectral property of the courser resolution multispectral images by merging with a finer resolution
panchromatic images. The pixel level image integration techniques are categorized into three as follows
(Jixian Zhang, 2010; Yang et al., 2010).

» Component substitution image fusion techniques
» Modulation based image fusion techniques
» Muld resolution analysis based image fusion techniques

The component substitution image fusion is executed in three steps which are forward transformation,
replacement of the component similar to panchromatic band with high resolution band and generation of
fused image using inverse transformation (Yang et al., 2010). The widely applied component substitution
fusion algorithms are Intensity Hue Saturation (IHS), the Principle Component Analysis (PCA) and
Gram-Schmidt (GS) spectral sharpening (Yang et al., 2010). In the modulation based image fusion the
spatial details are modulated to the MS image with the multiplication of MS image by ratio between the
panchromatic image and the lower resolution version of the panchromatic image. The currently used
modulation based fusion algorithms are smoothing filter based intensity modulation, synthetic variable
ratio fusion, high pass spatial filter, and Brovey transform image fusion. The multi resolution analysis
based image fusion techniques decomposes the input images to different levels and converts the details in
MS image to finer resolution. This process is carried out in three steps such as wavelet multi resolution
decomposition, replacement of approximate coefficients of panchromatic band with MS band and the
inverse multi resolution transform. For the object detection from high resolution images the modulation
based and multi resolution analysis fusion techniques atre reliable as these techniques preserve the spectral
properties of the MS image (Yang et al, 2010). From these images fusion techniques the following
objectives can be achieved in the object detection and extraction processes from the satellite images.

» To obtain the sharpen images from finer resolution panchromatic image and courser resolution
multispectral image

To improve the accuracy of the geometric correction

To obtain the stereoscopic vision for photogrammetry

To enhance the specific features that are not clear in row data

To obtain the complement data set for the image classification

To identify the changes from multi-temporal images

To substitute the missing data in an image due to clouds and shadows

VVYVYVVYVYY

To replace the incomplete data of an image

2.6.2. MRF and SRM based data integration

The data integration can also be done using the Markov Random Field based super resolution mapping
technique (Tolpekin et al., 2010). The remote sensing images are modelled with the Markov random field
in the image classification to produces high accurate thematic map. The data is integrated with the help of
MRF models of MS and panchromatic images. This data integration method helps to enhance the
boundaries of the objects which consist of the mixed pixels. The advantage of this data integration
technique over other fusion techniques is that it helps to solve the mixed pixel problem in image
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classification and also it does not affect the original reflectance value as general image fusion methods.
The detail description about this method will be discussed in Chapter 3.

2.6.3.  Application of data integration in building detection

Building detection was carried out using an unsupervised classification followed by texture filtering with
integration of high resolution TM and SPOT images by Zhang, (1999). In this approach the ISODATA
clustering method was used for the classification of pan-sharpened multispectral image of TM and SPOT
images of the city of Shanghai, China. Then the filter based on direction dependence of co-occurrence
matrix was applied to improve the accuracy of the building identification. The result of the proposed
method is better than the conventional multispectral classification method. The merging of spectral
properties and height information was applied to detect the building from high resolution IKONOS
images (GuGuo & Yasuoka, 2003). In this approach the active contour or the snake based building
detection method was integrated with the height information. This approach helps to reduce the limitation
of building boundary detection in snake based model alone from the high resolution satellite images.

The fusion of optical image and LIDAR data was used for the automatic building detection and modelling
with region based segmentation and knowledge based classification (Chen et al., 2004). This approach was
tested with a Quick Bird image and LIDAR data of Hsinch area in north Taiwan. The accuracy of building
detection was satisfactory but it was limited to the flat roof buildings. Another LIDAR data integration for
building detection is the combination of pan-sharpened multispectral IKONOS image and airborne laser
scanning data (Sohn & Dowman, 2007). This approach was carried out with the Binary Space Partitioning
tree algorithm. This method can also be used for the change detection in urban areas. The LIDAR data
was integrated with an aerial image to identify the buildings applying polyhedral models (Huber et al.,
2003). This method was not applicable for the buildings with irregular roofs. The structure, contextual and
spectral information have been used for the building detection from high resolution IKONOS images of
Columbia city in Missouri (Jin & Davis, 2005). In this method the differential morphological profile
(DMP) was produced with mathematical opening and closing operators then DMP was used to identify
the buildings and size and shape of the adjacent buildings were detected using the shadow. The small
bright buildings were detected with the spectral property. This integration of contextual and spectral
properties shows reliable accuracy in building detection.

The spectral and spatial data integration using MRF and SRM has not applied for the detection of the
building footprints from the high resolution satellite images in the history. The novelty of this study is the
application of MRF and SRM based data integration for the building footprint detection from the high
resolution satellite images and this will solve some of the difficulties in other methods.

2.7.  Summary

In this chapter the theoretical background of the techniques applied for the building detection approaches
was discussed. The techniques such as Maximum Likelihood image classification, Artificial Neural
Network, Object Oriented image analysis and the data integration were discussed in brief. Then the some
studies for which those techniques were applied for the building detection from high resolution satellite
images and combination of satellite images with other data sources was reviewed. Then the integration of
spectral and spatial data of both MS and panchromatic images method by MRF based SRM was discussed.
As the shape and size of the building footprint detection is still a challenging task and the MRF based
SRM method is sensitive to the shape and size of the objects this research is aim to developed a method to
detect the building footprint using MRF based SRM.
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3. SUPER RESOLUTION MAPPING TECHNIQUES

3.1 Effect of mixed pixel in object detection from Remote Sensing images

The detection of objects is one of the vital applications of the remotely sensed images. The objects are
man-made and natural features on the Earth surface. Those objects are observable with the Remote
Sensors which use the radiation reflected from those objects. The brightness of the objects in a remotely
sensed image depends on the amount of radiation that the senor received from the object and the visibility
of the objects depends on the spatial and spectral resolution of the sensor. The spatial resolution of the
sensor depends on the Instantaneous Field of View (IFOV). If the IFOV is smaller than the size of the
object then the objects can be detected from the image. If the IFOV is larger than the size of the interest
object then the object is difficult to identify. So the objects detection from satellite images directly related
to the spatial and spectral resolution of the sensor. Normally the classification is the main process in most
of the objects identification approaches. In automated classification the labelling of pixel is done according
to the Digital Number (DN value) of the pixel that related to the reflectance of the objects. The pixels
inside the objects are more likely to have the pure reflectance but the pixels on boundary of the objects
have influenced with the reflectance of the adjacent objects. This will result into mixed pixels. Normally
most of the object detection algorithms are based on the hard classification techniques. As hard
classification assigns the class label per pixel, the mixels pose problem in assigning the class labels in the
building detection with hard classification (Foody & Mathur, 2006; Liu et al., 2010).

The groups of pixels represent the objects in the image but the objects are not exactly fitted with the
pixels as the resolution of the sensor and the size of the objects are not correlated. Therefore the pixels
with heterogeneous objects exist in the remotely sensed images. Those pixels are the mixed pixels.
Actually those are the pixels for which the sensor received the reflectance from more than one objects
within the Instantaneous Field of View of the sensor and its surrounding objects. In other words the
mixed pixels consist of more than one different type of materials. When the spatial resolution of the
sensor is low then more than one adjacent object are within the IFOV. Therefore the spectrum received
to the sensor is a composite of reflectance from those materials. This type of spectral mixing occurs when
the sensor is at high altitude or the IFOV is wide. The abundance of mixed pixel depends on the spatial
resolution of the sensor and the size of the objects. Even for the high spatial resolution sensor such as
IKONOS, QuickBirds, Geoeye and World view the images are possible with mixed pixel as the size of
some objects are smaller than the spatial resolution of the such high resolution sensors and the boundary
of the objects do not exactly follow the pixel boundary. It is less possibility to have pure pixels in coarser
resolution images even if the IFOV of the sensor fits with the homogeneous material as the sensor
receives the scattered radiation from the neighbouring objects (Cracknell, 1998). The present of mixed
pixels in an image is one of the major problems affecting the accuracy of the object detection (Kasetkasem
et al., 2005; Wang et al., 2007). The limitation of the mixed pixels in hard classification can be minimized
with the soft classification algorithm. The accuracy of the soft classification depends on that of the
determination of the pure pixels which is referred to as the endmembers.

3.2.  Sub pixel classification

The object detection from the remote sensing images is generally carried out with image classification
techniques. The traditional image classification techniques are hard classifiers which assign a single class
label to each pixel. In these classifications the mixed pixels are labelled with the land cover class which
covers a large part of the mixed pixels. So the hard classification causes loss of the information present in
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the mixed pixels. To overcome this limitation of hard classification the sub pixel classification or the soft
classification has been introduced for the remote sensing image analysis. The soft classification algorithms
decompose the mixed pixels into the spectra of corresponding land cover class as proportions of the
mixed pixel. The soft classification assigns more than one class label to the pixel according to the
proportion of the land cover area present in the pixel. Unlike hard classification the sub pixel classification
results in a number of proportion images that is equal to the number of land cover classes used for the
classification. Figure3.1 illustrates the output of the soft classification verses the hard classification.

Input

Output

Figure 3.1: Output of hard classification and soft classification: (a) hard classification output one thematic map, (b)
thematic maps per land cover class from soft classification (Source Lucas et al., 2002).

Soft classification is more suitable than hard classification in case of mixed pixels. The soft classification is
carried out with multispectral images or single band image or panchromatic images. The determination
of the class proportions in the mixed pixels can be done with different soft classification algorithms
such as spectral mixture modelling, neural network and the fuzzy ¢ means classification. These sub pixel
algorithms assign the proportion for each land cover classes present in the mixed pixel and produce the
thematic map for each land cover class with proportions as shown in Figure 3.3. The class proportion
determination algorithms assigns the proportion values for each classes between 0 and 1. The high class
proportion is assigned to the class with large area and low proportion for the small area present within
the mixed pixel. Out of those sub pixel classification algorithm this study focuses on spectral mixture
modelling.

3.21. Linear spectral unmixing

The spectral unmixing is the process of decomposing the measured spectrum of a mixed pixel into the
individual spectra or the endmembers of each land cover class within the IFOV of the sensor and produce
the corresponding proportion maps for each land cover class separately. In other words the spectral
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unmixing is the inverse process of sensed reflectance by a sensor. The interaction of the radiation with the
ground features could be linear or nonlinear as illustrated in Figure 3.2. Therefore the spectral unmixing
models can be categorized into linear or nonlinear spectral unmixing models depending on the radiation
reflectance at the object on the earth surface (Keshava, 2003). This study focused on the linear spectral
unmixing.

Figure 3.2: Linear mixing (a) and nonlinear mixing (b) at the Earth surface (Source: Keshava, 2003)

The solar radiation incident on the surface element of the objects reflects to the remote sensor after one
bounce on the object element. At this situation the amount of reflectance is equal to the sum of fractional
reflectance from each material within the IFOV of the sensor. Then the spectrum recorded in the sensor
is the linear combination of the spectra of each material within that pixel. Therefore the measured
reflectance can be modelled as the linear combination of the reflectance from each material within the
pixel. This spectral mixture modelling is referred to as the linear spectral unmixing and it is based on the
assumption that the spectral response for a pixel is a linear combination of the reflectance from each land
cover classes within the pixel of interest(Atkinson et al., 1997). If pqis the mean spectral value or the
endmember spectrum of ithland cover class in k band, the observed spectrum (y) of any pixel in that
class can be defined by the following relation.

Y = oGl + € 3.1

Where a; is the proportion of i land cover class within the mixed pixel and e; is the error due to sensor
noise, endmember variability and other imperfect modelling errors in the reflectance value of i land cover
class. Then the total observed spectrum of the mixed pixel with m land cover classes in band k (Y\) can be
defined as:

Yi = Xy fha + Koflio + K3ths +...+Khi +...+ X Ll He1tertest...tem 3.2

Y= XLy it + ex 3.3

Where ek is the total error from all land cover classes in band k, the proportions should be positive and
the sum of the proportions should be equal to one. This model for decomposing the spectrum of mixed
pixel is known as the linear spectral unmixing. This model leads to a system of linear equations which can
be solved by singular value decomposition (SVD) to avoid the difficulty in matrix inversion. This model
has been used for the soft classification in this study as it is a potential solution for the sub pixel
classification (Lucas et al., 2002).
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3.3.  Supper Resolution Mapping

The soft classification produces a number of proportion images which is equal to the number of land
cover classes used in the classification. In these images several land cover class labels are assigned to a
specific pixel but it does not specify the location of the land cover proportion within the pixel. For the
assignment of the location of land cover proportion within the pixel, a technique known as super
resolution mapping was suggested by Atkinson et al., (1997). The super resolution mapping technique is
also referred to as the sub pixel mapping, super resolution classification and pixel unmixing. This
technique is a step beyond the sub pixel classification and it is the estimation of the spatial distribution of
land cover proportions produced by sub pixel classification. The SRM is based on the spatial dependency
of the land cover classes. This means that the pixel is more likely to have the label of neighbouring pixel
than that of far away pixel. On the basis of this fact the task of the SRM is to determine the most probable
location for the fraction of the land cover class inside the pixel. This is carried out by dividing the coarser
resolution pixel into finer resolution pixels and then assigning the location for sub pixel with the
maximization of the spatial dependency. In this way the SRM synthetically generates a finer resolution
thematic image from the coarser resolution image. The ratio between the coarser resolution pixel size and
the finer resolution pixel size is defined as the scale factor of the sub pixel mapping. The synthesis of the
finer resolution thematic map from the coarser resolution remote sensing image is illustrated in Figure3.3.
The sub pixel mapping technique utilizes the useful information within the mixed pixel in the land cover
classification but the hard classification algorithms lose this information in image analysis. That is the main
advantage of the soft classification over the conversional hard classification.

Land cover 1 Land covar 2 Land cover 3
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Figure 3.3: Overview Super Resolution Mapping process and harden version of soft classification image (Source:
URL-2)

The SRM technique is still on research for the development with different type of methods. There are
different type of methods developed for SRM with different techniques such as SRM with two point
histogram (Atkinson, 2004), SRM with multiple point geostatistics (Boucher, 2008), SRM with stochastic
simulations, SRM with MRF (Kasetkasem et al., 2005), and SRM with a Hopfield Neural Network
(Nguyen et al., 2005). Out of these SRM method this study is focused on the SRM based on MRF
developed by (Tolpekin et al., 2010) as it facilitates the integration of spatial and spectral data of the MS
and panchromatic images. In the MRF based SRM the labelling of a pixel is carried out with the posterior
probability of the pixel. The posterior probability of a pixel belonging to a land cover class is the
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combination of the prior probability and the conditional probability. It is calculated using the Bayesian
theory as shown in Equation 3.4. The posterior probability (P(wj|x;)) of a pixel x; belonging to class wj can

be defined as:
P(xi|w;) P(w;)

P (Wi |x) = P(x)

3.4

Where P(xi|w;) is the conditional probability of wj given pixel x; and P(xi) and P(wi) are the prior
probability of pixel x; and the land cover class wj. The pixel is assigned a label with the class for which the
posterior probability is at maximum. The criterion is known as the Maximum A Posterior probability
solution (MAP) and defined as below assuming that the prior energy of the pixel is uniformly distributed.

w,=argy, max{P(x| Wi)P(Wi)} 3.5
where wy is the class of pixel k.

The prior probability is derived from the prior information of the pixel and conditional probability is
calculated using the land cover class statistics. The prior is derived with the context of the pixel of interest.
The context is derived from the spatial, spectral or temporal information of the neighbouring pixels. The
aim of the contextual information is to obtain a smooth thematic map from the image classification.
Therefore this is referred to as the smoothness prior. It is achieved by modelling the image as a Markov
Random Field.

3.3.1. Markov Random Field (MRF)

The MRF is commonly used in the remote sensing image classification for the integration of contextual
information. In practical application MRF is related with Gibbs Random Field (GRF) to model the
context in the satellite images. A random field is a set of random variables defined on a set containing
number of sites in which each random vatriable takes a label from a label set. Let w be a realization from a
random field W. and W is a set of random variable w1, w2, w3, ....wn indicating all possible values for w. A
random field is a Markov Random Field with respect to a neighbouring system if the probability density
function of the random field w satisfies the following three conditions (Tso & Mather, 2009).

a) Positivity for all possible configurations of w; P(w) > 0

b) Markovianity property which indicates that the assigning label to a site(pixel) is only dependent on
its neighbouring sites; P(wi | ws4) = P(wi | wii)

¢) Homogeneity that denotes that the conditional probability for the label of site (i) given labels of
adjacent pixels is independent of the relative position of the site (i) in set (S); P(wi|wni) is same
for all sites 1 in S.

The MRF is defined on the neighbouring system. The neighbouring system has an order with respect to
the relative position of the pixels in an image. The order can be defined as first, second, third, fourth, fifth
and even more. The first order neighbouring system of a pixel is the four pixels having a common side
with the interested pixel. The second order neighbouring system is the surrounding four pixels sharing a
corner with the given pixel. Likewise the higher order neighbouring systems can be defined as shown in
the diagram bellow. Figure 3.6 shows the neighbouring systems up to the fifth order.
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Figure 3.4: Fifth order neighbourhood system

The MRF specifies that the labelling of given pixel is dependent on the neighbours of the interested pixel
and the Gibbs random field describe as it depends on the global labelling of the pixel in the image (Tso &
Mather, 2009).

3.3.2. Gibbs Random Field (GRF)

A random field w is a Gibbs Random Field if its probability density function P(w) satisfies the following

form.
Uw)

P(w)= el T 3.6

Where w is the random field defined as above, U(w) is defined as the energy function of the random field
w, T is the constant known as temperature and Z is referred to as partition function. According to the
probability density function of GRF the maximization of probability is equivalent to the minimization of
energy function of the random field. The energy function U(w) of the random field can be defined as the
summation of the all possible potential with respect to a clique type as shown in equation below.

Uw)= X Vc(w) 3.7

Where V(w) is the potential function defined with respect to the clique type C. Figure 3.5 shows the
different type of cliques type in the first and second order neighbouring system.

(a)
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Figure 3.5: Cliques for four neighbourhood (a); eight neighbourhood (b)

The GRF defines the global effects on the pixel labelling of an image and the MRF defines the local
effects on assigning the labels to pixel in an image. The Hammersley Clifford theorem specifies that there
exists a unique GRF defined in terms clique type on a neighbouring system for every MRF. The posterior
probability of a given pixel can be defined in terms energy functions and simplified to the following form
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shown in the equation below (Tolpekin & Stein, 2009). Then the MAP solution can be achieved by
minimization the postetior energy.

Uwlx) = AUW) + (1 - WU(x|w) 38

where X is the smoothing parameter between the prior and likelihood energy.

3.4. Dataintegration with MRF based SRM

The images of different resolution can be integrated using the SRM based on MRF in the image
classification (Tolpekin et al., 2010). The SRM generates a finer resolution thematic image from a coarser
resolution image. A SR map is sought from both a MS remote sensing image y with K spectral bands and
spatial resolution R and a panchromatic image z with finer spatial resolution r (r < R) of the same ground
area. In addition it is assumed that there is a MS image with spatial resolution r and K bands of the same
area. The images y and z are observed ones and those are spatial and spectral degradation of image x and x
is not observed. The integration of spectral and spatial data can be carried out with the following
relationships between images x, y and z (Tolpekin et al., 2010) assuming that the spectral values of each
land cover class is normally distributed, the point spread function of the pixel is uniform and the spectral
response function of panchromatic band is the average of that of the four bands of MS image.

1 2
yi(b) = & X1 % (ain) 3.10

Where k= 1,...., K, S is the integer scale factor between the spatial resolution of MS and panchromatic
images, b; is the pixel location of thematic map y and a;}; is the corresponding pixel of image x. And

1
2(aj) = EZ]K=1 Xic (aji) 311

Where z(a;;) is the corresponding pixel location in panchromatic image for that of xi(aj};) in assumed MS
image. According to this data integration, the posterior probability for the SR map ¢, P(c|y,z), given
observed image y and z can be determined with the prior probability P(c) and likelihood probabilities of
P(y|c) and P(z|c) as given below by assuming the images y and z are conditionally independent

P(cly, 2) « P(c)P(y|c)P(z|c) 3.12
The corresponding energy function for data integration can be detived from following

U(cly,z) = MU(c) + (1- D{AU (zlc) + (1- A)U(ylo)} 3.13

Where U(c|y,z) is the posterior energy, U(c) is the prior energy, U(z|c) is the conditional energy of
panchromatic image (z) given initial SRM (c), U(y| c) is the conditional energy of MS image (y) given initial
SRM, A (0 <A <1)is the parameter balancing the contribution of prior and conditional energy functions.
And Ap (0 <Ap< 1) is the parameter balancing the contribution of two conditional energy functions based
on panchromatic and multispectral images respectively; these parameters smooth the SR map; c is the SR
map; z is panchromatic image and y is multispectral image. Then the MAP solution can be obtained by
minimizing the posterior energy function instead of maximizing the posterior probability (Geman &
Geman, 1984). This is referred to as energy optimization.

Assuming that the SR map is a MRF the prior energy function can be modelled by Equation 3.14 using
the Gibbs Random Field (GRF)-MRF equivalence.
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U(e) = i Uc(an) = Xij Xjenan w@)I((@n), (a)) 3.14

where U(ajji)is the local contribution of pixel (aji)to the ptior energy; N(aji) is the neighbourhood
system; w(ay) is the weight of contribution from neighbour pixel a; in neighbourhood system N(aj;)) and
I(c(ay)p), c(a)) take the value O if c(aj)= c(a) and 1 otherwise. The weight of the neighbour pixel a is

inversely proportional to the distance between the central pixel to the pixel a.

The likelihood energy of the panchromatic and multispectral image is modelled by assuming the pixel
values of each land cover class in panchromatic and multispectral image are normally distributed. The

likelihood energy of MS image (y) can be defined in Equation 3.15.

UOIe) = Biz[M@b), b, € + 5ldetCi] 315

Where M(y(b)), i, C) is the Mahalanobis distance between the pixel value y(bj) and mean vector w;; C; is
the covariance matrix of class 1. Similarly the likelihood energy of panchromatic image U(p|c) can be
modelled by Equation 3.16.

U(z|c) = ZU%[W +lna§] 3.16

Where z(ajj;) is the pixel value and p, is the mean value with standard deviation o, of the class c(aj};)

respectively.

3.5.  Energy optimization

The aim of optimization is to assign a class label to the pixel for which the probability belonging to that
class is at maximum with the spatial dependency. This is also equivalent to the minimum energy of the
pixel that is more likely to be a member of the land class. The minimum energy function described in the
previous section could be reached with the MAP approach. The MAP is a global maximum solution and it
is not easy to obtain with the conventional methods such as gradient descent techniques. Therefore the
MAP solution is achieved through an energy optimization algorithm. There are different types of such
optimization algorithms. Those can be categorized into stochastic and deterministic algorithms (Grava et
al., 2007). The widely used stochastic minimization algorithms are Simulated Annealing (SA), Maximizer
of Posterior Marginals (MPM) and genetic algorithms. The deterministic algorisms are Iterated
Conditional Modes (ICM), Gradual non convexity (GNC) and Mean Field Annealing (MFA). Out of
those algorithms this study is only focused on SA (Geman & Geman, 1984) and ICM (Besag, 1986) to
compare the quality of the SRM optimized from stochastic algorithm and the deterministic algorithm as
both are popular for optimization process.

3.5.1. Energy optimization with SA

The simulated annealing is a stochastic relaxation algorithm (Geman & Geman, 1984) which is used to
find the global minimum of the non-converging energy function. It uses random numbers and probability
to find the global optimization of the process. It works in the manner of freezing liquids or re-
crystallizing metals (Selim & Alsultan, 1991). The energy optimization process with SA is controlled by two
parameters known as annealing parameters. Those annealing parameters are initial temperature (To) and
temperature updating rate (Tua). The initial temperature provides the randomness to the process and the
updating rate decreases the temperature of the process in the next iteration until the temperature at the
start of the iteration tends to zero. The randomness of the system depends on the initial temperature
value. For higher values of temperature the randomness is higher and vice versa. In this manner the MAP
solution is achieved for the pixel labelling in the initial SRM with the posterior energy by setting the
appropriate initial temperature and the updating schedule.
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Figure 3.6: Schematic diagram of SA optimization

Figure 3.6 shows the schematic diagram of the simulated annealing algorithm. It illustrates two main
process of the SA optimization. First one is that SA runs a predefined number of cycles with the inputs.
Then the second one is that the temperature is lowered with the user defined condition. When the
temperature reaches the lowest value allowed then the energy function has reached to minimum and SA
will terminate and the label of pixel will not be updated further.

3.5.2. Energy optimization with ICM

Iterated conditional modes is a deterministic optimization algorithm (Grava et al., 2007). The founder of
this algorithm is Besag in 1986. ICM estimates the probability of the pixel having same colour in a
neighbouring system (Besag, 1986). It converges to a local minimum of the energy function based on two
assumptions. First, the pixels in the observed image are class conditional independent and each
component has the same known conditional density function dependent only on the corresponding label.
Secondly it is assumed that the class label depends on labels of the local neighbouthood. In other words
the image holds the Markovian properties. The main advantage of the ICM is that it is computationally
fast when compared to other stochastic optimization algorithm like Simulated annealing and genetic
algorithm and the disadvantage is that ICM could remain at a local minimum(Grava et al., 2007).

3.6.  Summary

This chapter mainly focused on the theoretical background of the super resolution mapping techniques. It
has described the mixed pixel generation and its limitation in image classification. Then the details of
spectral mixture modelling were illustrated. The super resolution mapping and the energy optimization
have also been described in detail.
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4.  STUDY AREAAND DATA PREPARATION

41.  Study area

The study area for this research is selected in the newly build-up area at Lampuuk village in Aceh,
Indonesia. The Lampuuk village is around 20 KM to the south west of Banda Aceh which is the provincial
capital and the largest city in Aceh at Sumatra island of Indonesia. It is located approximately in 5°33’N
latitude and 95°19’E longitude. Lampuuk was severely damaged area due to the tsunami on 26 December
2004. Due to the tsunami disaster many people lost their lives and most of buildings and other
infrastructures were destroyed. After the tsunami foreign donors constructed the new buildings for the
homeless in Indonesia. Lampuuk is the one of such villages. This area is selected for the study as there are
new buildings with different spectral properties and those are small detached buildings. The buildings in
this area have simple shape that will lead to improve the quality of the SRM. Most of buildings are
separated from each other by a distance around 2 to 3 meters. Most of the buildings are surrounded by
grass land. The buildings’ roofs are red, blue and white in colour and most roofs are red. The remaining
area of the image consists of vegetation, bare soil and roads. Because of those properties Lampuuk village
has been selected for the study. According to spectral properties of the features in the image, six classes
can be identified to for the classification. They are red roof building, blue roof building, white roof
building, vegetation, bare soil and road (see Figure Al in Appendix A for the photographs of the site).
These classes can be visually distinguished in the bottom image of Figure 4.1. Figure 4.1 shows the
location of the study area in Sumatra Island in upper image and the study area in Lampuuk village is on
the bottom image.

4.2.  Data for the study

The data selected for the study is the high resolution KOMPSAT-2 satellite images. KOMPSAT-2 is the
synonym for the KOrean Multi-Purpose SATellite which was launched on July 28% 2006 by Korean
Acrospace Research Institute (KKARI) (Leea et al., 2008). For this study I have selected the panchromatic
image and multispectral image which were acquired on 25th May 2007. The details about the spatial and
spectral resolution of those two images are given in Table 4.1 and the coordinates of the images are given
in Table 4.2.According to the meta data, these images are in level L1R. The radiometric corrections have
already been done for the level L1R data (KOMPSAT-2 Image data manual for user, 2008). Therefore the
co-registration was carried out for the images.

Table 4.1: Spectral and spatial resolution of the selected images (Source: Leea et al., 2008)

Image Spatial Resolution Spectral Bands

Panchromatic 1m 500nm - 900nm

Bandl (Green): 450nm ~ 520nm
Band 2 (Blue): 520nm ~ 600nm
Band 3 (Red): 630nm ~ 690nm
Band 4 (NIR): 760nm - 900nm

Multispectral 4m
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Figure 4.1: Study atea — Lampuuk in Aceh, Indonesia (Soutce: URL-3 and Google Earth on 07/02/2011)
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Table 4.2: Coordinates of the area covered by the selected images

Geographical coordinates Image coordinates
Vertex Latitude Longitude MS Panchromatic
(North/Degtee) | (East/Degree) | Row | Column | Row | Column
Upper left | 5.57497868 95.16139546 | 1 1 1 1
Upper right | 5.60806394 95.32796834 | 1 3750 1 15000
Lower left | 5.42893723 95.19158988 | 3750 |1 15000 | 1
Lower right | 546204132 95.35811909 | 3750 | 3750 15000 | 15000

4.3.  Image co-registration

The proposed building detection approach is based on the integration of spatial and spectral data of the
very high resolution images using the MRF and SRM techniques. For this data integration the accurate
geometric registration of the images is very significant(Tolpekin et al., 2010). The geometric registration of
images can be achieved with georeferencing or co-registration. As it is important that the images are not
resampled for the MRF, the co-registration was selected for the geometric registration of the images. The
image co-registration is the process in which the two dimensional positions of all pixels in two or more
images of same geographical area are brought to one coordinate system on one to one basis of pixel. In
other words this will bring the two images of same area in to same coordinate system. The co-registration
of two or more images can be performed in two ways. Those are map based image registration and image
to image registration (Richards & Xiuping, 2006). The image to image registration was applied for this
study as it is sufficient to bring both images to one coordinate system.

The image to image registration is carried out with MS and panchromatic images. The high resolution
panchromatic image is chosen as master image which is assumed to be geometrically corrected and MS
image is used as slave that is to register to the master image coordinate system (Richards & Xiuping, 2000).
The main task of this method is the selecting of tie points on Master image and corresponding points on
the slave image for the coordinate transformation. The tie points are the sharp image points that clearly
appear on both images. The tie points selected are building corners and intersection of natural and
manmade features such as rivers, roads and ridges. Those atre selected to be distributed over the entire
image. The number of tie points depends on the selected transformation. In general it is better to have
many tie points distributed over the entire image space for accurate co-registration. The first order or
second order polynomial transformation is generally used for the coordinate transformation in image to
image registration as it corrects the errors in shift and rotation. The image registration is carried out in
ERDAS IMAGINE 2010 software with second order polynomial transformation. The RMS error of the
co-registration is 0.0289 pixels (see Figure B1 in Appendix B for the result of co-registration). Then the
horizontal and vertical distances between the pixel grids is checked with SWIPE operation in ERDAS
IMAGINE 2010. The horizontal distance between grid line of panchromatic image and that of MS image
is 0.30 pixels and the vertical distance difference is 0.24 pixels. Those are less than a half of the finer
resolution pixel. Therefore the co-registration of panchromatic image with MS image is accurate enough
for the super resolution mapping. The resampling is not done to avoid the changes of the original
reflectance values of the images.

4.4.  Sub setimage preparation

The two type sub set images are prepared from the co registered MS and panchromatic images. One set of
subset images is to cover the entire study area. The dimension of the MS subset image is 100 by 100 pixels
and that of panchromatic image is 400 by 400 pixels. For the computational convenience in iterative
process of smoothing and annealing parameter estimation, a subset of even smaller images is prepared
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from both the MS and the panchromatic image separately. The small images is named as “tuning image”
and the dimension of MS tuning image is 21 by 21 pixels while that of panchromatic tuning image is 84 by
84 pixels. Both the subset images and tuning images is converted to ASCII format using ENVI software
as it is the compatible format for R software. The coordinates and dimension of subset images are shown
in Tables 4.3 and 4.4 while the images are shown in Figures 4.2 and 4.3.

Table 4.3: coordinates and the dimensions of the study area

Upper left corner coordinates | Lower right coordinate . .
Image Dimension
Row Column Row Column
Panchromatic | 4850 -9250 5250 -9650 400 x 400
image
MS image 4850 -9250 5250 -9650 100 x 100
Table 4.4: coordinates and the dimensions of the tuning image
Upper left corner coordinates | Lower right coordinate . .
Image Dimension
Row Column Row Column
Panchromatic | 5038 -9558 5122 -9642 84 x 84
image
MS image 5038 -9558 5122 -9642 21x 21

Figure 4.3: MS (right) and panchromatic (left) tuning images
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4.5. Class definition

The classes were selected based on the spectral properties of the features in MS image of the study area
for the classification as described in Section 4.1. From the visual interpretation of panchromatic image of
the study area the shadow class could be identified. Therefore it is also taken as class for the soft
classification to avoid the confusion with other classes. The class means and variances for the shadow
class in four bands of MS image were assumed to be same as that of the panchromatic image and the co-
variances of four bands in MS image are also assumed to be zero. That is an assumption made for this
study. Then the mean vectors and variances for each class except shadow are calculated using the MS
image of the study area in ERDAS IMAGINE 2010. Those statistics for the shadow are calculated using
the panchromatic band and they ate accepted for the four bands of MS image as it is difficult to identify
the shadow of the buildings in MS image. The mean vectors and variances are given in Table C1 to C8 in
Appendix C. The mean and the standard deviation of the each land cover class in panchromatic image are
given in Table C9 in Appendix C. The class separability is evaluated with the transform divergence. The
transform divergences (TD) between the classes are calculated in R software (see Appendix F for R code)
to check the level of separability between the classes. The calculated TD values are shown in Table 4.5 and
4.6. According to the TD values all the classes are well separable in MS image as TD values are above the
1.9 (Tolpekin & Stein, 2009). But the classes are poor separable in panchromatic image as one third of the
combination between the seven classes has a TD value less than 1.5. These separability measures show
that the less contribution of panchromatic image and more contribution of MS image are suitable for the
energy model in SRM optimization.

Table 4.5: Transformed divergence of the chosen land cover classes in MS image

Land cover | Red roof Blue roof White roof | Vegetation | Shadow | Bare soil Road
Class building building building

Red roof 2.000 2.000 2.000 2.000 1.999 1.998
building

Blue roof 2.000 2.000 2.000 2.000 2.000 2.000
building

White roof | 2.000 2.000 2.000 2.000 2.000 1.999
building

Vegetation | 2.000 2.000 2.000 2.000 2.000 2.000
Shadow 2.000 2.000 2.000 2.00 2.000 2.000
Bare soil 1.999 2.000 2.000 2.000 2.000 1.929
Road 1.998 2.000 1.999 2.000 2.000 1.929

Table 4.6: Transform divergence of the chosen land cover classes in panchromatic image

TLand cover Red roof Blue roof White roof Vegetation | Shadow Bare soil Road
class building building building

Red roof 1.127 2.000 1.557 1.551 1.905 1.353
building

Blue roof 1.127 1.999 1.852 0.120 1.998 1.526
building

White roof 2.000 1.999 1.999 2.000 2.000 1.986
building

Vegetation 1.557 1.852 1.999 1.973 0.257 0.169
Shadow 1.551 0.120 2.000 1.973 1.999 1.881
Bare soil 1.905 1.998 2.000 0.257 1.999 0.945
Road 1.353 1.526 1.986 0.169 1.881 0.945
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4.6.  Image fusion

The image fusion was carried out with the co-registered panchromatic and multispectral subset images
with pan-sharpen techniques in ERDAS IMAGINE 2010 for the building detection with MLC. Five
methods which are available in ERDAS IMAGINE 2010 have been tested for the image fusion. Those
are (a) wavelet resolution merge with principle component analysis (PCA), (b) resolution merge with PCA,
(c) modified HIS resolution merge, (d)Ehlers fusion and(e) High Pass Filter (HPF). The fused images are
shown in Figure 4.4 (a), (b), (c), (d) and (e). According to the visual interpretation the buildings in the
fused images from wavelet resolution merge with PCA (a) and Ehlers fusion (d) are geometrically
distorted. Therefore they were not selected for the building detection. The fused image from HPF (¢)
preserves the spectral properties of the buildings and background better than the fused image from
modified HIS resolution merge(c) and resolution merge with PCA (d) according to the visual
interpretation. Therefore the HPF fused image was selected for the building detection from MLC.
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Figure 4.4: (a) fused images from wavelet resolution merge with PCA, (b) fused image from resolution
merge with PCA, (c) fused image from modified HIS resolution merge, (d) fused image from Ehlers
fusion and (e) fused image with High Pass Filter (HPF)

4.7.  Reference map preparationfor tuning and study area for the SRM

The reference map was prepared using the screen shot from Google Earth of the study area in Lampuuk,
Indonesia. The screen dump of Google Earth was obtained to cover the entire study area. Then it was co
registered with the panchromatic image using image to image registration with first order polynomial
transformation keeping the panchromatic image as the master image. The accuracy of the geometric
correction is 0.25 pixel (see Figure B2 in Appendix B for the result of co-registration). Then two subsets
from the co-registered Google Earth image were prepared in such a way that the dimension and the area
of the small subset were similar to the tuning image and those of large subset were similar to subset of
panchromatic image. Then each building of both subset images was digitized manually to complete the
reference image for tuning image and study area respectively in Arc Map software as shape files. Finally
the reference images were converted to the ASCI format to support the R software. The images are shown
Figure 4.5 (a) and (b).
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Figure 4.5: (a) Tuning Reference image, (b) Reference image for study area
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5. PROPOSED BUILDING DETECTION APPROACH

The building detection methods from high resolution satellite images have been discussed in Chapter 2.
Those methods are based on different remote sensing image analysis techniques. However there is still
room for the study of building detection for further refinement of building detection accuracy. The new
method is also based on the remote sensing image analysis techniques. The proposed approach is based
on soft classification followed by super resolution mapping. This method is compared with the
conventional MLC method. Then the validation of the method is done in pixel based and object based
analysis. The building foot print detection method proposed by this research is based on the SRM and
MRF. The main steps of this method are illustrated in Figure 5.1. It consists of three phases which are soft
classification, SRM generation and building detection. The co-resisted panchromatic and MS images in
Section 4.3 are used for the building detection. Each of those phases will be described one by one in
proceeding sections.
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Figure 5.1: The proposed building footprint detection approach

5.1. Soft classification

In the proposed building detection approach, first step is the soft classification of multispectral images to
obtain the land cover proportion images. The soft classification can be done in several methods as
described in Section 3.4. From those methods the linear spectral unmixing is applied for this approach as
it has shown satisfactory results in the literature and it is among the more popular techniques (Dobigeon
et al., 2009; Foody, 2006; Van Der Meer & De Jong, 2000). The endmembers are the mean spectral value
of the land cover class. The mean spectral values of the land cover classes are calculated using the
signature editor of each land cover class in ERDAS IMAGINE 2010.The mean and covariance matrix for
each class are calculated for each band of the land cover class. The class mean is taken as pure pixel and
the class variation used for the determination of spectral variation within the class. After the calculation of
means and variances of the each land cover class in both MS and panchromatic image, the linear spectral
unmixing is applied to produce the proportion images for the selected classes. By applying the unmixing
model the proportion images were produced for each land cover class using the “R, The Language and
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Environment for Statistical Computing” software (see Appendix F for R code). Those land cover class
proportion images will be used for the SRM generation.

5.2. Initial SRM generation

The soft classification provides the proportion or fraction image per land cover class but it does not
specify the spatial distribution of the land cover class within the pixel. Then the next step of the new
building footprint detection approach is the initial SRM generation. The initial SRM is prepated dividing
the coarser pixels in proportion image by the scale factor in R software. In this research the scale factor is
4 as the spatial resolution of input image, KOMPSAT-2 MS images, is 4m and that output thematic map is
1m. The proportion images are 100 by 100 pixels so the initial SRM is 400 by 400 pixels. Each sub pixel is
located within the pixel by random labelling the sub pixel with corresponding class from proportion
image. The output of this step is a SRM with many isolated sub pixels. These sub pixels will be located
with the optimization of spatial dependence in the SR map. The spatial dependence is optimized using the
energy model described in Section 3.6. The energy model is developed using MRE and Gibbs energy
formulation as desctibed in Section 3.5.1 and 3.5.2.The optimal solution of the energy model is achieved
with MAP solution.

5.3.  Energy modelling

The posterior energy function is modelled with prior and likelihood energy. The prior energy is modelled
with MRF and GRF equalization using the contextual information of the pixels in initial SRM. The spatial
context is the correlation between spatially adjacent pixels in the neighbourhood (Solberg, 1996). The
likelihood energy is modelled with class mean vectors and covariance matrixes derived from the co-
registered MS and panchromatic images. After the modelling the posterior energy, the MAP solution is
achieved by minimization of the energy function (Geman & Geman, 1984). The Map solution is achieved
using the SA. The principle behind the SA has been described in Section 3.7.1.The energy optimization is
a tedious task in this process as it is time consuming task to determine the optimal smoothing parameters
(r and Xp) in the energy model and the optimal annealing parameters (To and Tupa). Therefore the
estimation of those parameters is carried out with the tuning images. The determination of optimal
parameters is done by analysing the kappa values of the SRM. Then the optimized SRM for the study area
is obtained by applying the optimal values estimated from the tuning image. The parameter estimation and
optimized SRM generation are carried out in R software (see Appendix F).

5.4.  Optimization of SRM with Simulated Annealing

Initial SRM is a noisy thematic map due to abundance of isolated sub pixels. Next step is the task to place
the sub pixel in realistic way to obtain a proper building map by maximizing the spatial dependence in the
image. The process of locating the isolated sub pixels in the manner of producing a thematic building map
is referred to as the optimization. The optimization of initial SRM is carried out with the MAP solution.
This is done by modelling posterior energy with the prior and conditional energy of the co registered sub
set images of MS and panchromatic images as proposed by Tolpekin et al., (2010). In other words the
optimization of initial SRM is carried out with the integration of spatial and spectral data of the MS and
panchromatic images. The integration of panchromatic data is mainly because of the spatial limitation of
the MS image.

5.5.  Energy optimization with Iterated Conditional Modes

The Iterated conditional modes (ICM) is used for the comparison of stochastic optimization algorithm
(SA), with deterministic optimization algorithm. The principle of the ICM is described in Section 3.7.2.
For the ICM only the smoothing parameters are applied on the basis of the class conditional
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independence and the dependence of the class labelling on the label of neighbouring pixels. This is also
done in R software.

5.6.  Building detection

The optimized SRM is a thematic map of individual sub pixel with class label. There are some small
patches and isolated pixels in the optimized SRM. The pixels in the SRM is grouped with the operator
named “clump” in ENVI and then the small patches and the isolated pixels are cleaned with the filter
named “sieve” operator in ENVI with minimum size of seven pixels as the smallest building in the study
area is approximately 8 by 8 meters in ground. The clumping and sieving are done in ENVI software. The
building footprints are identified using the visual variable colour in the optimized SRM as the building
classes are defined on the basis of roof colour. Then the building map is visualized in Arc Map software
for the validation and comparison.

5.7.  Building detection with MLC

The building detection using maximum likelihood classification (MLC) is carried out for the comparison
of the result of proposed building detection approach. This is done with fused image enabling the
comparison of data integration techniques too. The fused image is classified with MLC in ERDAS
IMAGINE 2010. This classification is carried out with the same classes defined for the soft classification.
The classes are red roof building, blue roof building, white roof building, vegetation shadow, bare soil and
road. The training data for each class is selected from the fused image by visual interpretation for each
class. The classified image is filtered with sieve filter with 7 pixels as the smallest building in the study area
is approximately 8 by 8 meters. Then the building footprints are identified the visual variable colour. Then
the building map is used for the validation and comparison

5.8.  Validation and comparison

The validation is done in two ways namely pixel based validation and object based validation. The pixel
based validation of the result is carried out using the conventional confusion matrix of the classification.
The omission, commission errors and kappa coefficient are used for the accuracy assessment and
comparison. This pixel based accuracy assessment is done for both SRM classification and MLC
classification. This is carried out with the reference map prepared from screen print of Google Earth for
the SRM. The pixel based accuracy assessment is done with stratified random point sampling procedure
for the MLC classification as it is difficult to collect the ground truth as a point file and stratified random
sampling generates the equal number of samples for all classes. The number of properly detected buildings
is also counted in each building map for the object based validation.

The object based validation is carried out in the manner of topological and geometric accuracy quantities
described in Clinton et al, (2008) and Tolpekin et al.,, (2010). The under identification and over
identification given in the equation 5.1 and 5.2 (Tolpekin et al., 2010) are used to measure the topological
accuracy of the building map with respect to the reference map while the total area index given in
equation 5.3 is applied to determine the geometrical accuracy of the buildings. These accuracy measures
are applied to three results obtained from SRM and MLC building detection.

Y area(0;NR;)

Oid =1- Y. area(0;)

(.1)

_ Y area(0;NR;)

Uid =1 Y. area(R;)

(5.2)
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TE = /omz + Uig? (5.3)

Where Oy, is the over identification, Uy is the under identification and TE is the total error. O, is the it
classified building and R; is the i reference building. The possible value for over identification and under
identification is in the range of zero to one. The value closer to zero means that there is a good match
between the identified buildings and reference buildings. The value closer to one means a large difference

in area between reference buildings and the identified buildings. The value range for the total error is

between 0 and V2. The total error should be closer to zero for better topological match between the
identified buildings and the reference buildings.

After the calculation of both accuracy measures, the comparison of methods is carried out to answer the
research questions. The SRM based building detection method is compared with the MLC method to
determine the most suitable technique for building footprint detection. The suitability of the method is
determined on the basis of values of those accuracy measures and the building detection with the SA
optimization and ICM optimization is compared to determine the accurate optimization for building
detection from high resolution satellite images. Finally the result from the MS image is compared with that
of fused image to identify suitable data integration for image classification in building footprint detection.

5.9.  Summary

This chapter mainly focused on the proposed building detection approach. First it described the overall
procedure in the building detection approach. Then the each step in the new approach has described. It
included soft classification of MS image, initial SRM generation, optimization of SRM with SA and ICM,
building detection. Then the building detection with MLC and the validation and comparison of the
results obtained with proposed method with MLC method were described. The result of these steps will
be described in Chapter 6.
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6. RESULTS

6.1.  Parameter estimation of the Super Resolution Mapping

The parameter estimation is the crucial step in the super resolution mapping as it is tedious and time
consuming task. Therefore the parameter estimation is carried out using the tuning image. The ASCII
format of the tuning image is used as it is compatible with R software. Then the parameter estimation is
carried out in R software based on the minimum energy and the maximum kappa value of the SRM as
atrial and error procedure. The results of the estimation of annealing parameters and smoothing
parameters are given in the proceding sections.

6.2.  Simulated Annealing parameters estimation

The SA parameters To and Tupa are first estimated using the kappa and energy values and their standard
deviations of the optimized SRM obtained from different values of initial temperature and updating rate.
The estimation is carried out by varying one parameter at a time while keeping the other parameters
constant. Each experiment is repeated 10 times. Then the kappa and the total energy were averaged over
10 observations and plotted against the initial temperature values for the estimation of optimum values of
two parameters. The standard deviation of kappa and energy is also calculated and plotted identify the
optimum value with smaller standard deviation. The optimum initial temperature determination is done by
tixing Typa =0.1, window size = 3, A = 0.8, and A, = 0.3. The statistics of the kappa values are given in
Table 6.1 and the graphs in Figure 6.1 and those of the total energy are given in the Table 6.2 and Figure
6.2.

Table 6.1: Statistics of kappa values with initial temperature (To) for window size 3

T T z N Minimum | Maximum | Mean Standard

upd p Kappa Kappa kappa deviation
1 0.1 0.8 0.3 0.601 0.623 0.611 0.006
2 0.1 0.8 0.3 0.608 0.630 0.618 0.007
3 0.1 0.8 0.3 0.613 0.627 0.620 0.005
4 0.1 0.8 0.3 0.605 0.636 0.618 0.012
5 0.1 0.8 0.3 0.612 0.638 0.625 0.008
6 0.1 0.8 0.3 0.600 0.640 0.621 0.011
7 0.1 0.8 0.3 0.598 0.628 0.616 0.009
8 0.1 0.8 0.3 0.595 0.629 0.615 0.012
9 0.1 0.8 0.3 0.604 0.629 0.618 0.009
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Figure 6.1: Mean kappa of SRM versus initial temperature (To) with standard deviation in error bars

Table 6.2: Statistics of energy values versus initial temperature (To)

Minimum | Maximum | Mean Standard
To Tupd A Ap .

Energy energy Energy deviation
1 01| 0.8 0.3 0.636 0.648 0.643 0.003
2 01| 038 0.3 0.633 0.645 0.639 0.004
3 01| 038 0.3 0.629 0.640 0.635 0.004
4 01| 0.8 0.3 0.628 0.640 0.633 0.004
5 01| 038 0.3 0.627 0.640 0.634 0.004
6 01| 038 0.3 0.631 0.643 0.636 0.004
7 01| 038 0.3 0.628 0.641 0.633 0.004
8 01| 038 0.3 0.623 0.638 0.632 0.004
9 01| 038 0.3 0.628 0.639 0.633 0.004
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Figure 6.2: Mean energy versus initial temperature (To) with standard deviation in error bars
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According to the graphs above the kappa of the SRM is optimal at initial temperature values 5 and the
energy is minimal at the initial temperature values 4 and 8. The minimum standard deviation of the energy
is at initial temperature 1 compared to other values. As the initial temperature is directly related to the
energy optimization the more consideration is paid on the energy distribution. The mean energy is
minimum at 4 but the standard deviation is high and standard deviation is minimum at 1. Therefore the
initial temperature is taken as 1 because the standard deviation is less and it will help to produce a less
noisy SRM. The optimal initial temperature of this experiment is also agreed with the previous work done
by Tolpekin et al., (2010). Tolpekin at al., (2010) applied the initial temperature value 1 for the urban tree
crown extraction. Therefore the value 1 is reliable to be set as initial temperature value for this experiment
based on the experimental results.

6.3.  Determination of temperature updating rate

The experiment is carried out 10 times for each updating value keeping the smoothing parameters and
initial temperature constant (To= 1, ws = 3, A = 0.8 and A, =0.3). The mean kappa and the mean energy
are plotted against the temperature updating rate values ranging from 0.1 to 0.9. The mean kappa of the
experiment is shown in Table 6.3 and graphs 6.3.

Table 6.3: Statistics of kappa values versus temperature updating rate

T Tons N % Minimum | Maximum | Mean Star)dafrd
Kappa Kappa kappa deviation
1 0.1 0.8 0.3 0.602 0.618 0.609 0.006
1 0.2 0.8 0.3 0.605 0.623 0.614 0.005
1 0.3 0.8 0.3 0.607 0.628 0.617 0.007
1 0.4 0.8 0.3 0.603 0.629 0.615 0.010
1 0.5 0.8 0.3 0.612 0.633 0.621 0.008
1 0.6 0.8 0.3 0.611 0.632 0.620 0.007
1 0.7 0.8 0.3 0.603 0.625 0.615 0.008
1 0.8 0.8 0.3 0.590 0.627 0.609 0.011
1 0.9 0.8 0.3 0.605 0.628 0.612 0.007
0.635
0.630 =
0.625 = .
o 0.620 A~ 5
§ 0.615 /}/ S P
0.610 T
0.605 1 = —
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Figure 6.3: Mean kappa versus Temperature updating rate (Typa) with standard deviation in error bars
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According to the kappa values of the SRM shown in Table 6.3 and Figure 6.3 above the temperature
updating rate is optimum at 0.2 with smaller standard deviation compared to other values. Therefore the

temperature updating rate was selected as 0.2 to obtain less noisy SRM.

6.4.  Determination of smoothing parameters (A and A)

By fixing the initial temperature, the temperature updating rate and window size (To = 1 and Typq = 0.2

and ws = 3) the experiment is carried out ten times with different smoothing parameters ranging from 0.6

to 0.9 for panchromatic smoothing parameter range 0 to 0.8. The results of the experiment are given in
Table D1 in Appendix D and the graphs 6.4 and 6.5.
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Figure 6.4: The mean kappa of the optimized SRM versus panchromatic smoothing parameters (\p) for different
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Figure 6.5: The standard deviation of the optimized SRM versus panchromatic smoothing parameters (A,) for

different smoothing parameters (\)
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According to Figure 6.4 of the smoothing parameters (A and Ap) the optimal values for the smoothing
parameter between prior and likelihood energy is 0.8 and the smoothing parameter between likelthood
energy of panchromatic image and MS image is 0.3. At those values the kappa of the optimized SRM is
high with smaller standard deviation compared to other values (see Figure 6.5). The kappa of the SRM
increase with A = 0.9 and A,= 0.6 but the standard deviation is high. Therefore the smoothing parameters
are selected as L =0.8 and A, = 0.3 for less noisy optimized SR map. These parameters of the energy model
also agree with the class separability values calculated in Section 4.5. The class separability (TD) values
shows that the classes are poor separable in panchromatic image and well separable in MS image. This
agrees with the less likelihood energy contribution from the panchromatic image.

6.5. Estimation of window size

Then the experiment was carried out for the determination of optimum window size fixing the annealing
and smoothing parameters (To = 1, Typa = 0.2, X = 0.8 and A, = 0.3). The obtained results are shown in
Table 6.4 and Figure 6.6.

Table 6.4: Statistics of kappa values for different window sizes

Window size (ws) | Minimum Kappa | Maximum Kappa | Mean Kappa | SD

1 0.510 0.554 0.529 0.01
2 0.520 0.586 0.544 0.02
3 0.521 0.573 0.552 0.02
4 0.528 0.552 0.538 0.008
5 0.499 0.552 0.526 0.02
7 0.491 0.529 0.517 0.01
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Figure 6.6: Mean kappa versus window size (w.s)

The experiment results show that kappa value is higher at the window size 3 (ws = 3) (see Figure 6.6). The
neighbouring system is defined with the window size in the software as twice the window size plus one
(2ws +1). The window size 3 defines a 7 by 7 neighbouring system in the image. This neighbourhood size
is almost similar to the size of the small buildings in the study area. The window size 3 results maximum
kappa value of the optimized SRM. Therefore the window size 3 was selected as it results the optimum
SRM. Now all the parameters of the energy model have been determined. Those are shown in Table 6.5.
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Table 6.5: Parameters of the energy model and SA

Parameter

Value

Prior and likelihood energy smoothing parameter (A\) | 0.8

Likelihood energy smoothing parameter (Ay) 0.3
Initial temperature (To) 1.0
Temperature updating rate (Tupd) 0.2
Window size 3

The smoothing parameter estimation was cross checked with the automated parameter estimation

algorithm developed by Eshete, (2011). This was carried out using the scale factor and the transform

divergence values of all classes selected for this study. This algorithm has two adjustment factors for the

smoothing parameter A and A,. The automatic estimated parameter values are A = 0.998 and A, = 0.302.

The parameter A, well agreed with that value of this study.

6.6.  Effect of the SA and annealing parameters on the colour of the roof and the size of the buildings

The effect of the parameters on the roof colour and the size of the building were studied by selecting a

subset image with three type of buildings class and three sizes namely smaller medium and large. The

results are given in Table 6.6 and the optimized SR maps are shown in Appendix E.

Table 6.6: Number of building detected according to the roof colour and size

Map Red Blue White | Total | Small | Medium | Large Total

Reference 18 8 5 31 26 4 1 31
Parameters Number of building detected Number of building detected

To Tupd Red Blue White | Total | Small | Medium | Large Total

1 0.1 18 8 4 30 25 4 1 30

2 0.1 18 8 3 29 24 4 1 29

3 0.1 18 8 3 29 24 4 1 29

4 0.1 18 8 2 28 23 4 1 28

5 0.1 18 8 3 29 24 4 1 29

0 0.1 18 8 3 29 24 4 1 29

7 0.1 18 8 3 29 24 4 1 29

8 0.1 18 8 3 29 24 4 1 29

9 0.1 18 8 3 29 24 4 1 29

1 0.1 18 8 3 29 24 4 1 29

1 0.2 18 8 3 29 24 4 1 29

1 0.3 18 8 3 29 24 4 1 29

1 0.4 18 8 3 29 24 4 1 29

1 0.5 18 8 3 29 24 4 1 29

1 0.6 18 8 3 29 24 4 1 29

1 0.7 18 8 3 29 24 4 1 29

1 0.8 18 8 3 29 24 4 1 29

1 0.9 18 8 3 29 24 4 1 29

A Ap Red Blue White Total | Small | Medium | Large Total

0.8 18 8 5 31 26 4 1 31

0.1 18 8 4 30 25 4 1 30
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0.2 18 8 4 30 25 4 1 30
0.3 18 8 3 29 24 4 1 29
04 18 8 3 29 24 4 1 29
0.5 18 8 3 29 24 4 1 29
0.6 18 8 3 29 24 4 1 29
0.7 18 8 3 29 24 4 1 29
0.8 18 8 2 28 23 4 1 28
0.9 18 8 0 26 22 4 0 26
0.9 0 17 7 4 28 23 4 1 28
0.1 17 7 3 27 23 4 1 28
0.2 17 7 3 27 22 4 1 27
0.3 17 7 3 27 22 4 1 27
0.4 17 8 3 28 23 4 1 28
0.5 17 8 3 28 23 4 1 28
0.6 17 8 3 28 23 4 1 28
0.7 18 8 3 29 24 4 1 29
0.8 18 8 3 29 24 4 1 29
0.9 18 8 3 29 24 4 1 29

6.7.  Optimized SRM

Using the smoothing and the annealing parameters determined previous section the initial SRM is
optimized with the SA and ICM algorithms in R software. Then the clumping is applied to the optimized
SR maps to group the pixels and they are cleaned with sieve filter to remove isolated pixels and patches.

Then those are visualized in the Arc Map software to obtain the building footprint map. The visualized

building footprint maps are shown in Figure 6.7. According to the visual interpretation of optimized SR

maps the shape and size of the buildings are preserved quite well. The building objects can be identified.

The buildings which are very closer to each other have been detected as a group of buildings. The
buildings which are separated with a distance around 4m have identified as individual buildings. The false
identification is less. The blue roof buildings are confused with the shadow class. This is because of the

poor separability of these two classes in panchromatic image.

B Red roof building [ White roof building
I Blue roof building [ Back ground

@)

I Red roof building

[ White roof buildng

B Bluc roof building [ Back ground

(b)

Figure 6.7: Building footprint map from MRF based SRM optimized with SA (a) and ICM (b)
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6.8.

The HPF fused image and MS image are classified with MLC to detect the building footprints. The
classified thematic maps are clumped and then cleaned with sieve filter to obtain the building footprint

Building footprint detection with MLC

map. The visualized building maps are shown in Figure 6.8. According to the visual interpretation of these
maps it is very difficult to identify the building in MLC classified map and in the fused image map the
ability to identify the building is less than the SR maps. The false detection in fused and MS image maps is
more that that in the SR building maps. The shape and size of the buildings are not preserved less than the

SR maps.
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Figure 6.8: Building footprint map from (a) MLC with fused image (b) MLC with MS image

6.9.

The pixel based accuracy of the building footprint map is carried out with confusion matrix and kappa

Validation and comparision

coefficient. The confusion matrix for SRM building maps are calculated for building class and back
ground class in R software and for the other two maps kappa is calculated for all classes used for the
classification in ERDAS IMAGINE 2010 software. The confusion matrix for each building footprint map
is given in Table 6.7, 6.8, 6.9 and 6.10. The kappa coefficient of each map is given in Table 6.11.
According to the confusion matrixes the overall accuracies of SR maps are 87% and that of fused and MS
image maps are 62% and 53% respectively.

Table 6.7: The confusion matrix of building footprint map from SRM optimized with SA

Thematic map Reference classes
classes Building Back ground | Total pixel commission User accuracy
Building 20988 9770 30758 0.3176 68%
Back ground 11308 117934 129242 0.0875 91%
Total pixel 32296 127704 160000
Error of omission 0.3501 0.0765
Producer accuracy 65% 92% | Over all classification accuracy = 87%
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Table 6.8: The confusion matrix of building footprint map from SRM optimized with ICM

Thematic map Reference class

Classes Building Back ground | Total pixel commission | User accuracy
Building 20635 9237 29872 0.3092 69%
Back ground 11661 118467 130128 0.0896 91%
Total pixel 32296 127704 160000

Error of omission 0.3611 0.0723

Producer accuracy 64% 93% | Over all classification accuracy = 87%

Table 6.9: The confusion matrix of building footprint map from HPF fused image

Class Name Reference | Classified | Number | Producers | Users
Total Totals Correct | Accuracy | Accuracy
Red roof building 26 41 20 76.92% | 48.78%
Blue roof building 12 10 8 66.67% 80.00%
White roof building 8 21 5 62.50% | 23.81%
Vegetation 58 54 46 79.31% 85.19%
Shadow 16 39 5 31.25% | 12.82%
Other 136 91 75 55.15% | 82.42%
Total 256 256 159
Over all classification accuracy 62.11%

Table 6.10: The confusion matrix of building footprint map from MS image

Class Name Reference | Classified | Number | Producers | Users
Total Totals Correct | Accuracy | Accuracy
Red roof building 33 50 27 81.82% | 54.00%
Blue roof building 2 40 2| 100.00% 5.00%
White roof building 9 35 5 55.56% | 14.29%
Vegetation 70 74 50 71.43% | 67.57%
Other 142 57 51 35.92% | 89.47%
Total 256 256 135
Over all classification accuracy 52.73%

Table 6.11: Kappa coefficient of each building footprint map

Building footprint map Kappa
Building footprint map from SRM with SA 0.584
Building footprint map from SRM with ICM 0.581
Building footprint map from MLC with fused image | 0.483
Building footprint map from MLC with MS image 0.383

The visual comparison of the building footprint maps was done by overlaying the reference map on each
building footprint map. The overlay maps are shown in Figure 6.10 and 6.11. The overall number of
detected buildings is also visually assessed with reference to the number of buildings in the reference. The
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result of that assessment is given in Table 6.12. As the shape and size of the objects in building maps from

fused image and MS image are not preserved compared to SR maps and the false detection is more in

those map the building counting was not done. The shape and size of the detected buildings are visually

compared and shown in Figure 6.9.

)
Table 6.12: Percentage of building detection in SR maps
No of building Total buildings
Method detected in reference Percentage
SRM from SA 276 292 95%
SRM from ICM 278 292 95%

Table 6.13: Results of object based accuracy assessment for each building footprint map

Total area of the buildings in reference image (R) 21877.60

Total area of the buildings in optimized SRM with SA (O) 29832.00

SRM from SA Intersected area (RNO) 16834.51
Over identification 0.436

Under identification 0.230

Total error 0.493

Total area of the buildings in reference image (R) 21877.60

Total area of the buildings in optimized SRM with ICM (O) | 28640.30

SRM from ICM Intersected area (RNO) 16626.10
Over identification 0.419

Under identification 0.240

Total error 0.483

Total area of the buildings in reference image (R) 21877.60

Total area of the buildings in ML.C (O) 36347.30

MLC Fused Intersected area (RNO) 16362.98
Over identification 0.550

Under identification 0.252

Total error 0.605

Total area of the buildings in reference image (R) 21877.6

Total area of the buildings in MLC (O) 76934.23

MLC MS Intersected area (RNO) 19288.83
Over identification 0.749

Under identification 0.118

Total error 0.759

The object based accuracy assessment of the building footprint maps is done according to the method

described in Section 5.3. The results are given in Table 6.13 for each building footprint map separately.

According to the result of object area based accuracy measures total error of SR maps from SA and ICM

are 0.493 and 0.483 respectively and those for building maps from fused image and MS image are 0.605
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and 0.759 respectively. This implies that more false detections are in the building maps from fused image

and MS image.

Figure 6.9: Shape and size of detected buildings from SRM (left) and MLC with fused image (right

B Redroof bullding  [] White roof building BN Red roof building 1 White roof buildng
M Blue roof buildng I Back ground B Blueroof bullding = Buck pround
1 Reference buildimg [ Reference building

B Red roof building [ White roof building B Red Roof building L1 Whte Roof Building
B Blue roof building [ Back ground B Blue roof building = Back ground
[ Reference building 1 Reference building

Figure 6.11: Ovetlay of reference map on building footprint map from MLC
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7. DISCUSSION

In this study the building footprint detection is based on the integration of spatial and spectral data of
remote sensing images with relatively high spatial resolution. The strengths, weaknesses, opportunities and
threats in the proposed building footprint detection approach are discussed in detail in the following
sections.

7.1.  Strength of the proposed building detection approach

The proposed approach detects the building footprint more accurately than the MLC hard classification
method; it identified most of the buildings. The shape of the buildings is preserved better than with the
MLC method. The total number of buildings in the study area is 292. Out of 292 buildings 276 buildings
or 95% are identified in both SA and ICM optimized SR maps. MRF based SRM shows less false
identification of the buildings compared to the conventional MLLC building identification. According to
the result in Table 0.6, the detection of large and medium buildings size is more accurate than the smaller
buildings using the developed method while the red roof buildings are more sensitive to this method
compared to blue and white roof buildings. Another strength this that this method identified the building
object automatically. The operator involvement is only for the parameter estimation. Even that can also be
done automatically using an automatic parameter estimation algorithm. As this method is implemented in
R which is an open source software even the developing countries can apply the method for their
application.

7.2.  Weakness of the approach

Though the developed method detects the buildings better than the conventional ML.C building detection
it also has some limitations. The parameter estimation of this method is crucial for the success of the
building objects identification. That is tedious and time consuming task as it involves the iterative process
and use of simulated annealing algorithm. The implementation of the developed method is carried out in
R software in MS Windows operating system and it needs the higher performance computer. Another
weakness of this method is that the method is computationally time intensive as MRF based SRM involves
many mathematical computation such as neighbouring system generation, energy calculation and energy
optimization. The spectral confusion between the blue roof building and the shade is also a weakness of
this method as the shade of the building has detected as the blue roof buildings. That affects the accuracy
of the building identification. However this depends on the area of the building footprint detection. It
would not be a problem in an area without blue buildings. The few smaller buildings of the study area
were not detected by this method and it is agreed with our expectation as SRM is sensitive to the size of
the building object. That is because of the poor prior energy of the pixels of the smaller building as they
have fewer building pixels in the neighbouring system. As the larger buildings provide more pixels for the
energy calculation the larger and medium buildings are more sensitive to the developed method.

The developed method is based on few assumptions which might have limited the accuracy in the pixel
based and object based accuracy assessment. The first assumption is that the spectral properties of the
specific building class are same for the all building in that class. But it is not like that in reality as the
spectral properties of the individual buildings are slightly different from each other according to the
intensity of the reflectance of the object. The intensity of the reflectance varies with the material of the
roof and the surface roughness of the building roof. So the same roof colour buildings can have different
spectral property. We also assume that the sensitivity of the panchromatic band is the average of the four
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bands of the MS image in energy modelling. The panchromatic band is sensitive to the wave length range
from 500 nm to 900 nm and the sensitivity is maximum at the middle of the range according to the sensor
spectral response function, but the four bands of the MS image do not cover the entire range of the
panchromatic band. This has a negative effect on the energy calculation as it assume that the radiation
received to the sensor at pixel location in panchromatic image corresponds to that in the assumed MS
image (see Equation 3.11). Then we assume that the spatial distribution of the received energy within the
pixel is uniform in the entire pixel (see Equation 3.10) and calculated energy by averaging four finer
resolution pixels on one coarser resolution pixel. That is also not true in reality as energy is distributed
according to the point spread function. In this approach the spectral classes were limited to few classes for
computational convenience. It is not like that in reality as there are many classes spectrally different from
each other for example we assume that the spectral property of the shadow class is same for all shadows
but the shadow from different part of the image varies according to the darkness of the shade. Those
factors are the weakness of the developed building detection approach and that leads to the less accuracy
of the obtained results. As the MRF based SRM is directly related to the spatial dependency this approach
would not be success for the dense city areas and the urban areas. As this method is sensitive to the finer
resolution images this approach is not recommended for the courser resolution images like ASTER and

SPOT.

7.3.  Opportunities for improvement

As discussed in the previous this method has some weaknesses but there are some opportunities to
overcome those and to refine the output for more convenience and efficiency. The parameter estimation
of the method is tedious and time consuming. That can be overcome with automated parameter
estimation. The automated parameter estimation developed by Eshete, (2011) can be applied to determine
the smoothing parameters for this method too. That will solve half of the parameter estimation as
additional simulated annealing parameter estimation is also needed. Next, the computationally intensive
procedure is a disadvantage due to the speed of the present computer system. Faster computer systems are
introducing with the daily development of the computer technology so the computational time will not be
a problem for the implementation of this method. The software for this method is implemented in R
which is also the reason for the time consumption. This can be overcome using code in C** programming
language which is 20 times faster than R. The spectral property of the blue roof building is confused with
that of the shade in this implementation. So it is better to think of spectrally sensitive methods to extract
the training data for each building class. As the blue roof buildings are not very common in every where it
is not a big problem for the implementation of this method. With the above suggestion the limitations of
the developed building detection methods can be minimized.

7.4.  Threats to the proposed building detection approach

The detection of the smaller building is one of the threats for this method as the MRF based SRM is less
sensitive to the smaller buildings. This method was tested with relatively coarser resolution satellite image
(4m). The MRF based SRM tool was applied to the detection of urban tree crown by Tolpekin et al.,
(2010) with 2.4m finer resolution Quickbird image. That is why the testing of building footprint detection
method showed high over identification and high total error in object based accuracy assessment. Another
threat of this study is that the accuracy of this method is directly related to the class definition. The classes
should be defined with better spectral separation. In reality that is very difficult task as the reflectance of
surface materials of different objects has some overlap with others. This is a main threat for the
implementation of this method.
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8. CONCLUSIONS AND RECOMMENDATIONS

The building footprint detection from high resolution image is an important aspect in the remote sensing
application. The building footprints have been identified from different techniques with integration of
various data sources. In this study the integration of spectral and spatial data of high resolution satellite
images has been applied for the detection of building footprint. The integration is done with the SRM
based MRF technique. This method has been compared with the conventional pan-sharpening data
integration techniques. The validation of the new building footprint detection methods has been done in
two ways namely pixel based accuracy assessment and object based accuracy assessment. The object based
accuracy assessment was selected for validation as it compares the topological and geometrical accuracy of
the detected buildings with the reference buildings. In other words, it allows user to understand how well
the detected building footprint map fits topologically and geometrically with the reference buildings. To
achieve the objective of the research five research questions posed and those are answered in the

following section.

8.1. Conclusions

The conclusions of this study are drawn by answering the each research questions posed to achieve the
research objectives.

1. Which energy optimization method is more suitable to obtain the most accurate result from MRF
based SRM: Simulated Annealing (SA) or Iterated Conditional Modes (ICM)?

The initial SRM was optimized with SA and ICM separately. The results of both are shown in Table 6.10.
The kappa coefficients of both optimization methods are almost equal. The kappa of SRM optimized
from SA is 0.584 while that from ICM is 0.581. The object based accuracy measures shows that total
error of SA optimization is 0.493 and that of ICM optimization is 0.483. So the pixel based accuracy
shows that SA optimization is better than the ICM optimization while the object based accuracy shows
that the ICM optimization is better than the SA optimization. However there is no significant difference in
the values of those measures. The confusion matrix shows 87% overall accuracy for both SRM from SA
and ICM and also other measures like user accuracy, producer accuracy, omission and commission error
are almost the same for both optimizations. Therefore according to the results obtained from this
research both optimization techniques result in almost similar SRM as there is no significant difference in
accuracy measures. It can be concluded that both optimization techniques; SA and ICM; are equally

suitable for the energy optimization in MRF based SRM to obtain the SR map.

2. How do the simulated annealing parameters affect the accuracy of MRF based SRM result in building
footprint detection?

The accuracy of the SRM was measured with the kappa coefficient. The variation of kappa value with the
initial temperature is shown in Figure 6.1. According to the figure, the kappa value increases with the
increase of initial temperature up to 1 and then it decreases. The kappa vale is at maximum at initial
temperature value 5. However there is no direct relation between the accuracy of the optimized SRM and
the initial temperature in building footprint detection. The change of the kappa coefficient with the
temperature updating rate is shown in the Figure 6.3. The kappa value of the optimized SRM increases up
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to the updating rate 0.5 then it decreases. The kappa value is at maximum at the temperature updating rate
0.5. The shape of the change in kappa value with initial temperature and the updating rate is similar. From
both graphs it is clear that the simulated annealing parameters affect the accuracy of the optimized SRM
but there is no direct relation between the accuracy of the SRM and the annealing parameters.

3. Which accuracy measure is more suitable for the accuracy assessment of building footprint detection
from VHR MS and panchromatic images: object based or pixel based accuracy measure?

The accuracy assessment of this study is carried out in pixel based and an object based way. The pixel
based accuracy shows the ratio between the correctly identified pixels and total pixels. It does not give any
idea about geometrical accuracy of the identified building footprints or how the detected building
footprints match with the building footprint in reference map. The object based accuracy measures show
the topological and geometrical accuracy measures. The topological accuracy measures gives the over
identification and under identification of the detected building footprints with respect to the reference
building footprint map and the total error shows the geometrical correctness of the identified building
footprint. The geometrical accuracy measure gives how the detected buildings fit with the reference
buildings. If the total error is very close to zero the detected buildings fit propetly with the reference
buildings on a one to one basis. The results of this study shows that the buildings detected from MRF
based SRM fit with the buildings in reference map better than MLLC method. So the object based accuracy
measures are more meaningful than the pixel based accuracy measures for the user’s aspect as users need
to know how the detected building footprint map fit with the reality.

4. Is SRM based building footprint detection technique with MS and panchromatic image more accurate
than the MLC based building footprint detection technique from fused image?

The building footprint detection from SRM with MS and panchromatic image was carried out. The pixel
based accuracy showed 0.584 kappa values for the SA optimized SRM building detection and 0.581 kappa
values for ICM optimized SRM based building detection. The kappa value is 0.483 for the MLC based
building detection from fused image. So the SRM based building footprint detection shows higher
accuracy than the MLC based building footprint detection. The object based accuracy measures also show
higher values for the SRM based building detection. According to Table 6.12 the over identification, under
identification and total error show that the SRM based building detection is more accurate than the MLC
based building detection. The visual comparison of the buildings detected from SRM and MLC verify that
the SRM preserve the shape of the buildings better than the MLLC. Therefore it can be conclude that the
SRM based building footprint detection techniques with integration of VHR MS and panchromatic image
is more accurate than the MLC based building footprint detection from fused image.

8.2. Recommendations

MRF based SRM is a potential tool for the object extraction from the high resolution satellite image.
Based on the experiences from this study followings can be recommend for further research to carry out
the object extraction from VHR images efficiently.

a) The parameter estimation is the crucial and time consuming task in the MRF based SRM data
integration. Those parameters vary from the data set to data set. And it is the main task in the SRM
process. In this study the parameters were determined on the statistical basis and it was really time
consuming. Therefore it is recommended to do the research for the automation of parameter
estimation.

48



INTEGRATION OF SPECTRAL AND SPATIAL DATA OF VERY HIGH RESOLUTION IMAGES FOR BUILDING FOOTPRINT DETECTION USING SRM

b) The buildings in this study area are separated by around two to three meters distance and the finer
resolution image and the SR map have 1m spatial resolution. As a result the individual buildings which
are closer to each other have been identified as one building object in this study. Therefore further
research is recommended for the identification of individual buildings using MRF based SRM data
integration. The individual building detection from VHR images was not successful from this study as
the separations between the buildings are about two to three meters. That separation is almost equal
to the finer resolution pixel size which is the result of the scale factor. Therefore further research is
recommended to find the appropriate scale factor that would result the finer resolution pixel.

¢) The reflectance property of the blue roof building is confused with that of the shade and it affect to
the accuracy of the building detection. Therefore further research is recommended to study the
separation of spectral properties from the building classes.

The reference map for this study was prepared from the Google Earth image. That is not the most
optimal way for the preparation of a reference map as new buildings and extensions of the buildings have
been constructed after the area has been imaged. It is better to use a high resolution digital areal or very
high resolution satellite image with the same date of the Ms and panchromatic images to prepare the

reference map to be consistent the number of buildings and the shape of the buildings in the study area.
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Appendix A

The photograph of the red roof building, blue roof buildings and white roof building

Red roof buildings

Blue roof buildings

White roof buildings

Figure Al: Photographs of the study area (Source: Bijker & Sanjaya, 2008)
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13 GCP #13 2391.463 1280758 9564.375 B126625  Check
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44 GCP #44 1096.107| 3672292 4385.375 14684125 Control 0.042 0027 0.050 1.735
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Figure B1: The final result of co-registration of MS image with panchromatic image
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Figure B2: The result of co-registration of Google earth image with panchromatic image
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Appendix C

The training data set

Table C1: Mean vector of the each class in each band of MS image

Spectral band Red roof | Blue roof | White roof | vegetation | Shadow | Bare soil | Road
buildings | buildings | buildings
Band 1(Blue) 591.890 747975 | 917.150 577.365 310.364 | 686.704 | 690.511
Band 2(Green) | 478.912 504.185 | 855.760 482.382 310.364 | 639.379 | 624.211
Band 3(Red) 685.965 478.481 | 1033.345 | 430.952 310.364 | 863.2960 | 768.672
Band 4 (NIR) | 423.991 419.642 | 657.650 729.918 310.364 | 532.3310 | 510.239
Table C2: Covariance matrix of the red roof building class
Band Band 1 Band 2 Band 3 Band 4
Band 1 | 363.243 366.078 843.494 394.647
Band 2 | 366.078 502.653 970.116 522.286
Band 3 | 843.494 970.116 4401.206 | 1714.731
Band 4 | 394.647 522.286 1714.731 | 2669.366
Table C3: Covariance matrix of the blue roof building class
Band Band 1 Band 2 Band 3 Band 4
Band1 | 8699.974 | 1446.205 | 1279.525 | 6587.041
Band 2 | 1446.205 | 901.178 1582.360 | 1887.942
Band 3 | 1279.525 | 1582.360 | 3978.878 | 2645.825
Band4 | 6587.041 | 1887.942 | 2645.825 | 8755.158
Table C4: Covariance matrix of the white roof building class
Band Band 1 Band 2 Band 3 Band 4
Band 1 | 13846.410 | 14388.986 | 9063.581 | 15602.445
Band 2 | 14388.986 | 15838.163 | 10217.927 | 17488.137
Band 3 | 9063.581 10217.927 | 9204.549 | 10698.905
Band 4 | 15602.445 | 17488.137 | 10698.905 | 31079.013
Table C5: Covariance matrix of the vegetation class
Band Band 1 Band 2 Band 3 Band 4
Band1 | 72.438 53.589 142.720 8.003
Band 2 | 53.589 144.497 140.440 171.764
Band 3 | 142.720 140.440 542.443 -377.161
Band 4 | 8.003 171.764 -377.161 | 2322.240
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Table C6: Covariance matrix of the shadow class

Band Band 1 Band 2 Band 3 Band 4
Band 1 1458.093 0.000 0.000 0.000
Band 2 0.000 1458.093 0.0000 0.000
Band 3 0.000 0.000 1458.093 | 0.000
Band 4 0.000 0.000 0.000 1458.093
Table C7: Covariance matrix of bare soil class
Band Band 1 Band 2 Band 3 Band 4
Band 1 249.112 287.271 683.965 84.169
Band 2 287.271 424.720 850.565 199.861
Band 3 683.965 850.565 2348.551 70.392
Band 4 84.169 199.861 70.3920 681.138
Table C8: Covariance matrix of road class
Band Band 1 Band 2 Band 3 Band 4
Band 1 1080.296 1231.780 2277.370 -453.318
Band 2 1231.780 1664.033 2946.980 1.190
Band 3 2277.370 2946.980 5935.004 -351.391
Band 4 -453.318 1.190 -351.391 3418.328

Table C9: Mean and standard deviation of each class in panchromatic band

Statistics | Red roof | Blue roof | White roof | Vegetation | shadow | Bare Road
buildings | buildings | buildings soil

Mean 427.139 | 335.264 | 1050.595 549.909 310.364 | 552.814 | 533.650

SD 30.798 50.518 433.697 44.27 38.185 | 22.330 | 75.232
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Appendix D

Table D1: Statistics of kappa values for estimation of smoothing parameters (A and A)

X Ap Minimum kappa | Maximum Kappa | Mean Kappa | Standard deviation

0.6 0 0.467 0.488 0.482 0.007
0.1 0.549 0.574 0.561 0.007

0.2 0.542 0.565 0.551 0.007

0.3 0.536 0.547 0.541 0.003

0.4 0.519 0.531 0.524 0.004

0.5 0.509 0.518 0.513 0.004

0.6 0.494 0.505 0.500 0.004

0.7 0.484 0.496 0.492 0.004

0.8 0.477 0.490 0.484 0.004

0.7 0 0.440 0.474 0.458 0.011
0.1 0.542 0.579 0.559 0.014

0.2 0.555 0.587 0.574 0.011

0.3 0.569 0.582 0.575 0.005

0.4 0.565 0.576 0.570 0.004

0.5 0.547 0.559 0.550 0.004

0.6 0.521 0.542 0.535 0.008

0.7 0.503 0.534 0.522 0.009

0.8 0.499 0.522 0.509 0.006

0.8 0 0.433 0.474 0.445 0.012
0.1 0.521 0.573 0.552 0.017

0.2 0.543 0.600 0.578 0.019

0.3 0.590 0.618 0.607 0.008

0.4 0.578 0.626 0.599 0.014

0.5 0.559 0.611 0.588 0.015

0.6 0.573 0.602 0.587 0.010

0.7 0.557 0.593 0.582 0.010

0.8 0.543 0.581 0.559 0.013

0.9 0.497 0.559 0.531 0.019

1 0.507 0.541 0.518 0.013

0.9 0 0.320 0.434 0.367 0.032
0.1 0.379 0.553 0.471 0.054

0.2 0.480 0.612 0.559 0.039

0.3 0.532 0.659 0.588 0.039

0.4 0.516 0.650 0.586 0.044

0.5 0.583 0.625 0.607 0.013

0.6 0.610 0.647 0.630 0.015

0.7 0.560 0.651 0.626 0.027

0.8 0.606 0.687 0.642 0.021
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Appendix E

Figure E1: Detection of different type of buildings with different initial temperature
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A= 0.9

Figure E2: Detection of different type of buildings with A = 0.8 and different initial temperature
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Figure E3: Detection of different type of buildings with A = 0.9 and different initial temperature
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Appendix F

The programme used for this research in R software is given bellow.

library(MASS)
library(mvtnorm)
library(pixmap)
library(scatterplot3d)

Root <- 'M:\\New_code\\'
#Root <- 'D:\\programming\ \nanthamuni\ \Ref_TS\\'

HHHHHHARAAAAAHRARAAA AR AR AR ARt
# Read training set

#

HHHHHHHHHHHHH AR BHHHHHHHHH AR R AR R R R AR AR

TO <-3.0
Tupd <-09
Path_ts <- paste(Root, "Training_set\\',sep=")
Inputfile <- paste(Path_ts, 'mean.txt’, sep=")
temp <- read.table(Inputfile, skip = 1)
d <- dim(temp)
# File dimensions
# Number of bands
Nb <-d[1]
# Number of classes
Nel <-d[2]
mu  <- array(rep(0,NcI*Nb),c(Ncl,Nb))
mut <- array(rep(0,NcI*Nb),c(Nb,Ncl))
Cov <- array(rep(0,NcI*Nb*Nb),c(Ncl,Nb,Nb))
Cinv <- array(rep(0,NcI*Nb*Nb),c(Ncl,Nb,Nb))
mu_pan <- array(0,Ncl)
var_pan <- array(0,Ncl)
mu_pan_est <- array(0,Ncl)
var_pan_est <- array(0,Ncl)
mut <- data.matrix(temp)
mu <- t(mut)
for(k in 1:Ncl)
{
Inputfile <- paste(Path_ts, 'Cov_'k,"txt', sep=")
temp <- read.table(Inputfile, skip = 0)
Covlk,,] <- as.matrix(temp)
for(i in 1:(Nb-1))
{

for(j in (i+1):Nb)
Covlk,i,j]<-Covlk,j,i]
}

}
Inputfile <- paste(Path_ts, 'mean_pan.txt', sep=")
temp <- read.table(Inputfile, skip = 1)
mu_pan <- as.vector(temp[l,],mode="numeric")
var_pan <- as.vector(temp|2,],mode="numeric")
var_pan <- var_pan”2
for(k in 1:Ncl)
{
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mu_pan_est[k] <- mean(mulk,))
var_pan_est[k] <- sum(Covlk,,]) / (Nb"2)
}
for(l in 1:Ncl) Cinv|l,] <- solve(Cov][L,])
Idet <- array(0,Ncl)
Ipand <- array(0,Ncl)
for(k in 1:Ncl)
{

Ipand[k] <- log(var_pan[k])
ldet[k] <- log(abs(det(Covlk,,])))

logd0 <- min(ldet)
logpan0 <- min(ldet)
Div <- array(rep(0,Ncl"2),c(Ncl,Ncl))
TD <- array(tep(0,Ncl™2),c(Ncl,Ncl))
Div_pan <- array(rep(0,Ncl”2),c(Ncl,Ncl))
TD_pan <- array(rep(0,Ncl”2),c(Ncl,Ncl))
10 <- array(0,c(Nb,Nb))
diag(10) <-1
for(k in 1:Ncl)
for(lin 1:Ncl)
{
if(k==])
{
Div[k,]] <-0
TDIk,]] <-0
TD_panlk,l] <-0

else
{
Divlk,]] <- sum(diag((Cinvlk,,]%*%Cov|L,]+Cinv[L,]%*%Cov|k,,]-2¥10))) + sum(diag(t(mulk,]-
mul[L,])%*%(Cinv[k,,]+Cinv][L,])%*%(mu[k,]-mu[l])))
Div[k,]] <- Div[k,]] / 2
TD[k,]] <- 2*(1-exp(-Div[k,1]/8))
Div_pan[k,]] <- 0.5%((mu_pan[k]-mu_panll])*2)*(1/var_pan[k]+1/var_pan[l]) + 0.5*(var_pan|k]-
var_panll]) * (1/var_pan[l]-1/var_pan[k])
TD_pan[k,]] <- 2*(1-exp(-Div_pan[k,l]/8))
H
H

TD
TD_pan

HHHHHHHHHHHHHHAHHH A H AR R
# End read training set
B B B B B B B B B B B B B B B B B e e e e B B B B S s e e

HHHHHHHHHHHHHHHAHHHHH R R
#

# Import images

#

HHHHHHHHHHHHHHHAHHHHH R

WithRef <- TRUE
Path_in <- paste(Root,'Input\\Subset1\\',sep=")
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Inputfile <- paste(Path_in, 'subset]l_pan.txt', sep=")

temp <- read.table(Inputfile, skip = 5)

d <- dim(temp)

# Fine resolution image dimensions (determined from dim of the panchromatic band)
M <-d[1]

N <-d[2]

x <-1:M

y <-1:N

# Scale factor

S<-4

# Degraded image dimensions

Mdeg <-M/S

Ndeg <-N/S

# Here real window size is 2*WSize+1

WSize <-S5+3

H#WSize <- 1

# Number (maximal) of pixel neighbours

Nn <- (WSize*2+1)"2-1

xdeg <- 1:Mdeg

ydeg <- 1:Ndeg

F  <-array(rep(0, M*N), c¢(M,N))

Dpan <- array(rep(0, M*N), c(M,N))

Ddeg <- array(rep(0, Mdeg*Ndeg*Nb), c(Mdeg,Ndeg,Nb))
Dpan <- as.matrix(temp)

image(x,y, Dpan, col=gray((0:255)/255), main = "Panchromatic band', xlab=",ylab=")
Ref_hard <- array(0,c(Mdeg,Ndeg))

if(WithRef)

{

Inputfile <- paste(Path_in, 'reference.txt', sep=")
temp <- read.table(Inputfile, skip = 5)
Ref <- as.matrix(temp)
Ref[Ref==255] <- 2
Nclref <- 2
x11()
image(x,y,Ref, main = "Reference image", col=terrain.colors(Nclref), xlab="" ylab="")
}
for(k in 1:Nb)
{
Inputfile <- paste(Path_in, 'subset]l_band'k,"txt', sep=")
temp <- read.table(Inputfile, skip = 5)
Ddeg],,k] <- as.matrix(temp)

x11()

par(mfrow=c(2,2))

for(k in 1:Nb)

image(xdeg,ydeg, Ddeg],.k], col=gray((0:255)/255), main = paste('Band'k, sep="), xlab=",ylab=")
Dr <- Ddeg],,1:3]

Dr[,,1] <- (Ddeg],,4])
Drl,,2] <- (Ddeg|,,3])

Drl,,3] <- (Ddeg[,,2])

x11(

par(mai=c(0,0,0,0))
A<-pixmapRGB(Dr,nrow=Mdeg,ncol=Ndeg)
plot(A)

Test <- FALSE
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if(Test)
{
Dpdeg <- Ddeg],,1]
Dmsdeg <- Ddeg],,1]
Dmsdeg[,] <-0
for(i in 1:Mdeg)
for(j in 1:Ndeg)
Dpdegl[i,j] <- mean(Dpan|[((i-1)*S+1):({*S),((-1)*S+1):G*S)])
for(k in 1:Nb)Dmsdeg],]<-Dmsdeg][,| + Ddeg],,k]
Dmsdeg <- Dmsdeg/Nb
x11()
par(mfrow=c(1,2))
image(xdeg,ydeg, Dpdeg, col=gray((0:255)/255), main = 'Degraded pan', xlab=",ylab=")
image(xdeg,ydeg, Dmsdeg, col=gray((0:255)/255), main = 'Degraded MS', xlab=",ylab=")
}
HHHHHHHHHHHHH AR B R HH R R R R R AR AR AR
#
# End Import images
#
HHHHHHHHHHHHH AR B R AR B R HH AR R R R R R AR

HHHBHHHHHBHHHH B HHHH B R HR R R AR R R TR R R R R
#

# Maximum Likelihood classification of the panchromatic image Dpan (fine resolution)

#

HHHHH A HHH R HHHH R AR R TR R R R R R R R R

Upan <- function(i,j,cl) {
val <- 0.5 * (Dpan[i,j]-mu_pan[cl])*2) / (var_pan|cl]) + 0.5*log(var_pan]cl])

return(val)
i
Refpan <- array(0,c(M,N))
for(iin 1:M)
for(j in 1:N)
{
cl_opt <-1
U_opt <- Upan(i,j,cl_opt)
for(cl in 2:Ncl)
{
Ut <- Upan(i,j,cl)
if(Ut < U_opt)
cl_opt <-cl
U_opt <- Ut
b
}
Refpanli,j] <- cl_opt
}
x11()

par(mfrow=c(1,2))

image(x,y,Refpan, main = "MLC of pan band", col=terrain.colors(Ncl), xlab="",ylab=""")
plot(c(1,10),c(1,10))

legend("right",c(Red building', ‘Blue building', "White building', 'Vegetation', 'Shadow', 'Bare soil', Road"),
fill=terrain.colors(Ncl),cex=1.2)

Confpan <- array(0,c(2,2))
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F <- Refpan
for(i in 1:Nclref)
for(j in 1:Nclref)
{
F1 <-F
F1[F1<=3] <-1
F1[F1!=1] <-2

Confpanli,j] <- sum((F1==1)&Ref==j))
}
Confpan
s1<-0
for(iin 1:Nclref)
{
s1 <-s1 + sum(Confpanli,])*sum(Confpan]|,i])
}
kappapan <- (M*N*sum(diag(Confpan)) - s1) / (IM*N)"2 - s1)
kappapan

HAHHHHHHHHHHHHHHHHHH AR R AR
#

# End of MLLC of D

#
HAHHHHHHHHHHHHHAHHH A HAH PR TR

HHHHH A HHH R HHHH R AR R TR R R R R R R R R
#
# Maximum Likelihood classification of the QB MS image Ddeg (coarse resolution multispectral image)
#
HHHHH A HHH R HHHH R AR R TR R R R R R R R R
Uxl_deg <- function(i,j,cl) {
0 <- Ddegli
logdet <- 0.5 * log(abs(det(Cov|cl,])))
val <- 0.5 * mahalanobis(y0, mulcl,], Cinv]cl,], inverted=TRUE) + logdet
return(val)
}
Hard_ml <- array(0,c(Mdeg,Ndeg))
for(iin 1:Mdeg)
for(j in 1:Ndeg)
{
clopt <-1
U_opt <- Uxl_deg(i,j,cL_opt)
for(cl in 2:Ncl)

Ut <- UxL_deg(i,j,cl)
if(Ut < U_opt)
{
cl_opt <-cl
U_opt <- Ut
}
¥
Hard_ml[i,j] <- cl_opt
¥
x11()
par(mfrow=c(1,2))
image(xdeg,ydeg,Hard_ml, main = "MLC of image y", col=tertrain.colors(Ncl), xlab="" ylab="")
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plot(c(1,10),c(1,10))

legend("right",c(Red Buildings','Blue Buildings','White Buildings','Vegetation','shadow',’Bare
soil’,'Road"), fill=terrain.colors(Ncl),cex=1.2)

for(i in 1:Mdeg)

for(j in 1:Ndeg)

F(i-1)*S+(1:8),(-1)*S+(1:8)] <- Hard_ml[i,j]

Ref hard <-F

ConfML <- array(0,c(Nclref,Nclref))
for(i in 1:Nclref)

for(j in 1:Nclref)

{

F1 <F
F1[F1<=3] <- 1
F1[F11=1] <- 2

ConfMLIj] <- sum((F1==))&Ref==j))
}
ConfML
s1<-0
for(i in 1:Nclref)
{

}

kappaML <- (M*N*sum(diag(ConfML)) - s1) / ((M*N)"2 - s1)

kappaML

x11()

image(x,y,F1, main = "MLC Recoded", col=terrain.colors(Nclref), xlab="" ylab="")

sl <-s1 + sum(ConfMLi,])*sum(ContML[,i])

#**************************************************************************************
#**************************************************************************************

#**************************************************************************************
#**************************************************************************************

#
# Generate neighbourhood list
#

#**************************************************************************************
#**************************************************************************************

Neigh_Coord — <- array(tep(0, M¥*N*4), c(M, N, 4))
Weight <- array(0, c(2*WSize+1, 2*WSize+1))
# Function assigning weights in the neighbourhood
# Function assigning weights in the neighbourhood
Fw <- function(a,b) {

val <-a"2 + b2

val <-1 / val

val <- val™(0.5)
# val<-1

if(a™2+b"2==0) val<-0

return(val)
}
for(k in 1:(2*WSize+1))
for(lin 1:(2*¥*WSize+1))

Weight[k, 1] <- Fw(k-(WSize+1),I-(WSize+1))

Weight <- Weight/ sum(Weight)
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for(iin 1:M)

for(j in 1:N)

{
imin <-1i- WSize
imax <- 1+ WSize
jmin <-j - WSize
jmax <-j + WSize
if(imin<1) imin <-1
if(imax>M) imax <-M
if(jmin<1) jmin <-1
if(jmax>N) jmax <-N
Neigh_Coord][i, j, | <- c(imin,imax,jmin,jmax)

H

#**>|<>|<>|<>|<**************>|<>|<>|<>|<*****>|<>|<>|<>|<>|<>|<>|<**********>|<>|<>|<>|<***>|<>0<>|<>|<>|<****************************
#**************************************************************************************

HHHHHHH AR HAH AR HA R R R R R
#

# Loop for lambda starts here

#

HHHHHHH AR HAH R R R AR

lambda <- 0.8
Hlamarr <- ¢(0.1%(0:10))
Hlamarr <- 0.5

for(plam in 1:length(lamarr))

{

lam_pan <-0.3

#lam_pan <- lamarr|plam]

INSRM <- array(rep(0, M*N), c¢(M,N))

frac  <- array(rep(0, Mdeg*Ndeg*Ncl), c(Mdeg,Ndeg,Ncl))

frac_in <- array(rep(0, Mdeg*Ndeg*Ncl), c(Mdeg,Ndeg,Ncl))

frac_ref <- array(rep(0, Mdeg*Ndeg*Ncl), c(Mdeg,Ndeg,Ncl))
Experimentname <-
paste("T0=",T0,"\\'Tupd=",Tupd,\\WS="WSize,"\ \Lambda='lambda,"\ \lam_pan'Jam_pan,\\',sep=")
Path_out <- paste(Root,'Output\ \Subsetl'\\', Expetimentname,sep=")
dir.create(Path_out, recursive = TRUE)

Outputfile<- 'Stat_'

HAEHHHHHHHHHHHHHHHHHH AR R T
#

# Identify pure vs mixed pixels in the Reference image

#

B B B B B B B B B B B B B B B B B e e e e B B B B S s e e

if(WithRef)
{
for(i in 1:Mdeg)
for(j in 1:Ndeg)
{
val <- array(0,Ncl)
for(ki in 1:S)
for(kj in 1:5)
{
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cln <- Ref[(i-1)*S+ki,(j-1)*S+kKj]
val[cln] <- val[cln] + 1

§

val <-val / (§"2)

frac_refli,j,] <- val

# x11()

# par(mfrow=c(2,Ncl/2+1))

# for(lin 1:Ncl) image(xdeg, ydeg, frac_ref[,l], main = "Class proportion",
col=gray((0:255)/255),xlab="" ylab="")

#
# End of pixel purity module

HHH
### Linear spectral unmixing with SVD
HHH

epsilon <- le-6
NO <- min(Ncl,Nb)
u0 <- array(0,c(Ncl,Ncl))
v0 <- array(0,c(Nb,Nb))
dO <- array(0,c(NO,NO))
musvd<-svd(mu)
u0 <- musvd$u
v0 <- musvd$v
d1 <- musvd$d
for(i in 1:NO)
{
if(d1[i]>=epsilon) dO[i,i]<-1.0/d1[j]
}
d0<-t(d0)
d0 <- t(v0%*%d0%*%ot(u0))
for(iin 1:Mdeg)
for(j in 1:Ndeg)
{
trac[ij,] <- d0%*%Ddeg]i,j,]
H

Hresidual
res<-array(0,c(Mdeg,Ndeg,Nb))
sumfr<-array(0,c(Mdeg,Ndeg))
for(iin 1:Mdeg)
for(j in 1:Ndeg)
{
res|i,j,] <-frac[i,j,]%*%mu-Ddegli,j,]
sumfr[i,j] <-sum(frac[i,j,])

frac_in <- frac

x11()

par(mfrow=c(2,3))

for(l in 1:Ncl) image(xdeg, ydeg, fracl,,l], main = "Class proportion",
col=gray((0:255)/255),xlab="" ylab="")

frac[frac<0] <- 0

frac[frac>1] <- 1
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Hit#H
### End of Unmixing module
Hit#H

# Number of independent runs with fixed parameters
Nr_rep <-1

rep_start <- 1

for(zrep in rep_start:Nr_rep)

{
Hzrep<-1

HHHHHHHHHHHHH AR AR AR B R R R AR R AR
#

# Initial SRM generation

#

TG 0 G G R i i g a R e Ha

#for(i in 1:Mdeg)

#for(j in 1:Ndeg)

#1

Nsr <- array(rep(0,Ncl),Ncl)
count <- array(rep(0,Ncl),Ncl)

S1 <- sum(frac[i,j,])

Nsr <- round(fracli,j,] * (§*2) / S1)
Nsr[Nsr<0] <-0
Nst[Nsr>(572)] <- §"2
FI(@-1)*S+1):(1*S),((G-1)*S+1):(5*S)] <- Ncl
for(lin 1:(Ncl-1))

while((count[l] <Nst[l]) &(sum(count)<S5"2))

rown <- round(0.5+runif(1, min=0, max=S))
coln <- round(0.5+runif(1, min=0, max=S))

if(F[(3-1)*S+rown, (j-1)*S+coln]==Ncl)

F[@-1)*S+rown, (j-1)*S+coln] <-1
countll] <- count[l] +1

HFHEEHHFAFHFHHFFTEHEHFETEHHFEEHEHFESR

#}

#INSRM <- Refpan
#INSRM],] <- round(0.5 + runif(M*N, min=0, max=Ncl))

#INSRM <-F
INSRM <- Ref_hard
x11()

image(x, y, INSRM, main = "Initial SRM",col=terrain.colors(Ncl),xlab=""ylab="")
write.table(INSRM, file =

paste(Path_out,' InitialSRM','_trial=",zrep,".txt',sep="),append=FALSE,quote=TRUE,sep
"eol="\n",na="NA",dec="." row.names=FALSE,col.names=FALSE,qmethod=c("escape","double"))

—n
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HAHGHHARAAAAAHRARAAA A GG AR AR AR ARt
#

# End of Initial SRM generation module

#
HAHGHHARAAAAAHRARAAA A GG AR AR AR ARt

HARH AR HHHH AR H AT R R R
#

# MRF and MCMC functions definition module

#

AR R AR HHHH AT H AT R A R

I <- function(x,y) {
val <-1
if(x==y) val <- 0
return(val)

xS <- function(x) {
val <- ceiling(x/S)
return(val)

}

Frac_update <- function(i,j)

{
val <- array(rep(0,Ncl),Ncl)

for(ki in 1:S)

for(kj in 1:S)

{
cln <- F[(i-1)*S+ki,(j-1)*S+kj]
val[cln] <- val[cln] + 1

val <-val / (§"2)
return(val)
i
Uptior <- function(i,j) {
W1 <- Weight[(Neigh_Coord|[i,j,1]-i+1+WSize):(Neigh_Coord|i,j,2]-i+1+WSize),(Neigh_Coord|[i,j,3]-
j+1+WSize):(Neigh_Coord|i,j,4]-j+1+WSize)]
F2 <- F[(Neigh_Coord|[i,j,1]):(Neigh_Coord|[i,j,2]),(Neigh_Coord|[i,j,3]):(Neigh_Coord[i,j,4])]
1 <- F[i,j]

FO <-F2-1
FO[FO!I=0] <-1
val <- sum(W1 * FO)
return(val)

}

Ulikelihood <- function(i,j){

i1<- ceiling(i/S)

j1<- ceiling(j/S)

y0 <- Ddeg]il,j1,]

mm <- array(rep(0, Nb), Nb)

Cm <- array(rep(0, Nb*Nb), c(Nb,Nb))
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# Update class fractions in the coarse pixel y
FO <- F[(S*(@1-1)+1):(i1*S),(S*(j1-1)+1):(j1*S)]
fracl <- array(0,Ncl)

# mixing pixels

for(lin 1:Ncl)

{
fracl[l]<-sum(FO==1)/(S"2)
# mm <- mm + mul[l,]*frac1l]
Cm <- Cm + Covl|L,|*fracl[l]

H

mm <- frac1%*%mu

Cinv <- solve(Cm)
logdet <- 0.5 * (log(abs(det(Cm))) - logd0)

val <- 0.5 * mahalanobis(y0, mm, Cinv, inverted=TRUE) + logdet
# Include the panchromatic term here!
1 <- F[i,j]

val <- (1-lam_pan)*val + lam_pan*(0.5*((Dpan[i,j]-mu_pan[l])"2)/(var_pan[l]) + log(var_panll])-
logpan0))

return(val)

H
U <- function(i,j) {

val <- lambda * Uprior(i,j) + (1.0-lambda) * Ulikelihood(i,)

return(val)
}
TotalEnergy<-function(F)
{

val <-0

for(iin 1:M)

for(j in 1:N)

val <- val + U(i,j)

return(val/ (M*N))
}
HHHBHHHHHBHHHH B TR AR AR H R R R R R R
#
# End of the module MRF and MCMC functions definition
#

HUHBHHHHHBHHHH R AR HH R IR H R R R R R
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HHHHHHHHHHHHH AR AR AR AR R AR AR R R R AR AR
#

# MCMC Energy optimisation

#

HHHHHHHHHHHHH AR AR AR AR R AR AR R R R AR AR

# Test:
#IF <- Finit

Niter <- 10000

# Ntries<-1
# Converg <- array(rep(0,Ntries*Niter),c(Niter,Ntries))
min_acc_thr <- 0.1*¥10"(-2)
# min_acc_thr <-0
MSE  <- array(rep(0, Niter), 1)
Etotal <- array(rep(0, Niter), 1)
Thist <- array(rep(0, Niter), 1)
T<-TO

# F <-Ref
# I <- matrix(round(runif(M*N, min=1, max=Ncl)), nrow = M, ncol = N)

F <- INSRM

stop_crit <- 0

if(WithRef)
{
# Confusion matrix
Conf <- array(0,c(Nclref,Nclref))

F1 <-F
F1[F1<=3] <-1
F1[F11=1] <-2

for(i in 1:Nclref)
for(j in 1:Nclref)

{
Confli,j] <- sum((F1==))&[Ref==j))

Conf
s1<-0
for(i in 1:Nclref)
{
sl <-s1 + sum(Conf][i,])*sum(Confl,i])
}
kappal <- (M*N*sum(diag(Conf)) - s1) / ((M*N)"2 - s1)
kappal
# End of Confusion matrix module
}
#x11()

#par(mfrow=c(1,1))
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for(iter in 1:Niter)

{

upd_count <- 0

for(iin 1:M)
for(j in 1:N)
{
F_update <- round(0.5 + runif(1, min=0, max=Ncl))
Ft <- Flij
if(F_update!=Ft)
{
ul <- U(,))
F[i,j] <- F_update
u2 <- U(i)
ul = u2-ul
if(T1=0)
{
ul = exp(-ul/T)
xi = runif(1, min=0, max=1)
if(xi>ul)
{
Flij] < Fe
}
else upd_count<-upd_count+1
}
else
{
if(u1>0)
{
F[li,j] <- Ft
b
else upd_count<-upd_count+1
}
i
# Convergliter,]] <- upd_count / (M*N)
# if(upd_count>=min_acc_thr*M*N) break
b
Thistliter] <-T
F1 <-F
F1[F1<=3] <-1
F1[F1lI=1] <-2

if(WithRef) MSE[itet]  <-sum((Ref-F1)"2)/(M*N)
Etotal[itet] <- TotalEnergy(F)
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# if(upd_count<=0)
if(upd_count<=min_acc_thr*M*N)

{
H

else stop_crit <- 0

stop_crit <- stop_crit +1

if(stop_crit >=3) break

T <-T*Tupd
# T <- T0/log(2+itet)
image(x,y, F, main = paste('Tter=",iter,sep=""), col=terrain.colors(Ncl), xlab="" ylab="")

}

if(WithRef)

{
par(mfrow=c(2,3))

F1 <-F
F1[F1<=3] <- 1
F1[F11=1] <- 2

image(x,y,INSRM, main = "Initial SRM", col=terrain.colors(Ncl), xlab="" ylab="")
image(x,y, F1, main = "Optimized SRM", col=tetrain.colors(Nclref), xlab="" ylab="")
image(x,y,Ref, main = "Reference image", col=terrain.colors(Nclref), xlab="",ylab="")

plot(l:iter, Thist[1:iter], type = ', main = "Temperature', xlab = 'Iteration’, ylab = "T")
plot(l:iter, MSE[L:itet], type = ', main = 'Error evolution', xlab = 'Iteration', ylab = 'MSE)
plot(l:iter, Etotal[l:itet], type = 'I', main = 'Energy minimisation', xlab = 'Iteration', ylab = 'Etotal’)

x110)
par(mfrow=c(1,2))
image(x,y,F, main = "SRM (not recoded)", col=terrain.colors(Ncl), xlab="" ylab="")

plot(c(1,10),¢(1,10))
legend("right",c(Red Buildings','Blue Buildings',"White
Buildings','Vegetation','shadow','Other') fill=terrain.colors(Ncl),cex=1.2)

}else

{

# par(mfrow=c(2,2))

# image(x,y,INSRM, main = "Initial SRM", col=terrain.colors(Ncl), xlab="" ylab="")
# image(x,y, F, main = "Optimized SRM", col=terrain.colors(Ncl), xlab="",ylab="")

# plot(l:iter, Thist[1:itet], type = ', main = "Temperature', xlab = 'Tteration', ylab = "I")
# plot(liter, Etotal[l:itet], type = ', main = 'Energy minimisation', xlab = Tteration', ylab = 'Etotal’)

b

if(WithRef)
{

# Confusion matrix
Conf <- array(0,c(Nclref,Nclref))

for(i in 1:Nclref)
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for(j in 1:Nclref)
{
Conf[i,j] <- sum([F1==0)&Ref==j))

}

Conf

s1<-0

for(i in 1:Nclref)

{

}
kappa <- (M*N*sum(diag(Conf)) - s1) / (IM*N)"2 - s1)
kappa

s1 <-s1 + sum(Conf]i,])*sum(Confl,i])

Etotal[itet]

# End of Confusion matrix module

}

c(iter, Etotal[iter], kappal, kappa)

if(WithRef)
{
write.table(c('iter iter,'E', Etotal[iter|,'kappa_I' kappal,'kappa' kappa), file =
paste(Path_out,Outputfile,'_trial=",zrep,".txt',sep="),append=FALSE ,quote=FALSE ;sep ="
"eol="\n",na="NA",dec="." ,row.names=FALSEcol.names=FALSE,qmethod=c("escape","double"))
write.table(F, file =
paste(Path_out,'ResultSRM','_trial=",zrep,".txt',sep="),append=FALSE ,quote=TRUE, sep ="
"eol="\n",na="NA",dec="." row.names=FALSE col.names=FALSE,qmethod=c("escape","double"))
write.table(F'1, file =
paste(Path_out,'ResultSRM_recoded','_trial=" zrep,".txt',sep="),append=FALSE,quote=TRUE,sep ="
"eol="\n",na="NA",dec="." row.names=FALSE,col.names=FALSE,qmethod=c("escape","double"))

}

HHHBHHHHHBHHHH B AR HH R HR R HR R HR R R R R R R

#
# End of fractions module
#

HHHBHHHHHBHHHH B AR HH R HR R HR R HR R R R R R R

HHRHHH AR R AR R H AR AR R AR R R R R R R R R R R

#
# End of MCMC Energy optimisation
#

HHRHHHAH R AR R H AR R R R AR R R R R R R R R R R AR

# Close loop for zrep - number of trial

b

# close loop for lambda (panchromatic)

}
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