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ABSTRACT 

Remote sensing technology captures information about an object. The wealth of information extractable 
from an object is dependent on the nature of the object and the technique applied in the extraction. 
Objects in remote sensing can be divided into two forms: (1) Objects that have definite boundaries - they 
can be easily identified and described they are referred to as crisp objects; (2) Objects whose boundaries 
are shrouded in mysteries (indefinite-cannot be easily determined and identified), they are referred to as 
fuzzy objects. Assessing the accuracy of crisp object can be easily done using the error matrix which is by 
convention, the traditional way of assessing the accuracy of crisp objects. Defining the boundary of a 
fuzzy object is difficult and assessing the accuracy as well, has not been standardized; hence, it is the focus 
of this research.  
 
The fuzziness in an object is as a result of uncertainty, before an attempt is made to characterise the 
object, there is need to identify the uncertainty in the object. Several forms of uncertainty exist; however, 
the uncertainty in the fuzzy object of interest was defined as the vagueness that results when the boundary 
of the object lies within the zone of transition. 
 
The east fork fire burn scar that occurred in April 2004 was the choice of the fuzzy object. MODIS and 
ASTER images were acquired for classification and generating the reference. MODIS image was classified 
using four classification techniques (unsupervised crisp (ISODATA), supervised crisp (Maximum 
likelihood), unsupervised and supervised fuzzy-c-means). Three cases were investigated for each 
classification scheme, in which 2, 3 and 4 classes were defined as Case A, Case B and Case C respectively.  
The reference data was generated by using the same classification scheme as MODIS’; the output was 
degraded to make it comparable with the pixels of the MODIS. 
 
The accuracy of the classifications was judged using the entire image as samples. The conventional error 
matrix was used to assess the crisp outputs; the fuzzy error matrix was used to assess the fuzzy outputs. 
The crisp and fuzzy outputs were also assessed by determining the association of each class with the 
reference this was referred to as correlation coefficient determination.   
 
The results obtained from the crisp assessment was higher than those obtained from the fuzzy assessment, 
the correlation coefficient values were higher in the fuzzy outputs than for the crisp outputs. Also, the 
fuzzy outputs gave a better description of the burn scar phenomenon than that obtained from the crisp 
descriptions.  
 
Key words: Fuzzy objects, Un-supervised and supervised crisp classifications, Un-supervised and 
supervised fuzzy classifications, Accuracy assessment.   
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1. INTRODUCTION 

1.1. Background 
Over the years, remote sensing technology has grown to become a tool that is widely embraced and used 
by people from diverse field of endeavours to acquire information about the environment or Earth related 
issues that are of interest to them. This information becomes available when the remotely sensed data are 
processed and presented, often as maps with various themes (Hammen, 1997). The information extracted 
is usually an approximation of the geographic reality, hence the results obtained are geo-information that 
are not completely accurate; the degree of inaccuracy varies depending on the image processing and 
analytical method used, the intended application, the expert knowledge etc (Weng & Lu, 2007). 
 
Image classification is one of the important steps in image processing, that can lead to the production of 
thematic maps depicting land cover or land use information (Foody, 2008). Classifying remotely sensed 
data can be very complex due to the various factors that interact during the process, such as the data used 
for the classification, classifier used, the nature of the study sites etc (Weng & Lu, 2007); these factors 
influence results obtained from image classification (the description of the Earth’s phenomenon of interest 
is affected); evaluating the outcome of an image classification establishes the quality information of the 
derived product as well as aid in the better understanding of the phenomenon  of interest. The choice of 
the evaluation approach depends on so many factors; however, the consideration in this research is centred 
on the evaluation of the classified output of an object whose spatial extent cannot be easily established or 
defined because its boundary is vague (fuzzy). The proceeding sections and chapters throw more light on 
this.  

1.2. Motivation and problem statement 
The use of remote sensors to capture data about our environment, results in different types of objects. 
According to (Cheng, Molenaar, & Lin, 2001), we can distinguish these objects based on their thematic 
nature, geometric nature and inherent uncertainties by using three statements: the existential statement- it 
talks about the thematic and spatial conditions that implies an object exists; the extensional statement- it 
talks about identifying the geometric elements that describes the spatial extent of an object; the geometric 
statement- it talks about the identification of the actual shape, size and position of an object from a metric 
sense (Molenaar & Cheng, 1998). There are several sources of uncertainties, which affect the accurate 
determination of the spatial extent (Cheng & Molenaar) as well as the thematic interior of remotely sensed 
objects; as a result, it becomes very difficult defining and describing these objects. Some of these sources of 
inherent uncertainties were described by (Cheng, 2002), they  are: vagueness in determining object 
boundary; multiple criteria used in delineating objects, this is different from person to person; spatial 
incompleteness, in which objects are categorized to give them meaning in a particular context, while in 
another context, they are treated as undefined; time incoherency, in which object definition is subject to a 
specified period of time and then changes; sampling and measuring error, resulting from data observations 
etc. 
 
Five categories of objects were described by (Cheng, 2002); they are: (1) Crisp-Crisp (CC) object- This is 
the only object assumed not to be fuzzy, its boundary points (spatial extent) and its thematic interiors are 
well defined and determined, there is no area of confusion between one object and the other, hence no 
transition zone, each pixel of the  object belongs to only one class, the uncertainty in identifying the object 
is based on error, which is probabilistic in nature and can be modelled; (2) Fuzzy-Fuzzy (FF) object- The 
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boundary points (or spatial extent) and its thematic interior are not clearly defined,(i.e. vague or fuzzy), they 
have transition zones and it is possible to assign a pixel of the object to more than one class, using fuzzy 
membership functions to show the degree to which the pixel is a member of each class; (3) The Alpha-
Fuzzy (αF) object- this object results by assigning a threshold value α to the boundary of FF-object, in this 
case, the object has defined boundary points (or spatial extent) described by the α value, but its thematic 
interior is still fuzzy, these are areas of confusion, characterized by transition zones; (4) Crisp-Fuzzy(CF) 
object- This object does not overlap with another, areas of transition does not exist, because the boundary 
points (or spatial extent) of the object is conceptualized to be determined by a given condition (criteria). 
However its thematic interior is still fuzzy; (5) Fuzzy-Crisp (FC) object- The boundary of this object cannot 
be defined, resulting in transition zones between the object and another, however, its interior can be clearly 
defined. From the above, we can see that  four categories of fuzzy objects exist (FF, αF, CF and FC) all 
these have one form of fuzziness or the other in determining their boundary points (spatial extent) and or 
thematic interiors, resolving this fuzziness using remotely sensed data, is difficult because of the following 
reasons: Nature is made of geographic entities which are continuous in space, it is not clear where the 
boundary of objects actually lies, hence, the interpretation of boundary points in remote sensing will differ 
from one person to another. Objects or entities are heterogeneous, they mix with each other, this results in 
different people, giving different opinion about their extent (Foody, 1999). Most objects are dynamic and 
changes with time, this makes it difficult to accurately establish their boundaries, (McNicoll, 1997). Most 
objects are scale and context dependent, as a result, resolutions plays a big role in revealing or concealing  
information about them, this makes the definition of the extent of object subjective (Fowler, 1991).  
 
The object of interest in this research work is fuzzy object. Fuzzy object of interest is the burnt scar that 
resulted from the forest fire that engulfed the Apalachicola National Forest in April 2004. It is located in 
Florida, United States of America. The need for this research is centred on characterizing the burnt scar 
using its spatial extent and position within the Apalachicola National Forest in Florida, United States of 
America. This is necessary because, classifying and assessing the accuracy of this kind of object (fuzzy) is 
still been investigated; much research work is still needed to be done so as to understand and describe the 
object better; adequate understanding and description of the burnt scar phenomenon provides useful 
information that will be beneficial to the government, forest services, fire fighters etc, in damage 
assessment programme, preventive measures against future forest fire occurrences etc. Furthermore, this 
research will be a stepping stone, on which further work can be based and developed. 
 
(Green & Congalton, 2009) stated that object classification and the method used is very important, because 
it influences the validation and the accuracy of our derived product. Most of the research works done so 
far are mainly centred on the definition and classification of crisp objects. In classifying and assessing the 
accuracy of crisp object, there is the assumption that the object is unique, homogenous and mutually 
exclusive; hence, classification results, in assigning object to a class, each of its pixels belongs to one and 
only one class. However, nature is hardly homogenous; hence,(Lizarazo & Barros, 2010), pointed out that, 
representing nature as crisp object, will results in the lost of information, because the uncertainty due to 
unclear definition of the object (vagueness) is not considered. A better approach is to consider it as a fuzzy 
object; this takes into account the vagueness of the object and expresses it using fuzzy logic, with this a 
pixel of the object belongs to all the defined classes based on its membership values determined by the 
membership function used. This is referred to as fuzzy classification. 
 
Fuzzy method of object classification uses fuzzy logic, which originated in the mid-1960s by the work of 
Lotfi Zadeh, but became a valuable tool for use in fuzzy object classification in the 1990s (Williams, 
Kessinger, Abernethy, & Ellis, 2009). The fuzzy (soft) method of classifying object, adapts more to nature’s 
reality; hence it is more suitable in handling features with vague or unclear boundaries and or thematic 
interiors. 
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Assessing the accuracy of object is still been debated and researched (Foody, 2002; Fuller, Groom, & Jones, 
1994); there exist several methods of assessing the accuracy of objects, based on the object’s uniqueness; 
with this, the accuracy components assessed by each method differs (Lark, 1995).  No one unique and 
acceptable measure of accuracy exist, it is dependent on the feature of interest (Stehman, 1997) and the 
intended application. One school of thoughts, suggested, the need to standardize the accuracy assessment 
methods and styles of reporting (Smits, Dellepiane, & Schowengerdt, 1999), with the variety of needs and 
interpretation that exists and the complex nature of the world, a single all-purpose measure of accuracy 
assessment is not feasible (Foody, 2002).  
 
The accuracy of crisp objects, are mostly assessed and expressed using the confusion matrix (Pontius, 
2000), which is a probabilistic measure (Stehman & Czaplewski, 1998) and the kappa coefficient. The 
method for validating and assessing the accuracy of fuzzy object is yet to be fully popularized by one or 
more known techniques, unlike crisp object (validation and accuracy assessment has been popularized by 
the use of the confusion matrix and kappa coefficient). The subject of finding a common method for 
assessing the accuracy of fuzzy object is still been researched.  
 
The desire for this research work is to classify fuzzy object and assess the accuracy of the derived product, 
so as to understand and describe the phenomenon better; to achieve this, the burnt scar resulting from the 
forest fire of April 2004 in the Apalachicola National Forest in Florida, United States of America was used 
as a case study. 

1.3. Research identifications 
The research was carried out in order to fulfil the stated objectives and provide answers to the questions 
raised. The research objectives and questions are stated below. 

1.3.1. Research objectives  
The major aim of the research is to determine the accuracy measures for fuzzy classification. However, to 
achieve this, the following sub-objectives and as well as the provision of answers to the following questions 
were formulated. 
 
The following were the sub-objectives addressed in the research: 
 

� To establish the definition of forest fire burn scar. 
� To classify the study area using fuzzy classifier in order to determine burnt scar and un-burnt areas. 
� To determine the method to generate the reference data. 
� To determine the applicable accuracy assessment technique(s) that can be used to judge the 

performance of the fuzzy classifier. 

1.3.2. Research questions 
The following research questions will assist in reaching the stated objectives, they are: 

� What are the characteristics elements that defines forest fire burn scar? 
� What factors influences the identification of forest fire burn scar? 
� What accuracy value is achievable when fuzzy-c-means classifier is used? 
� What accuracy assessment technique is appropriate and why?  
� What reference data should be used and how can we validate the result produced? 



ACCURACY ASSESSMENT OF FUZZY CLASSICATION 

 

4 

1.4. Research set-up 
A summary of the adopted approach in this research is shown in Figure 1.1. The MODIS and ASTER 
images are acquired for classification and reference data generation purposes respectively. Both images are 
imported, explored and prepared for further analysis. The MODIS image is classified using hard and soft 
classification methods, before its accuracy is assessed using the reference data. The reference data is the 
classified output of ASTER image, which is degraded before making it comparable to the MODIS image. 
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Figure 1.1: Research set-up 
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1.5. Structure of thesis work 
This thesis work is made up of six chapters. In chapter 1, general back ground information as well as the 
research objectives and research questions were explained. Chapter 2, is made up of literature review, in 
which the background knowledge of the burn scar was explained, image classifications and as well as 
accuracy assessment issues were discussed. Chapter 3 explained the study area, data used, data preparation 
and the software used. Chapter 4 described the adopted methodology. In Chapter 5, the results obtained 
were presented. In chapter 6, the results were discussed, conclusions and recommendations were made. 
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2. LITERATURE REVIEW 

2.1. Forest fire and burn scar 
Forest fire occurrence is a global phenomenon that affects the natural ecosystem, destroying several 
thousands of hectares of forest, farmland, houses and infrastructures (Ambrosia & Brass, 1988). There is 
the need to monitor forest fire, assess the extent of damage and proffer solutions on the possible 
preventive measures to adopt. One of the ways to achieve this, is by doing a post forest fire analysis of an 
area affected by forest fire, this is referred to as burn scar area. 
 
Burn scar is the damage that results from forest fire engulfment (Key & Nate, 2004). The extent or size of 
the burn scar is dependent on the nature, spread and severity of the fire. The extent or size of the scar can 
be studied to provide useful information that can be of assistance in describing and understanding the 
forest fire phenomena and occurrences. Remotely sensed technique can be applied to capture the data 
about the forest affected area, this will be processed to produce the burn scar map.  
 
Burn scar is characterized by dark or black patches (pixels) with varying degree of burnt, within the area 
affected by forest fire; this area contains fully burnt pixels (which will fully belong to the burn scar), 
partially burnt pixels (which is within the boundary point of the burn scar and un-burnt feature) and pixels 
that are not burnt (belongs entirely to the un-burnt feature). Using the object model defined by (Cheng, 
2002), we can categorise the fully burnt pixels to be part of the interior of the burn scar, while the partially 
burnt pixel  is embedded within the boundary area of the burn scar and the boundary area of the un-burnt 
feature: this is referred to as the zone of transition from where there is a gradual change from burn scar 
region to un-burn feature and vice-versa. It is very difficult demarcating this region in order to determine 
the actual boundary line between these features (Fisher, Arnot, Wadsworth, & Wellens, 2006); the un-
burnt pixel lies completely within the interior of the un-burnt feature. The area of confusion lies in 
determining the label for the pixels within the area of transition. The transition zone results in an unclear 
definition of the extent of the burn scar, because its boundary cannot be easily defined, uncertainty is 
introduced by this which is referred to as vagueness (fuzziness)  (Atkinson & Foody, 2006). Uncertainty 
resulting from vagueness (fuzziness) can be modelled using fuzzy logic; this will make a pixel belong to all 
the classes to a certain degree defined by a membership function that assigns membership values to the 
pixel in all the classes. Another approach will be to assign the pixel to one and only one class, this will not 
resolve the transition zone problems, as a result we lose information about the object we have modelled, 
to guide against information lose so as to have a better description and the understanding of the fuzzy 
phenomenon, the burn scar was chosen as the fuzzy object of interest. The transitional phenomenon is 
shown in Figure 1.3. 
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Figure 2.1: Intergrade phenomenon used to depict area of transition (vagueness): Source:(Fisher, 1997) 

Figure 1.3, represents the diagram depicting the zone of transition. Within this zone, it is difficult to 
determine the boundary of features; this is because it represents a gradual change from one phenomenon 
to the other. 

2.2. Image classification 
Image classification is one of the most important aspects in remote sensing for the production of thematic 
maps. Most image classifiers use the clustering method to classify images. Partitions are created to define 
groups of pixels. Each group of pixels forms a cluster (class). Clustering tends to group the pixels in a 
form such that the distributions of pixels and the resulting patterns within an image can be easily 
recognised and  understood (Tso & Mather, 2001). Partitioning of an image can result in hard (clusters do 
not overlap) or fuzzy clusters (natural way to represent Earth features- clusters can overlap). 

2.2.1. Hard clustering 
Hard clustering is the conventional method of partitioning an image into a finite number of clusters c, that 
are mutually exclusive from each other. It is formulated from the classical set theory and can be 
mathematically, stated below with the following assumptions: 
Let Y = {y1, y2, …, yN} be a sample of N observations in R

n (n-dimensional Euclidean space); yk = k-th 
feature vector; ykj the j-th feature of yk; c is an integer, defined by: 2 ≤ c < n. Therefore, a hard c-partition of 
Y, results in c-tuple (Y1, Y2,…Yc) of subsets Y that satisfies the conditions below (Bezdek, 1981): 
 

Yi� � ; 1 �  i �  c;                  (2.1) 
 
             Yi � Yj =� ;  1�  i �  j � c,                              (2.2) 

          
               c 
                         �  Yi  = Y                                                           (2.3) 
                  i=1 
 
              � �  Yi  �Y;  1 �  i �  c,                                     (2.4) 
 
� , �  represents union and intersection respectively, � = empty set. 
 
The interpretation of the above equation is thus: Y is the total number of clusters created within a given 
image, each cluster is identified by its name Yi  . Equation (2.1) explains the fact that each created cluster 
cannot be empty, it must contain pixels. More so, the number of clusters created starts from 1 to a finite 
number. Equation (2.2) explains the fact that each created cluster is unique and contains pixels with 
distinct positions. This means two clusters cannot overlap, hence their intersection results in null. In other 
words, they must be disjoint. Equation (2.3) states that when we combine the clusters (union), it should 
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result in Y, which is the whole image. Equation (2.4), states clearly that each of the cluster is not empty 
and must be a subset of the whole image Y.  
 
In hard clustering, pixels are assigned only one membership value (0 or 1) as defined by the membership 
function. Membership refers to the condition by which a pixel belongs to a cluster, this condition is 
expressed by a membership function which is a graph that maps a pixel to obtain either the value of 1 or 
0. When a pixel belongs to a cluster, its membership value is 1; when it does not belong to a cluster is 
membership value is 0. This can be mathematically stated below: 
If the partitions in an image are represented in matrix form U = [ � ik ]c × N. The ith row of the matrix 
contains the membership values as defined by the membership function� i of the ith subset Yi  of Y. Thus 
the following equation is stated (Bezdek, 1981). 
 

   � ik�{0, 1};  1 �  i �  c;  1 �  k �  N;                         (2.5) 
   
    c 

                  � � ik = 1;   1 �  k �  N,              (2.6) 
    i=1 
    N 
          0 < � � ik < N;   1 �  i �  c,             (2.7) 
   k=1 
 
  

1;    yk �  Yi 
 � i (yk)=� ik                                                (2.8) 

    0;  otherwise 
 
The explanation for the above equations is stated thus: Equation (2.5), expresses the fact that the 
membership value a pixel can get is either 0 or 1 in a cluster. Equation (2.6), expresses the fact that the 
sum total of the membership value of a pixel in the entire clusters is 1. Equation (2.7), states that the sum 
total of the membership value of a pixel in the entire image must be greater than 0. However, equation 
(2.8), confirms the fact that, once a pixel has been identified to belong to a cluster, it takes full 
membership value in that cluster, which is 1 and in any other cluster, its membership value will be 0 (no 
membership in that cluster). Thus, it is confirmed that in hard clustering, a pixel, belongs entirely to only 
one cluster with full membership value of 1 and 0 membership values in other clusters.  A simple diagram 
illustrates this further; 
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Figure 2.2: A hard clustering membership value. 

Figure 2.2, shows a membership function for two partition C and D, it can be noticed that the pixels in 
cluster C, belong entirely to cluster C and each have a membership value of 1, neither of them, obtained 
any value from cluster D. In cluster D, none of its pixel, obtained value in cluster C. 
 
Combining equation (2.1-2.8), a summary of the hard clustering space is thus (Bezdek, 1981): 
 
 
 

               c                               N 

Tspace =  U�  R c × N| � ik�{0, 1},	 i,k; � � ik = 1; 	k;  0 < � � ik < N, 	 i  
                                                                  i=1                                   k=1 
 
 
Hard clustering algorithm can change the pixel position of a pixel to suit the iterative processes, but still, a 
one-pixel-one-cluster relationship is maintained. Hard clustering does not allow cluster overlap, however, 
most features of interest on the Earth surface are never distinct, they overlap with the neighbouring 
features. If a classifier used to describe this feature of interest results in hard classification, then some 
information about the feature will be lost, since the overlapping area will not be considered as such. Figure 
2.3, is a simple diagram that shows the distinct nature of clusters in hard clustering below. 
 

 
Figure 2.3: A simple diagram to illustrate the distinct nature of clusters boundaries in hard clustering. 
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The above diagram shows clusters C and D. It is distinctly shown that cluster C and cluster D, did not 
overlap. In other words, the boundary of C does not overlap with that of D. Boundaries of clusters with 
hard clustering, follows this trend.  
 
To understand and describe burnt scar phenomenon, hard and fuzzy clustering classifiers were used. In 
this section, the hard clustering method is described; they are:  

� Hard clustering classifier: 

 Unsupervised classifier-Iterative self-organising data analysis technique (ISODATA). 

 Supervised classifier-Maximum Likelihood Classifier (MLC). 

2.2.1.1. Unsupervised classifier-Iterative self-organising data analysis technique (ISODATA) 

Iterative self-organizing data analysis technique (ISODATA) is an unsupervised crisp clustering 
classification techniques. The process is initialized by the human operator, assigning three different 
parameters to the process, these are: the maximum number of clusters needed (N), the convergence 
threshold (T) and the maximum number of iterations to be performed (M). Once this is done, the process 
creates random cluster centres in which each pixel is assigned to base on the shortest distance to mean 
centre criteria. The standard deviation within each cluster is computed as well as the distance between 
clusters, merging of clusters results when the distance between clusters are less than the defined threshold 
or split when the one or more standard deviation is greater than the defined threshold. The iteration is 
again performed using the new cluster centres; again the split and merge criteria is applied, depending on 
which condition is met, to create new set of cluster centres; the iterative procedures continues until the 
average inter-class distance falls below the defined threshold, the average change in the inter-centre 
distance between iterations is less than the threshold or when the number of iterations is reached. During 
the duration of the process, clusters having less than the required number of pixels are removed, while 
lone pixels are either reclassified or ignored (Memarsadeghi, Netanyahu, & LeMoigne, 2006; Richards, 
1993). 

 
Figure 2.4: A diagram illustrating the iterative process of ISODATA: Source: (SPEAR, 2006) 

Advantages of this method are: 
� Limited knowledge about the data is required before hand.  
� Interaction from the human operator is minimal. 
� Effective in spectral identifying spectral clusters. 
� Not-biased to top pixels in the image as against sequential clustering. 
� Non-parametric, hence, data need not be normally distributed. 
� Successful in finding “true” data when the number of iterations is sufficient. 
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� The saved cluster signature can be incorporated and used with supervised classification signature. 
Disadvantages of the method are: 

� Algorithm can spill out of control with unfavourable outcome. 
� Can be time consuming when data is not well structured(Richards, 1993). 

2.2.1.2. Supervised classifier-Maximum Likelihood classifier (MLC) 

The supervised-Maximum Likelihood classifier (MLC) is a crisp classification algorithm. It is based on 
statistical principles and requires prior knowledge about the data, in order to determine the required 
number of classes. Samples of pixels are selected within all the classes defined to train the classifier to 
recognise the defined spectral patterns. During the process of classification, the spectral variance and 
covariance for each class is computed. The assumption in MLC, is that, it is a multivariate normally 
distribution function, hence each class is modelled to have a mean and covariance. The MLC builds a 
discriminant function for each class and uses this function to calculate the probability of each pixel, 
belonging to that class. Each pixel is therefore assigned to the class, in which its probability is highest 
(Memarsadeghi, et al., 2006; Richards, 1993). 
 

 
. 
 
 
-Normal probability distributions are 
fitted to each training class. 
-The lines in the diagram show regions 
of equal probability. 
-Point 1 would be assigned to class 
‘pond culture’ as this is most probable. 
-Point 2 would generally be unclassified 
as the probabilities of fitting into one of 
the classes would be below threshold. 
 
 
 
 
 
 

Figure 2.5: A diagram to illustrate MLC process. Source: (SPEAR, 2006) 

Advantages of this method are: 
� It is sophisticated and results in good separation of classes. 
� It takes into account the size, shape and orientation of the clusters. 
� It takes into account variability within the clusters. 

Disadvantages of this method are: 
� Requires training sets that truly reflects the variability within and between classes, before a 

meaningful mean and covariance can be computed. 
� Requires lost of human interaction, especially during the training stage. 
� It requires lost of computation time 
� It based on normal distribution(Richards, 1993). 



ACCURACY ASSESSMENT OF FUZZY CLASSIFICATION 

13 

2.2.2.  Fuzzy clustering 
Fuzzy clustering method tends to be more natural when partitioning an image to form clusters. The 
resulting clusters are not mutually exclusive; hence, overlapping of clusters can take place. Each pixel 
belongs to all the clusters created to a certain degree expressed by its membership value. The membership 
value of a pixel is constrained to be real value between 0 and 1 and it is defined by a given membership 
function (non-linear). Thus, a pixel that lies close to the centre (or centroid) of a cluster has a high 
membership value in that cluster; conversely, a pixel that is far from a cluster has low membership value in 
that cluster. If the membership value of a pixel in a cluster is close to 1, it is an indication that the pixel has 
property that is similar to the property of that cluster  and if it is low close to 0, it means the property of 
the cluster it has is low (Bezdek, Ehrlich, & Full, 1984).This is a more realistic way to describe Earth’s 
related phenomenon. Earth’s related phenomenon, interacts with its neighbours, hence it cannot be fully 
described if its relationship with its neighbours are not considered. Fuzzy clustering is formulated from 
fuzzy logic theory developed by (Zadeh, 1965). Mathematically, it can be expressed as follows: 
The R

n (n-dimensional Euclidean space) defined in hard clustering section, still suffices here, equation 
(2.2), is now modified to reflect the relationship between one cluster and the as shown below; 
       
      Yi � Yj � � ;  1�  i �  j � c,                              (2.9)          
Equation (2.9), states the dependence between one cluster and the other. This statement shows cluster 
overlap; hence the intersection of two clusters will not result in null, this is not the same for hard 
clustering case.  Also, equation (2.5) is modified to create the real values [0, 1] as shown: 
 
            � ik�[0, 1];  1 �  i �  c;  1 �  k �  N;                            (2.10)      
 
This expresses the fact that the membership value of a pixel can be any real value between 0 and 1. 
Equation (2.6) and (2.7) still holds in this instance. However, equation (2.8), does not apply in this case, 
because the function must not restrict the pixel from having membership values in other clusters, hence 
the membership value of a pixel in a cluster will be determined by the membership function (non-linear), 
chosen to describe the pixel in all cluster.  
 

 
Figure 2.6: Fuzzy membership function 
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In figure 2.6, two clusters C and D are shown. The membership function of C and D, gives its pixels 
membership values� C and � D respectively.  P0 belongs to both C and D, hence its membership value in 
both clusters can be seen be to � C (P0) 0.60   and � D (P0) = 0.40; Two clusters are defined, hence 

    c 
                  � � i = 1=� C (P0) = 0.60 + � D (P0) = 0.40 condition is fulfilled.         
     i=1 
 
The entire space for the fuzzy cluster can be defined by their membership function as: 
 

      c                               N 

Tmfspace =  U�  R c × N| � ik� [0, 1],	 i,k; � � ik = 1; 	k;  0 < � � ik < N, 	 i  
                                                                        i=1                                   k=1 
 

 
Figure 2.7: FCM clustering  

Figure 2.7, depicts the boundaries of clusters A, B and C overlapping. Clearly it can be seen that a pixel 
belong to more than one cluster.  
 
This fuzzy clustering method was applied to describe the burnt scar phenomenon, the fuzzy classifier used 
are: 

� Fuzzy clustering classifier: 

 Unsupervised and supervised classifier-Fuzzy-c-means (FCM). 

2.2.2.1. Unsupervised and supervised classifier-Fuzzy-c-means (FCM) 

Fuzzy-c-means algorithm uses the concept of fuzzy logic theory (Zadeh, 1965) and the fuzzy clustering 
(Bezdek, 1981) to define a function referred to as an objective function. The function is an optimization 
function, in which the centroids (centres) of a given number of defined clusters will be iteratively updated 
until the desired minimum value for the objective function is attained, as this process is ongoing, pixels 
positions and their membership values in all the clusters continues to change and becomes constant when 
the desired minimum value for the objective function is attained, at this point the process is completed. 
The function is defined by a given number of parameters that influences the outcome of the pixel 
membership values. The mathematical process is shown below and adopted from (Bezdek, et al., 1984). 
The notations and explanation of variables remains the same from previous section. 
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                                         c     N 

Jm =�    � (� ik )
m yk − vi 

²
A                                                 (2.11)    

i=1   k=1  
 

Jm = is the objective function; vi = is an element of v, the vector of cluster centres i.e.  
v =[v1,v2,…,vc]   vi�Rn           (2.12) 

  c is the number of clusters in Y ; 2 �  c < n                                  (2.13) 
  The fuzzy c-partition of Y is U;  U= [� ik] �Mf                                            (2.14) 
n = any arbitrary integer number  
Mf = is the membership function       
m = is the fuzziness parameter;  m � [1,� )                  (2.15) 
If m =1, it results in hard classification; fuzzy classification results when: 
                                               1�  m < �                   (2.16)  
A= squared weight matrix; = norm  

yk − vi  = is referred to as the positive difference between a pixel point yk and a cluster centre vi, this is 

usual calculated using the Euclidean distance, Dik , when this is replaced, replacing equation yk − vi   

with Dik  in equation 3.11, we obtain: 
 
                                         c     N 

Jm =�    � (� ik )
m( Dik)2                                                                 (2.17)                     

             
       i=1   k=1 

 
To obtain the minimum objective function, two concurrent iterative processes are done to obtain new 
cluster centre vi and new pixel membership value � ik , both equations are shown below (Dunn, 1974):  
 
 
 
                                                N 

vi =  � (� ik )
m yk                                                            

                                               k=1                                                                             (2.18) 
,1 �  i �  c                     

                    N 
        � (� ik )

m                     
                                               k=1               

          
 and 
 
          � ik  =              1                            (2.19) 

    
                                                         c      

�  ( Dik/ Djk)2 /(m-1)                                                   
                        j=1    

 

 
The FCM algorithm works when the following parameters are defined: 

� The number of clusters or classes c is defined. 
� The measure of fuzziness m is defined, in this research m= 2. (Foody, 1996), suggested that 2, is 

an adequate measure of fuzziness.  
� The number of iterations. 
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� The termination criterion� . 
Fuzzy-c-means algorithm can either be supervised or unsupervised. In supervised fuzzy-c-means, the 
estimated means of the clusters are determined by the human operator and imputed in the algorithm; 
these means will be used to determine the positions of all the pixels and their respective membership 
values in all the clusters; hence the cluster mean is determined by the human operator and not by the 
algorithm in the case of unsupervised fuzzy-c-means. 

2.3. Accuracy assessment 
Map production, is an important aspect of remote sensing. Maps contain information about the Earth 
which is needful for planning and decision making purposes. It is essential that the information in the map 
be ‘judged’ through an assessment technique in order to establish its accuracy. Accuracy statement is an 
indication of the quality information in the map and expresses the measure of uncertainty that the user 
should be aware of. When the accuracy information of a map or data is provided, the confidence of using 
the map or data is boosted; this is because, one is aware of its uncertainty. However, using a map or data 
without any accuracy information, might lead to unpleasant surprises(Congalton & Green, 2009). 
Accuracy assessment can be designed and implemented in various ways depending on some factors and 
limitations. It is essential that the producer’s intended approach in implementing accuracy assessment is 
carefully and critically planned in order to obtain the optimum result.   

2.3.1. Definition of accuracy assessment 
Accuracy assessment was defined by (Stehman & Czaplewski, 1998), as the quantitative measure(s) applied 
in determining the quality of information derived from remotely sensed data. Map is used to represent the 
information and it is evaluated to establish its suitability for an intended purpose. 

2.3.2. Need for accuracy assessment 
Accuracy assessment is needful because it establishes the quality information in a map, thereby increasing 
knowledge. More so, it identifies the sources of errors in a map, this can be corrected to increase the 
quality information of the map. Furthermore, it is a basis for comparing algorithm, classifiers etc, to 
establish which is better, depending on the prevailing situations. Accuracy assessment report is useful in 
making decisions (Congalton, 2004).  

2.3.3. Forms of accuracy assessment 
Positional and thematic accuracy, are the two major forms of accuracy assessment. Positional accuracy 
assessment measures the spatial differences or mis-match between spatial features on the map and its 
corresponding features on the ground (Bolstad, 2005; Pontius, 2000). Thematic accuracy assessment 
measures the disagreement between the label or attributes of a map class and its corresponding reference 
class.  

2.3.4. Developmental stages in accuracy assessment 
Accuracy assessment technique started in the early days as a qualitative measure, in which a map is visually 
inspected and compared with what is on the ground (or reference) and statement of “it looks good” or “it 
looks bad” is ascribed to it. This method does not involve the identification of errors and its sources. A 
global accuracy is stated based on the appearance of the map only (Aronoff, 1982, 1985; Congalton & 
Green, 1993, 1999). 
 
The next development in accuracy assessment was the non-site specific method; in this method, the 
overall acreages were compared between ground estimates and the map without taking into consideration 
the location (Meyer, Brass, Gerbig, & Batson, 1975; Van Genderen & Lock, 1977; Van Genderen, Lock, 
& Vass, 1978). One obvious flaw in the non-site specific method, is that, it can establish the area estimates 
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between the class of interest and its ground equivalent with low spatial overlap between them(Meyer, et 
al., 1975); positional error in this method is high.  
 
The third stage of accuracy assessment technological development, led to the creation of site specific 
approach; in this method, random areas (sites) within the classified map, are made comparable with their 
corresponding areas on the ground or reference data. A single global (overall) accuracy value in form of 
percentage can be calculated to establish matching areas and areas that do not match. 
 
Presently, we are in the fourth stage of the technological developments in accuracy assessment techniques. 
In this stage, several accuracy assessment techniques have been developed for crisp and for fuzzy 
classification purposes.  
 
In crisp classification, the error or confusion matrix is mostly used; it is referred to as the conventional 
error matrix. Error matrix is a square matrix, in which either the number of rows or the number of 
columns corresponds to the number of classes generated during classification. The element of the matrix 
represents the number of sampling units that either matches or mis-matches between the reference and 
classified map when they are compared on a site by site basis(matches and mis-matches are judged based 
on their corresponding locations). The diagonal elements represent correctly classified points, while off-
diagonal elements represent in-correctly classified points. The assumption made in using the error matrix, 
is that the reference data is a true reflection of reality, hence samples generated from it have the correct 
class labels and that the errors generated during accuracy assessment comes from the classification 
processes and other sources. This assumption is erroneous, the reference data is as well prone to errors 
and affects the accuracy assessment results(Foody, 2009).Various measures can be computed from the 
error matrix, such as: the overall or global accuracy-this is computed by dividing the summation of all the 
diagonal elements with the total sample size ; errors of commission (this indicates the correspondence 
between correctly classified points in a row and the total sample points in the row) and omission (this 
establishes the correspondence between correctly classified sample points in a column and the total points 
in that column); user’s accuracy (stating that a sample unit classified, corresponds to that on the 
ground)and producer’s accuracy (indicates to the producer, how well an area can be classified) can be 
computed from the matrix(Card, 1982; Khorram et al., 1999).  Kappa coefficient is another measure that 
can be derived from the error matrix, it is measure of chance agreement that compares the overall 
performance of the classification with a hypothetically generated random classification (Landis & Koch, 
1977). The user, producer and overall accuracies can be determined from the conventional error matrix; 
their determinations are thus stated below using a simplified error matrix diagram. 
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Table 2.1: The conventional error matrix 
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Conventional error for 3-classes 

Total 

User 

accuracy 

(%) Reference 

  A B C     
a 25 1 5 31 81 
b 0 42 10 52 81 
c 3 7 57 67 85 
Total 28 50 72 150   
Producer 

accuracy (%) 89 84 79     
  Overall 

(%) 83 

  
    

 
Table 2.1, represents a 3 by 3 error matrix used to depict three classes a, b and c; the corresponding 
reference is represented using A, B and C. In this case, pixels value (a pixel has only one value, this shows 
the class category it belongs) that match between reference and classified data are determined. The 
elements within the matrix, represent sampled units (pixels), from the table a total of 150 pixels were 
sampled; elements within the diagonal in blue (25, 42 and 57), represent pixels that correspond (correctly 
classified pixels) between the classified data and the reference. Off-diagonal elements represent mis-
classification. Thus, the following measures can be determined from the matrix: 
 

� Overall accuracy: This is a probability measure that expresses the percentage of correctly classified 
pixels (pixels value between classified data and reference that match). It is computed by the 
summation of the diagonal elements (25+42+57) divided by the total sampled pixels (150), the 
result is expressed as a percentage, for table 2.1, 83% was obtained as the overall accuracy. Overall 
accuracy is represented using a single value. 

� User accuracy: This is a probability measure that expresses the percentage that the class of a 
sampled pixel, corresponds to the class of the reference. It is computed in each row, by taking the 
diagonal element in that row (taking the matching element between classified and reference data) 
divided by the sum of elements in the row. The values obtained, correspond to the number of 
rows, from the table three values were obtained, one for each row, they are: 

o User accuracy row 1: (25/31) * 100 = 81% 
o User accuracy row 2: (42/52) * 100 = 81% 
o User accuracy row 3: (57/67) * 100 = 85% 

� Producer accuracy: This is a probability measure that expresses the percentage that the class of a 
sampled pixel corresponds to the class of the classified data. It is computed in each column, by 
taking the diagonal element in that column (taking the matching element between classified and 
reference data) divided by the sum of elements in the column. The values obtained correspond to 
the number of columns, from the table, three values were obtained, one for each column, they 
are: 

o Producer accuracy column 1: (25/28) * 100 = 89% 
o Producer accuracy column 2: (42/50) * 100 = 84% 
o Producer accuracy column 3: (57/72) * 100 = 79% 
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The conventional error matrix was designed to assess the accuracy of crisp classification; as a result, it has 
some limitations. According to (Knight, 2002), the assumption that the reference data selects data for 
comparison ascribing one class to a site, is not absolutely true, this is because defining reality can be vague 
(fuzzy) within the transition zones, hence a site can belong to more than one class, when it is represented 
in only one class, some information is lost. Furthermore, the off-diagonal errors are treated equally, which 
is not true in remote sensing classification. The need to improve on this limitations, led to the advent of 
fuzzy accuracy assessment. 
 
Fuzzy accuracy assessment was developed to take into consideration, the vague nature of the Earth in 
image classification and as well as in assessing its accuracy. Hence, the sampling unit can be assigned to all 
the classes it belongs to; subject to its membership degree in all the classes. This was achievable by using 
the concept of fuzziness and fuzzy set theory designed by (Gopal & Woodcock, 1994; Wang, 1990; 
Zadeh, 1965). Various approaches have been developed for assessing the accuracy of fuzzy classifications; 
however, none has been standardized and globally accepted as a unique measure of fuzzy accuracy 
assessment; a given approach can involve defuzzification in which the classified output is hardened before 
its accuracy is assessed, this approach leads to lose of information (Okeke & Karnieli, 2006), other 
approaches intend to guide against information lost, amongst these, is the fuzzy error matrix (FERM).  
 
The development of the fuzzy error matrix, is similar to that of the conventional error matrix discussed 
above, the difference lies in the fact that fuzzy error matrix accept real values unlike the conventional 
method. It is developed using “MIN” fuzzy operator, in which the membership values of pixels of the 
reference is compared with corresponding membership values of the pixels of the classified data, the 
minimum membership value between the corresponding pixels of the  reference and the classified data is 
the intersection membership value that matches both pixel points, hence it becomes the element of the 
fuzzy matrix for both corresponding pixels(Binaghi, Brivio, Ghezzi, & Rampini, 1999). Like the 
conventional error matrix, overall, user and producer accuracies can be obtained, but in this context, as 
fuzzy overall, fuzzy user and fuzzy producer accuracies. The determinations of the measures are explained 
below using a simplified fuzzy error matrix. 
 

Table 2.2: The fuzzy error matrix 
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Fuzzy error matrix for 3-classes 

Total 

Fuzzy 

user 

accuracy 

(%) Reference 

  A B C     
a 45.11 13.98 5.76 64.85 69.56 
b 9.87 69.23 10.43 89.53 77.33 
c 21.56 7.65 80.65 109.86 73.41 
Total 76.54 90.86 96.84 264.24   
Fuzzy 

producer 

accuracy (%) 58.94 76.19 83.28     
  Fuzzy 

overall 

(%) 73.79 
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Table 2.2, represents a typical fuzzy error matrix, the matrix is similar to the conventional error matrix, the 
difference is that the elements of the fuzzy error matrix have real numbers generated from the 
membership values of pixels (a pixel belongs to all the classes to a certain degree, which is determined by 
the membership function). The depicted fuzzy error matrix, is a 3 by 3 matrix used to show three classes a, 
b and c; the corresponding reference is represented using A, B and C. The elements within the matrix, 
represent membership values of sampled units (pixels); from the table, the total membership values of all 
sampled pixels is 264.24; elements within the diagonal in blue (45.11, 69.23 and 80.65), represent the 
membership values that match between the classified data and the reference. Off-diagonal elements 
represent membership values that mis-match. Thus, the following measures can be determined from the 
matrix: 
 

� Fuzzy overall accuracy: This is a probability measure that expresses the percentage of the total 
membership value that matches between the classified data and the reference. It is computed by 
the summation of the diagonal elements (45.11+69.23+80.65) divided by the total membership 
value (264.24), the result is expressed as a percentage, from table 2.2, 73.79% was obtained as the 
fuzzy overall accuracy. Fuzzy overall accuracy is represented using a single value. 

� Fuzzy user accuracy: This is a probability measure that expresses the percentage that the 
membership value of a sampled pixel, corresponds to the membership value of the reference. It is 
computed in each row, by taking the diagonal element (membership value) in that row divided by 
the sum of the membership values in the same row. The values obtained, correspond to the 
number of rows, from the table three values were obtained, one for each row, they are: 

o Fuzzy user accuracy row 1: (45.11/64.85) * 100 = 69.56% 
o Fuzzy user accuracy row 2: (69.23/89.53) * 100 = 77.33% 
o Fuzzy user accuracy row 3: (80.65/109.86) * 100 = 73.41% 

� Fuzzy producer accuracy: This is a probability measure that expresses the percentage that the 
membership value of a sampled pixel corresponds to the membership value of the classified data. 
It is computed in each column, by taking the diagonal element (membership value) in that column 
divided by the sum of the membership values in the same column. The values obtained 
correspond to the number of columns, from the table, three values were obtained, one for each 
column, they are: 

o Fuzzy producer accuracy column 1: (45.11/76.54) * 100 = 58.94% 
o Fuzzy producer accuracy column 2: (69.23/90.86) * 100 = 76.19% 
o Fuzzy producer accuracy column 3: (80.65/96.84) * 100 = 83.28% 

 
Another measure of accuracy assessment used for both the crisp and fuzzy classification is the correlation 
coefficient. The correlation coefficient determines the linear association between the reference and the 
classified data (both are referred to as the variables in this instance). A common correlation coefficient is 
the Pearson’s product moment; this computes the covariance between the reference and classified output 
and divides the result by the product of the standard deviation of the reference and that of classified 
output. The value ranges between -1 and 1; a value of 1 indicates both shows increases and decreases at 
the same time, a value of -1, indicates opposite association in which the increase of one variable decreases 
the other variable. A value of 0, indicates both are not correlated, values ranging between 0.5 and 1, 
indicates that the correlation between the two variables are high (Decoursey, 2003). The correlation for 
both the crisp and fuzzy classification is stated below: 

� Correlation used for crisp classification: The Pearson’s product moment was used in determining 
the linear association between the classified and the reference data as stated by (Denoeux & 
Masson, 2004). The classes of the reference data are compared with the classes of the classified 
data to determine their linear association. Each pixel of either the reference or classified data has 
only one class value, with this, the covariance of all pixels within the classified data and the 
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reference was determined, the standard deviation of the classified data and as well as that of the  
reference were determined. To establish the correlation or linear association, the covariance value 
obtained was divided by the product of the standard deviation of the reference and classified data, 
the expression is stated below: 

 
          r c= Cov(Rc,Cc) 

            (2.20)   
    Rc     Cc 

Rc= the class value of the reference (crisp) 
Cc = the class value of the classified data (crisp) 
Cov= covariance of both variables Rc and Cc 
rc = correlation coefficient 

   Rc = standard deviation of variable Rc 
 Cc= standard deviation of variable Cc 

� Correlation used for soft classification: The Pearson’s product moment was used in the same way 
to determine the linear association of the soft classification; however, the membership values of 
the pixels were used in this instance to generate the covariance and standard deviations(Denoeux 
& Masson, 2004), The above formula is thus modified as: 

 
          r s= Cov(Rs,Cs) 

             (2.21)   
    Rs    Cs 

Rs= the membership value of the reference (soft) 
Cs = the membership value of the classified data (soft) 
Cov= covariance of both variables Rs and Cs 
rs = correlation coefficient 

   Rs = standard deviation of variable Rs 
 Cs= standard deviation of variable Cs 

2.3.5. Factors to consider in designing an accuracy assessment scheme 
There is no unique methodology to be adopted in designing an accuracy assessment scheme, this is 
because accuracy assessment scheme is multi-dimensional and depends on so many factors such as, the 
users and the purpose of the scheme, budget for the scheme, classifier(s) to be judged, the number of 
classes to be generated, sampling units, sampling size, sampling designs, reference data generations, 
sources of errors etc. The result obtained is dependent on the expert knowledge and as well as on how 
careful and critical the planning stage was carried-out (Congalton & Green, 2009). The following 
considerations are discussed. 

2.3.5.1. Number of classes to generate 

The number of classes to incorporate in the scheme depends on the geographic features of interest. It is 
not always possible to represent all classes in a given map; a form of generalization is usually done, this 
influences the outcome of the classification results and as well its accuracy measures. This phenomenon 
was studied and described in this research using two-class, three-class and four-class thematic maps.   

2.3.5.2. Sampling units 

Sampling is done to generate the subsets needed in the thematic map and its corresponding reference, for 
the accuracy assessment. In generating the samples, the unit of each sample should be determined. 
Sampling units can be a point or an areal unit (a single pixel, a cluster of pixels (usually of n by n square; 
for example 3 by 3 square can be adopted), a polygon or object and a cluster of polygons ) (Fisher, 1997).  
 
A single pixel is often used as sampling unit in most accuracy assessment method. (Congalton & Green, 
2009) pointed out that the use of this method leads to poor results due to the following issue: 
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� Pixel represents an arbitrary rectangular delineation that might not correspond to the exact land 
cover or land use delineation. 

� It is usually difficult aligning pixels on the map with that of the reference. 
� It will lead to poor result when the minimum mapping unit specified by the classifier is larger than 

a pixel; this is because the sampling unit (a pixel) will be small and will not spatially match with 
the mapping unit of the classified output.  

 
Using cluster of pixels as sampling units is becoming popular. This choice is based on the fact that it can 
help in reducing thematic and positional errors. Clusters of pixels can be easily registered to correspond 
between the map and reference data. Its usage is limited by the following: 

� The level of details that can be investigated depends on the aggregated pixel sizes, hence a single 
pixel details cannot be reviewed. 

�  It produces poor result when used as sampling unit for vague regions; this is because, the 
individual pixels forming the cluster, might not have the same spectral information. 

� The size of the clusters can be easily mistakenly and counted to represent single pixels: this is 
wrong. 

 
Polygon or object based sampling unit, is created through image segmentation or through manual means 
by delineating a class from its edges, where much inter-class variations exists, creating a uniform label for a 
class. Its usage is growing by the day as an alternative method to single pixel sampling unit. It is more 
useful when the map to be created is of large scale. 
 
Consequently, using clusters of polygon as sampling unit can be adopted when the issue of cost is to be 
considered and minimized. 

2.3.5.3. Sample 

Another consideration in accuracy assessment scheme is the issue of the size of the samples. Many 
equations have been proposed to be used for deriving the sampling sizes; still there is no unique method 
of achieving this(Congalton & Green, 2009). (Congalton, 1988) suggested as a rule of thumb, that the 
simple size should be chosen such that each class has a minimum of 50 sampled units. Furthermore, the 
sampling size should be large enough to adequately draw sufficient points for each class.  

2.3.5.4. Sampling design 

The method adopted in selecting the sampling unit is referred to as the sampling design. There are several 
sampling designs, with each having its own merits and demerits. The design was not necessary for the 
fuzzy accuracy assessment scheme, because the sample size used was equivalent to the total number of 
pixels in the map. However, considerations were made in choosing the sampling design for hard accuracy 
assessment scheme. A brief discussion is provided.  
 

� Simple random sampling: In this method random pixels are chosen. It is an unbiased approach, 
because the probability of chosen any pixel to be part of the sample size is the same. This method 
can be easily designed but difficult to implement. Its major drawback lies in the fact that there is 
no guarantee that sufficient pixels will be chosen to represent rare classes. 

� Systematic sampling: this design is spaced at regular interval in the area of study. It involves a 
random selection of a first point which is now used to generate regular intervals of points that will 
be sampled. This method guarantees that the selection of sampling pixels within the study area is 
done uniformly. However, if a phenomenon is of interest and lies outside the space of the 
generated random intervals, it will not be sampled. More so, the adequate representation of rare 
classes is not guaranteed(Stehman, 1997). 
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� Stratified random sampling: This method was developed to overcome the problem of not 
adequately representing rare classes in the sampling scheme, through formation of groups. Its 
main advantage is that, it provides a minimum number of samples for each group, ensuring that 
each group or class is adequately represented, hence improving the representation of the rare 
class. When adequate representation of the rare classes, results in the sparse representation of the 
other classes(Stehman & Czaplewski, 1998).  

� Equal random sampling: in this method, the randomness is constrained to generate equal number 
of pixels for all classes, by so doing, rare classes are adequately represented, while other classes are 
not sufficiently represented.  

� Cluster sampling: This method involves choosing a number of area samples of a fixed size and 
chosen samples in an exhaustive manner to describe the composition of each cluster. This 
reduces the number of areas to be visited by grouping the pixels. Calculating its standard error is 
very complex and it can under-represent rare classes(Cliff & Ord, 1973). 

� Stratified systematic and unaligned sampling: This method combines the advantages of 
randomness and stratification in choosing the sampling pixels, this ensures that the area is 
adequately sampled. However, it can lead to under or over sampling of equally spaced points of 
interest.  

 
Table 2.3: Summary of the various accuracy assessments sampling scheme 

Sampling 

scheme 

Advantages Disadvantages 

Simple 

Random 

-Its selection is unbiased 
-Its statistical property is 
excellent 

-Expensive, especially when field visit is required 
-No guarantee that each class will be adequately 
represented 
-Does not guarantee good distribution  across the 
samples 

Systematic  -It is easy to implement 
-less expensive when 
compared to random 
samples 
- ensures good 
distribution of samples 
across the landscape 
 

-Can be biased, if sampling pattern is correlated with 
landscape pattern(periodicity) 
-It is weak statistically as each sample unit doesn’t have 
equal probability of selection 
 

Stratified 

Random 

-It is an unbiased 
selection design 
-Ensures adequate 
representation of 
classes, because of the 
selection of a minimum 
number of selection in 
each class 

-It requires knowledge about the map distribution 
before the strata can be created 
-It is very expensive, especially when field visit is 
required 
-Often difficult to find enough samples for rare classes 
 
 

Cluster -Least expensive as 
samples are closed to 
each other, hence 
reducing travelling time 
in field  and or set up 
time in the office 

- Can be affected by autocorrelation, resulting in the 
samples not being independent, if the samples are not 
different from each other, then they are not distinct 
samples, hence more independent samples should be 
taken. 

Source: (Congalton & Green, 2009) 
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2.3.6. Generating reference data 
Reference data generation, is a very important aspect in the implementation of an accuracy assessment 
scheme. The basic assumption is that the reference data is accurate and free from errors. (Foody, 2009) 
stated that there are several sources of errors prevalent in a reference data and the result of an accuracy 
assessment is not only influenced by the classifier and classified data, imperfection from the reference data 
as well contributes this. Furthermore, before assessment is carried out, there is need for the following to 
be done: 

� The possible sources of errors associated with the reference data should be noted, this gives the 
indication that the accuracy assessment result obtained is also influenced by the errors in the 
reference data. 

� The reference data should be collected in such a way that it will cover the mapped area.  
� The reference data should be generated, bearing in mind the minimum spatial unit of the map 

(when the reference data is also a classified, its spatial support, should be made same as that of the 
map.) 

� The same classification scheme as that of the map should be applied in the generating labels for 
the reference data. 

� Reference data should be acquired as closely as possible to the date of the data used for 
classification, this will help in reducing temporal error. 

� Reference data should be different from training data etc.  
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3. STUDY AREA, DATA, DATA PREPARATION AND 
SOFTWARE 

3.1. Study area 
The study area selected for the research is located within the Apalachicola National Forest in the western 
part of Florida in the United States of America. The Forest is the largest National forest in Florida; it 
occupies an estimated area of 2,286.3km2. Its coordinates as defined by the WGS84 ellipsoid are latitude 
30°14′10″N and longitude 84°39′56″W. The forest contains the wilderness called Bradwell Bay and the 
Mudswamp (new river), which provides outdoor activities to people. 
 
According to the Bureau of Land Management and the forest service southern coordination centre of the 
United States of America, the fire was caused by arson, affecting to a large extent, the Bradwell Bay 
wilderness. The fire is popularly referred to as the East Fork Fire. The fire broke out on April 4, 2004. The 
estimated area of the scar was put at 106.4km2 (Rains, 2010). 

 
 

 
Figure 3.1: The study area. Source: (Przyborski, 2004)       

3.1.1. Choice of study area  
The study area was selected based on the fact that it is a natural reserve for tourism and provides income 
to the government. However, the area is constantly plagued by forest fire; this makes the area to be of 
concern to the government who are interested in understanding the extent of damage to the reserve which 
is a source of income to them. Proper damage assessment of the area will assist the government in 
decision making regarding the measures to control the spread of the fire and burn scar. Furthermore, the 
data needed for the research was freely available and downloadable (Rains, 2010).  

3.1.2. Data availability and quality 
The MODIS data acquired was the MOD9A1 product, which is referred to as the surface reflectance 
product. It is a 16 bit data and was captured in the hierarchical data format (HDF), having a pixel grid size 
of 500 m (it size was actually 463.31m.), its dimension is 2400 by 2400. It has a sinusoidal projection with; 
its upper left coordinates are -8895604.157, 4447802.079 and its lower right coordinates are -7783653.638, 
3335851.559. The MODIS data is made up of 13 bands. The data was acquired on the 14th day of April 
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2004. The research was carried out using band 1 to band 7. However, band 5 and band 7, contained 
stripes, hence they were not used. 

3.1.3. Sensor description 
The research was carried out using two types of sensor; the MODIS sensor which captured the data used 
for classification and the ASTER sensor, which captured the data used for generating the reference. Both 
sensors are described below. Section 3.1.4 described the MODIS sensor, while section 3.1.5 was used to 
describe the ASTER sensor. 

3.1.4. MODIS sensor and Image capture 
The Moderate-Resolution Imaging Spectroradiometer (MODIS) instruments are part of the National 
Aeronautics and Space Administration’s (NASA) Earth Observing System (EOS). The instrument has two 
sun-synchronous, near-polar orbiting satellites (Terra and Aqua). The Terra satellite was launched on the 
18 December, 1999, while the Aqua satellite was launched on 4 May 2002.  A summary of the description 
is shown below 
 
 
Table 3.1: MODIS specification 

Property Description 

Orbit 705km, 10:30 a.m descending node for Terra or 1:30 p/m ascending node for Aqua. It is 
circular, near –polar and sun-synchronous 

Scan rate 20.3rpm across track 

Swath wide 2330km across track and 10km along track at nadir 

Telescope 17.78cm diameter 
Size 1.0 * 1.6 * 1.0m 

Weight 228.7Kg 

Power 162.5W 

Data rate 10.6 Mbps (peak daytime); 6.1Mbps (orbital average) 

Quantization 12bits 

Spatial 
Resolution 

250m(bands1-2); 500m (bands 3-7); 1000m (bands 8-36) 

Design Life 6 years 

Source: http://modis.gsfc.nasa.gov/about/specifications.php;  accessed 8/01/2010 
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Figure 3.2: MODIS image 

Figure 3.2: Represents the whole acquired image of MODIS, after it has been re-projected 
 

3.1.5. ASTER sensor Image capture 
The Advance Space borne Thermal Emission and Reflection (ASTER) instrument was acquired on 18 
December, 1999. It is an instrument on-board NASA’s EOS Terra satellite. It can be used in acquiring 
information relating to surface temperature, reflectance, elevation and emissivity at a relatively high 
resolution. It has three sub-systems, the visible and near infrared (VNIR(15m)), which is 8 bits and having 
a swath width of 60 Km, the second is the short wave infrared (SWIR(30m)) subsystem, which is 8 bits 
and swath width of 60 Km. The third is the thermal infrared (TIR(90m))subsystem, which is 12 bits and 
60 Km swath width. The ASTER specifications are shown below.  
  
Table 3.2: ASTER specification 

Spectral coverage 0.53 11.65�m 
Spatial resolution 15m(Bands 1 3) 0.52 - 0.86�m 

30m(Bands 4 9) 1.60 - 2.43�m 
90m(Bands 10 14) 8.125 - 11.65�m 

Radiometric resolution 0.5% NE��(Bands 1 3)
0.5 1.3% NE��(Bands 4 9)
0.3K NE�T(Bands 10 14)

Absolute radiometric accuracy 4%
Absolute temperature accuracy 3k(200 240 K)

2k(240 270 K)
1k(270 340 K)
2k(340 370 K)
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Source: (ERSDAC) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.3: Whole image of ASTER 

Figure 3.3 represents the whole ASTER image before it was subsetted 

3.2. Data preparation 

3.2.1. ASTER HDF data import and re-projection 
The ASTER data was opened in ERDAS IMAGINE software, using the Red-Green-Blue band 
combination respectively as 2-3-1.  Data exploration reviewed the ASTER was in the HDF file format.,  
geo-referenced and geo-coded in the WGS 84, UTM zone 16 projection systems, having metric 
coordinates. The data was now imported in ERDAS IMAGINE for the convenience of working in 
IMAGINE format and for the ease of creating subsets of the image; this resulted in the transformation of 

Signal quantization levels 8 bits(Bands 1 9) 

12 bits(Bands 10 14) 
Base-to-height ratio of stereo 
capability 

0.6(along-track) 

Swath width 60km 
Total coverage in cross-track 
direction by pointing function 

232km 

Mission life 5 years 
MTF at Nyquist frequency 0.25(cross-track) 

0.20(along-track) 
Peak data rate 89.2Mbps 
Weight 406kg 
Peak power 726W 
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the metric coordinate system to its geographical equivalent; however the metric coordinate was restored 
by re-projection and nearest neighbour resampling method. The pixel size was 15 m; this was not changed 
during the re-projection and resampling stage. The three visible to near infrared band of the sub-system 
contained three bands and were used in this research. The ASTER HDF data file was now converted to 
IMAGINE file. 

           
Figure 3.4: ASTER subsetted image in 2-3-1 band combination 

3.2.2. MODIS HDF data import, DN-conversion and re-projection 
MODIS data was opened in ERDAS IMAGINE using Red-Green-Blue band combination respectively as 
1-2-3. Data exploration, reviewed that the MODIS data was in HDF and geo-referenced to sinusoidal 
datum projection. The data format was re-projected to the same datum system of the reference data. To 
achieve this, it was necessary to import the MODIS HDF file into ERDAS IMAGINE. The image is a 
signed 16 bit surface reflectance product, having real DN values between 0 and 1. ERDAS IMAGINE 
doesn’t support fractional DN values; hence it converted the DN values of the pixels into integers by a 
scale of 10,000. the image was now re-projected to UTM, Zone 16, with Datum WGS 84 (hence 
corresponding to the projection of the ASTER data). The pixel size was 463.31 m, and was resampled 
using the nearest neighbour resampling method to 495 m, this made the ratio formed between the pixel of 
MODIS and that of ASTER to correspond to 1:33. The format of the MODIS file was also changed to 
Imagine format.  
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Figure 3.5: MODIS Image; A represents the Image before re-projection and B represents the image after 

re-projection 
 

 
Figure 3.6: MODIS subset in 1-2-3 band combination 

3.2.3. Images overlay 
To verify if both images match within the areas of common scene, their corresponding re-projected and 
re-sampled forms were overlaid. The ASTER was placed on the top of the MODIS. A screen capture is 
shown below: It can be inferred that both images matched when overlaid. 
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Figure 3.7: MODIS and ASTER overlay 

3.3. Software 
The research was carried out using image processing software (ERDAS Imagine and ENVI) and as well as 
a statistical software (R-software). A brief discussion of each of the software is done in the following 
section. 

3.3.1. ERDAS Imagine 
ERDAS Imagine software is a powerful geospatial application tool having a blend of both GIS and 
remote sensing analysis capabilities. It is designed primarily to handle raster data processing, which can 
allow the user prepare, display and enhance digital images for mapping use. It has flexible, easy to use 
toolboxes, which can be used to increase the accuracy of our work and as well as our productivity output. 
In this research ERDAS Imagine was used as image processing software in combination with ENVI.  

3.3.2. ENVI 
The ENVI software like the ERDAS Imagine is software used for the processing and analysing of 
geospatial imagery. It was used in combination with ERDAS Imagine to process the MODIS and as well 
as the ASTER data.  

3.3.3. R-software 
The R software is free downloadable software used in the research to perform image processing activities. 
The imaging processes are written as program codes and ran in R to generate the desired results. R 
software can be used to perform graphical as well as statistical image operations. The software was used 
for further analysis of the images after it has been converted to ASCII format, stored as arrays and 
matrices. FCM was performed using R and as well as accuracy assessment 
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4. RESEARCH METHODOLOGY 

4.1. Introduction 
The research proceeded with the acquisition of MODIS (image to be classified) and ASTER (reference, 
produced as well as classified output) images; both images were opened, explored and imported into 
ERDAS IMGINE software. The images were made ready for further processing after the data preparation 
stage, described in Chapter 3 was completed. The research was carried out in a sequential and orderly 
manner by following the methodology flow chat as shown below. 

 

Data Acquisition

MODIS

Data Import

ASTER

Data ImportData Exploration

Data Preparation: re-
projection, resampling

and subsetting

Data Preparation: re-
projection, resampling

and subsetting

Data
Classification

Un-supervised
Classification:

ISODATA

Supervised
Classification:

MLC

Unsupervised
and Supervised

FCM

Reference Data
Generation

Reference
Degradation

Soft
Reference

Hard
Reference

Output

Accuracy Assessment

Hard
Classification

Soft
Classification

Discussion and
Conclusion

 
Figure 4.1: Research methodology flow chat 
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4.2. Classification 
This research focused on the prevailing issues that should be considered right from the start, as an attempt 
is made to assess the accuracy of fuzzy images. The steps taken determine how efficiently or otherwise the 
fuzzy images phenomena can be described. The most important consideration is the classification method 
chosen and the method for generating the reference data. Every step taken contributes its own success 
rate to the eventual result achieved; hence no step should be downplayed. As the stages begin, errors are 
generated and propagated (the process is challenged by uncertainties); this gets compounded to the end 
stage, where the accuracy of the fuzzy object is assessed, this stage also generate errors; possible sources of 
errors can be identified, modelled and used to correct the process in order to improve the description of 
the phenomenon. The Land cover classes were identified in which the pixels were categorized based on 
their spectral information to create thematic maps(Lillesand & Kiefer, 1994) and the accuracy of the 
produced thematic map judged. In classifying the east fork fire burn scar, hard and soft classifications 
were used for the basis of comparison, bearing in mind the associated vagueness (or fuzziness) within the 
region of transition and how each handles the situation. 

4.2.1. Three cases unsupervised classification using ISODATA 
Three different cases (case A= 2-number-of-classes; case B=3-number-of-classes and case C=4-number-
of-classes) were studied to investigate the influence of the number of classes on the classification output 
and to guide in the selection of the appropriate number of classes to defined, depending on the level of 
details of interest.  The whole acquired MODIS image was processed and used for the classification 
purpose before sub-setting was done in order to incorporate the variability within the entire image. The 
class separabilty was determined by using transformed divergence. The convergence threshold was set at 
0.950, while the number of iteration was set at 1,000.  The classifier’s signature editor was saved to 
determine the training pixels used automatically by the software. The class statistics were computed, with 
the mean value for each class plotted against their respective bands. 

4.2.1.1. Case A 

Two classes were determined as burnt scar and un-burnt area, the automatically generated training pixels 
are shown in the table below: 
 
Table 4.1: Software generated training pixels for 2-classes unsupervised ISODATA-MODIS 

 Software 
Training pixels 

 
  

Class Value Number of Training pixels 

Burnt scar 1 488 
Un-burnt area 2 1063 
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4.2.1.2. Case B  

Three classes were determined as burnt scar, grasses and shrubs and trees, the automatically generated 
training pixels are shown in the table below. 
 
Table 4.2: Software generated training pixels for 3-classes unsupervised ISODATA-MODIS 

 
Software Training pixels 

 
  

Class Value Number of Training pixels 

Burnt scar 1 327 
Grasses and Shrubs 2 919 
Trees 3 305 

 

4.2.1.3. Case C 

Four classes were determined as burnt scar, built-up area, grasses and shrubs and trees, the automatically 
generated training pixels are shown in the table below 

 
Table 4.3: Software generated training pixels for 4-classes unsupervised ISODATA-MODIS 

 
Software Training pixels 

 
  

Class Value Number of Training pixels 

Burnt scar 1 238 
Built-up area 2 407 
Grasses and Shrubs 3 687 
Trees  4 219 

 

4.2.2. Three cases supervised classification using MLC 
The same approach as discussed in section 4.2.1 was applied in this case; supervised MLC was used as the 
classifier in which some pixels within the entire image were selected for training. A screen capture is 
shown to represent the training sites selected. Subsequently the training pixels for three cases are tabulated 
as well below. 
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Figure 4.2: Screen capture of the area selected as training pixels-3-classes 

4.2.2.1. Case A 

Two classes were determined as well in this case; burnt scar and un-burnt area (all other land information 
aside burnt scar were merged together as un-burnt area), the number of training pixels are shown below. 
 
Table 4.4: Training pixels for 2-classes-Supervised MLC-MODIS 

 Training pixels 

supervised MLC 

 
  

Class Value Number of Training pixels 

Un-burnt area 2 73 
Burnt scar 1 56 

4.2.2.2. Case B 

Three classes were determined as well in this case; however, the class labels and training pixels were 
selected in order to represent the desired land information of interest. The grasses and shrubs class was 
merged with the tree class to form the vegetation class. The three classes depicted are burnt scar, 
vegetation and built-up area. The training pixels for the classes are shown below.  
 
Table 4.5: Training pixels for 3-classes-Supervised MLC-MODIS 

 
Training pixels 

 

  

Class Value Number of Training pixels 

Burnt scar 1 57 
Vegetation  2 149 
Built-up area 3 70 
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4.2.2.3. Case C 

Four classes were determined in this case; just like in section 4.2.1.3. Training pixels were selected to 
depict area of interest. The classes defined are burnt scar, trees, grasses and shrubs and built-up areas. A 
screen shot of the training site is shown below as well as the number of training pixels selected.  
 

 
Figure 4.3: Screen capture of the area selected as training pixels-4-classes 

 
Table 4.6: Training pixels for 4-classes-Supervised MLC-MODIS 

   

 
Training pixels 

 

  

Class Value Number of Training pixels 

Burnt scar 1 57 
Trees  2 113 
Grasses and Shrubs 3 143 
Built-up area 4 79 

 

4.2.3. Three cases un-supervised classification of MODIS using Fuzzy-c-means (FCM) 
The MODIS image was also classified using the un-supervised fuzzy-c-means algorithm. Three cases were 
also defined: case A, case B and Case C, representing 2, 3 and 4 classes respectively. The MODIS data was 
converted to ASCII format using the ENVI software. 5 bands of the MODIS data were imported one 
after the other into R-statistical software. The FCM algorithm code was now used to classify the image; 
however the following parameters were defined: 
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�  The fuzziness parameter, m=2; this was recommended by (Foody, 1996), as an appropriate 
measure for FCM classification. 

� The number of classes, (2, 3 and 4 representing each case respectively). 
� The termination criterion represented as epsilon, this was set to 0.01. 
� The number of iteration= 1,000. 
� The number of bands =5 

The FCM algorithm was initialized by randomly assigning pixels to classes and computing the mean of the 
classes. Iteration progresses in which more iterations led to the continuous update of the value of the 
mean of each class and as well as the membership values of each pixel; the update continued until the 
termination point was reached. The termination point could be reached either when the defined number 
of iteration is reached or the termination criterion epsilon, 0.01 is reached (Bezdek, 1981). In this research, 
the algorithm stopped only when the threshold termination point 0.01, was reached. The membership 
values for all the pixels in all the classes were computed and stored for further processing. The initial 
mean, final mean and the number of iterations reached for the three cases are shown below. In every case, 
the values obtained, were multiplied by a scale factor of 0.0001 in order to restore its original DN value, 
since this was converted initially by ERDAS using a scale of 10,000. 

4.2.3.1. Case A 

In case A, two classes were defined: the burnt and un-burnt classes. The FCM algorithm, assigned initial 
mean values to the classes. The process converged after reaching the termination criteria in 13 steps 
iterations. The membership values of the pixels for all classes were obtained and saved. The final mean 
values were also obtained. Two tables are shown below, to depict the initial and final class means 
obtained.   
 
Table 4.7: Initial mean values for 2-classes-unsupervised FCM 

Initial mean values in all bands and classes 

  Band (mean values �0.0001)   

Class 1 2 3 4 5 

Burnt scar 338.91 2080.06 173.63 436.62 1506.96 
Un-burnt area 339.58 2107.02 174.14 440.03 1510.67 

 
Table 4.8: Final mean values for 2-classes-unsupervised FCM 

Final mean values in all bands and classes 

  Band (mean values �0.0001)   
Class 1 2 3 4 5 

Burnt scar 366.06  1563.96  187.87  385.63  1538.82  
Un-burnt area 326.43  2299.62  167.09  457.43  1486.82  

4.2.3.2. Case B 

In case B, three classes were defined: the burnt scar, the grasses and shrubs and trees. The same procedure 
in section 4.2.3.1 was applied. After 16 iterative steps, the process converged. Membership values of the 
pixels were obtained and saved as well as the initial and final mean values of the classes. Tables of the 
mean values are shown below.   
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Table 4.9: Initial mean values for 3-classes-unsupervised FCM 

Initial mean values in all bands and classes 

  Band (mean values � 0.0001)   
Class 1 2 3 4 5 

Grasses and Shrubs 339.80 2098.78 174.64 439.22 1511.84 
Burnt scar 339.67 2091.74 174.06 438.44 1509.99 
Trees 336.95 2101.55 172.25 437.64 1501.69 

 
Table 4.10: Final mean values for 3-classes-unsupervised FCM 

Final mean values for all bands and classes combination 

  Band (mean values � 0.0001)   
Class 1 2 3 4 5 

Grasses and Shrubs 330.70 2133.74 169.13 442.36 1465.78 
Burnt scar 369.98 1401.12 190.22 367.00 1529.97 
Trees 319.73 2552.77 164.23 478.97 1543.63 

4.2.3.3. Case C 

In this case, four classes were defined: the burnt scar, the grasses and shrubs, trees and the built-up area. 
The same procedure in section 4.2.3.1 was applied. After 15 iterative steps, the process converged. 
Membership values of the pixels were obtained and saved as well as the initial and final mean values of the 
classes. Tables of the mean values are shown below.   
 
Table 4.11: Initial mean values for 4-classes-unsupervised FCM 

Initial mean values in all bands and classes 

  Band (mean values � 0.0001)   
Class 1 2 3 4 5 

Trees 342.54 2112.57 175.03 441.78 1521.79 
Burnt scar 338.42 2073.75 173.58 435.72 1501.99 
Built-up area 339.87 2081.63 174.70 437.29 1504.78 
Grasses and Shrubs 337.49 2096.29 172.89 437.75 1504.93 

 
Table 4.12; Final mean values for 4-classes-unsupervised FCM 

Final mean values in all bands and classes 

  Band (mean values �  0.0001)   
Class 1 2 3 4 5 

Trees 317.9489 2631.926 163.6541 485.5873 1565.202 
Burnt scar 369.4671 1268.018 190.5354 350.4734 1511.441 
Built-up area 354.6369 1892.1 181.3898 422.9087 1539.034 
Grasses and Shrubs 322.0848 2225.407 164.6134 448.4607 1444.122 
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4.2.4. Three cases supervised classification of MODIS using FCM 
The approach used in section 4.2.3, was also applied in this section to generate the membership values of 
the pixels in all the classes; however, this was done in a supervisory mode. The supervisory mode of FCM, 
involves imputing the desired class means by the human operator into the algorithmic process. The FCM 
algorithm uses this information to compute the membership values of every pixel in every class. The 
estimated class means corresponds to the spectral means of the classes obtained during supervised MLC 
classifications. Three cases were also studied in this instance. The mean values for each class in the threes 
cases are tabulated and shown below. 

4.2.4.1. Case A 

In case A, two classes were defined: the burnt and un-burnt classes. The class means were estimated to 
run the process and obtained the membership values of the pixels. The class means used are shown below.  
 
Table 4.13: Mean values for 2-classes-supervised FCM 

Mean values in all bands and classes 

  Band (mean values �  0.0001)   
Class 1 2 3 4 5 

Burnt scar 382.36 1136.52 198.70 340.29 1553.00 
Un-burnt area 378.99 2424.99 195.64 502.81 1600.14 

4.2.4.2. Case B 

In case B, three classes were defined: the burnt scar, vegetation and built-up area.  The class means were 
imputed to generate the pixel membership values. The class means used are shown below. 
 
 
 
Table 4.14: Mean values for 3-classes-supervised FCM 

Mean values in all bands and classes 

  Band (mean values �  0.0001)   
Class 1 2 3 4 5 

Burnt scar 371.14 1104.21 192.04 330.05 1507.11 
Vegetation 338.36 2233.58 173.46 462.66 1499.15 
Built-up area 1354.04 2774.03 731.61 1181.37 3416.29 

4.2.4.3. Case C 

In this case, four classes were defined: the burnt scar, trees, grasses and shrubs and built-up area.  The 
class means were imputed to generate the pixel membership values. The class means used are shown 
below. 
 
 
 
 
 
 



ACCURACY ASSESSMENT OF FUZZY CLASSIFICATION 

41 

Table 4.15: Mean values for 4-classes-supervised FCM 

Mean values in all bands and classes 

  Band (mean values �  0.0001)   
Class 1 2 3 4 5 

Burnt scar 382.86 1139.60 196.83 338.16 1555.16 
Trees 202.79 3354.62 103.98 420.40 1434.32 
Grasses and Shrubs 336.62 2237.62 171.55 459.60 1464.41 
Built-up area 1461.65 2827.13 768.03 1212.30 3920.56 

4.3. Reference data generation 
ASTER image was acquired along side the MODIS image to serve as the reference image for comparing 
the classification output of MODIS. To fairly judge the accuracy of the thematic map produced by the 
MODIS image, it is necessary to bring the ASTER to the same state as the MODIS, i.e, using the same 
classification approach, the same resolution, the same sampling unit etc(Congalton & Green, 2009; Liang, 
Fang, & Chen, 2001). Based on this, the ASTER image was classified in similar fashion like the MODIS. 
The ASTER image is a fine resolution image of 15 m, it was degraded as well to obtain the same spatial 
resolution as MODIS. Similar classifications and cases discussed in the MODIS image were also applied in 
this area. They are briefly explained. 

4.3.1. Three cases unsupervised classification using ISODATA 
The same approach in section 4.2.1 was applied to generate similar three cases A, B and C. The 
parameters defined are also the same. The training pixels automatically generated by the method in all 
cases are tabulated and shown below. 

4.3.1.1. Case A 
Table 4.16: Software generated training pixels for 2-classes unsupervised ISODATA-ASTER 

 
Software Training pixels 

 
  

Class Value Number of Training pixels 

Burnt scar 1 429358 
Un-burnt area 2 1203990 

4.3.1.2. Case B 
Table 4.17: Software generated training pixels for 3-classes unsupervised ISODATA-ASTER 

 
Software Training pixels 

 
  

Class Value Number of Training pixels 

Burnt scar 1 342077 
Grasses and 
Shrubs 2 956307 
Trees 3 334960 

 



ACCURACY ASSESSMENT OF FUZZY CLASSICATION 

 

42 

4.3.1.3. Case C 
Table 4.18: Software generated training pixels for 4-classes unsupervised ISODATA-ASTER 

 
Software Training pixels 

 
  

Class Value Number of Training pixels 

Burnt scar 1 274315 
Built-up area 2 418292 
Grasses and 
Shrubs 3 739628 
Trees 4 201109 

4.3.2. Three cases supervised classification using MLC 
In the supervised hard classification using MLC, the training pixels were chosen to cover the whole image 
area. Similar procedures for the hard the supervised hard classification were adopted, the training site is 
shown below, as well as the training pixels generated. 
  
 

 
 

Figure 4.4: Site for selecting training pixels 

4.3.2.1. Case A 

This case is similar to that discussed in the MLC supervised classification. The class labels and the number 
of training samples are shown below. 
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Table 4.19: Training pixels for 2-classes-Supervised MLC-ASTER 

 
Training pixels 

 
  

Class Value Number of Training pixels 

Burnt scar 1 695 
Un-burnt area 2 1029 

 

4.3.2.2. Case B 
Table 4.20: Training pixels for 3-classes-Supervised MLC-ASTER 

 
Training pixels 

 
  

Class Value Number of Training pixels 

Burnt scar 1 423 
Vegetation  2 721 
Built-up area 3 210 

4.3.2.3. Case C 
Table 4.21: Training pixels for 4-classes-Supervised MLC-ASTER 

 
Training pixels 

 
  

Class Value Number of Training pixels 

Burnt scar 1 57 
Trees  2 113 
Grasses and 
Shrubs 3 143 
Built-up area 4 79 

 

4.3.3. Three cases un-supervised and supervised classification of ASTER using FCM 
The FCM algorithm was also applied in generating the soft reference data, just like that of the MODIS. 
Three cases were also considered in the supervised and unsupervised FCM. The following parameters 
were defined; the fuzziness parameters m=2, the number of classes (2, 3 and 4), the termination criterion 
was set at 0.01, the number of iterations was set a 1,000, the number of bands equals 3.  

4.3.4. Generalization 
By visual inspection of the un-classified ASTER image, more features could be easily identified, which are 
not visible in the MODIS image, for example, a water body can be easily distinguished in the ASTER, but 
not visible in the MODIS, this was merged to belong to other classes, to establish the same number of 
classes for both the ASTER and MODIS. This was noted as well as a possible source of error. 

4.3.5. Importation of classified Hard-output in R 
The classified output of the hard classification of both the MODIS and ASTER were opened in ENVI, 
then saved in ASCII format before they were imported into R-statistical software for further analysis and 
accuracy assessment. 
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4.3.6. Reference data degradation 
The classified outputs (hard and soft classifications) of the ASTER data were degraded to make it of the 
same spatial resolution as that of the MODIS, this was necessary to have the same basis for comparison 
(Congalton & Green, 1999; Liang, et al., 2001). The classified ASTER was initially 15m, while that of the 
MODIS was 495m; the ratio formed between the MODIS and ASTER pixel is 1:33. The classified output 
of the ASTER was degraded using a 33 by 33 window size of the pixels of the ASTER. The degradation 
(aggregation) was done to make a 33 by 33 pixels of the reference, correspond to a 1 by 1 MODIS 
classified output. This was done for both the hard and soft reference. 

4.3.6.1. Reference Aggregation in the hard Case 

To achieve aggregation in this case, the values of the proportions of each class within a 33 by 33 window 
pixels of the reference was determined; the aggregation resulted in assigning the whole 33 by 33 pixels 
with the value of the class with the highest frequency (Maselli, Gilabert, & Conese, 1998) . 

4.3.6.2. Reference Aggregation in soft case 

In this case, the aggregation was done using the mean of the grades of membership for all pixels within 33 
by 33 window size of the reference to correspond to a 1 by 1 MODIS classified pixel. 

4.3.6.3. Reference data dimension 

The degraded ASTER’s dimension (row by column) was 32 by 45, against the MODIS which was 33 by 
47. Both were overlaid to determine if they matched or not; it was observed both matched, but the 
MODIS overshot by a 1 by 2(row by column) dimension. Visual investigation of the positions of the 
pixels was done, to determine the exact row and columns to remove from the MODIS output. The 33rd 
row was removed as well as the 47th and 46th column of this MODIS; this was done to make the whole 
mapped area comparable. 

4.3.7. Accuracy assessment measures 
The accuracy of both the hard and soft MODIS outputs, were compared with the degraded reference 
obtained. The whole mapped area was used for accuracy assessment; i.e. sampling size is the all area 
covered by both dataset. The sample size corresponds to the size of the classified MODIS, which is 
equivalent to the size of the reference (45 by 32 in rows and columns dimension); this was necessary to 
overcome the problems associated with sampling generation. The sampling unit (the minimum mapping 
unit) was maintained at the pixel level (Congalton & Green, 1999).  
 
The confusion matrix was used to compare the reference and the classified MODIS for the hard 
classification; the overall, producer and user accuracy measures were determined; furthermore, the kappa 
coefficient was also determined.  
 
In the soft classification, its accuracy was determined using the fuzzy error matrix (Binaghi, et al., 1999). 
This method is very similar to the hard confusion matrix; the difference is that, the fuzzy error matrix 
computes accuracy using grades of membership. The measure uses the ‘MIN’ operator from the fuzzy 
theory to determine the maximum intersection between the classified and reference datasets. The 
measures that are derivable are the fuzzy overall accuracy, fuzzy user accuracy, fuzzy producer accuracy.  
 
Another measure determined was the correlation coefficient using Pearson’s-product-moment-correlation 
coefficient, it is a measure that shows the linear association between the classified and the reference 
datasets (Decoursey, 2003)this was used as a measure both for the hard and soft cases. 
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5. RESULTS 

The various results produced in the research are presented in this chapter. The presentation followed this 
adopted: unsupervised hard classification, supervised hard classification, unsupervised and supervised 
FCM classification, reference data results and accuracy assessments.  

5.1. Result obtained for the unsupervised hard classification 
Unsupervised classification results were obtained for three cases: case A, case B and case C, having 2, 3 
and 4 classes respectively. The results are: 

5.1.1. Class separability-unsupervised hard classification (ISODATA) 
The separabilty of a given pair of classes in the three cases were computed using the transformed 
divergence (TD), this was done in ERDAS IMAGINE.  The transformed divergence ranges between 0 
and 2000, having a separabilty value of 2000, shows that the pair of classes are distinct, i.e. the inter-class 
variations are very high. When inter-class variations are low, separability values is low. Also, the increase in 
intra class variability reduces class separabilty values with low variability results in low separable, having a 
hard classification (Zhang, Marszalek, Lazebnik, & Schmid, 2007). 
 
Table 5.1: Class separability (Transformed Divergence) for unsupervised hard classification of MODIS classification 
(ISODATA) 

Transformed divergence for unsupervised 3 cases(TD) 

Cases Classes TD value 

2 classes 
Burn scar 1681 
Un-burnt area 

3 classes 

Burn scar 1814 
Grasses and shrubs 
Burn scar 1997 
Trees 
Grasses and shrubs 1778 
Tress 

4 classes 

Burn scar 1765 
Built-up area 
Burn scar 1999 
Grasses and shrubs 
Burn scar 2000 
Trees 
Built-up area 1456 
Grasses and shrubs 
Built-up area 1991 
Trees 
Grasses and shrubs 1827 
Trees 
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5.1.2. Plot of mean value against Bands-unsupervised hard classification (ISODATA) 
The mean value of each class was plotted against the number of bands, for the three cases. The plot 
reviewed that the mean for all classes was highest in band 2, while the mean value of all classes was lowest 
in band 3, the plots are shown below: 
 

 
Figure 5.1: Mean value of class against Bands_2_classes_unsupervised hard 

classification(ISODATA) 

 
Figure 5.2:Mean value of class against Bands_3_classes_unsupervised hard 

classification(ISODATA) 

 
Figure 5.3: Mean value of class against Bands_4_classes_unsupervised hard classification 

(ISODATA) 
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5.1.3. Thematic map produced-unsupervised hard classification (ISODATA)  
The thematic maps for 2, 3 and 4 classes were produced. In 2 classes more generalization was done, in 
which other features aside the burnt scar were categorized as un-burnt area. As the number of classes 
increased, the extent of the burnt scar class reduces. The area named as built-up area in the 4 classes case, 
was not a true representation of the built-up area in reality. This is one of the limitations of unsupervised 
classification; it might not represent reality the way expected. There is an abrupt change from one class to 
another, an indication that the zones of transitions were not considered. The maps are shown below for 
the three cases  
 

 
Figure 5.4: Classification result for 2-classes-unsuperviseed hard classification (ISODATA) 

 

 
 

Figure 5.5: Classification result for 3-classes-unsuperviseed hard classification (ISODATA) 
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Figure 5.6: Classification result for 4-classes-unsuperviseed hard classification (ISODATA) 

 

5.1.4. Class statistics-unsupervised hard classification (ISODATA)  
The class statistics for all the cases were computed, however, the statistics. In both classes shown, the 
mean was lowest in band 3, while band 5, has the highest mean. The least covariance values were between 
1 and 2.  
Table 5.2: Class statistics-Burnt scar class-in-2-classes- unsupervised hard classification (ISODATA) 

 

Statistics of Burnt scar-2-classes-hard-unsupervised ISODATA(�0.0001) 

 
  
  

Bands Minimum Maximum Mean Std. Dev.  
1 266 486 361.279 42.706  
2 806 2003 1601.551 311.406  
3 136 253 185.371 23.53  
4 293 498 388.672 41.907  
5 1211 2006 1527.719 145.887  

 Covariance of bands (�0.0001)  
Bands 1 2 3 4 5 

1 1823.807 -2762.045 968.773 533.617 5280.109 
2 -2762.045 96973.525 -1735.322 10947.616 2094.65 
3 968.773 -1735.322 553.679 286.836 2738.014 
4 533.617 10947.616 286.836 1756.176 2631.22 
5 5280.109 2094.65 2738.014 2631.22 21283.13 

 
 
 
 



ACCURACY ASSESSMENT OF FUZZY CLASSIFICATION 

49 

Table 5.3: Class statistics-Un-burnt area class-in-2-classes- unsupervised hard classification (ISODATA) 

 

Statistics of Un-Burnt area-Unsupervised ISODATA(�0.0001) 

 
  
  

Bands Minimum Maximum Mean Std. Dev.  
1 203 736 329.412 62.971  
2 2000 3066 2320.94 225.53  
3 96 361 168.699 31.919  
4 373 727 461.319 39.845  
5 1102 2943 1500.47 195.699  

 Covariance of bands(�0.0001)  
Bands 1 2 3 4 5 

1 3965.333 -167.007 1972.777 1951.222 11012.991 
2 -167.007 50863.834 21.892 4884.52 14039.34 
3 1972.777 21.892 1018.849 1004.963 5490.901 
4 1951.222 4884.52 1004.963 1587.592 6755.906 
5 11012.991 14039.34 5490.901 6755.906 38298.125 

5.2. Result obtained for the supervised hard classification 
The supervised classification results (Maximum likelihood (MLC)) were obtained for three cases: case A, 
case B and case C, having 2, 3 and 4 classes respectively. The results are: 
 

5.2.1. Class separability-supervised hard classification (MLC) 
The separability values of all combination of classes were done in all the three cases, the result indicated 
the maximum value of class separabilty was obtained in all pair of possible class combinations; this 
statement meant that the classes are distinct from each other. The result is shown below. 

 
Table 5.4: Class separability (Transformed Divergence) for supervised hard classification of MODIS classification 

(MLC) 

Transformed divergence for unsupervised 3 cases(TD) 

Cases Classes TD value 

2 classes 
Burn scar 

2000 
Un-burnt area 

3 classes 

Burn scar 
2000 

Grasses and shrubs 
Burn scar 

2000 
Trees 
Grasses and shrubs 

2000 
Tress 

4 classes 

Burn scar 
2000 

Built-up area 
Burn scar 

2000 
Grasses and shrubs 
Burn scar 

2000 
Trees 
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Built-up area 2000 
Grasses and shrubs 
Built-up area 2000 
Trees 
Grasses and shrubs 2000 
Trees 

 

5.2.2. Plot of mean value against Bands-supervised hard classification (MLC) 
The mean value of each class was plotted against the number of bands, for the three cases. The plot 
reviewed that the mean for all classes was highest in band 2, while the mean value of all classes was lowest 
in band 3, the plots are shown below 
 

 
Figure 5.7: Mean value of class against Bands_2_classes_supervised hard classification (MLC) 

 
Figure 5.8:Mean value of class against Bands_3_classes_unsupervised hard classification(MLC) 
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Figure 5.9: Mean value of class against Bands_4_classes_unsupervised hard classification (MLC) 

5.2.3. Thematic map produced-supervised hard classification (MLC)  
The thematic map using the MLC supervised hard classification was done for three cases as defined in 
section 6.2.2. This was done to obtain features of interest. In case A, we have burnt scar and un-burnt 
areas; this was the category for other features other than the burn scar. In case B, trees, grasses and shrubs 
were now merged and categorized as vegetation, with the built-up area separated, this was not possible in 
case B of the unsupervised classification(ISODATA). Case C was used to depict the four classes of 
interest, comparing the classification results for case C in both supervised and unsupervised hard 
classification, it was observed that the class definition for built-up area reflects reality in supervised than in 
un-supervised hard classification. The results are shown below:  
 

 
Figure 5.10: Classification result for 2-classes-superviseed hard classification (MLC) 
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Figure 5.11: Classification result for 3-classes-superviseed hard classification (MLC) 

 

       
 

Figure 5.12: Classification result for 4-classes-superviseed hard classification (MLC) 

5.2.4. Class statistics-supervised hard classification (MLC)  
The class statistics for all the cases were computed. In both classes shown, the mean was lowest in band 3 
in both classes. However, in the burnt scar class, the least covariance was obtained between band 3 and 
band 3 combination, for the un-burnt area, this was obtained between band 2 and band 3 combination.  
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Table 5.5: Class statistics-Burnt area class-in-2-classes- supervised hard classification (MLC) 

 

Statistics of Burnt scar-supervised MLC(�0.0001) 

  
   
   

Bands Minimum Maximum Mean Std. Dev.  
1 331 464 382.357 34.054  
2 806 1647 1136.518 211.665  
3 167 250 198.696 19.183  
4 293 438 340.286 38.699  
5 1315 1823 1553 136.084  

 Covariance of bands(�0.0001)  
Bands 1 2 3 4 5 

1 1159.652 3873.866 603.019 1018.06 4018.455 
2 3873.866 44802.181 1914.578 7258.068 15258.764 
3 603.019 1914.578 367.997 582.761 2037.164 
4 1018.06 7258.068 582.761 1497.626 3447.673 
5 4018.455 15258.764 2037.164 3447.673 18518.8 

 
Table 5.6: Class statistics-Un-burnt area class-in-2-classes- supervised hard classification (MLC) 

 

Statistics of Un-burnt scar-supervised MLC(�0.0001) 

  
   
   

Bands Minimum Maximum Mean Std. Dev.  
1 213 1669 378.986 278.633  
2 2064 3429 2424.986 398.565  
3 109 897 195.644 151.645  
4 415 1372 502.808 186.403  
5 1265 4005 1600.137 553.879  

 Covariance of bands(�0.0001)  
Bands 1 2 3 4 5 

1 77636.18 11259.153 42211.745 50813.803 149048.182 
2 11259.153 158854.403 6711.578 21885.761 64322.905 
3 42211.745 6711.578 22996.149 27713.528 81184.466 
4 50813.803 21885.761 27713.528 34746.018 100957.096 
5 149048.182 64322.905 81184.466 100957.096 306781.453 

 

5.3. Result obtained for the unsupervised and supervised soft classification(FCM) 
Various results were obtained from using the fuzzy-c-means (FCM) algorithm. They are shown below. 

5.4. Unsupervised soft classification(FCM) 
The results for the unsupervised classification FCM classifications are presented here; this was done for all 
the three cases. The following were presented: the separability value between band 2 and band 3, 
classification and the membership values of all pixels were presented. 
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5.4.1. Class separability –unsupervised soft classification (FCM) 
The class separability for different band combinations were investigated to determined the distinct nature 
of each class. The results presented the band combination of 2 and 4 are shown below for every of the 3 
cases. In all the cases, there is no clear distinction between the various classes; this because there is no 
abrupt change from a class to another, there is the existence of a zone of transition, referred to as the zone 
of transition, within this zone, the pixels changes from one class to another, hence having values for all 
classes. In case A, the pixels for the un-burnt area were more closely clustered, compared to that of the 
burnt scar. In case B, the grasses and shrubs class were more clustered together, as shown below. 

 
 

 
 
 
 
  
 
 
 
      

Figure 5.13-: Feature space-2-classes_unsupervised FCM 

 

 

 

 
 

 

 

 

 
 
 
 

 

 
 
 

Figure 5.14: Feature space-3-classes_unsupervised FCM 

 
 
 

Class Name 

1 Burnt scar 

2 Un-burnt 
area 

Class Name 

1 Grasses & shrubs 

2 Burnt scar 
3 Trees 



ACCURACY ASSESSMENT OF FUZZY CLASSIFICATION 

55 

5.4.2. MODIS unsupervised FCM classification 
The outputs of the unsupervised FCM classification for all the cases are shown below. The membership 
values of the pixels continue to change as the number of classes increase, these changes are gradual unlike 
in the hard classification. Membership values ranges between 0 and 1, also the summation of the 
membership values of a given pixel in all the defined classes is constrained to be equal to 1. The 
unsupervised FCM does not represent the true nature of the built-up area, just like the case of the 
unsupervised hard classification.  
 

 

 
Figure 5.15: MODIS unsupervised FCM_2_classes 

 
 

 
Figure 5.16: MODIS unsupervised FCM_3_classes 
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Figure 5.17: MODIS unsupervised FCM_4_classes 

 

5.5. Supervised soft classification(FCM) 
The results for the supervised classification FCM classifications are presented here; this was done for all 
the three cases. The classification and the membership values of all pixels were presented. 

5.5.1. MODIS supervised FCM classification 
The outputs of the unsupervised FCM classification for all the cases are shown below. The membership 
values of the pixels continue to change as the number of classes increase, these changes are gradual unlike 
in the hard classification. Membership values ranges between 0 and 1, also the summation of the 
membership values of a given pixel in all the defined classes is constrained to be equal to 1. The 
supervised FCM, allows the classes that are of interest to be defined before the algorithm is ran, this is not 
possible with the unsupervised FCM, for instance, getting the built-up area class was not possible in the in 
case B of the unsupervised FCM, when it was seen in case C, it didn’t reflect reality. The supervised FCM 
can be used to show the classes of interest which will reflect reality. The results generated using the 
supervised FCM for the three cases are shown below.  
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Figure 5.18: MODIS supervised FCM_2_classes 

 
Figure 5.19: MODIS supervised FCM_3_classes 
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Figure 5.20: MODIS supervised FCM_4_classes 

5.6. Reference data results 
The ASTER data was used as the reference, it is a high resolution image (15 m), this resolution is very 
high when compared to the MODIS data (approximately 500 m). Before the ASTER data was used to 
compare the results of the classification produced using the MODIS data, it was itself processed to make 
it of the same state as the classified MODIS datasets, to achieve this, the ASTER data was classified in the 
same manner as the MODIS. The ASTER data was classified in three cases for the unsupervised 
(ISODATA) and supervised (MLC) hard classification. It was also classified in three cases for the 
unsupervised and supervised using the fuzzy-c-means. The completion of the classification, led to the  
degradation  stage, in which the classified ASTER results were degraded to correspond to the spatial 
resolution of the classified MODIS, before accuracy of both datasets were compared. The results of the 
classifications for the reference datasets (ASTER) as well as the degradation results are shown below.  

5.6.1. Classification result for ASTER unsupervised hard classification (ISODATA)  
The three cases were applied to generate hard unsupervised classification (ISODATA) for the ASTER 
data. The highest level of generalisation was done in case A, this produces only two classes, burnt scar and 
un-burnt area (every other feature resulted in un-burnt area aside the burnt scar). In the case C, the built –
up area was not clearly defined, the same resulted in the unsupervised classification of MODIS data. As 
the number of classes increase, the extent of the burnt scar class reduces. Also, another class referred to as 
water body could be easily defined in the ASTER image; this was not visible in the MODIS image, 
defining four classes for the ASTER image, concealed information that can still be easily identified. More 
generalization was done on the ASTER data than on the MODIS when classification results are 
compared. There is an abrupt change from one class to another, an indication that the zones of transitions 
were not considered. The maps are shown below for the three cases  
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Figure 5.21: ASTER unsupervised hard classification_2_classes (ISODATA) 

 
 

 

          
       Figure 5.22: ASTER unsupervised hard classification_3_classes (ISODATA) 
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Figure 5.23: ASTER unsupervised hard classification_4_classes (ISODATA) 

5.6.2. Classification result for ASTER supervised hard classification (MLC)  
The thematic map using the MLC supervised hard classification was also done for the ASTER image so as 
to make it comparable with the corresponding MODIS classified output. Three cases were also defined. It 
was possible to obtain the features of interest by taking the appropriate training pixels. In case A, we have 
burnt scar and un-burnt areas; this was the category for other features other than the burn scar. In case B, 
trees, grasses and shrubs were now merged and categorized as vegetation, with the built-up area separated, 
this was not possible in case B of the unsupervised classification(ISODATA). Case C was used to depict 
the four classes of interest, comparing the classification results for case C in both supervised and 
unsupervised hard classification, it was observed that the class definition for built-up area reflects reality in 
supervised than in un-supervised hard classification. The results are shown below:  
 

 

 
Figure 5.24: ASTER supervised hard classification_2_classes (MLC) 
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Figure 5.25: ASTER supervised hard classification_3_classes (MLC) 

 

   
Figure 5.26: ASTER supervised hard classification_4_classes (MLC) 

5.7. Result obtained for the unsupervised and unsupervised soft classification(FCM) 
Various results were obtained in this regards for unsupervised and supervised FCM, three cases each were 
investigated for 2, 3 and 4 classes respectively and they are discussed below. 

5.7.1. Unsupervised soft classification (Fuzzy-c-mean (FCM))-ASTER 
The methods adopted in this instance has been explained in section 5.4.2, the difference is in the fact that 
we are talking of ASTER and not MODIS. The membership values are shown below for the three cases.  
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Figure 5.27: Unsupervised soft classification_2_classes_FCM-ASTER 

 

 
Figure 5.28: Unsupervised soft classification_3_classes_FCM-ASTER 
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Figure 5.29: Unsupervised soft classification_4_classes_FCM-ASTER 

5.7.2. Supervised soft classification (Fuzzy-c-mean (FCM))-ASTER 
Again the same explanation for the section 5.4.3 suffices, the results are shown below 
 
 

 
Figure 5.30: Supervised soft classification_2_classes_FCM-ASTER 
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Figure 5.31: Supervised soft classification_3_classes_FCM-ASTER 

 
 
 
 

 
Figure 5.32: Supervised soft classification_4_classes_FCM-ASTER 
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5.8. Hard aster degradtion 
The classified output of the ASTER was degraded to make it comparable with the MODIS data set, the 
degradation was done for the hard and soft cases, however the result here is presented for the hard case.  
 

5.8.1. Un-supervised hard degradation aster 
 

 
Figure 5.33: Degraded_aster_hard_2__unsupervised 

 
 

 
Figure 5.34:Degraded_aster_hard_3__unsupervised 
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Figure 5.35: Degraded_aster_hard_4__unsupervised 

5.9. Degradation of Supervised FCM output (ASTER) 
The output of the degraded ASTER for the supervised FCM is shown below for 3 cases, 3 classes. The 
correlation between the FCM and the corresponding MODIS was done; it must prove that both correlate 
to a certain degree, the values are presented in the accuracy table. 
 

 
Figure 5.36: Degraded ASTER_2_classes_Supervised FCM 
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Figure 5.37: Degraded ASTER_3_classes_Supervised FCM 

 

 
Figure 5.38: Degraded ASTER_4_classes_Supervised FCM 
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5.10. Accuracy assessment results 
The accuracy results obtained are shown in the table below, this was done for hard and soft classification, 
and the results were discussed in the discussion section. The blue colour represents the diagonal values 
that show the relationship between corresponding classes. 

5.10.1. Hard accuracy assessment unsupervised 
Table 5.7: ISODATA_2_classes_confusion matrix 

2_classes 

C
la

ss
if

ie
d

 d
a
ta

 

Confusion 

matrix_2_classes_unsupervised_hard(ISODATA) Total 
User accuracy 

(%) 
Reference 

  
Burnt 
scar 

Un-burnt 
area     

Burnt scar 329 150 479 69 
Un-burnt area 27 934 961 97 
Total 356 1084 1440   
Producer accuracy (%) 92 86     

 
Overall accuracy (%) 88 

 
  

 
 
Table 5.8: ISODATA_2_classes_correlation and kappa coefficient 

C
la

ss
if

ie
d

 d
a
ta

 

Correlation_coefficient_2_classes_unsupervised_hard(ISODATA) Kappa 
coefficient Reference 

  Burnt scar Un-burnt area 

0.63 

Burnt scar 0.72 -0.72 
Un-burnt area -0.72 0.72 

 
 
Table 5.9: ISODATA_3_classes_confusion matrix 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3_classes 

C
la

ss
if

ie
d

 d
a
ta

 

Confusion 

matrix_3_classes_unsupervised_hard(ISODATA) Total 

User 

accuracy 

(%) Reference 

  
Burnt 
scar 

Grasses and 
shrubs Trees     

Burnt scar 241 82 1 324 74 
Grasses and 
shrubs 58 757 26 841 90 
Trees 0 78 197 275 72 
Total 299 917 224 1440   
Producer 

accuracy (%) 81 83 88     
  Overall 

accuracy 
(%) 83 
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Table 5.10:ISODATA_3_classes_correlation and kappa coefficient 

 

 

 

 

 

 

 
 
Table 5.11:ISODATA_4_classes_confusion matrix 

4_classes 

C
la

ss
if

ie
d

 d
a
ta

 

Confusion matrix_4_classes_unsupervised_hard(ISODATA) 
Total 

User 

accuracy (%) Reference 

  Burnt scar 
Built-up 
area 

Grasses and 
shrubs Trees     

Burnt scar 196 26 16 0 238 82 
Built-up area 65 191 131 2 389 49 
Grasses and 
shrubs 8 46 544 13 611 89 
Trees 0 3 69 130 202 64 
Total 269 266 760 145 1440.00   
Producer 

accuracy (%) 73 72 72 90     
  Overall 

accuracy 

(%) 74 

  

    
 
 
Table 5.12:ISODATA_4_classes_correlation and kappa coefficient 

C
la

ss
if

ie
d

 d
a
ta

 

Correlation_coefficient_4_classes_unsupervised_hard(ISODATA) Kappa 

coefficient Reference 

  
Burnt 
scar 

Built-up 
area 

Grasses and 
shrubs Trees 

0.56 

Burnt scar 0.73 -0.09 -0.41 -0.15 
Built-up area -0.03 0.48 -0.23 -0.19 
Grasses and 
shrubs -0.38 -0.24 0.62 -0.23 
Trees -0.19 -0.18 -0.15 0.73 

 
 
 
 
 
 
 
 
 
 
 
 

C
la

ss
if

ie
d

 d
a
ta

 Correlation_coefficient_3_classes_unsupervised_hard(ISODATA) Kappa 

coefficient Reference 

  Burnt scar Grasses and shrubs Trees 

0.63 

Burnt scar 0.71 -0.43 -0.23 
Grasses and shrubs -0.41 0.65 -0.41 
Trees -0.25 -0.36 0.75 
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5.10.2. Hard  accuracy assessment_supervised 
 
Table 5.13: MLC_2_classes_confusion matrix 

2_classes 

C
la

ss
if

ie
d

 d
a
ta

 

Confusion 
matrix_2_classes_supervised_hard(MLC) Total 

User accuracy 
(%) 

Reference 

  
Burnt 
scar 

Un-burnt 
area     

Burnt scar 129 129 258 50 
Un-burnt area 19 1163 1182 98 
Total 148 1292 1440   
Producer accuracy 
(%) 87 90     

 Overall accuracy 
(%)   90 

 
  

 
 
Table 5.14:MLC_2_classes_correlation and kappa coefficient 

C
la

ss
if

ie
d

 d
a
ta

 

Correlation_coefficient_2_classes_supervised_hard(MLC) Kappa 

coefficient Reference 

  Burnt scar Un-burnt area 

0.52 

Burnt scar 0.61 -0.61 
Un-burnt area -0.61 0.61 

 
 
Table 5.15: MLC_3_classes_confusion matrix 

3_classes 

C
la

ss
if

ie
d

 d
a
ta

 

Confusion matrix_3_classes_supervised_hard(MLC) 
Total 

User accuracy 

(%) Reference 

  
Burnt 
scar Vegetation 

Built-up 
area     

Burnt scar 201 39 1 241 83 
Vegetation 68 992 42 1102 90 
Built-up area 20 53 24 97 25 
Total 289 1084 67 1440   
Producer accuracy 
(%) 70 92 36     

  Overall 

accuracy 

(%) 85 

  

    
 
 
Table 5.16:MLC_3_classes_correlation and kappa coefficient 

C
la

ss
if

ie
d

 d
a
ta

 Correlation_coefficient_3_classes_supervised_hard(MLC) Kappa 

coefficient Reference 

  Burnt scar Vegetation Built-up area 

0.54 

Burnt scar 0.71 -0.61 -0.09 
Vegetation -0.63 0.62 -0.07 
Built-up area 0.00 -0.13 0.26 
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Table 5.17: MLC_4_classes_confusion matrix 

4_classes 

C
la

ss
if

ie
d

 d
a
ta

 

Confusion 
matrix_4_classes_supervised_hard(MLC) Total 

User 

accuracy 
(%) Reference 

  
Burnt 
scar Trees 

Grasses 
and shrubs 

Built-
up 
area     

Burnt scar 177 0 77 56 310 57 
Trees 0 92 0 5 97 95 
Grasses and 
shrubs 17 108 766 28 919 83 
Built-up area 8 18 58 30 114 26 
Total 202 218 901 119 1440   
Producer 

accuracy (%) 88 42 85 25     
  Overall 

accuracy 

(%) 74 

  

    
 
 
Table 5.18: MLC_4_classes_correlation and kappa coefficient 

C
la

ss
if

ie
d

 d
a
ta

 

Correlation_coefficient_4_classes_supervised_hard(MLC) Kappa 

coefficient Reference 

  
Burnt 
scar Trees 

Grasses and 
shrubs 

Built-up 
area 

0.50 

Burnt scar 0.65 -0.22 -0.41 0.19 
Trees -0.11 0.60 -0.35 -0.03 
Grasses and 
shrubs -0.47 -0.13 0.57 -0.25 
Built-up area -0.06 0.01 -0.07 0.19 

 

5.10.3. Soft  accuracy assessment_unsupervised 
 
Table 5.19: Unsupervised_FCM_2_classes_fuzzy confusion matrix 

2_classes 

C
la

ss
if

ie
d

 d
a
ta

 

Fuzzy confusion 

matrix_2_classes_unsupervised_soft(FCM) Total 
Fuzzy user 

accuracy (%) 
Reference 

  
Un-burnt 
area 

Burnt 
scar     

Un-burnt area 890.84 242.85 1133.70 78.58 
Burnt scar 264.19 368.45 632.64 58.24 
Total 1155.03 611.31 1766.34   
Fuzzy producer 
accuracy (%) 77.13 60.27     

 
Fuzzy overall accuracy (%)  71.29 

 
  

 
 



ACCURACY ASSESSMENT OF FUZZY CLASSICATION 

 

72 

 
 
Table 5.20: Unsupervised_FCM_2_classes_correlation coefficient 

C
la

ss
if

ie
d
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a
ta

 

Correlation_coefficient_2_classes_unsupervised_soft(FCM) 

Reference 

  Un-burnt area Burnt scar 
Un-burnt area 0.84 -0.84 
Burnt scar -0.84 0.84 

 
 
Table 5.21: Unsupervised_FCM_3_classes_fuzzy confusion matrix 

3_classes 

C
la

ss
if

ie
d

 d
a
ta

 

Fuzzy confusion 

matrix_3_classes_unsupervised_soft(FCM) Total 

Fuzzy user 

accuracy 

(%) Reference 

  Trees 
Burnt 
scar 

Grasses 
and 
shrubs     

Trees 299.88 84.34 238.75 622.97 48.14 
Burnt scar 83.18 238.47 152.72 474.38 50.27 
Grasses and 
shrubs 272.07 169.72 616.50 1058.28 58.25 
Total 655.14 492.53 1007.97 2155.64   
Fuzzy 
producer 

accuracy (%) 45.77 48.42 61.16     
   Fuzzy 

overall 

accuracy 
(%) 53.57 

  

     
 
 
Table 5.22: Unsupervised_FCM_3_classes_correlation coefficient 

C
la

ss
if

ie
d

 d
a
ta

 Correlation_coefficient_3_classes_unsupervised_soft(FCM) 

Reference 

  Trees 
Burnt 
scar Grasses and shrubs 

Trees 0.83 -0.42 -0.30 
Burnt scar -0.48 0.84 -0.53 
Grasses and shrubs -0.26 -0.43 0.76 
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Table 5.23: Unsupervised_FCM_4_classes_fuzzy confusion matrix 

4_classes 
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Fuzzy confusion 

matrix_4_classes_unsupervised_soft(FCM) Total 

Fuzzy user 

accuracy 

(%) Reference 

  

Built-
up 
area Trees 

Grasses 
and 
shrubs 

Burnt 
scar     

Built-up area 251.12 98.91 233.62 131.87 715.51 35.10 
Trees 96.34 185.73 158.36 44.18 484.61 38.33 
Grasses and 
shrubs 252.44 164.45 466.98 83.70 967.58 48.26 
Burnt scar 90.66 38.95 68.88 163.29 361.77 45.13 
Total 690.55 488.04 927.85 423.03 2529.47   
Fuzzy 

producer 
accuracy (%) 36.36 38.06 50.33 38.60     

  Fuzzy overall 

accuracy (%) 42.19 

  
    

 
 
Table 5.24: Unsupervised_FCM_4_classes_correlation coefficient 
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Correlation_coefficient_4_classes_unsupervised_soft(FCM) 

Reference 

  
Built-up 
area Trees 

Grasses and 
shrubs 

Burnt 
scar 

Built-up area 0.58 -0.35 -0.21 0.12 
Trees -0.47 0.84 -0.10 -0.31 
Grasses and 
shrubs -0.05 -0.10 0.75 -0.54 
Burnt scar -0.08 -0.32 -0.62 0.83 

 

5.10.4. Soft accuracy assessment_supervised FCM 
 
Table 5.25: Supervised_FCM_2_classes_fuzzy confusion matrix 

2_classes   
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Fuzzy confusion 
matrix_2_classes_supervised_soft(FCM) Total 

Fuzzy user 

accuracy (%) 
Reference 

  
Burnt 
scar 

Un-burnt 
area     

Burnt scar 269.53 286.47 556.00 48.48 
Un-burnt area 166.00 980.18 1146.18 85.52 
Total 435.53 1266.65 1702.18   
Fuzzy producer accuracy 
(%) 61.89 77.38     

 Fuzzy overall accuracy  

(%)   73.42 
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Table 5.26: Supervised_FCM_2_classes_correlation coefficient 
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Correlation_coefficient_2_classes_supervised_soft(FCM) 

Reference 

  Burnt scar Un-burnt area 
Burnt scar 0.85 -0.85 
Un-burnt area -0.85 0.85 

 
 
Table 5.27: Supervised_FCM_3_classes_fuzzy confusion matrix 

3_classes   
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Fuzzy confusion 

matrix_3_classes_supervised_soft(FCM) Total 
Fuzzy user 
accuracy 

(%) Reference 

  Burnt scar Vegetation 

Built-
up 
area     

Burnt scar 353.65 247.22 65.40 666.27 53.08 
Vegetation 207.27 721.49 76.68 1005.43 71.76 
Built-up area 167.70 255.12 80.65 503.48 16.02 
Total 728.62 1223.83 222.73 2175.18   
Fuzzy producer 

accuracy (%) 48.54 58.95 36.21     
  Fuzzy 

overall 

accuracy 
(%) 53.14 

  

    
 
 
Table 5.28: Supervised_FCM_3_classes_correlation coefficient 
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 Correlation_coefficient_3_classes_supervised_soft(FCM) 

Reference 

  
Burnt 
scar Grasses and shrubs Built-up area 

Burnt scar 0.88 -0.86 -0.21 
Grasses and shrubs -0.77 0.82 -0.15 
Built-up area -0.28 0.15 0.69 
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Table 5.29: Supervised_FCM_4_classes_fuzzy confusion matrix 

4_classes   

C
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Fuzzy confusion 
matrix_4_classes_supervised_soft(FCM) Total 

Fuzzy user 

accuracy 
(%) Reference 

  Burnt scar Trees 

Grasses 
and 
shrubs 

Built-
up 
area     

Burnt scar 182.55 45.98 144.48 26.10 399.11 45.74 
Trees 72.61 172.69 178.66 36.16 460.13 37.53 
Grasses and 
shrubs 142.71 159.08 766.67 36.98 1105.43 69.35 
Built-up area 61.31 86.16 98.18 37.19 282.84 13.15 
Total 459.17 463.91 1187.99 136.43 2247.50   
Fuzzy 

producer 

accuracy (%) 39.76 37.23 64.53 27.26     
  Fuzzy 

overall 
accuracy 

(%)   51.57 

  

    
 
 
Table 5.30: Supervised_FCM_4_classes_correlation coefficient 

C
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ss
if
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a
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Correlation_coefficient_4_classes_supervised_soft(FCM) 

Reference 

  
Burnt 
scar Trees 

Grasses and 
shrubs 

Built-up 
area 

Burnt scar 0.87 0.80 -0.54 -0.16 
Trees -0.26 0.80 -0.37 0.11 
Grasses and 
shrubs -0.11 -0.38 0.81 -0.26 
Built-up area -0.19 0.32 -0.25 0.74 
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6. DISCUSSION, CONCLUSIONS AND 
RECOMMENDATIONS 

6.1. Discussion 
Fuzzy object results when there is uncertainty associated with the description of an object (Fisher, 1999). 
Uncertainties are of different types; hence there is need to be aware of the phenomenon that makes the 
description of the object of interest uncertain. In this research, the object of interest is the burn scar; its 
fuzziness is as a result of the presence of partially burnt pixels that lies between the boundary of a fully 
burnt pixels and un-burnt pixels. This zone is referred to as the transition zone, the boundary between the 
burnt scar and the un-burnt area is submerged within this zone making the delineation of the area 
described as burnt scar from that described as un-burnt very difficult, hence burnt scar definition is 
unclear or vague or fuzzy; this is why it is the choice for the study of fuzzy object. An attempt was made 
in this research to assess the accuracy of the burn scar phenomenon. In achieving this, several issues were 
considered: Are we interested only in the burnt scar or do we need as well some information about 
neighbouring features? Are we interested in a classification technique that will result in better description 
of the burnt scar phenomenon or we need a classification technique that will result in high accuracy? 
These issues where both considered by the classification methods used and as well as the number of 
classes generated. The steps taken and the results generated are explained below.  

6.1.1. Re-projection 
The acquired MODIS data was in the sinusoidal projection system, while the ASTER was in WGS 84, the 
MODIS data was re-projected to obtain the same coordinate as that of the ASTER, the reason for doing 
this, was to make sure both images overlay properly before further processing was carried out. Both 
images were overlaid and I can confirm both matched. 

6.1.2. Re-sampling method 
The acquired MODIS data had a pixel size of 463.31m, while that of the ASTER image was 15 m; the 
need to have an integer ratio between both datasets led to the resampling of the MODIS data to 495 m , 
using nearest neighbour resampling method. Nearest neighbour resampling method was chosen because it 
is simple to apply and preserves the DN values of the image, unlike other resampling method, however it 
can lead to positional errors (Jensen, 1996). The ratio formed between the MODIS and ASTER image was 
now 1:33.  

6.1.3. Subsetting 
A subset was created from the whole image that contains the area of interest in both images; this was used 
for studying the burn scar phenomenon. The dimension of the original MODIS data was 2400 by 2400 a 
subset of size 34 by 47 was created. The original ASTER image size was 4980 by 4200; the subset created 
was 1086 by 1506, all measurements were in meters. Both created subsets corresponded.     

6.1.4. Classification methods 
In order to meet the demand of several users, the research was conducted using both the crisp 
(unsupervised (ISODATA and supervised maximum likelihood)) and fuzzy classification (unsupervised 
and supervised fuzzy-c-means) methods; three cases involving 2, 3 and 4 classes respectively were 
experimented using each classifier.  

6.1.5. Class separability 
The separability of the classes were determined using the transformed divergence (crisp classification) 
because it takes into consideration the mean, variance and covariance of the clusters in determining the 
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spectral distance or separaibilty between classes and represents them using a transformation scale (Swain 
& Davis, 1978). In ERDAS IMAGINE software, this scale is between 0 and 2000. A value of 2000 means 
the classes are completely separable, while a value of 0, means no separabilty. The fuzzy separabilty was 
investigated using the feature space plot of different combinations of bands. 

6.1.6. Generating the reference 
The ASTER image was used as the reference data. The reference data was generated from ASTER a fine 
resolution image, instead of using ground data or aerial photograph because of the following reasons: 

� Ground data and aerial photographs were not readily available. 
� Identification of pixel classes on the ground when ground data is used as reference can be very 

difficult. 
� Acquisition of aerial photographs is usually expensive.  
� Identification of classes on the ground is not objective, rather depends on expert 

knowledge(Okeke & Karnieli, 2006).  
 
ASTER image as a reference data was also classified, before it was made comparable with the MODIS 
classified output. Various sources of error can plague the dataset and hence reduce the accuracy result. 
Some of the sources of these errors are:  

� Errors generated from classification (Congalton & Green, 2009) - to reduce this effect, the same 
classification scheme was used for both the MODIS and ASTER datasets. 

� Errors resulting from different date of data acquisition: The MODIS dataset was captured on the 
14th of April 2004, while the ASTER was captured on the 16th April 2004, the acquisition date for 
both images is almost the same, this can help in reducing errors in the scheme. 

� Another source of error results from the spatial difference between the two dataset,- both 
datasets; the MODIS dataset was resampled to become 495 m , while the ASTER is 15 m, both 
cannot be truly compared, unless they are of the same spatial resolution. To achieve this, the 
ASTER dataset was degraded to 495 m, by a scale window of 33 by 33 pixels; degrading the FCM 
output of the ASTER data was done by averaging the membership values of the pixels within the 
33 by 33 window to obtain a mean value that corresponds to one MODIS pixel; degrading was 
also performed on the crisp ASTER output by determining the frequency of pixels with similar 
class label within a window size of 33 by 33, the class label with the highest frequency becomes 
the resultant class of the 33 by 33 window size pixels. Both method of degradation introduces 
error to the accuracy scheme, however, the error introduced was higher from the crisp approach 
than from the fuzzy approach, this was investigated by determining the correlation between the 
classified MODIS and the degraded ASTER output. In the fuzzy approach, the determined 
correlation value was between 0.58 - 0.84 for all the three cases in unsupervised FCM, in the 
supervised FCM, the correlation values obtained in all cases is between 0.69 - 0.85, comparing 
these values against that obtained in the crisp method, it was observed that the correlation value 
for ISODATA is between 0.48 – 0.75, for MLC, the value ranges between 0.32 – 0.71, this 
confirms the fact that the fuzzy degradation corresponds more to the MODIS classified output 
than that of the crisp degradation. However, users should be aware of this fact that the method of 
generating the reference data introduces error to the accuracy assessment scheme(Congalton & 
Green, 2009).  

� The dimension of the degraded ASTER was 32 by 45, while that of MODIS was 33 by 47, to 
make both the ASTER and MODIS comparable, visual inspection led to the removal of 1 row 
and 2 columns from the MODIS, hence both datasets became fully comparable for accuracy 
assessment.   
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6.1.7. Sampling 
In order to avoid the disadvantages of using samples discussed in table 2.3-1 and to possibly avoid the 
errors that can be introduced by this scheme, the whole dimensions of the reference data was completely 
compared with the whole MODIS classified output (both of dimension 32 by 45) this was done for both 
the crisp and fuzzy classification. 

6.1.8. Training pixels 
The numbers of pixels selected automatically by the software in the crisp unsupervised classification are 
larger than that obtained by the human operator during supervised classification. The number of pixels 
chosen and their relative position within the study area influences the variability achieved within class and 
interclass. The pixels obtained by the software were very large and less separable than that obtained by the 
human operator; hence, the classification results for both methods are influenced.   

6.1.9. Classification results obtained 
Different results were obtained for two, three and four classes for both the crisp and fuzzy classifications. 
The process started with the crisp classification, in which the un-supervised (ISODATA) and supervised 
(MLC) were performed, the accuracy was assessed using error matrix. Fuzzy classification was performed 
using unsupervised and supervised fuzzy-c-means; the accuracy of the classification was judged using the 
fuzzy error matrix. Another measure that was used in assessing the accuracy of both classified output and 
the reference is the Pearson’s product moment correlation coefficient.  
 

6.1.10. Classification results obtained- discussion for two classes obtained 
2, 3 and 4 classes were each defined during the classification process in order to determine their effects on 
the accuracy measure that will be used.  By visual assessment of the maps produced,  for all the “2 
classes”, it was noticed that the unsupervised ISODATA classification and the unsupervised FCM 
produced maps in which the spatial extent of the burn scar were larger compared to their supervised 
counterparts, however, there is an abrupt change between the burnt scar and un-burnt area in the crisp 
classification, suggesting that the area of transition was not considered; in the FCM classification, the 
edges indicates a gradual change from burnt to un-burnt area, this explains the fact that the transitional 
zone was considered and the pixel belongs to either of the classes by their membership value, which was 
defined by the membership function; their accuracies were determined and it was observed that the overall 
accuracy for the ISODATA was 87.71%, the MLC was 89.72%, the unsupervised FCM was 81.19% and 
the supervised FCM was 80.57%. Also their correlation was determined with the supervised FCM, having 
the highest value of 0.85, the unsupervised reported 0.84, the MLC and ISODATA reported 0.61 and 0.72 
respectively,; the supervised FCM, had the least overall accuracy and the highest correlation value, from 
this we can infer that supervised FCM gave a better description for the phenomenon, despite the fact that 
its overall accuracy was lowest, the reason is that, the uncertainty within the object was identified and 
modelled in describing the burnt scar, however, this value can either increase or decrease depending on 
the choice of training pixels used, this was seen from the low correlation value of 0.61 for supervised 
MLC, another human operator, can get either higher or lower values depending on the training samples. 
When supervised classification is used, the operator influences the choice of result and features to show. 
Kappa value of 0.63 was reported for ISODATA, while that of MLC was 0.52; largely the results obtained 
from supervised classification depend on the operator and the choice of training samples. From the 
separabilty value reported, the transformed divergence for  MLC reported a value of 2000, indicating that 
the classes are distinct, hence other sources of error must have contributed to the low value, for example 
error from the reference data could have contribute to its low value. The producer and user accuracies 
were also determined in all cases. The supervised FCM reported the least user accuracy of 48.48% for the 
burn scar class and MLC reported the highest value of 98.39% for the un-burnt area. this means that 
48.48% of the burn scar was actually identified as such in the FCM supervised classification, while that of 
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98.39% was actually truly un-burnt area as determined by MLC. In general, crisp classification indicates 
high accuracy value when compared to the fuzzy classification, however, it does not account for the 
transition boundary problems we are interested in. if the interest is to identify only burn scar and no 
neighbouring information is required, then definition of two classes is sufficient and suitable. needed, two 
classes definition is suitable in this regard. 

6.1.11. Classification results obtained- discussion for three classes obtained 
In a similar way like that of the “2 classes”, the accuracy of the “3 classes” for all pixels were obtained, the 
MLC reported the highest overall accuracy value of 84.51%, the unsupervised FCM reported the least 
overall accuracy value of 74.46%, in this case, more variation was introduced in the supervised 
classification, by a slight change difference between class labels for supervised and unsupervised. In 
unsupervised (ISODATA), the labels are burn scar, trees and grasses and shrubs. For the supervised 
case(MLC) the labels are burn scar, vegetation and built-up area; the supervised method merged the 
grasses and shrubs class with the tree class to obtain the vegetation class, the training pixels were chosen 
in such a way that the rare class-(built-up area) can be extracted from the classification, this means with 
supervised method, rare classes can be easily made distinguishable because of the choice of training pixels 
we will collect.; hence we can create the desired class of interest. Visual assessment indicates that the sizes 
of the burn scar reduces as more classes are introduced, however, the supervised form of classification 
produced results that  are more diverse because it included the rare class, which was submerged by the 
unsupervised classification. Uncertainties within the submerged boundary of the scar within the zone of 
transition were not considered by the crisp classification, the change from one class to the other is abrupt, 
and hence some information about the burn scar is lost. The FCM classification takes into consideration 
this transition zone problem by assigning grades of membership to the pixels as defined by the 
membership function, this result in better description of the burn scar phenomenon. From the defined 
three classes and comparing the overall accuracy of both the description of two classes and the description 
of 3 classes, it can be inferred that a more accurate result were obtained in the two classes in the tree 
classes definition, this means obtaining a better description for the burnt scar phenomenon can be best 
achieved when the map describes the burnt scar phenomenon and categorize other features as 
background.   

6.1.12. Classification results obtained- discussion for four classes obtained 
It is difficult accepting the class built-up area, created by the ISODATA and the un-supervised FCM, as a 
true reflection of the area on the ground, to have a better description, the MLC and supervised FCM were 
used, from the results obtained, we can see the intuitive form of the built-up area. Creating several undue 
classes can lead to errors; hence, the producer should be aware of this. In all the cases defined, the 
correlation values for fuzzy c means are high compared to the crisp cases. MLC produced the highest 
overall accuracy (77.29%), the least overall accuracy was reported by the un-supervised FCM (68.81%). 
The correlation value for the built-up area is highest in the supervised FCM, while the least correlation was 
reported in the MLC. 
 
There is always a trade-off, between using a classification method that describes the fuzzy object better 
and using the one that leads to higher accuracy result. If the intention is to describe the fuzzy object, then 
the fuzzy approach should be adopted, but we need to be aware that the accuracy might not very high. 

6.2. Conclusion 
The objective of this research was to determine how the accuracy of a fuzzy object can be assessed, to 
determine this, there is need to establish the fuzziness associated with the word object. From literature 
review, it was identified that fuzziness is one type of uncertainty, that results when an object cannot be 
clearly defined(Fisher, 1999).  An object is made of its interior and its boundary point, the easy delineation 
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of the boundary of an object makes it definition clear, for example determining the boundary of a 
building, this can be done without difficulty; fuzzy objects are not easily defined, this is because their 
boundary points cannot be easily determined, they are submerged within the zone of transition between 
the object and its neighbours, the spatial extent of an object, corresponds to the totality of its interior 
touching the boundary point, when the boundary cannot be established the spatial extent cannot be 
established, hence the object cannot be fully defined. The forest fire burn scar that occurred in April 2004 
at the Apalachicola national forest in Florida was chosen as the fuzzy object of interest. The definition of 
the forest fire burn scar was established as the damage or injury that results when forest fire occurs, it is 
characterised by the presence of dark or black patches within the area affected by fire, the area contains 
burnt pixels, partially burnt pixels and un-burnt pixels, the partially burnt pixels, contains the boundary of 
the burn scar and the un-burn area and it is within the zone of transition, between the two phenomena.  
. 
 
ASTER was obtained as a fine resolution image, which was used as the reference data. The ASTER data 
as a reference was classified like the MODIS data; this was done to make both comparable.  Crisp and 
fuzzy methods were applied in creating the reference data; this was later degraded to make its resolution 
the same as that of the MODIS.  
 
 
To determine the accuracy measure that is applicable, the crisp and fuzzy accuracy assessment measures 
were used, the crisp method used was the error matrix and the fuzzy method used fuzzy error matrix. The 
accuracy produced by the crisp method was higher than that of the fuzzy error matrix, however, the fuzzy 
approach provided a better description of the phenomenon because it takes into consideration, the 
uncertainty resulting from unclear boundary definition (vagueness).  

6.3. Recommendation 
This research was carried out to describe and determine the accuracy of the burn scar phenomenon as a 
fuzzy object; the issues to consider before assessing the accuracy of burn scar were discussed. This 
research is also a stepping stone on which further work can be done; hence I recommend that the work 
can progress further, by the consideration of the following: 
 

� Adding contextual and or auxiliary information to improve the output of the fuzzy-c-means. 
� Considering the use of another fuzzy classifier to determine which will produce a better result, 

such as possibility c means. 
� Defining and modelling another form of uncertainty that will be investigated in defining the burn 

scar phenomenon, such as the mixed pixel problem.  
�  Consideration for generating soft reference from another approach other than from fine 

resolution images. 
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APPENDIX  

CODE FOR GENERATING ACCURACY ASSESSMENT FOR SUPERVISED FCM_2_CLASSES 
require(MASS) 
require(mvtnorm) 
require(pixmap) 
 
library(MASS) 
library(mvtnorm) 
library(pixmap) 
 
Path <- 'D:\\Thesis_modis\\' 
 
# Fuzzy parameter 
m <- 2.0 
 
# Number of classes 
Ncl <- 1 
 
# Number of bands 
Nb <- 5 
 
dir.create(Path, recursive = TRUE) 
 
Outputfile <- 'FCM' 
 
 
######################################################### 
# Import image FCM for MODIS 
######################################################### 
######################################################### 
# Import image 
######################################################### 
 
i<-1 
 
Inputfile <- paste(Path, 'FCM_Membership_modis_2_classes_supervised_class_',i,'.txt', sep='') 
 
temp <- read.table(Inputfile) 
 
# Determine image dimension 
d <- dim(temp) 
M <- d[1] 
N <- d[2] 
 
x <- 1:M 
y <- 1:N 
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D  <- array(0, c(Ncl,M,N)) 
 
D[i,,] <- as.matrix(temp) 
 
for(i in 1:Ncl) 
{ 
 Inputfile <- paste(Path, 'FCM_Membership_modis_2_classes_supervised_class_',i,'.txt', sep='') 
 
 temp <- read.table(Inputfile) 
 
 D[i,,] <- as.matrix(temp) 
} 
 
U<-D 
 
#D[i,,] <- (D[i,,]-min(D[i,,]))*255/max(D[i,,]) #normalization but to confirm how???? 
 
# Remove ridiculous values 
 
#D[D<0] <- 0 
#D[D>1] <- 1 
 
 
# 
# Display bands 
 
windows(title='Multispectral image: grayscale') 
Nrow <- round(sqrt(Nb)) 
par(mfrow=c(3,3)) 
 
for(k in 1:Ncl) image(x,y, D[k,,], col=gray((0:255)/255), main = paste('Band ',k,sep=''), xlab='',ylab='')) 
 
 
#############################################################
############################ 
# Display results 
#############################################################
############################# 
 
windows(title='FCM result: membership values') 
Nrow <- round(sqrt(Ncl)) 
par(mfrow=c(Nrow,round(Ncl/Nrow))) 
 
for(k in 1:Ncl) 
{ 
   image(x,y, U[k,,], col=gray((0:255)/255), main = paste('Class ',k,sep=''), xlab='',ylab='') 
} 
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######################################################### 
# Import Fuzzy reference membership value for ASTER 
######################################################### 
 
Path <- 'D:\\Thesis_aster\\' 
 
dir.create(Path, recursive = TRUE) 
 
S <- 33 
 
ia <- 1 
Nba <- 2 
Ncla <- 2 
Inputfile_aster <- paste(Path, 'FCM_Membership_aster_2_classes_supervised_class_',ia,'.txt', sep='') 
 
temp_aster <- read.table(Inputfile_aster) 
 
# Determine image dimension 
da <- dim(temp_aster) 
Ma <- da[1] 
Na <- da[2] 
 
xa <- 1:Ma 
ya <- 1:Na 
 
Da  <- array(0, c(Ncla,Ma,Na)) 
 
Da[ia,,] <- as.matrix(temp_aster) 
 
for(ia in 1:Ncla) 
{ 
 Inputfile_aster <- paste(Path, 'FCM_Membership_aster_2_classes_supervised_class_',ia,'.txt', sep='') 
 
 temp_aster <- read.table(Inputfile_aster) 
 
 Da[ia,,] <- as.matrix(temp_aster) 
} 
 
 
 
 
# Display bands 
 
windows(title='ASTER FCM_MEMBERSHIP BEFORE DEGRADE: grayscale') 
Nrow <- round(sqrt(Nba)) 
par(mfrow=c(3,3)) 
 
for(ka in 1:Ncla) image(xa,ya, Da[ka,,], col=gray((0:255)/255), main = paste('class ',ka,sep=''), 
xlab='',ylab='') 
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#############################################################
# 
#Degrade ASTER membership values 
#############################################################
### 
Mdeg <- floor(Ma/S) 
Ndeg <- floor(Na/S) 
 
xdeg <- 1:Mdeg 
ydeg <- 1:Ndeg 
 
UA <- array(0,c(Ncla,Mdeg,Ndeg)) 
 
 
for(i in 1:Mdeg) 
for(j in 1:Ndeg) 
for(l in 1:Ncla) 
{ 
     UA[l,i,j]<- mean(Da[l,((i-1)*S+1):(i*S),((j-1)*S+1):(j*S)]) 
} 
 
x11() 
par(mfrow=c(2,2)) 
for(k in 1:Ncla) 
{ 
   image(xdeg,ydeg, UA[k,,], col=gray((0:255)/255), main = paste('Degraded Aster Class ',k,sep=''), 
xlab='',ylab='') 
} 
 
#############################################################
############# 
# Reference creation 
#############################################################
############ 
F_Ref <- array(0,c(Ncla,Mdeg,Ndeg)) 
F_M <-   array(0,c(Ncla,Mdeg,Ndeg)) 
 
F_ref <- UA 
 
dim(F_ref) 
 
 
#############################################################
############################################ 
# REmoving pixels from modis to have corresponding points 2 rows and one colunm was removed from 
the MODIS 
#############################################################
############################################# 
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F_M <- U[,-47,-33] 
F_M <- F_M[,-1,] 
##################################### 
#Recode and sign classes 
#F_rec <- F_M 
 
#F_rec[1,,] <- F_M[2,,] 
#F_rec[2,,] <- F_M[1,,] 
########################################### 
 
#############################################################
## 
# check the correlation to see how the bands relate after degrading  
#aster and removing 2 rows and one column from modis to have  
#corresponding dimesions 
#############################################################
#### 
#correlation 
 
 
 
Z <- array(0,c(Ncl,Ncl)) 
for(k in 1:Ncl) 
for(l in 1:Ncl) 
 
{Z[k,l] <- cor(as.vector(F_M[k,,]),as.vector(F_ref[l,,])) 
} 
Z 
 
 
#x11() 
#par(mfrow=c(2,2)) 
#for(k in 1:Ncl)image(xdeg,ydeg,F_rec[k,,],col=gray((0:255)/255)) 
###################################################### 
 
 
 
 
 
 
#F_ref <- array(0,c(Ncl,Mdeg,Ndeg)) 
#F_M <-   array(0,c(Ncl,Mdeg,Ndeg)) 
 
F_ref <- UA 
F_M <- U[,-47,-33] 
F_M <- F_M[,-1,] 
##################################### 
#Recode and sign classes 
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#F_rec <- F_M 
 
#F_rec[1,,] <- F_M[2,,] 
#F_rec[2,,] <- F_M[1,,] 
########################################### 
 
#x11() 
#par(mfrow=c(2,2)) 
#for(k in 1:Ncl)image(xdeg,ydeg,F_rec[k,,],col=gray((0:255)/255)) 
 
 
#############################################################
############################# 
# Accuracy assessment: fuzzy error matrix 
#############################################################
############################# 
 
Ncl <- 2 
Ferm <- array(0,c(Ncl,Ncl)) 
Fuser <- array(0,Ncl) 
Fprod <- array(0,Ncl) 
 
for(k in 1:Ncl) 
for(l in 1:Ncl) 
{ 
 Ferm[k,l]<- sum(pmin(F_M[k,,],F_ref[l,,])) 
} 
 
FOA <- sum(diag(Ferm))/sum(Ferm) 
for(k in 1:Ncl) 
{ 
   Fuser[k] <- Ferm[k,k]/sum(Ferm[k,]) 
   Fprod[k] <- Ferm[k,k]/sum(Ferm[,k]) 
} 
 
 
Ferm 
FOA 
Fuser 
Fprod 
 
 
 
 
 
 
 
 
 


