
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Effectiveness of Oblivious RAM
in cloud storage services

Jacco Brandt
M.Sc. Thesis
August, 2022

Supervisors:
dr.ing. F.W. Hahn

dr. R. Holz

External Committee Member:

Services and CyberSecurity
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Effectiveness of ORAM in cloud storage services

Jacco Brandt
s1423290

University of Twente
CyberSecurity (4TU)

j.h.brandt@student.utwente.nl

ABSTRACT
Cloud storage services provide their users with external
storage space that can be used to save files on an external
server. Such storage services usually support encryption
techniques because of privacy and security considera-
tions. Regular encryption techniques can guarantee that
the content of these files remains confidential, however
these methods cannot hide the access patterns of the files.
Oblivious RAM(ORAM) algorithms are techniques that
are used to protect both the content and access pattern
of stored data. In this paper we measure how to trans-
form these files into blocks suitable for usage by ORAM
algorithms efficiently, and compare three of the most
well-known ORAM algorithms to verify which are best
suited for usage in cloud storage services, namely Square-
root ORAM, trivial ORAM and PathORAM. Our results
show that both Square-root ORAM and PathORAM are
suitable for usage in cloud storage services, but their
usage scenarios differ. Square-root ORAM is best suited
for performing automated backups, because it has a high
worst-case performance which regularly causes requests
to take a long time. PathORAM is best suited in situ-
ations where cloud storage services are used to reduce
the local storage by storing files externally, because it
has a constant cost performance ensuring stable and fast
reponse to requests.
1. INTRODUCTION
In the cloud storage services industry the providers usu-
ally allow the users to upload plaintext or regularly en-
crypted files to their storage. However, regular encryp-
tion does not provide a complete privacy guarantee [3].
While this method may secure the content of the files, it
does not hide the access patterns. This means that the
server (or malicious third party) can observe which files
are accessed at which frequency, and use this information
for potential malicious purposes as is shown by Islam et
al. [11]. A potential way to protect this information is
that the cloud storage provider should provide ORAM
storage in which the client can securely store data [18].

ORAM storage is essentially a group of algorithms that
store encrypted information in a special way, so that
queries do not leak any information about the access
patterns. There are many different implementations of
ORAM each with their own specific properties, such as
Square-root ORAM [5], Trivial ORAM [20] and PathO-

RAM [22]. Some implementations require large amounts
of client-side storage, while others can securely store the
client-side state in the ORAM storage so that multiple
clients can be used to access it. There are also large
differences in the efficiency of storage and in commu-
nication complexity between various implementations,
which affect the usability of the implementation in spe-
cific use-cases.
1.1. Problem statement and research goal
Regular cloud storage services usually store their files
in normal plaintext format, or the server encrypts the
entire file and stores it as such. In this case the encryp-
tion key is manager by the server. The advantage of
this is that the client does not need to manage the key
and can access the cloud storage from any device, while
ensuring that if the stored files are leaked or hacked the
content is still protected. The disadvantage is that the
cloud storage provider has access to the encryption key
and has the ability to decrypt the files that are stored. A
more advanced approach of encryption is the situation in
which the client itself manages the encryption key, and
encrypts the files before uploading them to the cloud stor-
age server. This ensures that even the server itself cannot
access the plaintext files. However, the server (and other
malicious observers) can still observe access patterns
and obtain potential privacy-sensitive information about
the files stored on the server, even if they are encrypted.
For example, the approximate size of the files can be
judged based on the encrypted file size, the frequency
with which files are accessed is easily observed, and the
differences between read and write operations are also
obvious.

In order to make up for the shortcomings of the use
of regular encryption in cloud storage services, we use
ORAM algorithms to store files on the server instead of
regular encryption. The goal of this research is to find out
which ORAM solutions are best suited for cloud storage
services and how to properly implement it.

Research question: What ORAM solutions are best-
suited for cloud storage services?

To answer this research question, we need to analyse the
answers of the 3 research sub-questions that are intro-
duced in section 4 methodology. This section describes
how we can store files in a data format used by ORAM

algorithms, as well as how to measure and analyse the
efficiency and other properties of these algorithms.

1.2. Our contribution
In order to find an answer to the previously posed re-
search question, we created python code that implements
a client with a local storage directory and a server repre-
senting the cloud storage service, as is further described
in section 4. The client consists of code that maps the
local storage directory into content(blocks) that can be
used by ORAM algorithms. We measure various meth-
ods in which we to transform files into blocks and anal-
yse which is most suitable for cloud storage services,
as described in section 5. By writing and reading these
blocks to the server using different ORAM algorithms
with various options, we measure which are best suited
for cloud storage purposes as described in section 6. In
section 7 we combine our results in order to address the
research question and argue that both PathORAM and
Square-root ORAM are well-suited for cloud storage ser-
vices. However, the scenarios for which they are suitable
are different. PathORAM is best used in cloud storage
services where the client does not keep a local copy of
the stored files, such as mobile phones or other scenarios
in which the user wishes to reduce local storage usage.
While Square-root ORAM is best suited for cloud stor-
age services used as back-up, where the local directory
can be synchronised with the cloud storage service in a
background process.

The code that implements the file conversion method,
the ORAM implementations, as well as the mea-
surement scripts and results are all available on
git repository the: https://gitlab.utwente.nl/s1423290/
oram-cloud-storage-service/

2. BACKGROUND
2.1. Cloud storage services
Local storage media, while efficient, are often limited
in size and easily susceptible to data loss [29]. In or-
der to provide users and businesses with larger storage
space and data safety, there are many companies that
offer cloud storage services such as Dropbox and iCloud.
These services are specialised in providing access to
dedicated storage space that can be accessed over the in-
ternet. These services generally provide guarantees that
are difficult or expensive to ensure for local storage me-
dia, such as data integrity, data safety (backup systems)
and availability (crashes will not cause a loss of avail-
ability) [29]. Besides data integrity and safety, the cloud
service providers also have a duty to ensure that the data
stored is secure. Besides limiting user access through
detailed access management models, there is also the
need to encrypt the stored data so that a potential leakage
will not compromise the confidentiality of the data [13].
There are many different methods to do so, each of them
have different advantages and disadvantages. The list
below gives an overview of several promising solutions.

• Regular (a)symmetric encryption can be used to en-
crypt the files before transmitting them to the cloud

storage service. This is fast and efficient, but has the
drawback that, besides the file contents, all other in-
formation (such as access patterns, filename and other
meta-data) is leaked to the cloud storage service.

• (A)Symmetric Searchable Encryption (ASE/SSE) are
techniques used to store the encrypted data on the
server under so-called encrypted tokens [12, Section
4.1]. This technique enables the user to search through
the encrypted content in the database, even though
the cloud storage service has no knowledge about the
data except for the encrypted content. However, by
analysing the access pattern the (honest-but-curious)
cloud storage service can learn which encrypted tokens
refer to which encrypted file, which files are accessed
at what times and when the content of files are updated.

• (Fully) Homomorphic Encryptions are encryption
techniques that can be used to perform calculations/op-
erations over encrypted data to calculate the ciphertext
of the calculation result [19]. Such a method can be
very useful in allowing the server to perform calcu-
lations over stored ciphertext, essentially performing
cloud computing without sharing the decryption keys
with the server [23]. While this method ensures that
the plaintext content of the stored data and calculation
results are protected, the server can still analyse the
calculation steps that are performed and analyse which
content is used in the calculation.

• Private Information Retrieval (PIR) are techniques
used to retrieve items from a database while mask-
ing which item has been retrieved [2]. Most methods
only work with distributed servers that have several
nodes, making it easier to mask which specific item
the client requires. The single database solutions often
work by requesting a group of items from the database,
one of which is the item that is required by the client.
This ensures that the server does not know which spe-
cific item is required by the client, but it can analyse
multiple requests to narrow down the information over
time.

Even though the above mentioned techniques all provide
different methods to protect the data stored in the cloud
service provider, each method has its own weaknesses
as well. Private Information Retrieval (PIR) may protect
which specific database entry has been requested, yet it
provides no protection for the (plaintext) content stored.
Even though the 3 encryption methods (regular, search-
able and homomorphic) protect the content stored on the
server, the server will still be able to analyse the access
pattern. If the storage server has been compromised by
an adversary who observes the access pattern, this infor-
mation can still be used to facilitate cyber-attacks and/or
theft of information. Even if the storage server has not
been compromised by a third party, there is no guaran-
tee that the server does not (un)intentionally leak such
information. In order to protect both the content and the
access pattern from being analysed by the server and/or
a third party, there is a suitable (group of) algorithms

that can be applied. Oblivious RAM (ORAM) can store
encrypted information in a way that access queries do
not leak any information about the access patterns, and
will be described in more detail in subsection 2.2.

2.2. Oblivious RAM
Oblivious RAM (ORAM) algorithms were first intro-
duced by Goldreich and Ostrovsky in order to protect
software from piracy by concealing the content and ac-
cess pattern of program instructions during execution
[4, 5]. Because ORAM algorithms provide additional
protection compared to regular encryption techniques it
can also be used to store data on another machine, some
research in this field focuses on improving the efficiency
of the algorithms in a client-server scenario [28].

There have been many different ORAM algorithms de-
signed over the years, all of which conform to the stan-
dard ORAM security definition. We adopt the standard
ORAM security definition from [21]:
Standard definition: Intuitively, the security definition
requires that the server learns nothing about the access
pattern. In other words, no information should be leaked
about:

1. which data is being accessed;

2. how old it is (when it was last accessed);

3. whether the same data is being accessed (linkability);

4. access pattern (sequential, random, etc);

5. whether the access is a read or a write.

Definition 1: (Formal security definition). Let y⃗ :=
((op1,a1,data1),(op2,a2,data2), ...,(opM,aM,dataM))
denote a data request sequence of length M, where each
opi denotes a read(ui) or a write(ui, data) operation.
Specifically, ui denotes the identifier of the block being
read or written, and datai denotes the data being written.
Let A(⃗y) denote the (possibly randomized) sequence of
accesses to the remote storage given the sequence of
data requests y⃗. An ORAM construction is said to be
secure if for any two data request sequences y⃗ and z⃗ of
the same length, their access patterns A(⃗y) and A(⃗z) are
computationally indistinguishable by anyone but the
client.
2.2.1. Square-root ORAM
Square-root ORAM is one of the ORAM algorithms
introduced by Goldreich and Ostrovsky to conceal the
content and access patterns of program instructions [5,
Section 4]. Even though the Square-root ORAM was
originally meant to be used on a single machine, its
usage in client-server scenarios can still protect access
patterns.

Instead of a binary tree structure, which is commonly
used by many ORAM algorithms, Square-root ORAM
simply uses the ordinary (sequential) memory structure.
Provided that the storage capacity of the server should
be N blocks, then the server-side has to posses a memory
of N +

√
N blocks while the client-side has a shelter S

of
√

N blocks. The server-side memory contains N real
blocks and

√
(N) dummy blocks, while the client-side

shelter starts out empty. The server-side memory (real &
dummy blocks) will be obliviously permuted in a way
that only the client-side knows which virtual memory
address a corresponds to the real server-side memory
address.

The Square-root ORAM algorithm works in epochs of
exactly

√
N data accesses. When accessing an address

a (either read or write) the client-side will request its
value from the server and store it in shelter S. If the
client-side already has this address stored in the shelter,
it will request a dummy-value from the server. During
each epoch every dummy value can only be requested (at
most) once in order to comply with the standard ORAM
security definition. During the epoch all writes to the
data will only be applied to the client-side shelter and
not to the server-side storage. Only after an epoch has
been completed will the client-side update the server-side
memory, in a way so that the server-side memory has
been obliviously permuted.

In order to use Square-root ORAM more efficiently in
client-server scenarios, Zahur et al. suggests changes
to the original algorithm [28]. Instead of using a hash-
function to determine the position of each block as the
original version by Goldreich does, Zahur et al. intro-
duces a position map variable π that contains the position
of each block. This position map can be easily oblivi-
ously permuted during initialisation and the end of every
epoch, making these processes much more efficient then
the previous oblivious sorting.

2.2.2. Trivial Bucket ORAM variant
Most ORAM schemes have very high worst-case
performance costs(Ω(N)) because every epoch the
whole structure must be re-organized/shuffled leading
to a long delay, this property is very impractical in
realistic situations [1]. The Trivial bucket ORAM variant
introduced by Shi et al. [20, Section 3] introduces a new
way to perform ORAM by spreading out the shuffle
mechanism during every request, namely eviction.
Eviction ensures that the worst-case performance will
be reduced significantly (O((logN)3)) and improves the
practical applications of ORAM [20].

The data structure used by the server is a binary tree
with N leaves and a depth of D = log2(N), each node of
this tree is a bucket containing L blocks. Each of these
buckets support the operations ReadAndRemove, Add
and Pop.

Every new entry(block) into the ORAM structure will be
added to the root bucket and assigned a random leaf as
position l in the local clients’ position map. Whenever a
block must be read from the ORAM structure, the client
will perform the ReadAndRemove operation on every
bucket between its leaf bucket and the root bucket. Af-
terwards this block will be assigned a new position(leaf)

l∗ and gets added to the root bucket using the Add opera-
tion. Both the ReadAndRemove and the Add operation
are detailed in figure 1 displayed on the next page.

Eviction
In order to avoid the overflow of the buckets and also
to avoid the high cost worst case performances, this
scheme performs the eviction algorithm after every read
or write operation [20, section 3.2]. In this algorithm the
client will pop a certain amount v of buckets from every
layer(depth) of the tree except for the leaves. The popped
block will be added to the child bucket that matches its
position, while a dummy value will be written to the
other child node of the bucket. The details of the Evict
operation are described in figure 2 displayed on the next
page, while the process is illustrated by figure 3.

Figure 3: Eviction process [20]. R represents a real block.
D represents a dummy block. load represents the amount
of real blocks stored in a bucket

2.2.3. PathORAM
PathORAM is an ORAM algorithm proposed by Ste-
fanov et al. that is efficient and easy to implement [22].
The server uses a binary tree as data-structure to store
information, an overview of such a data-structure has
been included in figure 4. Every node in this binary tree
is a bucket, and every bucket contains Z blocks of size
B that can store data. With a binary tree of height L the
position of the buckets are referred to by describing the
path between the root bucket and a leaf node x (which
is a value between 0 and 2L). So the path P(x) refers to
all buckets between the root node and node x, while the
position P(x, l) refers to the bucket at a specific height
(level) in the previously mentioned path. The server sup-
ports simple read and write operations that either reads
all Z blocks of a bucket, or writes all Z blocks to a bucket,
any empty blocks will be filled with dummy data and all
blocks are encrypted by the client before submission.

Figure 4: Binary tree data structure [9]

The client side only has to store 2 separate data structures.
The first one is a temporary storage called a stash S,
which temporarily stores any read blocks to save them
in other buckets. The second local data structure will
be the position map position[a], this structure is used to
find in which path P(x) a block representing address a is
stored. Without this data structure it becomes impossible
to access the data stored in the binary tree on the server,
thus this ORAM algorithm is only usable in a single
client. If anyone wants to use this algorithm to service
multiple clients they need to adjust the protocol so that
the position map is stored online as well.

The PathORAM algorithm is based on the Trivial Bucket
ORAM variant of shi et al., but it implements a different
way to perform eviction during the access operations.
Stefanov et al. describe the client-side protocol as
depicted in figures 5 displayed on the next page. The
notations used in this figure are described in table 1.

N Total # blocks outsourced to server
L Height of binary tree
B Block size (in bits)
Z Capacity of each bucket (in block)

P(x) Path from leaf node x to the root
P(x, l) The bucket at level l along the path P(x)

S Client’s local stash
position Client’s local position map

x := position[a] Block a is currently associated with leaf
node x, i.e., block a resides somewhere
along P(x) or in the stash.

Table 1: PathORAM notations [22]

Figure 1: Data access algorithms [20]

Figure 2: Eviction algorithm [20]

Figure 5: PathORAM client-side instructions [22]

Meaning Notation ORAM Scheme
Total number of
blocks (storage)

N Square-root

Total number of leaf
nodes/buckets

N Trivial bucket

Total number of
blocks (storage)

N PathORAM

Number of blocks per
bucket

L Trivial bucket

Number of blocks per
bucket

Z PathORAM

Height/depth of tree D Trivial bucket
Height/depth of tree L PathORAM
Block address a Square-root
Block address u Trivial bucket
Block address a PathORAM
Position map π Square-root
Position map index[u] Trivial bucket
Position map position[a] PathORAM
Leaf position l, l∗ Trivial bucket
Leaf position x PathORAM
Shelter S Square-root
Stash S PathORAM

Table 2: Notations used by various ORAM schemes

2.2.4. ORAM notation dictionary
The various ORAM papers all use different notations to
refer to specific concepts, such as the tree height/depth,
referred to as L in PathORAM and as D in the Trivial
bucket ORAM variant. In our background description we
used the same notations as the original sources used, so
that the sources can be easily referenced while reading
our background section. In order to illustrate the dif-
ferences, this section contains a dictionary detailing the
different notations used by the various ORAM schemes
in table 2.

3. RELATED WORK
Oblivious RAM was first introduced by Goldreich and
Ostrovsky for the purpose of software protection [4]. Af-
ter its introduction most related research mainly focused
on improving the communication complexity [1], [7],
[17], [20], [21], [25], local storage usage [1], [6], [25]
and server storage overhead [6], [14], [15], [18]. Out
of the many different proposed ORAM versions and im-
provements, PathORAM introduced by Stefanov et al.
has a simple structure that offers an efficient trade-off be-
tween communication complexity and local storage [22],
setting the foundation for further research on the appli-
cation of ORAM in cloud storage services. Yuan et. al
improved upon PathORAM by implementing data shar-
ing scheme where additional users can read or write
data if they have been granted permission by the data
owner [27], providing the ORAM scheme the ability to
support multiple clients which is a necessary property to
implement high-demand cloud storage service functions
such as file sharing. Wolfe et al. further improve upon
PathORAM by providing additional properties useful

for cloud storage services, namely support for resizing
the server capacity and packing multiple files in single
blocks which ensures that the cloud storage space is not
wasted [26]. There are several design details of PathO-
RAM that have not been specified in the original paper,
such as the method of block encryption and the initial-
isation of empty blocks in the server storage. Gordon
et al. compared different solutions to these unspecified
design details in the context of cloud storage services
and provided the most efficient solutions [8].

Besides regular cloud storage, the ORAM algorithms
with efficient communication complexity and storage
efficiency can also be applied to other practical fields.
The most obvious of these is the field of cloud com-
puting, where the cloud server storage contains an (en-
crypted) ORAM structure that can be loaded and exe-
cuted by specialised processors on the server itself. Maas
et al. introduce an improvement on the PathORAM algo-
rithm together with a specialised secure processor named
Phantom which can read and write to the ORAM struc-
ture [16]. The ORAM structure contains the sensitive
data to be processed as well as the code necessary to
process this data, which can be executed by the secure
processor. After the result of the calculations have been
stored in the ORAM structure, it can be accessed again
by the client. Because most ORAM operations in cloud
computing are performed on the server itself without
communicating with the client, regular properties such
as communication complexity can not be solely used to
evaluate their effectiveness. Rather it is the overhead
of the processor securely accessing the ORAM struc-
ture and executing instructions that better represents the
efficiency of the ORAM schemes used in cloud comput-
ing [24].

Cloud computing is an important part in the internet-
of-things(IoT) field, allowing devices to obtain results
of complex calculations or results calculated with the
data collected by multiple devices. Because of the de-
sign of IoT devices, they often posses low calculation
abilities and small storage capacity. This results in re-
quirements for memory usage and calculation complex-
ity while communicating with cloud computing services.
For this purpose Huang et al. introduce the ThinORAM
algorithm, which has very low calculation complexity for
the client side, low communication complexity between
client and server and has low demands on the client-side
storage [10].

4. RESEARCH QUESTIONS AND METHODOLOGY
Before any measurements and tests can be done we must
first set up the client-server infrastructure. The server is
a simple structure supporting a specific maximum stor-
age. During initialisation it creates one (empty) file for
each block until the total size matches the maximum
storage. The server also supports two separate opera-
tions, one is to read a specific block which simply returns
the value from the related file, while the write operation
writes the data sent and returns the previously stored file

content. The client performs AES-128 CTR-mode en-
cryption over any block it communicates with the server,
so that the server is unable to decrypt any block that has
been sent.

In order to answer the research question introduced in
section 1.1, we need to analyse the answers of the 3 re-
lated research sub-questions that are introduced in the
following subsections. Subsection 4.1 elaborates on the
method used to convert the files into proper address-
es/blocks that can be stored using ORAM, while subsec-
tion 4.2 elaborates on the ORAM implementations that
are used to access these addresses/blocks on the server.

4.1. File conversion
Usually cloud storage services can store files (encrypted
or plaintext) regardless of their sizes. However, in
ORAM the size of the blocks that can be stored are
always fixed to a specific size. Therefore in order to
properly implement ORAM solutions in cloud storage
services we must first find a method to map the variable
sized files to blocks of a fixed size.

The details of this method can affect the efficiency of the
final solution. For example, every file requires at least
one block of storage space, if the blocksize is much larger
then the file stored it will be inefficient. At the same time
other file properties (such as file hash) can also be used
in order to improve the method for file conversion.

Research sub-question 1: Which file conversion method
is most suitable for a cloud storage service?

In order to find the best solution suitable for the problem
described, we will need to try several different file con-
version methods and measure their efficiency. In order
to answer the research sub-question and select the most
suitable file conversion method we will measure several
quantifiable properties of each method, and use those
properties to judge which method is the most suitable for
cloud storage services. The details of this approach are
further described in section 5.

4.2. ORAM implementation
In order to measure the efficiency of several different
ORAM implementations we will introduce a specific sit-
uation for which they will be tested. The cloud storage
service(server) only provides the most basic functionality
of reading and writing blocks, while the client-side it-
self runs different ORAM implementations with various
parameters to test the efficiency. The most important
properties to measure the efficiency of the ORAM im-
plementations are the network communication usage as
well as the local storage usage, as these directly affect
the practical use of cloud storage services.

Research sub-question 2: How efficient is the communi-
cation and local storage usage of the ORAM implemen-
tations?

These tests will be run using the file conversion op-
tions that have been found as an answer to research
sub-question 1, and it will test three different ORAM

implementations which are Square-root ORAM, Trivial
bucket ORAM and PathORAM as described in section
2.2. In order to quantify the efficiency of network com-
munication we measure the number of network requests
between the client and the server, while the local stor-
age usage is quantified by the sizes of the local cache
as well as the index file. Because a larger local stor-
age can reduce the communication complexity (and vice
versa), we will need to measure both properties together
to accurately asses the effectiveness of an ORAM imple-
mentation. The details of this measurement are further
described in section 6.

Although the communication complexity and local stor-
age usage are the most fundamental properties to con-
sider for the usage of ORAM in cloud storage services,
each ORAM implementation has its own properties that
may affect the usage in this scenario. For example,
PathORAM has a flexible shelter that can accommo-
date blocks which no longer fit in the server storage.
However, because of these additional properties the com-
munication efficiency and local storage capacity of these
protocols may be affected. In order to be able to make
a fair comparison between various implementations, we
will keep their requirements simple and mention addi-
tional properties of the implementations separately as the
third research sub-question.

The requirements of the ORAM implementation we test
are the following:

1. Only a single client needs to use the cloud storage.

2. The server will not perform malicious inserts, deletes
or updates. (therefore integrity checks are unneces-
sary)

Research sub-question 3: Which ORAM implementa-
tions have additional properties that can affect the imple-
mentation in cloud storage services?

In order to account for the influence of additional prop-
erties of the ORAM implementations on the cloud stor-
age services we will analyse the detailed results of the
ORAM measurements, and draw conclusions about how
these results would affect cloud storage services. At the
same time, we will also use the theoretical background
knowledge to argue how this affects the usage of the
implementations in cloud storage services.

5. FILE MEASUREMENT
In order to find an answer to research sub-question 1, as
described in section 4.1, we will create a set-up which
allows us to objectively measure the effectiveness of file
conversion methods.

Research sub-question 1: Which file conversion method
is most suitable for a cloud storage service?

In order to measure changes to the file system we will
develop a python monitoring script that detects any addi-
tions, updates or deletions of files in a specific directory.
This directory represents the file system that should be

synchronised with the cloud storage service (server), and
the contents should be converted to block addresses to be
used by the ORAM protocol. This monitoring script will
interact with a python file-conversion script and notify
the file-conversion script of any changes to the directory.
The file-conversion script will keep a local index file con-
taining a record of the block addresses in which a file is
stored, and update this record every time the monitoring
script notifies it of any changes. The relation between
the monitoring and file-conversion scripts are shown by
figure 6.

Figure 6: Class interface for file conversion

There will be only one file-conversion script, yet this
script can accept different parameters which influence
the way it works. By testing different options of the same
script we can objectively quantify which options are best
suited for cloud storage services. The following options
are implemented in our code.

1. Block size, this value determines the minimum file
size as well as the number of blocks that a (large) file
needs to be split into.

2. File hash, if enabled the file hash is stored in the index
file and can be used to detect whether a deleted file
is moved to another location rather then deleted. If
so, the content does not need to be re-uploaded to the
server and we only need to adjust the name in the
index file.

3. Block hash, if enabled the index file will record a hash
of every block of the file. This is used to determine
which blocks have been changed when a file is updated
so that only changed blocks need to be uploaded to the
server. Because of the implementation, this option can
only be used together with the file hash option.

4. Extends, instead of enumerating every block that a file
consists of in the index file we simply record the range,
saving local storage space. E.g.: [1,2,3,6,7,8] will be
recorded as [[1,3],[6,8]]

In order to properly quantify which options are best
suited we need to use a generalised approach and mea-
sure the results. We describe the method we use to mea-
sure the file conversion method in more detail in subsec-
tion 5.1. The results of these measurements are described
in subsection 5.2, and we compare these results in sub-
section 5.3 in order to determine which method is more
suitable for cloud storage services, answering research
sub-question 1.

5.1. Measurement/Experimental setup
In order to measure the effectiveness of the various op-
tions on the file conversion method we have created a
script dedicated to measuring the effectiveness of file
conversion, namely: measure-file-conversion.py. This
script will be run with different options in order to judge
their influence on the file conversion.

This script maintains an initially empty local directory,
which is used by the script to add and change files accord-
ing to the step that is being measured. Then the script
will trigger the monitoring script that parses the changes
in the local directory in order to update the index file.
During this process, the measurement script will measure
various properties in order to judge the effectiveness of
the used options. The following properties are measured
by the script during every step:

1. Time used by the monitoring script to find the changes
to the file system and adjust the index file.

2. The size of the local index file. This property repre-
sents local storage usage.

3. The number of blocks that need to be updated dur-
ing this step, which means that the blocks need to be
uploaded to the server using ORAM. This property
represents communication complexity.

4. Storage efficiency, which is calculated by dividing the
total file size by the total size of all allocated blocks.

In order to ensure that the measurement accurately
reflects the way in which cloud storage services can be
used, the measurement script has 7 different steps to be
measured. Each step performs a specific operation on
the files in the directory so that the efficiency of these
operations can be accurately measured. At the same
time these steps also operate on files of various size,
which reflect the fact that storage services often contain
both small and large files. The following 7 steps are
performed and measured by the script:

1. Initialisation, this step creates files of various sizes
and then initialises the local index file. The following
files will be created during this step:

1000 small files, ranging from 1 byte to 1000
bytes.

1000 medium files, ranging from 1KB to 1000KB

19 large files, ranging from 1MB to 9MB, and
from 10MB to 100MB in 10MB increments.

2. Add, this step creates files to be added to the directory.
The following files will be created during this step:

1000 small files ranging from 1 byte to 1000
bytes.

1000 medium files ranging from 1KB to 1000KB

6 large files of respectively 1,3,5,10,25,50 MB

3. Move, this step moves all the files created in step 2
and moves them to another directory.

4. File reduction, this step removes half the content of
all files created during step 1 with an even file size.

Because the larger files between 20MB and
100MB in size can all be considered as even, we
make the distinction that only the following files
are included in this step: 20MB, 40MB, 60MB,
80MB and 100MB.

5. File increase, this step doubles the content of all files
created during step 1 with an odd file size.

For the reasons provided in step 4, we include the
following files in this step: 30MB, 50MB, 70MB,
90MB

6. File change, this step changes a single byte of each
file moved during step 3.

7. Deletion, this step removes all files currently in the
directory.

5.2. Results
The results of the measurement are included in appendix
A, in this section we present a selection of these measure-
ment results and draw conclusions about the influence of
the four options on the measured properties.

The block size is the only option that influences the stor-
age efficiency. Figure 7 illustrates the minimum and
maximum storage efficiency measured in the different
steps of the measurement, and compares it to the block
size used as an option. The figure shows that the larger
the block size becomes, the lower the storage efficiency
will be.

Figure 7: Measurement results comparing block size to
storage efficiency. The orange bar represents the mini-
mum storage efficiency, while the purple bar represents
the maximum storage efficiency measured during any
step of the measurement.

Figure 8: Measurement results comparing block size to
the number of blocks measured during the Init step.

The block size influences the number of blocks that are
used to store the files and their changes. In order to
understand how this influence is expressed, we need to
understand that this is also influenced by the options file
hash and block hash in the steps Move, File reduction,
File increase and File change. Therefore we display the
correlation between block size and the number of blocks
in figure 8 in the init step. This figure shows that the
block size is inversely correlated to the number of blocks,
as the increase in block size will reduce the number of
blocks used. Because the measured results are dependant
on the distribution of the file size of the files used to
perform measurements, the measurement results may
differ when files with significantly different sizes are
used.

The index file enumerates every block ID that is in use
when the extends-option is False, and when using the
block hash option there will be a hash recorded for every
block in the index file. Because the block size affects
the number of blocks used, it will also affect the size of
the index file, provided that the extends option is false
or block hash is true. Figure 9 displays the relationship
between the block size and the size of the index file
during the init step, with all options as either false or true.
From this we can see that a small block size will require
a much larger index file then a larger block size, however
the differences will become much smaller after the block
size reaches a certain value (about 50KB). At the same
time we see that the difference between all options as
true instead of false increases the size of the index file
with a factor between 8 and 4. The larger the block size
becomes, the smaller the difference in index file size will
be when comparing the measurements with either all
options equal to true or false.

Figure 9: Measurement results comparing block size
to index file size during the Init step. The orange bar
represents results measured with all options equal to
false, while the purple bar represents results measured
with all options equal to true.

Block size not only affects the file size, but also the exe-
cution time measured during the steps in the same way.
When extends is false or block hash is true, increasing
the block size will reduce the execution time. Figure 10
displays the relationship between the block size and the
execution time of the move step, with all measurement
options equal to false. This figure shows that the increase
of the block size will reduce the execution time, however
after the block size reaches 50KB the differences will
become much smaller.

Figure 10: Measurement results comparing block size
to execution time during the Move step, with all other
measurement options equal to false.

The extends option reduces both the execution time and
index file size of every step. The smaller the block size is,
the larger the reduction effect of the extends option will
be. After the block size exceeds 100KB the reduction

effect of the index file size may be negligible, while the
execution time will actually increase.

The file hash option increases both the execution time
and index file size during every step. However, enabling
this step also ensures that during the move step no blocks
need to be transmitted to the server. This option is equal
to expending additional execution time and local storage
space in order to reduce communication complexity for
a specific operation (moving files). The increase in both
execution time and the index file are quite reasonable,
roughly between 10% and 50% depending on the specific
step and measurement.

The block hash option increases both the execution time
and index file size significantly during each step. How-
ever, enabling this option also ensures that during steps
that change file content the amount of blocks that need
to be transmitted to the server will be significantly re-
duced. The increase in both time and index file size is
highly dependant on the block size. If the block size is
low the increase may reach up to 10 times the original,
while with a high block size the increase may be about
50%-100%.

5.3. Analysis
In order to answer research sub-question 1 and find out
which file conversion method is most suitable for cloud
storage services, we must first consider the usage sce-
nario. Considering that we use the cloud storage service
specifically for storage purposes, we must ensure that
the storage efficiency is not too low. We use a storage
efficiency of 90% or higher as benchmark, because such
a value ensures an acceptable storage overhead while
most of our measurement results conform to it. In order
to conform to our benchmark, it requires that the block
size cannot be higher then 50KB.

At the same time, because of the expensive nature of
ORAM communication we must reduce the communi-
cation complexity as much as is feasible. This means
that we can also rule out block sizes which are too low,
leading to a higher number of blocks and therefore com-
munication complexity. Therefore it is most suitable to
use a block size of exactly 50KB, as it has relatively
good storage efficiency, low execution time and small
index file. At the same time, we also enable the extends
option as it only provides benefits and has no drawbacks,
leading to a decreased execution time and index file size.

In order to further reduce the communication complexity,
we will enable both file hash and block hash options.
This ensures that during file operations only the blocks
that have been changed will need to be uploaded again,
saving lots of communication during regular cloud stor-
age service operations such as editing files. This comes
at the expense of significantly increasing both the execu-
tion time and the index file size. However, it is estimated
that the increase in execution time is much less then
transmitting these additional blocks using ORAM would
take, as that is limited by the network communication

speed. And the increase in the index file is estimated to
be roughly equal to about 0.2% the file contents stored
in the cloud storage service.

Our measurement results are all measured based on a
setup where the files have a mixed composition of small,
medium and large files. Therefore our analysis and solu-
tion are also best suited for cloud storage services where
the files stored have a similar composition. If the file
composition is significantly different we would need to
re-run the tests with different files in order to obtain ac-
curate measurement results, but based on the results and
analysis of our current measurements we can still esti-
mate how such compositions would change our analysis.
If the files are all large in size, we could use much larger
block sizes to store the data without sacrificing storage
efficiency. This will result in a much smaller number of
blocks, thus reducing both communication complexity as
well as local storage usage. Because the files are all large
the importance of block hash is even more significant, as
it ensures that when a file is changed not all its content
needs to be updated. If the files are all very small in size,
the current block size must be reduced significantly in
order to ensure that the storage efficiency is not too low.
With files of a small size there will be few blocks per file,
reducing the need for block hashes as there will be little
overhead when all blocks of a changed file needs to be
updated. At the same time, the lack of block hashes can
ensure that the increase in local storage due to the large
number of blocks is limited.

6. ORAM MEASUREMENT
There are two research sub-questions related to ORAM
implementations posed in section 4.2. In order to an-
swer these we introduce an experimental setup in which
we measure the efficiency of the three different ORAM
implementations: Square-root ORAM, PathORAM and
Trivial ORAM.

The experimental setup uses the file conversion parame-
ters found as answer to RQ 1 while testing the different
ORAM implementations. Every time the file-conversion
script described in section 5 needs to upload a block to
the server, it triggers the client to upload the block. The
client then invokes the specific ORAM script to performs
various read and write operations to the server in accor-
dance with the algorithm. In order to ensure that our
measurements are not affected by network communica-
tion and potential delays, the communication between
the client and server will happen through code rather than
real network connections.

By comparing the measured results we can determine
the ratio between communication complexity and local
storage usage of the various ORAM implementations, an-
swering RQ 2. In order to answer research sub-question
3 we do not need to perform additional measurements.
By analysing the results of the measurement and the the-
oretical knowledge of the ORAM implementations, we
can learn the influence of additional properties on cloud
storage services.

Research sub-question 2: How efficient is the communi-
cation and local storage usage of the ORAM implemen-
tations?

Research sub-question 3: Which ORAM implementa-
tions have additional properties that can affect the imple-
mentation in cloud storage services?

Besides using the fixed file conversion parameters dur-
ing the experiment, some ORAM implementations also
require additional parameters. In order to measure their
influence on the experiment, we will perform the mea-
surements with various values. The following options
are implemented in our code.

1. Blocks per bucket, this option is used in both Trivial
ORAM and PathOram and is used to determine how
many blocks are included in a single bucket.

2. Eviction rate, this option is only used by Trivial
ORAM and is used to determine how many blocks
should be evicted after every access operation.

3. Server storage capacity, this option is used by all
ORAM implementations and refers to the maximum
storage of the server. This property can be used to
judge how the load of the database can influence its
effectiveness and properties. At the same time, this pa-
rameter will also affect how often Square-root ORAM
will perform end-of-epoch operations.

We describe the server storage capacity in terms of num-
ber of blocks rather then the usual data storage mea-
surement units such as bytes, which is usually used to
describe storage capacity. This is because some ORAM
algorithms require a small number of bytes to be added to
each block as a means of identification, and at the same
time it also simplifies the description and analysis of our
measurements. The specific values of the server storage
capacity are dependant on the algorithm that is being
tested, as both PathORAM and Trivial ORAM require
the server storage to represent a binary tree containing
buckets, and the Square-root ORAM requires the server
storage to have a shelter of exactly the square-root of
the server storage capacity. This means that the server
storage must conform to the following requirements. For
the binary tree algorithms it must conform to (2X −1)∗Z
where Z equals the number of blocks per bucket and X
can be any integer, and for Square-root ORAM it requires
the server capacity to have an integer as square root. In
order to make a fair comparison between measurements
we require the server capacity to have similar values. For
this reason the options block per bucket and server stor-
age capacity we measure will be limited to values that
result in similar server storage capacities. The specific
values of the storage capacity as well as other parame-
ters used in the measurements can be found in the table
displaying measurement results in appendix B.

A more detailed description of the specific measurement
method is described in subsection 6.1.

In the papers and background knowledge of the ORAM
schemes, sometimes the details of specific situations are
not addressed. In order to properly test these schemes we
had to write code that implements the ORAM algorithms,
this code should also account for these situations in a way
that does not compromise the ORAM security definition.

During the eviction step of Trivial ORAM we read a
block from a parent bucket and write it to the correspond-
ing child bucket. However, if the child bucket is already
full we cannot write the block to it. In this case we
simply store the block and continue to finish the evic-
tion operation. After the eviction operation has finished
we simply perform a new access operation, writing the
stored block to the root node according to the original
algorithm. Only by doing this we can ensure that the
network traffic does not deviate from the traffic during
normal operation, so that third-party observers cannot
learn that the child bucket is full.

During the access operation of the PathORAM we always
read all buckets leading from the root node to the child
leaf corresponding the position of the address written or
read. However, the algorithm does not describe what to
do when a new address is added and thus does not have
a previous position to determine which path to read. In
this case we simply assign a random value as temporary
position in order to ensure that the network traffic follows
the normal pattern, ensuring that third-party observers
cannot learn that this address is newly added.
6.1. Measurement/Experimental setup
In order to measure the implementations of ORAM algo-
rithms, we have created a script dedicated to measuring
the ORAM implementation, namely: measure-oram.py.
This script will be executed with different ORAM imple-
mentations and options to assess their effectiveness and
other properties.

This script maintains a local directory, which is used as a
local storage directory to be uploaded to the server using
ORAM. The measurement script will add a number of
files to this directory, and then triggers the monitoring
script to parse the changes in the directory and invoke the
ORAM script to write the affected blocks to the server.
Because this experiment does not need to account for
storage efficiency, the script will only write files with a
lengths that are multiple times the block size. During
this process the following properties will be measured in
every step.

1. The number of network requests made by the ORAM
scheme.

2. The size of the local index files, both for the file con-
version and ORAM.

3. The maximum size of the local shelter during the exe-
cution of the ORAM algorithm.

4. The server load, which is the number of blocks up-
loaded divided by server capacity. This property may

affect the efficiency and workings of the ORAM algo-
rithms.

5. Execution time, separated in two parts. Namely, the
execution time of the file conversion part, and the
execution time of the ORAM algorithm and communi-
cation.

6. During the Square-root ORAM measurements we will
also count how often the end-of-epoch has been trig-
gered. At the same time we will also record how
many network requests are performed during the end-
of-epoch as well as its execution time.

7. During the Trivial ORAM measurements we will
count how often eviction operations fail, and the
evicted blocks have to be re-added to the root bucket.

Because the various use cases of file manipulation have
already been covered by the file conversion measurement,
this ORAM measurement only needs to cover the addi-
tion and reading of files. That means that this script only
needs the following steps in order to cover all necessary
measurements.

1. Initialisation, this step adds an amount of blocks to
the local directory to ensure that the server load will
read a certain standard. This is to ensure that the
next steps will all be measured under the server load
required.

2. Add, this step will add 50 files, each containing 10
blocks, to the local directory. In this step we can
measure the properties while a server has a certain
load.

3. Increment, this step will append a total of 500 blocks
to randomly selected files that were added in step 2.

4. Read, this step will read all files previously added
during step 2 from the server, and compare whether
the results are still the same as those stored in the local
directory.

During the measurements we use the initialisation step to
partially load the server storage, so that subsequent steps
measure their effectiveness under this load. Because
we need to run a large number of tests for the different
ORAM implementations, we first run all tests without
adding any load at all, effectively omitting the initialisa-
tion step. After we have run all tests without any load, we
will perform measurements with the initialisation steps of
different loads only for a limited number of different op-
tions. These measurements will only be performed with
the options that yield significant results for our research,
so that we can determine the influence of the increased
load on the measured properties. This approach ensures
that we do not perform lengthy measurements that pro-
vide little to none additional information.
6.2. Results
The results of the previously described measurements are
included in appendix B, in this section we present a selec-
tion of these measurement results and draw conclusions

about the influence of the 3 options and the server load
on the measured properties of the three different ORAM
algorithms. We use the results displayed in the appendix
to draw conclusions based on the influence of the options
on the measured properties of each ORAM algorithm,
while we use additional figures displaying representative
values of each algorithm in order to compare the various
algorithms.

The first conclusion we can draw from the analysis is
about the differences between the three steps, Add, In-
crement and Read. The first two steps write 500 blocks
to the server each, while the last step reads 1000 blocks
from the server. From the results we can see that the
number of network requests performed are directly re-
lated to the number of access operations requested. This
means that the network requests measured during steps
Add and Increment are the same for all algorithms, except
for cases in which it is influenced by specific properties
of this algorithm. The only influence on the number of
network requests for the Square-root ORAM is how often
the end-of-epoch is triggered, which may differ between
the different steps. While the only influence for the Triv-
ial ORAM algorithm is how often the eviction step has
failed, as this is no different from performing an addi-
tional access operation. The measurements show that
for all three algorithms the number of network requests
will increase if either the server capacity, bucket size or
the eviction rate increases. The only exception to this
is when in Trivial ORAM the increase of these options
results in fewer failed evictions, causing the total number
of network requests to be reduced. At the same time we
can also conclude that the number of network requests
is not influenced by the server load for all algorithms ex-
cept for Trivial ORAM, where the server load increases
the number of failed evictions and thereby the number of
network requests. Figure 11, displayed on the next page,
compares the number of network requests between the
three ORAM algorithms. It shows that while the number
of requests of Square-root ORAM and PathORAM are
quite similar, the number of requests made by Trivial
ORAM is roughly 10 times larger.

The local storage usage of the ORAM implementation
consists of three different components, namely the local
file index, the local ORAM index, and the shelter itself.
Out of these three components, the size of the local file
index is the most straightforward, as it is independent
of the ORAM algorithm and options used. The size of
the local file index is linearly correlated to the amount
of files and blocks that have been written to the server.
For each measurement without any initial server load
we see that the local index file size after the step Add
equal 44KB, and for every measurement with an initial
server load higher then 0% we see that the local index file
size during the Add step is about 44KB then the file size
during the Init step. At the same time the measurements
of the Init step with various loads also show that the size
of the local file index is linearly correlated with the load
imposed during this step. The size of the local ORAM

index differs per algorithm. For Square-root ORAM the
local ORAM index is dependant only on the server ca-
pacity and will not change in size regardless of the server
load. The local ORAM index file for Trivial ORAM and
PathORAM records the same information and are of the
same size, except for the negligible increase in file size
when PathORAM needs to record information about the
blocks stored in the shelter. Their ORAM index file size
is not dependant on the value of the eviction rate, but it
is related to the server capacity as well as the bucket size.
An increase in bucket size will slightly reduce the size
of the ORAM index file, while higher server capacity
will result in an increase in file size. Similar to the local
file index size, the size of the local ORAM index is also
linearly correlated to the amount of blocks written to
the server and therefore increases with the server load
in PathORAM and Trivial ORAM. Figure 12, which is
displayed on the next page, compares the local ORAM
index file size between the three algorithms. As the re-
sults of the measurements of PathORAM are the same as
those of Trivial ORAM, the Trivial ORAM results have
been omitted from the figure. This figure indicates that
the local ORAM index of Square-root ORAM is larger
then the index of PathORAM and Trivial ORAM, espe-
cially when measuring results without any server load.
The last component which represents the local storage
usage is the shelter itself, and its value represent the num-
ber of blocks that are stored on the client each 50KB in
size. Square-root ORAM has a fixed shelter size, equal
to the square-root of the server capacity, and is not influ-
enced by properties other then the capacity itself. Trivial
ORAM has no concept of a shelter at all so the results
always record the value 0 as basis for comparison, while
the shelter size of PathORAM changes depending on the
specific situation. In PathORAM a block will be added
to the shelter if, during the access operation, it cannot be
written to a bucket because it is full. This means that the
shelter size will depend on how frequent a bucket is full,
which is influenced by the various options. The results
show that increased values of the bucket size lead to a
significant decrease in shelter size, while an increased
server capacity leads to a minor decrease in shelter size.
At the same time an increase in server load will increase
the shelter size, while also magnifying the influence of
the other options on the shelter size.

The measurement results record the execution time dur-
ing each step in two different parts, namely the execution
time of the ORAM algorithm and execution time of the
file conversion code. The results show that except for
very few outliers, the execution time of the file conver-
sion code during each step is less then 2% of the execu-
tion time of the ORAM algorithm itself. Because this
value is negligible compared to the execution time of the
ORAM scheme itself, we will only analyse the execution
time of the ORAM algorithm. In all three algorithms
the execution time will increase as the server capacity or
bucket size does. At the same time an increase in eviction
rate will increase the execution time in the Trivial ORAM

Figure 11: Measurement results comparing server capacity to network requests made during Add step, measurement
results without any server load. Because the server capacity used during measurements of different algorithms and
block sizes differ slightly, we display the results measured with similar server capacities in the same range. Note that all
entries of Trivial ORAM came from measurements with eviction rate = 3.

Figure 12: Measurement results comparing server capacity to local ORAM index file size, made during Add step. Note
that the values of Trivial ORAM are the same as those of PathORAM, which is included in the figure.

Figure 13: Measurement results comparing server capacity to ORAM execution time of the Add step, measurement
results without any server load.

measurements, unless this increase causes a significant
reduction in the number of failed evictions. The execu-
tion time of both Square-root ORAM and PathORAM
are unaffected by the server load, while an increased
load in Trivial ORAM will result in more failed evictions
thus increasing the execution time. Figure 13 compares
the execution time between the three algorithms. The
figure shows that Square-root ORAM and PathORAM
have similar execution times, while Trivial ORAM has a
much longer execution time, up to 10 times that of the
other two algorithms even without the influence of server
load.

During the measurements of the Square-root ORAM we
measure the additional properties related to the end-of-
epoch, namely the number of times the end-of-epoch is
invoked, the number of network requests made during
this time as well as the execution time of the end-of-
epoch invocations. From these results we can observe
the following information, namely that during each step
there is only one network request per access except for
the additional network requests made during the end-of-
epoch. At the same time, the amount of network requests
made during a single end-of-epoch invocation is close to
the server capacity plus the shelter size. The duration of
the invocations of end-of-epoch during each step takes
between 50% and 90% of the total ORAM execution
time. The specific percentage is unaffected by server
load, but a higher server capacity will lead to a higher
percentage.

The measurements of the Trivial ORAM scheme also
record another property, namely the amount of times that
the eviction process failed. This means that the failed
block needs to be added to the ORAM structure again,
resulting in another access operation that requires a large
number of network requests and execution time. The
results of the measurements show that increasing the
bucket size or the eviction rate will significantly decrease
the number of failed evictions, while the server capac-
ity has no influence on the number of failed evictions.
However, regardless of the other options an measurement
with an eviction rate of 1 will have a very high number
of failed measurements compared to other eviction rate
values.

Once the server load of Trivial ORAM exceeds 50%
there will be a large chance that all leaf buckets of the
data structure are full. The likelihood of this occurring
will increase when the eviction rate is higher, as well as
with the increase in server load. When all leaf buckets
of the data structure are full, the evicted data will fail
and thereby trigger the failed eviction process in which
the data will be added to the root bucket again before
triggering a new eviction process. This process can cause
a large number of nested failed evictions which signif-
icantly slows down the access of blocks. Due to this
sometimes access to a block may take over half an hour
of execution time, which is too long for any practical use.
Once this situation occurs we abort the measurement,
and thus we only write the results of the steps that have
been completed in the appendix. For the same reason

we did not perform any measurements on Trivial ORAM
with a load of 75%.

6.3. Analysis
In order to find the answer to research sub-quest 2, which
is mentioned in section 4.2, we need to analyse the effi-
ciency of the network communication and local storage
usage of the three different ORAM algorithms. The
results summarised in figure 11 show that the number
of network requests made by Square-root ORAM and
PathORAM are very similar, at least for results where
the bucket size is 4. However, the number of network
requests made by Trivial ORAM is almost 10 times as
much as those made by the other two algorithms. Even
if the bucket size increases, the difference in network re-
quests between Square-root ORAM and PathORAM will
be much smaller then the difference between PathORAM
and Trivial ORAM. The results also show that neither
Square-root ORAM nor PathORAM are influenced by
the server load, but that a higher server load in Trivial
ORAM will cause a significant increase in the number
of network requests made.

As described in the previous section, we can compare the
usage of local storage between the three algorithms by
looking at the size of the local ORAM index file as well
as the shelter. The results show that the size of the local
ORAM index file is the same for the PathORAM and
Trivial ORAM algorithms, except that the file of PathO-
RAM can be slightly larger if there are additional blocks
stored in the shelter. Comparing these two algorithms
to Square-root ORAM, we see that the ORAM index
file of Square-root ORAM is always larger regardless of
the server load. Besides the ORAM index file, the other
component necessary to judge the local storage usage of
the algorithms is the shelter size. Square-root ORAM
has a fixed shelter size which is equal to the square-root
of the server capacity, while Trivial ORAM has no shel-
ter at all. PathORAM has instead a flexible shelter size,
which is generally much smaller then the shelter size of
Square-root ORAM. However, if the bucket size is too
low or the server load is too high, then the shelter size
may become several times larger then that of Square-root
ORAM. A shelter containing 90 blocks of 50KB each
is already 4.5MB large, which is a size that occurs in
many measurements of both Square-root ORAM and
PathORAM. Because this is significantly larger than the
size of the index files, we can claim that the efficiency of
local storage usage is mainly defined by the size of the
shelter. This leads to the fact that Trivial ORAM has the
most efficient use of local storage, while the difference
between PathORAM and Square-root ORAM depends
on the shelter size of PathORAM.

In order to answer research sub-question 3 we need to
find additional properties of the ORAM algorithms that
have an influence on their usage in cloud storage services.
The following paragraphs will describe the properties we
found for each algorithm.

Square-root ORAM is an algorithm in which the majority
of network requests and execution time are spend during
the end-of-epoch. In fact, if you perform the access opera-
tion and do not trigger the end-of-epoch, then each access
operation only costs one network request. Because of
this Square-root ORAM is very efficient when handling
files much smaller then the square-root of the server ca-
pacity, however it has a very high worst-case cost. This
means that there may be significant delays when access-
ing a file, if the client encounters the end-of-epoch. The
end-of-epoch is triggered precisely every time a fixed
number (square-root of the server capacity) of blocks
have been accessed. This means that Square-root ORAM
is not very suited for active cloud storage services, where
due to the clients actions access operations need imme-
diate responses. However, this is no problem for cloud
storage services such as Dropbox where a local directory
is automatically synchronised to the server by a process
running in the background. Due to the predictability of
when end-of-epoch occurs, it is possible to trigger it on
purpose at a desirable moment by randomly accessing
sufficient blocks. In doing so it is possible to schedule
an end-of-epoch at a moment when the device is not in
use. This could be useful in situations where the amount
of files accessed during the day is insufficient to trigger
an end-of-epoch, so that the end-of-epoch itself can be
triggered at a desirable moment such as at night. How-
ever there are few cases for cloud storage services where
the number and size of the files that are accessed are few
enough that end-of-epochs are never triggered during the
day.

PathORAM is an algorithm which is not influenced by
the server load in either the number of network requests
nor in the execution time. At the same time, because of
the nature of the algorithm, it has no large worst-case cost.
Because each read or write operation requires the same
amount of network requests and execution time, PathO-
RAM is an algorithm with stable performance which is
very applicable to cloud storage services where the client
actively writes or reads files. At the same time, the maxi-
mum shelter capacity of PathORAM is not limited by the
algorithm itself but only by the local storage capacity of
the client. Because of this property, PathORAM can store
additional blocks in the local shelter when the server load
is full ensuring that blocks are not lost. This situation is
very applicable to cloud storage services where usually
a client pays for a limited amount of storage capacity,
and only upgrades after it is completely full. In this case,
the client can temporarily maintain the additional data in
the PathORAM shelter until the server capacity has been
upgraded.

Trivial ORAM is an algorithm which is negatively influ-
enced by the server load. When the load of the server
increases, so will the number of network requests as well
as the execution time. This means that when the cloud
storage service is in use, the more data is stored the less
efficient Trivial ORAM will be. Although this can be
partially mitigated by increasing the server storage ca-

pacity such that the server load is relatively less, this will
ultimately lead to a large server-side storage overhead.
Because cloud storage services often require payment or
investment of appropriate hardware, a large server-side
storage overhead is akin to having paid for storage capac-
ity that can not be used. At the same time, increasing the
server storage capacity will increase the number of net-
work requests as well as the execution time of the Trivial
ORAM algorithm required for each access operation or
failed eviction. This means that only when the load is
sufficiently large that the reduction of failed evictions
due to the increase in server capacity offsets the increase
in expenses for the access operation.

7. CONCLUSION
In order to answer the research question and judge what
ORAM solutions are best suited for cloud storage ser-
vices, we combine the answers of the sub-research ques-
tions described in sections 5.3 and 6.3.

The analysis of the file measurement section shows that
it is most suitable for cloud storage services to reduce
the amount of communication complexity at the expense
of increasing the local storage usage. For this reason
we use both file hashes and block hashes during the file
conversion. At the same time we also enable the extends
option, as this has no downsides and simple reduces the
local storage usage. Based on the example directory used
in testing the file conversion method we decided to use
a block size of 50KB, which is a block size that ensures
good storage efficiency and communication complexity.
However, the block size chosen is dependant on the files
used to perform the measurements. If the composition
of the files used in cloud storage services significantly
differs from the files used during the measurements, we
suggest to adapt the block size to a value more suitable
for the file composition.

The analysis of the ORAM measurement section shows
the efficiency of the three algorithms in their local storage
usage and communication complexity, as well as how
their properties affect their usage in cloud storage ser-
vices. Trivial ORAM has a very low local storage usage
at the expense of requiring high communication com-
plexity. While both Square-root ORAM and PathORAM
posses a much more efficient communication complexity
at the expense of increased local storage usage due to the
size of their shelter. Cloud storage services are usually
accessed by devices that posses reasonable amounts of
local storage, and in situations where the client wants
to access the files with as little delay as possible. Be-
cause of this, we can conclude that in cloud storage
services it is better to reduce communication complexity
at the expense of (linearly) increased local storage usage.
This makes the Square-root ORAM and PathORAM best
suited for cloud storage services, especially with regards
to their usage of communication complexity and local
storage.

In addition, because cloud storage services are used to
store files it is common for them to have a significant

server load. This means that Trivial ORAM, which is
negatively influenced by server load, is not suited for
usage in cloud storage services. Square-root ORAM is
an algorithm with a very low best-case cost and very
high worst-case cost, while PathORAM is a very stable
algorithm in which each access has the same execution
costs. This difference reflects the best use case scenario
for each algorithm. Namely, PathORAM is best used in
active cloud storage services in which the client requires
stable and fast response to their access operations. This
situation mainly occurs when the cloud storage services
are used as external storage without possessing a local
copy of the content, such as mobile phone usage where
the local storage capacity is insufficient to store large
amounts of files. Square-root ORAM, on the other hand,
has variable response times depending on whether the
end-of-epoch is triggered. This algorithm is best used
in background processes where cloud storage services
automatically synchronise local directories to the server,
which is often used as an automated back-up.

7.1. Limitations and future work
Our ORAM measurements are performed with a server
capacity ranging from 4080 blocks to 16384 blocks, this
means that the maximum server storage that was used in
our measurements is only 820MB. This ensures that our
measurements can be performed in a reasonable amount
of time, allowing us to perform measurements with many
different options. The downside of this approach is that
our result is not truly representative of cloud storage ser-
vices with a much larger server capacity. Because of this
we can only draw conclusions for such services based by
extrapolating on the results we found and the influence of
options on these results. Because of the large number of
options in PathORAM and Trivial ORAM as well as the
high execution time for performing load measurements,
we limited the amount of measurements with initialised
server load for these two algorithms. Although we do not
have measurement results for all options, we performed
the load measurements for some representative values so
that we can draw conclusions based on inference.

Although our research is to find out which ORAM al-
gorithm is best-suited for the usage in cloud storage
services, the original versions of the ORAM algorithms
we implemented lack many features that are required
for providing functions that are often used in cloud stor-
age services such as sharing files with third parties and
integrity checks. Although there is plenty of research
in adapting various ORAM algorithms to provide such
functions, doing so would change the implementation
of the algorithm. This means that the measurements we
performed are no longer representative of the changed
algorithm, and it requires additional research to verify
their suitability for usage in cloud storage services.

Some aspects of the ORAM algorithms we used need
to be carefully considered or adjusted in order to make
it suitable for cloud storage services. For example, in
Square-root ORAM the client-side shelter is used to store

large amounts of changes before any updates are pushed
to the server. Because of this, the algorithm is unsuitable
for the usage of multiple clients unless the shelter will
also be stored on the server. In Trivial ORAM when the
server load exceeds 50% there will be a high chance that
all leaf buckets are completely full. In this scenario it
is guaranteed to trigger a failed eviction, which in turns
causes a new access and eviction operation with the same
high chance that all leaf buckets are full. Because of this
reason, once the server loads exceeds 50% there will be a
significant increase in nested failed evictions causing the
execution of the algorithm to slow down significantly. If
we wish to use Trivial ORAM in cloud storage services,
we must first find another way to handle failed evictions
without causing such nested loops. This may be solved
by introducing a shelter that temporarily stores the failed
evictions, and re-introduce the sheltered blocks into the
binary tree in a way that does not compromise the ORAM
security definition by showing deviations in the network
traffic.

REFERENCES
[1] Dan Boneh, David Mazieres, and Raluca Popa.

2011. Remote Oblivious Storage: Making
Oblivious RAM Practical. (03 2011).

[2] Benny Chor, Eyal Kushilevitz, Oded Goldreich,
and Madhu Sudan. 1998. Private Information
Retrieval. J. ACM 45, 6 (Nov. 1998), 965–981.
DOI:http://dx.doi.org/10.1145/293347.293350

[3] Anders P. K. Dalskov and Claudio Orlandi. 2018.
Can You Trust Your Encrypted Cloud? An
Assessment of SpiderOakONE’s Security. In
Proceedings of the 2018 on Asia Conference on
Computer and Communications Security
(ASIACCS ’18). Association for Computing
Machinery, New York, NY, USA, 343–355. DOI:
http://dx.doi.org/10.1145/3196494.3196547

[4] O. Goldreich. 1987. Towards a Theory of Software
Protection and Simulation by Oblivious RAMs. In
Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing (STOC ’87).
Association for Computing Machinery, New York,
NY, USA, 182–194. DOI:
http://dx.doi.org/10.1145/28395.28416

[5] Oded Goldreich and Rafail Ostrovsky. 1996.
Software Protection and Simulation on Oblivious
RAMs. J. ACM 43, 3 (May 1996), 431–473. DOI:
http://dx.doi.org/10.1145/233551.233553

[6] Michael T. Goodrich and Michael Mitzenmacher.
2010. MapReduce Parallel Cuckoo Hashing and
Oblivious RAM Simulations. CoRR abs/1007.1259
(2010). http://arxiv.org/abs/1007.1259

[7] Michael T. Goodrich, Michael Mitzenmacher, Olga
Ohrimenko, and Roberto Tamassia.
Privacy-Preserving Group Data Access via

Stateless Oblivious RAM Simulation. 157–167.
DOI:
http://dx.doi.org/10.1137/1.9781611973099.14

[8] Steven Gordon, Atsuko Miyaji, Chunhua Su, and
Karin Sumongkayyothin. 2015. Analysis of Path
ORAM toward Practical Utilization. In 2015 18th
International Conference on Network-Based
Information Systems. 646–651. DOI:
http://dx.doi.org/10.1109/NBiS.2015.113

[9] Thang Hoang, Ceyhun Ozkaptan, Gabriel
Hackebeil, and Attila Yavuz. 2018. Efficient
Oblivious Data Structures for Database Services on
the Cloud. IEEE Transactions on Cloud
Computing PP (11 2018), 1–1. DOI:
http://dx.doi.org/10.1109/TCC.2018.2879104

[10] Yanyu Huang, Bo Li, Zheli Liu, Jin Li, Siu-Ming
Yiu, Thar Baker, and Brij B. Gupta. 2020.
ThinORAM: Towards Practical Oblivious Data
Access in Fog Computing Environment. IEEE
Transactions on Services Computing 13, 4 (2020),
602–612. DOI:
http://dx.doi.org/10.1109/TSC.2019.2962110

[11] Mohammad Saiful Islam, Mehmet Kuzu, and
Murat Kantarcioglu. 2012. Access Pattern
disclosure on Searchable Encryption: Ramification,
Attack and Mitigation. In NDSS.

[12] Seny Kamara and Kristin Lauter. 2010.
Cryptographic Cloud Storage. In Financial
Cryptography and Data Security, Radu Sion, Reza
Curtmola, Sven Dietrich, Aggelos Kiayias,
Josep M. Miret, Kazue Sako, and Francesc Sebé
(Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 136–149.

[13] Nasrin Khanezaei and Zurina Mohd Hanapi. 2014.
A framework based on RSA and AES encryption
algorithms for cloud computing services. In 2014
IEEE Conference on Systems, Process and Control
(ICSPC 2014). 58–62. DOI:
http://dx.doi.org/10.1109/SPC.2014.7086230

[14] Qiumao Ma, Jinsheng Zhang, Yang Peng,
Wensheng Zhang, and Daji Qiao. 2016.
SE-ORAM: A Storage-Efficient Oblivious RAM
for Privacy-Preserving Access to Cloud Storage. In
2016 IEEE 3rd International Conference on Cyber
Security and Cloud Computing (CSCloud). 20–25.
DOI:http://dx.doi.org/10.1109/CSCloud.2016.24

[15] Qiumao Ma and Wensheng Zhang. 2019. Octopus
ORAM: An Oblivious RAM with Communication
and Server Storage Efficiency. ICST Transactions
on Security and Safety 6 (04 2019), 162405. DOI:
http://dx.doi.org/10.4108/eai.29-4-2019.162405

[16] Martin Maas, Eric Love, Emil Stefanov, Mohit
Tiwari, Elaine Shi, Krste Asanovic, John

Kubiatowicz, and Dawn Song. 2013. PHANTOM:
Practical Oblivious Computation in a Secure
Processor. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer &
Communications Security (CCS ’13). Association
for Computing Machinery, New York, NY, USA,
311–324. DOI:
http://dx.doi.org/10.1145/2508859.2516692

[17] Travis Mayberry, Erik-Oliver Blass, and
Agnes Hui Chan. 2014. Efficient Private File
Retrieval by Combining ORAM and PIR. In NDSS.

[18] Benny Pinkas and Tzachy Reinman. 2010.
Oblivious RAM Revisited. Cryptology ePrint
Archive, Report 2010/366. (2010).
https://ia.cr/2010/366.

[19] Manish M. Potey, C.A. Dhote, and Deepak H.
Sharma. 2016. Homomorphic Encryption for
Security of Cloud Data. Procedia Computer
Science 79 (2016), 175–181. DOI:
http://dx.doi.org/https:

//doi.org/10.1016/j.procs.2016.03.023

Proceedings of International Conference on
Communication, Computing and Virtualization
(ICCCV) 2016.

[20] Elaine Shi, T. H. Hubert Chan, Emil Stefanov, and
Mingfei Li. 2011. Oblivious RAM with O((logN)3)
Worst-Case Cost. In Advances in Cryptology –
ASIACRYPT 2011, Dong Hoon Lee and Xiaoyun
Wang (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 197–214.

[21] Emil Stefanov, Elaine Shi, and Dawn Song. 2011.
Towards Practical Oblivious RAM. CoRR
abs/1106.3652 (2011).
http://arxiv.org/abs/1106.3652

[22] Emil Stefanov, Marten van Dijk, Elaine Shi,
Christopher Fletcher, Ling Ren, Xiangyao Yu, and
Srinivas Devadas. 2013. Path ORAM: An
Extremely Simple Oblivious RAM Protocol. In
Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security (CCS

’13). Association for Computing Machinery, New
York, NY, USA, 299–310. DOI:
http://dx.doi.org/10.1145/2508859.2516660

[23] Maha Tebaa and Said El Hajji. 2014. Secure Cloud
Computing through Homomorphic Encryption.
CoRR abs/1409.0829 (2014).
http://arxiv.org/abs/1409.0829

[24] Xiao Shaun Wang, Yan Huang, T-H. Hubert Chan,
Abhi Shelat, and Elaine Shi. 2014. SCORAM:
Oblivious RAM for Secure Computation. In
Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS

’14). Association for Computing Machinery, New

York, NY, USA, 191–202. DOI:
http://dx.doi.org/10.1145/2660267.2660365

[25] Peter Williams and Radu Sion. 2012. Single Round
Access Privacy on Outsourced Storage. In
Proceedings of the 2012 ACM Conference on
Computer and Communications Security (CCS
’12). Association for Computing Machinery, New
York, NY, USA, 293–304. DOI:
http://dx.doi.org/10.1145/2382196.2382229

[26] Nathan Wolfe, Ethan Zou, Ling Ren, and Xiangyao
Yu. 2015. Optimizing Path ORAM for Cloud
Storage Applications. (01 2015).

[27] Dandan Yuan, Xiangfu Song, Qiuliang Xu,
Minghao Zhao, Xiaochao Wei, Hao Wang, and
Han Jiang. 2018. An ORAM-based privacy
preserving data sharing scheme for cloud storage.
Journal of Information Security and Applications
39 (2018), 1–9. DOI:http://dx.doi.org/https:
//doi.org/10.1016/j.jisa.2018.01.002

[28] Samee Zahur, Xiao Wang, Mariana Raykova,
Adria Gascon, Jack Doerner, David Evans, and
Jonathan Katz. 2016. Revisiting Square-Root
ORAM: Efficient Random Access in Multi-party
Computation. 218–234. DOI:
http://dx.doi.org/10.1109/SP.2016.21

[29] Wenying Zeng, Yuelong Zhao, Kairi Ou, and Wei
Song. 2009. Research on Cloud Storage
Architecture and Key Technologies. In Proceedings
of the 2nd International Conference on Interaction
Sciences: Information Technology, Culture and
Human (ICIS ’09). Association for Computing
Machinery, New York, NY, USA, 1044–1048. DOI:
http://dx.doi.org/10.1145/1655925.1656114

APPENDIX
A. FILE CONVERSION MEASUREMENT RESULTS
This section contains the results of the file conversion measurements, as described in section 5.1. Tables 3 to 9 contain
the measurement results, each table represents a specific block size. Note that the raw measurement results from the
code can be found in the git repository referred to in section 1.2.

5KB block size Extends False True
File Hash False True False True
Block Hash False False True False False True

Init Time 1.2s 4.1s 7.7s 1.2s 4.2s 8.4s
Blocks 220500 220500 220500 220500 220500 220500
Index file 1.86M 2.01M 17.0M 232K 386K 15.4M
Storage efficiency 99.41% 99.41% 99.41% 99.41% 99.41% 99.41%

Add Time 332s 333s 763s 56s 65s 707s
Blocks 120300 120300 120300 120300 120300 120300
Index file 3.04M 3.35M 26.6M 477K 783K 24.0M
Storage efficiency 99.24% 99.24% 99.24% 99.24% 99.24% 99.24%

Move Time 794s 813s 1774s 207s 250s 1786s
Blocks 120300 0 0 120300 0 0
Index file 3.03M 3.34M 26.6M 464K 770K 24.0M
Storage efficiency 99.24% 99.24% 99.24% 99.24% 99.24% 99.24%

File reduction Time 203s 213s 471s 53s 64s 456s
Blocks 58750 58750 900 58750 58750 900
Index file 3.03M 3.33M 22.6M 900K 1.21M 20.5M
Storage efficiency 99.07% 99.07% 99.07% 99.07% 99.07% 99.07%

File increase Time 217s 228s 530s 47s 58s 527s
Blocks 206700 206700 103900 206700 206700 103900
Index file 3.39M 3.70M 30.0M 481K 787K 27.1M
Storage efficiency 99.33% 99.33% 99.33% 99.33% 99.33% 99.33%

File change Time 450s 467s 1119s 77s 95s 1167s
Blocks 120300 120300 2006 120300 120300 2006
Index file 3.39M 3.70M 30.0M 481K 787K 27.1M
Storage efficiency 99.33% 99.33% 99.33% 99.33% 99.33% 99.33%

Deletion Time 816s 827s 1329s 548s 563s 1358s
Blocks 0 0 0 0 0 0
Index file 2.97M 2.97M 2.97M 2.97M 2.97M 2.97M
Storage efficiency - - - - - -

Table 3: File measurement results with a blocksize of 5KB

10KB block size Extends False True
File Hash False True False True
Block Hash False False True False False True

Init Time 1.7s 7.4s 10.4s 1.8s 5.1s 7.8s
Blocks 111000 111000 111000 111000 111000 111000
Index file 985K 1.14M 8.72M 232K 385K 7.97M
Storage efficiency 98.74% 98.74% 98.74% 98.74% 98.74% 98.74%

Add Time 173s 201s 535s 50s 68s 289s
Blocks 60900 60900 60900 60900 60900 60900
Index file 1.69M 2.0M 13.8M 447K 782K 12.5M
Storage efficiency 98.37% 98.37% 98.37% 98.37% 98.37% 98.37%

Move Time 417s 499s 1108s 150s 200s 669s
Blocks 60900 0 0 60900 0 0
Index file 1.68M 1.98M 13.7M 464K 769K 12.5M
Storage efficiency 98.37% 98.37% 98.37% 98.37% 98.37% 98.37%

File reduction Time 114s 124s 305s 42s 62s 188s
Blocks 29750 29750 950 29750 29750 950
Index file 1.68M 1.98M 11.8M 666K 972K 10.8M
Storage efficiency 98.01% 98.01% 98.01% 98.01% 98.01% 98.01%

File increase Time 119s 183s 334s 40s 149s 210s
Blocks 103700 103700 52450 103700 103700 52450
Index file 1.86M 2.16M 15.4M 479K 785K 14.1M
Storage efficiency 98.58% 98.58% 98.58% 98.58% 98.58% 98.58%

File change Time 247s 291s 691s 72s 99s 423s
Blocks 60900 60900 2006 60900 60900 2006
Index file 1.86M 2.16M 15.4M 479K 785K 14.1M
Storage efficiency 98.58% 98.58% 98.58% 98.58% 98.58% 98.58%

Deletion Time 425s 463s 792s 300s 343s 556s
Blocks 0 0 0 0 0 0
Index file 1.44M 1.44M 1.44M 1.44M 1.44M 1.44M
Storage efficiency - - - - - -

Table 4: File measurement results with a blocksize of 10KB

25KB block size Extends False True
File Hash False True False True
Block Hash False False True False False True

Init Time 1.7s 4.6s 7.5s 2.1s 5.1s 7.6s
Blocks 45300 45300 45300 45300 45300 45300
Index file 514K 668K 3.78M 230K 384K 3.50M
Storage efficiency 96.78% 96.78% 96.78% 96.78% 96.78% 96.78%

Add Time 140s 116s 240s 82s 69s 175s
Blocks 25260 25260 25260 25260 25260 25260
Index file 910K 1.22M 6.08M 472K 778K 5.64M
Storage efficiency 95.86% 95.86% 95.86% 95.86% 95.86% 95.86%

Move Time 328s 270s 496s 187s 166s 384s
Blocks 25260 0 0 25260 0 0
Index file 897K 1.20M 6.06M 459K 765K 5.63M
Storage efficiency 95.86% 95.86% 95.86% 95.86% 95.86% 95.86%

File reduction Time 98s 87s 140s 60s 53s 113s
Blocks 12350 12350 980 12350 12350 980
Index file 897K 1.20M 5.28M 537K 843K 4.92M
Storage efficiency 95.04% 95.04% 95.04% 95.04% 95.04% 95.04%

File increase Time 97s 85s 178s 60s 52s 124s
Blocks 41940 41940 21580 41940 41940 21580
Index file 960K 1.27M 6.74M 473K 779K 6.25M
Storage efficiency 96.34% 96.34% 96.34% 96.34% 96.34% 96.34%

File change Time 204s 167s 314s 113s 99s 250s
Blocks 25260 25260 2006 25260 25260 2006
Index file 960K 1.27M 6.74M 474K 779K 6.25M
Storage efficiency 96.34% 96.34% 96.34% 96.34% 96.34% 96.34%

Deletion Time 322s 287s 350s 255s 192s 303s
Blocks 0 0 0 0 0 0
Index file 546K 546K 546K 546K 546K 546K
Storage efficiency - - - - - -

Table 5: File measurement results with a blocksize of 25KB

50KB block size Extends False True
File Hash False True False True
Block Hash False False True False False True

Init Time 2.8s 5.9s 8.2s 2.4s 5.5s 8.3s
Blocks 23400 23400 23400 23400 23400 23400
Index file 361K 514K 2.14M 229K 382K 2.01M
Storage efficiency 93.68% 93.68% 93.68% 93.68% 93.68% 93.68%

Add Time 73s 112s 197s 52s 83s 167s
Blocks 13380 13380 13380 13380 13380 13380
Index file 673K 979K 3.54M 470K 776K 3.34M
Storage efficiency 91.95% 91.95% 91.95% 91.95% 91.95% 91.95%

Move Time 158s 237s 413s 113s 177s 415s
Blocks 13380 0 0 13380 0 0
Index file 660K 966K 3.53M 457K 763K 3.33M
Storage efficiency 91.95% 91.95% 91.95% 91.95% 91.95% 91.95%

File reduction Time 49s 76s 127s 37s 58s 130s
Blocks 6550 6550 990 6550 6550 990
Index file 660K 966K 3.14M 495K 801K 2.97M
Storage efficiency 90.42% 90.42% 90.42% 90.42% 90.42% 90.42%

File increase Time 53s 79s 137s 39s 63s 147s
Blocks 21340 21340 11290 21340 21340 11290
Index file 692K 998K 3.87M 470K 775K 3.65M
Storage efficiency 92.85% 92.85% 92.85% 92.85% 92.85% 92.85%

File change Time 100s 153s 276s 73s 120s 216s
Blocks 13380 13380 2006 13380 13380 2006
Index file 691K 998K 3.87M 470K 775K 3.65M
Storage efficiency 92.85% 92.85% 92.85% 92.85% 92.85% 92.85%

Deletion Time 136s 198s 293s 115s 171s 217s
Blocks 0 0 0 0 0 0
Index file 278K 278K 278K 278K 278K 278K
Storage efficiency - - - - - -

Table 6: File measurement results with a blocksize of 50KB

75KB block size Extends False True
File Hash False True False True
Block Hash False False True False False True

Init Time 4.2s 7.0s 9.0s 3.5s 6.4s 9.0s
Blocks 16115 16115 16115 16115 16115 16115
Index file 310K 463K 1.59M 228K 382K 1.51M
Storage efficiency 90.68% 90.68% 90.68% 90.68% 90.68% 90.68%

Add Time 75s 91s 127s 57s 72s 115s
Blocks 9431 9431 9431 9431 9431 9431
Index file 594K 900K 2.70M 470K 775K 2.58M
Storage efficiency 88.26% 88.26% 88.26% 88.26% 88.26% 88.26%

Move Time 157s 179s 263s 118s 149s 234s
Blocks 9431 0 0 9431 0 0
Index file 582K 887K 2.69M 457K 762K 2.56M
Storage efficiency 88.26% 88.26% 88.26% 88.26% 88.26% 88.26%

File reduction Time 49s 55s 84s 38s 51s 79s
Blocks 4629 4629 1002 4629 4629 1002
Index file 581K 887K 2.43M 481K 786K 2.33M
Storage efficiency 86.14% 86.14% 86.14% 86.14% 86.14% 86.14%

File increase Time 49s 61s 90s 39s 53s 83s
Blocks 14484 14484 7862 14484 14484 7862
Index file 603K 909K 2.91M 468K 774K 2.78M
Storage efficiency 89.49% 89.49% 89.49% 89.49% 89.49% 89.49%

File change Time 101s 114s 177s 77s 113s 163s
Blocks 9431 9431 2006 9431 9431 2006
Index file 603K 909K 2.91M 468K 773K 2.78M
Storage efficiency 89.49% 89.49% 89.49% 89.49% 89.49% 89.49%

Deletion Time 129s 143s 187s 107s 150s 173s
Blocks 0 0 0 0 0 0
Index file 189K 189K 189K 189K 189K 189K
Storage efficiency - - - - - -

Table 7: File measurement results with a blocksize of 75KB

100KB block size Extends False True
File Hash False True False True
Block Hash False False True False False True

Init Time 4.9s 7.4s 10s 4.8s 7.4s 10s
Blocks 12450 12450 12450 12450 12450 12450
Index file 284K 438K 1.32M 228K 382K 1.26M
Storage efficiency 88.03% 88.03% 88.03% 88.03% 88.03% 88.03%

Add Time 67s 81s 119s 58s 69s 106s
Blocks 7440 7440 7440 7440 7440 7440
Index file 555K 861K 2.28M 469K 775K 2.19M
Storage efficiency 85.02% 85.02% 85.02% 85.02% 85.02% 85.02%

Move Time 144s 157s 245s 120s 134s 213s
Blocks 7440 0 0 7440 0 0
Index file 542K 848K 2.26M 456K 762K 2.18M
Storage efficiency 85.02% 85.02% 85.02% 85.02% 85.02% 85.02%

File reduction Time 43s 55s 80s 40s 48s 72s
Blocks 3650 3650 995 3650 3650 995
Index file 542K 848K 2.07M 473K 779K 2.00M
Storage efficiency 82.44% 82.44% 82.44% 82.44% 82.44% 82.44%

File increase Time 48s 56s 87s 43s 51s 77s
Blocks 11050 11050 6150 11050 11050 6150
Index file 558K 864K 2.43M 466K 772K 2.34M
Storage efficiency 86.53% 86.53% 86.53% 86.53% 86.53% 86.53%

File change Time 90s 110s 160s 79s 95s 149s
Blocks 7440 7440 2006 7440 7440 2006
Index file 559K 864K 2.43M 465K 771K 2.34M
Storage efficiency 86.53% 86.53% 86.53% 86.53% 86.53% 86.53%

Deletion Time 108s 128s 161s 97s 110s 154s
Blocks 0 0 0 0 0 0
Index file 144K 144K 144K 144K 144K 144K
Storage efficiency - - - - - -

Table 8: File measurement results with a blocksize of 100KB

250KB block size Extends False True
File Hash False True False True
Block Hash False False True False False True

Init Time 12s 14s 16s 12s 13s 21s
Blocks 5880 5880 5880 5880 5880 5880
Index file 242K 396K 828K 226K 379K 811K
Storage efficiency 74.56% 74.56% 74.56% 74.56% 74.56% 74.56%

Add Time 64s 79s 106s 78s 78s 153s
Blocks 3876 3876 3876 3876 3876 3876
Index file 484K 790K 1.52M 462K 768K 1.50M
Storage efficiency 69.33% 69.33% 69.33% 69.33% 69.33% 69.33%

Move Time 123s 138s 195s 129s 138s 287s
Blocks 3876 0 0 3876 0 0
Index file 471K 777K 1.50M 449K 755K 1.48M
Storage efficiency 69.33% 69.33% 69.33% 69.33% 69.33% 69.33%

File reduction Time 42s 52s 72s 43s 55s 97s
Blocks 1910 1910 998 1910 1910 998
Index file 471K 777K 1.43M 455K 761K 1.41M
Storage efficiency 65.18% 65.18% 65.18% 65.18% 65.18% 65.18%

File increase Time 44s 53s 73s 46s 56s 107s
Blocks 4868 4868 3058 4868 4868 3058
Index file 478K 784K 1.57M 454K 760K 1.55M
Storage efficiency 71.93% 71.93% 71.93% 71.93% 71.93% 71.93%

File change Time 83s 102s 138s 84s 112s 205s
Blocks 3876 3876 2006 3876 3876 2006
Index file 478K 784K 1.57M 454K 760K 1.55M
Storage efficiency 71.93% 71.93% 71.93% 71.93% 71.93% 71.93%

Deletion Time 85s 99s 166s 85s 100s 182s
Blocks 0 0 0 0 0 0
Index file 64K 64K 64K 64K 64K 64K
Storage efficiency - - - - - -

Table 9: File measurement results with a blocksize of 250KB

B. ORAM MEASUREMENT RESULTS
This section contains the results of the ORAM measurements, as described in section 6.1. Tables 10 and 11 contain the
Square-root ORAM measurement results, tables 12 to 17 contain the PathORAM measurement results, and tables 18 to
31 contain the Trivial ORAM measurement results. Note that the raw measurement results from the code can be found
in the git repository referred to in section 1.2.

Note that for load measurements of Trivial ORAM, we did not perform any measurements with a load of 75%. At the
same time, due to bad performance of Trivial ORAM when the server load exceeds 50% some measurements were
aborted before they were finished. In this case only the measurement results for steps that were completed are recorded
in the results. More details about this can be found in sections 6.2 and 7.1.

SQRT - part 1 Server capacity 4096 blocks 8100 blocks
Server load 0% 25% 50% 75% 0% 25% %

Init Network requests 0 67637 135277 202928 0 182271
Local index file(oram) 57K 57K 57K 57K 113K 113K
Local index file(file) 68B 91K 182K 273K 68B 180K
Shelter size 64 64 64 64 90 90
time(ORAM) 0s 156s 264s 447s 0s 710s
time(File conversion) 0s 0.5s 1.3s 3.6s 0s 1.6s
Server load 0% 25% 50% 75% 0% 25%
end-of-epoch occurrences 0 16 32 48 0 22
time(eoe) 0s 87s 124s 231s 0s 498s
network requests(eoe) 0 66613 133229 199856 0 180246

Add Network requests 29641 29640 29652 29643 41464 49658
Local index file(oram) 57K 57K 57K 57K 113K 113K
Local index file(file) 44K 135K 226K 317K 44K 224K
Shelter size 64 64 64 64 90 90
time(ORAM) 81s 73s 67s 73s 144s 195s
time(File conversion) 0.2s 0.5s 1s 1s 0.7s 0.9s
Server load 12.2% 37.2% 62.2% 87.2% 6.2% 31.2%
end-of-epoch occurrences 7 7 7 7 5 6
time(eoe) 51s 40s 29s 40s 90s 143s
network requests(eoe) 29141 29140 29152 29143 40964 49158

Increment Network requests 33806 33803 33797 33805 49666 41473
Local index file(oram) 57K 57K 57K 57K 113K 113K
Local index file(file) 79K 170K 261K 352K 79K 259K
Shelter size 64 64 64 64 90 90
time(ORAM) 95s 89s 72s 75s 187s 173s
time(File conversion) 0.4s 0.7s 1.4s 1.2s 0.6s 0.9s
Server load 24.4% 49.4% 74.4% 99.4% 12.4% 37.4%
end-of-epoch occurrences 8 8 8 8 6 5
time(eoe) 64s 51s 36s 41s 136s 120s
network requests(eoe) 33306 33303 33297 33305 49166 40973

Read Network requests 67630 67611 67632 67619 91122 91132
Local index file(oram) 56K 57K 57K 57K 113K 113K
Local index file(file) 79K 170K 261K 352K 79K 259K
Shelter size 64 64 64 64 90 90
time(ORAM) 202s 150s 130s 150s 372s 369s
time(File conversion) 0.1s 0.2s 0.1s 0.2s 0.2s 0.1s
Server load 24.4% 49.4% 74.4% 99.4% 12.4% 37.4%
end-of-epoch occurrences 16 16 16 16 11 11
time(eoe) 142s 80s 62s 82s 269s 265s
network requests(eoe) 66630 66611 66632 66619 90122 90132

Table 10: ORAM measurement results of Square-root - part 1

SQRT - part 2 Server capacity 8100 blocks 16384 blocks
Server load 50% 75% 0% 25% 50% 75% %

Init Network requests 372777 555066 0 523617 1065214 1597840
Local index file(oram) 113K 113K 243K 243K 243K 243K
Local index file(file) 359K 539K 68B 363K 727K 1.09M
Shelter size 90 90 128 128 128 128
time(ORAM) 1286s 1186s 0s 3343s 10098s 15371s
time(File conversion) 3.4s 6.4s 0s 36s 94s 144s
Server load 50% 75% 0% 25% 50% 75%
end-of-epochs 45 67 0 32 64 96
time(eoe) 922s 1326s 0s 2772s 9017s 13765s
network requests(eoe) 368727 548991 0 528521 1057022 1585552

Add Network requests 41479 49663 50045 50051 50043 50049
Local index file(oram) 113K 113K 243K 243K 243K 243K
Local index file(file) 404K 583K 44K 408K 771K 1.14M
Shelter size 90 90 128 128 128 128
time(ORAM) 142s 165s 219s 577s 531s 585s
time(File conversion) 1.2s 1.6s 0.3s 3.9s 49s 45s
Server load 56.2% 81.2% 3.1% 28.1% 53.1% 78.1%
end-of-epochs 5 6 3 3 3 3
time(eoe) 96s 122s 150s 511s 463s 517s
network requests(eoe) 40979 49163 49545 49551 49543 49549

Increment Network requests 49670 41462 66567 66565 66562 66565
Local index file(oram) 113K 113K 243K 243K 243K 243K
Local index file(file) 438K 618K 79K 442K 806K 1.17M
Shelter size 90 90 128 128 128 128
time(ORAM) 165s 149s 479s 1093s 586s 651s
time(File conversion) 1.3s 1.9s 0.4s 5.9s 23s 33s
Server load 62.4% 87.4% 6.1% 31.1% 56.1% 81.1%
end-of-epochs 6 5 4 4 4 4
time(eoe) 120s 102s 408s 1024s 516s 581s
network requests(eoe) 49170 40962 66067 66065 66062 66065

Read Network requests 91132 91140 133140 133127 133129 133128
Local index file(oram) 113K 113K 243K 243K 243K 243K
Local index file(file) 438K 618K 79K 442K 806K 1.17M
Shelter size 90 90 128 128 128 128
time(ORAM) 320s 314s 682s 1332s 617s 630s
time(File conversion) 0.1s 0.2s 0.1s 0.2s 0.1s 0.1s
Server load 62.4% 87.4% 6.1% 31.3% 56.1% 81.1%
end-of-epochs 11 11 8 8 8 8
time(eoe) 228s 221s 539s 1193s 472s 486s
network requests(eoe) 90132 90140 132140 132127 132129 132128

Table 11: ORAM measurement results of Square-root - part 2

Pathoram - 1 Bucket size (Z) 1 2
Server capacity 4095 8191 16383 4094 8190 16382

Add Network requests 12000 13000 14000 22000 24000 26000
Local index file(oram) 6.7K 6.8K 6.8K 6K 6.3K 6.4K
Local index file(file) 44K 44K 44K 44K 44K 44K
Shelter size 92 90 80 20 25 9
time(ORAM) 21s 24s 27s 33s 40s 49s
time(File conversion) 0.2s 0.2s 0.2s 0.2s 0.2s 0.2s
Server load 12.2% 6.1% 3.1% 12.2% 6.1% 3.1%

Increment Network requests 12000 13000 14000 22000 24000 26000
Local index file(oram) 13K 13K 14K 12K 13K 13K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 155 151 150 23 25 18
time(ORAM) 27s 32s 39s 32s 36s 50s
time(File conversion) 0.5s 0.4s 0.4s 0.4s 0.4s 0.4s
Server load 24.4% 12.2% 6.1% 24.4% 12.2% 6.1%

Read Network requests 24000 26000 28000 44000 48000 52000
Local index file(oram) 13K 14K 14K 12K 12K 13K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 156 162 154 25 35 30
time(ORAM) 55s 63s 82s 65s 76s 98s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 24.4% 12.2% 6.1% 24.4% 12.2% 6.1%

Table 12: ORAM measurement result of Pathoram with bucket sizes 1 and 2, the init step is not displayed because all
measurements are initiated with 0% basic load.

Pathoram - 2 Bucket size (Z) 4 8
Server capacity 4092 8188 16380 4088 8184 16376

Add Network requests 40000 44000 48000 72000 80000 88000
Local index file(oram) 5.9K 6.0K 6.2K 5.8K 5.9K 6.0K
Local index file(file) 44K 44K 44K 44K 44K 44K
Shelter size 3 2 2 0 0 0
time(ORAM) 67s 82s 92s 132s 151s 176s
time(File conversion) 0.2s 0.2s 0.6s 0.2s 0.2s 0.2s
Server load 12.2% 6.1% 3.1% 12.2% 6.1% 3.1%

Increment Network requests 40000 44000 48000 72000 80000 88000
Local index file(oram) 12K 12K 12K 12K 12K 12K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 3 3 3 0 0 0
time(ORAM) 68s 78s 87s 123s 154s 164s
time(File conversion) 0.4s 0.4s 0.4s 0.4s 0.5s 0.8s
Server load 24.4% 12.2% 6.1% 24.5% 12.2% 6.1%

Read Network requests 80000 88000 96000 144000 160000 176000
Local index file(oram) 12K 12K 12K 12K 12K 12K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 4 3 3 0 0 0
time(ORAM) 144s 157s 178s 244s 332s 395s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 24.4% 12.2% 6.1% 24.5% 12.2% 6.1%

Table 13: ORAM measurement result of Pathoram with bucket sizes 4 and 8, the init step is not displayed because all
measurements are initiated with 0% basic load.

Pathoram - 3 Bucket size (Z) 16
Server capacity 4080 8176 16369

Add Network requests 128000 144000 160000
Local index file(oram) 5.6K 5.8K 5.9K
Local index file(file) 44K 44K 44K
Shelter size 0 0 0
time(ORAM) 224s 258s 340s
time(File conversion) 0.2s 0.2s 0.4s
Server load 12.3% 6.1% 3.1%

Increment Network requests 128000 144000 160000
Local index file(oram) 11K 12K 12K
Local index file(file) 79K 79K 79K
Shelter size 0 0 0
time(ORAM) 232s 261s 344s
time(File conversion) 0.4s 0.6s 0.4s
Server load 24.5% 12.2% 6.1%

Read Network requests 256000 288000 320000
Local index file(oram) 11K 12K 12K
Local index file(file) 79K 79K 79K
Shelter size 0 0 0
time(ORAM) 452s 571s 657s
time(File conversion) 0.1s 0.1s 0.1s
Server load 24.5% 12.2% 6.1%

Table 14: ORAM measurement result of Pathoram with bucket size 16, the init step is not displayed because all
measurements are initiated with 0% basic load.

Pathoram - 25% load Bucket size (Z) 2 4 8
Server capacity 8190 4092 8188 16380 8184

Init Network requests 98256 81840 180136 393120 327260
Local index file(oram) 27K 12K 25K 54K 25K
Local index file(file) 182K 91K 182K 363K 181K
Shelter size 37 5 3 3 0
time(ORAM) 162s 151s 302s 959s 583s
time(File conversion) 1.2s 0.6s 1.1s 8.4s 1.4s
Server load 25% 25% 25% 25% 25%

Add Network requests 24000 40000 44000 48000 80000
Local index file(oram) 33K 18K 32K 61K 32K
Local index file(file) 226K 135K 226K 408K 226K
Shelter size 37 5 3 3 0
time(ORAM) 40s 74s 74s 115s 142s
time(File conversion) 0.7s 0.5s 0.6s 1.3s 0.8s
Server load 31.1% 37.2% 31.1% 28.1% 31.1%

Increment Network requests 24000 40000 44000 48000 80000
Local index file(oram) 40K 25K 38K 68K 38K
Local index file(file) 261K 170K 261K 442K 260K
Shelter size 52 5 4 11 0
time(ORAM) 41s 71s 74s 122s 144s
time(File conversion) 0.8s 0.9s 0.8s 1.9s 0.9s
Server load 37.2% 49.4% 37.2% 31.1% 37.2%

Read Network requests 48000 80000 88000 96000 160000
Local index file(oram) 40K 25K 38K 68K 38K
Local index file(file) 261K 170K 261K 442K 260K
Shelter size 53 5 4 12 0
time(ORAM) 84s 152s 151s 264s 286s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 37.2% 49.4% 37.2% 31.1% 37.2%

Table 15: ORAM measurement result of Pathoram with initialisation load of 25%

Pathoram - 50% load Bucket size (Z) 2 4 8
Server capacity 8190 4092 8188 16380 8184

Init Network requests 196560 163680 360272 786240 654720
Local index file(oram) 54K 25K 52K 109K 51K
Local index file(file) 363K 181K 363K 727K 363K
Shelter size 78 4 5 5 0
time(ORAM) 331s 298s 601s 2044s 1153s
time(File conversion) 3.7s 1.4s 3.6s 42s 3.8s
Server load 50% 50% 50% 50% 50%

Add Network requests 24000 40000 44000 48000 80000
Local index file(oram) 62K 32K 58K 116K 58K
Local index file(file) 408K 226K 408K 771K 407K
Shelter size 130 4 5 5 0
time(ORAM) 45s 71s 73s 114s 138s
time(File conversion) 1.2s 0.8s 1.5s 3.2s 1.2s
Server load 56.1% 62.2% 56.1% 53.1% 56.1%

Increment Network requests 24000 40000 44000 48000 80000
Local index file(oram) 68K 38K 65K 123K 64K
Local index file(file) 442K 260K 442K 806K 442K
Shelter size 130 4 5 5 0
time(ORAM) 50s 77s 72s 115s 136s
time(File conversion) 1.4s 1.0s 1.3s 3.2s 1.4s
Server load 62.2% 74.4% 62.2% 56.1% 62.2%

Read Network requests 48000 80000 88000 96000 160000
Local index file(oram) 68K 38K 65K 123K 64K
Local index file(file) 442K 260K 442K 806K 442K
Shelter size 132 9 5 5 0
time(ORAM) 96s 131s 146s 226s 273s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 62.2% 74.4% 62.2% 56.1% 62.2%

Table 16: ORAM measurement result of Pathoram with initialisation load of 50%

Pathoram - 75% load Bucket size (Z) 2 4 8
Server capacity 8190 4092 8188 16380 8184

Init Network requests 294816 245520 540408 1179360 982080
Local index file(oram) 83K 38K 78K 167K 78K
Local index file(file) 545K 272K 545K 1.09M 545K
Shelter size 240 5 4 7 0
time(ORAM) 571s 438s 897s 2584s 1698s
time(File conversion) 8.3s 2.1s 6.1s 66s 7.5s
Server load 75% 75% 75% 75% 75%

Add Network requests 24000 40000 44000 48000 80000
Local index file(oram) 91K 45K 85K 174K 84K
Local index file(file) 589K 317K 589K 1.14M 589K
Shelter size 377 38 20 12 0
time(ORAM) 78s 62s 68s 104s 132s
time(File conversion) 2.0s 1.1s 1.9s 14s 1.7s
Server load 81.1% 87.2% 81.1% 78.1% 81.1%

Increment Network requests 24000 40000 44000 48000 80000
Local index file(oram) 98K 52K 92K 181K 90K
Local index file(file) 624K 351K 624K 1.17M 624K
Shelter size 563 229 64 15 0
time(ORAM) 85s 65s 65s 100s 125s
time(File conversion) 2.3s 1.2s 1.7s 3.2s 2.3s
Server load 87.2% 99.4% 87.2% 81.1% 87.2%

Read Network requests 48000 80000 88000 96000 160000
Local index file(oram) 98K 52K 92K 181K 90K
Local index file(file) 624K 351K 624K 1.17M 624K
Shelter size 567 235 74 17 0
time(ORAM) 208s 183s 129s 203s 246s
time(File conversion) 0.2s 0.2s 0.2s 0.1s 0.1s
Server load 87.2% 99.4% 87.2% 81.1% 87.2%

Table 17: ORAM measurement result of Pathoram with initialisation load of 75%

Trivial - 1 Bucket size 1
Server capacity 4095 8191
Eviction rate 1 3 5 1 3 5

Add Network requests 303232 253586 280896 351400 278658 326740
Local index file(oram) 6.2K 6.2K 6.2K 6.4K 6.4K 6.4K
Local index file(file) 44K 44K 44K 44K 44K 44K
Shelter size 0 0 0 0 0 0
time(ORAM) 545s 469s 523s 705s 566s 673s
time(File conversion) 0.2s 0.2s 0.2s 0.2s 0.4s 0.2s
Server load 12.2% 12.2% 12.2% 6.1% 6.1% 6.1%
Failed evictions 2796 731 412 3014 733 461

Increment Network requests 443072 361530 395164 406200 362278 379440
Local index file(oram) 12K 12K 12K 13K 13K 13K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 836s 679s 743s 834s 757s 797s
time(File conversion) 0.5s 0.4s 0.4s 0.4s 0.4s 0.4s
Server load 24.4% 24.4% 24.4% 12.2% 12.2% 12.2%
Failed evictions 4316 1255 783 3562 1103 616

Read Network requests 966460 837802 894124 829300 723878 734400
Local index file(oram) 12K 12K 12K 13K 13K 13K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 1914s 1574s 1696s 1809s 1511s 1552s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 24.4% 24.4% 24.4% 12.2% 12.2% 12.2%
Failed evictions 9505 3067 1903 7293 2203 1160

Table 18: ORAM measurement result of Trivial ORAM with bucket size 1, the init step is not displayed because all
measurements are initiated with 0% basic load.

Trivial - 2 Bucket size 1 2
Server capacity 16383 4094
Eviction rate 1 3 5 1 3 5

Add Network requests 380916 309960 326616 234360 239196 306912
Local index file(oram) 6.5K 6.5K 6.5K 6.0K 6.0K 6.0K
Local index file(file) 44K 44K 44K 44K 44K 44K
Shelter size 0 0 0 0 0 0
time(ORAM) 1405s 759s 919s 398s 483s 610s
time(File conversion) 1.4s 0.2s 0.5s 0.5s 0.2s 0.2s
Server load 3.1% 3.1% 3.1% 12.2% 12.2% 12.2%
Failed evictions 3027 760 378 895 143 56

Increment Network requests 454356 356946 393576 274344 271560 355488
Local index file(oram) 13K 13K 13K 12K 12K 12K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 1631s 1146s 1284s 468s 578s 703s
time(File conversion) 1.2s 0.7s 0.9s 0.1s 0.6s 0.4s
Server load 6.1% 6.1% 6.1% 24.4% 24.4% 24.4%
Failed evictions 3707 951 558 1133 230 144

Read Network requests 896076 748578 799056 559776 564324 750168
Local index file(oram) 13K 13K 13K 12K 12K 12K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 2913s 2385s 2572s 957s 1066s 1560s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 6.1% 6.1% 6.1% 24.4% 24.4% 24.4%
Failed evictions 7297 2043 1148 2332 517 359

Table 19: ORAM measurement result of Trivial ORAM with bucket sizes 1 and 2, the init step is not displayed because
all measurements are initiated with 0% basic load.

Trivial - 3 Bucket size 2
Server capacity 8190 16382
Eviction rate 1 3 5 1 3 5

Add Network requests 249504 269860 341880 274000 283404 382840
Local index file(oram) 6.2K 6.2K 6.2K 6.4K 6.4K 6.4K
Local index file(file) 44K 44K 44K 44K 44K 44K
Shelter size 0 0 0 0 0 0
time(ORAM) 456s 508s 675s 569s 645s 847s
time(File conversion) 0.2s 0.2s 0.2s 0.2s 0.2s 0.3s
Server load 6.1% 6.1% 6.1% 3.1% 3.1% 3.1%
Failed evictions 856 155 55 870 127 63

Increment Network requests 294584 294992 362208 326400 304648 397120
Local index file(oram) 12K 12K 12K 13K 13K 13K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 547s 566s 703s 753s 802s 1032s
time(File conversion) 0.4s 0.4s 0.4s 0.4s 0.4s 0.8s
Server load 12.2% 12.2% 12.2% 6.1% 6.1% 6.1%
Failed evictions 1101 216 88 1132 174 84

Read Network requests 579416 593280 723184 627200 616076 792880
Local index file(oram) 12K 12K 12K 13K 13K 13K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 1066s 1132s 1422s 1506s 1547s 2044s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 12.2% 12.2% 12.2% 6.1% 6.1% 6.1%
Failed evictions 2149 440 174 2136 363 166

Table 20: ORAM measurement result of Trivial ORAM with bucket size 2, the init step is not displayed because all
measurements are initiated with 0% basic load.

Trivial - 4 Bucket size 4
Server capacity 4092 8188
Eviction rate 1 3 5 1 3 5

Add Network requests 242896 335984 488976 249312 376464 553104
Local index file(oram) 5.9K 5.9K 5.9K 6K 6K 6K
Local index file(file) 44K 44K 44K 44K 44K 44K
Shelter size 0 0 0 0 0 0
time(ORAM) 410s 602s 881s 443s 703s 1089s
time(File conversion) 0.5s 0.2s 0.4s 0.9s 0.2s 0.2s
Server load 12.2% 12.2% 12.2% 6.1% 6.1% 6.1%
Failed evictions 229 6 1 242 6 1

Increment Network requests 260224 349264 506544 294336 382416 555312
Local index file(oram) 12K 12K 12K 12K 12K 12K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 426s 656s 911s 519s 717s 1083s
time(File conversion) 0.4s 0.4s 0.3s 0.4s 0.4s 0.4s
Server load 24.4% 24.4% 24.4% 12.2% 12.2% 12.2%
Failed evictions 356 26 19 376 14 3

Read Network requests 526400 732392 1069696 598752 764088 1116144
Local index file(oram) 12K 12K 12K 12K 12K 12K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 917s 1328s 1922s 1116s 1428s 2227s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 24.4% 24.4% 24.4% 12.2% 12.2% 12.2%
Failed evictions 850 103 96 782 27 11

Table 21: ORAM measurement result of Trivial ORAM with bucket size 4, the init step is not displayed because all
measurements are initiated with 0% basic load.

Trivial - 5 Bucket size 4 8
Server capacity 16380 4088
Eviction rate 1 3 5 1 3 5

Add Network requests 289248 418592 616000 310080 587504 848000
Local index file(oram) 6.2K 6.2K 6.2K 5.8K 5.8K 5.8K
Local index file(file) 44K 44K 44K 44K 44K 44K
Shelter size 0 0 0 0 0 0
time(ORAM) 563s 931s 1332s 536s 1086s 1509s
time(File conversion) 0.2s 0.8s 0.8s 0.2s 0.2s 0.2s
Server load 3.1% 3.1% 3.1% 12.2% 12.2% 12.2%
Failed evictions 286 8 0 70 3 0

Increment Network requests 335616 426832 618464 359584 585168 853088
Local index file(oram) 12K 12K 12K 12K 12K 12K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 691s 998s 1403s 588s 1083s 1506s
time(File conversion) 0.4s 0.9s 0.8s 0.4s 0.4s 0.4s
Server load 6.1% 6.1% 6.1% 24.5% 24.5% 24.5%
Failed evictions 412 18 2 161 1 3

Read Network requests 641792 845424 1239392 703392 1193696 1745184
Local index file(oram) 12K 12K 12K 12K 12K 12K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 1391s 1855s 2644s 1151s 2211s 3099s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 6.1% 6.1% 6.1% 24.5% 24.5% 24.5%
Failed evictions 744 26 6 293 22 29

Table 22: ORAM measurement result of Trivial ORAM with bucket sizes 4 and 8, the init step is not displayed because
all measurements are initiated with 0% basic load.

Trivial - 6 Bucket size 8
Server capacity 8184 16376
Eviction rate 1 3 5 1 3 5

Add Network requests 372704 664000 976000 395808 744000 1104000
Local index file(oram) 5.9K 5.9K 5.9K 6K 6K 6K
Local index file(file) 44K 44K 44K 44K 44K 44K
Shelter size 0 0 0 0 0 0
time(ORAM) 639s 1285s 2277s 762s 1535s 2258s
time(File conversion) 0.2s 0.2s 1.8s 0.4s 1.2s 1.2s
Server load 6.1% 6.1% 6.1% 3.1% 3.1% 3.1%
Failed evictions 113 0 0 89 0 0

Increment Network requests 395808 664000 976000 430080 744000 1104000
Local index file(oram) 12K 12K 12K 12K 12K 12K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 660s 1218s 2056s 863s 1582s 2341s
time(File conversion) 0.9s 0.4s 3.0s 0.8s 1.6s 1.1s
Server load 12.2% 12.2% 12.2% 6.1% 6.1% 6.1%
Failed evictions 151 0 0 140 0 0

Read Network requests 808032 1331984 1952000 885024 1489488 2208000
Local index file(oram) 12K 12K 12K 12K 12K 12K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 1345s 2485s 3811s 1814s 3069s 4548s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 12.2% 12.2% 12.2% 6.1% 6.1% 6.1%
Failed evictions 329 3 0 317 1 0

Table 23: ORAM measurement result of Trivial ORAM with bucket size 8, the init step is not displayed because all
measurements are initiated with 0% basic load.

Trivial - 7 Bucket size 16
Server capacity 4080 8176
Eviction rate 1 3 5 1 3 5

Add Network requests 506880 1008000 1440000 580992 1168000 1696000
Local index file(oram) 5.6K 5.6K 5.6K 5.8K 5.8K 5.8K
Local index file(file) 44K 44K 44K 44K 44K 44K
Shelter size 0 0 0 0 0 0
time(ORAM) 927s 2025s 2612s 989s 2513s 3474s
time(File conversion) 0.2s 1.6s 1.3s 0.4s 2.6s 2.0s
Server load 12.3% 12.3% 12.3% 6.1% 6.1% 6.1%
Failed evictions 28 0 0 34 0 0

Increment Network requests 528960 1008000 1440000 598400 1168000 1696000
Local index file(oram) 11K 11K 11K 12K 12K 12K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 849s 1883s 2522s 1125s 2184s 3178s
time(File conversion) 0.4s 3.1s 2.9s 1.2s 0.9s 0.5s
Server load 24.5% 24.5% 24.5% 12.2% 12.2% 12.2%
Failed evictions 51 0 0 50 0 0

Read Network requests 1069440 2018016 2888640 1228352 2336000 3392000
Local index file(oram) 11K 11K 11K 12K 12K 12K
Local index file(file) 79K 79K 79K 79K 79K 79K
Shelter size 0 0 0 0 0 0
time(ORAM) 1741s 4044s 5982s 2787s 4639s 6603s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 24.5% 24.5% 24.5% 12.2% 12.2% 12.2%
Failed evictions 114 1 3 129 0 0

Table 24: ORAM measurement result of Trivial ORAM with bucket size 16, the init step is not displayed because all
measurements are initiated with 0% basic load.

Trivial - 8 Bucket size 16
Server capacity 16368
Eviction rate 1 3 5

Add Network requests 615296 1328000 1952000
Local index file(oram) 5.9K 5.9K 5.9K
Local index file(file) 44K 44K 44K
Shelter size 0 0 0
time(ORAM) 1456s 3064s 4352s
time(File conversion) 1.2s 1.2s 2.3s
Server load 3.1% 3.1% 3.1%
Failed evictions 6 0 0

Increment Network requests 678528 1328000 1952000
Local index file(oram) 12K 12K 12K
Local index file(file) 79K 79K 79K
Shelter size 0 0 0
time(ORAM) 1607s 3045s 4328s
time(File conversion) 2.3s 2.9s 3.8s
Server load 6.1% 6.1% 6.1%
Failed evictions 58 0 0

Read Network requests 1397184 2656000 3904000
Local index file(oram) 12K 12K 12K
Local index file(file) 79K 79K 79K
Shelter size 0 0 0
time(ORAM) 3220s 6100s 8836s
time(File conversion) 0.1s 0.1s 0.1s
Server load 6.1% 6.1% 6.1%
Failed evictions 149 0 0

Table 25: ORAM measurement result of Trivial ORAM with bucket size 16, the init step is not displayed because all
measurements are initiated with 0% basic load.

Trivial 25% load - 1 Bucket size 2 4
Server capacity 8190 4092
Eviction rate 1 3 5 1 3 5

Init Network requests 1213112 1207984 1536304 513152 698528 1026752
Local index file(oram) 27K 27K 27K 12K 12K 12K
Local index file(file) 182K 182K 182K 91K 91K 91K
Shelter size 0 0 0 0 0 0
time(ORAM) 2342s 2409s 3007s 854s 1279s 1854s
time(File conversion) 1.8s 1.5s 1.6s 0.4s 0.6s 0.5s
Server load 25% 25% 25% 25% 25% 25%
Failed evictions 4546 885 447 665 29 29

Add Network requests 385848 362148 458920 274816 413672 613904
Local index file(oram) 33K 33K 33K 18K 18K 18K
Local index file(file) 226K 226K 226K 135K 135K 135K
Shelter size 0 0 0 0 0 0
time(ORAM) 722s 697s 897s 450s 731s 1098s
time(File conversion) 1.1s 0.8s 0.7s 0.9s 0.6s 0.5s
Server load 31.1% 31.1% 31.1% 37.2% 37.2% 37.2%
Failed evictions 1597 379 245 404 123 129

Increment Network requests 403328 430128 596288 394288 725752 1316624
Local index file(oram) 40K 40K 40K 25K 25K 25K
Local index file(file) 261K 261K 261K 170K 170K 170K
Shelter size 0 0 0 0 0 0
time(ORAM) 760s 858s 1165s 641s 1270s 2381s
time(File conversion) 1.2s 0.9s 1.3s 0.6s 0.9s 0.6s
Server load 37.2% 37.2% 37.2% 49.4% 49.4% 49.4%
Failed evictions 1692 544 468 797 593 849

Read Network requests 819352 884564 1235080 843296 1985360 4244624
Local index file(oram) 40K 40K 40K 25K 25K 25K
Local index file(file) 261K 261K 261K 170K 170K 170K
Shelter size 0 0 0 0 0 0
time(ORAM) 1158s 1757s 2424s 1372s 3490s 7527s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 37.2% 37.2% 37.2% 49.4% 49.4% 49.4%
Failed evictions 3453 1147 1005 1774 1990 3349

Table 26: ORAM measurement result of Trivial ORAM with bucket sizes 2 and 4, all measurements are initiated with
25% basic load.

Trivial 25% load - 2 Bucket size 4
Server capacity 8188 16380
Eviction rate 1 3 5 1 3 5

Init Network requests 1201536 1583976 2321712 2744176 3580280 5184256
Local index file(oram) 25K 25K 25K 54K 54K 54K
Local index file(file) 182K 182K 182K 363K 363K 363K
Shelter size 0 0 0 0 0 0
time(ORAM) 2087s 2940s 4400s 5633s 7201s 10487s
time(File conversion) 1.6s 1.3s 1.1s 20.3s 22.9s 27.6s
Server load 25% 25% 25% 25% 25% 25%
Failed evictions 1529 82 56 3362 250 113

Add Network requests 324576 444168 653568 350704 458968 697312
Local index file(oram) 32K 32K 32K 61K 61K 61K
Local index file(file) 226K 226K 226K 408K 408K 408K
Shelter size 0 0 0 0 0 0
time(ORAM) 563s 818s 1232s 664s 943s 1433s
time(File conversion) 0.7s 0.7s 0.7s 1.7s 1.2s 2s
Server load 31.1% 31.1% 31.1% 28.1% 28.1% 28.1%
Failed evictions 466 97 92 453 57 66

Increment Network requests 365568 479136 821376 365424 458968 762608
Local index file(oram) 38K 38K 38K 68K 68K 68K
Local index file(file) 261K 261K 261K 442K 442K 442K
Shelter size 0 0 0 0 0 0
time(ORAM) 630s 884s 1550s 729s 961s 1538s
time(File conversion) 0.8s 0.8s 0.8s 1.4s 0.7s 2.2s
Server load 37.2% 37.2% 37.2% 31.1% 31.1% 31.1%
Failed evictions 588 144 244 493 84 119

Read Network requests 684096 1060200 1668144 730848 1008576 1557248
Local index file(oram) 38K 38K 38K 68K 68K 68K
Local index file(file) 261K 261K 261K 552K 552K 552K
Shelter size 0 0 0 0 0 0
time(ORAM) 1190s 1945s 3139s 1390s 2012s 3150s
time(File conversion) 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s
Server load 37.2% 37.2% 37.2% 31.1% 31.1% 31.1%
Failed evictions 1036 425 511 986 224 264

Table 27: ORAM measurement result of Trivial ORAM with bucket size 4, all measurements are initiated with 25%
basic load.

Trivial 25% load - 3 Bucket size 8
Server capacity 8184
Eviction rate 1 3 5

Init Network requests 1595392 2723728 4001600
Local index file(oram) 25K 25K 25K
Local index file(file) 181K 181K 181K
Shelter size 0 0 0
time(ORAM) 2716s 5759s 7671s
time(File conversion) 1.4s 9.8s 9.9s
Server load 25% 25% 25%
Failed evictions 578 5 4

Add Network requests 421344 714464 1052128
Local index file(oram) 32K 32K 32K
Local index file(file) 226K 226K 226K
Shelter size 0 0 0
time(ORAM) 708s 1802s 1917s
time(File conversion) 0.7s 5.2s 3.9s
Server load 31.1% 31.1% 31.1%
Failed evictions 193 38 39

Increment Network requests 411008 756960 1167296
Local index file(oram) 38K 38K 38K
Local index file(file) 260K 260K 260K
Shelter size 0 0 0
time(ORAM) 684s 1611s 2116s
time(File conversion) 0.8s 12.6s 2.3s
Server load 37.2% 37.2% 37.2%
Failed evictions 176 70 98

Read Network requests 843296 1689216 2551264
Local index file(oram) 38K 38K 38K
Local index file(file) 260K 260K 260K
Shelter size 0 0 0
time(ORAM) 1412s 3341s 4675s
time(File conversion) 0.1s 0.1s 0.1s
Server load 37.2% 37.2% 37.2%
Failed evictions 387 272 307

Table 28: ORAM measurement result of Trivial ORAM with bucket size 8, all measurements are initiated with 25%
basic load.

Trivial 50% load - 1 Bucket size 2 4
Server capacity 8190 4092
Eviction rate 1 2 3 1 2 3

Init Network requests 3292496 3163424 3608708 1225120 1384336 1883768
Local index file(oram) 54K 54K 54K 25K 25K 25K
Local index file(file) 363K 363K 363K 181K 181K 181K
Shelter size 0 0 0 0 0 0
time(ORAM) 6061s 6450s 7122s 2039s 2399s 3334s
time(File conversion) 4.2s 20s 6.3s 1.7s 1.3s 1.8s
Server load 50% 50% 50% 50% 50% 50%
Failed evictions 13799 6311 4664 1984 745 791

Add Network requests 1490952 1466192 2454284 1112336 — —
Local index file(oram) 61K 61K 61K 32K
Local index file(file) 408K 408K 408K 226K
Shelter size 0 0 0 0
time(ORAM) 2745s 2968s 4651s 1791s
time(File conversion) 1.2s 2.4s 1.1s 0.7s
Server load 56.1% 56.1% 56.1% 62.2%
Failed evictions 7603 4323 5457 3159

Increment Network requests — — — — — —
Local index file(oram)
Local index file(file)
Shelter size
time(ORAM)
time(File conversion)
Server load
Failed evictions

Read Network requests — — — — — —
Local index file(oram)
Local index file(file)
Shelter size
time(ORAM)
time(File conversion)
Server load
Failed evictions

Table 29: ORAM measurement result of Trivial ORAM with bucket sizes 2 and 4, all measurements are initiated with
50% basic load. Note that cells marked as ’—’ indicates that the measurement test has been aborted before or during
this step. This is because Trivial ORAM measurements with a high load lead to incredibly slow measurements after
reaching a certain standard.

Trivial 50% load - 2 Bucket size 4
Server capacity 8188 16380
Eviction rate 1 2 3 1 2 3

Init Network requests 2800560 3120456 4350912 6426016 6981056 9548512
Local index file(oram) 52K 52K 52K 109K 109K 109K
Local index file(file) 363K 363K 363K 727K 727K 727K
Shelter size 0 0 0 0 0 0
time(ORAM) 4949s 5844s 7986s 13374s 15047s 20693s
time(File conversion) 5.1s 4.1s 3.5s 46.8s 43.8s 48.6s
Server load 50% 50% 50% 50% 50% 50%
Failed evictions 4241 1559 1754 9272 3292 3398

Add Network requests 699888 1155336 14946216 769856 1042112 2193488
Local index file(oram) 58K 58K 58K 116K 116K 116K
Local index file(file) 408K 408K 408K 771K 771K 771K
Shelter size 0 0 0 0 0 0
time(ORAM) 1253s 2055s 27146s 1598s 2211s 4482s
time(File conversion) 1.3s 1.2s 1.1s 9.9s 11.8s 19.5s
Server load 56.1% 56.1% 56.1% 53.1% 53.1% 53.1%
Failed evictions 1583 1593 19589 1592 1214 2162

Increment Network requests 2531088 — — 1064624 1717600 18081856
Local index file(oram) 65K 123K 123K 123K
Local index file(file) 442K 806K 806K 806K
Shelter size 0 0 0 0
time(ORAM) 4539s 2167s 3612 37502s
time(File conversion) 2s 15.6s 17.1s 22.3s
Server load 62.2% 56.1% 56.1% 56.1%
Failed evictions 7033 2393 2325 21444

Read Network requests 17276112 — — 1993456 3563488 —
Local index file(oram) 65K 123K 123K
Local index file(file) 442K 806K 806K
Shelter size 0 0 0
time(ORAM) 30287s 3825s 7417s
time(File conversion) 0.1s 0.1s 0.1s
Server load 62.2% 56.1% 56.1%
Failed evictions 50417 4417 4861

Table 30: ORAM measurement result of Trivial ORAM with bucket size 4, all measurements are initiated with 50%
basic load. Note that cells marked as ’—’ indicates that the measurement test has been aborted before or during this step.
This is because Trivial ORAM measurements with a high load lead to incredibly slow measurements after reaching a
certain standard.

Trivial 50% load - 3 Bucket size 8
Server capacity 8184
Eviction rate 1 2 3

Init Network requests 3424256 4761600 6880368
Local index file(oram) 51K 51K 51K
Local index file(file) 363K 363K 363K
Shelter size 0 0 0
time(ORAM) 5632s 8577s 13056s
time(File conversion) 3.8s 3.7s 9.1s
Server load 50% 50% 50%
Failed evictions 1540 708 1089

Add Network requests 649952 3586080 —
Local index file(oram) 58K 58K
Local index file(file) 407K 407K
Shelter size 0 0
time(ORAM) 1048s 6336s
time(File conversion) 1.4s 1.2s
Server load 56.1% 56.1%
Failed evictions 569 3115

Increment Network requests 1335776 — —
Local index file(oram) 64K
Local index file(file) 442K
Shelter size 0
time(ORAM) 2149s
time(File conversion) 1.3s
Server load 62.2%
Failed evictions 1697

Read Network requests 5562592 — —
Local index file(oram) 64K
Local index file(file) 442K
Shelter size 0
time(ORAM) 8961s
time(File conversion) 0.1s
Server load 62.2%
Failed evictions 8149

Table 31: ORAM measurement result of Trivial ORAM with bucket size 8, all measurements are initiated with 50%
basic load. Note that cells marked as ’—’ indicates that the measurement test has been aborted before or during this step.
This is because Trivial ORAM measurements with a high load lead to incredibly slow measurements after reaching a
certain standard.

