
MSc Thesis Computer Science

Supervised Contrastive learning to
overcome inconsistencies in
exhaled breath data

Ruben Henricus Lucas

Internal Supervisors:
dr. N. Strisciuglio,
dr.ing. F.W. Hahn

External Supervisors:
ir. H. Oord,
dr.ir. J.W. Gerritsen

August 28, 2022

Department of Data Management & Biometrics
Faculty of Electrical Engineering, Mathematics
and Computer Science

Acknowledgements

My friend and fellow student Bas van Tintelen got me in contact with The eNose Company in Zutphen where I
could conduct my master thesis in the highly innovative field of breath analysis with a challenging data problem.
I want to thank Bas for introducing me to the company and especially for the great support throughout the whole
process as we were both conducting our separate master theses at The eNose Company.

From the start till the end of my master thesis have I been supported by everyone working at The eNose Company.
I want to thank them all for the constant feedback and support while also giving me the freedom to experiment
with my own solutions and create my own planning.

I also want to thank my supervisor Nicola for providing me with new insightful ways to tackle encountered
problems and for giving feedback on my work during our biweekly meetings.

Additionally, I would like to thank Florian Hahn for being part of my graduation committee and providing
feedback on my work.

Supervised Contrastive learning to overcome inconsistencies in
exhaled breath data

Ruben. H. Lucas
r.h.lucas@student.utwente.nl

August 28, 2022

Disease prediction can be performed based on
breath analysis through the recognition of Volatile
Organic Compound patterns. Such data is acquired
through clinical studies where patients breathe into
an electronic nose. This gives temporal data for ev-
ery patient. Making disease predictions based on
this data is challenging as the data is sparse, tem-
porally complex, possibly non-linear, and contains
inconsistencies. Supervised Contrastive learning
tackles the device- and/or location-based inconsis-
tencies that reside within the data by learning gen-
eral features of the data through the recognition
of similarities and differences between data points.
This research shows that Supervised Contrastive
learning learns more effective data representations
to be used for disease classification on never before
seen devices and thereby overcoming the inconsis-
tencies. In doing so a more generalized classifier
has been realized that can be used across multiple
devices and locations.

Keywords: Exhaled breath analysis, Machine
Learning, Supervised Contrastive learning, Tempo-
ral data

1 Introduction

The potential of breath analysis has been recognized
for a long time to be able to achieve health manage-
ment, disease monitoring, and early disease diagnoses
[1]. To perform breath analysis different Volatile Or-
ganic Compounds (VOC) have been identified. VOCs
are derived from emitted gases that include a variety of
chemicals and are also present in human breath. These
VOCs serve as biomarkers [2] that indicate an ability to
predict a future treatment response. These VOCs can
be measured using a so-called electronic nose (e-nose)
[3].

The eNose Company has developed their own e-nose
called aeoNose with which they diagnose several forms
of cancer and other diseases, based on VOCs from
a person’s breath, with the use of Machine Learning
(ML) techniques. A schematic view of the aeoNose
can be seen in figure 1.

Figure 1: aeoNose schematic [4]

A single measurement with the aeoNose device is done
by first flushing the device for 120 seconds, where the
patient inhales air through the mouthpiece which is fil-
tered by the carbon filter to cleanse the impurities from
the device and the patient’s lungs. Exhaled breath is
directly outputted by the device and is not used for
measurements at this moment. After the flush, a sam-
ple is taken in which a person’s exhaled breath passes
the three differently tuned metal-oxide sensors and ex-
haled air molecules are stored in the preconcentration
tube. This sampling step takes another 180 seconds.
After the sampling step, the patient can stop breath-
ing through the aeoNose and the air present within
the device is circulated for 240 seconds which we call
the recovery period. Next, the preconcentration tube
is heated for 30 seconds after which these preconcen-
trated VOC’s are released upon the metal-oxide sensors
for the last measurement of 190 seconds. The complete
timeline of a single measurement can be seen in fig-

1

mailto:r.h.lucas@student.utwente.nl

Figure 2: Measurement timeline [4]

ure 2. The metal-oxide sensors allow redox reactions
to occur during the measurement in which the sensors
are constantly heated and cooled between 260 °C and
340 °C according to two alternating sinusoidal waves
[5]. This heating pattern is separately done from the
earlier discussed 30 second heating phase of the pre-
concentration tube. The first, longer sinusoidal wave
has a frequency of 0.075 Hz and the second, shorter si-
nusoidal wave has a frequency of 0.15 Hz. This com-
plete temporal sequence of conductivity measurements
forms a single data point upon which a disease predic-
tion is based.

Temporal breath data with an underlying disease can
only be gathered by conducting clinical studies with the
aeoNose device in the healthcare sector. This makes
the gathering of data a difficult and time-consuming
process. Moreover, the percentage of people that do
have the disease that is searched for during the clini-
cal study is significantly lower than the people that do
not have the looked for disease. This results in an un-
balanced data set with a lot of negative data samples
and only a few positive ones. So, there is only limited
unbalanced data available during this research.

Despite the carbon filtration and transferable metal-
oxide sensor calibration models [6] that were devel-
oped by The eNose Company and built into the hard-
ware of the aeoNose device, disease predictions are not
always consistent when recorded with different device
copies and when recorded in different locations. This
means that there can be device- and/or location-based
differences in the data. The exact cause of these differ-
ences is unclear, but is, according to The eNose Com-
pany, most likely caused by small manufacturing dif-
ferences between the metal-oxide sensors of different
devices [6] and/or because of differences in the VOCs
contained within the ambient air of a location and/or
differences in patient population.

Ideally, a prediction model should generalize to be able
to predict the disease independent of external circum-
stances like device- and location-based differences.
Most general solutions achieve a robust model by using
large amounts of data to be able to distinguish between
noisy features and more robust features that coincide
within the data. Because of the small unbalanced data

set, this is not an option for us. So, new solutions need
to be investigated that can overcome these device- and/
or location-based differences during the training of the
disease prediction model while also dealing with the
constraints of the data set.

To find an optimal way to improve the current classifi-
cation performance and robustness with the constraints
that reside within this given domain the following re-
search questions have been set up.

RQ1 How can the current data pipeline of The eNose
Company be improved?

SRQ1.1 How does the current data pipeline func-
tion?

SRQ1.2 What shortcomings can be identified in the
current data pipeline?

SRQ1.3 What solutions could net the biggest im-
provement to the disease classification?

RQ2 What is the impact of Supervised Contrastive
learning on the classification performance?

SRQ2.1 To what level do device- and/or location-
based differences reside within the data?

This paper will answer these research questions by first
explaining the preliminary knowledge required for this
research in section 2. Next, in section 3 the data pro-
cessing pipeline used by The eNose Company is ana-
lyzed to find shortcomings. In section 4 state-of-the-
art solutions are explored that tackle the constraints
of the data set and found shortcomings of the current
data processing pipeline. A methodological approach
to implementing the selected state-of-the-art solution
in our current environment is set up in section 5. Pre-
liminary results which can be found in section 6 and
final results which can be found in section 7 are given
based on the implementation of the methodological ap-
proach. Finally, in section 8 the research questions will
be answered according to our findings.

2

2 Background

This section provides preliminary knowledge to clarify
specific topics discussed in this paper and form a basic
understanding of this research.

2.1 Synthetic Minority Over-Sampling Tech-
nique

Synthetic Minority Over-Sampling Technique
(SMOTE) is a method to oversample a data set and
solve the imbalanced data set problem. SMOTE is
performed by taking the feature vector of minority
class sample c and calculating the difference between
it and the feature vector of one of its nearest neighbors
n from the same class, retrieved using the K-nearest
neighbors algorithm. This difference is multiplied by
a random number r between 0 and 1, which is then
added to the sample feature vector c to create a new
feature vector s. So, a new feature vector s is created
according to the following formula:

s = ((c − n) ∗ r) + c (1)

Hence the new feature vector s will lay along the line
segment between the two neighboring feature vectors c
and n. These steps can be repeated endlessly but are of-
ten repeated until the minority class is no longer under-
represented and has as many samples as the overrepre-
sented class. With this method, new synthetic feature
vectors are created that effectively force the decision
region of the minority class to become more general
[7, 8].

2.2 Singular Value Decomposition

One of the most used feature extraction methods in
modern numerical analysis is the Singular Value De-
composition (SVD). The SVD can be applied to square
[9, p. 78] and rectangular matrices [10] in the real and
complex [11] domains by rearranging and merging in-
formation that resides within the matrices to create a
matrix ordered by importance. This enables feature
selection by specifying the desired number of features
from the matrix starting from the most important one.
The SVD can be used in this manner to reduce the num-
ber of linearly separable features of a data set while
maintaining the majority of the information within the
data.

The SVD rearranges and merges information for square
matrices (rectangular matrices are given in square
brackets) with the following theorem.

Let the data set be matrix X ∈ Rm×n consisting of m
observations described by n variables and each mea-
surement be represented by kmn. Then there exists
a square [rectangular] matrix U ∈ Rm×m[Rm×k], a
rectangular [square] zero matrix with non-negative val-
ues on the diagonal Σ ∈ Rm×n[Rk×k], and a square
[rectangular] matrix V ∈ Rn×n[Rk×n] [where k =
min(m,n)] such that:

X = UΣVT (2)

The columns of U and the columns of V are called
left-singular vectors and right-singular vectors of X, re-
spectively. For new data observations we get X̂ ∈ Rl×n

where l is the number of data points in the new ob-
servations. Matrix Û is now determined by taking
Û = X̂Σ−1(VT)−1. The number of columns respec-
tively to the complexity and amount of information that
is desired can be taken from Û to reduce the dimen-
sional outcome compared to the original matrix X in
which as much information is aggregated as possible
[12, p. 166].

2.3 t-distributed Stochastic Neighbor Em-
bedding

t-distributed Stochastic Neighbor Embedding (t-SNE)
is a statistical method to visualize high-dimensional
data similar to SVD but better optimized for visual-
ization. Moreover, t-SNE is a nonlinear dimensional-
ity reduction method and is, therefore, able to separate
data that cannot be separated by any straight line.

t-SNE is implemented by determining the Euclidean
distances between data points and converting them into
conditional probabilities that are represented as sim-
ilarities. In this way, the similarity of data point xj
to data point xi is the conditional probability pj|i,
which conveys the probability that xi would pick xj
as its neighbor. The Gaussian distribution is used as
the probability distribution for pj|i where a perplexity
value is given to determine the µ and σ. This gives us
the following formula for the high-dimensional space
pij where pii is set to zero.

3

pij =
e

−||xi−xj ||
2

2σ2
i∑

k ̸=l e
−||xk−xl||2

2σ2
i

(3)

A low-dimensional space qij with the same number of
points is created by using a Student t-distribution with
a single degree of freedom. Using this distribution
helps to overcome the crowding problem where nearby
and moderately distant data points are not accurately
spaced out. This gives us the following formula for the
low-dimensional map qij where qii is set to zero.

qij =
(1 + ||yi − yj ||2)−1∑
k ̸=l(1 + ||yk − yl||2)−1

(4)

For the optimization of the mapping from the high-
dimensional space pij to the low high-dimensional
space qij gradient descent is used where the Kullback-
Leibler divergence is minimized. This gives us the fol-
lowing cost function C.

C = DKL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(5)

The gradient of the cost function C with respect to yi
is given by the following formula.

∂C

∂yi
= 4

∑
j

(pij−qij)(yi−yj)(1+||yi−yj ||2)−1 (6)

By optimizing the cost function the low-dimensional
space qij should represent the high-dimensional space
pij as closely as possible. The low-dimensional space
can now be used to understand the high-dimensional
data. As t-SNE is not deterministic and iterative it is
less useful for usage with ML algorithms as it produces
different results for each run [13].

3 Current data pipeline

To go from raw exhaled-breath measurement to disease
prediction a data processing pipeline has been setup by
The eNose Company. The complete pipeline can be
seen in figure 3.

Figure 3: Current data processing pipeline of The
eNose Company

3.1 Raw data

In this research a data set is used that was gathered dur-
ing a clinical study for lung cancer. This is the only data
set discussed and used throughout the whole report to
limit the scope of this research. The data set consists
of training data, which is split into a train and test set
used for creating a classifier, and validation data, which
is made up of new never before seen data points all
from new never before used aeoNose devices. All of
the devices present within the data set were also used
in unique locations for different timespans. Determin-
ing if the earlier discussed device and/or location-based
differences are caused solely by the different devices
or locations is impossible. Consequently, we have de-
cided to visualize the device and/or location inconsis-
tencies based on the devices but it could be caused by
a different phenomenon. The complete data set distri-
bution can be seen in table 1.

Set Devices Pos Neg Total
Training

data 5 234 312 546

Validation
data 3 60 51 111

Table 1: Data distribution

The raw data of the data set is gathered with three
metal-oxide sensors located within the aeoNose device.
During a 750 seconds measurement, as described in
section 1, conductivity values are gathered. Since the
patient has to breathe through the aeoNose device for
a period of time the obtained data is temporally corre-
lated. This means that subsequent measurement read-
ings are related to previous measurement readings as
they are observed directly after each other. The result-
ing raw data consists of a temporal sequence of 2048
conductivity readings which is presented as 32 cycles

4

each containing 64 conductivity readings called mea-
surement points. One cycle of 64 measurements con-
tains two sinusoidal waves, a combination of a short
and long sinusoidal wave, known as subcycles. These
32 cycles contain the dirty air data, containing both the
VOCs within the person’s breath and ambient air. Ad-
ditionally, we have a cycle with clean air data, contain-
ing only the ambient air.

3.2 Preprocessing

There are a plethora of preprocessing steps that can be
applied to the raw data to remove unwanted outliers and
organize the data set to make it suitable for feature ex-
traction. Experimentation is conducted to find the best
combination of these preprocessing steps for each type
of disease.

Peak shaving

The sensors that are used to collect the exhaled-breath
data are susceptible to slight errors and might therefore
output spikes that do not represent the actual exhaled
breath. These sudden spikes in the data should not be
present since the redox reactions at the surface of the
sensors, caused by the VOCs within the exhaled breath,
are compared to the spikes slow chemical reactions that
should influence the conductivity readings of the sen-
sors in a similar slow reacting manner and thereby fol-
low the temperature profile of the measurement. The
spikes could also be caused by incorrect transformation
readings of the analog-to-digital converter (ADC). Re-
gardless of the cause of the inaccuracies, peak shaving
can be used to limit its impact. This is done by reducing
the peaks to the average of the surrounding conductiv-
ity readings.

Normalize signal data

The sinusoidal wave that is used to heat the sensors
does not represent any information about a person’s
exhaled breath and therefore it might be beneficial to
remove this wave from the data. As mentioned in sec-
tion 1, the exhaled breath could contain device- and/or
location-based differences. To limit this impact on the
models the clean air data could be removed from the
exhaled-breath data. Normalization of the signal data
can be done by subtracting the clean air cycle from the
exhaled-breath cycles. Additionally, the Fourier Trans-
form (FT) can be taken from the data after which the

exhaled-breath cycles can be multiplied with the com-
plex conjugate of the clean air cycle and the resulting
data point can be transformed back again with the FT,
which is known as the Cross-Correlation [14]. In this
way, normalization of the signal data could help re-
move the ambient air from data points.

Rescaling

The data can be rescaled by applying the natural log-
arithmic function to the data. This may deliver bene-
ficial disease prediction capabilities because the natu-
ral logarithmic function removes exponential relations
within the data. Alternatively, the exponent can be ap-
plied to the data to emphasize exponential relationships
within the data. Finally, the square or square root can
be taken from the data.

Sensor selection

The three metal-oxide sensors are composed of distinct
materials and each reacts differently to the VOCs in the
exhaled breath. This results in significantly different
conductivity readings. Selecting individual sensors, or
a combination of sensors, might contain more relevant
information about the exhaled breath.

3.3 Data augmentation

To tackle the challenge of training a classification al-
gorithm with a sparse data set data augmentation could
be applied. SMOTE is used as it both tackles the spar-
sity as well as the unbalancedness of the data set [15]
as discussed in section 2. Adding these synthetic data
points can act as a regularizer in preventing overfitting
in classification algorithms and improve performance.

3.4 Feature extraction and selection

Currently, each data point has 32 cycles each contain-
ing 64 measurement points. This high dimensionality,
in combination with the limited number of available
observations, results in a data set that is too complex
for most ML methods to train an accurate classifier on.
This phenomenon is called the curse of dimensionality
where, in order to obtain a well-generalized classifier,
the amount of data needed often grows exponentially
with the dimensionality of the data [16]. To reduce

5

the dimensionality of the data feature extraction and
selection methods can be applied to the data. SVD can
be used to extract features from the sequence of 2048
points (32 cycles × 64 measurements). By apply-
ing the SVD we get a newly created matrix with fea-
tures ranked from most to least important based on how
well they represent the information within the original
data. From this matrix, a feature selection can be per-
formed by shrinking the matrix to the first n features
that still contain enough information about the original
data set based on the explained variance. After testing
The eNose Company reached the conclusion of select-
ing 17 features to comply with the limited size of clin-
ical studies as well as retaining enough information for
classification.

3.5 Classification

With the raw data preprocessed, and possibly more
data generated, an ML algorithm is trained and used for
classifying people as either diseased or healthy. The
most prominent ML algorithms used by The eNose
Company are Catboost [17], Gradient Tree Boosting
[18], Random Forest [19], and Extra Trees [20].

3.6 Data pipeline analysis

By analyzing the current data processing pipeline
of The eNose Company different findings have been
made. Firstly, no data normalization or standardiza-
tion methods are applied to the data. Measurements
often slightly differ in the range of actual values that
are recorded. This is especially the case as the metal-
oxide sensors slightly degrade over time and put out
lower conductivity readings than newer devices. Nor-
malization can be used to create a common scale be-
tween the different measurements and complete data
set.

Secondly, the feature extraction method, currently the
SVD, is a linear compression method. Therefore it ob-
tains the relevant linear patterns that exist within the
data set. However, the SVD is not able to capture
non-linear patterns. As the data set obtained with the
aeoNose device has high temporal complexity with an
unknown distribution it is unlikely that there are only
linear patterns within the data. So, the non-linearly dis-
tributed data is not taken into account, while this data
could contain important information about the disease.

Lastly, the current ML methods used by The eNose

Company cover a broad spectrum of the available clas-
sifiers except for the Deep Learning (DL) subdomain.
Since the data is highly dimensional and potentially
non-linear, Neural Networks (NN) could be more suit-
able than several of the currently applied ML meth-
ods as they consist of multiple layers that can compos-
ite higher-dimensional patterns for constructing classi-
fiers. A downside of using deeper NNs is that most of
them need a lot of data for training, which is a problem
with our sparse data set.

4 Related work

To improve the current data processing pipeline we
should find a way to tackle the identified shortcomings
of the data pipeline while also taking into account the
data characteristics. One of the most used methods to
tackle the problem of having a sparse data set to train
your ML algorithm is Transfer Learning (TL). TL is fo-
cused on improving the performance of a target task, in
our case disease classification, with a target domain, in
our case the conductivity readings of the metal-oxide
sensors, by transferring the knowledge contained in
different but related source domains. In this way, the
dependence on a large number of target-domain data
can be reduced for the construction of a target learner.
Practically speaking, this method is similar to people
who already know how to play the violin might learn to
play the piano faster than those who do not have prior
musical training, since both the violin and the piano
are musical instruments and may share some common
knowledge [21]. TL is most often used in the image do-
main but is slowly being adopted in other domains. In
[22] multiple experiments of TL have been conducted
to solve time series classification problems. These ex-
periments show that the selection of a source and target
domain is of essence and for a large part determines the
effectiveness of the implementation. Therefore finding
another data set and classification task that closely re-
sembles the desired classification objective is essential.
Choosing a source domain that does not closely resem-
ble the classification objective could even harm the per-
formance of the classification on the target task, which
is called negative transfer [23]. Finding a data set that
is similar to the metal-oxide sensor readings is how-
ever difficult as the sensors are purpose-made for the
aeoNose device. Moreover, public data sets on tempo-
ral air molecule-based signals are almost non-existing
or of limited size due to the constraints of clinical stud-
ies.

Another way to create a classification baseline without

6

the need for another data set is by augmenting the cur-
rent data set to create a new arbitrary classification task.
[24] has created a framework that uses Contrastive
learning to learn a baseline in a self-supervised man-
ner. Recently this framework has also been modified to
work in a supervised manner called Supervised Con-
trastive (SupCon) learning [25]. As we mostly have la-
beled data using a supervised classification framework
should be more appropriate. SupCon learning is used
to learn the general features of a data set by merely rec-
ognizing the similarities and differences between data
points. This is done by pulling together embeddings
from the same class while pushing away embeddings
from different classes. This principle is illustrated in
figure 4, where positive samples from different devices
are pulled together while pushing away negative sam-
ples from the same devices. This figure also shows how
SupCon learning could help in overcoming the device
differences by pulling together samples from the same
class to form a more generalized agreement between
all data samples of the same class. We have chosen to
illustrate the device differences, but the same principle
goes for any kind of location-based difference as well.

Figure 4: Supervised contrastive learning clustering
(Adapted from [25])

SupCon learning is a new method from 2020 and there-
fore not that many implementations exist yet. [25] got
state-of-the-art performances with the SupCon frame-
work on many well-established image classification
benchmarks. [26] used SupCon for kinship recogni-
tion where it aims to determine whether different im-
ages have a kin relation. This is done by pulling to-
gether facial images of family members and pushing
away other facial images. Considering the classifica-
tion of temporal data by using the SupCon framework
we found an implementation for action recognition in

videos [27]. For the data augmentation, this paper pro-
poses to mix backgrounds from different videos which
using the SupCon framework outperforms the addition
of Gaussian noise to the video and two video mixup
augmentations. Another implementation of the Sup-
Con framework is in airwriting recognition [28]. Here
temporal data recorded with an accelerometer and gy-
roscope sensor is translated into a letter of the alphabet
that was written in free space using unrestricted finger
movements. No data augmentations are described in
this paper but results show that SupCon outperforms
Cross-Entropy loss-based classifiers in this area.

5 Methodology

A methodological approach is established on how the
SupCon framework can be effectively used with the
temporal data of The eNose Company and where dif-
ferent structures and hyperparameters can be tested in
a verifiable manner.

5.1 Proposed method

For our proposed method we decided to implement
SupCon learning because it can help us overcome
device- and/or location-based differences and does not
rely on external data sets as discussed in section 4.

The SupCon framework works by first augmenting in-
puts. For every input data point two random augmen-
tations are executed, x̃ = Aug(x), where each of the
augmentations should reflect a subset of the informa-
tion within the original data but illustrated as a differ-
ent view of the data. More information on the type of
augmentations is given in the next section.

An augmentation is then passed through an encoder
network, which maps the augmented data point x̃ to a
representation vector, r = Enc(x̃). This encoder net-
work could consist of any type of NN but is most often
build-up of convolutional layers.

The representation vector r is directly after the encoder
network fed into a projection head which maps the rep-
resentation vector to a projection vector, z = Proj(r).
The projection head should consist of a single or mul-
tiple dense layer(s).

This complete framework, z = Proj(Enc(x̃)), is
trained with the usage of a SupCon loss function. Let
i ∈ I ≡ {1, 2, ..., 2N} be the index of an augmented

7

sample from a batch of the training data set and letP (i)
be the set of indices of samples belonging to the same
class as the ith sample in the batch. Let A(i) be the
set of indices of samples in the batch other than the ith
sample. Now the SupCon loss function is defined as:

LSupCon =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
e

zi·zp
τ∑

a∈A(i) e
zi·za

τ

(7)

In the equation above, τ is a scalar temperature pa-
rameter and · represents the inner product of the sur-
rounding variables. Minimizing the SupCon loss func-
tion encourages a generalized representation of the data
by maximizing the agreement between differently aug-
mented views of the same class. An illustration of the
complete Supcon framework can be seen in figure 5.

Figure 5: Supervised contrastive learning framework
(Adapted from [24])

The gradient of the loss function with respect to zi can
be computed as:

∂LSupCon
i

∂zi
=

1

τ

 ∑
p∈P (i)

zp

(
Pip−

1

|P (i)|

)
+

∑
n∈N(i)

znPin

 (8)

In the equation above, N(i) is the set of indices of
samples belonging to the other class as the ith sample
in the batch and Pix ≡ e(zi·zx/τ)/

∑
a∈A(i) e

(zi·za/τ).
Due to the structure of the SupCon loss harder positive
and negative pairs have a larger contribution towards
the gradient compared to easier positive and negative
pairs providing an intrinsic mechanism for hard posi-
tive/negative mining during training [25, 28].

After the encoder and projection networks have been
trained using the SupCon loss the projection head can
be discarded. The projection head is exchanged for
a classification head. This classification head should,

just like the projection head, consist of a single or mul-
tiple dense layer(s), but untrained and without the Sup-
Con loss. It should function as a normal classification
network. As we have a binary classification problem
that leads us to using binary cross-entropy loss for this
new classification network. Moreover, the encoder net-
work can also be locked to retain the current weights
during the training of the classification network. Ex-
periments should indicate if locking the encoder net-
work completely, only some layers or no layers at all is
most appropriate for our application.

5.2 Augmentations

As described in the previous section data augmentation
is required for the implementation of SupCon learn-
ing. These augmentations should be appropriate for
the temporal data with which we are working. The
related work, discussed in section 4, didn’t yield aug-
mentations directly suitable for our data structure. In-
stead, [29] lays out multiple augmentations appropriate
for temporal data. We have decided to use five of the
laid-out augmentations, namely jitter, scaling, permu-
tation, magnitude warping, and time warping. Jitter is
performed by adding a random level of Gaussian noise
to every time step. Scaling changes the global magni-
tude of a complete time series. Permutation rearranges
segments of the time series in a different order to pro-
duce a new pattern. Magnitude warping multiplies the
time series with a smooth curve created by interpolat-
ing a cubic spline. Time warping also uses cubic spline
interpolation to create a smooth curve, but uses it to
modify the time series in the temporal dimension. The
effects of all the augmentations can also be seen in fig-
ure 6, where a single data point is augmented according
to the five different augmentation methods.

5.3 Validation

Validation is essential as this research takes place in the
health care sector where we are dealing with people’s
lives. Moreover, due to the nature of NNs it is nearly
impossible to retrieve the exact reasoning as to why a
NN has come to its prediction, which makes scientific
reasoning about the decision-making process difficult.
Therefore having a solid validation process is a way to
demonstrate the robustness and performance of a NN
model.

To validate the performance of an ML implementation
we propose to use the signed-rank Wilcoxen test [30],

8

0 500 1,000 1,500 2,000
Measurement

Se
ns

or
re

ad
in

g

Clean

500 1,000 1,500 2,000
Measurement

Jitter

500 1,000 1,500 2,000
Measurement

Scaling

0 500 1,000 1,500 2,000
Measurement

Se
ns

or
re

ad
in

g

Permutation

500 1,000 1,500 2,000
Measurement

Magnitude warp

500 1,000 1,500 2,000
Measurement

Time warp

Figure 6: Augmentation overview on single data point

which is a non-parametric statistical hypothesis test on
dependent samples. Non-parametric means that the
test does not require the population to have an underly-
ing distribution, which is preferred because of the high
temporal complexity of the data and no known under-
lying distribution within the data. Moreover, the com-
pared implementations will use the same samples to be
trained upon which means that they are dependent.

For the implementation of the signed-rank Wilcoxen
test, we propose to use the Area Under the Receiver
Operating Characteristic (AUROC) as a performance
measure. More specifically, the Area Under the Curve
is computed from the Receiver Operating Character-
istic (ROC) curve which itself is based upon the True
Positive Rate (TPR) and the False Positive Rate (FPR).
Therefore the ROC curve visualizes the trade-off be-
tween patients that have the disease while also get-
ting predicted as having the disease against patients not
having the disease while getting predicted as having
the disease. So, AUROC tells us if the model is ca-
pable of distinguishing between classes [15, 31]. For
the recording of the AUROC cross-validation has been
used, which is a resampling method where different
portions of the data are used to represent the train and

test data for training the ML model. However, in this
report only the aggregated results are shown consisting
of the average test set and validation set AUROC re-
sults from 100 separate runs, where the test set is bal-
anced between classes and does not include any syn-
thetic data. Moreover, the test set is made up of 25%
of the complete data set of which, for every run, this
split is randomly taken. The validation set is an en-
tirely new data set with no matching data points. The
validation set is made up of new devices and test loca-
tions and should therefore give a good representation
of the generalizability of the classifier, especially con-
sidering the device- and/or location-based differences
that coincide within the data. This complete validation
setup should ensure that the classification model that
has the highest classification performance, and is con-
sistently achieving this performance, on unseen data is
chosen.

9

Extra trees classifier - Average of 100 runs
Baseline # Processing steps # of cycles Set AUROC

0 Peak shaving - subtract - SVD 32 Test 59.29
Val 48.96

1 Peak shaving - subtract - SVD 16 Test 62.55
Val 51.05

2 Peak shaving - natural logarithm - SVD 16 Test 68.07
Val 49.39

Table 2: Baseline results

6 Preliminary experimentation

Before the final results can be gathered with the Sup-
Con framework, preliminary experiments were con-
ducted to establish the best performing baselines to
which the SupCon network is compared. Moreover,
to establish how to implement the SupCon framework
preliminary experimentation is performed on data pro-
cessing steps, augmentations, and the NN architectural
layout.

6.1 Cycle selection

Before training the classification model with the cur-
rent data processing pipeline of The eNose Company
discussed in section 3 and the SupCon framework dis-
cussed in section 5 we also decided to look at where
in the data the most disease-indicating information re-
sides. If most of the information resides in a subsection
of the data it could be used to limit the number of time
steps. This would limit the temporal complexity of the
data which could help the training of an ML classifier.
We have decided to look at the data in a cycle-based
manner, so separately go through each of the 32 cy-
cles and look at their impact. Such a cycle selection
has the same goal as the feature extraction and selec-
tion discussed in section 3 but instead of transforming
the data, the data is limited. In this way, the temporal
structure of the data stays intact which could help the
ML classifiers better understand temporal patterns.

To test in which cycle the most information resides we
train the SupCon network discussed in section 5 on
a standard training set consisting of all cycles. After
training, we mask every cycle except the one we are
currently investigating for every data point in the test
set. We use the trained model to see the neuron ac-
tivation output from the projection head and we look
at the AUROC performance when predicting with the
classification head. These steps are repeated for every
cycle. We are looking at the neuron activation differ-

ence between positive and negative samples because
these classes should be pushed apart by the SupCon
framework and therefore a difference must become vis-
ible between both classes when the SupCon network
finds a suitable representation. Furthermore, we look
at the AUROC performance as this should give an in-
dication of how much disease-indicating information
resides within the cycle. An overview with results for
every cycle can be found in Appendix A. From this ex-
perimentation, we have chosen to use cycles 10 to 25
as all the cycles in this range have a high difference
between the positive and negative samples and a high
AUROC compared to the other cycles. This cycle se-
lection also lines up closely with the recovery period
of a measurement conducted with the aeoNose device.

6.2 Baseline

According to the data processing pipeline of The eNose
Company discussed in section 3 three different base-
lines have been set up. Baseline 0 reflects the results
achievable at the beginning of this research. In base-
line 1 the cycle selection is introduced, which is dis-
cussed in the last section. For baseline 2 the natural
logarithm is applied to the data which showed more
promising results than the processing steps of baseline
1. Different standardization and normalization steps
improve slightly upon baseline 2, but these improve-
ments are not significant and therefore not deemed nec-
essary steps in the data preprocessing pipeline. An
overview of the three baselines and their performances
can be found in table 2. All baselines use the Extra
Trees classifier [20] as this was overall the best per-
forming classifier, but other ML algorithms can also
reach comparable results. The baseline results on the
test set are according to the Wilcoxen test significant
improvements over the previous one. For the validation
set which consists of new devices and locations, there
are only slight differences and the performance still
could be considered for all of the baselines as good as a
random guess. All different data processing pipelines

10

1
10
24

input

4
51
2

conv1

8
12
8

conv2

8
32

conv3 1 12
8

flatten

1 32

fc4

1 16

output

1 16

fc4

1 1

output

Figure 10: SupCon NN architecture [32]. At the left is the encoder network consisting of an input layer, three
convolutional layers with two average pooling and one max pooling respectively, and a flatten layer. The pro-
jection head consisting of one fully connected and an output layer is layed out at the top right. This projection
head is later on discarded and in its place is the classification head attached which is layed out at the bottom
right. This classification head also consists of one fully connected and an output layer.

with their corresponding results that were tested can be
found in Appendix B.

6.3 Experimental setup

For all experimentation with the SupCon framework,
the NNs are trained for 250 epochs with a batch size of
32 because early testing showed that with these settings
the network is always fully trained without consider-
able overfitting based on the test and validation losses.

The NN architecture of the SupCon framework can be
seen in figure 10. The layout of this network has been
established after rigorous testing with the validation
strategy laid out in section 5.3. Architectural test re-
sults can be seen in Appendix C. During the testing of
different NN architectures, the performance of the val-
idation set is considered more important than the per-
formance of the test set. Several regularization meth-
ods were also tested, but none of them netted any per-
formance improvement. This was expected as we are
dealing with a sparse data set in which overfitting is
rather uncommon.

Experimentation with the augmentations discussed in
section 5.2 showed that the jitter augmentation with a
standard deviation of 0.1 gave the best results. Results
on all different augmentations can be seen in Appendix
D.

6.4 Device and/or location specifics

The data set used in this research consists of 8 different
devices of which the distribution can be found in table
3. Devices one to five are used in the train and test sets,
while the last three devices are used in the validation
set.

Device Positive Negative Total
1 81 73 154
2 20 33 53
3 39 29 68
4 6 54 60
5 12 47 59
6 26 27 53
7 19 11 30
8 15 13 28

Table 3: Device distribution

To make the device- and/or location-based differences
visible we make use of t-SNE, as discussed in section
2, to visualize the high-dimensional data as a 2D plot.
Figure 11 shows multiple t-SNE plots laying out the
data visualized by the different device and target labels
of all data points. The device plots A and B show clear
clustering which indicates that there are differences be-
tween the separate devices. Moreover, target plots D
and E show a random mix without any clear clustering
which indicates the difficulty of the classification task.
Ideally, the different devices should have no clustering
and the targets should have clustering so as to have no
device and/or location specifics in the data and making

11

A. Baseline 2 - Devices

Device 1
Device 2
Device 3
Device 4
Device 5

B. SupCon processed - Devices

Device 1
Device 2
Device 3
Device 4
Device 5

C. SupCon embedded space - Devices

Device 1
Device 2
Device 3
Device 4
Device 5

D. Baseline 2 - Targets

Negative
Positive

E. SupCon processed - Targets

Negative
Positive

F. SupCon embedded space - Targets

Negative
Positive

Figure 11: t-SNE plot comparison

the targets easily separable for a classification model.

Plots C and F show the embedded space acquired by
putting all data points through the Supcon network
with an encoder and projection head. The device clus-
ters are mostly broken, indicating that the network
should be less susceptible to device specifics and there-
fore we should be able to train a more generalized clas-
sifier. The clustering could however be improved fur-
ther as some devices are still not evenly represented
throughout the line of data points and while the nega-
tive and positive data points show a clearer separation
we still don’t see two clear clusters. More information
on how the unseen devices of the validation set relate
to the seen devices can be seen in Appendix E.

7 Results

By implementing SupCon learning, as discussed in
section 5, we get the results shown in table 5. While
the AUROC on the test set goes down 2.4 percent

compared to baseline 2, the AUROC on the valida-
tion set goes up by 10.75 percent. Moreover, AUROC
results with the SupCon framework can be reached
that are higher than the test set performance of 68.07,
as shown in Appendix C, but this would require a
broader network that performs worse on the validation
set. This is most likely caused by the network mem-
orizing data characteristics and thereby overfitting on
the data which leads to a less generalized classifier.

Average of 100 runs
Device Set AUROC

1 Test 64.65
2 Test 77.00
3 Test 63.33
4 Test 74.20
5 Test 62.84
6 Val 68.66
7 Val 51.63
8 Val 66.21

Table 4: SupCon results per device

12

Average of 100 runs
Network Processing steps Classifier Set AUROC

Baseline 2 Peak shaving - natural logarithm - SVD Extra trees Test 68.07
Val 49.39

SupCon Peak shaving - natural logarithm - standardization NN (fig. 10) Test 65.67
Val 60.14

Table 5: SupCon results

An overview of the AUROC results per device is shown
in table 4. This table shows that the SupCon network
also achieves significantly higher results compared to
random guessing across almost all devices. An inter-
esting point to note is that a higher number of data
points for a device does not directly result in a higher
performance with the SupCon network. The exact rea-
soning for this occurrence is difficult to determine but
a likely cause is that the classifier overfits on the large
number of synthetic data points that are generated for
these devices that do not have many real data points.
Because we use SMOTE to generate synthetic data
points, these synthetic data points are similar to the real
data points on which they are based, hence pushing the
classifier quite strongly into a single direction during
training and making overfitting a likely outcome.

8 Conclusions

Based on the results of this study we can draw the con-
clusion that by implementing the SupCon framework
proposed by [25] we have overcome the indicated prob-
lem of the device- and/or location-based differences
within the temporal data. This was done on the basis of
six research questions. More specifically, the research
questions have yielded the following answers:

SRQ1.1 How does the current data pipeline function?

The current data pipeline of The eNose Company as in
detail discussed in section 3 consists of multiple pre-
processing options whereafter feature extraction and
selection are performed with the help of SVD to limit
the temporal complexity of the data. The modified
temporal data is then used to train an ML algorithm of
which the Extra Trees classifier is the most robust high
performing algorithm currently used by The eNose
Company.

SRQ1.2 What shortcomings can be identified in the
current data pipeline?

By analyzing the data pipeline of The eNose Company
we have identified multiple shortcomings. Firstly, we
have identified that no normalization or standardiza-
tion methods have been implemented which could help
create a common scale between different data points.
Secondly, SVD which is used as a feature extraction
method is a linear compression method and can there-
fore not capture non-linear relationships that coincide
within the data. Lastly, the DL subdomain is not
explored much while NNs could capture higher-
dimensional patterns for constructing classifiers that
could fit well with the temporal complexity of the data.

SRQ1.3 What solutions could net the biggest im-
provement to the disease classification?

We have chosen to implement the SupCon framework
proposed by [25] as this state-of-the-art solution tack-
les the characteristics of the data and the identified
shortcomings. More specifically, SupCon learning
uses two augmentations of every data point and be-
cause of that doubles the amount of data in our sparse
data set. Device- and/or location-based differences are
avoided by the SupCon network as it is actively break-
ing up unwanted clusters and forming clusters for the
targets to make the classification task easier. Instead
of the linear compression method, namely the SVD,
an encoder is used by the SupCon architecture which
could also capture non-linear relationships that reside
within the data.

RQ1 How can the current data pipeline of The eNose
Company be improved?

The current data pipeline of The eNose Company can
be improved with the SupCon framework by using
the jitter augmentation and a network combination of
a convolutional encoder, a fully connected projection
head, and a fully connected classification head as ex-
perimentation has shown.

SRQ2.1 To what level do device- and/or location-
based differences reside within the data?

13

t-SNE plots shown in section 6.4 have demonstrated
that clusters are formed according to specific aeoNose
devices while the targets are randomly scattered and
not clustered in any way.

RQ2 What is the impact of Supervised Contrastive
learning on the classification performance?

The SupCon learning implementation broke the device
clusters mostly and formed a slight separation of the
target classes which was illustrated in section 6.4. This
indicates that the learned classifier is able to recognize
patterns within the temporal data that generalize across
devices and locations. Moreover, the SupCon learn-
ing implementation achieved a performance increase
on the validation set with unseen devices from 49.39
AUROC with the previously best performing baseline
to a 60.14 AUROC. Altogether, the broken device clus-
ters together with the performance achieved on never
before seen devices proves that SupCon learning can
effectively be used in a sparse temporal environment.

8.1 Limitations

Limitations were encountered because of the scope of
this research. Starting with that all testing done during
this research was performed on a single sparse training
and validation data set combination of 505 data points.
Moreover, this data set combination only covers a sin-
gle disease, namely lung cancer, while the aeoNose de-
vice could be used for detecting multiple diseases.

Despite making the training set balanced by using
SMOTE, there was chosen to not equalize the preva-
lence of data points across devices so that each de-
vice has an equal number of data points. Not equaliz-
ing the prevalences for devices was done as this would
require an implementation that used SMOTE to cre-
ate new samples for both the underrepresented and
overrepresented target classes which would infer a lot
of synthetic data. Alternatively, this would require
us to delete data samples until every device had the
same number of samples. Having devices represented
equally might impact the performances of the SupCon
learning implementation but will never nullify the im-
pact that SupCon can have on creating a more gen-
eralized classifier that can overcome device- and/or
location-based differences.

8.2 Future work

Future work needs to be performed using multiple
new data sets on potentially new diseases to access
the generalizability more broadly across the field of
breath analysis. Internal testing at The eNose Com-
pany already indicated that changes to the processing
pipeline and cycle selection assessed in section 6 might
be needed as these diseases react differently with the
metal-oxide sensors of the aeoNose devices.

Further exploration also needs to be conducted to find
the underlying reasoning for the device and/or location
inconsistencies. This is rather difficult with the current
data set as it does not consist of a substantial number
of devices used in a single location. This makes the de-
coupling of inconsistencies, occurring because of dif-
ferent devices and locations, impossible. A new data
set consisting of multiple devices used at a single loca-
tion in a strictly set timespan might shed light on these
inconsistencies more clearly by visualizing them with
a t-SNE plot.

Despite the doubling of the number of samples used
to train a classifier in SupCon learning the sparsity of
the data set is still considered one of the weaknesses
present in the overall network. Further application of
data augmentation to generate more data points is seen
as one of the ways to tackle the sparsity while still mak-
ing use of SupCon learning. This could also be used to
directly tackle the limitation of not having equal preva-
lence across devices. Furthermore, data generation
could be used to generate entirely new data points. A
state-of-the-art application that could be investigated is
data generation with a generative adversarial network
[33]. Alternatively, TL could also be combined with
SupCon learning. [34] has performed a study on TL
with Contrastive learning. However, as discussed in
section 4 a source domain that is closely related to our
temporal data set needs to be found for this implemen-
tation to net a positive impact on the performance.

References

[1] H. Tai, S. Wang, Z. Duan, and Y. Jiang, “Evo-
lution of breath analysis based on humidity and
gas sensors: Potential and challenges,” Sensors
and Actuators B: Chemical, vol. 318, p. 128104,
2020.

[2] F. D. A. N. I. H. B. W. Group, BEST (Biomarkers,
EndpointS, and other Tools) Resource. Food and

14

Drug Administration (US) and National Institutes
of Health (US), 2016. [Online]. Available: https:
//www.ncbi.nlm.nih.gov/books/NBK326791/

[3] W. H. van Geffen, K. Lamote, A. Costantini,
L. E. L. Hendriks, N. M. Rahman, T. G. Blum,
and J. Van Meerbeeck, “The electronic nose:
emerging biomarkers in lung cancer diagnostics,”
Breathe, vol. 15, no. 4, pp. e135–e141, 2019.

[4] B. F. M. van Tintelen and R. H. Lucas,
“Schemetic and timeline created for master the-
ses on behalf of the enose company,” 2022.

[5] C. Baldini, L. Billeci, F. Sansone, R. Conte,
C. Domenici, and A. Tonacci, “Electronic nose
as a novel method for diagnosing cancer: A
systematic review,” Biosensors, vol. 10, no. 8,
2020. [Online]. Available: https://www.mdpi.
com/2079-6374/10/8/84

[6] M. Bruins, J. Gerritsen, W. Sande, A. van
Belkum, and A. Bos, “Enabling a transferable
calibration model for metal-oxide type electronic
noses,” Sensors and Actuators B: Chemical, vol.
188, pp. 1187–1195, 11 2013.

[7] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: synthetic minority over-
sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[8] S. C. Wong, A. Gatt, V. Stamatescu, and M. D.
McDonnell, “Understanding data augmentation
for classification: when to warp?” in 2016 inter-
national conference on digital image computing:
techniques and applications (DICTA). IEEE,
2016, pp. 1–6.

[9] C. C. MacDuffee, The theory of matrices, ser.
Ergebnisse der Mathematik und Ihrer Grenzgebi-
ete. 1. Folge. Springer Berlin, Heidelberg, 1933.

[10] C. Eckart and G. Young, “A principal axis trans-
formation for non-hermitian matrices,” Bulletin
of the American Mathematical Society, vol. 45,
pp. 118–121, 1939.

[11] L. Autonne, “Sur les groupes linéaires, réels et or-
thogonaux.” Bulletin de la Société Mathématique
de France, Tome 30, pp. 121–134, 1902.

[12] V. Klema and A. Laub, “The singular value de-
composition: Its computation and some applica-
tions,” IEEE Transactions on Automatic Control,
vol. 25, no. 2, pp. 164–176, 1980.

[13] L. Van der Maaten and G. Hinton, “Visualizing
data using t-sne.” Journal of machine learning re-
search, vol. 9, no. 11, 2008.

[14] D. Lyon, “The discrete fourier transform, part
6: Cross-correlation,” Journal of Object Technol-
ogy, vol. 9, no. 2, pp. 17–22, 2010.

[15] X. Guo, Y. Yin, C. Dong, G. Yang, and G. Zhou,
“On the class imbalance problem,” Fourth In-
ternational Conference on Natural Computation,
vol. 4, pp. 192–201, 10 2008.

[16] E. Keogh and A. Mueen, Curse of Di-
mensionality. Boston, MA: Springer US,
2017, pp. 314–315. [Online]. Available: https:
//doi.org/10.1007/978-1-4899-7687-1_192

[17] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V.
Dorogush, and A. Gulin, “Catboost: unbiased
boosting with categorical features,” Advances in
neural information processing systems, vol. 31,
2018.

[18] J. H. Friedman, “Stochastic gradient boosting,”
Computational statistics & data analysis, vol. 38,
no. 4, pp. 367–378, 2002.

[19] L. Breiman, “Random forests,” Machine learn-
ing, vol. 45, no. 1, pp. 5–32, 2001.

[20] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely
randomized trees,” Machine learning, vol. 63,
no. 1, pp. 3–42, 2006.

[21] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu,
H. Xiong, and Q. He, “A comprehensive survey
on transfer learning,” Proceedings of the IEEE,
vol. 109, no. 1, pp. 43–76, 2020.

[22] H. Ismail Fawaz, G. Forestier, J. Weber,
L. Idoumghar, and P.-A. Muller, “Transfer
learning for time series classification,” in 2018
IEEE International Conference on Big Data (Big
Data), 2018, pp. 1367–1376.

[23] Z. Wang, Z. Dai, B. Póczos, and J. Carbonell,
“Characterizing and avoiding negative transfer,”
in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019,
pp. 11 293–11 302.

[24] T. Chen, S. Kornblith, M. Norouzi, and G. Hin-
ton, “A simple framework for contrastive learning
of visual representations,” 2020. [Online]. Avail-
able: https://arxiv.org/abs/2002.05709

15

https://www.ncbi.nlm.nih.gov/books/NBK326791/
https://www.ncbi.nlm.nih.gov/books/NBK326791/
https://www.mdpi.com/2079-6374/10/8/84
https://www.mdpi.com/2079-6374/10/8/84
https://doi.org/10.1007/978-1-4899-7687-1_192
https://doi.org/10.1007/978-1-4899-7687-1_192
https://arxiv.org/abs/2002.05709

[25] P. Khosla, P. Teterwak, C. Wang, A. Sarna,
Y. Tian, P. Isola, A. Maschinot, C. Liu, and
D. Krishnan, “Supervised contrastive learning,”
2020. [Online]. Available: https://arxiv.org/abs/
2004.11362

[26] X. Zhang, M. XU, X. Zhou, and G. Guo,
“Supervised contrastive learning for facial kin-
ship recognition,” in 2021 16th IEEE Interna-
tional Conference on Automatic Face and Ges-
ture Recognition (FG 2021), 2021, pp. 01–05.

[27] A. Sahoo, R. Shah, R. Panda, K. Saenko,
and A. Das, “Contrast and mix: Temporal
contrastive video domain adaptation with
background mixing,” in Advances in Neural
Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates,
Inc., 2021, pp. 23 386–23 400. [Online]. Avail-
able: https://proceedings.neurips.cc/paper/2021/
file/c47e93742387750baba2e238558fa12d-
Paper.pdf

[28] A. Tripathi, A. K. Mondal, L. Kumar, and P. AP,
“Sclair: Supervised contrastive learning for user
and device independent airwriting recognition,”
IEEE Sensors Letters, vol. 6, no. 2, pp. 1–4, 2022.

[29] B. K. Iwana and S. Uchida, “An empirical survey
of data augmentation for time series classification
with neural networks,” PLOS ONE, vol. 16,
no. 7, pp. 1–32, 07 2021. [Online]. Available:
https://doi.org/10.1371/journal.pone.0254841

[30] R. F. Woolson, “Wilcoxon signed-rank test,” Wi-
ley encyclopedia of clinical trials, pp. 1–3, 2007.

[31] A. P. Bradley, “The use of the area under the roc
curve in the evaluation of machine learning algo-
rithms,” Pattern recognition, vol. 30, no. 7, pp.
1145–1159, 1997.

[32] H. Iqbal, “Harisiqbal88/plotneuralnet v1.0.0,”
Dec. 2018. [Online]. Available: https://doi.org/
10.5281/zenodo.2526396

[33] A. Creswell, T. White, V. Dumoulin, K. Arulku-
maran, B. Sengupta, and A. A. Bharath, “Gener-
ative adversarial networks: An overview,” IEEE
signal processing magazine, vol. 35, no. 1, pp.
53–65, 2018.

[34] A. Islam, C.-F. R. Chen, R. Panda, L. Karlin-
sky, R. Radke, and R. Feris, “A broad study
on the transferability of visual representations
with contrastive learning,” in Proceedings of the

IEEE/CVF International Conference on Com-
puter Vision, 2021, pp. 8845–8855.

16

https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/2004.11362
https://proceedings.neurips.cc/paper/2021/file/c47e93742387750baba2e238558fa12d-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c47e93742387750baba2e238558fa12d-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c47e93742387750baba2e238558fa12d-Paper.pdf
https://doi.org/10.1371/journal.pone.0254841
https://doi.org/10.5281/zenodo.2526396
https://doi.org/10.5281/zenodo.2526396

A Cycle selection

SupCon NN architecture - Average of 10 runs
Cycle # Pos DP neuron

activation
Neg DP neuron

activation
Difference AUROC aeoNose

timeline (fig. 2)
1 5562.96 5555.47 7.50 54.23

Sample

2 5568.03 5569.73 -1.7 43.58
3 570.67 5575.35 -4.68 46.02
4 5574.42 5579.78 -5.36 47.91
5 5579.03 5583.18 -4.16 45.95
6 5581.54 5585.19 -3.65 48.30
7 5584.08 5586.81 -2.73 46.98
8 5587.40 5588.28 -0.88 46.43
9 5586.91 5586.57 0.33 46.37
10 5578.50 5571.93 6.57 53.31

Recovery

11 5573.35 5554.16 19.19 52.81
12 5565.55 5541.88 23.67 50.79
13 5558.86 5535.86 23.00 52.99
14 5556.07 5530.20 25.87 53.55
15 5551.55 5524.72 26.83 55.07
16 5549.78 5521.83 27.95 51.35
17 5546.11 5519.59 26.52 55.34
18 5544.51 5516.34 28.17 53.16
19 5543.24 5515.66 27.58 48.92
20 5542.20 5514.13 28.07 55.55
21 5541.65 5513.51 28.14 54.83 Heating
22 5541.09 5513.87 27.21 52.90

Cooling down

23 5543.87 5516.99 26.89 55.04
24 5544.44 5526.84 17.60 52.23
25 5546.93 5533.82 13.11 54.52
26 5547.77 5535.49 12.28 49.60
27 5545.61 5534.40 11.21 52.22
28 5544.64 5531.89 12.75 49.69
29 5543.15 5529.38 13.77 45.95
30 5544.86 5527.25 17.61 45.75
31 5542.15 5525.41 16.74 48.33
32 5541.45 5523.73 17.72 48.96

Table 6: Cycle selection results

17

B Processing steps results

Extra trees classifier - Average of 100 runs on test set
Network Processing steps # of cycles AUROC

Baseline 0 Peak shaving - subtract - SVD 32 59.29
Baseline 1 Peak shaving - subtract - SVD 16 62.55

Test 2 Peak shaving - Cross Correlation - SVD 16 66.40
Test 3 Peak shaving - Cross Correlation subcycle - SVD 16 64.08
Test 4 Peak shaving - exponential - SVD 16 66.81
Test 5 Peak shaving - square - SVD 16 65.84
Test 6 Peak shaving - square root - SVD 16 67.26

Baseline 2 Peak shaving - natural logarithm - SVD 16 68.07
Test 8 Peak shaving - natural logarithm - SVD - Norm 0->1 16 67.52
Test 9 Peak shaving - natural logarithm - SVD - Norm -1->1 16 68.22
Test 10 Peak shaving - natural logarithm - SVD - Stand mean 0 stdev. 1 16 67.93
Test 11 Peak shaving - natural logarithm - Norm 0->1 - SVD 16 67.88
Test 12 Peak shaving - natural logarithm - Norm 0->1 - SVD - Norm 0->1 16 68.08
Test 13 Peak shaving - natural logarithm - Norm 0->1 - SVD - Norm -1->1 16 68.15
Test 14 Peak shaving - natural logarithm - Norm 0->1 - SVD - Stand mean 0 stdev. 1 16 68.03
Test 15 Peak shaving - natural logarithm - Norm -1->1 - SVD 16 68.47
Test 16 Peak shaving - natural logarithm - Norm -1->1 - SVD - Norm 0->1 16 67.85
Test 17 Peak shaving - natural logarithm - Norm -1->1 - SVD - Norm -1->1 16 68.11
Test 18 Peak shaving - natural logarithm - Norm -1->1 - SVD - Stand mean 0 stdev. 1 16 67.97
Test 19 Peak shaving - natural logarithm - Stand mean 0 stdev. 1 - SVD 16 68.33
Test 20 Peak shaving - natural logarithm - Stand mean 0 stdev. 1 - SVD - Norm 0->1 16 67.93
Test 21 Peak shaving - natural logarithm - Stand mean 0 stdev. 1 - SVD - Norm -1->1 16 67.65
Test 22 Peak shaving - natural logarithm - Stand mean 0 stdev. 1 - SVD - Stand mean 0 stdev. 1 16 67.91

Table 7: Results processing pipelines

18

C NN architecture results

Average of 100 runs
Network structure Set AUROCEncoder Projection head Classification head

F:4 K:5 S:2
Average pooling

F:8 K:3 S:2
Average pooling

F:8 K:3 S:2
Average pooling 32 16 16 1 Test 64.58

Val 58.71
F:4 K:5 S:2

Average pooling
F:8 K:3 S:2

Average pooling
F:8 K:3 S:2
Max pooling 32 16 16 1 Test 65.67

Val 60.14
F:4 K:5 S:2

Average pooling
F:8 K:3 S:2
Max pooling

F:8 K:3 S:2
Max pooling 32 16 16 1 Test 63.14

Val 58.67
F:4 K:5 S:2
Max pooling

F:8 K:3 S:2
Max pooling

F:8 K:3 S:2
Max pooling 32 16 16 1 Test 65.38

Val 57.76
F:4 K:5 S:2

Average pooling
F:8 K:3 S:2

Average pooling 32 16 16 1 Test 64.76
Val 51.62

F:4 K:5 S:2
Average pooling

F:8 K:3 S:2
Max pooling 32 16 16 1 Test 66.42

Val 57.57
F:4 K:5 S:2
Max pooling

F:8 K:3 S:2
Max pooling 32 16 16 1 Test 64.87

Val 52.40
F:8 K:5 S:2

Average pooling 32 16 32 1 Test 64.04
Val 55.12

F:4 K:5 S:2
Average pooling

F:8 K:3 S:2
Average pooling

F:8 K:3 S:2
Max pooling 32 16 32 1 Test 70.20

Val 56.78
F:4 K:5 S:2

Average pooling
F:8 K:3 S:2

Average pooling
F:8 K:3 S:2
Max pooling 32 16 64 1 Test 67.63

Val 54.74

Table 8: SupCon NN architecture results. F = # of filters, K = 1D kernal size, and S = stride of the convo-
lutional layer. The numbering in the projection head and classification head represents the output size of the
corresponding fully connected layer.

19

D Augmentation results

SupCon NN architecture - Average of 100 runs
Augmentation Setting Set AUROC

Jitter Stdev. 0.05 Test 64.49
Val 56.79

Jitter Stdev. 0.1 Test 65.67
Val 60.14

Jitter Stdev. 0.15 Test 63.34
Val 58.41

Scaling Stdev. 0.05 Test 62.30
Val 56.23

Scaling Stdev. 0.1 Test 62.15
Val 56.52

Scaling Stdev. 0.15 Test 62.10
Val 56.85

Permutation Max segments 5 Test 65.30
Val 55.12

Permutation Max segments 10 Test 64.93
Val 55.59

Magnitude warping Stdev. 0.2 & knots 4 Test 60.90
Val 55.03

Magnitude warping Stdev. 0.4 & knots 4 Test 65.42
Val 59.40

Magnitude warping Stdev. 0.2 & knots 8 Test 64.33
Val 57.21

Magnitude warping Stdev. 0.4 & knots 8 Test 60.53
Val 54.47

Time warping Stdev. 0.2 & knots 4 Test 65.36
Val 52.95

Time warping Stdev. 0.4 & knots 4 Test 65.54
Val 56.99

Time warping Stdev. 0.2 & knots 8 Test 59.37
Val 49.15

Time warping Stdev. 0.4 & knots 8 Test 65.79
Val 54.66

Magnitude warping + Jitter Stdev. 0.4 & knots 4 + Stdev. 0.1 Test 65.36
Val 55.82

Time warping + Jitter Stdev. 0.4 & knots 8 + Stdev. 0.1 Test 63.83
Val 58.13

Permutation + Jitter Max segments 5 + Stdev. 0.1 Test 66.14
Val 50.74

Magnitude warping + Time warping Stdev. 0.4 & knots 4 + Stdev. 0.4 & knots 8 Test 53.17
Val 50.00

Table 9: Jitter augmentation results

20

E t-SNE plots validation set

SupCon processed - Devices

Device 1
Device 2
Device 3
Device 4
Device 5

Added validation - Devices

Device 1
Device 2
Device 3
Device 4
Device 5
Device 6
Device 7
Device 8

SupCon embedded space - Devices

Device 6
Device 7
Device 8

Figure 12: t-SNE plot comparison validation set on devices

21

	Introduction
	Background
	Synthetic Minority Over-Sampling Technique
	Singular Value Decomposition
	t-distributed Stochastic Neighbor Embedding

	Current data pipeline
	Raw data
	Preprocessing
	Data augmentation
	Feature extraction and selection
	Classification
	Data pipeline analysis

	Related work
	Methodology
	Proposed method
	Augmentations
	Validation

	Preliminary experimentation
	Cycle selection
	Baseline
	Experimental setup
	Device and/or location specifics

	Results
	Conclusions
	Limitations
	Future work

	Cycle selection
	Processing steps results
	NN architecture results
	Augmentation results
	t-SNE plots validation set

