
MSc Thesis Computer Science

Feature Extraction and Selection
on Sparse, Complex, Sensor-Based
Exhaled-Breath Data Sets

Bastiaan Frederik Mika van Tintelen

University of Twente Supervisors:
dr. N. Strisciuglio
i n.strisciuglio@utwente.nl
dr.ing. F.W. Hahn
i f.w.hahn@utwente.nl

The eNose Company Supervisors:
ir. H. Oord
i henny.oord@enose.nl
dr.ir. J.W. Gerritsen
i jan-willem.gerritsen@enose.nl

August 28, 2022

Department of Data Management and Biometrics
Faculty of Electrical Engineering,
Mathematics and Computer Science

mailto:n.strisciuglio@utwente.nl
mailto:f.w.hahn@utwente.nl
mailto:henny.oord@enose.nl
mailto:jan-willem.gerritsen@enose.nl


Acknowledgements

My graduation process has been a challenging but rewarding experience that could only be realized with the
support of others.

First of all, I want to thank The eNose Company and all of its employees for receiving me with open arms,
assisting me when needed, and providing feedback and insights. Especially I want to thank Marcel Bruins, André
Elands, Jan-Willem Gerritsen, Bert Hoogendam, and Henny Oord.

From the University of Twente, I want to thank Nicola Strisciuglio for being my supervisor and providing
guidance, suggesting noteworthy researches and providing feedback all while allowing me to find my own path
through this process. Additionally, I want to thank Florian Hahn for being my second supervisor and providing
insights from the viewpoint of a different research group.

I want to thank my fellow student and friend Ruben Lucas, who also conducted his Master Thesis at The eNose
Company, for being my sparring partner during my Master Thesis and assisting me throughout my graduation
process when needed.

Finally, I want to thank my friends and family for their support throughout my college years. Specifically I
want to thank Alexander Stekelenburg, Mariëlle van Tintelen and Frits Tuininga.



Feature Extraction and Selection on Sparse, Complex, Sensor-Based
Exhaled-Breath Data Sets

Bastiaan. F. M. van Tintelen
b.f.m.vantintelen@student.utwente.nl

s1866494

August 28, 2022

The aeoNose device, developed by The eNose Com-
pany, is used for diagnosing cancer by analysing
the Volatile Organic Compounds residing within a
person’s exhaled breath. These Volatile Organic
Compounds cause redox reactions at the surface of
the device’s sensors influencing their conductivity
readings. These conductivity readings are then pro-
cessed by peak shaving and either transforming or
rescaling the signal data. This is followed by the
Singular Value Decomposition to extract features
by reducing the dimensionality of the data. Once
all these preprocessing steps are applied the data is
ready for disease classification with Machine Learn-
ing algorithms. In this paper, we propose an opti-
mization approach for this data processing pipeline
by first limiting the input data size as well as intro-
ducing the Natural Logarithmic rescaling function
as preprocessing steps. This results in an area under
the receiver operating characteristics curve increase
from 59.29% to 66.69% on a 100 runs average for
five classifiers. For this setup, the Extra Trees Clas-
sifier performs best with an average performance
of 68.07%. Additionally, we exchanged the Singu-
lar Value Decomposition with a Fully Connected
Autoencoder and a Convolutional Autoencoder re-
sulting in a performance of 67.34% and 64.69% on
average respectively. For both Autoencoders, the
Random Forest Classifier performs best, resulting
on average in 70.21% and 67.80% respectively. With
this, we show that the Fully Connected Autoencoder
can surpass the SVD compression with 2.14% when
comparing best performing models, while the Con-
volutional Autoencoder can obtain similar results
compared to the SVD compression.

Keywords: Machine Learning, Autoencoder, Convo-
lutional Autoencoder, Temporal Data

1 Introduction

Exhaled-breath analysis is a non-invasive method for
physical health management and is a promising devel-
opment in the Health Care sector for early disease diag-
nosis and monitoring [1]. The eNose Company is one
of the leading companies in screening diseases, such
as colon cancer, lung cancer, and tuberculosis. This is
realized by analysing the Volatile Organic Compounds
(VOC) within exhaled breath. For this they have devel-
oped a dedicated point-of-care electronic nose [2] called
the aeoNose (Figure 1) that measures these VOCs and
records the conductivity readings of three sinusoidal-
heated metal-oxide sensors. The conductivity of the
sensors changes due to redox reactions occuring at the
surface of these sensors between the VOCs and the sen-
sor material.

The temperature of the sensor material influences
the VOCs that attach to the surface of the sensor, there-
fore, resulting in different conductivity readings. This
is realised by heating the sensor material between 260
°C and 340 °C regulated by two sinusoidal-waves [3].
These two sinusoidal-waves have a frequency of 0.15
and 0.075 Hertz resulting in a period of approximately
7 and 13 seconds respectively. Combined these two
sinusoidal-waves form one data sampling cycle and
have a duration of exactly 20 seconds.

During measurement of a patient’s exhaled breath,
the aeoNose is subjected to five different phases with
unique air concentrations (Figure 2).

Figure 1: aeoNose Schematic [4]

1

mailto:b.f.m.vantintelen@student.utwente.nl


Figure 2: Sampling Timeline [4]

Phase one: Flush
During the Flush phase (120s / six cycles) the patients
clean their lungs by breathing in through the mouthpiece
via the carbon filter and out through the air outlet. The
exhaled breath of the patient does not enter the device
during this time, realized by locking the valve. Instead,
clean air enters the device through the air inlet cleaning
the preconcentration tube and metal-oxide sensors for
measurement. Only a clean air data sample is collected
during this phase.

Phase Two: Sample
During the Sample phase (180s / nine cycles) the valve
opens and the patient’s exhaled breath is pumped over
the metal-oxide sensors causing the redox reactions
between the sensor material and the VOCs. Addition-
ally, the molecules within the airflow are stored in the
preconcentration tube, after which it exits the device
through the air outlet. This phase indicates the start of
the exhaled-breath measurement and the conductivity
readings are stored.

Phase Three: Recovery
During the Recovery phase (240s / 12 cycles) the valve
closes again and the patient stops breathing through the
device. Air enters the device through the air inlet and
cleans the metal-oxide sensors of molecules while still
recording conductivity readings.

Phase Four: Heating
During the Heating phase (30s / 1.5 cycles) the precon-
centration tube is heated and starts letting go of stored
molecules. The air enters the device through the air
inlet, retrieving the molecules by passing through the
preconcentration tube, and flows over the metal-oxide
sensor for additional measurements.

Phase Five: Cooling Down
During the Cooling Down phase (190s / 9.5 cycles) the
preconcentration tube starts cooling down while still
letting go of stored molecules. The air still enters the
device through the air inlet, retrieving the molecules by
passing through the preconcentration tube, and flows
over the metal-oxide sensor for additional measure-
ments. After this phase, all data of the measurement
have been collected.

For each sensor, the resulting data consists of 32 data
sampling cycles as well as one cycle that contains the
clean air data. In total, 32 conductivity readings are
recorded for each sinusoidal-wave resulting in 64 con-
ductivity readings for each data sampling cycle.

This data is then preprocessed to reduce the impact of
possible sensor and/or analog-to-digital converter inac-
curacies (resulting in incorrect conductivity readings),
possible device and/or location-based differences (caus-
ing difficulties in training classifiers that perform well
on data sets from different devices and locations), and
data information that does not represent the screened
disease (e.g. the sinusoidal-wave controlling the sensor
temperature). On top of this, the data set is small and
imbalanced as is common in the Health Care sector.
This is caused by the limited number of participants
during clinical studies of which only a minority have
the screened disease. All these challenges influence
the final classification accuracies and robustness of the
trained Machine Learning (ML) models.

In order to improve the robustness, and possibly the
accuracy, of the ML models we have investigated the
Singular Value Decomposition (SVD) and compared
it to the Fully Connected Autoencoder (FC-AE) and
the Convolutional Autoencoder (CAE). Since the field
of Data Science has been, and still is, rapidly evolv-
ing these state-of-the-art Deep Learning (DL) methods
could provide new capabilities to better overcome the
aforementioned challenges [5].

We first provide necessary background knowledge
in section 2 before we show an in-depth analysis of
the current data processing pipeline implemented by
The eNose Company in section 3. This leads into an
overview of the previously mentioned as well as other
possible optimization approaches in section 4. The val-
idation methodology used throughout the testings is
discussed in section 5 and some preliminary testings
have been set up in section 6. These preliminary testings
provide a foundation for the testing and analysis of the
proposed Autoencoder (AE) optimization approaches in
section 7. Everything is finished off with the conclusion
and further research in section 8.

The following Research Questions have been defined.

RQ1 What is an improvement option for the current
data processing pipeline implemented by The
eNose Company?

SRQ1.1 What are the components of, and their im-
pact on, the current processing pipeline?

SRQ1.2 What are the shortcomings of the current
processing pipeline?

SRQ1.3 What are promising additions and changes
to the current processing pipeline?

2



RQ2 What is the impact of the most promising ad-
ditions and changes on the classification capa-
bilities of the current data processing pipeline
implemented by The eNose Company?

SRQ2.1 What is a proper validation methodology
for analysing the impact of additions and
changes to the current processing pipeline?

SRQ2.2 What is the impact of the most promising
preprocessing additions and changes?

SRQ2.3 What is the impact of the most promising
feature extraction changes?

2 Background

We will explain some of the terminology and methods
that are used throughout this paper as to provide the
required knowledge to understand the applications fully.

Synthetic Minority Over-sampling Technique

A popular technique to overcome the challenges of an
imbalanced data set is the Synthetic Minority Over-
sampling Technique (SMOTE) [6]. SMOTE is used to
augment data points from the under-represented class,
which is the basic principle of oversampling, while keep-
ing the over-represented class intact. This ensures that
no observations are removed during the data set balanc-
ing. The unique oversampling approach applied with
SMOTE is realized by creating synthetic observations
instead of duplicating them. By multiplying the differ-
ence between the feature vectors of two data samples
with a random number between 0 and 1 and adding this
to one of the two feature vectors a new data sample
can be created. These new data samples are created on
the line segment between the two used feature vectors
and forces the decision region of the minority class to
become more general [7]. This can be translated to the
following theorem [6, 329-330].
Let f1 and f2 be two data samples from the minority
class. Then a new data sample can be generated for the
minority class with:

s1 = f
′
1,2 = f1 + (rand(0, 1) ∗ (f2 − f1))

Singular Value Decomposition

One of the most popular tools in modern numerical
analysis is the Singular Value Decomposition (SVD).
Since the SVD rearranges and merges information that
resides within the data by importance it can be used as
feature extraction method. This rearranging and merg-
ing can be applied to real square matrices [8, p. 78],
complex square matrices [9], and general rectangular

matrices [10]. After feature extraction it is possible to
apply feature selection by, starting from the most impor-
tant column features, specifying the desired number of
features. When the number of features of a data set are
linearly separable this number can be significantly re-
duced by applying the SVD while retaining the majority
of the information that resides within the data.

The rearranging and merging of information for square
matrices (in the square brackets the method for rectan-
gular matrices is given) is realized with the following
theorem.

Let matrix X ∈ Rm×n be the data set consisting
of m observations described by n variables and kmn

represent each measurement. Then there exists a square
[rectangular] matrix U ∈ Rm×m[Rm×k], a rectangular
[square] zero matrix with non-negative values on the
diagonal Σ ∈ Rm×n[Rk×k], and a square [rectangular]
matrix V ∈ Rn×n[Rk×n] [where k = min(m,n)] such
that:

X = UΣVT

The columns of matrix U and the columns of matrix V
are called left-singular vectors and right-singular vec-
tors of X respectively. By taking Û = X̂Σ−1(VT )−1

the matrix Û can be determined for l new data obser-
vations X̂ ∈ Rl×n. From this matrix Û the number of
columns that corresponded to the desired complexity
and amount of data can be taken, leaving a dimension-
ally reduced outcome compared to the original matrix
X̂ with as much information aggregated as possible [11,
p. 166].

3 Processing Pipeline Analysis

We provide an overview of the data processing pipeline
used by The eNose Company to obtain a disease diagno-
sis from the raw exhaled-breath data as baseline (Figure
3).

3.1 Raw Data

The raw data contains the conductivity readings of the
three sinusoidal-heated, metal-oxide sensors within the
aeoNose device. For each measurement, this results
in a total of 2048 conductivity readings for all three
sensors where both sinusoidal-waves within a data sam-
pling cycle have 32 conductivity readings resulting in 64
conductivity readings for each cycle. The conductivity
readings of this data are temporally correlated as they
are sampled directly after one another over time. Within
these correlations some information might be hidden
that could only be retrieved with specific processing
steps. Additionally, one clean air data sample of 64

3



Figure 3: Data Processing Pipeline of The eNose Com-
pany

conductivity readings, subjected to the two sinusoidal-
waves, is provided as some preprocessing steps require
this information to transform the data.

3.2 Preprocessing

A plethora of preprocessing steps can be applied by
The eNose Company as transformation options before
feature extraction and selection with the SVD. These
preprocessing steps comprise of peak shaving, signal
transformation, rescaling, and sensor and cycle selec-
tion.

Peak Shaving

The metal-oxide sensors in the aeoNose device are
slightly error-prone as they might output spikes that
do not accurately represent the actual exhaled breath.
The raw data should not contain these sudden spikes
since redox reactions are chemical processes that should
be represented in the conductivity readings. The analog-
to-digital converter (ADC) could also cause spikes in
the data due to incorrect transformation readings. Re-
gardless of the origin of the spikes, the inaccuracies
can negatively impact the final classification. To reduce
the impact of these spikes peak shaving can be applied
to the data by reducing the peaks to the average of the
surrounding conductivity readings.

Signal Transformation

The sinusoidal-waves that are used to heat the sensors
do not directly provide information about the person’s
exhaled breath. Therefore it might be beneficial to re-
move or alter this wave so the relevant information is
not hidden. The sinusoidal-waves can be taken out of
the data by subtracting the clean air from the data. Addi-
tionally, Cross-Correlation can be applied to the data by

first transforming the data with the Fourier Transform
[12, 13] followed by multiplying each of the 32 cycles
with the complex conjugate of the clean air and back-
transforming with the Inverse Fourier Transform. Cross-
Correlation can also be applied to the two sinusoidal-
waves in a cycle individually called Cross-Correlation
subcycle. This ensures that the Fourier Transform is
taken on only one specific sinusoidal-wave instead of
taking both sinusoidal-waves in account at the same
time. In all three cases, the sinusoidal-waves are either
altered or removed and should no longer hide relevant
information.

Rescaling

As an alternative to, or extension of, the signal trans-
formation The eNose Company has implemented the
natural logarithmic, exponential, square, and square
root functions as data rescaling options. These rescal-
ing functions transform the data and might therefore
highlight more relevant information for feature extrac-
tion and classification.

Sensor and Cycle Selection

Since each of the three sensors of the aeoNose device
have their own unique sensor material they gather differ-
ent information due to the occurrence of different redox
reactions. Selecting a subset, or combination, of sen-
sors might therefore contain more relevant information.
Additionally, since the sensors are exposed to different
flows of air during the measurement selecting certain
cycles might remove noisy and redundant information
from the data set. Furthermore, this also reduces the
amount of data within each data sample, slightly bal-
ancing the data discrepancy between the low number
of data samples and the high amount of data within a
data sample.

3.3 Data Augmentation

Data augmentation is used to increase the number of
data samples for training the ML models. SMOTE
is implemented to obtain a data set that has an equal
number of positive and negative samples to ensure no
class labels are significantly under- or over-represented
compared to one another.

3.4 Feature Extraction and Selection

Dimensionality reduction is implemented with the SVD
as feature extraction method in combination with fea-
ture selection. The number of conductivity readings,
which depends on the number of cycles selected, is com-
pressed to 17 features, which is an arbitrarily chosen

4



number that complies with the limited participants size
of clinical studies while retaining enough information
for classification. The features outputted by the SVD
are ranked based on their ability to represent the infor-
mation within the original data. Of these features, the
17 with the highest explained variance are selected as
representation of the information within the data.

3.5 Classification

As final step of the processing pipeline the preprocessed,
compressed, and augmented raw data is fed to several
ML models that return a classification of either diseased
or healthy.

3.6 Processing Pipeline Shortcomings

Several shortcomings have been identified in the current
processing pipeline that influences the overall classifi-
cation performance of the ML methods. These short-
comings comprise of a limited data set, device- and/or
location-based differences, feature extraction limita-
tions, and non-deep classification.

Data Set Restrictions

Small and imbalanced data sets are quite familiar to the
Health Care sector due to the restricted size of clinical
studies and lack of testers that suffer from the screened
disease. Ensuring the ML models are not overfitted on
the training data is an ever-present challenge that needs
to be overcome, which is significantly more difficult
when dealing with small and imbalanced data sets.

Device- and/or Location-Based Differences

Even though The eNose Company has taken both hard-
ware and software measures obtaining a generalized
ML model that performs consistently on devices that
are underrepresented or unseen during training remains
a challenge. This is likely caused by differences in
devices, such as slightly differently calibrated sensors,
and/or locations, such as the ambient air in which the
testing is conducted.

Feature Extraction Limitations

The SVD is a compression method that only consid-
ers the linear information within the data and therefore
could lose valuable non-linear information. Investigat-
ing feature extraction methods that also consider this
non-linear information might increase the performance
of the trained ML models.

Furthermore, the lack of normalization or standard-
ization might cause arbitrary large values to overrule

lower values while the scaling of the data should not im-
pact the information that resides within it. Additionally,
the sensors of the aeoNose device will deteriorate over
time which will result in different conductivity readings.
Without normalization or standardization this might
significantly impact the performance of the trained ML
models. Adding normalization or standardization to the
feature extraction might therefore contribute to a more
robust ML model.

Non-Deep Classification

The ML methods that are currently implemented do not
contain models from the Deep Learning (DL) subdo-
main. This is not necessarily a bad thing as there are
situations where non-deep methods are preferred over
DL methods, for instance when the amount of avail-
able data is limited [14]. This should indicate that DL
methods will not be beneficial for this research since
the available data set is small and imbalanced. How-
ever, the number of data for each paticipant in this study
is quite high which could prove difficult for non-deep
methods. Furthermore, the DL domain has been, and
still is, rapidly developing and these newly obtained
insights might provide new capabilities to the current
processing pipeline.

4 Related Work

After analyzing the processing pipeline we have iden-
tified several possible solutions that can be applied to
overcome some of the shortcomings. These possible
solutions are finished with an in-depth explanation of
AEs being the identified solution we focus on.

4.1 Possible Solutions

Possible solutions have been identified for the four short-
comings mentioned previously.

Data Set Restrictions Solutions

The first highlighted shortcoming is the restrictions on
the data set, which is small in number of data samples
but large in the number of conductivity readings for
each data sample. The first part is somewhat tackled
with the SMOTE data augmentation to obtain an equal
prevalence between positive and negative data samples.
However, SMOTE is not that suitable for significant
increases in data samples since it is a linear augmenta-
tion method that might miss valuable information that
resides in non-linear relation within the data. The sec-
ond part is partly overcome by selecting stable parts
of data samples in so called cycle subsets, but since

5



the redox reaction is slow this will not reduce the num-
ber of conductivity readings significantly. A popular
state-of-the-art data generation method is the Genera-
tive Adversarial Network (GAN) [15] [16] which can
generate a large number of data samples that, given
multiple layers are used, do take the non-linear infor-
mation of the data into account. Additionally, GAN
has shown great results in image processing, but it can
be fine-tuned to be applied on temporal correlations
[17]. This could therefore generate higher quality data
samples compared to the SMOTE method and therefore
it increase the classification quality.

Device- and/or Location-Based Difference Solutions

The second highlighted shortcoming is the differences
between devices and/or locations that make it really
difficult to obtain a generalized ML model that is con-
sistent across devices and/or locations. One way to
overcome this is to use Transfer Learning (TL) [18], in
which a NN is trained on a source task and source do-
main that are closely related to the target task and target
domain. Once this NN has been properly trained some
layers can be locked from further training to retained
learned patterns. The remaining part of the NN is then
trained again on the target task with the target domain.
The goal of this is to learn general information from
the source domain while learning the specifics from
the target domain. This is especially effective when the
target domain has a limited amount of data.

Additionally, it is possible to use Supervised Con-
trastive (SupCon) learning [19] to overcome this short-
coming when finding a good source domain proves
difficult. The source domain is now obtained by aug-
menting the target domain data. During training, the
general features of the data set can be learned by only
looking at the similarities and differences between data
samples. This is realized by clustering data samples
with the same targets while pulling the created target
clusters apart. This splitting of the clusters could prove
beneficial in overcoming the device- and/or location-
based differences.

Feature Extraction Limitations Solutions

The third highlighted weakness is that the SVD feature
extraction does not take into account non-linear infor-
mation that might reside within the data. The first thing
that might decrease the possible impact of this weakness
is applying normalization between 0 and 1, normaliza-
tion between -1 and 1, or standardization with mean 0
and standard deviation 1 before the SVD. This might
both reduce the device differences as well as the deterio-
ration of the sensors over time resulting in a more robust

system. However, this still does not take into account
the non-linear information that could reside within the
data. To focus specifically on this non-linear informa-
tion and the fact that the dimensionality of the data
should be reduced feature extraction with AEs might be
a suitable option. There are a lot of AEs available that
can be applied to significantly reduce the dimension-
ality of the data in an unsupervised way while taking
into account the non-linear information within a data
set. Some AEs are designed specifically for temporally
correlated sensor data as well [20].

Non-Deep Classification Solutions

The final highlighted shortcoming is the lack of classifi-
cation testing with ML methods from the DL subdomain
as these might provide new insights in the data. This
is easiest tackled by implementing several Multilayer
Perceptrons (MLP), Recurrent Neural Networks (RNN),
and Convolutional Neural Networks (CNN) for example.
However, when the DL networks are preceded by the
SVD the data is compressed based on linear separability
which might hurt the performance of trained DL mod-
els. Preceding these methods with a feature extraction
method that takes into account the non-linear relations
will provide more information for the DL methods to
work with.

4.2 Autoencoders

Based on the investigated shortcomings we propose to
implement and analyze AE [21] as an alternative feature
extraction method [22]. This possible solution has been
chosen since it is early on in the processing pipeline and
therefore impacts the effectiveness of solutions for data
generation and NN classification. Focusing on the AEs
before investigating these other shortcomings ensures
that no re-investigation of these other implemented so-
lutions will have to be conducted due to the impact the
AEs might have on these implemented improvements.
Additionally, AEs could also result in a more robust and
more generally trained ML model due to their inherent
ability to denoise the data. This could reduce the de-
vice and/or location-based differences that have been
identified as well.
An AE is a NN that has the sole purpose of reconstruct-
ing the input data after mapping it to a lower dimension
called the latent space as shown in Figure 4. This is re-
alized by reducing the dimensionality of the input data
x with an encoder gϕ to this latent space after which the
latent space representation z is reconstructed back to
the original dimensionality x′ with a decoder fθ. When
the reconstructed input data x′ is similar to the original
input data x the AE has learned to map the input data to

6



Figure 4: Autoencoder Architecture [23]

an "informative" representation of it in the latent space
[21].

During training the parameters ϕ and θ of functions
gϕ(x) = z (Rn −→ Rp) and fθ(z) = x′ (Rp −→ Rn)
are updated by

arg minϕ,θ E[∆(x, fθ(gϕ(x))][24]

where arg min indicates the parameter values for which
the loss function is minimized, E the expected value
over the distribution of x, and ∆ the reconstruction loss
function measured by the distance between the origi-
nal input and reconstructed output. The most common
loss function is the Mean Squared Error (MSE) loss
(comprising both the E and ∆ parts of the formula).

MSE(ϕ, θ) =
1

n

n∑
i=1

(x(i) − fθ(gϕ(x
(i))))2

The final combined function used for updating ϕ and θ
is then defined as:

arg minϕ,θ
1

n

n∑
i=1

(x(i) − fθ(gϕ(x
(i))))2

In most AE the activation functions in gϕ and fθ are
non-linear [25], however, they could also be linear oper-
ations resulting in a linear AE [26], given that only one
hidden layer is used. A linear AE achieves the same
latent representation as the PCA, which can be calcu-
lated with the SVD, by also dropping the non-linear
operations [27]. An AE can be seen as a generalization
of the PCA where it learns a non-linear manifold in-
stead of finding a low-dimensional hyperplane in which
the data resides. [28, p. 1-2]). When both the AE and
PCA are applied to linear data the difference is almost
nonexistent, however, when applied to non-linear data
the AE could significantly outperform the PCA when it
comes to dimensionality reduction [22].

We have chosen to implement and analyze both the
FC-AE and CAE since the FC-AE gives a good starting
point comparison to the currently implemented SVD,
since it is closely related to the PCA, and the CAE can
take into account the temporal correlation within a data
set which might prove beneficial.

Fully Connected Autoencoder

In the FC-AE both the encoder and decoder consist
of fully-connected feedforward neural networks each
containing one or more hidden dense layers.

For the encoder the input data x is directly, or via
hidden layers, mapped to the latent space representation
z and for the decoder this latent space representation z
is directly, or via hidden layers, mapped to the recon-
structed input x′.

[29] shows an application of (an ensemble of) three-
layer FC-AEs on sensor data for human activity recog-
nition. Their FC-AE approach obtains a better per-
formance compared to other existing Human Activity
Recognition methods.

Convolutional Autoencoder

In a CAE the encoder contains one or more convolu-
tional layers before a dense layer is used to obtain the
latent space representation and the decoder contains
the transpose of these dense and convolutional layers to
obtain the reconstructed input.

The encoder is applied to the input data x by apply-
ing one or more convolutional kernels to the data and
mapping the data in the end to a latent space represen-
tation z with a dense layer. The decoder applies the
transposed versions of the applied convolutional layers
of the encoder in reverse order to the latent space repre-
sentation z to obtain the reconstructed input x′.

[30] shows an application of CAEs for compress-
ing and reconstructing Electroencephalogram Signals
(EEG) restrained by a sparse and high-dimensional data
set.

Additionally, [31] created a CAE that rectifies faults
within the sensor data after first detecting faults with
a Convolutional Neural Network (CNN), indicating a
good (denoising) reconstruction capability of CAEs on
sensor data.

5 Validation Methodology

We have set up a validation methodology that is used
throughout all tests in this paper.

5.1 Validation Metrics and Methods

For analyzing the performances of the SVD, FC-AEs,
and CAEs we used the Wilcoxon test in combination
with the Area Under the Receiver Operating Character-
istic Curve as well as test and data visualisation with
t-distributed Stochastic Neighbor Embedding.

Wilcoxon

7



The Wilcoxon signed-rank test [32] is used to evalu-
ate whether or not the difference in performance, when
comparing two results, is statistically significant. Due
to the non-parametric attribute it can be used to com-
pare two populations when no underlying distribution
has been established. This is important since no dis-
tribution has been determined for the sparse, complex,
sensor-based data set we are working with.

Test set
A test set is used to apply the trained ML model to data
that has not been seen during training. The test data
set contains unseen data that has been collected with
devices that have been taken into account during the
training. This represents a real-life application scenario
in which the trained ML model is used to classify new
data samples. This test gives an indication whether or
not a general model has been obtained for these devices.

Testing Restrictions
To create a realistic and balanced testing environment
all conducted tests are subjected to some restrictions.
First of all, the data set is split into 75% train and 25%
test sets while ensuring that the number of positive and
negative samples within a device are equal (Tables 1
and 2). This is realized by first balancing the test sets of
each device to contain an equal number of positive and
negative testing samples. Afterwards SMOTE is used
to augment data samples to create a balanced training
set for each device. An equal number of positive and
negative samples across devices could not be realized
due to the imbalance in data samples between devices.
This is a difficult shortcoming to overcome since balanc-
ing with the current implemented options would have
resulted in dropping a lot of real data from one device
and/or generating a lot of data for another, both of which
are not viable when used to an extreme. All tests also
contain peak shaving to limit the impact of incorrect
sensor readings as well as a data set containing only the
conductivity readings of sensor B as The eNose Com-
pany previously obtained the best classification results
with this setup for this specific disease. Subsequently,
to ensure the impact of fluctuations between runs are
kept to a minimum all setups have been run 100 times
and the average over these runs has been taken as final
result. Despite all this the trained AEs and ML classi-
fiers still have a stochastic nature making it difficult to
determine the exact impact a change has. Therefore all
AUC scores and corresponding Wilcoxon test results
are used as guidelines to find a suitable solution but they
cannot be taken as facts. Finally to limit the run times
the Extra Trees Classifier (ETC) [33] is used to test the
performance of the setups. This specific classifier has

been chosen as originally the best results were obtained
with it on this data set. For a final overview we have de-
cided to include four additional classifiers to get a better
understanding of the impact of the setups comprising
of Extreme gradient Boosting (XGBC) [34], Random
Forest Classifier (RFC) [35], CatBoost [36] as well as
a newly created MLP [37] to see the impact on a NN
classifier.

t-Distributed Stochastic Neighbor Embedding
t-Distributed Stochastic Neighbor Embedding (t-SNE)
[38] is a data visualisation tool used for representing
high dimensional data in a 2D or 3D space. We use
t-SNE to analyse the data distributions throughout the
data processing pipeline as well as the impact of changes
made to this data processing pipeline. We have decided
to create t-SNE plots of the data with both devices and
targets as labels since this gives more insight in the data
than either t-SNE plot would give on its own.

Raw Data Samples
Set Pos Neg Total

Train 175 234 409
Test 59 78 137

Table 1: Raw Data Distribution

Data Samples with SMOTE
Set Pos Neg Total

Train 254 254 508
Test 76 76 152

Table 2: Data Distribution After SMOTE

6 Preliminary Testing

We have conducted a baseline analysis to get more in-
sight into the data and the classification performance
obtained with the SVD feature extraction. This baseline
testing consists of data visualisation as well as a cycle
and preprocessing steps analysis.

6.1 Data Visualisation

Before we started applying preprocessing steps to trans-
form the data for classification we first created t-SNE
plots of the raw data (Figure 5). These plots show that
data points cluster for each device while the green and
pink devices have some spread out outliers. This sug-
gests device and/or location-based differences being
present within the data. Additionally, the Positive and
Negative targets are clustered together resulting in no
clear separation between the two. Overall, the data

8



points are clustered in such a way that finding a split
between them will turn out to be challenging with the
data as it is.

6.2 Baseline 0

Baseline 0 is the initial processing pipeline used by The
eNose Company and uses all 32 sinusoidal-wave cycles
with the clean air removed with the Subtract method.
This preprocessing setup obtains an ETC AUC score of
59.29% as average on 100 runs.

The t-SNE plots after all these preprocessing steps
(Figure 6) show that the dense clusters of the raw data
are spread out more resulting in one larger cluster. There
are still device specific clusters within this cluster, but
the data points are clearly more separated from one
another. The Positive and Negative targets are also
more spread out, however, a clear separation between
the two targets is still lacking. Generally, the applied
preprocessing steps are successful in creating a cluster
where the data points are not mainly clustered around
one specific point. t-SNE plots of all preprocessing
steps for Baseline 0 can be found in Appendix A.1.

6.3 Baseline 1

The first testing that we have conducted is a cycle anal-
ysis by investigating the neuron activations and ETC
AUC scores of a convolutional encoder that is trained
on all 32 cycles but tested on only one cycle. This test
set is obtained by masking all cycles, but the one tested
for, with zeros.

The analysis (Appendix B.1) shows that most useful
information resides within cycles 10 to 25, which might
be due to time needed for signal stabilization. This cycle
selection perfectly aligns with the start of the Recovery
phase of the Sampling, the Heating, and the first few
cycles of the Cooling Down (see Figure 2 in section
1). Selecting these cycles seem to be effective since the
ETC AUC score of 62.55% as average of 100 runs is,
with an increase of 3.26%, statistically significant over
Baseline 0 and serves as Baseline 1.

(a) Devices (b) Target

Figure 5: Raw Data T-SNE Visualisation

(a) Devices (b) Target

Figure 6: B0 Processed Data T-SNE Visualisation

Applying this cycle selection of cycles 10 to 25 show
no clear difference in the t-SNE plots (Figure 7). The
data points are still clustered together with some clear
device clusters within it and there is still no clear sepa-
ration between Positive and Negative targets. Nonethe-
less, the cycle selection proves effective since the AUC
score increases statistically significantly. t-SNE plots
of all preprocessing steps for Baseline 1 can be found
in Appendix B.2.

(a) Devices (b) Target

Figure 7: B1 Processed Data T-SNE Visualisation

6.4 Baseline 2

Following the cycle analysis, we have tested several
signal transformation and rescaling methods followed
by normalization and standardization methods.

Signal Transformation Methods and Rescaling Func-
tions

We have tested the Subtract method against the Cross-
Correlation and Cross-Correlation sub-cycle signal trans-
formation methods as well as the Natural Logarithmic,
Exponential, Square, and Square Root rescaling func-
tions (see Appendix C.1). The ETC performs best when
the Natural Logarithmic rescaling function is used re-
sulting in an AUC score of 68.07% as average on 100
runs. This setup performs statistically significantly bet-
ter than Baseline 1 with an increase of 5.53%.

9



Normalization and Standardization Method

After exchanging the Subtract transformation method
for the Natural Logarithmic rescaling function we tested
all combinations of normalization between 0 and 1, nor-
malization between -1 and 1, and standardization with
mean 0 and standard deviation 1 both before and after
the SVD feature extraction (see Appendix C.2). None
of these combinations show a statistically significant im-
provement, or decline, with respect to the AUC scores
over just applying the Natural Logarithmic rescaling
function. This indicates that normalization and stan-
dardization methods are not a necessary addition to the
processing pipeline, however, it is important to note
that the application of these methods could significantly
impact the performance when another data set is used,
different processing steps are applied, or when the sen-
sors of the device start deteriorating. Nonetheless, we
will not apply normalization or standardization before
or after the SVD, hence Baseline 2 will consist only of
the Natural Logarithmic rescaling function instead of
the Subtract transformation method.

t-SNE plot Analysis

The t-SNE plots (Figure 8 clearly show the effect of ex-
changing the Subtract transformation method with the
Natural Logarithmic rescaling function as all devices,
except red and pink, are split from each other. The fact
that this split, which likely indicates the device and/or
location-based differences, increases the AUC score so
significantly feels counter-intuitive since a data set with
no differences between devices is preferred. Within
the device clusters there is still no clear separation be-
tween the Positive and Negative target. t-SNE plots of
all preprocessing steps for Baseline 1 can be found in
Appendix C.3.

(a) Devices (b) Target

Figure 8: B2 Processed Data T-SNE Visualisation

6.5 Baseline Overview

With Baseline 2 established the preliminary testing has
been concluded. The average performance for five ML

classifiers on 100 runs as well as their combined av-
erage performance are shown as bar and AUC plots.
Additionally, an AUC plot of the best performing clas-
sifier is provided as well (Figure 9). These three figures
all show that Baseline 2 significantly outperforms both
Baseline 0 and Baseline 1. Furthermore, Baseline 2
obtains on average roughly an increase of 9% compared
to Baseline 0. This increase has been realized by se-
lecting cycles 10 to 25 and exchanging the Subtract
transformation method with the Natural Logarithmic
rescaling function. The AUC scores goes up to 68.07%
on a 100 run average for the ETC. The AUC plot shows,
in both cases, that Baseline 2 has a superior average
curve compared to Baseline 0 and Baseline 1.

7 Results

From the baseline testing in section 6 the analysis of the
AEs have been set up. Besides the Testing Restriction
mentioned in section 5 the AE testing also includes the
cycle selection of cycles 10 to 25 and the Natural Loga-
rithmic rescaling function as both result in a statistically
significant increase in AUC scores.

7.1 FC-AE

For the FC-AE we first provide the settings followed by
the Network Testing and Normalization and Standard-
ization Testing.

Settings

AEs have quite a number of parameters that can be
tweaked during testing. To reduce the number of tweak-
able parameters we have fixed the parameters for the
Latent Space, Optimizer, Loss Function, Activation
Functions, Batch Size, and Epochs. This also ensures
tests can be compared with one another since only one
or a few parameters are changed between them.

Latent Space
We have chosen a latent space of 16 features on which
the ML classifiers will be applied. This number has
been chosen to remain close to the 17 features that the
SVD is currently mapping to as to make comparing
less complicated. The number 16 has been chosen
above 17 to keep in line with the number of cycles and
conductivity readings since all of them are powers of
two.

Optimizer
We have chosen the ADAM optimizer [39] as this is
currently standard for training NNs.

10



XGBC RFC ETC MLP CaBC Avg

56

58

60

62

64

66

68

70

58.95 59.29 59.29
59.93

59 59.29
60

62.3 62.55

60.92 61.14 61.38

65.92
66.97

68.07

65.59

67.39
66.79

AU
C

(%
)

B0 B1 B2

(a) Bar Graph Comparison (b) Average AUC Comparison (c) Best AUC Comparison

Figure 9: Baseline 0 vs Baseline 1 vs Baseline 2

Loss Function
The MSE is used as the loss function since it is a
straightforward method to determine how well the re-
constructed output represents the original input since
all values are directly compared to their reconstructed
counterparts.

Activation Functions [40]
For all hidden layers, we have chosen to use ReLU
activation functions [41] as this is standard for NNs.
Since we want to classify on the latent space features
a ReLU activation function in the output layer is not
viable as it will result in roughly 50% of the features
being zeros. Therefore we have chosen the sigmoid
activation function to obtain a latent space between 0
and 1. For the reconstructed output, we have chosen
a linear activation function to make training slightly
easier since no values will be set to 0 when calculating
the training loss.

Batch Size
Since the amount of data is limited we have chosen
a batch size of 16 to keep it small as well as in line
with the powers of two.

Epochs
Again as there is not a lot of data available we have
chosen 50 epochs to keep it low to reduce the time
needed for testing as early testing has not shown sig-
nificant differences when increasing or decreasing
this number.

Architecture Testing

We have conducted several tests with different archi-
tecture sizes investigating both one-layer and two-layer
encoders and decoders, with the decoders being the in-
verse of the encoders. The in-depth results can be found
in Appendix D.1. The testing shows that in this case the
ETC obtains the best results with a two-layer encoder
that maps the input data via a hidden layer of 128 neu-
rons to an output layer of 16 neurons with an average

AUC score after 100 runs of 66.36%. Even though this
is the currently best performing setup it is still statisti-
cally significant worse than Baseline 2, meaning that it
does not obtain a similar performance compared to the
SVD feature extraction yet.

Normalization and Standardization Testing

We subjected the setup of a 128 neuron hidden layer
followed by a 16 neuron output layer a Normalization
and Standardization testing to investigate if, unlike the
SVD, there is a statistically significant positive impact
on the ML classification performance. The in-depth
analysis of this can be found in Appendix D.2. Gener-
ally speaking, applying normalization between -1 and 1
and standardization with mean 0 and standard deviation
1 do not turn out to generate statistically significant bet-
ter results over just the FC-AE. However, the results are
comparable, indicating that they can be used as an alter-
native to just the FC-AE. The most important finding
is that Normalization between 0 and 1 is always statis-
tically significant over just the FC-AE independent of
the normalization and standardization methods applied
afterwards.

1
10
24

input

1
12
8

dense1

1
16

dense2 1
12
8

dense3
1

10
24

dense4

Figure 10: Architecture of the Fully Connected Autoen-
coder

Overview

The best performing FC-AE network setup is with a
hidden layer of 128 neurons followed by an output
layer of 16 neurons for the encoder (Figure 10). This
setup in combination with Normalization between 0
and 1 beforehand yields an average of 100 runs AUC

11



score of 68.62% for the ETC. This is slightly better
than the 68.07% of Baseline 2 but not enough of an
increase to be statistically significant. Nonetheless, a
good-performing alternative to the SVD feature extrac-
tion methods has been found in the FC-AE. The FC-AE
also has a clear impact on the t-SNE plot (Figure 11
since the four clusters of the SVD compression have
been reduced to two clusters with data points from all
devices, but the light blue devices, being present in both
clusters. This could be an indication of a reduction in
the impact of device and/or location-based difference,
but with the current results that is hard to confirm. The
FC-AE is, however, not able to find a clear separation
in the Positive and Negative targets since they are still
clustered together. t-SNE plots of all preprocessing
steps for the FC-AE can be found in Appendix D.3.

(a) Devices (b) Target

Figure 11: FC-AE Processed Data t-SNE Visualisation

7.2 CAE

For the CAE, just like we did for the FC-AE, we first
provide the settings followed by the Network Testing
and Normalization and Standardization Testing.

Settings

All settings that have been defined for the FC-AE have
also been used for the CAE.

• Latent Space of 16

• ADAM Optimizer

• MSE Loss Function

• ReLU Hidden Layer Activation Function, Sigmoid
Encoder Output Activation Function, Linear Decoder
Output Activation Function

• Batch Size of 16

• 50 Epochs

The CAE requires some additional settings compared
to the FC-AE.

Stride
Since the latent space is mapped with a dense layer
for classification it is important that the number of
neurons that have to be mapped are minimized. As
convolutional layers add filters the number of neurons
increases significantly which makes the mapping to
16 features difficult. To ensure a mapping is viable
we have decided to apply a Stride of 2 in every con-
volutional layer which reduces the number of values
by half. In this way the dense layer has a less compli-
cated task in obtaining 16 representative neurons in
the latent space.

Pooling
After each convolutional layer a MaxPooling layer
with stride 2 is added as is usual in Convolutional
Networks. This layer simply considers two values at
a time and returns the highest, resulting in a reduction
of 50%.

Padding
We have chosen for "same" Padding to keep the num-
ber of values as a power of two.

Network Testing

We have conducted tests with several convolutional two-
layer setups in combination with one dense layer of
16 neurons to get a latent space corresponding to both
the SVD and FC-AE. In these convolutional layers, we
tested several combinations of kernels and filters. The
in-depth testing results are shown in Appendix E.1.

The first observation we made is that the number
of filters should be limited to max 16 since all tests
with more filters perform worse than their counterparts
with fewer filters. The second observation is that, on
the runs with 16 or less filters, the kernel size of three
performs slightly worse compared to larger kernel sizes.
On average the network with a convolutional layer of
eight filters followed by a convolutional layer of 16
filters performs slightly more stable than both higher
and lower kernel sizes. Furthermore, a convolutional
layer with kernel size seven followed by a convolutional
layer with kernel size five performs best across all setups
with 16 filters or less. Ultimately a network consisting
of a convolutional layer of eight filters with a kernel
size of seven followed by a convolutional layer of 16
filters with a kernel size of five, obtaining an average
AUC score on 100 runs of 64.18%, is chosen for further
testing.

Normalization and Standardization Testing

Again we tested several normalization and standard-
ization methods both before and after the CAE. The

12



in-depth results for this can be found in Appendix E.2.
The main observation here is that applying standardiza-
tion between 0 and 1 yields a statistically significant
improvement, with an average AUC score on 100 runs
of 66.96%, over no normalization or standardization
independent of a possible normalization or standard-
ization applied afterwards. All other combinations of
normalization and standardization both before and after
the CAE yield similar results as no normalization or
standardization.

1
10
24

input

8
51
2

conv1

25
6

16
12
8

conv2

64
1

16

dense1 16
64

dense2 8
25
6

conv4
1

10
24

conv5

Figure 14: Architecture of the Convolutional Autoen-
coder

Overview

The best performing CAE is obtained when standardiza-
tion between 0 and 1 is applied before a convolutional
layer of eight filters with a kernel size of seven followed
by a convolutional layer of 16 layers with a kernel size
of five concluded with a 16 neurons dense layer (Figure
14) resulting in an average ETC AUC score after 100
runs of 66.96%. This is statistically significantly worse
than Baseline 2 which is unexpected since the CAE
usually performs well on temporally correlated data. A
reason for this relatively bad performance might be that
there is just not enough data available to properly train
the convolutional layers and therefore limiting the learn-
ing capabilities of the CAE as a whole. The t-SNE plots
(Figure E.3) show two clusters of which one primarily
consists of the lightblue device while the other cluster
has a no clear device clusters in it. Unfortunately, the
Positive and Negative targets are still not separated in
any clear way.

(a) Devices (b) Target

Figure 15: CAE Processed Data T-SNE Visualisation

7.3 Autoencoder versus Baseline Overview

We conclude the Baseline, FC-AE, and CAE testings
with the average performance for five ML classifiers on
100 runs as well as their combined average performance
as bar and AUC plots. Additionally, an AUC plot of the
best performing classifier is provided (Figure 16). On
average the FC-AE performs slightly better than Base-
line 2, while the CAE performs significantly worse than
both. This indicates that the FC-AE is a good alternative
for the SVD compression. The CAE is lacking behind
due to the poor MLP performance, which also nega-
tively impacts the FC-AE average AUC score. When
removing the MLP as classifier, the average AUC scores
are 67.09%, 68.84%, and 66.46% respectively for Base-
line 2, the FC-AE, and the CAE. This shows that the
FC-AE performs even better, while also ensuring that
the CAE is not lacking behind anymore. This indicates
that the CAE is also a good alternative compared to the
SVD compression given no MLP classifier is used. The
second AUC plot also shows this by selecting the best
performing classifiers. That is the ETC with 68.07%
for Baseline 2, the RFC with 70.21% for the FC-AE,
and the RFC with 67.8% for the CAE. The FC-AE out-
performs Baseline 2 while the CAE is able to perform
roughly equal to the SVD.

Now that we obtained an AUC score with the FC-AE
that on average outperforms Baseline 2 we decided to
investigate if it also increases the consistency per de-
vice individually (Appendix F.1). We have done this
by training each setup on all data, but applying it only
to the data points of one device. The main finding is
that there are no real discrepancies between the three
setups when it comes to the performance on individ-
ual devices. The maximum difference between AUC
scores on a single device is roughly 5.5%, however this
difference is mostly nullified with the performance on
another device. This shows that the current implemen-
tations of the FC-AE and CAE do not obtain a more
general feature representation compared to the SVD
compression.

Additionally, we noticed that all three setups have
a cluster that consists mainly of data points from the
light blue device. Therefore, we have tested the three
setups on a data set that does not contain these data
points to investigate the impact on the data distribution
(Appendix F.2). The AUC scores remain close to the
AUC scores with the light blue device, while the data
points are clustered closer together. This indicates that
the addition of the light blue device does disrupt the
clustering of the data, but does not significantly impact
the AUC scores. Since this observation is the same for
SVD as the AEs this will not be due to overfitting, but
might indicate some restrictions within the data set.

13



XGBC RFC ETC MLP CaBC Avg
55

60

65

70

65.92
66.97

68.07

65.59

67.39
66.79

67.9

70.21

68.62

61.33

68.62
67.34

65.41

67.8
66.96

57.63

66.42

64.84

AU
C

(%
)

B2 FC-AE CAE

(a) Bar Graph Comparison (b) Average AUC Comparison (c) Best AUC Comparison

Figure 16: Baseline 2 vs Fully Connected Autoencoder vs Convolutional Autoenecoder

8 Conclusions

The concluded tests show that the FC-AE with RFC
can outperform the ETC of Baseline 2 statistically sig-
nificant with 2.14%. Furthermore, the CAE can also
obtain comparable results to the SVD compression as
long as the MLP classifier is not used. This indicates
that AEs can be effectively applied to this sparse, com-
plex, sensor-based exhaled-breath data and obtain an
average AUC score of 70.21% (for the FC-AE with
RFC). We will conclude this research with a summary
of all work related to the specified research questions
as well as limitations and future works sections.

8.1 Research questions

For guiding purposes, we will summarize the conclu-
sion by answering each Research Question in order.

What is an improvement option for the current data
processing pipeline implemented by The eNose Com-
pany?

We found an answer to this question in section 3 by first
investigating the current processing pipeline followed
by shortcomings that lie within.

We identified that the available data set is restricted
by its size and number of positive data samples due to
the clinical nature in which the data is obtained. As a
consequence, the ML methods are likely to overfit on
the data without obtaining a general model that can be
used in practise.

Additionally, the performance of the trained ML model
differs greatly over devices, which indicates that some
information resides within the data set that is specific to
either devices or to the location in which the device is
used. Identifying where this information resides within
the data and countering it has not yet been effectively
solved.

Furthermore, the SVD is used as feature extraction
method which is limited to linearly separable data which

is unsubstantiated for this specific data set. Moreover,
the lack of normalization and standardization might
introduce fluctuations in the performance of a trained
model which is undesirable.

Finally, no ML classifiers that are part of the DL
subdomain are currently being investigated. Given that
this domain has been rapidly evolving in the last decade
some new insight could be obtained with this.

For all these shortcomings we have listed improve-
ment options ranging from data generation with the
GAN to SupCon to RNNs and CNNs. However, we
deemed AEs to be a suitable option for investigation
since it impacts every mentioned shortcoming in one
way or another.

What is the impact of the most promising ad-
ditions and changes on the classification capa-
bilities of the currently implemented processing
pipeline?

We started answering this question by specifying a vali-
dation methodology in section 5 followed by an investi-
gation of several preprocessing and feature extraction
changes.

These changes have been translated to a baseline
performance of 66.79% on average when limiting the
data set to cycles 10 to 25 and exchanging the Subtract
transformation method with the Natural Logarithmic
rescaling function resulting in a total increase of roughly
9%. For this setup, the Extra Trees Classifier performs
best with an average AUC score of 68.07%.

Afterwards, we have conducted several tests for the
FC-AE and CAE. The FC-AE encoder has the best
performance with a 128 neurons hidden layer and 16
neuron output layer resulting on average an AUC score
of 67.34% which is slightly better than Baseline 2. The
CAE encoder performance best with a convolutional
hidden layer with eight filters and a kernel size of seven,
followed by a convolutional hidden layer with 16 filters
and a kernel size of five convolution hidden layer, and
concluding with a 16 neuron output dense layer obtain-

14



ing an AUC score of 64.69% on average. Indicating
that AEs can be effectively used as an alternative to the
SVD compression for this data set.

When comparing the best performing models of the
SVD, FC-AE, and CAE it clearly shows that the RFC
for the FC-AE is statistically significant over all other
classifiers with an AUC score of 70.21%.

8.2 Future works

During this research several challenges have been en-
countered and solved, however, some challenges have
not yet been tackled or have been revealed by the imple-
mented solutions and investigating these might prove
beneficial.

Firstly, we have shown that the AEs do not obtain
a more general feature representation compared to the
SVD compression which might be due to the limited
data set. We would advise obtaining more data with
additional clinical studies. When this is unobtainable
we would suggest investigating more data augmentation
and generation options like the GAN to overcome the
problem of limited data.

Secondly, we have conducted an experiment inves-
tigating the performance of the SVD and AEs on indi-
vidual devices which showed that the AUC scores are
similar for the same individual device. This does not
give a preference for once setup over another. Even
though the AUC scores are comparable per device it
does not directly indicate that the data points are classi-
fied similarly. We advice to perform an error analysis to
investigate the performance of the SVD and AEs even
more. If it turns out that they do not share correctly
classified data points it might be worthwhile to inves-
tigate a multi-classifier system that combines multiple
setups.

Thirdly, we would advise in-depth research into the
combination of sensors since only sensor B is used
during this research and this might currently limit the
overall performance. Investigating ensemble learning
might be a suitable option for this.

Fourthly, the current approach is only applicable to
this specific data set and disease type which needs to be
taken into account when classifying other data sets and
diseases. A similar type of testing needs to be conducted
to obtain a good-performing ML classification model
that can be used in practise.

Finally, we were able to balance the data from each
device but a balancing over all devices has not been
obtained yet. An equal prevalence over devices might
reduce the impact of device- and/or location-based dif-
ferences since it is harder to overfit on one of the devices.
However, the current imbalance in data point per device
make it challenging to realize this.

References

[1] H. Tai, S. Wang, Z. Duan, and Y. Jiang, “Evolu-
tion of breath analysis based on humidity and gas
sensors: Potential and challenges,” Sensors and
Actuators B: Chemical, vol. 318, p. 128104, 2020.

[2] C. Baldini, L. Billeci, F. Sansone, R. Conte,
C. Domenici, and A. Tonacci, “Electronic nose
as a novel method for diagnosing cancer: A
systematic review,” Biosensors, vol. 10, no. 8,
2020. [Online]. Available: https://www.mdpi.
com/2079-6374/10/8/84

[3] M. Bruins, J. Gerritsen, W. Sande, A. van Belkum,
and A. Bos, “Enabling a transferable calibration
model for metal-oxide type electronic noses,” Sen-
sors and Actuators B: Chemical, vol. 188, pp.
1187–1195, 11 2013.

[4] B. F. M. van Tintelen and R. H. Lucas, “Schemetic
and timeline created for master theses on behalf
of the enose company,” 2022.

[5] R. Wason, “Deep learning: Evolution and expan-
sion,” Cognitive Systems Research, vol. 52, pp.
701–708, 2018.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “Smote: synthetic minority
over-sampling technique,” Journal of artificial in-
telligence research, vol. 16, pp. 321–357, 2002.

[7] S. C. Wong, A. Gatt, V. Stamatescu, and M. D.
McDonnell, “Understanding data augmentation
for classification: when to warp?” in 2016 inter-
national conference on digital image computing:
techniques and applications (DICTA). IEEE,
2016, pp. 1–6.

[8] C. C. MacDuffee, “The theory of matrices,” -,
1933.

[9] L. Autonne, “Sur les groupes linéaires, réels et or-
thogonaux.” Bulletin de la Société Mathématique
de France, Tome 30, pp. 121–134, 1902.

[10] C. Eckart and G. Young, “A principal axis trans-
formation for non-hermitian matrices,” Bulletin of
the American Mathematical Society, vol. 45, pp.
118–121, 1939.

[11] V. Klema and A. Laub, “The singular value decom-
position: Its computation and some applications,”
IEEE Transactions on Automatic Control, vol. 25,
no. 2, pp. 164–176, 1980.

15

https://www.mdpi.com/2079-6374/10/8/84
https://www.mdpi.com/2079-6374/10/8/84


[12] J. W. Cooley and J. W. Tukey, “An algorithm
for the machine calculation of complex fourier
series,” Mathematics of Computation, vol. 19,
no. 90, pp. 297–301, 1965. [Online]. Available:
http://www.jstor.org/stable/2003354

[13] ——, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of com-
putation, vol. 19, no. 90, pp. 297–301, 1965.

[14] P. Wang, E. Fan, and P. Wang, “Compara-
tive analysis of image classification algorithms
based on traditional machine learning and
deep learning,” Pattern Recognition Letters,
vol. 141, pp. 61–67, 2021. [Online]. Avail-
able: https://www.sciencedirect.com/science/
article/pii/S0167865520302981

[15] A. Creswell, T. White, V. Dumoulin, K. Arulku-
maran, B. Sengupta, and A. A. Bharath, “Gener-
ative adversarial networks: An overview,” IEEE
Signal Processing Magazine, vol. 35, no. 1, pp.
53–65, 2018.

[16] K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, and
F.-Y. Wang, “Generative adversarial networks: in-
troduction and outlook,” IEEE/CAA Journal of
Automatica Sinica, vol. 4, no. 4, pp. 588–598,
2017.

[17] N. Gao, H. Xue, W. Shao, S. Zhao, K. K. Qin,
A. Prabowo, M. S. Rahaman, and F. D. Salim,
“Generative adversarial networks for spatio-
temporal data: A survey,” ACM Transactions
on Intelligent Systems and Technology, vol. 13,
no. 2, pp. 1–25, apr 2022. [Online]. Available:
https://doi.org/10.1145

[18] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu,
H. Xiong, and Q. He, “A comprehensive survey
on transfer learning,” Proceedings of the IEEE,
vol. 109, no. 1, pp. 43–76, 2020.

[19] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian,
P. Isola, A. Maschinot, C. Liu, and D. Krishnan,
“Supervised contrastive learning,” 2020. [Online].
Available: https://arxiv.org/abs/2004.11362%7D

[20] N. Nguyen and B. Quanz, “Temporal latent auto-
encoder: A method for probabilistic multivariate
time series forecasting,” 2021. [Online]. Available:
https://arxiv.org/abs/2101.10460

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
Learning Internal Representations by Error Prop-
agation. Cambridge, MA, USA: MIT Press,
1986, p. 318–362.

[22] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder
based dimensionality reduction,” Neurocomput-
ing, vol. 184, pp. 232–242, 2016, roLoD: Robust
Local Descriptors for Computer Vision 2014.

[23] L. Weng. From autoencoder to beta-vae. [On-
line]. Available: https://lilianweng.github.io/
posts/2018-08-12-vae/

[24] P. Baldi, “Autoencoders, unsupervised learning,
and deep architectures,” in Proceedings of
ICML Workshop on Unsupervised and Transfer
Learning, ser. Proceedings of Machine Learning
Research, I. Guyon, G. Dror, V. Lemaire,
G. Taylor, and D. Silver, Eds., vol. 27. Bellevue,
Washington, USA: PMLR, 02 Jul 2012, pp.
37–49. [Online]. Available: https://proceedings.
mlr.press/v27/baldi12a.html

[25] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. Le-
Cun, “Unsupervised learning of invariant feature
hierarchies with applications to object recogni-
tion,” in 2007 IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2007, pp. 1–8.

[26] P. Baldi and K. Hornik, “Neural networks and
principal component analysis: Learning from ex-
amples without local minima,” Neural Networks,
vol. 2, pp. 53–58, 1989.

[27] E. Plaut, “From principal subspaces to principal
components with linear autoencoders,” -, 04 2018.

[28] D. Bank, N. Koenigstein, and R. Giryes, “Autoen-
coders,” -, 03 2020.

[29] K. Garcia, C. Rebelo de Sá, M. Poel, T. Carvalho,
J. Moreira, J. Cardoso, A. de Carvalho, and J. Kok,
“An ensemble of autonomous auto-encoders for hu-
man activity recognition,” Neurocomputing, vol.
439, 01 2021.

[30] A. Al-Marridi, A. Mohamed, and A. Erbad, “Con-
volutional autoencoder approach for eeg compres-
sion and reconstruction in m-health systems,” 06
2018, pp. 370–375.

[31] D. Jana, J. Patil, S. Herkal, S. Nagarajaiah,
and L. Duenas-Osorio, “Cnn and convolu-
tional autoencoder (cae) based real-time sensor
fault detection, localization, and correction,”
Mechanical Systems and Signal Processing,
vol. 169, p. 108723, 2022. [Online]. Avail-
able: https://www.sciencedirect.com/science/
article/pii/S0888327021010414

16

http://www.jstor.org/stable/2003354
https://www.sciencedirect.com/science/article/pii/S0167865520302981
https://www.sciencedirect.com/science/article/pii/S0167865520302981
https://doi.org/10.1145
https://arxiv.org/abs/2004.11362%7D
https://arxiv.org/abs/2101.10460
https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-08-12-vae/
https://proceedings.mlr.press/v27/baldi12a.html
https://proceedings.mlr.press/v27/baldi12a.html
https://www.sciencedirect.com/science/article/pii/S0888327021010414
https://www.sciencedirect.com/science/article/pii/S0888327021010414


[32] F. Wilcoxon, “Individual comparisons by ranking
methods,” Biometrics Bulletin, vol. 1, no. 6,
pp. 80–83, 1945. [Online]. Available: http:
//www.jstor.org/stable/3001968

[33] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely
Randomized Trees,” Machine Learning, vol. 36,
pp. 3–42, 2006. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-00341932

[34] ——, “Extremely Randomized Trees,” Machine
Learning, vol. 36, pp. 3–42, 2006. [Online].
Available: https://hal.archives-ouvertes.fr/hal-
00341932

[35] L. Breiman, “Random forests,” Machine Learning,
vol. 45, pp. 5–32, 10 2001.

[36] L. Prokhorenkova, G. Gusev, A. Vorobev,
A. V. Dorogush, and A. Gulin, “Catboost:
unbiased boosting with categorical features,”
2017. [Online]. Available: https://arxiv.org/abs/
1706.09516

[37] M.-C. Popescu, V. Balas, L. Perescu-Popescu, and
N. Mastorakis, “Multilayer perceptron and neural
networks,” WSEAS Transactions on Circuits and
Systems, vol. 8, 07 2009.

[38] L. van der Maaten and G. Hinton, “Viualizing
data using t-sne,” Journal of Machine Learning
Research, vol. 9, pp. 2579–2605, 11 2008.

[39] D. P. Kingma and J. Ba, “Adam: A method
for stochastic optimization,” 2014. [Online].
Available: https://arxiv.org/abs/1412.6980

[40] C. Nwankpa, W. Ijomah, A. Gachagan, and
S. Marshall, “Activation functions: Comparison
of trends in practice and research for deep
learning,” 2018. [Online]. Available: https:
//arxiv.org/abs/1811.03378

[41] V. Nair and G. E. Hinton, “Rectified linear units
improve restricted boltzmann machines,” in Pro-
ceedings of the 27th International Conference on
International Conference on Machine Learning,
ser. ICML’10. Madison, WI, USA: Omnipress,
2010, p. 807–814.

17

http://www.jstor.org/stable/3001968
http://www.jstor.org/stable/3001968
https://hal.archives-ouvertes.fr/hal-00341932
https://hal.archives-ouvertes.fr/hal-00341932
https://hal.archives-ouvertes.fr/hal-00341932
https://hal.archives-ouvertes.fr/hal-00341932
https://arxiv.org/abs/1706.09516
https://arxiv.org/abs/1706.09516
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1811.03378
https://arxiv.org/abs/1811.03378


A Baseline 0

We provide the t-SNE plots of the entire processing pipeline for Baseline 0.

A.1 Data Visualisation

(a) Raw (b) Peakshaving (c) Subtract

(d) Sensor B Selection (e) SMOTE (f) Baseline 0 Processed

Figure 17: Data T-SNE Visualisation Devices

(a) Raw (b) Peakshaving (c) Subtract

(d) Sensor B Selection (e) SMOTE (f) Baseline 0 Processed

Figure 18: Data T-SNE Visualisation Devices

18



B Baseline 1

We have conducted a cycle testing and provide t-SNE plots of the entire processing pipeline for Baseline 1.

B.1 Cycle Testing

The first test we have conducted during preliminary testing is a cycle analysis (see Table 3). This is realized by
masking cycles in the test set with zeros, e.g. when testing for the first cycle all values but those belonging to the
first cycle are set to 0. We have trained a convolutional encoder on the train set as under normal circumstances.
When subjecting the test set to the trained convolutional encoder we recorded the neuron activations and added
them all together split per target as well as the ETC AUC scores. We did this 32 times, once for each cycle.
Afterwards we calculated the differences between the positive and negative neuron activations. By highlighting
all positive differences and ETC AUC scores above the 50% we get an indication where the relevant information
resides within the data set. Eventhough there are some ETC AUC scores below the 50% it is still clear that the
highest AUC scores are obtained from cycle 10 to 25-27. By selecting cycles 10 to 25, which is 16 of the 32
cycles, the data set has effectively been reduced by 50%. Comparing this to the Sampling phases shows that most
information resides within the Recovery, Heating, and first few cycles of the Cooling Down phases.

AUC and Wilcoxon Results: Cycles
Cycle Positive

Neuron
Activation

Negative
Neuron

Activation

Difference ETC
AUC

Sampling Phase

1 5562.96 5555.47 7.50 54.23 Sampling
2 5568.03 5569.73 -1.70 43.58 Sampling
3 5570.67 5575.35 -4.68 46.02 Sampling
4 5574.42 5579.78 -5.36 47.91 Sampling
5 5579.03 5583.18 -4.16 45.95 Sampling
6 5581.54 5585.19 -3.65 48.30 Sampling
7 5584.08 5586.81 -2.73 46.98 Sampling
8 5587.40 5588.28 -0.88 46.43 Sampling
9 5586.91 5586.57 0.33 46.37 Sampling
10 5578.50 5571.93 6.57 53.31 Recovery
11 5573.35 5554.16 19.19 52.81 Recovery
12 5565.55 5541.88 23.67 50.79 Recovery
13 5558.86 5541.88 23.00 52.99 Recovery
14 5556.07 5530.20 25.87 53.55 Recovery
15 5551.55 5524.72 26.83 55.07 Recovery
16 5549.78 5521.83 27.95 51.35 Recovery
17 5546.11 5519.59 26.52 55.34 Recovery
18 5544.51 5516.34 28.17 53.16 Recovery
19 5543.24 5515.66 27.58 48.92 Recovery
20 5542.20 5514.13 28.07 55.55 Recovery
21 5541.65 5513.51 28.14 54.83 Recovery
22 5541.09 5513.87 27.21 52.90 Heating
23 5543.87 5516.99 26.89 55.04 Cooling Down
24 5544.44 5526.84 17.60 52.23 Cooling Down
25 5546.93 5533.82 13.11 54.52 Cooling Down
26 5547.77 5535.49 12.28 49.60 Cooling Down
27 5545.61 5534.40 11.21 52.22 Cooling Down
28 5544.64 5531.89 12.75 49.69 Cooling Down
29 5543.15 5529.38 13.77 45.95 Cooling Down
30 5544.86 5527.25 17.61 45.75 Cooling Down
31 5542.15 5525.41 16.74 48.33 Cooling Down
32 5541.45 5523.73 17.72 48.96 Cooling Down

Table 3: AUC and Wilcoxon Testing Results: Cycles

19



B.2 Data Visualisation

(a) Raw (b) Peakshaving (c) Subtract

(d) Sensor B Cycle 10-25 Selection (e) SMOTE (f) Baseline 1 Processed

Figure 19: Data T-SNE Visualisation Devices

(a) Raw (b) Peakshaving (c) Subtract

(d) Sensor B Cycle 10-25 Selection (e) SMOTE (f) Baseline 1 Processed

Figure 20: Data T-SNE Visualisation Devices

20



C Baseline 2

For Baseline 1 to Baseline 2 we have tested several Signal Transformation Methods and Rescaling Functions
before the SVD as well as Normalization and Standardization methods both before and after the SVD. Additionally
we provide the t-SNE plots of the entire processing pipeline for Baseline 2.

C.1 Signal Transformation Methods and Rescaling Functions

Table 4 shows the ETC AUC scores and Wilcoxon test scores when applying Signal Transformation Methods
and Rescaling Functions before the SVD. All Wilcoxon test scores equal to or below 0.05 have been selected as
statistically significant. A red text color indicates that the method in that row performs statistically significantly
worse than the column method. A green text color indicates that the method in that row performs statistically
significantly better than the column method. The Natural Logarithmic function clearly performs best as it is
statistically significantly better than all other methods except the Square Root function.

AUC and Wilcoxon Results: Signal Transformation and Rescaling
Method Subtract CC CC-sc Ln Exp Sq Sqrt

ETC 62.5466 66.4011 64.0793 68.0739 66.8090 65.8364 67.2604
Subtract 62.5466 x 0.00 0.00 0.00 0.00 0.00 0.00

CC 66.4011 0.00 x 0.00 0.00 0.86 0.36 0.02
CC-sc 64.0793 0.00 0.00 x 0.00 0.00 0.00 0.00

Ln 68.0739 0.00 0.00 0.00 x 0.00 0.00 0.10
Exp 66.8090 0.00 0.86 0.00 0.00 x 0.08 0.24
Sq 65.8364 0.00 0.36 0.00 0.00 0.08 x 0.01

Sqrt 67.2604 0.00 0.02 0.00 0.10 0.24 0.01 x

Table 4: AUC and Wilcoxon Testing Results: Signal Transformation and Rescaling

21



C.2 Normalization and Standardization

Table 5 shows the ETC AUC scores and Wilcoxon test values when applying Normalization or Standardization
before and after the SVD compression. This is specific for a selection of cycles 10 to 25 and the Natural
Logarithmic function for rescaling. All Wilcoxon test values equal to or below 0.05 have been selected as
statistically significant. Each method is only compared to the SVD without Normalization and Standardization
methods. The table shows that no combination of Normalization or Standardization has a statistically significant
positive effect on the ETC AUC scores. Therefore the preferred setup is to just apply the SVD feature extraction
without Normalization or Standardization. It is important to note that, although in this case it is not necessary,
Normalization and Standardization afterwards is beneficial when another data set is used, different processing
steps are applied, or when the sensors of the device are deteriorating.

AUC and Wilcoxon Results: Normalization and Standardization
Method ETC Wilcoxon
SVD 68.0739 x
SVD -> Norm 0 1 67.5236 0.22
SVD -> Norm -1 1 68.2200 0.75
SVD -> Stand mean std 67.9327 0.85
Norm 0 1 -> SVD 67.8820 0.55
Norm 0 1 -> SVD -> Norm 0 1 68.0828 0.69
Norm 0 1 -> SVD -> Norm -1 1 68.1497 0.95
Norm 0 1 -> SVD -> Stand mean
std

68.0282 0.88

Norm -1 1 -> SVD 68.4676 0.36
Norm -1 1 -> SVD -> Norm 0 1 67.8500 0.54
Norm -1 1 -> SVD -> Norm -1 1 68.1059 0.97
Norm -1 1 -> SVD -> Stand mean
std

67.9731 0.96

Stand mean std -> SVD 68.3309 0.53
Stand mean std -> SVD -> Norm
0 1

67.9265 0.68

Stand mean std -> SVD -> Norm
-1 1

67.6546 0.27

Stand mean std -> SVD -> Stand
mean std

67.9084 0.78

Table 5: AUC and Wilcoxon Testing Results: Normalization and Standardization

22



C.3 Data Visualisation

(a) Raw (b) Peakshaving (c) Natural Logarithm

(d) Sensor B Cycle 10-25 Selection (e) SMOTE (f) Baseline 2 Processed

Figure 21: Data T-SNE Visualisation Devices

(a) Raw (b) Peakshaving (c) Natural Logarithm

(d) Sensor B Cycle 10-25 Selection (e) SMOTE (f) Baseline 2 Processed

Figure 22: Data T-SNE Visualisation Devices

23



D FC-AE Testing

For the FC-AE we have conducted tests with respect to the architecture, Normalization and Standardization,
and some additional testings. Additionally we provide the t-SNE plots of the entire processing pipeline for the
FC-AE.

D.1 FC-AE Architecture Testing

We have tested one-layer and two-layer encoder architectures in which every layer outputs a number of neurons
of the power of two. Table 6 shows the ETC AUC scores and Wilcoxon test values for these tests. This is specific
for a selection of cycles 10 to 25 and the Natural Logarithmic function for rescaling. All Wilcoxon test values
equal to or below 0.05 have been selected as statistically significant. Each architecture is compared to every other
architecture with regard to the Wilcoxon test. A red text color indicates that the method in that row performs
statistically significantly worse than the column method. A green text color indicates that the method in that row
performs statistically significantly better than the column method. As the table shows there are three architectures
that perform similarly (hidden layers with 256 neurons, 128 neurons, and 64 neurons) of which the architecture
with hidden layer 128 neurons and output layer 16 neurons perform slightly, although not statistically significantly,
better than the other two. We have chosen this architecture to conduct subsequent testings with.

AUC and Wilcoxon Results: Autoencoder Architecture Testing
Layers 16 512 -> 16 256 -> 16 128 -> 16 64 -> 16 32 -> 16

ETC 63.6767 62.6814 65.4970 66.3557 65.1033 63.5989
16 63.6767 x 0.20 0.00 0.00 0.01 0.72

512 -> 16 62.6814 0.20 x 0.00 0.00 0.00 0.29
256 -> 16 65.4970 0.00 0.00 x 0.10 0.76 0.00
128 -> 16 66.3557 0.00 0.00 0.10 x 0.07 0.00
64 -> 16 65.1033 0.01 0.00 0.76 0.07 x 0.02
32 -> 16 63.5989 0.72 0.29 0.00 0.00 0.02 x

Table 6: AUC and Wilcoxon Testing Results: Fully Connected Autoencoder Architecture

24



D.2 FC-AE Normalization and Standardization Testing

Table 7 shows the ETC AUC scores and Wilcoxon test values when applying Normalization or Standardization
before and after the FC-AE. This is specific for a selection of cycles 10 to 25, the Natural Logarithmic function
for rescaling and an Encoder with 128 neurons hidden layer and 16 neurons output layer. All Wilcoxon test
values equal to or below 0.05 have been selected as statistically significant. Each method is only compared
to the FC-AE without Normalization and Standardization methods. The table shows that Normalization and
Standardization after the FC-AE and after the FC-AE with input data Normalized between 0 and 1 all obtain
statistically significant improvements over just the FC-AE. Since only applying Normalization between 0 and 1
before the FC-AE obtains the best performance this is the preferred setup. It is important to note that, although
in this case it is not necessary, Normalization and Standardization afterwards is beneficial when another data set
is used, different processing steps are applied, or when the sensors of the device are deteriorating.

AUC and Wilcoxon Results: Normalization and Standardization
Method Test

Before AE After ETC Wilcoxon
- 128 -> 16 - 66.3557 x
- 128 -> 16 Norm 0 1 67.7774 0.01
- 128 -> 16 Norm -1 1 67.4990 0.01
- 128 -> 16 Stand mean 0 std 1 67.9686 0.00
Norm 0 1 128 -> 16 - 68.6246 0.00
Norm 0 1 128 -> 16 Norm 0 1 67.9510 0.00
Norm 0 1 128 -> 16 Norm -1 1 68.1874 0.00
Norm 0 1 128 -> 16 Stand mean 0 std 1 68.3270 0.00
Norm -1 1 128 -> 16 - 67.3698 0.10
Norm -1 1 128 -> 16 Norm 0 1 67.1660 0.05
Norm -1 1 128 -> 16 Norm -1 1 67.0126 0.09
Norm -1 1 128 -> 16 Stand mean 0 std 1 66.4216 0.84
Stand mean 0 std 1 128 -> 16 - 66.6600 0.55
Stand mean 0 std 1 128 -> 16 Norm 0 1 67.2218 0.07
Stand mean 0 std 1 128 -> 16 Norm -1 1 65.5771 0.30
Stand mean 0 std 1 128 -> 16 Stand mean 0 std 1 65.5183 0.18

Table 7: AUC and Wilcoxon Testing Results: Normalization and Standardization

25



D.3 Data Visualisation

(a) Raw (b) Peakshaving (c) Natural Logarithm

(d) Sensor B Cycle 10-25 Selection (e) SMOTE (f) FC-AE Processed

Figure 23: Data T-SNE Visualisation Devices

(a) Raw (b) Peakshaving (c) Natural Logarithm

(d) Sensor B Cycle 10-25 Selection (e) SMOTE (f) FC-AE Processed

Figure 24: Data T-SNE Visualisation Devices

26



E CAE Testing

For the CAE we have conducted tests with respect to the architecture and applied Normalization and Standardiza-
tion methods. Additionally we provide the t-SNE plots of the entire processing pipeline for the CAE.

E.1 CAE Architecture Testing

We have tested two-convolutional-layer encoder architectures of which every layer contains either four, eight, 16,
or 32 filters and kernel sizes three, five, seven, or nine followed by a dense layer to 16 neurons. Table 8 shows
the ETC AUC scores and Wilcoxon test values for these setups. This is specific for a selection of cycles 10 to
25 and the Natural Logarithmic function for rescaling. All Wilcoxon test values equal to or below 0.05 have
been selected as statistically significant. Each architecture is compared to every other architecture with regard
to the Wilcoxon test. A red text color indicates that the method in that row performs statistically significantly
worse than the column method. A green text color indicates that the method in that row performs statistically
significantly better than the column method. As the table shows the setups that contain a filter size of 32 perform
generally the worst and are therefore not considered any longer. Of the remaining setups, both kernels 7 -> 5
obtain the best results. Since on average the 8 -> 16 filters have a more stable performance, we have chosen to
continue with the kernels 7 -> 5 of this filter setup despite the fact that it slightly underperforms compared to the
4 -> 8 filter setup. The chosen architecture will be used for subsequent testings.

AUC and Wilcoxon Results: Convolutional Architecture
Filters 4 ->8 8 ->16 16 ->32

Kernels 5 ->3 7 ->5 9 ->7 5 ->3 7 ->5 9 ->7 5 ->3 7 ->5 9 ->7
ETC 62.7513 64.3739 64.0077 63.6447 64.1820 63.6248 62.2813 59.9729 58.3583

4 ->8
5 ->3 62.7513 x 0.00 0.05 0.11 0.01 0.10 0.49 0.00 0.00
7 ->5 64.3739 0.00 x 0.52 0.33 0.53 0.17 0.00 0.00 0.00
9 ->7 64.0077 0.05 0.52 x 0.94 0.54 0.60 0.01 0.00 0.00

8 ->16
5 ->3 63.6447 0.11 0.33 0.94 x 0.30 0.69 0.03 0.00 0.00
7 ->5 64.1820 0.01 0.53 0.54 0.30 x 0.43 0.00 0.00 0.00
9 ->7 63.6248 0.10 0.17 0.60 0.69 0.43 x 0.01 0.00 0.00

16 ->32
5 ->3 62.2813 0.49 0.00 0.01 0.03 0.00 0.01 x 0.00 0.00
7 ->5 59.9729 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x 0.04
9 ->7 58.3583 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 x

Table 8: AUC and Wilcoxon Testing Results: Convolutional Autoencoder Architecture

27



E.2 CAE Normalization and Standardization Testing

Table 9 shows the ETC AUC scores and Wilcoxon test values when applying Normalization or Standardization
before and after the CAE. This is specific for a selection of cycles 10 to 25, the Natural Logarithmic function for
rescaling and an Encoder with eight filters and seven kernels and 16 filters and five kernels convolutional hidden
layers and 16 neurons dense output layer. All Wilcoxon test values equal to or below 0.05 have been selected as
statistically significant. Each method is only compared to the CAE without Normalization and Standardization
methods. The table shows that only Standardization with mean 0 and std 1 after the CAE obtains statistically
significant improvement over just the CAE. Since only applying Standardization with mean 0 and std 1 before
the CAE obtains the best performance this is the preferred setup. It is important to note that, although in this
case it is not necessary, Normalization and Standardization afterwards is beneficial when another data set is used,
different processing steps are applied, or when the sensors of the device are deteriorating.

AUC and Wilcoxon Results: Normalization and Standardization
Method Test

Before AE After ETC Wilcoxon
- F: 8 -> 16 K: 7 -> 5 - 64.1820 x
- F: 8 -> 16 K: 7 -> 5 Norm 0 1 64.3606 0.66
- F: 8 -> 16 K: 7 -> 5 Norm -1 1 64.3547 0.69
- F: 8 -> 16 K: 7 -> 5 Stand 0 1 63.3869 0.20
Norm 0 1 F: 8 -> 16 K: 7 -> 5 - 64.2690 0.77
Norm 0 1 F: 8 -> 16 K: 7 -> 5 Norm 0 1 64.8081 0.22
Norm 0 1 F: 8 -> 16 K: 7 -> 5 Norm -1 1 64.6061 0.50
Norm 0 1 F: 8 -> 16 K: 7 -> 5 Stand 0 1 64.9589 0.14
Norm -1 1 F: 8 -> 16 K: 7 -> 5 - 64.9092 0.26
Norm -1 1 F: 8 -> 16 K: 7 -> 5 Norm 0 1 65.3944 0.02
Norm -1 1 F: 8 -> 16 K: 7 -> 5 Norm -1 1 64.1938 0.76
Norm -1 1 F: 8 -> 16 K: 7 -> 5 Stand 0 1 64.4141 0.56
Stand 0 1 F: 8 -> 16 K: 7 -> 5 - 66.9559 0.00
Stand 0 1 F: 8 -> 16 K: 7 -> 5 Norm 0 1 66.9050 0.00
Stand 0 1 F: 8 -> 16 K: 7 -> 5 Norm -1 1 66.7844 0.00
Stand 0 1 F: 8 -> 16 K: 7 -> 5 Stand 0 1 66.6774 0.00

Table 9: AUC and Wilcoxon Testing Results: Normalization and Standardization

28



E.3 Data Visualisation

(a) Raw (b) Peakshaving (c) Natural Logarithm

(d) Sensor B Cycle 10-25 Selection (e) SMOTE (f) CAE Processed

Figure 25: Data T-SNE Visualisation Devices

(a) Raw (b) Peakshaving (c) Natural Logarithm

(d) Sensor B Cycle 10-25 Selection (e) SMOTE (f) CAE Processed

Figure 26: Data T-SNE Visualisation Devices

29



F Additional Experiments

We have conducted two additional experiments where we investigated the performance of the SVD and AEs on
each device separately as well as an experiment where we left one device out of the data set to investigate its
impact on the performance.

F.1 Device Performance Experiment

We have applied the SVD and AEs setups, train on all data, to each device individually to investigate consistency
over devices. As Figure 27 shows there are no real consistency differences between the SVD, FC-AE, and CAE.
The highest difference occurs in device BB11DD01 with roughly 5.5%, however this difference is nullified by
device 7B853502 as the difference there is roughly 4% the other way. This indicates that the AE’s do not obtain
more general features compared to the SVD.

362ADD01 7B853502 BB11DD01 CC7D3502 E933DD01
55

60

65

70

75

80 79.27

63.52 64.22 64.9

72.62

77.3

66.2

60

67.96

72.81

76.28

67.25

58.77

66.62

71.58

AU
C

(%
)

B2 FC-AE CAE

Figure 27: Average AUC Split Per Device

30



F.2 Device Removing Experiment

We have noticed in the t-SNE plot of the SVD, FC-AE and CAE that they all have a cluster consisting mainly of
device E933DD01. By leaving this device out of the data set we investigate the impact it has on the AUC scores
and the clustering of t-SNE plots. The AUC scores in Figure 28 are comparable to the AUC scores of Figure 27
that does contain device E933DD01. This indicates that the addition of this device does not significantly impact
the performance of the SVD, FC-AE, and CAE. However, the impact of this device shows clearly in the t-SNE
plots of Figure 29 since they are all one cluster in stead of at least two. Since this observation is the same for the
SVD as the AEs the cause cannot lie in overfitting, but might indicate some restrictions within the data set.

362ADD01 7B853502 BB11DD01 CC7D3502
55

60

65

70

75

80

85 82.78

65.87 65.6 65.15

81.57

67.43

60.97

68.98

79.88

67.69

58.54

66.63AU
C

(%
)

B2 FC-AE CAE

Figure 28: Average AUC Split Per Device

(a) SVD Device (b) FCAE Device (c) CAE Device

(d) SVD Target (e) FCAE Target (f) CAE Target

Figure 29: Data T-SNE Visualisation Devices and Targets

31


	Introduction
	Background
	Processing Pipeline Analysis
	Raw Data
	Preprocessing
	Data Augmentation
	Feature Extraction and Selection
	Classification
	Processing Pipeline Shortcomings

	Related Work
	Possible Solutions
	Autoencoders

	Validation Methodology
	Validation Metrics and Methods

	Preliminary Testing
	Data Visualisation
	Baseline 0
	Baseline 1
	Baseline 2
	Baseline Overview

	Results
	FC-AE
	CAE
	Autoencoder versus Baseline Overview

	Conclusions
	Research questions
	Future works

	Baseline 0
	Data Visualisation

	Baseline 1
	Cycle Testing
	Data Visualisation

	Baseline 2
	Signal Transformation Methods and Rescaling Functions
	Normalization and Standardization
	Data Visualisation

	FC-AE Testing
	FC-AE Architecture Testing
	FC-AE Normalization and Standardization Testing
	Data Visualisation

	CAE Testing
	CAE Architecture Testing
	CAE Normalization and Standardization Testing
	Data Visualisation

	Additional Experiments
	Device Performance Experiment
	Device Removing Experiment


