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ABSTRACT 

Frequent extreme events are expected to result in an increased frequency of landslide occurrences. The 

rapid growth of infrastructure development extends to terrain with unstable slope conditions creating a 

hazardous environment for communities. To address this problem, multiple studies have approached the 

investigation of slope stability via static slope susceptibility estimation to eventually construct a Landslide 

Early Warning System (LEWS). Landslide Hazard Assessment of Situational Awareness (LHASA) is the 

current real-time model running to visualise Rainfall-Induced Landslides (RIL) hazard on a global scale. 

However, these models do not include rainfall signal into the estimation of failure probabilities, thus 

neglecting the orographic effect.  

This study attempts to address the interaction of rainfall with terrain characteristics with the use of a 

Generalized Additive Model (GAM) in a Bayesian framework. The framework allows the uncertainty 

estimation of the estimated probabilities in a unified model rather than two individual phases as used in 

LHASA among other susceptibility estimations. Moreover, to acquire rainfall information from satellite-

derived products a model selection tool was implemented to identify a suitable antecedent rainfall window 

for the selected study site. To move away from separate rainfall-thresholds as used vastly in the literature, 

a method to identify a probabilistic threshold for warning signals was also explored. In addition, along 

with cross validation techniques, external validation became a possibility for this study due to the 

availability of a multi-temporal inventory for the Lower Mekong Region (LMR).  

The findings of this study suggested 8 days to be a suitable antecedent rainfall window for the selected site 

in North-western Vietnam The results also show an overall good performance measured by the Area 

under the Curve (AUC) of Receiver Operating Characteristics (ROC) curves for multiple validation 

techniques. These routines included temporal, spatial, random in the spatio-temporal domain and external 

validation. The results of ROC curves obtained from these techniques ranged from somewhere between 

0.6-0.9 for the AUC values. The lower performing models were assumed to be linked with the aspects of 

inventory quality that plays an important role for defining a landslide susceptibility model and terrain 

complexity for the external validation outputs. To set a warning and no-warning cut-off point, 0.0057 was 

calculated as an average which was taken from the optimal threshold range for all the inventories used. 

The final model was then translated into a visualisation tool via Google Earth Engine (GEE) applications. 

In conclusion, the proposed framework offers to further improve the uncertainty estimation to increase 

accuracy and displays the possibility of accounting for rainfall-terrain interactions in the context of near-

real time landslide susceptibility. The visualization tool has enormous room for improvement in terms of 

computation speed and exploring other statistical summaries generated from the model for various 

purposes.   
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1. INTRODUCTION 

1.1. General overview 

Landslides have a smaller spatial extent in comparison to other natural hazards, such as floods, cyclones 

and earthquakes, but are still highly disastrous. Annual economic loss ranges between USD 1-5 billion for 

countries like Japan, United States and India (Hidayat et al., 2019). In the seven-year time period between 

2004 and 2010, more than 2500 deadly landslides were reported with a death toll of over 32,000 (Petley, 

2012). Looking towards the future, the disastrous impacts of landslides (damage, loss of life and economic 

losses) are expected to worsen with increasing frequency of extreme events caused by climate change 

(Hidayat et al., 2019). The interaction of dense population and landslide prone regions call for well-

developed Early Warning Systems (EWS) to aid in disaster management at regional levels (Guzzetti et al., 

2020; Hidayat et al., 2019). 

An EWS can be defined as a system which is capable of providing meaningful and critical information to 

be communicated to organizations, authorities and the public. The expected response to an early warning 

is to act timely in order to reduce potentially devastating impacts. However, how ôearlyõ is appropriate for a 

response to translate into effective action can vary with the type of disaster and its environmental setting. 

The purpose of EWS was laid out in terms of disaster prevention, reducing risk and avoid bearing heavy 

economic losses and casualties (Guzzetti et al., 2020). The initiation of the concept of risk reduction began 

with the United Nationõs framework in the 1990, called the United Nationsõ International Decade for 

Natural Disaster Risk Reduction Early Warning Programme. This initiative continued to develop in the 

Hyogo Framework for Action (UNISDR, 2005) and also followed in the Sendai Framework for Disaster 

Risk Reduction (UNISDR, 2015) which is a running framework till 2030. 

A rigorous observation of landslides being triggered by rainfall dates back to the 1970s with empirical 

information being collected in Japan, Hong Kong, New Zealand and United States of America (Guzzetti 

et al., 2020). One of the earliest scientific effort for issuing early warning and predicting landslides was 

introduced in Southern California after observing rainfall triggered debris flows causing damage, deaths 

and injuries (Campbell, 1975). The author also emphasized that occurrences of landslides are not solely 

the quantity of rainfall that initiates slope failures but a complex interaction of surface conditions that 

makes the land prone to sliding. Campbell (1975) put forward the importance of rainfall intensity-duration 

relationship and even proposed a local threshold, also advising regarding the necessary revision of such 

empirical numbers with changing geomorphology.  

Landslide Early Warning System (LEWS), particularly for Rainfall-Induced Landslides (RIL), is an EWS 

which is specifically dedicated to landslides. Most of these systems are developed on a rainfall-threshold to 

indicate a possible slope failure. A rainfall-threshold is defined as a measure of precipitation, in relation to 

slope conditions, which when exceeded can trigger landslides in a given area (Guzzetti et al., 2008; Segoni 

et al., 2018). When hydrological conditions of the slope are known, these thresholds are considered a 

decent division between triggering and non-triggering levels. For instance, the updated threshold division 

includes a lower threshold, below which no landslides are expected to occur, and an upper threshold, 

above which landslides are highly likely to occur (Segoni et al., 2018). There are two main methods to 

define thresholds; statistically and physically-based approaches (Guzzetti et al., 2020). Physically-based 

approaches are process-based models which integrate detailed lithological, morphological and hydrological 

information of slopes to determine when and where a landslide can be expected by quantifying the 

amount of rainfall needed to trigger it. However, it is strenuous to gather this information over a large 
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spatial extent, especially considering the financial constraints of equipment and expertise needed to obtain 

such data (Guzzetti et al., 2007). 

On the other hand, statistical approaches e.g., Frequentist and Bayesian (Guzzetti et al., 2020), use 

historical landslide inventories and rainfall intensity-duration relationship to define thresholds which will 

trigger possible landslides in a given area. The intensity-duration thresholds are derived by determining the 

minimum amount of rainfall in a certain duration which results in landslide occurrences as indicated in 

past events (Guzzetti et al., 2007). These rainfall thresholds are then combined with the output of a 

landslide susceptibility model featuring predisposing factors to assign geographic units (grid cells, slope 

units) with a probability of landslide occurrence (Lee et al., 2008). The resulting information conveys the 

landslide hazard expected for a given area and its operational use in LEWS is expressed by categorizing 

the probability into classes, from low to very high (Wubalem, 2021). 

Recently, the implementation of LEWS in different regions has experienced a rapid development, with 

many prototypes designed at different geographic scales (Guzzetti et al., 2020).  

1.2. Background research in Vietnam 

Several LEWS have been developed at different spatial scales (regional, national and global), with their 

status ranging from being at the design stage to being currently or previously operational and now 

dismissed. The majority of well-established regional LEWS are concentrated in the United States of 

America (USA) and Italy (Guzzetti et al., 2020).  

In Vietnam, which is the study area selected for this work, most of the landslide research is limited to 

developing landslide susceptibility models rather than translating them into LEWS. Most of the focus has 

been directed to the hilly Northern province of Hoa Binh which lies Southwest of the capital city. The 

province receives over 80% of its annual precipitation in the months between May to October (Tien Bui 

et al., 2013, 2012, 2011). In addition, the threat from landslides in the Northern sector of Vietnam is 

increasing due to sprawling infrastructure towards mountainous terrains (Tien Bui et al., 2013). Generating 

susceptibility maps has thus become a common practice. However, these maps are mostly static or 

temporally stationary in nature and sometimes do not even undergo a validation process. Hence, these 

models cannot be considered reliable in their predictive nature (Chung and Fabbri, 2003). Aside from the 

study cases mentioned above, additional susceptibility assessments have been produced across several 

Vietnamese provinces relying on statistical methods (see, Tien Bui et al. 2011). These studies entail 

different methods to understand the effect of morphometric properties and the triggering factors. Among 

them, simpler routines such as expert based weighted maps or more objective logistic regression methods 

have been tested, as for example for the Hoa Binh province (Tien Bui et al., 2011). Moreover, other 

experiments have been run in the area including evidential belief functions and fuzzy logic models to 

estimate landslide susceptibility (Tien Bui et al., 2012). However, the primary weakness of such models is 

that the estimated spatial probabilities are purely based on terrain characteristics, leaving unaccounted the 

time-variant influence of the triggering factor (Tien Bui et al., 2011).  

In addition to the static nature of the work produced in Vietnam, another element that requires attention 

is certainly the acquisition and use of high quality/completeness landslide inventories to train any model. 

In fact, the work of Tien Bui et al. (2011) already highlights that the lack of systematic nation-wide 

inventories, especially in rural areas, induce biased results.  

Moving away from the focus on terrain-driven susceptibility (Tien Bui et al., 2012, 2011), a few studies 

approach methods to link the spatio-temporal patterns of the trigger to the resulting slope failures. For 
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instance, Tien Bui et al. (2013) progressed on this by identifying rainfall as the main cause of slope 

instabilities in the province of Hoa Binh in the years from 1990 to 2010. Due to the tropical rainfall 

regime, responsible for persistent precipitation, the role of cumulative rainfall is considered to be 

significant. For example, a study in Vietnam introduced a 15-day cumulative rainfall threshold to develop 

landslide hazard maps (Tien Bui et al., 2013). These maps represented temporal and spatial probability 

estimates of landslide occurrences, thus defining ôwhereõ and ôwhenõ a slope failure can occur (Tien Bui et 

al., 2013). However, a number of misclassified areas reflected in the work of Tien Bui et al. (2013). The 

reason behind this was due to the fact that susceptible terrains and rainfall thresholds were estimated 

independently from each other. Therefore, no real interactions were allowed between the two factors 

resulting in flat areas being flagged with high alert warnings, solely based on exceedance of the rainfall 

threshold (Tien Bui et al., 2013). Thus, rainfall thresholds do not always produce reliable results and it is 

considered essential to move towards combining rainfall information with predisposing landscape 

characteristics.  

Another level of complexity on the definition of LEWS is due to the spatial scale at which such systems 

are designed to operate. It is of crucial importance, for local administrations, to develop LEWS informed 

of soil hydrological characteristics as well as micro-climate patterns. Examples of site specific LEWS have 

in fact been designed and implemented using soil information in several regions in the North of Vietnam 

(Gian et al., 2017; Ha et al., 2020). An early warning and monitoring system was proposed for RIL using 

wireless sensor nodes drilled into the soil layer to determine slope instability (Gian et al., 2017). Such 

methods usually require in-situ measurements of rainfall (Gian et al., 2017) and water content in the soil 

(Ha et al., 2020). For the rainfall component, efforts have been made to operationalize LEWS using rain 

gauges and/or weather stations. The in-situ information acquired from the placement of these devices 

may provide accurate and temporally consistent information although they are discrete in their spatial 

extent. 

On the other side of the spatial spectrum lie LEWS that operate over large landscapes, thus making field 

data acquisition often unfeasible. In such cases, the use of affordable and omnipresent rainfall estimated 

from satellite data are usually considered an optimal alternative. Their strength boils down to the coverage 

they guarantee, both in space and time, whereas their weakness is usually linked to the coarse spatial 

resolution of the data provided. Among the first examples of satellite-based rainfall estimates used to 

define EWS, Hong et al. (2007) paved the way for numerous improvements for the years to come. 

1.3. Global Landslide Early Warning System 

Hong et al. (2007) first proposed a framework to use geospatial datasets to assess probability of landslide 

occurrences at global scales, both due rainfall and earthquake triggers. A similar parallel study (Hong et al., 

2006) focused on identifying region-based rainfall thresholds rather than a single global threshold, which 

inevitably led to the misrepresented hazard estimates. Based on this, a preliminary global framework was 

introduced by Kirschbaum et al. (2009), which developed an algorithm to build a near-real time global 

landslide susceptibility model using satellite rainfall estimates. Eventually, a regional predictive model 

capable of producing near-real time forecasts was developed for Central America (Kirschbaum et al., 

2012), where warning levels were produced by intersecting rainfall intensity-duration thresholds and a 

static susceptibility map (methodology shown in Figure 1). Comparing results particularly for Central 

America from the regional model mentioned above, with global susceptibility described in  Hong et al. 

(2007) showed the regional model performing better overall (Kirschbaum et al., 2012). This can be 

attributed to use of  landslide inventory specific to Central America to support the model calibration and 

comparison by Kirschbaum et al. (2012) and thus, it was suggested to use regional information for a 
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possible global LEWS using a similar framework for further extension (Kirschbaum et al., 2012). Some 

limitations in the work of Kirschbaum et al., (2012), were due to the coarse spatial resolution of Tropical 

Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) estimates, such as 

reserving the algorithmõs optimum functionality for areas larger than 2500 km2 as well as the use of a 

single extreme rainfall event introducing overestimation by the model.  

 

 

 
Figure 1 Framework for the proposed regional (extendable to global scale) landslide hazard nowcast algorithm  

(Kirschbaum et al., 2012). 

 

Since then, a lot has changed in terms of data quality as well as modelling tools. These elements have 

allowed to develop LEWS even further, and recent advancements have given rise to the latest version of 

LEWS from NASA, this being referred to as Landslide Hazard for Situational Awareness (LHASA) 

(Kirschbaum and Stanley, 2018). Specifically, LHASA uses the  Integrated Multi-satellitE Retrievals 

(IMERG) for Global Precipitation Measurement (GPM) and TRMM to provide a nowcast every thirty 

minutes (Kirschbaum & Stanley, 2018). This concept, derived from aforementioned methods (Hong and 

Adler, 2007; Kirschbaum et al., 2012), is currently an operational global LEWS. With respect to the 

previous version described above, LHASA relies on the NASAõs Global Landslide Catalog (GLC; 

Kirschbaum et al., 2010) to continuously improve the data needed for model calibration. The steps 

followed to issue nowcasts are shown in Figure 2, indicating the use of an Antecedent Rainfall Index 

(ARI) to filter out the areas which will further be evaluated by the underlying susceptibility map. The 

regions falling in a high ARI and intersecting with moderate and high susceptibility will in turn issue a 

nowcast warning for a landslide hazard (Kirschbaum & Stanley, 2018). Though the global model did not 
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predict well the landslide occurrences reported in the GLC, it did set a base for the possibility of 

integrating geospatial datasets to be used in a dynamic context.  

 

 
 

 
Figure 2 LHASA decision tree structure for issuing landslide hazard nowcasts (Kirschbaum and Stanley, 2018). 

 

For this reason, LHASA was later modified in an attempt to solve the prediction misclassification by 

updating to its second version (see, Stanley et al., 2021). For the second version, two new dynamic 

predictors were introduced, these being the snow cover and soil moisture (Stanley et al., 2021). However, 

there were yet significant drawbacks prevailing in the resulting nowcasts, and some limitations were 

brought by the integration of two new dynamic variables. In addition to removing inventory information 

prior to the availability of the soil moisture data, the dynamic variables reduced the spatiotemporal domain 

by being specific in data-relevant areas. This also led to the exclusion of smaller Indonesian islands which 

did not fall under the coverage of soil moisture information. Moreover, LHASA version 2 nowcasts also 

displayed oddly high probabilities of landslide occurrences in some areas like the Northern Andes, and it 

simultaneously underestimated in other areas of the African region (Stanley et al., 2021). 
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2. RESEARCH PROBLEM 

The frequency of extreme weather-related events (like extreme precipitation) is expected to increase in the 

future. This will likely contribute to an increased number of landslides and associated losses (Hidayat et al., 

2019). The need to move towards a dynamic system which assesses the risk of landslides is defined by the 

community and geographic area, as well as the spatial extent considered. Rainfall triggered landslides are 

the frequently observed and devastating movements and it is essential to determine slope failures 

attributed to rainfall related weather events. However, developing rainfall thresholds is highly subjective 

due to high variations in climate and seasonality, along with their interaction with natural and 

anthropogenic conditions of a certain region (Kirschbaum & Stanley, 2018). Nonetheless, these thresholds 

are still widely contributing to landslide early warning systems (Segoni et al., 2018). 

 

 

Overall, there are two main limitations in most of the available LEWS. These include lack of uncertainty 

estimation (Guzzetti et al., 2020) and the use of rainfall thresholds estimated independently from the 

landscape where they are applicable in reality. Therefore, an unreliable warning system can prove to be 

costly, especially if the warning level is underestimated.  

The aim of this study is to propose the implementation of a LEWS where predisposing and triggering 

factors are both featured within the same model (Figure 3), which is capable of producing uncertainty 

estimates alongside the mean probabilistic response.  

Typically, applications of statistical models are capable of predicting landslides over a geographic space by 

building landslide susceptibility models, i.e., a key part of developing a LEWS. Current implementation of 

Figure 3 Conceptual framework for transitioning to a dynamic LEWS. 
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LEWS presents an empirically based rainfall threshold combined with statistically derived landslide 

susceptibility maps, in essence combining two outputs as one. This assumes that rainfall patterns are 

independent of terrain characteristics, which may not be a valid assumption. Due to the orographic effect, 

especially in mountainous zones and highlands, an influence of heavier rainfall exists in some parts of the 

terrain as compared to its surrounding areas (Adler et al., 2003; Gariano et al., 2017; Guzzetti et al., 2008; 

Kirschbaum et al., 2012; Nguyen et al., 2014). Hence, instead of using rainfall (the dynamic variable) and 

geomorphological covariates (static variables) independently, they can be jointly used in a modelling 

scheme to approach a LEWS. Thus, rainfall will play the role of a covariate, like any other, in the 

susceptibility model and develop a system which is integrational of dynamic and static components. 

Besides for integrating covariatesõ interactions, a model that features both predictors would also allow for 

a proper uncertainty estimation. 
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3. STUDY OBJECTIVES 

3.1. Main objective 

To explore the possibility of an operational regional alarm system for rainfall-induced landslides in near 

real time, using a statistical model that incorporates both rainfall estimates and terrain properties, 

expressed at the slope unit level for a test site in Northern Vietnam. 

3.1.1. Sub-objectives 

Å To identify a suitable antecedent rainfall window as a covariate.  

Å To model dynamic behaviour of landslide probability as the spatio-temporal signal of the rainfall 

pattern varies.  

Å To transition from separate rainfall thresholds to unified probabilistic thresholds for alert levels. 

Å To translate the model into an interactive visualization tool via a cloud-platform for 

comprehensive display (to be possibly extended into a forecasting tool). 

3.2. Research questions 

1. What impacts the selection of a suitable antecedent rainfall window for a dynamic model? 

(Objective 1) 

2. What is the behaviour of a model built as a dynamic rainfall-induced prediction system which 

does not rely on rainfall thresholds but uses rainfall estimates as a covariate in a statistical model? 

(Objective 2) 

3. How efficiently can the model predict landslide probabilities if short-term rainfall estimates are 

plugged in the statistical model to visualize changing susceptibility with changing precipitation? 

(Objective 2) 

4. What is the added value of a model that features rainfall estimates? (Objective 2) 

5. What is the added value of a model which accounts for the uncertainty estimation? (Objective 2) 

6. How can a suitable/optimal probabilistic cut-off be defined to separate alert levels for informed 

decision making? (Objective 3) 

7. What is the capability of the model to provide landslide warning signals in the form of a local 

alarm system? (Objective 4) 

3.3. Thesis outline 

The structure of this thesis is organised in the following chapters. Chapter 4 describes the methodology 

and data used to approach the research problem addressed above. The tools are also explained to give a 

full overview of the methods. Chapter 5 describes the study area and the data available for that particular 

area which is essential for shaping the model building phase. Chapter 6 presents the obtained results 

followed by Chapter 7 where the results are discussed with respect to the research objectives and 
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questions. The final section, Chapter 8 concludes the study by providing final remarks and 

recommendations as well as highlighting the limitations of this study.   



TOWARDS NEAR REAL-TIME FORECASTING OF RAINFALL-INDUCED LANDSLIDES 

11 

4. METHODOLOGY AND DATA 

To integrate rainfall in a statistical model along with other covariates, a multi-variate approach is used in 

the context of an additive model. This section provides an overview of the data collection as well as the 

methodology followed in this research, explaining the modelling framework used to obtain the output.  

4.1. Research methodology  

The research framework aimed to achieve in this study is described in the sections below. 

4.1.1. Modelling framework 

The approach in this research is based on Bayesian statistics and framed in the context of a binomial 

Generalized Additive Model (GAM). Most of the modelling procedure has been implemented in R 

(RStudio Team, 2022) and specifically using the R-INLA (Integrated Nested Laplace Approximation) 

package, which has recently become a standard for Bayesian inference (Rue et al., 2009). For additional 

details and accessibility, see https://www.r-inla.org/. 

The aim is to develop a binary reference model based on multi-temporal event-specific inventories over 

the given study area. Here, a binomial GAM, which has been evaluated as a suitable method for landslide 

predictions (Goetz et al., 2015), will serve the purpose to handle linear as well as non-linear behaviours of 

the selected covariates with respect to landslide occurrences. The model will be built, as shown in Figure 

4, such that it will integrate topographic and thematic variables carrying a static predisposing factorõs 

signal, as well as rainfall estimates and Enhanced Vegetation Index (EVI). EVI is similar to Normalized 

Difference Vegetation Index (NDVI) and conveys a dynamic predisposing control on landslide 

occurrences. Any model framed in a Bayesian context will natively provide an uncertainty description of 

the constitutive elements of the model (Luo et al., 2021; Wagenmakers et al., 2008). Moreover, a reference 

predictive equation (1) can be estimated on the basis of landslide-event inventories triggered by heavy rain, 

and then the same equation can be used for nowcasting by removing the previous rainfall signal and 

plugging-in forecasted or current rainfall estimates (Luo et al., 2021). This will define a dynamic 

susceptibility whose patterns can be converted into maps as all or part of the predictor set change in time. 

https://www.r-inla.org/
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Figure 4 Workflow of the inputs and outputs of the basic model building phase. Green arrows represent steps 

followed before those led by blue arrows.  

 

Moving toward the specifics of what a GAM implies, this model is an extension of the more common 

Generalized Linear Model (GLM). On the subject of landslide susceptibility modelling, a GLM holds the 

assumption that the behaviour of landslides presence/absence corresponds to a Bernoulli probability 

distribution (Brenning, 2008), whose unknown probability can be modelled through the following linear 

construction: 

 ,  (1) 

where P is the probability indicating presence of landslide within a mapping unit, Ǡǭ is the global intercept, 

every Ǡ represents the regression coefficient for the covariates (ת), which are assumed to exert their effect 

linearly on unstable slopes, and ǥ represents the logit link. The logit function accommodates the 

transformation of equation (1) which indicates linear combination of products between chosen covariates 

and respective coefficients, and shifts from modelled odds scale to the required and interpretable 

probability scale. In other words, the probability P can be recovered by inverting (1) as follows: 
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 ,  (2) 

 

GAM is an extension of the approach presented above. A GAM allows one to include linear effects as 

well as nonlinear covariatesõ behaviours (Brenning, 2008; Muenchow et al., 2012). In this case, equation 1 

can be expressed in its simplest form as follows: 

 

 , (3)  

 

where f expresses the nonlinear function of a covariate Ǖ which has n discrete classes. 

4.1.2. Model scope 

A Bayesian version of a binomial GAM retrieves a distribution (range of values) for each model 

component (Luo et al., 2021). This means that mean and credible intervals of probabilities can be obtained 

for every mapping unit. 

In a LEWS based on a Bayesian version of a binomial GAM, forecasted rainfall can be plugged-in the 

model to follow the same process and return probability estimates by integrating rainfall as the dynamic 

covariate in the model. More dynamic variables can also be introduced, thus, EVI is also considered to be 

a time-variant property of this model. The removal of rainfall thresholds, as used in previous literature, 

and inclusion of rainfall estimates directly into the model give way to the visualization of a dynamic 

probabilistic LEWS, as a product of the varying rainfall patterns.  

4.1.3. Model selection 

One element that traditional LEWS heavily rely on is the concept of intensity-duration (Guzzetti et al., 

2008, 2007; Hong et al., 2006; Kirschbaum et al., 2012). This notion implies that landslides occur in 

response to rainfall that can be discharged before the actual date of the failure. Hence, the model sought 

in this research should also be considered to account for this intensity-duration relation. For this reason,  

the daily cumulative antecedent rainfall will be integrated in the reference model. This will be done by 

summing the rainfall of the event day to the rainfall of t days prior to the event, where t ranges from 1 to 

14 days. However, the choice of the antecedent rainfall window is not set in stone. The literature suggests 

different rainfall antecedent windows. LHASA version 1 integrated a rainfall threshold which was based 

on 7-day antecedent rainfall (Kirschbaum and Stanley, 2018) to explain the saturation in soils which served 

as a catalyst for slope failure on any day. Conversely, Tien Bui et al. (2013) uses 15 days. Therefore, to test 

the most suitable rainfall window for the study area, a model selection tool is necessary to be introduced. 

In Bayesian framework, the Watanabe Akaike Information Criteria (WAIC) is often used as a model 

selection tool. A stand-alone WAIC value does not bring valuable information but in a relative 

comparison, it can be used to select the most appropriate predictor set (Whalen and Hoppitt, 2016). The 

most representative covariate subset of a larger group would lead to smaller WAIC values. Other similar 

metrics exist, like the older version of WAIC, Akaike Information Criterion (AIC) and Deviance 

Information Criterion (DIC). However, WAIC is preferred over its alternatives due to its ability to 

evaluate the modelõs fit by utilizing the full posterior distribution in Bayesian context, as compared to a 

single estimate (Watanabe, 2013).  
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Therefore, for this study, keeping the model parameters the same, a different rainfall window will be 

integrated and this plug-in will be moved over 14 different models carrying one cumulative antecedent 

rainfall window each, from 1 to 14 days. The WAIC for every model will be stored and compared to 

assess the lowest among all 14 models.  

To corroborate the indications collected through the WAIC, a parallel temporal cross validation technique 

will also be added. The temporal validation technique refers to leaving one of the six inventories out for 

validation while calibrating on the remaining five. This will be done for all of the 14 models, and the 

Receiver Operator Characteristic (ROC) curve will then be used to assess the performance. This will help 

providing additional information and support the choice of the most suitable day to express the rainfall 

intensity-duration control on landslides. 

4.1.4. Performance assessment 

ROC curves can be used when evaluating the ability of a binary classifier to correctly identify the areas 

with and without landslide occurrence (Yang and Berdine, 2017; Zou et al., 2007). This tool plots True 

Positive Rate (TPR) against False Positive Rate (FPR), obtained from a confusion matrix (Table 1), in a 

curve which admits to a resultant Area Under Curve (AUC) to evaluate overall accuracy of the diagnostic 

test (Zou et al., 2007). A ROC curve and its AUC can both be used to assess the performance of an 

explanatory model as well as a predictive task (comparing the estimates to unknown data) (Zou et al., 

2007). The performance for all 14 models were assessed by using the average AUC of the six temporal 

validation outputs for each model. AUC ranges between 0 and 1, where anything below 0.5 accounts to 

unacceptable discrimination, since 0.5 itself would mean the model does no better than what would be the 

output by chance (Hosmer et al., 2003). Values below 0.7 are also not preferably acceptable, however 

AUC in the range of 0.7 becomes acceptable and increases in excellency of discrimination accuracy as the 

AUC approaches 1 (Hosmer et al., 2003; Yang and Berdine, 2017; Zou et al., 2007). 

Table 1 Confusion matrix to determine correctly and incorrectly classified points by a binary classifier. 

  
Observed  

 
 

Presence  Absence 

Predicted 
Presence TP FP 

Absence FN TN 

 

Table 1 graphically defines True Positive (TP), False Positive (FP), True Negative (TN) and False 

Negative (FN). From this confusion matrix, F1 score can be obtained further via measuring precision and 

recall (Goutte and Gaussier, 2005). Precision is the ratio of TP to the total predicted positives (the latter 

defined as TP + FP), and recall (or sensitivity) is the ratio of TP to the observed positives (the latter 

defined as TP + FN). F1 score is the harmonic mean of the precision and recall for a binary classifier. The 

value range of this metric is bounded between 0 and 1, with F1 score = 1, measuring high performance of 

a test. F1 score is considered to be a measure of good performance especially for unbalanced data. Thus, it 

will be used to explore the selection of a probabilistic cut-off. However, this metric may not be 

independently sufficient to identify a fair cut-off point, thus specificity or True Negative Rate (TNR) and 
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sensitivity (TPR) will also be examined along with the F1 score (more information can be found in Annex 

4).  

4.1.5. Model validation 

The validation of the model is an essential part of any predictive approach and determines the quality of 

the model when fed with unknown datasets (Chung and Fabbri, 2008, 2003; Lombardo and Tanyas, 2020; 

Remondo et al., 2003). The validation techniques in this research will be of multiple characteristics. Since 

the inventories used for this study represent the temporal domain of this model, temporal validation along 

with variations of spatial validation will be included.  

Temporal validation will deliver the results of building the model with five out of six inventories and 

validating on the sixth inventory, which belongs to a different time step. This step will be repeated for 

validating on all of the six inventories one by one, to understand the nature of the model as well as the 

impact of the inventory richness. 

Moreover, a sequential temporal validation techniques will also be explored. This means that the 

calibration starts by the first inventory in ascending temporal order and validate on the second one. This 

will snowball to moving the calibration input data in time, for instance calibrating on the first and second 

inventories while validating on the third, and then moving to calibrating on the first three inventories and 

validating on the fourth. The sequence will be carried forward till the first five inventories are used to 

build the model and the last inventory in time is used for validation. This type of temporal variety in the 

data is extremely useful since many susceptibility models are missing this component. Looking back and 

checking the quality of a model built to predict landslide occurrences is possible with future events 

occurring in the same region, which is the essence of the modelõs purpose. 

One of the spatial validation technique is performing a 10-fold cross validation, where random sampling 

of mapping units is used to create subsets of testing and training datasets in a space-time dimension. This 

cross validation approach will allow the model to be trained on 90% of the area and tested on 10% of the 

remaining area. The 10 iterations will produce a map that has prediction values over the entire study area 

(Luo et al., 2021).  

The second approach for spatial validation includes grid-based partitioning, where the study area is 

segregated into blocks through an overlaying lattice, therefore creating multiple spatial units with each 

including a number of mapping units. These grid blocks, and the corresponding mapping units within 

them, are used for cross validation which is in contrast with random sampling.  

4.1.6. Mapping unit 

Choosing the mapping unit addresses the spatial partition of the landscape, resulting in an individual unit 

upon which the failure probability will be assigned to once the model retrieves a fit. Among the choice of 

multiple types of spatial partitioning of the landscape that have been proposed and used in previous 

studies (Steger and Kofler, 2019), the predominant choice is represented by a grid-cell. The grid-cell is a 

type of mapping unit that uses a squared lattice covering the study area, with regular grids dividing the 

extent of the area as matched by the spatial resolution of the chosen Digital Elevation Model (DEM) 

(Reichenbach et al., 2018). Though, the fine resolution of such a mapping unit may be preferred to 

describe initiation points of landslide occurrences, for slope management methods, it may not be the most 

suitable unit to use, especially for implementing mitigation measures.  
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Early warnings are also an indication where slope stabilization measures need more attention. However, 

stabilization practices usually are implemented on the entirety of a slope rather than on a single grid-cell in 

practical application. Even so, a lattice of a coarser resolution can distort the natural morphology of 

downhill movement of material by simultaneously including ridges and streamlines in a single unit, as 

visually evident in Figure 5. To resolve this neglection of morphological properties, Carrara et al., (1991) 

proposed a coarser mapping unit which represents landslide behaviour in a more comprehensible manner 

with respect to the landscape. This unit is referred to as a Slope Unit (SU), and it is a delineation of space 

by streamlines and ridge lines, under the control of homogenous slope exposition (Ba et al., 2018; Carrara 

et al., 1991). The subdivision of geographic space in this manner implies that the process of failure in a 

given slope unit is independent of the failure mechanism in the neighbouring unit. This puts the decision 

maker at an advantage to focus on the instability of individual slopes for monitoring and early actions. 

Naturally, the coarser nature of slope units, as compared to a fine lattice of grid-cells, allows faster 

computation of complex data-driven models by using fewer objects to assign probabilities on. Moreover, a 

comparison of mapping units (slope units and grid-cells) based on a statistical analysis for landslide 

susceptibility resulted in better performance of the model using slope units due to their close relation with 

representation of the geographic environmental setting (Ba et al., 2018).  

 

 
Figure 5 Comparison of landscape partitioning showing grid-cell (a) and slope units (b). Source: (Liu et al., 2018). 

 
To set the mapping unit for the analysis of this study, the generation of slope units will be done using the 

software r.slopeunits (Alvioli et al., 2016). All SUs that coincides with a landslide point(s) will be assigned a 

ôpresenceõ status; indicating that a landslide is present in this slope unit for the events under consideration. 

Meanwhile, any SU that does not include intersecting landslide points will receive a status of ôabsence.õ  

4.2. Data preparation 

Google Earth Engine (GEE), a cloud-based platform, is a freely accessible tool that consists of various 

geospatial datasets of varying spatial and temporal resolutions. GEE behaves as a source holding a 

repository of aerial, satellite and ground-based data infused with remotely sensed data as well as built-in 

algorithms to manage big geo-data. The services available through this platform provide usability in 

analysis which requires earth observation data in understanding morphological processes (Kumar and 
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Mutanga, 2018). The initiation of GEE in 2010 provided great ease by tackling the long processing time 

on a personal computer and the ability to skip downloading heavy satellite imagery data. In addition, Earth 

Engine also allows visualizing the results of any methods and processes into a cloud-based app. Such apps 

can access satellite data in real time from the Earth Engine Catalog that contains pre-processed as well as 

raw datasets, providing users with a variation of data types (Kumar and Mutanga, 2018).  

Predicting landslide occurrences is not straightforward as it requires estimating relationships of factors 

with respect to slope failures. There exists a complex interaction of slope condition as well as external 

influences which act together to make the slope susceptible to failure. Assessment of landslide 

susceptibility depends on the availability of information of predisposing factors and the trigger, which is 

not always known or estimated to explain the failure event (Lombardo et al., 2020). Models requiring rich 

temporal data can be supported by the multiple petabyte of geospatial (along with socioeconomic) 

repository provided by Earth Engine, with vast datasets available within a unified platform (Gorelick et al., 

2017).  

There exist quite a few satellite-derived rainfall products at different temporal and spatial resolution. 

IMERG aims to provide rainfall information every 30 min using sensor information from GPM and 

Tropical Rainfall Measurement Mission (TRMM) at nearly 11 kilometres of spatial resolution (Tang et al., 

2020). Though LHASA used the above-mentioned information for its landslide warnings, it is still a coarse 

resolution as compared to the Climate Hazards group Infrared Precipitation with Stations (CHIRPS). 

CHIRPS (Funk et al., 2015), with daily and monthly estimates, fills gaps in datasets which cannot offer low 

latency and fine spatial resolution integrated with station data for richness. For the aforementioned 

reasons, CHIRPS has the highest spatial resolution in gridded precipitation satellite datasets, and a 2 day 

latency period which is reserved for blending station data to retrieve the first product (Funk et al., 2015). 

Table 2 shows the description of the aforementioned datasets used in this study.  

 
Table 2 Description of the major datasets used in this study. 

Data Source Resolution Description Type 

NASA SRTM 

DEM 

(Farr et al., 

2007) 

╔ 30 meters Quasi-global data, which uses 

other datasets to produce a more 

complete and void-filled product 

Source for 

extracting 

static 

covariates 

CHIRPS 

Daily 

(Funk et al., 

2015) 

0.05o/  

  5.5 kilometres 

Near-global rainfall dataset, 

which incorporates satellite 

imagery with in-situ station data. 

Dynamic 

(trigger) 

covariate 

MODIS 

Aqua 

Vegetation 

Indices 

(Didan, 2015) 250 meters A product that provides NDVI 

and EVI. Where EVI is more 

sensitive to dense vegetation and 

removes residual contamination 

in the atmosphere. 

Dynamic 

covariate 

 

4.2.1. Generation of slope units 

The software r.slopeunits (Alvioli et al., 2016) was used to generate slope units from a medium-high 

resolution SRTM DEM. The software was mainly utilized to optimize the mapping unit for the purpose of 

terrain division performed with optimal parameters in the context of landslide susceptibility modelling 
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(Alvioli et al., 2016). The minimum area of an SU was set to 40,000m2 to dissect the region in a reliable 

manner. A circular variance of 0.5, with a large flow accumulation threshold of 80,000m2 was used to 

identify most of the slope units. The clean size was set to 20,000m2 to remove unrealistic and oddly small 

subdivisions of the terrain which can be built upon plains or homogenous slopes (Alvioli et al., 2016). The 

iteration number was set to 20, to obtain the SU as per the input requirements with the reduction factor 

being 10. 

4.2.2. Covariates 

The input variables of the model which will be implemented in this research will inherently be of two 

relevant characteristics: static and dynamic. The static covariates are assumed to be time invariant, whereas 

the dynamic characteristics will change over space and time. 

4.2.2.1. Time-invariant factors 

Among many of the available datasets in GEE Data Catalog, for much of the literature addressing 

landslide susceptibility assessment, topographic information is extracted from global DEMs. The most 

common DEMs include the Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM). The 

SRTM, specifically a Digital Terrain Model (DTM), is considered a medium-high resolution DEM (Brock 

et al., 2020). The SRTM version available accessible from the GEE Catalog is the third version of the 

product which uses the data collected in 2000 from the original mission by NASA combined with Italian 

and German Space Agencies (Farr et al., 2007). This version of the product has been corrected for voids 

using other existing DEMs like ASTER GDEM2, and hence, was considered a fair choice to use in 

extracting information for the static covariates.  

The static covariates were extracted and aggregated to SU level, by using the mean and standard deviation 

of all pixel values contained within a slope unit. The covariates (summarized in Table 3) will be used to 

inform the model regarding the static, or temporally-invariant signal of the landscape with respect to its 

tendency to initiate landslides.  

Table 3 Static covariates, used in this study,  described by their characteristics expressed in the landscape. 

Covariate (unit of measurement) Description 

Elevation (m) Elevation is used as a proxy for its orographic 

effect on rainfall (Görüm, 2019). 

Slope Steepness (m) Slope steepness is one of the most intuitive 

factors to be used in landslide susceptibility. 

This covariate represents the balance between 

stabilizing forces and gravitational influence 

which, if in a weak balance, can easily be tipped 

over by external influences brought by 

rainstorms (Wu and Sidle, 1995). 

Planform Curvature  Planform (or planar) curvature dominates the 

divergence of forces acting upon the slope as 

well as the direction of surface runoff 

(Heerdegen and Beran, 1982; Ohlmacher, 

2007). Depending on its value range, planar 

curvature can indicate a planar, convergent or 

divergent terrain. 
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Profile Curvature Profile curvature runs parallel to the highest 

degree of slope steepness and controls the 

forces acting upon it (Heerdegen and Beran, 

1982; Ohlmacher, 2007). This curvature can be 

convex, concave or linear, contributing to the 

acceleration or deceleration of overland flows. 

Eastness Sine of aspect, a cyclic DEM-derived variable, 

contributes to the surface conditions by 

defining the direction of the slope. Ranging 

from -1 to 1 (representing slopes facing 

Westwards to Eastwards, respectively) indicates 

the influence on slopes brought by solar 

radiation and winds (Leempoel et al., 2015).  

Northness The cosine of aspect indicates the exposition of 

a given slope towards the North (values =1) or 

South (values =-1) directions. Depending on 

the hemisphere under consideration, this factor 

can indicate slopes that are exposed to sunlight 

for longer duration within a day, therefore also 

conveying information related to soil moisture 

conditions (Epifânio et al., 2014). 

Internal Relief (m) 

(also referred to as relief hereafter) 

Internal relief can have a strong correlation with 

the landslide activity (Görüm, 2019; Qiu et al., 

2018). Relief is the difference between the 

elevation in a given pixel and the mean 

elevation in a specific neighbourhood, here 

defined with a 1km radius from each pixel in 

the study area. Its values are usually interpreted 

in terms of potential energy, a fundamental 

component of landslide dynamics. 

 

 

In addition to these covariates, the roundness index of each SU was also included, this being calculated as 

the maximum length inscribable within a SU polygon divided by the square root of the SU area. 

Moreover, a measure of SU length was considered by using the maximum distance between any two pixels 

within a SU. These two measures were tested for collinearity (estimating the Pearson correlation 

coefficient between the two) and although the term ôSU lengthõ appears in both, the correlation (see 

Annex 3 for details) between the two was estimated to show weak correlation (Schober and Schwarte, 

2018) to justify the inclusion of both in the model. 

4.2.2.2. Time-variant factors 

The process consists of building a reference model capable of estimating the effect of rainfall onto the 

landslide scenario so that the predictive equation is used to project future landslide susceptibility patterns 

at varying precipitation amounts. However, the literature is rich of studies that indicate a dual effect of the 

rainfall on slope failures (Segoni et al., 2018). Prolonged rainfall before the day of the landslide initiation 

contributes to increased pore pressures and overall weight of the masses hanging on a given slope 

(Guzzetti et al., 2008; Segoni et al., 2018).  



TOWARDS NEAR REAL-TIME FORECASTING OF RAINFALL-INDUCED LANDSLIDES 

20 

The aim of this study revolves around modelling landslides in relation to a rainfall event, which brings us 

to the triggering factor. To retrieve the trigger information, daily maximum rainfall estimates have been 

extracted from CHIRPS. This dataset has a resolution 0.05°, with daily rainfall aggregates available (Funk 

et al., 2015). Among analogous products, CHIRPS offers the highest spatial resolution and an overall good 

performance in the South-eastern Asian sector (Tang et al., 2020). For this reason, it will be used in this 

work to support the analyses expressed at a regional level.  

The reference model will  examine the rainfall signal with respect to landslide occurrences by making 

initial use of cumulative antecedent daily rainfall. These will be passed separately and for a maximum 

window of 14 days prior to the landslide occurrence date. This is done to select the most representative 

intensity-duration rainfall window.  

An additional dynamic covariate introduced in this model is the Enhanced Vegetation Index (EVI). The 

EVI was taken for three weeks prior to the event date from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) AQUA satellite that has a return period of 16 days with 250 meters spatial 

resolution (Didan, 2015). The covariate was used to describe the presence of vegetation cover 21 days 

prior to the event date as a proxy for root-strength (Wu and Sidle, 1995). 

  



TOWARDS NEAR REAL-TIME FORECASTING OF RAINFALL-INDUCED LANDSLIDES 

21 

5. AREA OF INTEREST 

To test the concept of a unique model, a study area is chosen influenced by the availability of available 

inventory information. This section describes the study area chosen for this study and the supporting 

landslide inventory acquired. 

5.1. Study area 

Among the countries most vulnerable to storms, Vietnam is heavily affected by natural disasters such as 

flooding and landslides causing damage to livelihood as well as the economy (Tien Bui et al., 2012). The 

lack of available and rich datasets concerning landslide inventories in developing countries like Vietnam 

makes it difficult to carry out susceptibility studies (Tien Bui et al., 2013). NASAõs open data portal of 

Global Landslide Catalog was initiated to create a record for rainfall-triggered landslides globally 

(Kirschbaum et al., 2010). For the years 2003, 2007 and 2008, proportion of reported landslides were the 

second highest, following one of the highest proportion of fatalities (Kirschbaum et al., 2010). Vietnam, 

among other countries of Southeast Asia show that the peaking casualties are reported between June and 

November (Kirschbaum et al., 2010) which is also the rainy season that causes fatal landslides in Vietnam 

among other countries of the Lower Mekong Region (LMR, Amatya et al., 2022). The selected study area 

(see Figure 6) is located in the North-Western region of Vietnam, and encompasses the cluster of 

landslides detected for the LMR, among some events located towards central and Southern Vietnam 

(Amatya et al., 2022). The North-Western area of Vietnam is constituted of mountainous terrain, where 

the elevation can go higher than 3000 meters and is associated with steep slopes even exceeding 60o. 

There are 15 districts of Vietnam that fall under the study area where landslides have occurred in the 

recent years (Amatya et al., 2022). The study area (over 59,000 km2 wide) does not have the highest 

population density but is on the extreme end of the poverty index in Vietnam (Bangalore et al., 2019). 
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Figure 6 Study Area in Vietnam showing the landslides detected country wide and within the study area. 

5.2. Inventory  

An important prerequisite for estimating landslide susceptibility is the availability of multi-temporal 

inventories with adequate quality and completeness (Harp et al., 2011; Petschko et al., 2013). Quality and 

completeness are measures of accuracy and of how representative of the actual landslide scenario an 

inventory is. However, in certain areas worldwide, landslide inventories are scarce to begin with. This is 

mostly due to the fact that some countries lack the resources for record-keeping of landslide occurrences. 

This in turn makes it difficult to generate landslide susceptibility estimates and monitor the evolution of 

the susceptibility patterns in time. Hence, a unique opportunity was provided by NASAõs implementation 

of LHASA to the LMR (Amatya et al., 2022). The interest in the area thus required for rainfall-triggered 

landslides to be mapped, knowing that their occurrence is predominantly destructive towards livelihood 

and economy during the rainy season, falling in the second half of the year (Amatya et al., 2022).  

To implement LHASA to the LMR, a Semi-Automatic Landslide Detection (SALaD) system, which is an 

Object-Based Image Analysis (OBIA) approach, equipped with a change detection module (SALaD-CD). 

SALaD-CD was therefore built with the aim of generating event-based inventories for RIL over the LMR 

(Amatya et al., 2022). The LMR includes five countries namely, Myanmar, Laos, Thailand, Vietnam and 

Cambodia. Most of the landslide inventories were identified in the territory of Vietnam.  
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The area affected by landslides was initially determined on news media and official reports dated between 

2009 to 2020. Within these areas landslide were then mapped using pre- and post-event satellite imagery 

from PlanetScope and RapidEye (Amatya et al., 2022). The choice between the constellations of satellite 

imagery was influenced by the availability and coverage of desired area in time as well as the common 

problem of cloud cover in satellite imagery. National scale landslide inventories do exist for Vietnam 

already, although they are not freely accessible or available for public use. NASA introduced a pre-

processing step where images are adjusted by performing radiometric normalization and co-registration. 

Nevertheless, this pre-processing still cannot completely solve the limitations due to cloud disturbance, 

hence part of the resulting inventories may not be associated with a specific date of occurrence. 

Normalized Difference Vegetation Index (NDVI) is used as a discriminant measure to automatically 

detect landslides from pre- and post-images. Notably, falsely classified areas such as barren land or 

agricultural areas were removed manually to clean the inventory. The final output was translated into point 

data rather than polygons because landslide information in the GLC, the input for the global LHASA 

model, are landslide points. These were extracted from the landslide surface by using NASADEM to mark 

the highest elevation along the perimeter as the initiation point (Amatya et al., 2022).  

 
Figure 7 Mapped landslide points in the Lower Mekong Region (Amatya et al., 2022). 
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As shown in Figure 7, 15 locations were identified for Vietnam, with events spanning from 2017 to 2020, 

in the months of June to November. The inventories in Vietnam spread over the whole country, but are 

mainly concentrated in the North Western sector. Unlike Myanmar and Laos, where fewer inventories 

were identified and were spread quite far apart, Vietnam was considered to be a suitable choice with 

multiple dated inventories. To reduce computation time, the study area was reduced to the cluster of the 

inventories concentrated in the upper region of the elongated country boundary (as defined in Figure 8) 

while the events which occurred in the Southern region were stored separately as independent validation 

data sets. Table 4 shows the inventories with their indexing and the number of landslide points contained 

for each event date in the territory of Vietnam. As visible from the table, the dates marked for each event 

can have a range of uncertainty. For example, inventory 2 and 6 can be events of any of the six days of 

their corresponding date ranges. This can make it difficult to identify the precipitation estimates which in 

reality triggered the landslides. However, these inventories are still useful in informing the model of the 

study areaõs susceptibility, especially inventory 6 since it contains a significant number of landslide 

initiation points.  

 
Table 4 Landslide inventory with identified dates and corresponding landslide initiation points. 

Year Inventory Date Landslides Points 

2017 

1 2nd-3rd August 2014 

2 23rd-28th August 99 

3 10th-11th October 3944 

2018 

4 23rd-24th June 1310 

5 3rd August 302 

6 27th August-1st September 1641 
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Figure 8 Colour-coded landslide inventories spread in the study area. 

 
  








































































