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ABSTRACT

Frequentextreme events are expectedesalt in an increased frequency of landslide occurrences. The
rapid growth oinfrastructurelevelopmenéextendsd terrain with unstable slope conditiorsating a
hazardous environment for communities. To address this problenie reuities have approached the
investigation of slope stability via s&lipesusceptibilitgstimatiorto eventually construct andslide

Early Warning System (LEWKndslide Hazard Assessment of Situational Awareness (LHASA) is the
current reatime model running to visualise Raidfadluced Landslides (Rlbpzardon a global scale.
However, these models do not includgiafall signal into the estimation of failure probabilities, thus
neglecting the orographic effect

This study attempts to address the interaction of rainfall with terrain charavighstes use of a
Generalized Additive Model (GAM) in a Bayesian frameWuwekframework allows thencertainty
estimation of the estimated probabilitiea unified model rather thamo individual phases as used in
LHASA among other susceptibility estimatidhsieover, to acquire rainfall information from satellite
derivedoroductsa model selection tool wiasplemented to identify a suitable antecedent rainfall window
for the selected study sit@. move away from separate raitfaktsholds as used vastly in the literature,
a method to identify a probabilistic threshadwarning signals was also expldredddition,along

with cross validation techniquesternal validatiobecame gossibility for this study due to the
availability of enult-temporal inventorfor the Lower Mekong Region (LMR).

The findings of tisi studysuggestefl days to be a suitable antecedent rainfall window for the sitected
in North-western Vietnam The results aowan overall good performance measurethdyArea
under the Curve (AUC) of Receiver OpegaCharacteristicROQ) curwvesfor multiple validation
techniquesThese routines includeamporal, spatiglandomin the spatietemporal domain and external
validation.The result®f ROC curve®btained from thesechniquesanged from somewhere between
0.60.9for the AUCvaluesThe lower performing models wassumed to be linked with tpects of
inventory qualitghat plays an important role for defining a landslide susceptibilityamddefrain
complexity for the external validatiriputs.To set avarning and navarning cubff point, 0.0057 was
calculated amn averagehich wadaken from the optimal threshold range for all the inventories used
The final model was then translated into a visualisatiaiatGologle Earth Engine (GEBpplicatias

In conclusion, the proposed framewofiersto further improve th@ncertainty estimatido increase
accuracynd displays the possibilityagtounting for rainfakrrain interactions in the contextnefar

real timdandslidesusceptibilityThe visualizatiortool has enormous room for improvement in terms of
computation speed arekploring other statistical summaries generated from the model for various
purposes.
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1. INTRODUCTION

1.1. General overview

Landslides have a smaller spatial extent in comparison to other natural hazards, such as floods, cyclones
and earthquakes, but are still highly disas&onsal economic loss ranges between USBDillion for

countries like Japan, United States and (Hatlayat et al., 2019) the sevewear time period between

2004 and 2010, more than 2500 deadly landslides were reporteatithtal of over 32,0¢Petley,
2012)Looking towards the future, the disastrous impacts of landslides (damage, lasd ettfeomic

losses) are expected to worsen with increasing frequency of extreme events alimoiged dnange

(Hidayat et al., 20190he interaction of dense population and landslide prone regions call for well
developed Early Warning Systems (EWS) to aid in disaster management at reqiGuaiziettiets al.,

2020; Hidayat et al., 2019)

An EWS can be defined as a systhioh is capable of providing meaningful and critical information to

be communicated to organizations, authorities and the public. The expected response to an early warning

is to act timely in order to reduce potentially devastating impacts. Howebee, bowl y 6 i s appropr
response to translate into effective action can vary with the type of disaster and its environmental setting.
The purpose odEWSwas laid out in terms of disaster prevention, reducing risk and avoid bearing heavy
economic losseand casualti€Suzzetti et al., 2020)he initiation of the concept of risk reduction began

with the United Nationds f r ame @loterrationalnDecadedor 1 99 0,
Natural Disaster Risk Reion Early Warning Programme. This initiative continued to develop in the

Hyogo Framework for ActiofNISDR, 2005and also followed in the Sendai Framework for Disaster

Risk ReductioflUNISDR, 2015)which is a running framework till 2030.

A rigorous observation of landslides being triggered by rainfall dates back to the 1970s with empirical
information being collected in Japan, Hong Kong, New Zealand and United States ofGumeeitta

et al., 2020)0ne of the earliest scientific effort for issuing early warning and predicting landslides was
introduced in Southern California after observing rainfall triggered debris flows causing damage, deaths
and injuies(Campbell, 1975Fhe author also emphasizbdt occurrences of landslides ao¢ solely

the quantity of rainfall that initiates slope failures but a complection of surface conditions that

makes the land prone to sliding. Campb@ns)put forward the importance of rainfall intergdityation
relationship and even proposeldaal thresholdalso adviag regarding the necessary revision of such
empirical numbers with changing geomorphology.

Landslide Early Warning System (LEWW&}jcularly foRainfalinduced Landslides (RIL), is an EWS
which is specifically dedicatedatmdslides. Most of these systems are developed on ahmegsfadld to

indicate a possible slope failure. A raithi@shold is defineasa measure of precipitation, in relation to
slope conditions, which when exceeded can trigger landslidesnnasediGuzzetti et al., 2008; Segoni

et al., 2018)When hydrological conditiont the slope are known, these thresholds are considered a
decent division between triggering andtriggering levels. For instance, the updated threshold division
includes a lower threshold, below which no landslides are expected to occur, and raashppebr t
above which landslides are highly likely to ¢8agoni et al., 2018here are two main methods to
define thresholds; statistically and physizslyd approaché&uzzetti et al.2020) Physicalipased
approaches are procéssed models which integrate detailed lithological, morphological and hydrological
information of slopes to determine when and where a landslide can be expected by quantifying the
amount of rainfall needéd trigger it. However, it is strenuous to gather this information over a large
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spatial extent, especially considering the financial constraints of equipment and expertise needed to obte
such datéGuzzetti et al., 2007)

On the other hand, statistical approaches Feagjuentist and Bayesi@Buzzetti et al., 2020)se

historical landslid@ventories and rainfall intensityration relationship to define thresholds which will
trigger possible landslides in a given Hneantensityluration thresholds are derived by determining the
minimum amount of rainfall in a certain duration wheshlts in landslide occurrences as indicated in
past eventgGuzzetti et al., 2007)hese rainfall thresholds are then coetbwith the output of a
landslide susceptibility model featuring predisposing factors to assign geographic units (grid cells, sloy
units) with a probability of landslide occurrébee et al., 2008yhe resulting information conveys the
landslide hazard expected for a given area and its operational use in LEWS is expressed by categoriz
the probability into classes, from low to very (Wgkbalem, 2021)

Recently, the implementatiohLEWS in different regions has experienced a rapid development, with
many prototypes designed at different geographic(€zatestti et al., 2020)

1.2. Background research in Vietham

Several LEWS have been developeliffatent spatial scales (regional, national and global), with their
status ranging from being at the design stage to being currently or previously operational and now
dismissed. The majority of wedtablished regional LEWS are concentrated in the Stditted of

America (USA) and Ital§suzzetti et al., 2020)

In Vietnam, which is the study area selected fowdhis most of the landslide research is linmied
developing landslide susceptibility models rathetréimstating them into LEWS. Most of the focus has

been directed to the hilNorthernprovince of Hoa Binh whidlies Southwest of the capital ciffhe

province receivesver 80% of its annual precipitation in the months between May to (J€tebeBui

et al.,, 2013, 2012, 2Q1Ih) addition, the threat from landslideghi@ Northern sector of Vietnam is
increasing due to sprawling infrastructure towards mountainous ({EieniBsli etla 2013)Generating
susceptibility maps has thus become a common practice. However, these maps are mostly static «
temporally stationaimg natureand sometimes do not even undergo a validation process. Hence, these
models cannot be considered ridiabtheir predictive natuf€hung and Fabbri, 20035side from the

study cases mentioned above, additional susceptibility assessmérdenhpvoduced across several
Vietnamese provinces relying on statistical methods (see, Tien BR0XL)alhese studies entalil
different methods to understand the effect of morphometric properties and the triggering factors. Among
them, simpler routines such as expert basededeighps or more objective logistic regression methods
have been testeds forexamplefor the Hoa Binh provincéTien Bui et al., 2011Moreover, other
experiments have been run in the area including evidential belief functions and fuzzy logic models ftc
estimate landslide suddafity (Tien Bui et al., 2012 oweverthe primary weakness of such models is

that the estimated spatial probabilities are purely based on terrain characteristics, leaving unaccounted t
timevaiant influence of the triggering fadibien Bui et al., 2011)

In addition to the static nature of the work produced in Vietnam, another elemrequthed teention

is certainly the acquisition and use of high quality/completeness landslide inventories to train any model
In fact, the work oflien Bui et al. (201Hiready highlightdhat the lack of systematic natiwite
inventories, especially in rural areas, induce biased results.

Moving away from the focus on terrdiiven susceptibilifTien Bui et al., 2012, 2014 )fewstudies
approach methods to link the spagimporal patterns of the trigger to the resulting slope failures. For
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instance,Tien Bui et al. (2013)ogressed on this by identifyiminfall as the main cause of slope
instabilities in the province of Hoa Binh in the years from 1990 to 2010. Due to the tropical rainfall
regime, responsible for persistent precipitation, the role of cumulative rainfall is considered to be
significantFor example, a study in Vietham introducedday Sumulative rainfall threshold to develop
landslide hazard maf&en Bui et al., 2013)Jhese maps represented temporal and spatial probability
estimates of landslideoccuences, thus defining Owh¢€¢lereBuiemnd O wh
al., 2013)However, a number of misclassified areas reflected in the Wk Bli et al. (2013Jhe

reason behinthis wasdue to the fet that susceptible terrains and rainfall thresholds were estimated
independently from each other. Therefore, no real interactomallewed between the two factors

resulting in flat areas being flagged with high alert warnings, solely based on exceedance of the rainfall
threshold(Tien Bui et al., 2013)hus, rainfall thresholds do not always prodiliedle results and it is
considered essential to move towards combining rainfall information with predisposing landscape
characteristics.

Another level of complexity on the definition of LEWS is due to the spatial scale at which such systems
are desigmkto operate. It is of crucial importance, for local administrations, to develop LEWS informed
of soil hydrological characteristics as well as-diitiate patterns. Examples of site specific LEWS have

in fact been designed and implemented using soihatian in several regions in the North of Vietnam

(Gian et al., 2017; Ha et al., 2020)early warning and nitoring system was proposed Rk using

wireless sensor nodes drilled into the soil layer to determine slope if&taliliéy al., 2017puch

methods usually requiresitu measurements of rain{@lian et al., 201@nd water content in the soail

(Ha et al., 2020For the rainfall component, efforts have been made to operationalize LEWS using rain
gauges and/or weathertigtas. The irsitu information acquired from the placement of these devices
may provide accurate and temporally consistent information although they are discrete in their spatial
extent.

On the other side of the spatial spectrum lie LEWS that operalargedandscapes, thus making field

data acquisition often unfeasible. In such cases, the use of affordable and omnipresent rainfall estimated
from satellitedataare usually considered an optimal alternative. Their strength boils down to the coverage
they guarantee, both in space and time, whereas their weakness is usually linked to the coarse spatial
resolution of the data provided. Among the first examples of dadsHitkrainfall estimates used to

define EWSHong et al. (200paved the way for numerous improvements for the years to come.

1.3. Global Landslide Early Warning System

Hong et al. (200Tiyst proposed a framework trse geospatial datasets to agsebability of landslide
occurrences at global scdtes) due rainfall and earthquake triggers. A similar parall¢Hsng\et al.,
2006)focused on identifying regibased rainfall thresholds rather than a single globhbttiyeghich
inevitably led to the misrepresented hazard estimates. Based on this, a preliminary global framework was
introduced byKirschbaum et al. (2009hich developed an algorithm to build a-resdrtime global
landslide susceptibility model using satellite rainfall estifvatiesially,a regional predictive model
capable of producing neaal time forects was developed for Central Ame(iCmschbaum et al.,
2012) where warning levels were produced by intersecting rainfall idteatdy thresholds and a
static saceptibility map (methodology shown in Figur€€dmparing results particularly for Central
America from the regional model mentioned above, with gisuaptibilitylescribedn Hong et al.
(2007)showed the regional model perfagnbetter overallKirschbaum et al., 2012)his can be
attributed to use of landslide inventory specific to Central America to support trealiboatebrand
comparisorby Kirschbaum et a[2012)and thusjt was suggested to use regional information for a
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possible global LEWS using a similar framef@orkirther extensioKirschbaum et al., 20185ome
limitations in the work of Kirschbaum et @Q012) were due to the coarse spatial resolution of Tropical
Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) estimates, such as
reserving he al gorithmds opti mum f un éasiwellmathd useg/ofd or
singleextreme rainfall event introducing overestimatiahe model.

N
Surface Observables Tropical Rainfall Measurement

« Slope, elevation, etc.. « Lithology Mission (TRMM) Multi-Satellite
= Land cover = Soil composition Precipitation Analysis (TMPA)

Calculaon Methodologies

Weighted Linear Combination .
Bivariate statistical analysis 3-hour coverage, 50°N — 50°S

\ b,

T =13 Saa_omn . ) o Y Ay S

\‘!",":ﬁus o 0| B

- Index-M - Information -
5 > ¢..,. -

4 3
Susceptibility SI>4 [Rainfall |ntensity-I - aD,“J

0.25° x 0.25° resolution

(.

Index Threshold - Duration Threshold
(. J

* Nowcast issued if the S| threshold
and rainfall |I-D threshold are
exceeded

* Nowcasts issued on pixel-by-pixel
basis and highlight areas with
high landslide potential

Figurel Framework for the proposed regional (extendable to global scale) landslide hazard nowcast algorithm
(Kirschbaum etla 2012)

Since then, a lot has changed in terms of data quality as well laggnmalsl These elements have
allowed to develop LEWS even further, and recent advancements have given rise to the latest version
LEWS from NASA, this being referred to as Landslide Hazard for Situational Awareness (LHASA)
(Kirschbaum and Stanley, 2018pecifically, LHASA uses the Integrated shikilitE Retrievals
(IMERG) for Global Precipitation Measureme@&PM) and TRMM to provide a nowcast every thirty
minutes(Kirschbaum & Stanley, 2018his concept, derived from aforementioned metfttatsy and

Adler, 2007; Kirschbaum et al., 2012)currently an operational global LEWS. With respect to the
previous version described above, LHASkson t he NASAOGs Gl okGC;, Lanc
Kirschbaum et al., 201® continuously improve the data needednfodel calibratim The steps

followed to issue nowcasts are shown in Figure 2, indicating the ugentgcadenRainfallIndex

(ARI) to filter out the areas which will furtherdvaluated by the undanmlyisusceptibility map. The

regions falling in a high ARI and intersecting with moderate and high susceptibility will in turn issue a
nowcast warning for a landslide hagdimchbaum & Stanley, 2018hough the global model did not
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predict well the landslide occurrences reported in the GLC, it did set a base for the possibility of
integrating geospatial datasets to be usedyimamic context.

Step 1

Susceptibility

Step 2 Low-Very Moderate- )
High-Hazard
No Nowcast [ 9
1azard Nowcast Nowcast

Figure2 LHASA decision tree structure for issuing landslide hazard ngiicastdbaum and Stanley, 2018)

For this reasor,HASA was later modified in an attempt to solve the prediction misclassliigcation
updating to its secongkrsion(see,Stanley et al., 202For the second versignwo new dynamic
predictorsnvere introducedhese being the snow cover and soil moiStaaley et al., 202dHpwever,

there were yet significant drawbacks prevailing in the resulting nowcasts, and some limitations were
brought by the integration of two new dynamic varidbl@sldition to removing inntry information

prior to the availability of the soil moisture data, the dynamic vaedbéesl the spatiotemporal domain

by being specific in datlevant areas. This also led to the exclusemailer Indonesian islangiich

did not fall underhie coverage of soil moisture informathMoreover LHASA version 2 nowcastdso

displayed oddly high probabilities of landslide occurrences in some areas like the Northemdifndes,
simultaneously underestinddteother areas of the African reg{8tanley et al., 2021)
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2. RESEARCH PROBLEM

The frequency of extreme weatleated events (like extreme precipitati@gpsctedo increase in the

future. Thiswill likely contribute to an increased number of landalidieassociated losgd&layat et al.,

2019) The need to move towards a dynamic system which assesses the risk sfdatefsiigkt by the
community and geographic area, as well as the spatial extent considered. Rainfall triggered landslides
the frequently observed and devastatiogementsand it is essential to determine slope failures
attributed to rainfall relateceather events. However, developing rainfall thresholds is highly subjective
due to high variations in climate and seasonality, along with their interaction with natural and
anthropogenic conditions of a certain reffaschbaum & Stanley, 201i8pnetheless, these thresholds

are still widely contributing to landslide early warning sySegosi et al., 2018)

Current Regional LEWS Framework Proposed Regional LEWS Framework
+ Rainfall Threshold Dynamic
‘(_\ | -~
l\_,{ Susceptibility Map
Susceptibility Map
. A, —
Y ' Early Warning Early Warning
Signal for highly signal based on
o ) susceptible : | susceptibility class
tatic areas when Static defined by
topographic rainfall threshold topographic probabilistic
and . isbreached and thresholds
thematic e i .
i ! thematic changingin time
attributes | attributes + by computing
dynamic \_ dynamic rainfall /
rainfall

Figure3 Conceptual framework for transitioning to a dynamic LEWS

Overall, there are two main limitations in most of the available. OE¥s&nclude lack of uncertainty
estimation(Guzztti et al., 2020ndthe use ofrainfall thresholdsstimated independently from the
landscape where thaseapplicable in realityrherefore, an unreliable ming systentan prove to be
costly especiallij the warning level isiderestimated.

The aim of this study is wopose the implementation ®LEWS where predisposing and triggering
factors are both featured within the same n&ttglire 3)which is capable of producing uncertainty
estimates alongside the mean probabilistic response.

Typically applications daftatistical modeksrecapablef predicting landslideserageographispacey
building landslide susceptibility modelsaileey part of developing a LEWS. Current implementation of
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LEWS presents an empirically basedathitifreshold combined with statistically derived landslide
susceptibility maps, in essence combining two outputs as one. This assumes that rainfall patterns are
independent of terrain characteristics, whighnot be a valid assumption. Due tamtbgrahic effect

especially in mountainous zones and highlands, an influence of heavier rainfall exists in some parts of the
terrain as compared to its surrounding &faHer et al., 2003; Gariano et al., 2017; Guetettj 2008;
Kirschbaum et al., 2012; Nguyen et al., 2B&fce, instead of using rainfall (the dynamic variable) and
geomorphological covariates (static variables) independently, they can be jointly used in a modelling
scheme to approach a LEWSughrainfall will plathe role of a covariate, like any other, in the
susceptibility model and develop a system which is integrational of dynamic and static components.
Besidegor integratingc ovar i at esd i nt er &loothpredictes,woudd alsoaitbw for t h at
a proper uncertainty estimation.

f
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3.

3.1

STUDY OBJECTIVES

Main objective

To explore the possibility of an operational regional alarm system foindudedl landslides in near
real time, using a statistical model that incorporatesrdinfhll estimates and terrain properties,
expressed at the slope unit level for a test site in Northern Vietnam.

3.1.1.

A

3.2.

3.3.

Subobjectives
To identify a suitable antecedent rainfall window as a covariate.

To model dynamibehavioumof landslide probability as the spsimporal signal of the rainfall
patternvaries.

To transition from separate rainfall thresholds to upifgdghbilistic thresholds for alert levels.

To translate the model into an interactive visualization tool via aplatbomn for
comprehensive display (to be possibly extended into a forecasting tool).

Research questions

What impacts the selection of atadlle antecedent rainfall window for a dynamic model?
(Objective 1)

What is the behaviour of a model builaadynamic rainfalhduced prediction system which
does not rely on rainfall thresholds but uses rainfall estimates as a covariate ol enetiistic
(Objective 2)

How efficiently carthe model predict landslide probabilities if dleont rainfall estimates are
plugged in the statistical model to visualize changing susceptibility with changing precipitation?
(Objective 2)

What is the addedlua of a model that features rainfall estirhd@@sjective 2)
What is the added value of a model which accounts for the uncertainty estimation? (Objective 2)

How cana suitable/optimal probabilistic @ff be definedo separate alert levels for informed
decision making? (Objective 3)

What is the capability of the model to provide landsédeing signal® the form of a local
alarm system? (Objective 4)

Thesis outline

The structure of this thesis is orgadin the following chapters. Chapter 4 dbssrthe methodology

and data used to approach the research prablégmssed abavEhe tools aralsoexplained to give a

full overview of the methods. ChaptefeScribeshe study area and the data available for that particular
area which is essentiat thaping thenodel building phas€hapter 6 presents the obtained results
followed by Chapter 7 where the results are discussed with respect to the research objectives an
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guestions.The final section, Chapter 8 concludes the study by providaigremarks and
recommendatioras well aBighlighting the limitations of this study.

10
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4. METHODOLOGY AND DATA

To integrate rainfall in a statistical model alongothigr covariates, a multriate approach is used in
the context of an additive modghis section provides an overview of the data collection as well as the
methodology followed in this research, explaining the modelling frameworlobtsedthe output.

4.1. Research methodology
The research framework aimed to achieve in this studyiisedks the sections below.

4.1.1. Modelling framework

The approaclin this research is based on Bayesian stadistifsamed in the context of a binomial
Generalized Additive Model (GAMjlost of themodellingprocedure has been implemented in R
(RStudio Team, 202ahd specifically using tReINLA (Integrated Nested Laplace Approximation)
package, which has recently become a standard for Bayesian {Rigeeetal., 20095or additional
detailsand accessibiljtyeehttps://www.r-inla.org/.

The aim is to develop a binagyerence model based on mgithporal everdpecific inventories over

the given study area. HaaehinomialGAM, which has been evaluated as a suitable method for landslide
predictiongGoetz et al., 2015)ill serve the purpose to handle linear as well dmearbehavioursf

the selected covariates with respect to landslide occurrences. The model willshshowiih in Figure
4,such that it wi || integrate topographic and
signal, as well as rainfall estimatdsEmhanced Vegetation Index (E\E)VI is similar to Normalized
Difference Vegetation Index (NDVI) armbnveg a dynamic predisposingcontrol on landslide
occurrencesAny model framed in a Bayesian contexnaiilelyprovidean uncertainty descriptiaf

the constitutive elements of the mdtab etal., 2021; Wagenmakers et al., 20e8¥over, a reference
predictive equation (&xn be estimateauh the basis of landslidgent inventories triggered by heavy rain,
and thenthe sameequationcan beused for nowcastingy removing the previous Hailh signal and
pluggingin forecasted or current rainfall estimdtaso et al.,, 2021)rhis will define adynamic
susceptibility whose patterns can be converted into maps as all or part of the predictor set change in time

11
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Cumulative Static morphometric ulti-tempaoral landslide
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Figure4 Workflow of the inputs and outputs of the basic model building vase arrows represestéps
followed before those led by bareows

Moving toward the specifics of what a GAM implies, this model is an extension of the more common
Generalized Linear Model (GLMDn the subjecdf landslide susceptibility mbithg, a GLMholds the
assumptiorthat thebehaviourof landslides presence/abse correspondso a Bernoulli probability
distribution(Brenning, 2008vhose unknown probabilitan bemodelled thwugh the following linear
construction

W(P) = ﬁO-I_ﬁlxl + "'+ﬁmxm (1)

whereP is the probabilitindicating presence of landslide within a mappindisithe global intercept,
everyArepresentthe regression coefficient fhe covariategn), which are assumedetxert their effect
linearly onunst abl e srépoepeatshe logi mink. Tige logifunction accommodatethe
transformatiorof equation (1) which indicatesear combination of products betwebnsercovariates
and respectivecoefficients, andhifts from modelledodds scale to theequired and interpretable
probability scalén other words, the probabilBcan be recovered by inverting (1) as follows:

12
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eﬁ()_'_ﬁlxl +- '+ﬁi1:x!-'1

o ] —|— eﬁ()_f—ﬁlxl—i_'“"'_ﬁmxm

P
, (2)

GAM is an extension of thapproach presented abo®eGAM allows one to includméar effects as
wel | as n o n bdhavieurgBrenaoiryy2808;i Magnehewdet al., 20t 2his case, equation 1
can be expressidits simplest forras follows:

H(P) - ﬁO + ﬂlxl +- ﬁmxm +f(Xn) , (3)

where f expresses the nmbichlhasirdisceetecldssesmct i on of a ¢

4.1.2. Model scope

A Bayesian version of a binomial GAM retrievedistribution (range of values) for each model
componen{Luo et al., 2021This means that mean and credible intervals of probabilities lotairtsel o
for every mapping unit.

In aLEWSbased on a Bayesian version of a binomial,@éktasted rainfall can be pluggette

model to follow the same process and return probability estimates by integrating rainfall as the dynami
covariate in the metl More dynamic variables can also be introduced, thus, EVI is also considered to be
a timevariant property of this moddlhe removal of rainfall thresholds, as used in previous literature,
and inclusion of rainfall estimates directly into the modeWwgiy to the visualization of a dynamic
probabilistit. EWS as a product of the varying rainfall patterns.

4.1.3. Model selection

One element that traditional LEWS heavily rely on is the concept of wdtaasion(Guzzetti et al.,
2008, 2007; Hong et al., 2006; Kirschbaum et al., Z8i2)otion implies that landslides occur in
response to rainfall that can be discharged before the actual date of théefaikiréhenodel sought

in this research should als® considered taccount for this intensitjuration relation. For this reason,
the daily cumulativentecedent rainfadlill be integrated in the reference moddlis will be done by
summinghe rainfall of the event diythe rainfall of days prior to the eventyheret ranges from 1 to

14 daysHowever, lhe choice of the ant@mnt rainfall window is not set in stone. liteeature suggests
different rainfall antecedent windolMdASA version 1 integrated a rainfall threshold which was based
on 7-day antecedent rainf@gdirschbaum and Stanley, 2ab&)xplain the saturation in soils which served
as a catalyst for slope failure on anyGlaryversely, Tien Bui et(@013)uses 15 daySherefore,d test
themost suitableainfall window forlte study area, a model selectioniso@cessary to be introduced

In Bayesian frameworthe Watanabe Akaike Information CritfN®AIC) is often usedasa model
selection toolA standalone WAIC value does not bring valuable information but in a relative
comparisonit can be used to select the most appropriate predidfdfheden and Hoppitt, 2016he

most representativevariate subset of a larger group woaltl e smaller WAIC values. Other similar
metrics exts like the older version of WAIC, Akaike Information Criterion (AIC) and Deviance
Information Criterion (DIC). However, WAIS preferredover its alternatives due to its ability to
eval uat e fitbi etilizingotree dull @osterior distribution in Bayesian context, as compared to a
single estimat®Vatanabe, 2013)

13
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Therefore, for this study, keeping the model paranteéesame, a different rainfall windewl be
integrated and this phirgwill be moved over 14 different models carrying one cumulative antecedent
rainfall windw each, from 1 to 14 days. The WAIC for every matébe stored and compared to
assess the lowest among all 14 models.

To corroborate the indications collected through the WAIC, a garafleral cross validation technique

will also be addedh& tenporal validation technique refers to leaving one of the six inventories out for
validation while calibrating on the remaining five. Wili®e done for all of the 14 models, and the
Receiver Operator Characteristic (ROC) auill/ehen beused to asseshe performancdhis will help
providing additional information and support the choice ohtis¢ suitablelay to express the rainfall
intensityduration control on landslides.

41.4. Performancassessment

ROC curves can be used when evalutiténability of a binary classifier to correctly identify the areas

with and without landslide occurre¢ang and Berdine, 2017; Zou et al., 20013 tool plots True

Positive Rate (TPR) against False Positive Rate ¢bRi)ed from a confusion matrbalfle 1)jn a

curve which admits to a resultant Area Under Curve (AUC) to evaluate overallch¢bard@gnostic

test(Zou et al.,, 20077A ROC curve and its AUC can both be used to assess the performance of an
explanatory model as wellaapredictive task (comparing the estimates to unknowr(Ztatagt al.,

2007) The performance for all 14 modekreassessed by using the ayer@UC of the six temporal
validation outputs for each model. AUC ranges between 0 and 1, where anything below 0.5 accounts to
unacceptable discrimination, since 0.5 itself would mean the model does no better than what would be the
output by chancéHosmer et al., 2003Yalues below 0.7 are also pi@tferablyacceptable, however

AUC in the range of 0.7 becomes acceptable and increases in excellenmeynattidis@ccuracy as the

AUC approaches(Hosmer et al., 2003; Yang and Berdine, 2017; Zou et al., 2007)

Tablel Confusion matrix to determine correctly and incorrectly classified points by a binary classifier.

Observed

Presene Abserce

Presene TP FP
Predicted

Abserce FN TN

Table 1graphically defineSrue Positive(TP), FalsePositive (FP), True Negative (TN) and False
Negative (FN). From this confusioratrix F1 scorecan be obtaineairthervia measuring precision and
recall(Goutte and Gaussier, 2Q@)ecision is the ratio of TB the total predicted positivélsq latter
defined ad’P + FP), and recall (or sensitivity) is the ratio of TP tolikerved posves the latter
defined a3P + FN). F1 scorés the harmonic mean of theecision and recétlr abinaryclassifier. The
value range of this metribisundedetween 0 and 1, witl score =1, measurin@pigh performancef

a testF1 score is considered to beeasure afoodperformancespecially for unbalanced dataus it

will be usedo explore the selection of a probabilistitoff. However,this metric may not be
independently sufficietd identifya faircutoff point, thus specificitpr True Negative Rate (TNE)d

14
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sensitivity TPR) will also be examinatbng with the F1 scomore information can be found in Annex
4).

4.1.5. Model validation

The validation of the model is an essential part of any predictive appratetbrarides the quality of

the model when fed with unknown datageitsing and Fabbri, 2008, 2003; Lombardo and Tanyas, 2020;
Remondo et al., 2003)he validation techniques in this research will be of multiple characteristics. Since
the inventories usddr thisstudyrepresenthetemporal domain of this model, temporal validation along
with variations of spatial validation wilinmtuded

Temporal validation will deliver the results of building the model with five out of six inventories and
validating on the sixth inventory, which belongs to a differenstémédhis step will be repeated for
validating on all of the six inventories opete to understand the nature of the model as well as the
impact of the inventory richness.

Moreover, a sequentismporal validation technigsewill also be explored. This means that the
calibration starts by the first inventory in ascending tempagalaod validate on the second aiés

will snowball to moving the calibration input data in time, for instance calibrating on the first and second
inventoreswhile validating on the third, and then moving to calibrating on the first three inveamories
validating on the fourth. The sequence will be carried forward till the first five inventories are used to
build the model and the last inventory in time is used for validation. This type of temporal variety in the
data is extremely useful sin@mny ssceptibility models are missing this compobeakingback and

checking the quality of a model built to predict landslide occurrences is possible with future events
occurring in the same region, which is the essencerob tlegurgse

One of the satial validation technigigeperforming d0fold cross validation, wher@ndom sampling

of mapping unitss used to creatribset®f testing and trainingatasetd a spacime dimension. This

cross validation approach will allow the model to bedran 90% of thareaand tested on 10% of the
remaining ared’helOiterations wilproduce a majhat hasprediction values over tkatirestudy area

(Luo et al., 2021)

The second approach for spatial validation includebaged partitioningvhere the study area is
segregated into blocks through an overldgitige therefore creating multiple spatial unit each
including a numbesf mapping unitsThese gridlocks and the corresponding mapping units within
them are used for cross validation whigh @ontrast witmandom sampling.

4.1.6. Mapping unit

Choosing the mapping unit addresses the spatial partition of the landscape, resulting in an individual un
upon which the failure probability will be assigned to once the model retrieves a fit. Among the choice of
multiple types of spatial partitioningtioé landscape that have been proposed and used in previous
studieqSteger and Kofler, 201®)e predominarthoice is represented by a-getl. The gridcell is a

type of mapping unit that uses a squared lattice covering the study area, with regular gritle dividing t
extent of the area as matched by the spatial resolution of the Rigitsértlevation Model (DEM)
(Reichenbach et al., 20IB)ough, the fine resolution of such a mapping unit may be preferred to
describenitiation points of landslide occurrenémsslope management methods, it may not bedke

suitable unit to use, especially for implementing mitigation measures.
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Early warnings are also an indication where slope stabilization measures needtimondatever,
stabilization practicesually are implemented on the entirety of a slope rather than on a sirg]lérgrid
practical application. Even so, a lattice of a coarser resolution can distort the natural morphology of
downhill movement of nerial by simultaneously includiidpes and streamlingsa single unit, as

visually evident in FigureT® resolve this neglection of morphological prope@esara et al(1991)

proposed a coarser mapping unit whegnesents landslibehaiourin a more comprehensible manner

with respect to the landscape. Tii is referred to as a Slope Unit (SU), ana idédineation of space

by streamlines and ridge lingsjer thecontrolof homogenous slope exposit{@a et al., 2018; Carrara

et al, 1991) The subdivision of geographic space in this manner implies that the process of failure in a
given slope unit is independent of the failure mechanismnigighbouringinit. This puts the decision

maker at an advantage to focus on the instadfilindividual slopes for monitoring and early actions.
Naturally, the coarser nature of slope units, as compared to a fine latticeetif,galiows faster
computation otomplex datdriven modelby using fewer objects to assign probabilitiddaneover, a
comparison of mapping units (slope units andcglig) based on a statistical analysis for landslide
susceptibility resulted in better performance of the model using slope units due to their close relation with
representation ahe geograpb environmental settifiBa et a) 2018)

—o0m
(b)

Figure5 Comparison of landscape partitioning showinecglida) and slope units (b). Soutda:et al., 2018)

To set the mapping unit for the analysis of this study, the generation of slope units will be ttene using
software r.slopeunif@lvioli et al., 2036All SUsthat coincides with a landslmEnt(s)will be assigned a

0 p r e s e nindcdtingshiatdanhdslisle is present in this slope unit for the €wedeiconsideration
Meanwhileary SUthat does not include intersecting landslide pgint$ | receive a status

4.2. Data preparation

Google Earth Engine (GEEa clouebased platform, is a freely accessible tool that consists of various
geospatial datasets of varying spatial and temporal resolutions. GEE behaves as a sowce holding
repository of aerial, satellite and grehemkd data infused with remotely sensed data as wellias built
algorithms to manage big gkta. The services available through this platform provide usability in
analysis which requires earth observati@n idatnderstanding morphological proce@sesar and
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Mutanga, 2018Theinitiationof GEE in 2010provided great eabg tacking the long processing time
on a personal computer and the ability todskinloading heavy satellite imagery lagaldition, Earth
Engine also allows visualizing the resultsyofn@thods angrocesssinto a clouebased apgsuch apps
can access satellite data in real time from the Earth EnginetGatatmgains prgprocessed as well as
raw datasets, providing users with a variation of dat@dypes and Mutanga, 2018)

Predicting landslide occurrencerot straightforward as it requires estimating relationships of factors
with respect to slope failures. There exists a complex interaction of slope condition as well as externg
influences which act together to make the slope susceptible to failure. Assessment of landslide
susceptibility depends on the availability of informatipredisposing factors and the trigger, which is

not always known or estimated to explain the failure(kwemtardo et al., 2020)Jodels requiring rich

temporal data can be supported by the multiple pewbgeospatial (along with socioeconomic)
repositonprovided by Earth Engine, with vast datasetablevithin a unified platforrfGorelick et al.,

2017)

There exist quite a few satelliéggived rainfall products at different temponal spatial resolution.

IMERG aims to provide rainfall information every 30 min using sensor information from GPM and
Tropical Rainfall Measurement Mission (TRMM) at ne&kilpdtetresof spatial resolutiofTang et al.,

2020) ThoughLHASA used thabovementionednformation for its landslide warnings, it is still a coarse
resolution as compared tlee Climate Hazards group Infrared Precipitation with Stations (CHIRPS)
CHIRPS(Funk et al., 2015)ith daily and monthly estimates, fills gaps in datasets which cannot offer low
latency and fine spatial resolution integrated with station data for richness. &forethentioned
reasons, CHIRPISas the highest spatial resolution in gridded precipitation satellite datasets, and a 2 day
latency period which is reserved for blending station data to retrieve the firs{fuoust al., 2015)

Table 2 shows the description of the aforementioned datasets used in this study.

Table2 Desciption of the major datasets used in this study

Data Source Resolution Description Type
NASA SRTM| (Farretal., B0 meters Quasiglobal data, which us| Source for
DEM 2007) other datasets to produce a m| extracting
complete and voifilled product static
covariates
CHIRPS (Funk et al., 0.05/ Nearglobal rainfall datas¢ Dynamic
Daily 2015) 5.5kilometres | which  incorporate satellitg (trigger)

imagery with Hsitu station data] covariate
MODIS (Didan, 2015] 250 meters A product that provides NDV| Dynamic

Aqua and EVI. Where EVI is mon covariate
Vegetation sensitive to dense vegetation
Indices removes residual contaminat

in the atmagghere.

4.2.1. Generation of slope units

The software r.slopeunigalvioli et al., 2018)as used to generate slope units from a mdulm
resolution SRTM DEM. The software was mainly utilized to optimize the mapping unit for the purpose of
terrain division performed with aptl parameters in the context of landslide susceptibility modelling
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(Alvioli et al., 2016 he minimum area of an SU watt040,000rhto dissect the region in a reliable
manner. A circular variance of 0.5, with a large flow accumulation threshold of 8@&60@sed to
identify most of the slope units. The clean size was set to 2@0@dmove unrealistic and oddly small
subdivisionof the terrain which can be built upon plains or homogenous (gity@s et al., 2016 The
iteration number was set to 20, to obtain the SU as peruhecigppirements with the reduction factor
being 10.

4.2.2. Covariates

The input variables of the model which will be implemented in this research will inherently be of two
relevant characteristics: static and dynamic. The static covariates are assumeihvarisntimeress

the dynamic characteristics will change over space and time.

4.2.2.1. Timeinvariant factors

Among many of the available datasets in GEE Data Catalogudbrof the literatureaddressing
landslide susceptibiliaggsessment, topographic informatioextsactedrom global DEMs The most
common DEMs includ¢he Shuttle Radar Topography Mission (SRTM)Aandnced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model).(GREM
SRTM, specificallyRigital Terrain Model (DTMis considered a meditrigh resolution DEMBrock

et al., 2020)The SRTM version available accessible from the@Ei#og is the third x&on of the
product which uses the data collected in 2000 from the original bys§idB8Acombined with Italian
and German Space Agenglear et al., 20Q7)his version of the product has been corrected for voids
using other existing DEMs like ASTER GDEM2, and hence, was considered a fair choice to use in
extracting information for the static covariates.

The static covariates were extracted and aggregateédetvel, by using the mean and standard deviation
of all pixel values contained within a slope Tiné.covariateGummarizedh Table3) will be used to
inform the model regarding the static, or tempénalyiant signal of the landscape with oédpets
tendency to initiate landslides.

Table3 Static covariates, used in this study, described by their characteristics expressed in the landscape

Covariate(unit of measurement) Description
Elevation(m) Elevation is useds a proxy for its orograpl
effect on rainfallGériim, 2019)
Slope Steepness (m) Slope steepness is one of the most intt

factors to be used in landslide susceptit
This covariate represents the balance bef
stabilizing forces and gravitational influe
which, if in a weak balance, can easily be {
over by external ilfences brought b
rainstormgWu and Sidle, 1995)

Planform Curvature Planform (or plaar) curvature dominates t
divergence of forces acting upon the slog
well as the direction of surface run
(Heerdegen and Beran, 2:980himacher
2007) Depending on its value range, plé
curvature can indicate a planar, converge
divergent terrain.
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Profile Curvature Profile curvature runs parallel to the hig
degree of slope steepness and controls
forces acting uport (Heerdegen and Bera
1982; Ohlmacher, 200This curvature can |
convex, concave or linear, contributing to
acceleration or deceleration of overland floy
Eastnes Sine of aspect, a cyclic DEMrived variable
contributes to the surface conditions
defining the direction of the slope. Ran
from -1 to 1 (representing slopes fac
Westwards t&castwards, respectively) indic
the influence on slopes broughy solar
radiation and windseempoel et al., 2015)
Northness The cosine of aspect indicates the expositi
a given slope towards tNerth (values =1) o
South (values <) directions. Depending
the hemisphere undeonsideration, this fact
can indicate slopes that are exposed to su
for longer duration within a day, therefore
conveying information related to soil mois
conditiong Epifanio et al., 2014)
InternalRelief (m) Internalrelief can have a strong correlation
(also referred to as relief hereafter) the landslide activifzoriim, 2019; Qiu et a
2018) Relief is thedifference between tf
elevation in a given pixel and the m
elevation in a specificeighbourhood here
defined with a 1km radius from each pixe
the study area. Its values are usually interf
in terms of potential energya fundamentd
component of landslide dynamics.

In addition to theseovariatesthe roundness index of each SU was also included, this being calculated as
the maximum lengtinscribablewithin a SU polygon divided by the square root of the SU area.
Moreover, aneasure of SU length was considered by using the mahatamre betweemy two pixels

within a SU These two measures were tested for collinearity (estimating the Pearson correlation
coefficient between the two) and althotighterm6é S U | appegrs ih both, the correlatizee

Annex 3for detaily between the two wastienated tashow weak correlatiqggchober and Schwarte,
20180 justify the inclusion of both in the model.

4.2.2.2. Timevariant factors

The process consists of building a reference model aafpeslienating the effect of rainfall onto the
landslide scenario so that the predictive equation is used to project future landslide susceptibility patterr
at varying precipitation amounts. However, the literature is rich of studies that indicdfect diutides

rainfall on slope failuréSegoni et al., 2018rolonged rainfall before the day of the landslide initiation
contributes to increased pore pressures and overall weight of the masses hanging on a given sloj
(Guzzetti et al., 2008; Segoni et al., 2018)
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The aim of this study revolves aroumutlellingardslides in relation to a rainfall event, which brings us
to the triggering factor. To retrieve the trigger information, daily maximum rainfallsdsiveabeen
extracted from CHIRPS. This datdset a resolution 0.05°, with daily rainfall aggregailesle(Funk

et al., 2015Among analogous produdBHIRPS offers thhighesspatial resolutioand an overall good
performance in thBoutheastermsian sectofTang et al., 202@or this reason, it will be used in this
work to support the analyses expressed at a regional level.

The reference model will examine the rainfall signal with respectlidelaodsirrences by making
initial use oftumulative antecedent daily rainfdiese will be passed separately and for a maximum
window of 14 days prior to the landslide occurrence date. This is done to gatesit ifyeresentative
intensityduration ranfall window

An additional dynamic covariate introduced in this model is the Enhanced Vegetation Index (EVI). The
EVI was taken for three weeks prior to the event date fronMdlderate Resolution Imaging
SpectroradiometéMODIS) AQUA satellite that Baa return period of 16 days with 250 meters spatial
resolution(Didan, 2015)The covariate was used to describe the presence of vegetetio2l days

prior to the event date as a proxy for-giogngth(Wu aml Sidle, 1995)
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5. AREAOF INTEREST

To test theconcept of a unique model, a study area is chosen influenced by the availadiltityl@f
inventory information. Thigetion describes the study area chosen for this study and the supporting
landslide inventory acquired.

5.1. Study area

Among the countries most vulnerable to storms, Vietnaeavdyaffected by natural disasters such as
flooding and landslides causing damage to livelihood as well as the @dendduoy et al., 2012he

lack of available and rich datasets concerning landslide inventories in developing countries like Vietnar
make it difficult to carry out susceptibility studi€®n Bui etlg 2013) NASAds open dat
Global Landslide Catalog was initiated to create a record for-trmjgéakd landslides globally
(Kirschbaum et al., 2016%pr the years 2003, 2007 and 2008, proportion of reported landslides were the
second highest, following one of the highest proportion of fai#iteshbaum et al., 201@)ietham,

among other countries of Southeast Asia show tha¢dkeng casualties are reported between June and
November(Kirschbaum et aR010which is also the rainy season that causes fatal landslides in Vietnam
among other countries of the Lower Mekong R€gMR, Amatya et al., 2022heselectedtudy area

(see Figure 6¥ located in thé&orth-Westernregion of Viethamand encompasséise cluster of
landslides detected for th#®IR, among some events located towards centrafoaridern Vietnam
(Amatya et al., 202Z)he North-Westernarea of Vietham is constituted of mountainous terrain, where
the elevation can go higher than 3000 matetds associated wilteep slopesven exceeding.

There are 15 districts of Vietham that fall under the study area where landsla=sitagen the

recent year6Amatya et al., 2022}he study area (over 59,00 kvide) does at have the highest
population density but is on the extreme end of the poverty index in \(Eingalore et al., 2019)
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Figure6 Study Area in Vietham showing the landslides detected country wide and within the study area

5.2. Inventory

An important prerequisitior estimatinglandslidesusceptibility is the availability of rrelthporal
inventoriewith adequate quality and complete(idarp et al., 2011; Petschko et al., 2Qi&)lity and
completeness araeasure®f accuracy and of how representative of the aatdalidee scenario an
inventory is. However, in certain angaddwide landslide inventories are scarce to beginMithis

mostly due to the fact that soomntries lack the resources for regaebing of landslide occurrences
This in turnmakes idifficult to generate landslide susceptibility estimates and monitor the evolution of
the susceptibility patterns in tirlkence, ainiqueo ppor t uni ty wa s implenentatihed by N
of LHASA to the IMR (Amatya et al., 2022)he interest in the area thus requireddiorfalitriggered
landslideso be mapped, knowing that their occurrenpeedominantly destructive towards livelihood
and economgluringthe rainy seasgfalling in the second halfthie yearfAmatya et al., 2022)

To implement LHASAo the LMR,a SemiAutomatic Landslide Detection (SALaD) system, which is an
ObjectBased Image Analysis (OBIA) approaghippedvith a change detection module (SAICGID).
SALaDCD was therefore built with the aim of generawegtbased inventories f&IL over the LMR
(Amatya et al., 202q}he LMRincludediive countries namelylyanmar, Laos, Thailand, Vietnam and
CambodiaMost of the landslide inventorigsreidentified in the territory of Vietnam.
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The area affected by landslidesimially determined amews media and official reports dated between
2009 to 2020Within these areas landslide weea mapped using prand posevent satellite imagery

from PlanetScope and RapidE&matya et al., 2022he choice between the constellations of satellite
imagery was influenced by the availabihd coverage of desired area in time as well as the common
problem of cloud cover in satellite imagsiational scale landslide inventodesxist for Vietham

already althoughthey are not freely accessible or available for publiblASA. introdwed apre
processingtep wherémagesareadjusted by performing radiometric normalization anelgegiration.
Nevertheless, thigre-processingtill cannotcompletely solvéhe limitations due to cloud disturbance,
hence part of the resulting invergsrimay not be associated with a specific date of occurrence.
Normalized Difference Vegetation Index (NDi#lusedas a discriminant measure to automatically
detect landslides fropre- and posimagesNotably, falsely classified areas such as barrerotand
agricultural areas were removed manually to clean the inventory. The final output was translated into poir
data rather than polygons because landslide information in the GLC, the input for the global LHASA
model, are landslide poinfthese were extied from the landslide surface by USIR§ADEM to mark

the highest elevati@ong theperimeteas the initiation poirfAmatya et al., 2022)
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Figure7 Mapped landslide points in the Lower Mekong Régioatya et al., 2022)
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As shown in Figure 15 locations were identified for Vietham, with events spanning froro 2020,

in the months of June to November. The inventories in Vietham spread over the whole coamgry, but
mainly concentrated in the North Westsentor Unlike Myanmar and Laos, where fewer inventories
were identified and were spread quite fat, agi@tnam was considered to be a suitable choice with
multiple dated inventori€Bo reduce computation time, the study area was reduced to the cluster of the

inventories concentrated in the upper region of the elongated country b@sndefiped in Gure §

while the events which occurred in the Southern regiostower@ separately as independent validation

data setsTable4 shows the inventories with their indexing and the number of landslide points contained
for each event date in the territofywatnam. As visible from the table, the dates marked for each event
can have sange ofuncertainty. For example, inventory 2 and 6 can be events of any of the six days of
their corresponding date ranges. This can make it difficult to identify thafioecgstimates which in

reality triggered the landslides. However, these inventories are still useful in informing the model of the

study

areads

initiation points

susceptibility,

especially

Table4 Landslide inventory with identified dates and corresponding landslide initiation points

Year | Inventory Date Landslides Points
1 2nd-3rd August 2014
2017 2 23rd28th August 99
3 10th-11th October 3944
4 23d-24th June 1310
2018 5 3rd August 302
6 27th AugustLst September 1641
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Figure8 Colourcoded landslide inventories spread in the study area
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