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Abstract

The large amount of mobility behavior data of people collected by companies can
provide insights into how people move over the day. The software of Mobidot cap-
tures via GPS 24/7 the mobility behavior of Dutch individuals and groups over the
whole world via their mobile phones. Mobidot has a rule-based method to determine
the purposes of trips during the activity recognition phase. Examples of activities
are working, shopping, and leisure. The company’s ultimate overall goal is to find a
method to build a complete user profile which serves as an input to an improved activ-
ity recognition via the rule-based method. The improved activity recognition would
provide valuable answers to Mobidot’s customers for market research, panel surveys,
urban policy development, and impact evaluation. As an example, the data can be
used as an input for government policies to achieve a smoother and better distributed
traffic flow.

In this thesis, we work partially towards this goal by developing two different bi-
nary classification models for classifying two types of users, users with and without
a job. We use the discrete time Markov model (DTMC) and the long short-term
memory (LSTM) neural network for this. The choice for this specific binary classifier
is - sort of - arbitrary, yet serves as a building block for more sophisticated and more
extensive classifiers. For training the classifiers, we use a user’s daily semantic location
sequences over a certain period with known job status as input. It is shown that a
DTMC performs well in classifying these types of users by comparing its performance
in the form of the balanced accuracy with the performance of the baseline LSTM
neural network. Classification is done by calculating the Jensen-Shannon distance
between users, which can be interpreted as a distance between their Markov models.

The outcomes of this thesis suggest that DTMC models can be a useful building
block in the design of methods to generate user profiles.

Keywords: user classification, Markov models, LSTM, semantic location, mobility
chains, mobile phone, NVP
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Glossary

accuracy the fraction of predictions the model got right (in accordance with the ground
truth).

activity purpose of a trip. Working, shopping, and leisure are examples of possible activ-
ities.

chain total travel, including both directions, such as home-work-home (which is not nec-
essarily a full day from 00:00-23:59). For an illustration, see Figure 1.

chain type shows the start and end location of the whole chain, with all the other loca-
tions (invisible) in between. Includes: home-home, home-overnight, overnight-home,
overnight-overnight. For an illustration, see Figure 1.

destination the end point of a trip.

destination type the functionality of the end point of a trip (e.g. office or supermarket).

geographical location place on earth, represented by two coordinates, latitude and lon-
gitude, which specify the north-south and east-west position of a place on the earth’s
surface, respectively.

ground truth actual demographic characteristics of users, opposed to estimations of
them.

journey travel in one direction from origin to destination using one or more modalities
with a significant stay. For an illustration, see Figure 1.

Kantar international market research agency specialized in data, insights and consultancy.

map matching allocating a sequence of sensed location measurements onto a infrastruc-
tural map, determining the path that has been travelled.

modality may refer to two things. In general: mode of transport. This includes: bike,
car, foot, plane and public transport. In Chapter 3 in the context of stay- and
trip-modalities it means the functionality of a location.

modality detection automatically deducing which modality is used during certain trips
and for how long by means of a device that measures travel behaviour.

origin the starting point of a trip.

panel group of people who have given their consent to taking part in different surveys or
feedback investigation processes.

point of interest a specific location that is regarded as useful or interesting, such as
restaurants, bars and shops.
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semantic location this location carries, next to the coordinates, additional information
about the meaning of the location. For example, semantic locations reveal if a loca-
tion is a home, office or restaurant, thereby adding human relevance and functionality
to the geographic location. The semantic destination type of a user during a certain
time period is in the remainder of this thesis referred to as ‘location’.

significant stay depending on the stay type, having a long stay duration in a place. So,
it is objectively defined for different stay types. For most types, a stay of at least 15
minutes is seen as significant. But there are also types for which a shorter duration
is already seen as significant, such as an office building, and types for which a longer
duration is needed, such as the train station..

stay a residence in a place. For an illustration, see Figure 1.

stay type the functionality of a residence in a place (e.g. office or supermarket).

trajectory sequence of locations over time.

trip travel in one direction from origin to destination using one or more modalities. For
an illustration, see Figure 1.

Figure 1: An example of how a home-home daily commute chain consists of 3
journeys, where the second journey has a non-significant stay and consists of 2
trips. For example, the activity after the second journey is ‘going to sports after
work’. There are five stays: home, office, post box, sport, and home again.
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1 Introduction

Note that we started this thesis with a glossary, which is an alphabetical list of important
terms with the definitions for those terms which are useful for the remainder of this report.

1.1 The use of location data in classifying users

Mobile phones have become indispensable in our lives, as we take them everywhere we
go. Phones have build-in functionalities to keep track of their location, such as GPS and
Wi-Fi. Location data are being sent to mobile-phone operators and to companies that gain
access to the data through mobile-phone applications (app). Many companies nowadays
are able to not only keep track of the geographical locations (latitude and longitude) of
the user but also to give semantic meaning to those locations, adding human relevance to
the locations. This process is also referred to as reverse geocoding. To this end, companies
also use points of interest (POIs) and even the user’s personal mobility data. The large
amount of mobility behavior data of people collected by companies can provide insights
into how people move over the day.

Mobidot is an example of such a company. Mobidot’s MoveSmarter software platform cap-
tures via GPS 24/7 the mobility behavior of Dutch individuals and groups over the whole
world via their mobile phones. In this way, Mobidot collects travel data of many travel-
ers on a daily basis, from which half are in the ‘Nederlands Verplaatsingspanel (NVP)’,
thus resulting in many trips to be analyzed every day. This NVP-panel is a subset of the
NIPObase-panel of Kantar, so the other half is only in the NIPObase-panel. In this repre-
sentative panel, the panel members give permission to Kantar to anonymously collect their
mobility, location and activity data via the app NIPObase. Trips are sensed on the mobile
phone using different sensing strategies, and submitted to the back-end for further analy-
sis, where the analysis process is modular and consists of multiple phases, including map
matching, modality detection and activity recognition. Thus, in addition to keeping track
of the user’s geographical locations, Mobidot also gives semantic meaning to them. This
is determined with the help of third party data of OpenStreetMap (OSM), which includes
many points of interest (POIs). OSM is a collaborative project that provides a free ed-
itable geographic database of the world. Based on Geographic Information Systems (GIS)
layers and mapping techniques, each end location of a trip is tagged as the most likely
functionality of that location by using algorithms. GIS is a type of database consisting
of geographic data, combined with software tools for managing, analyzing, and visualizing
those data in layers. Tagging end locations of trips is not part of this research, since it is
a whole research in itself how to derive the semantic locations from geographical locations
[1, 2, 3]. The semantic locations data (in the form of the functionality of a location, such
as home, office or restaurant) can give an indication about a user’s mobility behavior and
function as an input for classifying a user’s demographic characteristics.

1.2 Goals and scope

Mobidot has a rule-based method to determine the purposes of trips during the activity
recognition phase. Examples of activities are working, shopping, and leisure. The com-
pany’s ultimate overall goal is to find a method to build a complete user profile which
serves as an input to an improved activity recognition via the rule-based method. The
improved activity recognition would provide valuable answers to Mobidot’s customers for
market research, panel surveys, urban policy development, and impact evaluation. As an
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example, the data can be used as an input for government policies to achieve a smoother
and better distributed traffic flow. Another example, where a high quality activity recogni-
tion is crucial, is the impact evaluation of the advice to work remotely during the Covid-19
lockdowns in 2020 and 2021. It gives the government insights into the effectiveness of this
measure. Note that we did not include a more elaborate description of the context of Mo-
bidot regarding the rule-based method used for activity recognition due to confidentiality.

1.3 Approach

In this thesis, we work partially towards this goal by developing two different binary clas-
sification models for classifying two types of users, users with and without a job. We use
the discrete time Markov model (DTMC) and the long short-term memory (LSTM) neural
network for this. The choice for this specific binary classifier is - sort of - arbitrary, yet
serves as a building block for more sophisticated and more extensive classifiers. For train-
ing the classifiers, we use a user’s daily semantic location sequences over a certain period
with known job status as input. A simple example of a semantic location sequence between
7 am - 10 am for 2 days at an hourly resolution is shown in Figure 2. It is shown that
a DTMC performs well in classifying these types of users by comparing its performance
in the form of the balanced accuracy with the performance of the baseline LSTM neural
network. Classification is done by calculating the Jensen-Shannon distance between users,
which can be interpreted as a distance between their Markov models.

7:00 8:00 9:00
Home School

Home School Office

Figure 2: Input: User’s location sequences between 7 am-10 am for 2 days at an
hourly resolution.
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2 Related work

There are several classification and clustering models known for classifying a user. As we
stated in Chapter 1, for training the classifiers, we use a user’s daily semantic location
sequences over a certain period with a known classification for a certain demographic
characteristic as input (in this thesis job status). The output is a classification, and its
accuracy is assessed in the form of the so-called balanced accuracy.

2.1 Classification models

2.1.1 Standard machine learning models

Users can be classified according to different criteria and data-sets used in related work
contain a wide variety of information about the users and their trips made.

In one paper, users are divided into four classifications according to user movement patterns
and trajectory complexity [4]. They define four different user types, namely residents, reg-
ular commuters, irregular commuters and others. The characteristics of different features
are defined to build a machine learning data set. The user type is mainly determined by
features that deal with the number of uniquely visited geographical locations and the stay
duration of the user at different locations over different time periods. The naïve Bayes,
decision tree and K-nearest neighbor (KNN) algorithms in the scikit-learn toolkit are used
as supervised machine learning classification models [5].

In a different paper, the naïve Bayes classifier is used to classify university student and
professors based on their features: visit in types of place, speed of movement or transporta-
tion mode and user movement patterns [6]. They are divided into five categories, namely
undergraduate student, graduate student, research student, employee/professor and non-
residential students. Both papers [4, 6] do not have access to the semantic locations of
users, only geographical locations. Moreover, they do not have access to known users’
classifications for a certain demographic characteristic, since they developed classification
criteria themselves, mainly based on experience. We shortly explain the aforementioned
machine learning models.

Naïve Bayes classification: The naïve Bayes classifier is based on Bayes’ theorem.
The ‘naïve’ in the name of this classifier comes from the simplifying assumption this clas-
sifier makes: it assumes that every pair of features, given the value of the class variable, is
independent. Bayes’ theorem states the following: given a class variable y and a dependent
feature vector (x1, . . . , xn) [7], using the independence assumption that for all i

P (xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y), (1)

we get the relationship,

P (y|x1, . . . , xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, . . . , xn)
. (2)

Since P (x1, . . . , xn) is constant given the input, classification takes place via the maximum-
likelihood method, that is

ŷ = argmax
y

P (y)

n∏
i=1

P (xi|y). (3)
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Decision trees: Decision trees can also be used for classification. A model is created that
predicts the value of a target variable y by learning simple decision rules deduced from the
data features (x1, . . . , xn). Figure 3 provides a graphical example of a decision tree, which
indicates whether or not a customer is likely to purchase a computer [8]. The categorical
features in this example are ‘age’, ‘student’ and ‘credit rating’:

Figure 3: A decision tree which indicates whether or not a customer is likely
to purchase a computer. Each internal (nonleaf) node represents a test on an
attribute. Each leaf node represents a class (either ‘buys computer’=yes or ‘does
not buy computer’=no).

There are several types of decision tree algorithms, of which Iterative Dichotomiser 3
(ID3) was the first one. The successors of this algorithm are C4.5 and C5.0. The difference
between these newer algorithms and ID3 is that C4.5 and C5.0 are able to handle not
only categorical features, but also continuous features. The algorithm Classification and
Regression Trees (CART) is very similar to C4.5 and C5.0, but it differs in that it supports
regression as well. In the scikit-learn toolkit an optimized version of the CART algorithm
is used [5].
For classification the Gini index function G is used which provides an indication of how
‘pure’ the leaf nodes are, that is, how mixed the training data assigned to each node is,
where pk is the proportion of training instances with class k in the leaf node of interest:

G =
∑
k

pk(1− pk). (4)

A node that has all classes of the same type (perfect class purity) will have G = 0, where
as a G that has a 50-50 split of classes for a binary classification problem (worst purity)
will have a G = 0.5.

K-nearest neighbors: K-nearest neighbor (KNN) classifiers are based on a distance
metric that measures the similarity between two feature vectors. The default metric used
in the scikit-learn toolkit is the Euclidean distance function. Let A and B be the feature
vectors A = (x1, x2, . . . , xn) and B = (z1, z2, . . . , zn). To determine the distance between
A and B, the normalized Euclidean distance [5] is often used, so

dist(A,B) =

√∑n
i=1(xi − zi)2

n
. (5)

This function is used to calculate the distance between feature values of new observations
in A and feature values of the data points from the training set in B. The ‘K’ in K-nearest
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neighbor stands for the number of relevant neighbors from which we consider their classes.
So in K-nearest neighbors, given a vector A of features that are needed to classify and
vectors B1, . . . Bj of potential users’ classes feature vectors, A is classified not as being
from class k ∈ {1, . . . , j}, but as being from a subset of {1, . . . , j} of cardinality K. The
subset is chosen as those vectors from B1 to Bj with the smallest Euclidean distance from A.

When using K = 1, the new observation is assigned to the class of the closest data point
from the training set. When K > 1, an observation is classified by a plurality vote of its
neighbors, with it being assigned to the class most common among its K nearest neighbors.

2.1.2 Markov model

The model we discuss in depth in this thesis is a discrete time Markov chain, which is
represented by a conditional distribution function of visited locations given the visited
locations of the user in the past. It is assumed that the semantic location sequences have
the first-order Markov property, which means that the probability of moving to the next
location in the sequence at a certain time period t+1 depends only on the present location at
period t and not on the previous locations. The reasonableness of this Markov assumption
is commented on in Chapter 4.2.1. In other papers this model is mainly used for location
prediction [4, 9, 10, 11, 12, 13]. The Markov model will be defined and explained at length
in Chapter 4.

2.1.3 Long-Short Term Memory network

One of the models we also discuss in depth in this thesis is the Long Short-Term Mem-
ory (LSTM) network designed by Hochreiter and Schmidhuber [14]. This is an artificial
recurrent neural network (RNN) capable of learning both short-term and long-term depen-
dencies. The architecture of this network has been improved to deal with the long-term
dependency problem even better [15, 16, 17, 18]. How RNNs were changed in order to
set up an LSTM network is explained in detail in [19, 20]. A common LSTM classifier is
build out of a cell state, an input gate, an output gate and a forget gate. The three gates
coordinate what information goes into and out of the cell A, which is shown in Figure 29.
The gates consist of a sigmoid layer σ and a pointwise multiplication operation ×. The
layer gives a value between 0 and 1 as output, which describes how much of the information
should be let through to eventually the new cell state. A value of 0 means that nothing
is going through, while 1 means that everything is let through. The cell stores values over
arbitrary time intervals. In this way, information that is let through the gates is sent down
the chain of sequences in order to make predictions. More information on this follows in
Chapter 6.

2.2 Clustering methods

As previously mentioned, papers [4, 6] do not have access to known users’ classifications
for a certain demographic characteristic and solved this by developing classification criteria
themselves, mainly based on experience. Another way to solve this is by applying clus-
tering methods. Clustering a set of data points means grouping them in such a way that
data points in the same group (called a cluster) are more similar (e.g. by using Euclidean
distance between points) to each other than to those in other clusters. Since we focus on
classification methods in this thesis, we do not elaborate on these clustering methods. We
will briefly mention some of these methods. In paper [21] K-means is used to cluster users
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based on their daily activity sequences during the weekdays and the weekend.

K-means: clusters data by separating samples in n groups of equal variance. The al-
gorithm divides a set of N samples X into K disjoint clusters C, each described by the
mean µj of the samples in the cluster. The means are commonly called the cluster cen-
troids. The algorithm aims to choose centroids that minimise the inertia, or within-cluster
sum-of-squares criterion:

n∑
i=0

minµj∈C(||xi − µj ||2) (6)

Inertia can be recognized as a measure of how internally coherent clusters are.

Other standard clustering methods such as K-medoids, hierarchical clustering and spectral
clustering can be applied to cluster users based on similar mobility patterns that do not
exactly have to match over time [22].

K-medoids: similar to the K-means method, but differs from the K-means method in
that K-medoids chooses actual data points as centers (called medoids). In the K-means
method, the center of a cluster is not necessarily one of the input data points.

Hierarchical clustering: a method of cluster analysis which seeks to build a hierar-
chy of clusters. Strategies for hierarchical clustering generally fall into two types:

• Agglomerative: This is a bottom-up approach: each observation starts in its own
cluster, and pairs of clusters are merged as one moves up the hierarchy.

• Divisive: This is a top-down approach: all observations start in one cluster, and splits
are performed recursively as one moves down the hierarchy.

Spectral clustering: this is a partitioning method, just like the K-means and K-medoids
methods. It differs from the K-means method in that it first makes use of the spectrum
(eigenvalues) of the similarity matrix of the data to perform dimensionality reduction be-
fore clustering in fewer dimensions (e.g. by K-means). The similarity matrix is provided
as an input and consists of a quantitative assessment of the relative similarity of each pair
of points in the dataset.

In paper [22] clustering is done with the Lifestyle-based clustering (LBC) approach, which
follows a three-phase procedure. First, each user is profiled by a stochastic Markov model
using their geographical location sequences as an input. Secondly, the Jensen-Shannon
distance for every pair of users over their Markov models (explained in Chapter 5) is calcu-
lated and represented in a pairwise distance matrix. Finally, one of the standard clustering
algorithms are performed on the matrix, grouping the users.

2.3 Contribution

The contribution of this thesis is threefold. The contribution is the design of a classifier
for classifying users with and without a job. Therefore, we decided to use a classification
algorithm instead of a clustering one (or a classification based on self-made criteria), be-
cause we already know many of the demographic characteristics of the users in the panel.
The second contribution is the design of the specific Markov model. In other papers lo-
cation sequences are used as an input for the prediction of a next location [4, 11, 12, 13].
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However, there has been no paper that does the classification for a demographic question
as the output of the model. Therefore, developing the specific Markov model is new. In
order to evaluate its merits, we also compare it with a neural network (LSTM).
The third contribution is the unique dataset that is studied. It is a real dataset that con-
tains all the trips and stays of 171 users over 3 months with corresponding information
about the time, duration, modality, location etc. of the trip. More on this in Chapter 3.

2.4 Structure of the report

The remainder of this report is structured as follows. In Chapter 3, we give more informa-
tion about the data-set used for evaluation of the models, which are presented in Chapters 4
and 6. In Chapter 4, we give a mathematical overview of discrete time Markov chains. We
describe several modeling options, including which location type(s) to incorporate in the
model and explain the choice of the distance metric to measure differences between Markov
models for classification by means of an example. In Chapter 6, we discuss the benchmark
model, the long short-term memory (LSTM) neural network and describe which layers we
added to the model, in order to obtain good performance. Chapter 7 contains descriptions
of metrics for evaluating and comparing the performances of both models. In Chapter
8, we present the final results. Finally, in Chapter 9, we draw the main conclusions and
discuss the possible limitations of our approach. In this section we also present ideas for
future research.
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3 Data understanding and preparation

In this section the data is described, in particular how the raw data has been transformed
into a useful data-set to be used as input for the classification models.

3.1 Data description

Before the raw data from the panel users can be useful, we first need a good understanding
of it. Our evaluation is conducted on a real-life data-set of mobile phone users provided
by Mobidot. The raw data contains the mobility trip data of 171 anonymous cellular
users over a period of three months from 1 November 2021 until 31 January 2022. It
is anonymous, in that each user has been assigned a random user identity number. As
described in Chapter 1, the trips of panel users are registered on the mobile phone using
different sensing strategies. Afterwards, these trips are submitted to the back-end office
for further analysis, with as goal to determine all trip features as accurately as possible.
The data covers also places outside of the Netherlands, for example if a panel user goes
abroad on a holiday.
To get a better understanding of the data, we look at a few rows of a user’s mobility pattern
in which a temporal resolution of 1 hour is taken. An hourly resolution here means that per
hour all trips/stays are recorded, even when there is an hour in which no location change
is detected (mostly during night hours). However, even when taking an hourly resolution,
there are hours in which no user’s location was detected. This means that the higher
the resolution, the more time periods we have with missing location’s data. Note that in
Figure 4 this is not the case. Also, for the other 170 users the data is almost perfect, that
is, almost each hour during each of the 91 days has a location detection. Note that when
taking a different (random) sample of users, the dataset would potentially be less perfect
leading to less reliable computational results, which explains why this dataset was taken.
From the parts of the data and results we provide in this report it is not possible to trace
back the corresponding user, since we do not use the geographical locations.

Figure 4: Mobility pattern of a panel user with ID 5220 on 1 November 2021
between 16:00-21:00.

Many trip/stay features are collected, but we only include those that are relevant for
our research. Note that ‘hod’ and ‘hoddecimal’ are redundant features, since we can derive
them from the ‘intervaltime’ and ‘seconds’ columns. For the sake of clarity, we still included
them in the trip/stay features:

• Intervaltime: Date (dd-mm-yyyy) and hour (hh:00) at which the trip took place.
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• Seconds: Seconds counted from the start of the hour (hh:00) at which the trip/stay
started.

• Intervalduration: The interval time length of a trip/stay.

• User-id: Random user identity (ID) number.

• Trip-modality: The trip/stay modalities of the (end) location of a trip/stay as de-
scribed below.

• Trip-destination-type: The trip destination types, which reveal the functionalities of
the (end) stay locations.

• Hour of day (hod): Hour of the day (0-24) at which a trip/stay takes place.

• Hour of day decimal (hod-decimal): Hour of the day at which a trip/stay takes place,
including the seconds counted from the start of the hour.

• Day of week (Dow): Day of the week (1-7).

• Week-number (weekno): Year and the week-number (0-52).

• Age: Age of the panel user, starting at 19 years old.

• Work: User characteristic of the panel user known via Kantar. Below we mention
the subcategories with their corresponding number.

With the help of OpenStreetMap (OSM), each end location of a trip is tagged by the
most likely functionality of that location (also called ‘modality’), namely the stay- and trip
modalities. The stay modalities are: ‘stay@home’, ‘stay@office’ and ‘stay’. Here, ‘stay’
can be divided into different types of stays, for example: community centre, shop, house
or supermarket. The trip modalities are ‘foot’,‘bike’, ‘car’, ‘public transport’, ‘plane’ and
‘other’. There are 274 different locations, also including less ‘popular’ locations like e.g. a
history museum and a toys shop. In Chapter 10 a full list of the 274 locations is included.
Via Kantar, different user characteristics are known, namely gender, urbanisation, family
cycle, educational level, job, car possession, gross annual income household, driver’s licence
possession, postcode, age and household size. Since in this research, we focus on the
question of classifying users based on their employment status, because of confidentiality
we only mention the corresponding subcategories:

Figure 5: User’s job characteristics that are known at Kantar.

We now discuss the preprocessing steps that are performed before using this data as
an input for the classification models, which are introduced in Chapters 4 and 6.

16



3.2 Data preprocessing

As seen in Figure 5, users can take on 9 different job characteristics. Users without a
label and with the label ‘unknown’ (9) are removed from the dataset. The characteristics
‘entrepreneur’ (1), ‘employed’ (2) and ‘governmental’ (3) represent users with a job, also
referred to as ‘job’ users. ‘Incapacitated’ (4), ‘unemployed’ (5), ‘retired’ (6) and ‘at-home’
(8) represent users without a job, also referred to as ‘jobless’ users. We also leave out
users classified as ‘studying’ (7), since there are many students who both study and have
a job. Users can only choose one main job characteristic when joining the panel (with an
update being possible every year). As such, having such a student in the training set of the
‘jobless’ users could result in a bad classifier. Then there is also the case of users being a
‘jobless’ user according to Kantar, since they perform voluntary work. Looking at a user’s
mobility behavior during a certain period, it could be very difficult to distinguish those
volunteers from employed workers.
As mentioned above, the job characteristics of users are updated every year. This implies
that it may occur that a user changes his/her characteristic during the year and thus also
changes his/her mobility behavior accordingly, while they still have the old characteristic
in the database. It is not in the scope of this research to detect those ‘outliers’, so we have
to deal with possibly noisy data.

3.3 Location sequence complexity analysis

To get more insights into the ‘complexity’ of the location sequences in our dataset, we
determine the mobility location sequence entropy (MLSE) [23]. In information theory,
physics and other fields, entropy is used to determine the (lack of) chaos of a system.
In the context of our research, it can be used to determine the ‘complexity’ of location
sequences. A larger MLSE implies that the next location of the user is more uncertain,
thus the sequences are more ‘complex’ and most probably, more difficult for classification.
On the other hand, a smaller MLSE means a more regular mobility behavior of a user and
a more predictable mobility pattern. The MLSE is calculated in the following way.

• We assume an hourly resolution, that is, we have 24 time periods each day, ti, i =
1, 2, . . . , 24 and n different locations j = 1, 2, . . . , n visited during the whole time
span of 91 days.

• We determine the probability of visiting a certain location during a certain time
period ti by

pij =
Tij

Ti
∀i, j, (7)

where Ti is the total duration of the time period, and Tij the total duration of staying
at a location j during period ti. Both are accumulated again over the whole time
span of 91 days. So pij = 3

91 for a certain time period ti and location j if the user
stays at location j for 3 hours (Tij = 3) during the total time period of 91 hours
(Ti = 91).

Definition 3.1. The MLSE of a user during time period ti is

H(ti) :=

n∑
j=1

pijlog(
1

pij
). (8)
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Thus, if during a time period ti a user only visits one location on every single day of the
91 days, log( 1

pij
) = log( Ti

Tij
) = log(1) = 0, which leads to H(ti) = 0. However, when a

users visits more than one location in a fixed time period ti and over a given time horizon,
MLSE increases.

Definition 3.2. The cumulative MLSE of a user over all days is determined in the fol-
lowing way.

Hday :=
24∑
i=1

H(ti). (9)

So, Hday is a number that expresses a user’s ‘complexity’ of location sequences over the
time horizon of 91 days.

Figure 6: The Hday distribution over 91 days

Figure 7: Average H(ti) of a user during ti over 91 days

We can draw several conclusion from the above figures. It can be seen in Figure 6 that
the daily MLSEs Hday are relatively small and most values are between 0 and 150. These
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numbers reveal that most users do not switch their mobility patterns that often, since they
are mostly at the same locations most days, for a given time ti. Hence, their location
sequences are not too complicated. Note that complicated here refers to the ‘stability’ of
any pattern over the days. However, a small number of users has a high MLSE, up to 463,
which reveals that they switch their pattern regularly, and thus have relatively complicated
location sequences.
The shape of the graph in Figure 7 reveals that there are large differences between the
stability of location patterns between certain time periods ti. We see an increasing H(ti)
starting from 6 am in the morning with a peak at 11 am and 2 pm to go down again to
reach the lowest point at 3 and 4 am. This shows that during the peak hours 11 am and 2
pm many users visit different locations between different days. At night users are mainly
at home to sleep, which implies a high stability of locations patterns between different days
and thus a low H(ti).
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4 Markov models

A Markov chain allows us to represent a user by a vector of location sequences over a
given time period. These individual location sequences show the mobility behavior of the
corresponding user. In a nutshell, a Markov chain is described by a conditional distribution
function of visited locations given the visited locations of the user in the past. First, we have
to introduce the concepts of Markov chains. A Markov chain can be defined on a discrete-
time scale or a continuous-time scale. Also, we can use either finite discrete-time Markov
chains or continuous-time Markov chains. To model the relationships of the locations in
different time periods, we use a first-order Markov chain as mentioned in Equation (10).
We elaborate on the previously mentioned choices in Chapters 4.2.1, 4.2.2, 4.2.3, 4.2.4,
4.2.5 and 4.2.6. We first highlight some relevant definitions.

4.1 Preliminary definitions

Definition 4.1. A finite discrete-time Markov chain is a sequence of random variables
X1, X2, X3, . . . with the Markov property which states that the probability of moving to the
next state depends only on the present state and not on previous states:

Pr(Xt+1 = xt+1|Xt = xt, . . . , X1 = x1) = Pr(Xt+1 = xt+1|Xt = xt), (10)

given that both conditional probabilities are well defined, that is

Pr(Xt = xt, . . . , X1 = x1) > 0. (11)

The possible values of Xi form a finite set S called the state space of the chain. Since S
is finite, the transition probability distribution can be represented by a matrix, called the
transition matrix, with the (i, j)th element being equal to

pij(t) = Pr(Xt+1 = j|Xt = i). (12)

Since each row of this matrix sums to one and all elements are non-negative, it is a stochas-
tic matrix.
Let

A = Pr(Xt+1|Xt) := (pij(t))i,j∈S . (13)

We can also distinguish time homogeneous and time non-homogeneous Markov chains. We
compare both to see which one works best for our purpose.

Definition 4.2. For time homogeneous Markov chains it holds that

pij(t) = Pr(Xt+1 = j|Xt = i) = Pr(Xt = j|Xt−1 = i), (14)

for all t.

Given a process, and after verifying the Markov property, one is interested in the steady
state of the process, which leads to forming equations, called balance equations that have
π as a solution.

Definition 4.3. A probability measure π on set S is a stationary distribution for the
Markov chain (Xt)t≥0 if

π(i) =
∑
j

π(j)pji ,i ∈ S. (15)
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In matrix notation, this equation can be written as

π = πA, (16)

implying that π is an eigenvector of the matrix A. Since π is a probability measure, the
entries π(i) are non-negative and sum to 1, that is:∑

i

π(i) = 1. (17)

Finally, this stationary distribution equals its limiting distribution

lim
t→∞

Pr(Xt = i), i ∈ S, (18)

under certain conditions. Let pnij denote the (i, j)th entry of An (so An = (pnij)i,j∈S). Then
by the definition of matrix multiplication,

pnij =
∑

i1,...,in−1∈Sn−1

pi,i1pi1,i2 · · · pin−1,j . (19)

The probability Pr(Xn = j|X0 = i) is the sum of the probabilities of all paths of the form
i, i1, . . . , in−1, j, which is the sum in Equation (19). Consequently,

Pr(Xn = j|X0 = i) = pnij . (20)

This probability can be obtained upon computing An.

Definition 4.4. States i and j communicate with each other if state j is accessible from
state i (i → j) and state i is accessible from state j (j → i). That is, pnij > 0 and pnji > 0
for some n ≥ 1.

Definition 4.5. A Markov chain is irreducible if state i communicates with state j(i ↔ j)
for any i, j ∈ S, where S is a countable set of states.

Definition 4.6. The period di of a state i is the greatest common divisor (gcd) of all n
that satisfy pnii > 0. In other words, di is the largest integer such that pnii > 0 if and only
if n is a multiple of di. State i is aperiodic if di = 1.

Theorem 4.7 (Theorem 59 of Chapter 1 in [24]). If a Markov chain is ergodic, that is,
irreducible and aperiodic, then its stationary distribution is its limiting distribution, which
is positive:

lim
t→∞

Pr(Xt = i) = π(i) ,i ∈ S. (21)

4.2 Modeling choices

Now we have introduced the concept of a Markov model for a (group of) users, we can
elaborate on some modelling choices, each of which gives different results. We believe
it is reasonable that our problem is modelled by a Markov chain, since it was previously
shown that user behavior, in the form of visited locations, exhibits strong periodic patterns
[25]. Furthermore, we distinguish between a discrete-time scale and continuous-time scale
(continuous Markov chains are explained in [24]), a time homogeneous and time non-
homogeneous model, different temporal resolutions of the locations, different choices of
locations for an assumed resolution and different location types in combination with days
of the week. The choice between a time homogeneous and time non-homogeneous model
is based on the goal of the research, while the other choices depend on the performance of
the model.
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4.2.1 Choice of the order

In this research we only focus on the first-order Markov model. In practice, the location
of a user at period t + 1 does often not only depend on the location at t, but also on the
locations at t− 1 and/or even t− 4 etc. Consider the following example of a user who in
a day goes to school to drop off kids, then goes to office, supermarket and finally arrives
back home. However, if he has dropped off kids, sometimes he goes to the supermarket
first, then office and then home. Other times, he goes to school, office, home, supermarket
and finally home. In this example, if a Markov chain would be formed only based on the
last location, it would be too strong of an assumption. If we would form a Markov chain
on more locations, we would be able to have perhaps a higher accuracy up to a point.
However, it is true that a user’s current location probably is independent or extremely
weakly dependent of the past one hundred locations or so. So at some point independence
is not an absurd assumption, but maybe one location is too strong. Still, a first-order chain
highlights the important patterns in the user’s behavior, while it is also relatively easy to
compute and perform computations on. Moreover, in an experiment it was found that in
fact, the first-order Markov model outperforms the higher order Markov models that are
often overfitted [22]. So, clearly the fact that we use first-order models neglects long term
dependencies. But the choice was made to maintain simplicity of the model.

4.2.2 Choice of time scale

The first choice we make is whether we use a discrete-time scale or continuous-time scale.
We choose the discrete-time scale, since (depending on the questions we want to answer)
it has added value to know the exact times at which certain locations are visited. As
an example, if we consider the question: ‘is a certain user travelling during rush hours?’,
we want to distinguish the user’s transition probabilities and stationary distributions at
different hours in a day. In this thesis we consider the question ‘does a user have a job?’,
where it can be useful as well to distinguish user’s locations (such as ‘office’) during different
hours.

4.2.3 Dependence on time

The easiest model is a time homogeneous discrete first-order Markov model in which the
transition probabilities are constant over time as can be seen in Equation (14). In a time
non-homogeneous Markov model the probabilities are not constant over time. This implies
for example that for a user the probability to be at his office at t = 8, conditioned on
being at home at t = 7 can be different from the probability of being at office at t = 10,
conditioned on being at home at t = 9. The state space of these non-homogeneous models
not only includes the locations, but also the notion of time, here each hour of the day.
Thus, such a model can also answer questions predicting for example the user’s location
at t = 17 on a Friday. Going back to the questions we considered in Chapter 4.2.2, we see
that in both cases it potentially has added value to include the time in the state space.
If we consider the question: ‘is a certain user travelling during rush hours?’, we want to
distinguish the user’s transition probabilities and stationary distributions at different hours
in a day. In this thesis we consider the question ‘does a user have a job?’, where it can
be useful as well to distinguish user’s locations (such as ‘office’) during different hours.
However, in this thesis we mainly highlight the time homogeneous model to maintain
simplicity of the model. Yet, it could also be that the time homogeneous model is the
better classifier.
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4.2.4 Temporal resolution of locations

The raw geographic mobility data of a user consists of all trips and stays at locations
during each time period of the day. The time period is variable, that is, we can choose
different temporal resolutions. The higher the temporal resolution, the less time in each
time period in which only one visited location is chosen. In an ideal case, one chooses
a resolution that is as high as possible so that the final performance of the model is as
accurate as possible. However, even when taking an hourly resolution, there are hours in
which no user’s location was detected. This means that the higher the resolution, the more
time periods we have with missing location’s data. In this case we take the last known
location, so we assume that a user does not move to another location if we have no new
data. This is because it is difficult to predict to which other location the user potentially
moved. So, we have to find a good balance between having a high resolution on the one
hand and a small amount of missing data on the other hand. A high resolution also means
that the rarer locations (that is, all locations except for home) are better represented in
the data. In this case, we run the model for the resolutions of 15 minutes and 1 hour. The
results will be presented in Chapter 8.1.2.

4.2.5 Choice of location in each time period

For the Markov model we can only choose a single location in each time period, also if in
that period there are multiple location changes. There are multiple rules possible, think
of: taking the first location visited in every hour, taking the second location (if there are
at least two locations visited), taking the third location etc. Another choice is to take the
location which the user visited for the longest amount of time in that time period. We
also assume that if there is a non-home location in a time period, the home location is
always ignored. This is done since mainly the non-home locations distinguish users from
each other in their location sequences. As an example, we consider the mobility pattern of
a panel user in Figure 4. For the intervaltime ‘1-11-2021 21:00’, we see that the user visits
three different locations: ‘home’, ‘car’ and ‘office’. Considering the fact we can only choose
a single location, we disregard the home location and let the choice for either ‘car’ or ‘office’
depend on if we take the location with the longest duration or the first location, since we
evaluate the model for the choices: [Longest duration, 1st location]. At the intervaltime
‘1-11-2021 17:00’ ‘home’ is the only location, so we do choose the home location in this
case. The results will be presented in Chapter 8.1.2.

4.2.6 Location types and days of week choices

As mentioned in Chapter 3.1, we have many different locations next to the stay-locations
‘stay@home’ or ‘stay@office’. Therefore it could be beneficial to the model’s performance
to only choose (a set of) locations that distinguish the users in the positive and nega-
tive classes best, subject to the specific demographic characteristic question that is asked.
This can be done in combination with the days of the week that are considered in the model.

An option could be to try many combinations of location types and days of the week
to see which set achieves the best performances. Better is to first write an algorithm that
potentially gives an indication for the most discriminating set of locations for the specific
binary question. In this algorithm, the trip summary statistics ‘visit_count’, ‘duration_h’
as represented in Figure 8 are obtained from the data set introduced in Chapter 3.1. For
each individual user i ∈ I1 ∪ I2, (I1 and I2 represent users from the two different training
sets, users with job and without job respectively) we only consider the trips with home
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as the overnight stay. Then, for each location j at day-type k (weekday or weekend) we
know how often (= visit count, vc(i,j,k)), how long (= duration, dur(i,j,k)) and how many
days (= day count, dc(i,j,k)) they are visited for users i1 ∈ I1 and i2 ∈ I2. For the purpose
of the Markov model, the location(s) with high difference values for the visit count per
user and duration per user lead in the right direction. In Figure 8 we see the visit count
vc(1365,j,k) and duration dur(1365,j,k)) for user ID 1365 for five different destination types,
namely ‘any’, ‘office’, ‘residential’, ‘commercial’ and ‘house’ on different day types ‘any’,
‘weekday’ and ‘weekend’:

Figure 8: Trip summary statistics on the visit count vc(1365,j,k) and duration
dur(1365,j,k) for all j, k.

So, we decided to choose those individual location(s) j to be included in the state space S
of the Markov chain at day-type k for which the users of the two different training sets I1
and I2 have the largest differences between the visit count per user and duration per user,
where

vc(I1,j,k) =
∑
i1∈I1

vc(i1,j,k) (22)

vc(I2,j,k) =
∑
i2∈I2

vc(i2,j,k), (23)

and

dur(I1,j,k) =
∑
i1∈I1

dur(i1,j,k) (24)

dur(I2,j,k) =
∑
i2∈I2

dur(i2,j,k), (25)

(j∗, k∗) := argmax
j,k

(|vc(I1,j,k) − vc(I2,j,k)|) (26)

argmax
j,k

(|dur(I1,j,k) − dur(I2,j,k)|). (27)

This results in the location j∗ ‘any’, which are all other locations than home (non-home
locations), including k∗ ‘any’ daytype in the week being the most discriminating. Also,
‘weekdays’ are more discriminating than ‘weekend’ days. Basically, this comes down to
the fact that we use the mobility of a user between his home and outside of his home, no
matter which exact locations, to determine if he has a job or not.
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4.3 Markov model building

With the help of OpenStreetMap (OSM), each end location of a trip is tagged by the
most likely functionality of that location (also called ‘modality’), namely the stay- and trip
modalities. The stay modalities are: ‘stay@home’, ‘stay@office’ and ‘stay’. Here, ‘stay’
can be divided into different types of stays, for example: community centre, shop, house
or supermarket. The trip modalities are ‘foot’,‘bike’, ‘car’, ‘public transport’, ‘plane’ and
‘other’. In the case of a time homogeneous Markov chain, let

Xt ∈ S, t ∈ 0, 1, . . . , 23, S = {Home, . . . , School}, (28)

where Xt is a random variable that represents one of the possible 274 user locations at
time period t, where the set of locations S is semantic and finite. In this chain, the user
location at time period t + 1 only depends on the user location at time period t, where t
is identified with period [t, t + 1). So, when having an hourly resolution, t = 6 indicates
the time period 6am−7am. Note that, unless stated otherwise, we assume t to represent a
time period of an hour.

In the case of a time non-homogeneous Markov chain, the state space not only includes
the location, but also the time, which leads to

Xt ∈ S, t ∈ 0, 1, . . . , 23, S = {(Home, 0), (Home, 1), . . . , (School, 22), (School, 23)}. (29)

Let us next illustrate a user’s mobility sequence, between 7 am - 10 am for 2 days at an
hourly resolution in Figure 9. This sequence can be mapped to a diagram representing the
corresponding three-state Markov chain as presented in Figure 10. Each number represents
the probability of the Markov chain changing from one state to another state, with the
direction indicated by the arrow. At the same time, the sequence can also be mapped
to both a time non-homogeneous first order Markov chain in Figure 11 and a time non-
homogeneous chain in Figure 13. Note that the user visited the ‘home’ location at two
consecutive hours on the first day, at 7 am and 8 am, followed by the ‘school’ location at
9 am. On the second day the user visited the ‘home’ location at 7 am, followed by ‘school’
and ‘office’ at 8 am and 9 am respectively. This leads to a 0.333 transition probability from
the ‘home’ location to the ‘home’ location and a 0.667 probability from the ‘home’ location
to the ‘school’ location. In a similar way, given that the user is in school, the probability
of him being at home in the next hour is Pr(Xt+1 = home|Xt = school) = 0.5.

7:00 8:00 9:00
Home School

Home School Office

Figure 9: Input: User’s location sequences between 7 am-10 am for 2 days at an
hourly resolution.
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Figure 10: A diagram representing the three-state Markov chain as presented in
Figure 13. Each number represents the probability of the Markov chain changing
from one state to another state, with the direction indicated by the arrow.

Formally, we can refer to individual locations in the sequences with the following no-
tation. This notation will be needed when we introduce the algorithm for setting up the
transition matrices and stationary distributions in Algorithm 1. Let seq u(i), with i the
location index, be the location sequence of a user u. As an example, for the location se-
quences in Figure 9, i = 3 refers to the location at t = 9 during the first day, with location
‘school’, while after the transition i + 1(= 4) refers to the location at t = 7 during the
second day, with location ‘home’. Consequently, Au[seq u(i), seq u(i+1)] denotes the num-
ber of transitions from location seq u(i) to location seq u(i+1) until index i in the sequence.

We also need the location sequences of a group of users, e.g. training group U1 repre-
senting users with jobs, defined in Algorithm 1. Let seq U1(i), with i the location index,
be the location sequence of the user set U1. This implies that we want to obtain a single
transition matrix AU1 and single stationary distribution πU1 for the location sequences of
all the users in the user set U1. As a result, AU1 and πU1 will be based on sequence seq
U1, which is u1 times longer than the sequence of user u, seq u. As an example, if we now
assume that the sequences in Figure 9 are not from the same user on two different days,
but from two different users on the same day, i = 3 refers to the location at t = 9 of the
first user, with location ‘school’. After the transition i + 1(= 4) refers to the location at
t = 7 of the second user, with location ‘home’. Consequently, AU1 [seq U1(i), seq U1(i+1)]
denotes the number of transitions from location seq U1(i) to location seq U1(i + 1) until
index i in the sequence.

The rows in Figure 11 and Figure 13 represent the locations of the user at hour t ∈ 7, 8, 9,
while the columns in the matrix represent the locations of the user at hour t+1. The matrix
entries in transition matrices in these figures are the conditional probabilities according to
Equation (10):

Pr(Xt+1 = xt+1|Xt = xt). (30)

Consequently, a user’s u transition matrix is defined according to Equation (13) as Au and
a user’s u stationary distribution according to Equation (16) as πu.
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Xt+1

(Home,7) (Home,8) (Home,9) (Office,7) (Office,8) (Office,9) (School,7) (School,8) (School,9)

Xt

(Home,7) 0 0.50 0 0 0 0 0 0.50 0
(Home,8) 0 0 0 0 0 0 0 0 1
(Home,9) 0 0 1 0 0 0 0 0 0
(Office,7) 0 0 0 1 0 0 0 0 0
(Office,8) 0 0 0 0 1 0 0 0 0
(Office,9) 1 0 0 0 0 0 0 0 0
(School,7) 0 0 0 0 0 0 1 0 0
(School,8) 0 0 0 0 0 1 0 0 0
(School,9) 1 0 0 0 0 0 0 0 0

Figure 11: Output: Time non-homogeneous first order Markov chain of the se-
quences in Figure 9.

Xt π(Xt)

(Home,7) 0.333
(Home,8) 0.167
(Home,9) 0
(Office,7) 0
(Office,8) 0
(Office,9) 0.167
(School,7) 0
(School,8) 0.167
(School,9) 0.167

Figure 12: Output: stationary distribution of the Markov chain in Figure 11.

Xt+1

Home Office School

Xt

Home 0.333 0 0.667
Office 1 0 0
School 0.5 0.5 0

Figure 13: Output one: time homogeneous first order Markov chain of the se-
quences in Figure 9.

Xt π(Xt)

Home 0.5
Office 0.167
School 0.333

Figure 14: Output two: stationary distribution of the Markov chain in Figure 13.

One can also use higher order Markov chains or even a variable order chain (VOBN)
to model the mobility behavior of a user [26, 27].

Definition 4.8. A Markov chain of order o, where o is finite, is a process satisfying:

Pr(Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2, . . . , X1 = x1)

= Pr(Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2, . . . , Xt−o = xt−o) for t > o
(31)

In other words, the future state depends on the past o states.
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In order to be able to define the job classifier, we now need to define the Markov model for a
user u, used to determine differences between users. For this we use that for two successive
locations Xt and Xt+1 it holds that Pr(Xt, Xt+1) = Pr(Xt)·Pr(Xt+1|Xt). Note that when
we mention ‘model’ without the context of being used for calculating differences between
a (set of users) we mean the complete model build by Algorithms 1 and 2 for which we
can calculate its performance.

Definition 4.9. The Markov model for a user u, Bu, is the joint probability of any
two successive locations Xt ∈ S and Xt+1 ∈ S, where

Bu(Xt, Xt+1) := Pru(Xt, Xt+1) = Pru(Xt)·Pru(Xt+1|Xt) = πu(Xt)·Au(Xt+1|Xt), (32)

and πu ∈ [0, 1]|S|, Au ∈ [0, 1]|S|
2
, Bu ∈ [0, 1]|S|

2.

This formula shows the joint probability of two successive locations Xt ∈ S and Xt+1 ∈ S
in the complete location sequence of a user u. For example, what is the chance at any time
period t that the locations office and school happen after each other.

We now explain the algorithm that is used for determining the transition matrix Au for
a group of users user u, and stationary distribution πu, shown in Algorithm 1. The data
set described in Chapter 3.1 is split into training and testing sets and for the training set
we split the data based on the ground truth, that is the job status of the users in this set.
Per group that is trained, Markov chains are defined by computing the transition matrices
per group after which the limiting distribution per group is computed. In this way, user
profiles for different groups are built. Then, for each user in the test set, a Markov chain is
defined where the same algorithm to compute its transition matrix is used as was done for
a group of users. Finally, the joint probability of each two successive locations of each user,
called the Markov model of a user as in Equation (32), is compared to the joint probability
of each two successive locations of user profiles that are built.
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Algorithm 1: The algorithm for setting up the transition matrices and stationary
distributions to obtain the Markov model of (a set of) users

Input: Set of location sequences of u1 training users of length u1 · n with a job,
set of sequences of u2 training users of length u2 · n without a job, M
sequences of test users, each one with length of n and maximum of L
unique locations taken together from all location sequences.

Output: Transition matrices AU1 , AU2 and Au and stationary distributions
πU1 , πU2 and πu, U1 = {1, . . . , u1}, U2 = {u1 + 1, . . . , u1 + u2} and
U = {u1 + u2 + 1, . . . , u1 + u2 + M} where U1 is the set of users with
jobs used for training, U2 the set of users without jobs used for training
and U the M test users, u ∈ U .

1 initialize an empty list of transition matrices and stationary distributions
2 for user sets U1 and U2 do
3 initialize zero transition matrices AU1 and AU2

4 for each index i in the location sequences of user sets U1 and U2: seq U1(i)
and seq U2(i) do

5 add 1 to AU1 [seq U1(i), seq U1(i+ 1)]
6 add 1 to AU2 [seq U2(i), seq U2(i+ 1)]

7 end
8 normalize the transition matrices
9 solve πU1 = πU1AU1 for πU1

10 solve πU2 = πU2AU2 for πU2 , if there is no solution or unique solution πU1

and/or πU2 , see explanation below
11 determine BU1 as in Definition (32).
12 determine BU2

13 end
14 for each user u do
15 initialize a zero transition matrix Au

16 for each index i in the location sequence of user u: seq u(i) do
17 add 1 to Au[seq u(i), seq u(i+ 1)]
18 end
19 normalize the transition matrix
20 solve πu = πuAu for πu
21 determine Bu, many steps are explained more elaborately below
22 end

• One of the assumptions we make is that we include transitions from the end of a
location sequence to the beginning of a new sequence. In the case of having a se-
quence of 24 hours this implies that there is a transition included from t = 23 to
t = 0 on the next day as explained for the example in Figure 9. However, a modelling
option could also be to include only the mobility behavior during a part of each day,
for example each day from 7 am - 22 pm. In this case also a transition from 22
pm - 7 am is included with the reason that during the night hours often not many
location changes take place, justifying a transition over more than one hour. Only
including the mobility behavior during a part of each day/week in the model could
be beneficial for the model performance. For the purpose of classifying whether a
user has a job or not, one can come up with the suggestion to exclude location data
from the weekends, since most people do not work in weekends and have irregular
mobility patterns. Note that we did not test the modelling choice to exclude certain
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hours in the day, but we tested the choice to exclude weekend days from the model
in Chapter 4.2.6 with the results in Chapter 8.1.2.

As mentioned in the input of Algorithm 1, we take all the locations together from
location sequences of both the training set and the test set as states in the transition
matrices. These states are presented in the matrices in the same order. For example,
assume that locations A,B,C,D appear in the training set, but for a specific user
only locations A and B appear in the test set. However, the corresponding transition
matrix of this user in the test set still includes the locations C and D. This is done so
that when we want to calculate the differences between two Markov models, we have
no problem of having different dimensions of the matrices. However, the consequence
of this could be that we have a row in the transition matrix which consists of only
zeroes. The function scipy.stats.entropy in Python, which determines the Kullback-
Leibler (KL) divergence (introduced in Chapter 5) if we compare two distributions,
is only able to calculate the entropy if both distributions can be normalized to sum
to 1. We assume that if there is no transition from the a certain state to another one
(also not to itself via a self-loop), the user remains in this state. We call this state
an absorbing state.

Definition 4.10. A set of states C in S is said to be closed if no state outside of C
is accessible from any state in C. That is, pij = 0 for any i ∈ C, j /∈ C. If C = i,
which is a singleton set, is closed, then i is an absorbing state, that is pii = 1.

Proceeding with the example we just introduced, locations C and D would be ab-
sorbing states for the user in the test set.
As mentioned in Equation (21), a stationary distribution equals its limiting distribu-
tion if the Markov chain is irreducible and aperiodic. The limiting distribution can
here be seen as the relative frequencies in the locations in the long run. This means
that for each irreducible (set of) states we have to calculate the transition matrix Au

and the stationary distribution π separately. So within a Markov chain we can have
so-called ‘islands’ of states. We get ‘islands’ if certain locations can not be reached
from every other location anymore, which happens for the absorbing locations C and
D for the user in the test set.

• Normalizing the transition matrix means that the row values in Au, which represent
the number of transitions from each location to each other location, are divided by
the sum of the row values. In this way the count of the location frequencies is changed
to the transition probability matrix Pru(Xt+1|Xt).

• Next to the Markov chain (in the form of the transition probability matrix A), we
also determine the steady-state probability vector (stationary distribution), namely
π(Xt). Those are measured by the relative frequency of each location over the whole
time period, see Equation (15) and Equation (16).

• See Definition 32. Multiply the stationary distribution πu(Xt) with the transition
matrix Pru(Xt+1|Xt) to get the Markov model Bu of user u.

4.4 Initial conditions

The initial distribution of a Markov chain is the probability distribution of the chain at
time 0. For each state i ∈ S, we denote by π0(i) the probability Pr(X0 = i) that the
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Markov chain starts out in state i. We suppose our Markov chain starts out with initial
distribution π0(i) = π. As we just mentioned, location patterns are strongly periodic [25].
In the case of a user with a job, most of the weeks he goes to the office five days a week for
eight hours and has similar patterns between office and home. We only consider a period of
three months in this thesis and there is a high chance that the location patterns are similar
if we included even more weeks before the initial date. So, when we have that a Markov
chain’s stationary distribution equals its limiting distribution, it is reasonable to assume
that the stationary distribution also equals the initial distribution. As an example, in the
case of a time non-homogeneous Markov chain, it implies that the probability of being at
office at 9 am (Pr(Office, 9)) is equal on all days during the period of three months. Then,
by Equation (15), we also have π1 = π, . . . , π23 = π. That is, if the distribution at t = 0
is π, then the distribution at t = 1 is still π. Thus, Pr(Xt = i) = π(i) ∀i.
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5 Assessing the ‘differences’ between users

The purpose of this section is to introduce the Jensen-Shannon (JS) distance (for which
we need the Kullback-Leibler divergence) after which we justify the choice for the JS dis-
tance in Section 5.1. To do so, we refer to some examples to illustrate the use of the JS
distance as given in Algorithm 2 for a time homogeneous Markov model, in comparison to
the three other metrics, the Euclidean distance, Hamming distance and longest common
subsequence (LCSS). In this example, in Figure 15, we show the mobility behavior of four
users over one day during 6:00 - 22:00.

After setting up a stochastic Markov model for (a group of) individual users, the dif-
ference between those users can be represented as a distance between their Markov models
as defined in Equation (32), which are probability distributions. The Kullback-Leibler
(KL) divergence [28] Dkl is a measure which is suited to determine such difference. The
KL divergence between two discrete probability distributions P and Q is defined as in
Equation 33. Note that the double bar (||) between distributions P and Q emphasises that
the order of the arguments matters. This reminder is helpful because KL is used much like
a distance, but it is not symmetric, so it is not a distance. Therefore, it is also called a
‘pseudo-distance’.

Dkl(P ||Q) =
∑
x∈X

P (x)log

(
P (x)

Q(x)

)
, (33)

where P (x) is the probability of entry x under the distribution P and Q(x) is the prob-
ability of entry x under the distribution Q. The KL divergence is also called the relative
entropy, because it can be interpreted as the amount of information lost when P is used
to approximate Q.
During the modelling phase πu and Au were already determined, once for all users of the
same class in the training set and once for each individual user in the test set based on
their location sequences as explained in Algorithm 1. The KL divergence between two joint
probability distributions of discrete random variables X and Y , P (X,Y ) and Q(X,Y ), can
be calculated as follows. The proof is based on the chain rule:

Theorem 5.1. [28]

Dkl[P (X,Y )||Q(X,Y )] = Dkl[P (X)||Q(X)] +Dkl[P (Y |X)||Q(Y |X)]

Proof.

Dkl[P (X,Y )||Q(X,Y )] =
∑
x∈X

∑
y∈Y

P (x, y)log

(
P (x, y)

Q(x, y)

)

=
∑
x∈X

∑
y∈Y

P (x)P (y|x)log
(
P (x)P (y|x)
Q(x)Q(y|x)

)

=
∑
x∈X

∑
y∈Y

P (x)P (y|x)log
(
P (x)

Q(x)

)
+

∑
x∈X

∑
y∈Y

P (x)P (y|x)log
(
P (y|x)
Q(y|x)

)

=
∑
x∈X

P (x)log

(
P (x)

Q(x)

)∑
y∈Y

P (y|x) +
∑
x∈X

P (x)
∑
y∈Y

P (y|x)log
(
P (y|x)
Q(y|x)

)

=
∑
x∈X

P (x)log

(
P (x)

Q(x)

)
+

∑
x∈X

P (x)
∑
y∈Y

P (y|x)log
(
P (y|x)
Q(y|x)

)
=Dkl[P (X)||Q(X)] +Dkl[P (Y |X)||Q(Y |X)]
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The KL divergence has a few disadvantages, namely that it is non-symmetric, that is
Dkl(P ||Q) ̸= Dkl(Q||P ) and that it can take infinite values, which already happens if
Q(x) = 0 for some state x. This is not desired for the results, since we cannot compare
infinite values with each other. These disadvantages imply that the KL divergence is not
a metric. To cope with these problems, we use a refinement of KL divergence, namely
the Jensen-Shannon distance (JSD) between two joint probability distributions P (X,Y )
and Q(X,Y ) for the classification phase, which is the square-root of the Jensen-Shannon
divergence [29]:

Djsd(P (X,Y )||Q(X,Y )) =
√
Djs(P (X,Y )||Q(X,Y )) (34)

=

√
1

2
Dkl(P (X,Y )||M(X,Y )) +

1

2
Dkl(Q(X,Y )||P (X,Y )), (35)

where M(X,Y ) is defined as

M(X,Y ) =
1

2
(P (X,Y ) +Q(X,Y )). (36)

We now give the algorithm used for calculating distances between the models of users as
in Equation 32 for classifying a user.
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Algorithm 2: The classification algorithm
Input: Transition matrices AU1 , AU2 and Au and stationary distributions

πU1 , πU2 and πu, U1 = {1, . . . , u1}, U2 = {u1 + 1, . . . , u1 + u2} and
U = {u1 + u2 + 1, . . . , u1 + u2 + M} where U1 is the set of users with jobs
used for training, U2 the set of users without jobs used for training and U
the M test users, u ∈ U .

Output: job classifications
1 for u in range(u1 + u2 + 1, u1 + u2 +M) do
2 M1 =

1
2(AU1 +Au)

3 M2 =
1
2(AU2 +Au) (i.e. add the corresponding matrix entries, and place this

sum in the corresponding position in the matrix which results)
4 πM1 = 1

2(πU1 + πu)
5 πM2 = 1

2(πU2 + πu)
6 for row r out of k do
7 Dkl(BU1 ,M1)+ = πU1 [r] ·Dkl(AU1 [r],M1[r])
8 Dkl(Bu,M1)+ = πu[r] ·Dkl(Au[r],M1[r])
9 Dkl(BU2 ,M2)+ = πU2 [r] ·Dkl(AU2 [r],M2[r])

10 Dkl(Bu,M2)+ = πu[r] ·Dkl(Au[r],M2[r])

11 end
12 Dkl(BU1 ,M1)+ = Dkl(πU1 , πM1)
13 Dkl(Bu,M1)+ = Dkl(πu, πM1)
14 Dkl(BU2 ,M2)+ = Dkl(πU2 , πM2)
15 Dkl(Bu,M2)+ = Dkl(πu, πM2)

16 Djsd(BU1 , Bu) = Djsd(Bu, BU1) :=
√

Djs(BU1 ||Bu) :=√
1
2(Dkl(BU1 ,M1) +Dkl(Bu,M1))

17 Djsd(BU2 , Bu) = Djsd(Bu, BU2) :=
√

Djs(BU2 ||Bu) :=√
1
2(Dkl(BU2 ,M2) +Dkl(Bu,M2))

18 if Djsd(BU1 , Bu) < Djsd(BU2 , Bu) then
19 user u with Markov model Bu classified having a job
20 else
21 user u with Markov model Bu classified having no job
22 end
23 end

The first metric of comparison we consider is the Euclidean distance. This distance (in
the context of location sequences) is measured between two location frequency vectors Fm

and Fm′ based on location sequences of users u and u′, m := seq u and m′ := seq u′

respectively, m,m′ ∈ (1, . . . ,M). Given M location sequences of length I, the elements of
the frequency vectors Fm,s ∈ RL are shown in Equation (37). Note that i ∈ (1, . . . , I) are
the indices of the locations in the location sequences in each time period, and s ∈ S, where
S is a finite set of L unique location names.

Fm,s =
1

L

I∑
i=1

I(mi = s), (37)

Then we can define a location frequency vector based on a location sequence m, gathering
all Fm,s.

Fm := (Fm,s)s∈S (38)
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Definition 5.2. The Euclidean distance between two location frequency vectors Fm and
Fm′ based on two location sequences m and m′ of two different users (sets), is defined as:

||Fm − Fm′ ||2 =

√√√√ L∑
s=1

(Fm,s − Fm′,s)2. (39)

Secondly, we introduce the Hamming distance.

Definition 5.3. The Hamming distance between two vectors of location sequences Fm and
Fm′ of both length I, is the fraction of disagreeing locations in Fm and Fm′ :∑I

i=1 1(F (i) ̸= F ′(i))

I
, (40)

where i ∈ (1, . . . , I) is again the index of the location in each time period in the location
sequences.

The longest common subsequence (LCSS) is another possible distance metric. Let m and
m′ be two location sequences with size I and I ′ respectively, where m = (m(1),m(2), . . . ,m(I))
and m′ = (m′(1),m′(2), . . . ,m′(I ′)). For location sequence m, let Head(m) be the sequence
Head(m) = (m(1),m(2), . . . ,m(I − 1)).

Definition 5.4. The longest common subsequence between location sequences m and m′:
LCSS(m,m′) can be found by the following dynamic programming calculation:

LCSS(m,m′) =


0 if m or m′ is empty
1 + LCSS(Head(m), Head(m′)) if |I − I ′| = 0 and

|m(I)−m′(I ′)| = 0

max(LCSS(m,Head(m′)), LCSS(Head(m),m′)) otherwise

If m or m′ is empty, there are no similar locations between the sequences, so LCSS(m,m′) =
0. If |I − I ′| = 0 and |m(I) − m(I ′)| = 0, it means that both sequences have the same
length and that the locations at the last index are the same, that is I = I ′. This im-
plies that we can already add 1 to the value of the LCSS of the sequences without the
last index, that is LCSS(m,m′) = 1 + LCSS(Head(m), Head(m′)). Finally, in all other
cases the locations at the last index are not the same between the two sequences, thus
we can consider one sequence m′ without the last index and m with the last index and
vice versa. Then the maximum of those two values is taken as the value for LCSS, that is
LCSS(m,m′) = max(LCSS(m,Head(m′)), LCSS(Head(m),m′)).

Definition 5.5. The similarity function S1 between two location sequences m and m′ is:

S1(m,m′) =
LCSS(m,m′)

min(I, I ′)
. (41)

Given the similarity S1 between two location sequences, which is a rational number between
0 and 1, the distance between the sequences is:

D1(m,m′) = 1− S1(m,m′). (42)

As an example, take the following two sequences of letters, where each letter for example
represents the location at a different hour [30]. The LCSS is marked in blue:
AABBBCBAAA
AAABCAABBA
The LCSS similarity is S1(A,B) = 7

10 and the LCSS distance D1(A,B) = 3
10 .

LCSS is used in other papers to find ‘similar users’, where each paper calculates it in a
different way [31, 32, 33, 34, 35, 36].
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5.1 Justification of using JS distance

In this section we justify why the Jensen-Shannon (JS) distance is probably better suited
for our research than some other distance metrics.
To do so, we refer to an example to illustrate the use of the JS distance as given in
Algorithm 2, in comparison to the three other metrics, the Euclidean distance, Hamming
distance and longest common subsequence (LCSS). In this example, in Figure 15, we show
the mobility behavior of four users over one day during 6:00 - 22:00.
We now define ‘similarity’ among users based on the Markov model of a user defined in
Equation (32).

Definition 5.6. We assume a high similarity among users when they have the following:

1. Share a similar frequency of locations, which results in a small distance between the
stationary distributions of the training and test users.

2. Share similar location transitions in their location sequences, which results in a small
distance between the transition probability matrices of the training and test users.

Note that, for users to be considered similar, it is thus not needed to share the same lo-
cations at the same time periods. Specifically, this means that for example users ‘train
1’ and ‘test 1’ in Figure 15 have the exact same location sequence. This is achieved by
shifting the location ‘school’ from t = 7 to t = 8 for user ‘train 1’ and increasing the time
at home from only 1 hour at t = 6 to 2 hours at t = 6 and t = 7. This similarity condition
is considered in most of the previous works.

We give one example testifying that the JS distance as defined in Equation 34 and Equa-
tion 36 is a good distance metric for classifying users. Distances between Markov models
of users are determined by calculating the distances d(AU1 , Au) and d(AU2 , Au) for each
u ∈ [u1+u2+1, u1+u2+M] as explained in Algorithm 2. Using a straightforward example
with only one user in the training sets U1 = 1 and U2 = 2 is sufficient for the purpose of
showing the differences in results between using different distance metrics. In this example,
the rows ‘train 1’ and ‘train 2’ represent location patterns of the users in the training set
of users with a job and without a job respectively during 6:00-22:00. The rows ‘test 1’ and
‘test 2’ represent a pattern of the users in the corresponding test set:

06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
Train 1 Home School Work Gym School Home
Test 1 Home School Work Gym School Home

Train 2 Home Work Supermarket Home
Test 2 Home Work Supermarket Home

Figure 15: Example of four users’ location sequences during 6:00-22:00.

Following the meaning of similarity in Definition 5.6, we would expect user ‘test 1’
to be closer to user ‘train 1’ than to ‘train 2’, because ‘train 1’ and ‘test 1’ both visit
school before work (probably to bring their young children there) and they both go to the
gym immediately after work. Likewise, we would expect user ‘test 2’ to be more similar
to user ‘train 2’, because they do not visit school before work and go to the supermarket
immediately after. The results of the distance calculations can be seen below. What strikes
is that all metrics are symmetric.
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Euclidean distance: original
Train 1 Test 1 Train 2 Test 2

Train 1 0 0.088 0.198 0.250
Test 1 0 0.177 0.198
Train 2 0 0.088
Test 2 0

Hamming distance: original
Train 1 Test 1 Train 2 Test 2

Train 1 0 0.118 0.176 0.235
Test 1 0 0.176 0.176
Train 2 0 0.059
Test 2 0

Figure 16: Distances between users ‘train 1’, ‘test 1’, ‘train 2’ and ‘test 2’ based
on the the Euclidean distance (left) and Hamming distance metric (right) for the
original example.

LCSS: original
Train 1 Test 1 Train 2 Test 2

Train 1 0 0.059 0.176 0.235
Test 1 0 0.176 0.176
Train 2 0 0.059
Test 2 0

JS distance: original
Train 1 Test 1 Train 2 Test 2

Train 1 0 0.064 0.522 0.535
Test 1 0 0.513 0.519
Train 2 0 0.052
Test 2 0

Figure 17: Distances between users ‘train 1’, ‘test 1’, ‘train 2’ and ‘test 2’ based
on the the LCSS (left) and JS distance metric (right) for the original example.

We can conclude that in this example all four distance metrics work as we desire: user
‘train 1’ and user ‘test 1’ are closest to each other. The same goes for user ‘train 2’ and
user ‘test 2’. However, we can already observe the strength of the JS distance compared to
the other metrics: it finds users ‘train 1’ and ‘test 1’ to be almost identical (the distance
between them is very close to 0, namely 0.064), while ‘test 1’ has a relatively high distance
to user ‘train 2’ (with distance 0.513). The same happens for users ‘train 2’ and ‘test 2’.

According to the first assumption of our model, we want the classification methods to
be able to define users as similar when they share a similar frequency of locations. It is not
needed that they have location sequences that exactly match over time. Thus, we want to
have a metric that has a low sensitivity to a time shift in visited locations. In this case,
there is no change in the frequency of locations visited (assumption 1) and the patterns
when moving between locations (assumption 2). In the following example, we shifted users’
‘test 1’ and ‘test 2’ locations forward by 2 hours, while keeping users’ ‘train 1’ and ‘train
2’ mobility behavior identical to Figure 15:

06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
Train 1 Home School Work Gym School Home
Test 1 Home School Work Gym School

Train 2 Home Work Supermarket Home
Test 2 Home Work Supermarket Home

Figure 18: Example of four users’ location sequences during 6:00-22:00 for the
time-shifting example.

We expect that the JS distance works best here of the four distance metrics, by design
of the Markov model (it is time homogeneous, thus time independent). The other distance
metrics are not time independent. We want the distance metric to be robust over time,
which means that the distance values between certain location sequences do not change
(much) after a time-shift in the data. A distance metric which is robust over time still
classifies user ‘test 1’ as being more similar to user ‘train 1’ than to user ‘train 2’ and user
‘test 2’ being more similar to ‘train 2’. Figures 19 and 20 show the distance metrics for
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the data with the time shift.

Euclidean distance: Time shift
Train 1 Test 1 Train 2 Test 2

Train 1 0 0.088 0.198 0.250
Test 1 0 0.177 0.198
Train 2 0 0.088
Test 2 0

Hamming distance: Time shift
Train 1 Test 1 Train 2 Test 2

Train 1 0 0.471 0.176 0.412
Test 1 0 0.412 0.176
Train 2 0 0.353
Test 2 0

Figure 19: Distances between users based on the the Euclidean distance (left)
and Hamming distance metric (right) for the time shift example.

LCSS: Time shift
Train 1 Test 1 Train 2 Test 2

Train 1 0 0.176 0.176 0.294
Test 1 0 0.294 0.176
Train 2 0 0.176
Test 2 0

JS distance: Time shift
Train 1 Test 1 Train 2 Test 2

Train 1 0 0.064 0.522 0.535
Test 1 0 0.513 0.519
Train 2 0 0.052
Test 2 0

Figure 20: Distances between users based on the the LCSS (left) and JS distance
metric (right) for the time shift example.

This example shows that the Euclidean and JS distance are less sensitive to time shifts
of visited locations compared to the Hamming distance and LCSS. In other words, the
Euclidean and JS distance are relatively robust over time. They still classify user ‘test
1’ to be most similar to user ‘train 1’ (Euclidean distance: 0.088 < 0.177 and JS dis-
tance: 0.064 < 0.513) and ‘test 2’ to be most similar to user ‘train 2’ (Euclidean distance:
0.088 < 0.250 and JS distance: 0.052 < 0.535). However, the Hamming distance now
classifies user ‘test 1’ to be most similar to user ‘train 2’ (0.412 < 0.471), while ‘test 2’ is
still most similar to user ‘train 2’ (0.353 < 0.412). The LCSS metric has similar classifi-
cations for the test users as the Euclidean and JS distance, but the distances between the
corresponding training users are not close to 0 anymore (distance between ‘train 1’ and
‘test 1’: 0.176, between ‘train 2’ and ‘test 2’: 0.176).

Moreover, we want to have a metric that has a low sensitivity to the length of staying
at the different locations, since the pattern when moving between locations is important.
If, for example, we classified a user, which goes to the supermarket after work and then
goes home, in a group where most users go to the supermarket after work and then they
go home, we do not want that working a little less or shopping longer results in a change
in classification. In the following example we decreased the work-time of users ‘test 1’ and
‘test 2’ by 2 hours:

06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
Train 1 Home School Work Gym School Home
Test 1 Home School Work Gym School Home

Train 2 Home Work Supermarket Home
Test 2 Home Work Supermarket Home

Figure 21: Example of four users’ location sequences during 6:00-22:00 for the
decreased work-time example.

A robust metric in the sense just explained should still classify user ‘test 1’ as being
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more similar to user ‘train 1’ than to ‘train 2’ and user ‘test 2’ being more similar to ‘train
2’. Figures 22 and 23 show the distance metrics as a result of the decreased work-time:

Euclidean distance: decr. work time
Train 1 Test 1 Train 2 Test 2

Train 1 0 0.265 0.198 0.395
Test 1 0 0.250 0.198
Train 2 0 0.265
Test 2 0

Hamming distance: decr. work time
Train 1 Test 1 Train 2 Test 2

Train 1 0 0.353 0.176 0.353
Test 1 0 0.235 0.176
Train 2 0 0.235
Test 2 0

Figure 22: Distances between users based on the the Euclidean distance (left)
and Hamming distance metric (right) for the decreased work-time example.

LCSS: decr. work time
Train 1 Test 1 Train 2 Test 2

Train 1 0 0.176 0.176 0.353
Test 1 0 0.235 0.176
Train 2 0 0.176
Test 2 0

JS Distance: decr. work time
Train 1 Test 1 Train 2 Test 2

Train 1 0 0.176 0.522 0.571
Test 1 0 0.522 0.516
Train 2 0 0.150
Test 2 0

Figure 23: Distances between users based on the the LCSS (left) and JS distance
metric (right) for the decreased work-time example.

This example shows that the JS distance is indeed the most robust. It is less sen-
sitive to a decreased work-time compared to the other distance metrics. The distance
values in the corresponding distance matrix change, but only by a relatively small amount.
The JS distance still classifies user ‘test 1’ to be most similar to user ‘train 1’ (JS distance:
0.176 < 0.522) and ‘test 2’ to be most similar to user ‘train 2’ (JS distance: 0.150 < 0.571).
While the Euclidean distance still provided the desired classifications for the time shift ex-
ample, it now classifies ‘test 1’ being closer to ‘train 2’ than to ‘train 1’ (0.250 < 0.265).
We can summarize this finding in an ‘observation’.

Observation: When assessing the ‘similarity’ of vectors of semantic locations, examples
suggest that the JS divergence between joint probability distributions of two successive loca-
tions in a Markov chain are more robust against time-shifts and manipulations of lengths of
activities when compared to other, frequently used distance measures such as the Euclidean
distance, Hamming distance and LCSS.
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6 LSTM

6.1 Standard Neural network

We start with shortly introducing standard neural networks. Neural networks are by now
a standard and powerful tool for all kinds of classification problems. In a standard neural
network, a set of input and output nodes are connected in which each connection has a
weight associated with it. A neural network with only an input layer and an output layer is
called a perceptron network or cell. Because real life problems do not fit into a perceptron
network, the Multi-layer Perceptron (MLP) is more popular. The layers between the input
and output layers are called hidden layers. An MLP cell is illustrated in Figure 24. Each
arrow in this figure represents a connection, where each connection has a weight and a bias
attached to it. In combination with the ‘activation functions’, in the three neurons in the
hidden layer, they are used to calculate the output value. These activation functions can
be any non-linear function f(·). The weight and bias are calculated using backpropagation.
This is a neural network algorithm that iteratively processes a training dataset, where for
each data point it compares the network’s prediction with the known target value. The
weights and the biases are updated accordingly, with the goal to minimize the mean-squared
error.

Figure 24: Representation of a feed-forward Multi-layer Perceptron cell [37].

6.2 An overview of Recurrent Neural Networks (RNN)

As we saw in Chapter 6.1, in a standard neural network, an output at a certain time
step t is not used as an input for the next time step t + 1. However, in reality their are
many situations in which the final output not only depends on the external inputs, but
also on output of previous time steps. Consider a person who reads a book. If he wants
to understand each sentence, this understanding does not only depend on the words in
the current sentence, but also on the understanding and the context created by previous
sentence(s). Humans use this knowledge and context to understand something. Recurrent
Neural Networks (RNN) are invented to address this limitation. They have feedback
connections, which means that RNNs do not only take single external input into account
(such as single locations) but also earlier outputs in form of sequences of data from the
recent past (such as location sequences). The figure below shows such a RNN with a
feedback connection, which is as shorthand notation for the network on the right, after
unrolling the network on the left. Here A is a part of the RNN, with input xt and output
ht, t ∈ Z+:
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Figure 25: Representation of a RNN in a chain of repeating cells A [38], where
the loop on the left is unrolled.

A is just a map f(·) which is usually an ‘activation function’. We see that, at time step
t for some input xt, the RNN generates an output ht. In the next time step t+1, the RNN
has two external inputs Xt+1 and ht to produce the output ht+1. Thus, the feedback loop
enables information to be stored in cells and thus sent through the whole network.
However, RNNs also have their limitations. RNNs work well when the ‘context’ is from
the recent past. When the ‘context’ is from the distant past, they work not as good [39].
In theory, RNNs are capable of handling such ‘long-term dependencies’ (also by repeating
context from the recent past long enough). The right parameters can be chosen to solve
this problem. However, in practice, RNNs do not seem to be able to learn them.

6.3 LSTM networks

As we saw in Figure 25, an RNN can be represented in the form of a chain of repeating
cells of the RNN. As shown in Figure In standard RNNs, this cell A has a straightforward
structure, for example a single tanh layer between the input xt and output ht. The tanh
layer possesses the corresponding tanh activation function:

tanh(x) =
ex − e−x

ex + e−x
, (43)

where e is a mathematical constant that is the base of the natural logarithm.
The function takes any real value as input and outputs values in the range −1 to 1. The
larger the input (more positive), the closer the output value will be to 1.0, whereas the
smaller the input (more negative), the closer the output will be to −1.0.

Figure 26: The repeating cell A in a standard RNN with a single tanh layer.

The chain of LSTMs have the same structure, but the repeating cell is different. Instead
of the single neural network layer, LSTMs have four layers, which connect in a complex
way as shown in Figure 27. Every connection transports a vector, from the output of
one node to the input of another as shown in Figure 28. The pink circles are pointwise
operations, such as vector multiplication. The yellow rectangles are learned neural network
layers in which activation function are located, such as the tanh fucntion. If connections
come together, the corresponding vectors concatenate. If a connection branches from a
different connection, the corresponding vectors are copied.
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Figure 27: The repeating cells A in an LSTM with four layers.

Figure 28: Notation in LSTM diagrams.

6.4 The formal working of LSTMs

To understand the working of LSTMs, we take a closer look at one the cells A, shown in
Figure 29.

Figure 29: Single cell A in an LSTM.

An LSTM unit is build up out of a cell state, an input gate, an output gate and a forget
gate.

In the equations below, the lowercase variables represent vectors. Matrices Wq and Uq

contain, respectively, the weights of the input and recurrent connections, where the sub-
script q can either be the input gate i, output gate o, the forget gate f or the cell state C,
depending on the activation being calculated. In this section, we are thus using a vector
notation. So, for example, Ct ∈ Rh is not just one unit of one LSTM cell, but contains h
LSTM cell’s units.

Let us define the following variables, where the superscripts d and h refer to the num-
ber of input features and number of hidden units, respectively.

• xt ∈ Rd: input vector to the LSTM unit.

• ft ∈ (0, 1)h: forget gate’s activation vector.

• it ∈ (0, 1)h: input/update gate’s activation vector.
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• ot ∈ (0, 1)h: output gate’s activation vector.

• ht ∈ (−1, 1)h: hidden state vector also known as output vector of the LSTM unit.

• C̃t ∈ (−1, 1)h: cell input activation vector.

• Ct ∈ Rh: cell state vector

• W ∈ Rh×d, U ∈ Rh×h and b ∈ Rh: weight matrices and bias vector parameters which
need to be learned during training.

The most important elements are the cell states Ct−1 and Ct, which are connected by the
horizontal connection going through the top of the cell in Figure 29. LSTM can add or
remove information to this state, which is controlled by gates. A gate determines whether
information is let through or not. The gates consist of a sigmoid layer σ and a pointwise
multiplication operation ×. The sigmoid layer possesses the corresponding σ activation
function:

σ(x) =
1.0

1.0 + e−x
(44)

which takes any real value as input and outputs values in the range 0 to 1.

This describes how much of the information should be let through to eventually the new
cell state. A value of 0 means that nothing is going through, while 1 means that everything
is let through. An LSTM has three gates, as can be seen in Figure 29.
The first step in the LSTM is to determine what information is removed from the cell state.
It consists of the sigmoid layer σ and is named ‘forget gate layer’. It takes ht−1 and xt as
an input, and outputs a value between 0 and 1 for each value in the cell state Ct−1. The
subscript t indexes the time step.

ft = σ(Wf · xt + Uf · ht−1 + bf ). (45)

In the next step it is determined what new information is stored in the cell state. This step
consist of two parts. First, we have a sigmoid layer σ with the name ‘input gate layer’.
This layer decides which state values are updated. Afterwards, a tanh layer generates a
vector of new candidate values, C̃t, that is added to the cell state Ct−1. Formally:

it = σ(Wi · xt + Ui · ht−1 + bi) (46)

C̃t = tanh(WC · xt + UC · ht−1 + bC) (47)

The next step is to combine it and C̃t to form an update to the cell state Ct−1. So, the
old cell state Ct−1 is updated into the new cell state Ct.
The old state Ct−1 is multiplied by ft and then add the product of it and C̃t, where it · C̃t

is the new vector of candidate values, scaled by it which decides how much each state value
is updated. The initial value is C0 = 0 and the operator ⊙ denotes the Hadamard product
(element-wise product).

Ct = ft ⊙ Ct−1 + it ⊙ C̃t. (48)

As a last step, the output ht has to be determined, which is a filtered version of the cell
state Ct. First, we again have a sigmoid layer σ which decides what part of the cell state
Ct go into the output ht. Secondly, the cell state is led through a tanh layer and it is
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multiplied by the output of the sigmoid layer, so that we only have an output of the parts
we decided to. The initial value is h0 = 0.

ot = σ(Wo · xt + Uo · ht−1 + bo) (49)
ht = ot ⊙ tanh(Ct) (50)
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7 Performance metrics to compare classifiers

In the previous chapters we discussed two different classifiers, namely the Markov model
and the neural network. Now we want to compare the two classifiers. In other words,
we want to draw conclusions on the performance of both models to evaluate which one
performs best. For this we need to use performance metrics, which we discuss in this
chapter.

7.1 Choosing the right performance metrics

A confusion matrix can be used to visualize the performance of a model. We simply count
True Positive (TP), the correctly predicted positive class data points of the model, False
Positive (FP), the incorrectly predicted positive class data points, False Negative (FN),
the incorrectly predicted negative class data points and True Negative (TN), the correctly
predicted negative class data points. Since in this research we consider binary classification,
the confusion matrix is two-dimensional [40]:

Predicted
Positive Negative

A
ct

ua
l Positive TP FN

Negative FP TN

Table 1: Set-up of a confusion matrix.

Based on the values in this confusion matrix, one can calculate different performance
metrics of the classification models. The most common used metrics are the accuracy,
precision, recall and F1-score [41]. The accuracy is the fraction of the number of correctly
predicted data points over the total number of predicted data points. Mathematically,

Accuracy =
TP + TN

TP + FN + FP + TN
. (51)

The precision is the fraction of the number of correct positive predictions made over the
total number of positive predictions made by the model. Therefore, it is also called the
positive predictive value (PPV). In other words, it calculates the accuracy of the TP:

Precision =
TP

TP + FP
. (52)

We also have a negative variant of this metric, namely the specificity. It measures the
fraction of the number of correct negative predictions over the total number of negative
predictions. This is also known as the true negative rate (TNR):

Specificity =
TN

TN + FP
. (53)

The recall (also called sensitivity) also uses the number of correct positive predictions
(TP), but now it is divided by the total number of positive predictions that are made by
the model. It is also referred to as the true positive rate (TPR):

Recall =
TP

TP + FN
. (54)
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7.2 Dealing with imbalanced data

Consider a binary classification problem to classify data points (in this thesis the data
points are users) into ‘positive’ and ‘negative’ class labels. In real-world problems, there is
often an imbalance of data across the different classes in a training set. In the context of
a binary classification problem this means that the data points are unevenly distributed
over the classes, i.e. one class label (positive or negative one) has a very high number of
data points and the other has a very low number of data points. Accuracy, as defined in
Equation (51), is the most used performance metric for classification models. However,
when the positive class constitutes 90% of the data, and the negative class 10%, we can
make a simple model that classifies all new data points in the test set (and thus not used
for training the classifier) as being positive. This results in an accuracy of 90%, suggesting
the model performs very good. However, this classifier is not good, since it only correctly
predicts data points belonging to the positive class and incorrectly predicts all the data
points belonging to the negative class. Depending on the purpose of the classifier, it can
be just as important to correctly predict the negative data points, which is also the case
in this thesis. The explanation for this will follow later in this section when we introduce
different metrics. So, we have to find ways to deal with imbalance that are in line with the
research goals.

There are different ways to deal with imbalanced data. One common way of solving this
is to restore the balance in the data by oversampling or undersampling [42]. Restoring the
number of data points from both classes means obtaining an equal number of data points
from both classes. Oversampling means duplicating data points from the minority class,
undersampling removing data points from the majority class. Instead of just copying exist-
ing data points in the minority class, it is maybe better to create new realistic data points
to add to the minority class. This approach is called the Synthetic Minority Oversampling
Technique (SMOTE), where a new data point is made based on the k nearest neighbours
of an existing data point [43].

Another way of dealing with class imbalance, is to use different performance metrics than
the accuracy. Ultimately, we choose one metric, which we use in evaluating both models.
First of all, using both the precision and recall, we can determine the so-called F1-score,
which equals the harmonic mean of both. This metric is often used when the data is
imbalanced, that is the class distribution is uneven:

F1− score =
2 ·Recall · Precision

Recall + Precision
=

2 · TP
2 · TP + FP + FN

. (55)

Another metric is the balanced accuracy, which is the mean of the recall and the specificity:

Balanced Accuracy =
Recall + Specificity

2
=

TP

2 · (TP + FN)
+

TN

2 · (TN + FP )
. (56)

The choice of the metric depends on the context of the research. We now compare some
of the metrics and mention which metric can be used best in which situations.
First of all, we compare the balanced accuracy versus the normal accuracy. In case of
imbalanced data, the balanced accuracy is a better metric, since it accounts for the class
imbalance by giving the same weight to both classes [44]. In case of a balanced data-set,
it is not better to use either of the two.
Another interesting comparison is between balanced accuracy and F1-score. The F1-score
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does not take the number of classified TNs into account. Thus, in cases where the negative
predictions are at least as important as the positives, balanced accuracy is a better metric
than the F1-score.
Since we have imbalanced data and it is just as important to correctly predict a user with a
job, than a user without a job, we use the balanced accuracy in this thesis. Another reason
is that it is easy interpretable. Note that there are many more metrics (which maybe are
even better), but analyzing this has no priority in this thesis.
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8 Computational results based on locations data

In this section we mention how we build both the Markov model and the LSTM. Moreover,
we show the parameter tuning we perform for both models.

8.1 Model building

We use stratified group k-fold cross validation [5], where the set of users with their cor-
responding location sequences are divided into k groups, or folds of approximately equal
size. Thus, folds are subsets of the whole data set. The first fold is treated as a test set,
and the method is fit on the remaining k - 1 folds. The working of stratified group k-fold
cross validation with k = 3 is illustrated in Figure 30. It returns stratified folds with non-
overlapping groups, which means that the distribution of classes in each split is preserved
and each group is kept within a single split. In Figure 30 it is shown that the percentages
of samples for each class are similar between the folds. Moreover, it does not happen that
a group, in a single CV iteration, is both in the testing set and the training set. The fact
that we use stratified folds is useful for our dataset, since it is unbalanced as explained
in Chapter 7.2. Using just a group k-fold might produce skewed splits, that is splits with
different percentages of samples for each class. Each group will appear exactly once in the
test set across all folds. For this thesis, the classes represent users with or without a job
and one group is one user with corresponding location sequence.

8.1.1 Choice of k in stratified group k-fold cross validation

We use k = 3. In other words, approximately 66.67% of the users are in the training set
and 33.33% in the test set. There is no correct value of k. Clearly the fact that we use
the low value of k = 3 has as a disadvantage that the model is presented with few data to
train on, which could lead to underfitting of the model. But the choice was made because
running the model would require way more time for higher values of k, since it has to train
and validate k separate times. On the other hand, when using a higher k it could also be
the case the we overfit the model, occurring when the model has been overtrained. We
will show in Chapter 8.1.2 that when using k = 3, the performances in different iterations
(thus for different compositions of the folds) do not differ much, thus justifying the choice
for k = 3.

Figure 30: Visualization of stratified group 3-fold cross validation behavior for
uneven groups [5].
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The exact number of users (of in total 171 users) for each iteration in each fold is shown
in the table below:

Number of users Users with job Users without job
Training set 1 85 28
Test set 1 43 15
Total set 1 128 43
Training set 2 85 29
Test set 2 43 14
Total set 2 128 43
Training set 3 86 29
Test set 3 42 14
Total set 3 128 43

Table 2: The number of users for each iteration in each of the three folds.

In this thesis the performance of the model is determined by taking the mean of the
sum of the separate performances in each of the k iterations. However, there are also other
ways to measure the performance, depending on the corresponding metric, computing the
‘global’ performance on the concatenation of the predictions for all k folds being an exam-
ple. Since the balanced accuracy is used as performance metric as discussed in Chapter
7, the mean balanced accuracy will not differ much from the ‘global’ balanced accuracy.
Moreover, as mentioned before, we do not only want to measure the performance but also
get an idea of the differences between the performances across the folds, in order to detect
instability and justifying the choice of k = 3. This cannot be done from the concatenation
of the predictions, so in our case it is more convenient to keep the folds results separated.

8.1.2 Performances of the Markov model

In Table 3 we show the performances of the Markov model as introduced in Algorithms 1
and 2 for the different above mentioned modeling choices:

Modeling choices Temporal resolution Hourly location Location types +
Weekday/end Accuracy Balanced Accuracy (BA)

1 1 hour 1st location All 0.620 0.716
2 1 hour 1st location {Home, non-home} + weekdays 0.737 0.786
3 1 hour Longest duration All 0.619 0.723
4 1 hour Longest duration {Home, non-home} + weekdays 0.719 0.767
5 15 min 1st location All 0.614 0.720
6 15 min 1st location {Home, non-home} + weekdays 0.684 0.728
7 15 min Longest duration All 0.614 0.712
8 15 min Longest duration {Home, non-home} + weekdays 0.684 0.728

Table 3: Performances of the Markov model in the form of the accuracy and the
balanced accuracy BA.

The confusion matrix for the default and the best option, that is modeling choices 1
and 2, is:
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Predicted
Job No job

A
ct

ua
l Job 67 61

No job 4 39

Predicted
Job No job

A
ct

ua
l Job 88 40

No job 5 38

Table 4: Confusion matrix of modeling choices 1 and 2.

Below we summarize the results of the results of the Markov modeling choices:

Hyperparameter Default value Examined options Best option
Temporal resolution 1 hour [15 min, 1 hour] 1 hour
Hourly location 1st [1st, Longest duration] 1st
Location types +
Weekday/weekend All locations + days [All locations+{weekdays, weekend}, {Home, non-home}+{weekdays}] {Home, non-home}+{weekdays}

Observation 1: The balanced accuracy (BA) is always higher than the accuracy.
This is also the case for modeling choice 2 (0.786 > 0.737). An intuition for this can be
given with the help of the formulas for the accuracy and BA in Equations (51) and (56),
respectively. As we explained, the BA is the mean of the recall in Equation (54) and
specificity in Equation (53). Mainly the high specificity of 0.884 has a high contribution
in the high value of BA, which implies that we have a high true negative rate. This rate
is not incorporated into the accuracy.

Observation 2: As can be seen in Table 3, choosing only a set of location(s) in combina-
tion with a selection of days that distinguish the users in the positive and negative classes
well (here we take {Home, non−home}+{weekdays}) does improve the balanced accuracy
for all relevant modeling choices 2 (0.786>0.716), 4 (0.767>0.723), 6 (0.728>0.720) and
8 (0.728>0.712).
This shows that the algorithm that potentially gives an indication for the most discrimi-
nating set of locations as described in Chapter 4.2.6 has the desired effect.

Observation 3: All performances (in the form of the BA) are quite similar (difference
between highest and lowest BA is only 0.074), so there is no clear winner.
There is no clear winner, since on a different data-set with the same classification question
the result could be the other way around.

Observation 4: The performances between modeling choices for a temporal resolution
of 1 hour with different hourly locations and location types of home and non-home loca-
tions (choices 2 and 4 with BA values 0.786 and 0.767), differ more than the performances
between the same modeling choices but for a resolution of 15 minutes (choices 6 and 8 with
the same values 0.728).
From this we can conclude that a higher resolution has the desired effect of having more
similar performances (that is, more robust) for different choices of the hourly location,
while at the same time we can not conclude from this that the performances are better as
well.

Observation 5: The number of ‘False negatives (FN)’ in Table 4 (61 out of 128 and
40 out of 128) is relatively high compared to the number of ‘False positives’ (4 out of 43
and 5 out of 43). There are many cases in which the model predicts a user to be jobless,
while in reality he does have a job.
To explain this we have a look at the Markov model of such a user and compare it to the
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trained job model and trained jobless model. The case where we only consider the locations
‘Home’ and ‘Non-home’ during weekdays resulted in the following transition matrices P1

of the trained job model, P2 of the trained jobless model and stationary distributions π1
of the trained job model and π2 of the trained jobless model:

Xt+1

Non-home Home

Xt
Non-home 0.839 0.161
Home 0.088 0.912

Figure 31: Transition matrix P1(Xt+1|Xt) for user with job.

Xt π1(Xt)

Non-home 0.355
Home 0.645

Figure 32: Stationary distribution π1 for user with job.

Xt+1

Non-home Home

Xt
Non-home 0.720 0.280
Home 0.078 0.922

Figure 33: Transition matrix P2(Xt+1|Xt) for user without job.

Xt π2(Xt)

Non-home 0.218
Home 0.782

Figure 34: Stationary distribution π2 for user without job.

In line with what one would expect, a user without a job is in the long run more at
home (π2(Home) = 0.782) than out of home (π2(Non-home) = 0.218). There are a few
differences between both models. When in a non-home location at time t, the chances are
relatively higher to be out of home at time t+ 1 as well for job users compared to jobless
users. Mathematically,

P1(Xt+1 = Non-home|Xt = Non-home) > P2(Xt+1 = Non-home|Xt = Non-home). (57)

The transitions with ‘home’ as start-location are similar between both groups of users.
There is also a clear difference in the stationary distributions of both groups, which reveals
that there is a higher chance being out of home for job users compared to jobless users.
Mathematically,

π1(Xt = Non-home) > π2(Xt = Non-home). (58)

We now look at the model of a user which is predicted to be jobless, while in reality she
does have a job.
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Xt+1

Non-home Home

Xt
Non-home 0.633 0.367
Home 0.086 0.914

Figure 35: Transition matrix P3(Xt+1|Xt).

Xt π3(Xt)

Non-home 0.190
Home 0.810

Figure 36: Stationary distribution π3.

The Jensen-Shannon distance as in Equation (34) implies that, roughly speaking, two
models are seen as more similar if the differences between similar matrix-entries are smaller.
In this case model 3 as in Figures 35 and 36 is most similar to model 2 in Figures 33 and
34. So test user 3 will be predicted to have the classification in line with model 2 (jobless),
while in reality she does have a job. For this user the main reason for this misclassification
is that she works a lot from home, possibly due to the ongoing Covid situation during
November 2021 - January 2022.

It can also happen that a user is predicted to have a job, while in reality she is job-
less. However we see in Table 4, that this occurs less often than a user which is predicted
to be jobless, while having a job. As already mentioned in Chapter 3.2, this is most likely
due to the fact that they perform voluntary work. As an example, they drive the bus
voluntarily 5 days in the week, which means visiting many non-home locations leading to
the incorrect prediction of having a job.

8.2 LSTM building and parameter tuning

Just as for the Markov model, in this model we have for each test user a semantic location
sequence over 3 months as input, from which we gain a classification for this user with or
without a job. We obtain a classification performance in the form of the balanced accuracy.
We again use k-fold cross validation with k = 3, as explained in Section 4. We use the
class sklearn.model_selection.GridSearchCV in the scikit-learn toolkit for this. Note that
all locations in a sequence are replaced by integers that represent the ordered frequency of
each location in the dataset. So, for example the locations sequence AABA would result in
the corresponding integer sequence 1121. The sequences of locations are therefore replaced
by a sequence of integers. The ordered frequency is calculated by the number of times each
location occurs in the dataset, where we still have the restriction that we can only choose
a single location in each time period (as time period we choose 1 hour). Just like for the
Markov chain model, we choose to use the 1st location in each period of an hour.

8.2.1 Word embedding

We use a word embedding for each index in the sequence of positive integers, before we let
the sequence go through the LSTM network. Positive integer representations of words (or
locations in this thesis) are encoded as real-valued vectors. Word embeddings are a type
of word representation that allows words with similar meaning to have a similar vector
representation. Embedding (in the context of locations) can be interpreted as follows: the
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more often certain location patterns occur for the same type of users, the closer these
locations are in the vector space. Keras has an embedding layer class Embedding in their
library [45]. Keras is an open-source neural-network library written in Python. This
function converts the positive integer representations of words into a word embedding. We
map each word onto a real valued vector with length v, where we use v = 32. Again, the
model performance potentially depends on the value of v. However, we only evaluated
the model with v = 32, due to the high running time of the model. As explained before,
all sequences of individual users are of the same length. In this way it is not needed to
constrain each location sequence to consist of a certain amount of words.

8.2.2 LSTM building

We have the following simplified plot of the LSTM network:

Figure 37: Visualisation of the used LSTM network with four different layers: the
input layer, embedding layer, LSTM layer and dense layer for the output.

In our model, the embeddings are part of the LSTM network model, as can be seen
in the second layer in Figure 37. As in the Markov model, we use an input length of the
locations in the sequences of n, which is equal for all individual users. The embedding
vectors with length v = 32 are initialized randomly and are trained to maximize the model
performance, that is minimizing the loss function during the training phase. As a loss
function, we use the binary cross-entropy loss, which means that we obtain probabilities
for both labels as our output.
The binary cross-entropy of the distribution Q relative to a distribution P over a given set
is defined as follows:

H(P,Q) = −
∑
x∈X

P (x)logQ(x), (59)

which is very similar to the Kullback-Leibler divergence as defined in Equation (33).
Then, the label with the highest probability is chosen. After creating all the individual
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embedding vectors, we concatenate (that is, joined together) them to form a vector of length
n× v. As a next step, the vector arrives at the LSTM layer(s) and a dense layer, used to
obtain the binary classifications as output. In this way, the embeddings are learned while
the LSTM network is optimized, leading to optimal embeddings for our specific problem
with corresponding dataset.

8.2.3 Tuning settings: batch size and number of epochs

Compared to the Markov model, the LSTM neural network is more complicated and there
are many hyper-parameters that can be tuned. In this section we focus on the so-called
batch size and the number of epochs. The batch size is the number of data points processed
before the model is updated. The number of epochs is the number of times that the training
data-set is presented to the network during the training phase. An LSTM neural network
is sensitive to both the batch size and number of epochs, which means that there is a
combination that ‘optimizes’ the training of the network. The default for the batch size
used in Keras is 32. There is no default value for the number of epochs. However, since a
high number of epochs can lead to what is known as overfitting, we use 20 as default. We
evaluate the model for different batch sizes: [16, 32, 64]. We use as the number of epochs:
[20, 40, 80].

8.2.4 Tuning settings: other tuning settings (including number of neurons in
the hidden layer)

Keras has many different state-of-the-art optimization algorithms. We do not test the net-
work for different algorithms. The stochastic gradient descent optimizer ’ADAM’ is based
on adaptive estimation of first-order and second-order moments and is the best method to
use for big data-sets [46]. We use a sigmoid neuron activation function in the dense output
layer, because we have a binary classification problem. Note that we used a ‘baseline’
LSTM network as represented in Figure 37. It is possible to extend this baseline model by
for example a Dropout layer between the Embedding and LSTM layer and/or the LSTM
and Dense output layer, but in this thesis we did not do this.

Lastly, the number of hidden layers and the number of neurons in the hidden LSTM
layer are important to tune. In general, a large enough single layer network can approxi-
mate any other neural network [47]. There is no default number of hidden layers in Keras.
However, for most problems, one is sufficient [48]. We try one and two LSTM layers in our
network: [1, 2].

There is also no default number of neurons in the hidden layer. In the literature, opin-
ions vary about what is the best number. What is known, is that the number should be
between the dimension of the input and output layer. The dimension of the input layer
is the total number of different locations in all sequences (=274), while we only have one
output feature, whether or not a user has a job. In order to get to a default value, we
can make use of certain rules of thumb. One gets a decent performance if the number of
neurons in the hidden layer equals the mean of the neurons in the input and output layers
[48], which equals 137 in our case. Another rule of thumb is a size of 2/3 the size of the
input layer, plus the size of the output layer, equalling 184. We take this as the default
value. However, we risk that we overfit if we take too many neurons, so we test a smaller
number of 47 as well, resulting in the following number of neurons in the hidden layer: [47,
137, 184].
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8.2.5 Performances of the LSTM model

In this section we discuss the performances of the LSTM model for 1 and 2 hidden layers,
respectively. We ran this separately since the running time of the model would be too large
when combining both options, that is running the model for all combinations of examined
options of the hyperparameters as in Table 6 including the options of 1 and 2 hidden layers
at the same time.

Performance before tuning Performance after tuning
Accuracy Balanced Accuracy Accuracy Balanced Accuracy

LSTM 0.737 0.493 0.608 0.583

Table 5: Performance of the LSTM network with 1 hidden layer before and after
the hyper-parameter tuning.

Hyperparameter Default value Examined options Best option
Batch size 32 [16,32,64] 32
Number of epochs 20 [20,40,80] 80
Neurons in hidden layer 137 [47,137,184] 184

Table 6: Grid search for best combination of hyper-parameters of the LSTM
network with 1 hidden layer.

Performance before tuning Performance after tuning
Accuracy Balanced Accuracy Accuracy Balanced Accuracy

LSTM 0.702 0.476 0.673 0.575

Table 7: Performance of the LSTM network with 2 hidden layers before and after
the hyper-parameter tuning.

Hyperparameter Default value Examined options Best option
Batch size 32 [16,32,64] 64
Number of epochs 20 [20,40,80] 80
Neurons in both hidden layer 137 [47,137,184] 137

Table 8: Grid search for best combination of hyper-parameters of the LSTM
network with 2 hidden layers.

Observation 6: As can be seen in Tables 5 and 7, the balanced accuracy (BA) is now
always lower than the accuracy, which is contrary to Observation 1.
This suggests that it is not true that in any case for any entries of the confusion matrix
BA (in Equation (56)) is greater than the accuracy (in Equation (51)), which also follows
from their definitions.

Observation 7: As can be seen in Tables 5 and 7, tuning does not improve the accu-
racy (0.608 < 0.737 and 0.673 < 0.702), but does improve the balanced accuracy for both
the network with 1 hidden layer and 2 hidden layers (0.583 > 0.493 and 0.575 > 0.476).
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Since we chose the balanced accuracy as being the best performance metric for our dataset,
the tuning has the desired effect.

Observation 8: As can be seen in Tables 5 and 7, having 2 hidden layers instead of
1 does not improve the performance (expressed in balanced accuracy). This is true before
tuning (0.476 < 0.493) as well as after tuning (0.575 < 0.583).
As mentioned in Section 8.2.4, for most problems, 1 hidden layer is sufficient. The same
goes for our LSTM network.

Observation 9: As can be seen in Tables 6 and 8, the best combination of hyper-parameters
is different for an LSTM with 1 hidden layer compared to an LSTM with 2 hidden layers.
Only the best option for the number of epochs is equal between the two LSTMs (both 80).
The best batch size is higher for the LSTM with 2 hidden layers (64>32) as well as the
best number of neurons in the hidden layer(s) (184>137). This tells that each network
with a different architecture has different best options for the hyperparameters.

8.2.6 Comparing the performances of the Markov and LSTM model.

By comparing the balanced accuracy’s of the different types of models, namely the Markov
and LSTM model, we come to the following observation:
Observation 10: The Markov model performs better in classifying users with or without
a job than the baseline LSTM neural network.
This conclusion is based on the balanced accuracy (BA) of the best modeling choice 2 of
the Markov model (0.786) which is significantly higher than the highest BA achieved in
the LSTM network for 1 hidden layer (0.583).
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9 Conclusions and recommendations

In this section we come back to our research goal and give some recommendations.

9.1 Conclusions

In Section 1 we posed the following research goal: show that a DTMC performs well in
classifying users with or without a job by comparing the performance in the form of the
balanced accuracy of this DTMC with the performance of a baseline LSTM neural network.
We can say that we achieved this goal, since after selecting the right metric in the context
of the research in the form of the balanced accuracy (BA), the BA of the best modeling
choice of the Markov model (0.786) is higher than the highest BA achieved in the LSTM
network for 1 hidden layer (0.583). Of course, for other classification questions apart from
the question if a user has a job or not the results could differ, yet the Markov chain model
works well and is simple to interpret. Thus, it is a promising approach to classification.
If we perform the same procedure for other questions, it could well be that the LSTM
neural network performs better than the Markov model. Moreover, it could also be that
the LSTM starts performing better when we add even more layers to the LSTM network
as in Figure 37. This could be in the form of a Dropout layer as mentioned in Section
8.2.4, but also by adding even more hidden LSTM layers (that is, even more than two), to
obtain a deep learning problem.

9.2 Recommendations

9.2.1 Experimental and computational recommendations

There is room for improvement regarding the Markov model. First of all, it is best to
try as much different combinations of parameters as possible. In this research, we only
investigated two different values for the parameters: ‘time resolution’, ‘hourly location’ and
‘location types and days of the week’. Moreover, there exist also Markov models different
than the discrete-time Markov model. There are Markov chains of a higher order than 1,
as seen in Equation 31, a variable-order Markov chain in which the order may vary for
each location based on its context and a continuous-time Markov chain.
Also the LSTM network can be expanded, with even more dropout and/or hidden layers,
as mentioned in the Conclusion 9.1. This is all with the goal of obtaining higher (and
robust) performances of the models.
Instead of using different classification models, it is also possible to directly cluster users
into profiles using an unsupervised clustering model. This could be a faster approach, but
it most likely not as accurate and reliable.
As an alternative to the Jensen-Shannon divergence (as presented in Section 5) to classify
users, the use of the MLSE as introduced in Section 3.3 is also promising. If we remain
at the example of classifying whether a user has a job or not, there is potential we could
use the differences in the MLSE between both types of users to classify them. We could
expect a low MLSE for users without a job throughout the day, while users with a job
would probably present two peaks around times that these users commute to work.

9.2.2 Business recommendations

There are some business recommendations. First of all, the dataset can be improved. It
would be good to only include those users in the dataset from which we know for sure
that they have the correct (and thus the latest) demographic characteristics which was
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discussed in Section 3.2. This can for example be done by performing surveys about these
characteristics more frequently, not only once every year. Secondly, in order to get more
reliable results, it is better to include trip-data over a longer period than 3 months, but
more important is to include data of more users. In this research we only had 171 total
users, while only having 43 users without a job, leaving very few users in the test set to
perform predictions on. Another interesting research direction is to use the classification
models on digital data that represent other aspects of human behavior (other than the
location sequences); for example, classifying users by their web surfing histories or by their
actions on their mobile phones. Of course, this is only an option if the relevant data is
available for Mobidot.

9.2.3 Towards non-binary classification

The next step in the research is to perform the same procedure for different questions than
the job question and afterwards combine these questions into user profiles. This is not
straightforward however.
The last and most important step is to test if and how user classification can be used to
improve activity recognition. This was not the scope of this project, yet is the ultimate
goal of the company Mobidot. The improved activity recognition would provide valuable
answers to Mobidot’s customers for market research, panel surveys, urban policy devel-
opment, and impact evaluation. As an example, the data can be used as an input for
government policies to achieve a smoother and better distributed traffic flow.
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10 Appendix

10.1 List of locations

Figure 38: List of all locations.
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