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“All models are wrong, but some are useful.” 

 – George Box (1976) 
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Summary 
 

Drinking water is a basic human need that is under constant and increasing threat of climate change. Specific 

changes in the climatic system are uncertain, which leads to uncertain surface and groundwater availability for 

drinking water production. Surface water supplies are highly variable and vulnerable to climatic processes, while 

the groundwater system changes more gradual and is less vulnerable. The resilience of drinking water 

production to climate change can be increased with the conjunctive use of surface and groundwater resources. 

This research focuses on the role of uncertainty in climatic conditions in the conjunctive use of surface and 

groundwater resources for drinking water production. A case study for De Watergroep, a drinking water 

company in Belgium that implements a conjunctive use strategy, was used to implement the proposed 

methodology. An adaptive forecast-based production strategy for one of the reservoirs was developed using a 

water quality forecasting model. Three different drought years were evaluated based on their performance on 

yearly groundwater use and the risk of water shortages.  

Machine learning models were developed to forecast five water quality parameters that are decisive in the 

conjunctive use of surface and groundwater resources in the case study: nitrate, phosphate, sulfate, 

conductivity and bentazon. The autoregressive behavior of all compounds was captured with their lagged values 

and rolling statistics. External features that were investigated were calendar effects, precipitation, temperature, 

discharge, and land use. Six different algorithms were tested with 20 different feature sets, predicting one to 

three week(s) ahead for all water quality parameters. For nitrate prediction, the autocorrelation and calendar 

effects were of main importance, while all other water quality parameters perform best when precipitation, 

discharge, and temperature are included as well. Interdependencies of the climatic processes highly influence 

their predictive power.  

An adaptive forecast-based production strategy was developed to find the optimal conjunctive use of 

surface and groundwater resources under uncertain climatic conditions. The goal of this new production 

strategy was to meet water demand with the trade-off of minimizing groundwater use and minimizing the risk of 

water shortages, under the physical constraints of the operating reservoir and surface water availability. The 

research shows that relatively simple models using water quality data and open-source climatic data can be 

used to develop an adaptive forecast-based approach with improved reservoir performance. The data-driven 

approach enables modelling without the need to investigate all individual relations in the climate-water system.   

The forecast-based strategy was evaluated by comparing the yearly groundwater use and the risk of water 

shortages to a traditional production strategy. It was found that the new production strategy averts the risk of 

water shortages, which sometimes comes at the cost of increased groundwater use. Improving the forecasting 

model results in a lower risk of water shortages.   
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Samenvatting 
 

Drinkwater is een van de eerste levensbehoeften van mensen en staat onder een toenemende druk van 

klimaatverandering. Specifieke veranderingen in het klimaatsysteem zijn onzeker, wat leidt tot onzekerheden in 

de beschikbaarheid van oppervlakte- en grondwater voor drinkwaterproductie. Oppervlaktewater is variabel en 

gevoelig voor klimaatprocessen, terwijl het grondwatersysteem geleidelijk verandert en minder kwetsbaar is. 

Het gelijktijdig gebruik van oppervlakte- en grondwaterbronnen in drinkwaterproductie is een beheerstrategie 

die de weerbaarheid van een watersysteem vergroot. Dit onderzoek richt zich op de rol van onzekerheid in 

klimatologische condities in het gelijktijdig gebruik van oppervlakte- en grondwaterbronnen in 

drinkwaterproductie. Er wordt gebruik gemaakt van een case study van De Watergroep, een drinkwaterbedrijf 

in België dat een strategie van gelijktijdig gebruik implementeert. Aan de hand van 

waterkwaliteitsvoorspelmodellen is een flexibele productiestrategie ontwikkeld. De nieuwe productiestrategie is 

geëvalueerd op basis van het jaarlijkse grondwatergebruik en het risico op watertekorten in drie verschillende 

droogtejaren.   

Machine learning modellen zijn ontwikkeld om vijf verschillende waterkwaliteitsparameters die belangrijk zijn 

in het gelijktijdig gebruik van oppervlakte- en grondwaterbronnen in de case study te voorspellen: nitraat, 

fosfaat, sulfaat, geleidbaarheid en bentazon. Het autoregressieve gedrag van alle parameters is in het model 

meegenomen aan de hand van hun afgelopen waarden en de interne statistiek. Externe features zijn de 

kalendereffecten, neerslag, temperatuur, debiet en landgebruik. Zes verschillende algoritmen zijn getest met 

20 verschillende feature sets, die 1-3 weken vooruit voorspellen voor alle verschillende 

waterkwaliteitsparameters. De autocorrelatie en kalendereffecten waren het belangrijkst bij het voorspellen van 

nitraat. Voor alle andere waterkwaliteitsparameters geldt een beste voorspelling met neerslag, debiet en 

temperatuur. De onderlinge afhankelijkheid van klimaatprocessen heeft een grote invloed op hun voorspellende 

waarde.  

Een flexibele productiestrategie is ontwikkeld om het optimale gelijktijdige gebruik van oppervlakte- en 

grondwaterbronnen onder onzekere klimaatomstandigheden te vinden. Het doel van deze nieuwe 

productiestrategie was om te voldoen aan de watervraag met een trade-off van het minimaliseren van 

grondwatergebruik en het risico op watertekorten, onder de fysieke grenzen van het reservoir en de 

beschikbaarheid van oppervlaktewater. Simpele modellen die gebruik maken van waterkwaliteitsdata en open-

source klimaatdata kunnen worden gebruikt om een voorspelling gebaseerde strategie met verbeterde 

performance te ontwikkelen. De datagedreven benadering maakt het onnodig om alle individuele klimaat-

waterrelaties van het systeem te modelleren. De op voorspelling gebaseerde strategie werd vergeleken met 

een traditionele productiestrategie, op basis van jaarlijks grondwatergebruik en het risico op watertekorten. De 

nieuwe productiestrategie zorgt voor een lager risico op watertekorten, wat soms leidt tot een toename in 

grondwatergebruik. Verbeteringen in het voorspelmodel kunnen zorgen voor een nog lager risico op 

watertekorten.  
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1. Introduction 
Clean drinking water is one of the basic needs of human society (Zhang, 2015). Climate change threatens 

drinking water production because of its deteriorating effects on the quantity and quality of water resources 

(Bloetscher et al., 2014; Kundzewicz & Döll, 2009; O’Connell, 2017). Surface water and groundwater are both 

resources that can be used to produce drinking water. Quality surface and groundwater resources are limited 

and shrinking because of overexploitation, urbanization, and climate change impacts (Singh, 2014). Specific 

future climatic impacts are difficult to predict due to complex weather dynamics and site-specificity, which leads 

to much uncertainty. Uncertainty in climatic variability will even increase under a changing climate. In general, 

it can be stated that weather and temperature extremes become more common. In Europe, temperatures rise 

and precipitation patterns change (Maiolo et al., 2017). Increased temperatures cause decreased soil moisture 

content, precipitation deficits and higher water demand. Changes in rainfall pattern are highly region specific. 

In general, wet areas are projected to get wetter and dry areas are projected to get drier (O’Connell, 2017). 

Climate change is therefore expected to exacerbate regional and global water scarcity. Appropriate reservoir 

operation strategies are needed to ensure reliable water supplies for drinking water production under uncertain 

climatic conditions with increased water demand and reduced surface and groundwater availability (Bloetscher 

et al., 2014; Maiolo et al., 2017; Renwick, 2018).   

The conjunctive use of surface and groundwater resources is an example of an integrated water 

management approach that increases a system’s resilience against climatic variability and improves the security 

of water supplies under climatic change (Renwick, 2018). Conjunctive use is necessary because availability of 

one source of water may not be sufficient to fulfill the system’s requirements (Singh, 2014). Surface water 

availability, as defined by its quantity and quality, is uncertain under a changing climate (Kundzewicz & Döll, 

2009). Groundwater can be used as a replacement for surface water when surface water availability is low. The 

groundwater system changes more gradually and can be used as a buffer against the high degree of variability 

and vulnerability of surface water resources. It allows withdrawal during dry seasons when surface water is often 

more polluted than groundwater. Groundwater use has increased in recent decades relative to surface water 

use. 

Natural and anthropogenic processes can cause low surface water availability through water quality 

problems (Baker, 2003; Delpla, 2009; Rostami et al., 2018; Simeonov et al., 2003). Precipitation, geology, soil 

type, vegetation cover, and discharge are all conditions that influence the water system and are highly region 

specific. Water pollution can originate from point or diffuse sources (Delpla, 2009). Point source pollution enters 

a river at a specific point, such as industrial effluents or a pipe discharging wastewater. Diffuse sources are 

pollutants that leach into the water system as a result of hydrological processes. Agricultural applications are 

well-known sources of diffuse pollution.  

Conjunctive use of surface and groundwater resources has been evaluated in literature and shows 

advantages when surface water availability is low. Khare et al. (2006) showed conjunctive use reduces losses 

in irrigation supply when surface water resources are limited and groundwater is used as a supplementary 

source. Das et al. (2015) also used groundwater to complement surface water in times of low surface water 

availability. Conjunctive management can also be used when shortages of surface water supply and depletion 

of groundwater resources occur simultaneously (Sarwar & Eggers, 2006).  

In conjunctive use, a trade-off exists between the risk of water shortages due to low surface water availability 

and the supplementary use of groundwater resources (Scanlon et al., 2016). Water shortages can be caused 

by climatic processes that deteriorate the surface water quality such that intake is not possible. Groundwater 

resources can then be used to avert the risk of a water shortage. Consequences of a water shortage are low 

water pressure and low drinking water quality (De Watergroep, 2021b). Groundwater can be strictly limited 

through groundwater permits, of which exceedance can become costly. Groundwater use should therefore also 

be limited, which leads to conflicting objectives.  
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Conjunctive use can be implemented using (a combination of) predefined long-term strategies or adaptive 

real-time production strategies (Ahmadi et al., 2015). Production strategies should prescribe decision rules and 

constraints for surface water and groundwater production rates. A predefined approach is based on historical 

long-term series or experiences. An adaptive real-time approach includes current system variables and 

requirements to which the operator responds. Uncertainties in climatic conditions make long-term operational 

strategies less favorable and stress the need for an adaptive real-time approach (Li et al., 2010). A forecast-

based approach uses the knowledge of future events to operate the reservoir adaptively and anticipative, which 

can lead to a reduction of both the risk of water shortages and groundwater use. Adaptive forecast-based 

reservoir operation approaches were implemented before by (amongst others) Dagli & Miles (1980), Alemu et 

al. (2011), and Gavahi et al. (2019). Forecasting models predict input parameters based on which a set of 

decision rules and constraints regarding the output parameter are developed.  

Production from surface water resources is limited through riverine water quality. Water quality 

measurements can be used for a predefined approach, while water quality forecasting is needed to develop an 

adaptive forecast-based production strategy. Forecasting surface water quality indicates what the expected 

period of intake is and when groundwater should be used supplementary. The water quality system and its 

dependencies on climatic processes is highly site-specific, which complicates understanding the underlying 

physical processes needed for conventional physically-based water quality modelling (Ahmed et al., 2019; 

Fukushima et al., 2000). While physically-based models are more transparent and easy to interpret, they are 

not able to capture the complex, site-specific relations that occur in the climate-water quality system. Data-

driven approaches are more accurate in capturing system’s specific behavior and therefore promising for water 

quality modelling (Solomatine & Ostfeld, 2008; Wu et al., 2017). Data-driven modelling is based on the analysis 

of concurrent input and output series. Only a limited number of assumptions about the physical behaviour of 

the system is needed. Machine learning models are data-driven modelling approaches that find relations 

between input and output data through different types of algorithms with different levels of complexity.  

An adaptive forecast-based approach is more flexible and resilient to uncertain climatic conditions than a 

predefined approach and can reduce the risk of water shortages or groundwater use when surface water 

availability is limited through riverine water quality problems. Uncertainties in climatic conditions can, however, 

limit the advantages of forecast-based approaches due to inaccurate forecasting. The aim of this research is 

therefore to explore the role of uncertainty in climatic conditions in the conjunctive use of surface and 

groundwater resources for drinking water production by developing an adaptive forecast-based production 

strategy.  

The following research questions will be answered to fulfill the aim of this research:  

1. How can conjunctive use of surface and groundwater resources be decided on under uncertain climatic 

conditions?  

a. How do climatic processes influence the system parameters that are decisive in the conjunctive 

use of surface and groundwater resources?  

b. How can these climatic processes be used to forecast the conjunctive use of surface and 

groundwater resources under uncertain climatic conditions?  

2. How can an adaptive forecast-based production strategy be developed for the optimal conjunctive use 

of surface and groundwater resources under uncertain climatic conditions?  

a. How can the conjunctive use of surface and groundwater resources be simulated? 

b. How can a predefined and an adaptive forecast-based production strategy be modelled? 

c. How does an adaptive forecast-based approach compare to a predefined production strategy? 

d. What are the trade-offs in optimizing the conjunctive use of surface and groundwater resources 

under uncertain climatic conditions?  
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A case study of a drinking water company in Western Flanders that adopts the conjunctive use of surface 

and groundwater resources is used to compare a predefined production strategy and an adaptive forecast-

based strategy. Machine learning models are used to forecast water quality which defines water availability for 

surface water production in one of the surface water reservoirs. A reservoir model is developed with which both 

strategies are compared. A retrospective analysis of three historic years was done to compare the performance 

in risk of water shortages and groundwater use for both strategies.  
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2. Case study  
De Watergroep is a Belgian drinking water company that implements a conjunctive use approach in their 

drinking water production strategy. Their approach is used as a case study for the present research. De 

Watergroep experienced problems in producing and supplying sufficient drinking water to their supply area as 

an effect of climate change. The dry summers of 2018 – 2020 led to low water quality and increased water 

demand (De Watergroep, 2021b). These summers are expected to be a prelude to future climate change 

effects, such as heavy droughts. De Watergroep therefore strives for an optimal production strategy in the 

conjunctive use of surface and groundwater resources in which groundwater use and the risk of water shortages 

is limited. This section explains the case study and a possible solution pathway.   

2.1 Study area  
De Watergroep België is the largest drinking water company in Flanders, with 3.3 million clients in over 150 

Flamish municipalities (De Watergroep, 2021a). The supply area covers most of the West Flanders region in 

Belgium. Drinking water is produced from both surface water resources from the river Yser and groundwater 

resources. The river Yser emerges from small streams in France (Heylen, n.d.; Srubbe, 2005). The catchment 

knows relatively long dry periods and the river easily floods during heavy rainfall. When rainfall is low, discharge 

is much lower than with high rainfall. The average winter discharge is therefore much higher than the average 

summer discharge. 80% of the Yser catchment is covered with agriculture, horticulture and grasslands 

(Coordinatiecommissie Integraal Waterbeleid, 2016). Figure 1 shows a map of the supply area with the river 

Yser and the most important surface water reservoir: the Blankaart.     

  

Figure 1: A) Supply area of de Watergroep. Red dots: surface water production centers. Yellow dots: 

groundwater production centers. Arrows: external purchases (De Watergroep, 2021b). Green star: WPC De 

Blankaart. Blue line: river Yser. B) Reservoir of WPC De Blankaart. 

The red dots in Figure 1 indicate surface water production centers (WPC), the yellow dots indicate 

groundwater production. Surface water production centers have large reservoirs that are filled with raw river 

water before it is treated into high-quality drinking water, of which the Blankaart reservoir is the largest and most 

important. The Blankaart is located centered and relatively isolated. Switching off the Blankaart in summer can 

cause drinking water problems and creates the risk of water shortages. 
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2.2 Production strategies  
Intake of river water to the Blankaart reservoir is regulated through water quality measurements in the river 

Yser. Different water quality compounds with alarm concentrations are measured that describe river water 

quality.  If the water quality becomes too low (exceeds alarm concentration), intake of river water to the reservoir 

is stopped. If the water quality is sufficiently high, the company decides to start intake from the river again. The 

residual water demand is supplied from groundwater resources or neighboring companies. Both options are 

expensive and uncertain (De Watergroep, 2021b). Purchasing water from neighboring companies generates 

uncertainty since these companies might experience similar production issues during periods of low water 

quality. Increased groundwater uptake is expensive and does not comply with governmental ecological 

requirements. The Belgian government has decided to set strict permits to limit intake from groundwater 

resources because of extensive historic industrial groundwater use.  

2.2.1 Current production strategy 
The current production strategy is an approach that is reactive to water quality measurements and the 

coinciding potential intake. The operator can either switch directly to a low production rate or remain a high 

production rate although intake is not possible. This choice results in a trade-off between groundwater use and 

the risk of water shortages, which is shown in Figure 2. The company currently decides to either use maximum 

production capacity or half of the production capacity. The company plans to adopt a different system in five 

years, in which the production rate can be controlled linearly. This increases flexibility in designing a new 

production strategy.  

 

Figure 2: Trade-off in reservoir operation. Green lines: period of low water quality. Left-hand side: directly switch 

to low production. Right-hand side: remain high production rate.  

The left-hand side in Figure 2 shows that the risk of water shortages can be averted by switching to low 

production early on in the dry period. This approach comes at the cost of increased groundwater use and 

exceedance of groundwater permits, because there is a large remaining volume in the reservoir at the end of 

the low water quality period. The right-hand side approach shows a high risk of water shortages, but limited 

groundwater use. There is no remaining water in the reservoir for which groundwater has been used as 

replacement.  

2.2.2 New production strategy 
Two optimal operational decision paths in which both the risk of water shortages and groundwater use are 

minimized are shown in Figure 3. The reservoir approaches its minimum volume just at the end of the low water 

quality period. This means that no unnecessary groundwater has been used and the reservoir has never 

reached the minimum volume which means that it can easily be filled.  A newly developed production strategy 

should approach these optimal operations.     
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Figure 3: Optimal operation of the surface water reservoir.  

Defining the end of a low water quality period comes with much uncertainty. If the end of a dry period can 

be clearly defined, the operator can take more risk and empty the reservoir such that less water remains in the 

reservoir before the end of the dry period. The production strategy can be adapted during the drought period 

itself according to river water quality forecasts. Accurate water quality forecasting helps to make operational 

decisions and optimize water production from surface water resources. 
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3. Methodology 
Reservoirs can be operated with predefined strategies or adaptive forecast-based strategies. Intake is driven 

by surface water availability, which depends on water quality and/or water quantity. The Blankaart intake rate is 

quality-dependent and therefore driven by the concentration of several pollutants. The selected parameters in 

this research are nitrate (NO3), (ortho-)phosphate (oPO4), sulfate (SO4), conductivity and bentazon (see 

Appendix 1A). These compounds represent nutrients, pesticides, and the salination of water which are all 

important parameters for water quality. Climatic and anthropogenic processes influence river water quality and 

can be used as predictors for water quality forecasting with machine learning models. The data-driven approach 

of machine learning models allows capturing complex relations between predictors and water quality 

compounds without the need to model the complete climate-water system. The relation between 

climatic/anthropogenic processes and the water quality compounds can differ per parameter and forecast 

horizon. Individual models were therefore made for each water quality parameter and forecast horizon. An 

adaptive forecast-based reservoir production strategy is expected to improve performance in uncertain climatic 

conditions because the approach is more proactive instead of reactive. 

This chapter proposes a methodology for forecasting river water quality and designing an adaptive forecast-

based approach for reservoir operation. Research question 1 was covered by developing machine learning 

models for each water quality compound and experimenting with different feature sets including and excluding 

specific climatic processes. To answer research question 2, a reservoir model and a predefined and adaptive 

forecast-based production strategy were developed, and their performance is compared based on several key 

performance indicators. Figure 4 shows the outline of the methodology.   

 

 

Figure 4: Methodology outline.  
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3.1 Water quality forecasting 

3.1.1 Machine learning for water quality forecasting  
Machine learning models can be used for time series forecasting to develop a predictive model on data with 

a temporal relationship between observations (Lazzeri, 2020; Nielsen, 2019). The models are data-driven and 

focus on identifying the patterns and relations between these data without the need for complex programming 

(Asadollah et al., 2021). Supervised learning is a machine learning approach in which the problem’s input and 

output variables are both known and used in the learning process. Nitrate, phosphate, sulfate, conductivity, and 

bentazon are all influenced by climatic and anthropogenic processes. Relevant processes can differ per water 

quality parameter and forecast horizon, so separate dataframes were made for each combination of water 

quality parameter, forecast horizon, and set of input features (direct multi-step forecasting) (Lazzeri, 2020; 

Nielsen, 2019). All algorithms were tested on each dataframe. The columns of each dataframe represent the 

input features and one target variable. The input features were transformations of relevant climatic processes 

(precipitation, temperature, discharge, and land use), which were obtained through feature engineering. The 

target variable depended on the forecast horizon: the concentration of each water quality parameter of either 

1, 2 or 3 weeks ahead was to be predicted. The rows of each dataframe are the observations of each input 

feature and target variable over time. An example snippet of a dataframe is shown in Figure 5.  

Date lagged_C_1 lagged_C_2 jan feb lagged_P_1 lagged_T_1 grassland C 

12-01-2015 36 35 1 0 15 4 0.33 38 

19-01-2015 38 36 1 0 13 3.5 0.33 42 

26-01-2015 42 38 1 0 8 3 0.33 44 

02-02-2015 44 42 0 1 5 2 0.33 42 

Figure 5: Example snippet dataframe. All rows are ‘observations’. All columns except column ‘C’ are input 

features. Column ‘C’ is the target variable.  

Each dataframe was split into a training (years 2011-2018) and testing (years 2019-2021) subset, for which 

both the input features and target variables are known (supervised learning). With each preceding time step, 

data from the testing set is added to the training set such that all currently available information is used for 

prediction. The data was not shuffled due to the temporal dependency. The training phase is used for modelling 

and the testing phase is used to evaluate the accuracy of the models by comparing forecasts with actual 

observations. Each input feature was scaled between 0 and 1, such that all input features fall within the same 

range of numerical values. The selected algorithm studies the training data to find relations between input and 

target variables and to be able to make predictions about future data points. The predictions based on unseen 

data from the test set are compared to actual observations from the test set to find the performance of the 

predictive model.  

3.1.2 Model performance 
Model performance of all models was assessed with the R2 score (coefficient of determination), which 

indicates the degree of correlation between the observed and forecasted values (Equation 1) (Asadollah et al., 

2021).  

 

(1) 

 

The R2 score measures the amount of variability explained by the model based on the predictions and the 

actual observations in the test set. 𝑅2 = 0 means no correlation, 𝑅2 = 1 means perfect correlation. The score 

gives the overall model performance and is easy to compare to other studies that use machine learning for 

forecasting purposes. Following the study of Alnahit et al. (2022), the following classification for model 
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performance was used: weak performance = R2 < 0.25, moderate performance = 0.25 < R2 < 0.75, and strong 

performance = R2 > 0.75.  

For each combination of water quality parameter/forecast horizon, a baseline model was made to which the 

model performance of all forecasting models was compared. This baseline model was based on the principle of 

persistence, in which the last measured concentration is assumed to be the predictor for the next value. This is 

a rough approximation of a predefined production strategy that does not use a forecasting model.  

3.1.3 Analysis  
The model performance was assessed through three different pathways. The effect of all climatic processes 

was assessed by comparing model performance between feature sets that include each specific process and 

the ones that exclude the process. The average, minimum and maximum performance for including or excluding 

the climatic process are important indicators of the predictive value of each climatic process. The weighted 

optimal feature set represents which set of features overall performs best on all forecast horizons of a water 

quality parameter. The top 5 performing models are scored for how well they perform. The best performing 

feature set gets 5 points, the least one 1 point. This ranking is done for each forecast horizon. Then, the weighted 

ranking is obtained per feature set by adding all scores and dividing this by 3 (forecast horizons). The highest 

scoring feature set is the weighted optimal feature set.  The optimal performing model was lastly found for each 

water quality parameter and forecast horizon, that were used for reservoir operation.  

3.1.4 Machine learning algorithms  
Water-related problems are often characterized by noisy and poor quality data (Solomatine & Ostfeld, 2008). 

The performance of algorithms for water quality forecasting is not evident and rather case-dependent. Tiyasha 

et al. (2020) provide an extensive overview. Different algorithms can result in different performance and it is 

therefore necessary to apply various modelling techniques and compare the results. Six algorithms were used 

and compared in this research (see Table 1). All algorithms were implemented with the open-source Python 

machine learning package scikit-learn (Pedregosa et al., n.d.). Scikit-learn is an easy to use package that 

consists of a range of machine learning, preprocessing and visualization algorithms that is easy to integrate with 

other useful package (Lazzeri, 2020). Algorithms can be optimized by tuning the hyperparameters (model 

settings). The high number of possible combinations of hyperparameters makes this process labor expensive, 

so the standard values of the hyperparameters were used.  

Table 1: Machine learning algorithms used in the current research. *See: https://scikit-learn.org/ . 

Algorithm Algorithm (sklearn)* 

Linear Regression LinearRegression 

Decision Tree DecisionTreeRegressor 

Support Vector Machine LinearSVR, SVR 

K-Nearest Neighbors KNeighborsRegressor 

Random Forest RandomForestRegressor 

 

Simple or Multiple Linear Regression (SLR/MLR) linearly estimates the relationship of dependent variables 

to independent variables by fitting a line (Koranga et al., 2022; Lepot et al., 2017). Linear regression models try 

to minimize the sum of squared errors between the measured and modelled data (Yildiz et al., 2017). The  

models are simple and easy to interpret. A disadvantage is that their focus is more on finding a general solution 

over the complete dataset than on specific subsets, and do not handle nonlinearities sufficiently.   

Decision Trees (DT) are a hierarchical structure where the prediction of an output variable depends on all 

higher-level data attributes (Koranga et al., 2022). Each node of the tree represents a characteristic which 

distinguishes different decision paths. The model learns through following top-to-bottom decision rules. Decision 

https://scikit-learn.org/
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trees are simple to understand and interpret and require little data preparation (Pedregosa et al., n.d.). They 

work well for data with many nonlinearly interacting features (Singh et al., 2016; Yildiz et al., 2017).  

Support Vector Machines (SVM/SVR) find a hyperplane to separate n-dimensional spaces into classes  

(Koranga et al., 2022; Sattari et al., 2016). Most of the training subset values should be within a margin from 

the hyperplane, which is defined by a certain tolerance level. SVM’s are customizable to fit the case purpose by 

using specific settings. They are suitable for nonlinear regression problems and able to predict quantities forward  

in time based on training from past data and is suitable for extrapolation (Mosavi et al., 2018; Yildiz et al., 2017). 

A disadvantage is that the algorithm is complex and can be time costly. 

The  k-Nearest Neighbors  (KNN) approach uses different metrics of windows of surrounding or preceding 

data to forecast the window of interest for the target variable (Lepot et al., 2017). The algorithm computes a 

weighted average of the number of k nearest neighbors which are inversely distance weighted (Sattari et al., 

2016). KNN can be used for cases with continuous data labels, where the label to the query point is computed 

based on the mean of the labels of its nearest neighbors (Pedregosa et al., n.d.). Extrapolation is based on the 

nearest past k neighbors, which makes this algorithm not the most favorable for extrapolation purposes.   

A Random Forest (RF) is an ensemble of decision trees that selects the best output prediction by aggregating 

the outcomes of multiple decision trees (Koranga et al., 2022). Random forests have the advantages of decision 

trees and the additional advantage that errors are cancelled out by taking the average of all decision tree 

predictions (Pedregosa et al., n.d.). Random forests are robust to noise and do not overfit to data, but they can 

be slow for real-time prediction (Singh et al., 2016).  

3.1.5 Input features  
Climatic variability affects water quality compounds through natural and anthropogenic processes such as 

precipitation, temperature, discharge, and land use (Baker, 2003; Rostami et al., 2018; Simeonov et al., 2003). 

Many processes depend on meteorological and hydrological conditions, which are highly region specific 

(Fukushima et al., 2000). Site-specific investigation is therefore needed to capture the predictive value of each 

climatic process. The climate processes covered in this research are precipitation, air temperature, discharge, 

and land use. 

Different input feature sets were used in combination with the machine learning algorithms to find the 

predictive value of the climatic processes on the water quality parameters. Six algorithms and 20 different 

feature sets (see Table 2) were altered for five water quality parameters and 3 forecast horizons. Experiments 

with different feature sets including or excluding relevant climatic processes were iteratively used to find the 

optimal performing model, and the influence of each climatic process in the prediction of each water quality 

parameter for each forecast horizon. The optimal performing models for forecast horizons of 1, 2, and 3 weeks 

were used in the adaptive forecast-based strategy for reservoir operation.  

Table 2: Feature sets.  

# Feature set  # Feature set 

1 Base  11 Calendar 

2 Base + P  12 Calendar + P 

3 Base + T  13 Calendar + T 

4 Base + Q  14 Calendar + Q 

5 Base + LU  15 Calendar + LU 

6 Base + P +T  16 Calendar + P + T 

7 Base + P + Q  17 Calendar + P + Q 

8 Base + T + Q  18 Calendar + T + Q 

9 Base + P + T + Q  19 Calendar + P + T + Q 

10 Base + P + T + Q + LU  20 Calendar + P + T + Q + LU 
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3.1.4.1 Base features  

In time series forecasting, all previous time steps can be used as input to predict the next time step as output 

of the model, using a sliding window. Base features are therefore included to capture the autoregressive 

behavior of all water quality variables. These include the lagged concentrations of each water quality parameter, 

and the rolling statistics (mean, maximum, minimum, standard deviation). Each water quality parameter has 

different autoregressive behavior. Autocorrelations with a Pearson correlation coefficient (R) of >=0.5 are 

considered to have enough predictive power to contribute to the forecasting model performance (see Appendix 

1B). The rolling statistics are determined over a rolling antecedent window of which the size is determined by 

the highest lag for which R>=0.5 holds.  

3.1.4.2 Calendar features 

Calendar features were added to the model to capture the seasonal behavior of the system. Each month of 

the year is a distinct feature. One-hot encoding is used to convert the month classes into numerical values. An 

example is shown in Figure 6.  

Input features 

Date Jan Feb Mar Apr May Jun Jul 

01-03-2022 0 0 1 0 0 0 0 

01-04-2022 0 0 0 1 0 0 0 

01-05-2022 0 0 0 0 1 0 0 

Figure 6: Calendar features, one-hot encoded.  

3.1.4.3 Precipitation  

Precipitation influences river water quality either direct through wash-off or indirect through dilution (Rostami 

et al., 2018). Water pollutants from diffuse sources are prone to wash-off, while dilution is more important for 

point sources. Wash-off occurs when non-point source pollutants are accumulated on land surface, for example 

in soils or leaves, and end up in the river by surface runoff generated from precipitation. Many non-point sources, 

like nitrate, phosphate, and pesticides, are used in agricultural applications and end up in the river after intense 

rainfall (Fukushima et al., 2000; Kalkhoff et al., 2016). For point-sources, such as industrial effluent, dilution is a 

more important effect of precipitation. Their concentration decreases through dilution (Rostami et al., 2018).   

The mean areal precipitation over the study area was determined with three spatial interpolation methods, 

which are explained in Appendix 1C. The methods with the strongest correlations were used for each water 

quality parameter. The mean areal precipitation time series will be transformed into cumulative antecedent 

precipitation, similar to the research conducted by Rostami et al. (2018).  

Wash-off is captured with the 1 – 10 days past precipitation. Dilution is expected to take place over a longer 

lagged time scale. The Pearson correlation (95% C.I.) between the cumulative antecedent precipitation and the 

water quality parameters was determined to identify appropriate time scales to capture dilution, using an 

expanding window of window size 10 – 100 days. The optimal lag has the highest Pearson correlation (see 

Appendix 1D).  

3.1.4.4 Temperature  

High air temperature affects water quality through enhanced nutrient cycling rates and eutrophication 

(Benítez-Gilabert et al., 2010; Fukushima et al., 2000). Pesticide concentrations are expected to increase with 

increased temperature through increased crop growth. Conductivity increases with water temperature and is 

therefore related to air temperature (Hayashi, 2004; Ozaki et al., 2003). Sulfate release from soil can increase 

with increased temperature (Zhu et al., 2019).  

Temperature is expected to influence water quality mostly on a longer time scale. A longer period of high 

daily maximum temperature can cause water quality problems, while one day of high temperature is not 
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expected to highly influence the water quality variables. Temperature drives slow processes that affect water 

quality on a longer time scale, such as evaporation.  

The correlation between the average antecedent daily maximum temperature and the water quality 

parameters was obtained. An expanding window was used to calculate the lagged average daily maximum 

temperature for a window size of 10 to 100 days. The Pearson correlation (95% C.I.) between the average 

lagged daily maximum temperature and the current concentration was determined. The optimal lag is the 

window with the highest Pearson correlation (see Appendix 1D).  

3.1.4.5 Discharge  

Discharge influences river water quality through its composition of different flow components (Kalkhoff et al., 

2016). Low flow mainly consists of base flow while higher flow has a greater contribution from surface runoff 

and overland flow, which may contain more contamination from agricultural soils. High discharges are therefore 

expected to have a higher concentration of nutrient pollutants than low discharges. This holds for nitrate, 

phosphate and pesticides which all originate from diffuse agricultural applications. Point sources are expected 

to negatively relate to discharge, due to the dilution effect. The relation between discharge and physicochemical 

water quality parameters such as conductivity and salination are complex and site-specific. Low discharges 

could lead to more seawater intrusion and therefore discharge might be negatively related to conductivity and 

salination. Effects like dilution might also play an important role here.   

Discharge is expected to have a short-term predictive value. The current discharge and the average 

discharge over the past 1-4 days is used as input features to the model.  

3.1.4.6 Land use  

Many water quality parameters are related to land use (Ahearn et al., 2005; Tong & Chen, 2002). Runoff 

from agricultural land may be enriched with nutrients and sediments, while runoff from urbanized areas can 

contain larger compounds and heavy metals. Processes such as evapotranspiration, interception and infiltration 

can differ per crop type. Land use characteristics such as fertilizer input and cropping patterns play an important 

role (Kalkhoff et al., 2016). Pesticide concentration and timing are crop-dependent and therefore expected to 

be influenced by crop type.   

The percentage of catchment area covered per crop type was used as a yearly feature to define the land 

use in the area. Each crop type is defined as a distinct feature. In total, thirteen crop types were distinguished: 

grassland, corn, ‘grains, seeds and legumes’, ‘vegetables and spices’, ‘potatoes’, ‘agricultural infrastructure’, 

‘sugarbeets’, ‘cattle feed’, ‘fruits and nuts’, water, hemps, ‘woodlike crops’, and ‘other crops’.  

3.1.4.7 Summary  

All above mentioned variables are transformed into useful features for modelling. A summary of the 

engineered features is listed in Table 3 below. A total of (n+57) input features is used in each model, in which n 

is determined by the autoregressive behavior of each water quality variable.  

Table 3: Feature engineering for each variable.  

Variable Features [# of features] Notes 

Base Lagged concentration [n] n is determined by 

autocorrelation  Rolling mean (window = n days) [1] 

Rolling min (window = n days) [1] 

Rolling max (window = n days) [1] 

Rolling stdev (window = n days) [1] 

Calendar Month [12] One-hot encoded 

Precipitation Current precipitation [1] j is optimal lag 

determined by correlation 

analysis  
Cumulative antecedent precipitation over the 

previous 0-10 days [10] 
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Cumulative antecedent precipitation over the 

previous (j-2)-(j+2) days [5] 

Temperature Current temperature [1] k is optimal lag 

determined by correlation 

analysis 
Average antecedent temperature over the 

previous (k-2)-(k+2) days [5] 

Discharge Current discharge [1]  

Average discharge over the previous 1-4 days [4] 

Land use Crop type [13]  
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3.2 Reservoir operation  
Conjunctive use of surface and groundwater resources is a complex decision-making problem involving 

many decision variables and multiple objectives (Ahmadi et al., 2015; Alemu et al., 2011). This research is 

limited to surface water availability for conjunctive use, defined by the water quality compounds nitrate, 

phosphate, sulfate, conductivity, and bentazon. Reservoir operation can be decided on by simulating a 

reservoir, constructing production strategies, and finding the optimal solution based on performance 

assessment of key performance indicators (Li et al., 2010). A simulation model examines how the water system 

behaves under a given set of control actions (Lin & Rutten, 2016). Production strategies are sets of rules that 

define the values of the production rate from the reservoir. Retrospective analysis can be used to compare the 

performance of different production strategies using a modelled reservoir (Alemu et al., 2011; Allawi et al., 

2019). A complete pattern of intake and production can be reconstructed with a reservoir simulation model. A 

predefined (production rate based on water quality measurements) and an adaptive forecast-based strategy 

(production rate based on water quality forecast) were tested with a modelled reservoir to compare the 

performance on two predefined key performance indicators. Drought is defined as days where intake is not 

possible. Summer is defined as 1 April – 1 October, winter is 1 October – 1 April.  

3.2.1 Modelling the conjunctive use of surface and groundwater resources   
The Blankaart reservoir model is based on the mass balance equation, which is a widely used approach for 

modelling simple reservoirs (Allawi et al., 2019; Lin & Rutten, 2016). The model consists of a reservoir, river 

intake, river outlet, reservoir outlet, and groundwater resource. The numerical scheme is defined by Equations 

2-6 of which the components are explained in Table 4. The numerical scheme and the simulation were 

implemented with Python programming language. 

V(t) = V(t − 1) + (Qin(t) − Qout(t)) ∗ dt (2) 

Qin(t) = Qin,max ∗ f(x) + Qgroundwater,extra(t) (3) 

f(x) = {
1 if WQ is sufficient

0 if WQ is insufficient
 (4) 

Qout(t) = Qout,production(t) + Qout,river(t) (5) 

Qgroundwater(t) = D(t) − Qout,production(t) + Qgroundwater,extra(t) (6) 

 

Table 4: Components of the numerical scheme used to model the Blankaart reservoir. ** Artificially added.  

Symbol Explanation Unit 

V Volume of water in reservoir at the end of the day m3 

Qin Inflow from river into the reservoir m3/day 

Qout Total outflow out of the reservoir m3/day 

Qin,max Pumping capacity inflow m3/day 

f(x) Step function to define when intake is possible - 

Qgroundwater,extra Extra groundwater inflow to reservoir to keep minimum volume constraint ** m3/day 

Qout,production Production from the reservoir  m3/day 

Qout,river Extra outflow  from reservoir to river to keep maximum volume constraint ** m3/day 

Qgroundwater Total groundwater use per time step m3/day 

D Water demand m3/day 

 

The time step of the numerical scheme is one day. The volume represents the volume at the end of the day 

(after the ingoing and outgoing fluxes of that day took place). 𝑄𝑖𝑛 is defined with a step function using the water 

quality measurements. If one of the water quality parameters exceed their limit concentration, intake is 0 m3/day. 
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If intake is possible, the intake rate equals the intake pumping capacity. The hard constraints of the reservoir 

model are listed in Table 5 and should be satisfied at all times (Kendall, 1975; Lin & Rutten, 2016).  

Table 5: Hard constraints for reservoir model de Blankaart.  

Symbol Constraint Value 

Vmin Minimum reservoir volume 600 000 m3 

Vmax Maximum reservoir volume 3 000 000 m3 

Qin,min Minimum inflow 0 m3/day 

Qin,max Pumping capacity inflow 142 000 m3/day 

Qout,production,min Minimum production rate 0 m3/day 

Qout,production,max Production capacity 40 000 m3/day 

 

Modelling the constraints is done through constraint rules, that are defined as follows:  

- If Qprod (t) > Qprod,max: 

o Qout,river (t) = Qprod (t) – Qprod,max-> let abundant water ‘flow back’ to river 

o Qprod (t) = Qprod,max 

- If Qprod(t) < Qprod,min: 

o Qgroundwater, extra(t) = Qprod(t) – Qprod,min -> take groundwater into reservoir  

o Qprod(t) = Qprod,max 

Two artificial in-/outflows are added to the model that do not exist in reality: 𝑄𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟,𝑒𝑥𝑡𝑟𝑎 and 𝑄𝑜𝑢𝑡,𝑟𝑖𝑣𝑒𝑟. 

These fluxes are added to meet the model’s hard constraints. In reality, if the reservoir tends to overflow because 

the intake is much higher than the production capacity, the intake rate would be lowered. In the model however, 

water can ‘flow back’ to the river through the additional outlet modelled as 𝑄𝑜𝑢𝑡,𝑟𝑖𝑣𝑒𝑟. Secondly, if the production 

rate tends to become smaller than the minimum production rate (0 m3/day), groundwater should be taken into 

the reservoir. The production rate is set to 0 m3/day , and the difference between the actual production rate and 

the desired production rate should be provided for from the groundwater source. This is done such that no 

“extra” water will be formed, and the water balance is closed. This extra groundwater source adds up to the 

actual groundwater used as supplementary source when production from the reservoir is not sufficient to meet 

the water demand (see Equation 6).  

The initial conditions are listed in Table 6. The  initial volume and initial production rate are defined for only 

the first day of the year. Volume and production rate are calculated through the reservoir operation rules for the 

rest of the year. The intake rate is externally defined but is chosen to be maximum for the first seven days of 

each year to overcome problems with the hard constraints for the reservoir model.  

Table 6: Initial conditions for reservoir model de Blankaart.  

Symbol Condition Value 

Vinit Initial volume 7*105 m3 

Qprod,init Initial production rate 4*104 m3/day 

Qin,init Initial intake rate 142 000 m3/day for first 7 days 

 

3.2.2 Developing production strategies  
Reservoir operation can be based on a combination of historical long-term series and real-time rules (Ahmadi 

et al., 2015). In real-time operation, the production rate (or any other decision variable) depends on other 

variables that hold in the current time step. The operator makes a final operational decision considering all 

important variables. The traditional production strategy is a predefined strategy based on past experiences of 

operating the studied reservoir and represents the currently adopted production strategy. The strategy is based 
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on water quality measurements rather than a forecast, so no water quality predictions are used in reservoir 

operation.  

Uncertainties in climatic conditions, caused by climatic change, make predefined operational strategies less 

favorable and stresses the need for a real-time adaptive approach (Li et al., 2010). Adaptive forecast-based 

approaches include the formulation of reservoir operation rules based on a forecast of future system variables, 

which is updated at regular intervals leading to adjustments in the operational plan (Alemu et al., 2011; Dagli & 

Miles, 1980; Gavahi et al., 2019). The second production strategy is an adaptive forecast-based approach, 

always using the latest available information such that an optimal strategy can be achieved. The operational 

rules are based on predictions of the input parameter over a certain planning horizon. The approach is an 

anticipative rather than a reactive one. Using water quality forecasting models, the operator knows when a 

period of low water quality (no intake) starts and when the period ends. The production rate can be adjusted 

accordingly, such that optimal performance can be achieved.   

The two production strategies were developed with a set of rules that define the production rate for each 

time step, driven by either the water quality measurements (predefined strategy) or a combination of water 

quality measurements and forecasts (adaptive forecast-based strategy).  

3.2.3 Comparing production strategies   
The optimal production strategy can be found by comparing the production strategies with defined simulation 

goals and constraints (Pereira et al., 2021; Snyman & Wilke, 2018). The hard constraints are the reservoir 

boundary conditions mentioned in section 3.2.1. When multiple simulation goals are defined, trade-offs between 

goals can occur. The simulation goals of this research were:   

1) Meet water demand  

2) Minimize groundwater use  

3) Minimize risk of water shortages 

 

The first goal is to always meet the water demand in the area. This goal can be achieved by either producing 

from surface water reservoir or from the groundwater resource. The second goal applies to the ratio between 

production from either surface water or groundwater. As much as possible water should be produced from the 

surface water resources, such that groundwater use is limited. The third goal prescribes that water shortages 

should be averted. Having low volume in the reservoir has negative effects on the water quality and intensifies 

the subsequent production steps. Water shortages can cause a complete shutdown of the Blankaart reservoir, 

which has negative effects on the drinking water quality.   

The groundwater resources in the model are unlimited which means that the first simulation goal will always 

be achieved. The performance of the strategies is therefore compared with two key performance indicators that 

correspond to the latter two simulation goals. 

3.2.3.1 Performance assessment  

Hashimoto et al. (1982) define three criteria for evaluating the performance of water resource systems that 

are widely accepted and used in other water resources research: reliability, vulnerability, and resilience (Ahmadi 

et al., 2015; Allawi et al., 2019; Bolouri-Yazdeli et al., 2014).  

Reliability is a measure for how likely a system is to fail (unsatisfactory performance) (Hashimoto et al., 1982). 

In the current research, unsatisfactory performance is defined as the time in which the production rate from the 

Blankaart does not equal the production capacity, and additional groundwater is needed in replacement 

(Qprod ≠ Qprod,max). Reliability is therefore described with the total groundwater use (TGWU) in m3, which 

corresponds to the second simulation goal: minimize groundwater use. The daily groundwater use is calculated 

with Equation 6. The TGWU is the sum of all values for the daily groundwater use. 
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Vulnerability represents the impact of consequences of failure (Hashimoto et al., 1982). It is described with 

the second KPI: days of minimum volume (DMV) in %, which corresponds to the third simulation goal: minimizing 

the risk of water shortages. It is the percentage of summer (1 April – 1 October) days that the reservoir volume 

exceeds the minimum drought volume (𝑉𝑚𝑖𝑛,𝑑𝑟𝑜𝑢𝑔ℎ𝑡). The minimum drought volume is a soft constraint that 

describes the risk of water shortages. An elaboration of the DMV indicator can be found in Appendix 1E.  

Resilience is a measure for how quickly a system recovers from failure. Resilience is not considered in the 

current research since it mostly depends on hard system constraints that cannot be altered with a new 

production strategy.  

3.2.3.2 Retrospective analysis  

Figure 7 shows the average, minimum and maximum summer production rates for 2011 – 2021.  

 

Figure 7: Average, minimum and maximum summer (1 April – 1 October) production rates from the Blankaart 

for 2011 -2021.  

2018, 2019 and 2020 were experienced as severely dry years with many problems in drinking water 

production (De Watergroep, 2021b). 2019 shows a minimum summer production of zero, which indicates that 

the Blankaart was completely switched off due to water quality problems. 2020 has the lowest average summer 

production. 2021 was a year with less water quality problems. Data from 2011 – 2018 are used to train the 

water quality model and therefore not suitable for evaluation. The years 2019 and 2020 are used to evaluate 

the production strategies under dry circumstances. 2021 is used to assess the performance under normal water 

quality conditions.  

Figure 8, 9, and 10 show the potential intake patterns for respectively the years 2019, 2020 and 2021. The 

intake patterns are based on the water quality measurements that were done during all years. If all considered 

water quality parameters (NO3, oPO4, SO4, conductivity and bentazon) allow intake, the intake rate is always 

maximum (14.2*104 m3/day). If one of the water quality parameters exceeds their limit values, the intake rate is 

zero. All days where intake is not possible are considered ‘drought days’.  

 

Figure 8: Potential intake pattern for the year 2019. If water quality is sufficient, intake is maximum. If water 

quality is insufficient, intake is zero.   
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The year 2019 has multiple short drought periods spread over the year, with a longer dry period in the end 

of summer. The total number of drought days is 170. This means that nearly half of the year, intake is not 

possible and Qin = 0. The drought days are spread over eight periods that differ in length.   

 

Figure 9: Potential intake pattern for the year 2020. 

The year 2020 has one long period of consecutive drought days. Intake is not possible during the summer 

months of June, July and August. The total number of drought days is 149, which is less than in 2019. However, 

the long dry period in summer causes higher risk of water shortages than multiple short dry periods.  

 

Figure 10: Potential intake pattern for the year 2021. 

2021 is less dry than the other years and shows some short drought periods in summer. The total number 

of drought days is 87.  

3.2.5 Sensitivity analysis  
Model constraints influence model outcome. A sensitivity analysis is performed to assess how all initial and 

boundary conditions influence the key performance indicators TGWU and DMV for the adaptive forecast-based 

strategy. The considered constraints are the initial volume and initial production rate, the minimum and 

maximum reservoir volume, the production capacity, and the intake rate. Each parameter is altered individually 

within a sensitivity range with all other parameters fixed on their set value.  

Table 7: Sensitivity analysis. All parameters are individually altered, with all other parameters fixed on their set 

value. 

 Symbol Set value Sensitivity range Unit 

Initial volume Vinit 7*105  7*105 – 3*106 m3 

Initial production rate Qinit 4*104  0 – 4*104 m3/d 

Minimum reservoir volume Vmin 7*105  1*105 – 1*106 m3 

Maximum reservoir volume Vmax 3*106 1*106 – 1*107 m3 

Production capacity Qprod,max 4*104  2*104 – 6.5*104 m3/d 

Intake rate Qin 1.42*105 2.2*104 – 2.2*105 m3/d 

 

3.2.6 Uncertainty analysis  
An uncertainty analysis is performed to show what the implications of the water quality forecasting model 

performance are for the key performance indicators of the reservoir operation. Prediction intervals are 
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constructed as a measure for model uncertainty. Higher model performance should lead to smaller prediction 

intervals. An approximation of the uncertainty is found with the standard deviation between the predictions and 

measurements for each month of the year. A confidence level of 95% is used because of its widely accepted 

use. The upper and lower bounds of the prediction intervals are used to calculate the extremes and to show 

how these influence the key performance indicators. 
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4. Data  
This chapter describes the water quality and climatic data that was used in the research.  

4.1 Water quality data  
The Blankaart intake strategy is quality-dependent and driven by the concentration of several compounds 

which are measured on several measuring stations along the river Yser. The parameters considered in this 

research are nitrate (NO3), (ortho-)phosphate (oPO4), sulfate (SO4), conductivity and bentazon, measured as 

closely as possible to the intake point of river water to the reservoir. These compounds represent nutrients, 

pesticides and the salination of water which are all important parameters for water quality. Appendix 1A explains 

the intake strategy. The availability of data differed per water quality parameter (see Table 8). All data was 

provided by De Watergroep.  

Table 8: Data availability for water quality parameters.  

 Available time period Measurement frequency 

Nitrate 2011-2021 2011 = monthly, other years = semi-weekly  

Phosphate 2013-2021 2013 – July 2016 = monthly, other years = semi-weekly 

Sulfate 2011-2021 2011 = monthly, other years = semi-weekly 

Conductivity 2011-2021 2011 = monthly, other years = semi-weekly 

Bentazon 2011-2021 All years  = semi-weekly  

 

4.1.1. Data preprocessing 
All duplicate values (measured on the same day) were replaced by the average of the double measurement. 

Some data contained outliers (Table 9). These peaks were incidentally caused and do not represent normal 

system behavior and are thus not useful for modelling. This concerns peak concentrations of NO3 in June 2016 

and peak concentrations of SO4 and conductivity in April 2011. The SO4 and conductivity peak was caused by 

incidental industrial disposal. Outliers were replaced with NAN values.  

Table 9: Outlier detection water quality data.  

 Parameter Date Value Reason 

1 NO3 06-06-2016 75 mg/l 

 

Unexpected increase and peak, 

very uncommon in time of the year.  

2 SO4 07-06-2011 till 05-07-2011 210 – 230 mg/l Peak caused incidentally by 

industrial dump. Identified by client. 

3 Conductivity 07-06-2011 till 05-07-2011 3900 – 4200 μS/cm Peak caused incidentally by 

industrial dump. Identified by client. 

 

NAN (Not A Number) values are datapoints with no available data. No NAN values were detected before 

removing outliers. After replacing the above-described outliers by NAN values, the data contained 5 NAN values 

(NO3 = 1 NAN, SO4 = 2 NAN’s, Conductivity = 2 NAN’s). NAN values were replaced with linear interpolation. 

The water quality data were irregularly spaced time series, meaning that the interval between the 

observations is not constant. The measurement frequency was not equal for all water quality parameters over 

the complete time series of 2011 – 2020. To overcome this problem, all water quality series were first upsampled 

and linearly interpolated to daily data. The daily time series was resampled with a weekly frequency that optimally 

matched the original time series such that as much as possible of the original weekly data remained. Figure 11 

shows a made-up example of this resampling strategy.  
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Fri Sat Sun Mon Tue Wed Thu 

01-04 02-04  03-04  04-04  05-04  06-04  07-04  

08-04 09-04  10-04  11-04  12-04  13-04  14-04  

15-04  16-04  17-04  18-04  19-04  20-04  21-04  

22-04  23-04  24-04  25-04  26-04  27-04  28-04  

29-04  30-04  01-05  02-05  03-05  04-05  05-05  

Figure 11: Made-up example of resampling strategy. Saturday and Thursday are the optimal resampling 

weekdays because most of the original data is maintained. Green cells represent datapoints in which the original 

data is remained.  

4.1.2 Nitrate  
Figure 12 shows the long-term time series and seasonal plot of nitrate concentration before data 

preprocessing. Figure 12A clearly shows the development of nitrate problems over the past years. In the years 

2016-2020, the alarm concentration was exceeded every year. Figure 12B shows the seasonal behavior of 

nitrate. Contrary to the other water quality parameters, the nitrate concentration increases in the winter months 

and is low in summer.    

 

Figure 12: A) Long-term time series (2011-2021). B) Seasonal plot (2011-2021). Intake from the river is 

interrupted when the measured NO3 concentration exceeds 60 mg/l.   

Western Flanders and especially the Yser catchment is one of the most nitrate-polluted areas of Belgium 

(Vlaamse Milieumaatschappij, 2021a). Emissions of nitrate to the surface water system are mainly caused by 

agricultural applications (Vlaamse Milieumaatschappij, 2022). Nitrate is a common substance of fertilizer used 

in agriculture. Limited crop growth during dry periods leads to less uptake of nitrate from applied fertilizer. This 

causes more wash-off of nitrate to the groundwater and surface water systems when precipitation increases 

during winter (Vlaamse Landmaatschappij, 2021).  

4.1.3 Phosphate 
Figure 13 shows the long-term series and seasonal plot of (ortho-)phosphate concentration before data 

preprocessing. The long-term time series shows that problems with oPO4 have increased over the past years. 

The seasonal plot shows that most water quality problems regarding oPO4 occurred in the summer months 

June, July, August, September and October. Data between 2011-2013 were not available. 
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Figure 13: A) Long-term time series (2013-2021). B) Seasonal plot (2013-2021). Intake from the river is 

interrupted when the measured oPO4 concentration exceeds 2 mg/l.   

Similar to nitrate, phosphate is an important substance of manure (Vlaamse Milieumaatschappij, 2021b). 

Current phosphate problems are mainly caused by historical over-usage of manure (De Watergroep, 2021b). 

Manure contains high amounts of phosphate which may highly exceed the uptake capacity of crops. This 

historically led to phosphate accumulation in soils. When soil is saturated with phosphate, the surplus of 

phosphate will wash off to the surface water system. Phosphate problems mainly occur in summer (Baken et 

al., 2016).   

4.1.4 Sulfate  
Figure 14 shows the long-term time series and seasonal plot of the sulfate concentration before data 

preprocessing. Figure 14A shows a large peak in SO4 concentration in 2011. This peak was caused by 

incidental industrial disposal (De Watergroep, 2021b). Peak concentrations of SO4 have increased in the past 

years. Figure 14B shows that the SO4 concentration in the river is relatively stable over the year. In some years, 

extreme values of the concentration are visible, which mainly occur during summer.   

 

Figure 14: A) Long-term time series (2011-2021). B) Seasonal plot (2011-2021). Intake from the river is 

interrupted when the measured SO4 concentration exceeds 180 mg/l.   

Industrial wastewater contains high salt concentrations, such as sulfate (Silva et al., 2002). Besides 

agricultural activity, the West Flanders region contains an industrialized area, of which the wastewater gets 

discharged in the river Yser and the surrounding channels. Seawater intrusion is expected to influence sulfate 

concentrations as well.  
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4.1.5 Conductivity 
Figure 15 shows the long-term time series and seasonal plot of conductivity before data preprocessing. 

Similar to the SO4 concentration, the conductivity peak in 2011 was caused incidentally by an industrial dump 

(De Watergroep, 2021b). Conductivity correlates with SO4, showing similarities in the occurrence of limit 

concentration exceedance. The seasonal plot shows that conductivity mainly causes problems in summer and 

not in winter.  

 

Figure 15: A) Long-term time series (2011-2021). B) Seasonal plot (2011-2021). Intake from the river is 

interrupted when the measured conductivity exceeds 2000 μS/cm.  

Conductivity approximates the salinity in water. The Yser catchment is located in a coastal area, naturally 

more vulnerable to salinization problems (Coordinatiecommissie Integraal Waterbeleid, 2016). Groundwater in 

the area is salinated. Seepage of groundwater to surface water can cause elevated conductivity during periods 

of drought (Coordinatiecommissie Integraal Waterbeleid, 2016). Similar to SO4, conductivity increases due to 

the dumping of industrial wastewater.  

4.1.6 Bentazon  
Figure 16 shows the long-term time series and seasonal plot of bentazon before data preprocessing. The 

long-term time series plot shows that bentazon has been causing water quality troubles for a long time. The 

peak concentrations of bentazon have decreased in previous years as a result of agricultural policies. The 

seasonal plot shows that the bentazon concentration is highly seasonal. The concentration is very low in winter 

while it increases severely during summer. Almost every year, the limit concentration of bentazon is exceeded.  

 

Figure 16: A) Long-term time series (2011-2021). B) Seasonal plot (2011-2021). Intake from the river is 

interrupted when the measures bentazon concentration exceeds 0.8 μg/l.  
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Bentazon is a herbicide applied to weeds at the start of the growing season in the production of maize, peas, 

beans and grass (KIWA NV, 1990; Rosenboom et al., 2021; Vlaamse Milieumaatschappij, 2017). In past 

decades, bentazon was found in surface water and groundwater systems and caused problems in drinking 

water production (Coordinatiecommissie Integraal Waterbeleid, 2016). Of all studied compounds, bentazon is 

the only one that does not appear naturally in the water system. All bentazon that ends up in the river originates 

from an artificial source. High pesticide concentrations can cause aquatic mortality and infertility. Intense 

purification steps are needed to produce safe drinking water from pesticide-polluted raw water. The use of 

bentazon in maize production was therefore prohibited by the Belgian government from 2018 onwards (Vlaamse 

Milieumaatschappij, 2017). Bentazon is not the only dangerous pesticide in the area. Of all measured pesticides, 

it has the highest data availability and is therefore chosen as the representative pesticide.  

4.2 Climatic data  
Precipitation, temperature, discharge, and land use are all expected to influence river water quality. The data 

availability for the climatic variables is summarized in Table 10. The data did not contain NAN values or any 

artificial outliers that needed extra data preprocessing steps.  

Table 10: Data availability for climatic variables.  

Parameter Configuration Source 

Precipitation Daily total precipitation for several rainfall stations Vlaamse Milieu Maatschappij 

Temperature Daily maximum temperature for weather stations Vlaamse Milieu Maatschappij 

Discharge Daily discharge measurements for discharge stations Vlaamse Milieu Maatschappij 

Land use Yearly land use per agricultural plot Geopunt Vlaanderen 

 

Figure 17 shows the Yser catchment upstream of the Blankaart intake point, the Blankaart reservoir itself, 

and the rainfall and discharge stations used in this research.  

 

Figure 17: Yser catchment (light green) upstream of the Blankaart intake point and corresponding rainfall 

stations. Red diamonds = rainfall stations, blue diamond = discharge station, yellow star = Blankaart WPC.  
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4.2.1 Precipitation  
Figure 18 shows a time series of the daily precipitation measured at the Lo-Fintele rainfall station and the 

rolling mean over 365 days to extract climatic trend. Boxplots were made to compare data from 2011-2018 to 

data from 2019-2021. Precipitation was measured at each rainfall station on a daily time scale. 

 

Figure 18: A) Time series and rolling mean (365 days) of daily precipitation in the Yser catchment measured at 

rainfall station “Lo-Fintele”. B) Boxplot of monthly precipitation for resp. 2011-2018 and 2019-2021. Monthly 

precipitation was used for visibility purposes.  

Much variability in the daily precipitation pattern can be found. Extreme precipitation events occur 

throughout the whole series (2012, 2015, 2016, 2017), and many days hold zero precipitation. The rolling mean 

shows that the average yearly precipitation remains relatively stable over the complete time series. The boxplots 

show that the period until 2019 has a lower median but more extreme precipitation values.  

4.2.2 Temperature  
The daily maximum temperature was obtained from temperature data that was measured at a 15-minute 

interval at weather station “Zarren”, see Figure 17. Figure 19 shows the time series, climatic trend, and box 

plots for daily maximum temperature.  

 

Figure 19: A) Time series and rolling mean (365 days) of daily maximum temperature in the Yser catchment 

measured at weather station “Zarren”. B) Boxplot of daily maximum temperature for resp. 2011-2018 and 2019-

2021. 



 
33 

The temperature shows a clear yearly pattern, with high temperatures in summer and low temperatures in 

winter. Most extreme values can be found in the summers of 2018-2020. The rolling mean shows a slight 

increase in daily maximum temperature over the time series. The boxplots show similar results, with a slightly 

higher median for the period 2019-2021 compared to 2011-2018. The minimum and maximum have also 

increased for the latest period.  

4.2.3 Discharge  
Discharge measured at station Keiem (see Figure 17) was used as input data for the discharge features of 

the model. The discharge station is located downstream of the intake point. Figure 20 shows the time series, 

climatic trend and box plots for daily maximum temperature. 

 

Figure 20: A) Time series and rolling mean (365 days) of daily mean discharge in the river Yser measured at 

discharge station Keiem. B) Boxplot of daily mean discharge for resp. 2011-2018 and 2019-2021. 

The discharge time series shows a yearly pattern, with peak discharges in December and January of each 

year. No yearly trend can be observed from the rolling mean. The boxplots do not show a clear difference 

between the first and later studied periods.  

4.2.4 Land use  
The last climatic variable assessed in this research is the crop type percentage of land area of the Yser 

catchment upstream of the Blankaart intake point (see Figure 17). The catchment area covered the complete 

Belgian part of the Yser catchment upstream of the Blankaart intake point. Yearly data per agricultural plot is 

available through the geoportal of the Flemish government (Vlaamse Milieumaatschappij, n.d.).  
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Figure 21: Example of agricultural land use per crop type (Vlaamse Milieumaatschappij, n.d.). 

Land use data was obtained as geographical information from the GIS platform of the Belgian government 

(Vlaamse Milieumaatschappij, n.d.). The open source QGIS software was used to obtain the percentage of 

catchment area covered per crop type on a yearly basis, which is shown in Figure 22.  

 

Figure 22: Percentage of catchment area covered per crop type.  

Some crops cover only a very small land area and do not change much over the years, such as “Woodlike 

crops” and “Fruits and nuts”. Other crop types have a higher additional value to the land area, such as 

“Grassland” and “Corn”.     
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5. Results  
This section describes the results for both water quality forecasting and reservoir operation.  

5.1 Water quality forecasting  
The results for water quality forecasting are divided into three types of analysis. The effects of including the 

climatic processes are described for each water quality parameter, together with the weighted optimal feature 

set. The subsection ends with summarizing the optimal performing models for each water quality parameter and 

forecast horizon, that were used to forecast the conjunctive use of surface and groundwater resources. The 

results of all feature sets and forecast horizons and all optimal performing models are included in Appendix 2A 

and 2B.   

5.1.1 Nitrate 
The Linear Regression algorithm gives the best performance for predicting nitrate on all forecast horizons, 

of which forecast horizon 1 is shown in Figure 23A and 23B.  

 

Figure 23: Nitrate – forecast horizon 1. A) Scatter plot showing predictions and observations for all tested years. 

B) Time series showing predictions and observations. Model: Linear Regression with Calendar + Precipitation 

feature set.  

The model has an overall performance of R2 = 0.854, which is considered good model performance. The 

model overestimates the nitrate concentration for low concentrations, while it rather underestimates medium to 

peak concentration. The models for the other forecast horizons show similar results, but with lower performance. 

Figure 24 shows the effect of including and excluding different features on the model performance for predicting 

1 week, 2 weeks and 3 weeks ahead (resp. FH1 – FH3). The weighted optimal feature set includes calendar 

features, precipitation, and discharge (see Appendix 2C). 
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Figure 24: Effect of including calendar features (cald), precipitation (P), temperature (T), discharge (Q), and 

land use (LU) on model performance for nitrate (Linear Regression). Error bars show the minimum and 

maximum value for including or excluding the feature for each forecast horizon.  

Calendar features  

Including calendar features improves model performance for all forecast horizons, indicating that seasonal 

effects are important in the prediction of nitrate concentration. The minor improvement for forecast horizon 1 

indicates that calendar features are not so important for forecasting one week ahead. Most improvement can 

be found for predictions further ahead in time.  

Precipitation  

Including precipitation does not improve model performance, except for a minor improvement for forecast 

horizon 1. Although the average model performance decreases when precipitation is included for forecast 

horizon 2 and 3, the best model performance was found for models that include precipitation. The large error 

bars indicate that the combination of precipitation with other features is important, but the individual effect of 

precipitation is low. This indicates that indirect processes have more predictive value than direct precipitation-

related processes.  

Temperature  

Including temperature decreases model performance for all forecast horizons. The error bars do not overlap, 

which means that including temperature always has a negative effect on the model performance, and that the 

combination with other features does not change this. The most deteriorating effect on the model performance 

was found for the longest forecast horizon.  

Discharge  

The effect of discharge on the model performance is comparable to precipitation. Including discharge 

features has a minor negative influence on the model performance for all forecast horizons. The error bars are 

large, indicating that the individual effect of discharge is not important, but its combination with other features 

can cause different results. For FH2 and FH3, the best model performance was found for models that include 

discharge and precipitation, indicating that dilution is an important process here.  
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Land use  

Land use has a negative effect on the model performance in the prediction of nitrate concentration, 

especially for longer forecast horizons. The large error bar for excluding land use is caused by the imbalance of 

experiments. The set of experiments excluding land use is 16, while only 4 experiments include land use. This 

causes a larger spread of results for experiments excluding land use and makes it more difficult to assess the 

individual effect of land use. The best model performance was never found for models that include land use.  

5.1.2 Phosphate 
The Random Forest Regressor algorithm gives the best performance for predicting phosphate on all forecast 

horizons, of which forecast horizon 1 is shown in Figure 25A and 25B. 

 

Figure 25: Phosphate – forecast horizon 1. A) Scatter plot showing predictions and observations for all tested 

years. B) Time series showing predictions and observations. Random Forest Regressor with Calendar + 

Precipitation + Temperature + Discharge + LU  feature set.  

The model has good overall performance of R2 = 0.764. The model accurately predicts phosphate 

concentration for low to medium concentrations. Exceedance of the limit concentration is mostly predicted 

correctly, although the exact values of the peaks are underestimated. For longer forecast horizons, the model 

does not predict exceedance of the limit concentration correctly. Low concentrations are forecasted accurately 

for longer forecast horizons. Figure 26 shows the effect of including and excluding different features on the 

model performance for different forecast horizons. The weighted optimal feature set includes calendar features, 

precipitation, temperature, discharge, and land use (see Appendix 2C). 
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Figure 26: Effect of including calendar features (cald), precipitation (P), temperature (T), discharge (Q), and 

land use (LU) on model performance for phosphate (Random Forest Regressor). Error bars show the minimum 

and maximum value for including or excluding the feature for each forecast horizon.  

Calendar features  

Including calendar features generally improves model performance for all forecast horizons. The error bars 

are large, indicating that the combination between features is important. The largely overlapping error bars 

between including and excluding the feature indicate that there are other processes that are more important in 

improving model performance.  

Precipitation 

Including precipitation positively influences the model performance for all forecast horizons. For FH1 and 

FH2, the error bars do overlap minorly which means that precipitation is an important process in the prediction 

of phosphate. Forecast horizon 2 shows abnormal behavior. Including precipitation gives a better general 

performance with a small error bar, indicating that precipitation individually improves model performance. 

However, the optimal performing model does not include precipitation. For FH3, the error bars are larger which 

indicates that the combination of features with precipitation is more important than the individual contribution of 

precipitation.  

Temperature  

Including temperature improves model performance for all forecast horizons. The difference over forecast 

horizons is similar to the results found for precipitation. For larger forecast horizons, a larger improvement can 

be found when including the temperature feature. The small error bars strengthen the individual contribution of 

including temperature in the prediction of phosphate.  

Discharge 

Discharge improves the model performance for all forecast horizons. The error bars for FH2 are small and 

do not overlap with excluding the feature, so the model always improves when discharge is included. Discharge 

and temperature are mainly important on longer forecast horizons, while precipitation is more important for a 

short forecast horizon. Short-term changes in phosphate are prone to the wash-off effect of precipitation, while 

long-term changes are captured through dilution with temperature and discharge.   
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Land use  

Land use negatively affects the model performance for all forecast horizons. The error bars largely overlap, 

so the model performance depends more on other features than on the land use features.  

5.1.3 Sulfate 
The Random Forest Regressor algorithm gives the overall best performance for predicting sulfate on all 

forecast horizons, of which forecast horizon 1 is shown in Figure 27A and 27B.  

 

Figure 27: Sulfate – forecast horizon 1. A) Scatter plot showing predictions and observations for all tested years. 

B) Time series showing predictions and observations. Random Forest Regressor with Calendar + Precipitation 

+ Discharge feature set.  

The model has a moderate performance of  R2 = 0.715. The model captures the general behavior of the 

system and accurately forecasts when peaks are expected. Low concentrations are overestimated by the model 

while medium concentrations are underestimated. The small-scale changes in the lower concentration regime 

are not accurately forecasted, but also not important. For longer forecast horizons, the model overestimates 

sulfate concentrations rather than underestimating it (see Appendix 2B). The weighted optimal feature set 

includes calendar features, precipitation, and discharge (see Appendix 2C). 

Figure 28 shows the effect of including and excluding different features on the model performance for 

predicting 1 week, 2 weeks and 3 weeks ahead (resp. FH1 – FH3). 
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Figure 28: Effect of including calendar features (cald), precipitation (P), temperature (T), discharge (Q), and 

land use (LU) on model performance for sulfate (Random Forest Regressor). Error bars show the minimum and 

maximum value for including or excluding the feature for each forecast horizon.  

Calendar features  

Including calendar features generally improves model performance. For FH1, only a minor improvement can 

be found, with largely overlapping error bars. This shows that calendar features are not the most important 

parameter in predicting sulfate concentration. The optimal model performance for FH3 excludes calendar 

features, while on general the performance is better when calendar features are included.  

Precipitation  

The model performance for all forecast horizons improves when precipitation is included. The small error 

bars for including precipitation indicate that the individual contribution of precipitation is important. FH3 shows 

abnormal behaviour. The optimal model performs better when precipitation is excluded, although the overall 

performance is worse when precipitation is excluded.  

Temperature 

Including temperature improves model performance. The error bars largely overlap for FH1, indicating low 

importance for the first forecast horizon. Although the optimal model for both FH1 and FH3 does not include 

temperature, the general improved performance with small error bars indicates that temperature is an important 

process to include.  

Discharge  

Including discharge improves model performance for all forecast horizons. According to the small error bars 

for including the feature, the individual contribution of discharge is important. The greatest improvement for 

discharge can be found for forecast horizon 3. The results for including discharge are similar to the precipitation 

results.  

Land use  

Land use reduces model performance for all forecast horizons. The error bars largely overlap for all forecast 

horizons, so the performance depends more on other features.  

5.1.4 Conductivity 
The Random Forest Regressor algorithm gives the overall best performance for predicting conductivity on 

all forecast horizons, of which forecast horizon 1 is shown in Figure 29A and 29B. 
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Figure 29: Conductivity – forecast horizon 1. A) Scatter plot showing predictions and observations for all tested 

years. B) Time series showing predictions and observations. Random Forest Regressor with Calendar + 

Precipitation + Temperature + Discharge + Land Use feature set.  

The model has an overall good performance of R2 = 0.817. The model accurately captures the general 

behavior of the system and predicts when conductivity peaks occur. Peak values are rather overestimated than 

underestimated. Low concentrations are more often underestimated.  For longer forecast horizons, peak 

concentrations are more underestimated. The weighted optimal feature set includes calendar features, 

precipitation, temperature, discharge, and land use (see Appendix 2C). 

Figure 30 shows what the effect of including and excluding different features is on the model performance 

for predicting 1 week, 2 weeks and 3 weeks ahead (resp. FH1 – FH3). 

 

Figure 30: Effect of including calendar features (cald), precipitation (P), temperature (T), discharge (Q), and 

land use (LU) on model performance for conductivity (Random Forest Regressor). Error bars show the minimum 

and maximum value for including or excluding the feature for each forecast horizon.  

Calendar features 

Including calendar features generally reduces model performance for conductivity, but the large overlapping 

error bars indicate low feature importance. Performance is almost equal for including and excluding the calendar 

features. The general model performance is lower, but the optimal models do contain the calendar features for 

FH1 and FH2.   

Precipitation  

Precipitation improves model performance for conductivity. The small error bars show that the individual 

contribution of precipitation is important in predicting future conductivity, and that the combination with other 

features is not that important. Most improvement can be found for a longer forecast horizon.  

Temperature 

Temperature generally improves model performance but is not the most important process to include. The 

error bars largely overlap, indicating that the difference between including and excluding the feature is not that 

distinct. For FH3, the general performance is better when temperature is included, while the optimal model 

excludes temperature.  
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Discharge 

Discharge positively influences the model performance. The small error bars indicate that the specific 

combination with other features does not change the performance much, so the individual contribution of 

discharge to the model performance is important. The results are comparable to the results found for 

precipitation, indicating that dilution is an important process here.  

Land use  

Land use generally reduces model performance. The results for including and excluding the feature are 

comparable, indicating that the feature is not of high importance in the prediction of conductivity. For FH3, the 

best model performance can however be found for a model that includes land use next to all other features.  

5.1.5 Bentazon  
The (Linear) Support Vector Machine Regressor algorithm gives the overall best performance for predicting 

bentazon concentration on all forecast horizons, of which forecast horizon 1 is shown in Figure 31A and 31B.  

 

Figure 31: Bentazon – forecast horizon 1.  A) Scatter plot showing predictions and observations for all tested 

years. B) Time series showing predictions and observations. Linear Support Vector Regressor with Calendar + 

Precipitation +  Discharge feature set.  

The model has moderate overall performance of R2 = 0.587. The overall behavior of the system is well 

captured and the model predicts peaks. However, the peak concentrations are often underestimated by the 

model. For longer forecast horizons, the model does not correctly predict when peaks occur (see Appendix 2B). 

The weighted optimal feature set includes calendar features, temperature, and discharge (see Appendix 2C). 

Figure 32 shows what the effect of including and excluding different features is on the model performance 

for predicting 1 week, 2 weeks and 3 weeks ahead (resp. FH1 – FH3). It should be noted that general model 

performance is low for bentazon, especially for higher forecast horizons, which complicates drawing straight 

conclusions about the relevant processes. The processes captured in the bentazon models are not able to 

explain most of the variability in concentration. 
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Figure 32: Effect of including calendar features (cald), precipitation (P), temperature (T), discharge (Q), and 

land use (LU) on model performance for bentazon (Random Forest Regressor). Error bars show the minimum 

and maximum value for including or excluding the feature for each forecast horizon. Large error bounds for incl 

cald, excl P, excl T, excl Q and incl LU are caused by negative performance for cald_LU.  

Calendar features  

The average model performance with excluding calendar features is higher for FH1, while the optimal model 

does include calendar features. Calendar features positively influence model performance for FH2 and FH3. 

The large negative error bound for FH1 and FH2 is caused by the outlier for experiment cald_LU.  

Precipitation  

For short forecast horizons, including precipitation positively influences model performance. The model 

performance decreases when precipitation is included for FH3. The best model performance for FH2 can 

however be found for a model that does not include precipitation. The error bounds for including the feature are 

small, such that the combination with other features is less relevant. In case of FH3, the combined features are 

more relevant.  

Temperature  

The results for the temperature features are comparable to the results for precipitation, except for FH3. 

Including temperature positively influences model performance for FH3. Again, the experiment cald_LU causes 

the lower error bound for excluding temperature. Small error bounds for FH1 and FH2 indicate high feature 

importance.  

Discharge 

The results for discharge are similar to precipitation. There is only a small difference in model performance 

between including and excluding discharge for FH3, with largely overlapping error bounds. The maximum 

performance for including or excluding discharge features lies relatively close to each other, indicating that in 

finding the optimal model, discharge is not an important process.  

Land use  

Land use generally decreases model performance for all forecast horizons. The large error bounds indicate 

low feature importance. Most of the variability in R2 is caused by the other features and not by land use.  
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5.1.6 Synthesis 
All calendar and climatic features except land use positively contribute to model performance in the 

prediction of phosphate, sulfate, conductivity, and bentazon (see Table 11). Model performance for nitrate can 

only be improved by including calendar features. The weighted optimal feature sets do not agree with the 

predictive value of including or excluding the individual processes.  

Table 11: Predictive value of input features on the water quality parameters. +: increased model performance, 

-: decreased model performance. Blue cells show the weighted optimal feature set for each water quality 

parameter.  

 Nitrate Phosphate Sulfate Conductivity Bentazon 

Calendar + + + - + 
Precipitation - + + + + 
Discharge - + + + + 
Temperature - + + + + 
Land use - - - - - 

 

Calendar features have predictive power for all water quality compounds except for conductivity. This 

indicates that all water quality compounds except conductivity are predictable with their seasonal effects. For 

conductivity, other processes are more important and calendar features do not improve model performance. 

Including precipitation, discharge, or temperature, positively influences model performance for all water quality 

compounds except nitrate. Hydrological processes such as wash-off, dilution, and eutrophication are all 

important processes in the prediction of these water quality compounds. Land use negatively influences model 

performance for all water quality compounds. Defining the ratio of different crop types over the catchment area 

has no predictive powers in the models applied here.  

The combination of features is important. The weighted optimal feature sets and the optimal performing 

models do not always agree with the findings including or excluding each climatic process individually. For 

nitrate, the weighted optimal feature set includes precipitation and discharge, although the average 

performance of including precipitation or discharge does not improve. More examples can be found in Table 

11. This finding stresses the interrelatedness of the climatic processes and shows the importance of 

experimenting with different feature sets. 

Including each climatic process influences the model performance in a similar direction (positively or 

negatively) for all forecast horizons. All models perform better on short forecast horizons than on longer ones, 

which indicates that the autoregressive behaviour of the input features is important. The influence of the climatic 

processes on the model performance is larger for longer forecast horizons, although the relative importance of 

the processes can be different.  
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5.1.7 Optimal performing models for reservoir operation 
The optimal performing forecasting models and their performance for all water quality parameters and 

forecast horizons are shown in Figure 33 and Table 12. The results of all experiments (combination of algorithm, 

feature set, forecast horizon and water quality parameter) are attached in Appendix 2. Nitrate has the best 

overall model performance, followed by phosphate. Conductivity and sulfate perform well on a short forecast 

horizon, but less on a longer forecast horizon. Bentazon has the worst overall model performance. 

  

 

Figure 33: Model performance for all water quality parameters and all forecast horizons.  

Table 12: Optimal performing models for water quality forecasting. P = Precipitation, Q = Discharge, T = 

Temperature, LU = Land Use. Green = good (R2>0.75), yellow = moderate (0.25<R2<0.75), orange = low 

(R2<0.25) model performance.  

Variable Forecast 

horizon 

Algorithm Feature set Model R2 Baseline R2 𝚫R2 

NO3 1 week LR Calendar + P  0.854 0.858 -0.004 

2 weeks LR Calendar + P + Q 0.758 0.722 0.036 

3 weeks LR Calendar + P + Q 0.687 0.59 0.097 

oPO4 1 week RFR Calendar + P + T + Q + LU 0.764 0.737 0.027 

2 weeks RFR Calendar + T + Q 0.605 0.411 0.194 

3 weeks RFR Calendar + P + T + Q 0.523 0.241 0.282 

SO4 1 week RFR Calendar + P + Q 0.715 0.489 0.226 

2 weeks RFR Calendar + P + Q 0.434 0.149 0.285 

3 weeks RFR Base + T + Q 0.203 -0.239 0.442 

Conductivity 1 week RFR Calendar + P + T + Q + LU 0.817 0.743 0.074 

2 weeks RFR Calendar + P + T + Q + LU 0.589 0.475 0.114 

3 weeks RFR Base + P + Q 0.391 0.168 0.223 

Bentazon 1 week LSVR Calendar + P/T + Q 0.587 0.452 0.135 

2 weeks LSVR Calendar + T + Q 0.418 0.066 0.352 

3 weeks SVR Calendar + T + Q 0.288 -0.214 0.502 

 

All models perform better than the approximated persistence baseline model, except for the NO3 1 week 

forecast. The Random Forest Regressor performs best on phosphate, sulfate and conductivity, while Linear 

Regression and Support Vector Regression are the optimal algorithms for respectively nitrate and bentazon. 

The best improvement with respect to the baseline models was found for longer forecast horizons. The models 

in Table 12 were the models used in the adaptive forecast-based reservoir operation approach in the next 

subsection.   
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5.2 Reservoir operation  
A predefined traditional production strategy and a new adaptive forecast-based production strategy were 

compared based on two key performance indicators under three different scenarios, to answer research 

question 2.  

5.2.1 Developing production strategies 
Two production strategies were developed and defined by a set of simple operational rules. The predefined 

production strategy is based on the current strategy that the drinking water company adopts. The water quality 

forecasting model was used to design an adaptive forecast-based production strategy.  

5.2.1.1 Predefined production strategy  

In the predefined production strategy of the Blankaart, the production rate depends on the number of 

consecutive weeks of low water quality, based on water quality measurements. If the number of consecutive 

weeks of low water quality exceeds a certain threshold, the production rate should be adjusted to half of the 

production capacity. This maximum number of consecutive weeks of low water quality depends on the time of 

the year. Figure 34 shows the daily average temperature and the maximum number of consecutive weeks of 

low water quality for each period. In summer, water quality is much more uncertain than in winter. This means 

that the response time in summer should be much shorter than in winter. The production rate should be halved 

as quickly as possible to save water in the reservoir to avert water shortages. Therefore, the maximum number 

of consecutive weeks follows the inverse pattern of the daily average temperature in the area.  

 

Figure 34: Daily average temperature in the area and the maximum number of consecutive weeks of low water 

quality.  

The operational rules for the traditional production strategy are:  

- If Qin(t-tlimit:t) = 0 -> Qprod(t) = 0.5*Qprod,max 

- If Qin(t- tlimit:t) > 0 -> Qprod(t) = Qprod,max 

- Constraint rules (see section 3.2.1) 
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5.2.1.2 Adaptive forecast-based production strategy  

An adaptive forecast-based production strategy is proposed and illustrated in Figure 35, implementing the 

water quality forecasting models that were developed in the previous sections. The water quality forecast 

determines the production rate from the reservoir, but intake is still only driven by water quality measurements. 

If all water quality variables do not exceed the limit value, intake will be maximum. If the current water quality is 

insufficient, intake will be 0 m3/day.  

 

Figure 35: Adaptive forecast-based production strategy with water quality forecast.  

A forecast horizon of three weeks is used. The forecast reliability is expected to be relatively good for 

forecasting three weeks ahead, due to autocorrelative processes (see Appendix 1B). First, the current time step 

is assessed. If intake at the current time step is possible, production is maximum. If intake at the current time 

step is not possible, the water quality forecast is used. If intake is then possible within the forecast horizon of 

three weeks, the reservoir should be emptied just before intake is possible. Since the intake capacity is much 

higher than the production capacity, the reservoir will be quickly filled when intake is possible after a dry period.  

If the water quality remains low and intake is not possible in the forecasted period, the production rate should 

be adjusted such that the reservoir is emptied before the start of winter (1st of October). During winter, the 

demand is much lower and surface water availability is higher. This enables the operator to take more risk with 

emptying the reservoir at the end of summer. The forecast model is not a perfect forecast. During the forecasted 

period, the predicted intake can change and therefore the production rate can change as well.  

The operational rules for the adaptive forecast-based production strategy are: 

- If Qin(t) > 0  -> Qprod(t) = Qprod,max 

- If Qin(t) == 0: 

o If intake is possible in forecast period -> empty reservoir day before intake is possible 

▪ tempty = tintake -1 

▪ V(tempty) = Vmin 

▪ Qout(t) = (V(t-1)-Vmin)/dt 

o If intake is not possible in that period -> empty reservoir just before end of summer 

▪ tempty = twinter  

▪ V(tempty) = Vmin 

▪ Qout(t) = (V(t-1)-Vmin)/dt 
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5.2.2 Comparing production strategies 
Both strategies were simulated with the reservoir model that is described in section 3.2.  

5.2.2.1 Scenario 1: Multiple short drought periods  

The first intake scenario is the year 2019, when multiple short drought periods occurred. Figure 36 shows 

the intake, volume, production, and groundwater pattern for both the traditional and the adaptive forecast-based 

production strategy.  

 

Figure 36: Traditional (left) and adaptive forecast-based (right) operation of the Blankaart reservoir, scenario 1. 

Red dotted line (Volume) = hard volumetric constraint. Green dotted line (Volume) = soft volumetric constraint.  

Groundwater use 

The traditional strategy has a total groundwater use of 1.2*106 m3, while the adaptive forecast-based strategy 

uses 4.2*105 m3 in a year. In the traditional strategy, the production rate is more often switched to a low rate, 

caused by the longer drought periods in July, August and September. Figure 34 shows that the operator under 

a traditional strategy should quickly change to a low production rate in summer to decrease the risk of water 

shortages. Using the adaptive forecast-based approach, clearly more risk can be taken. For example, during 

the drought period in July, no groundwater is used because of the forecasted inflow in the beginning of August. 

Overcoming the longer dry period by emptying the reservoir before the 1st of October clearly has the advantage 

of using more of the reservoir’s water.  

Risk of water shortages  

The risk of water shortages, expressed in days of minimum volume, is similar for both years. In May, both 

strategies show exceedance of the soft volumetric constraint. The soft volumetric constraint is high because 

the risk of an empty reservoir is high, but the probability that the complete summer period is dry is actually low. 

The volume approaches the soft constraint for the new production strategy in August and September but does 

not exceed it.   
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5.2.2.2 Scenario 2: One long summer drought 

Figure 37 shows the intake, volume, production, and groundwater pattern for the traditional and new strategy 

under scenario 2. This scenario resembles the year 2020 and shows one long drought period from halfway May 

until the start of September.  

 

Figure 37: Traditional (left) and adaptive forecast-based (right) operation for the Blankaart reservoir, scenario 

2. Red dotted line (Volume) = hard volumetric constraint. Green dotted line (Volume) = soft volumetric 

constraint.  

Groundwater use  

The total groundwater use is slightly higher for the new production strategy than for the traditional one. The  

new strategy adapts to the fact that intake is not possible in the forecast windows, while the traditional strategy 

keeps producing at half production until the volumetric constraint is reached.  

Some indications of a wrong forecast can be found. Firstly, the production rate remains high at the end of 

May, while the intake pattern shows that intake is not possible within three weeks so the production rate should 

have switched to low production. Secondly, the production rate increases to maximum during the beginning of 

July, which indicates that the forecast must have predicted good surface water availability, while that is still not 

the case.  

Risk of water shortages 

The DMV is lower for the adaptive forecast-based strategy than for the traditional strategy. The long dry 

period causes the reservoir under the traditional strategy to be completely shut-off at the end of August, due to 

the hard volumetric constraint. This is not the case for the new strategy, where there is always a minimum 

production rate such that the reservoir does not have to be switched off completely.  

The faulty high production rates at the end of May and the beginning of July cause less groundwater use 

which comes at the cost of risking water shortages, as can be seen by the volumetric constraint that quickly 

gets exceeded.  
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5.2.2.3 Scenario 3: Normal climatic conditions 

Figure 38 shows the intake, volume, production, and groundwater pattern for a scenario under normal 

climatic conditions (2021).  

 

Figure 38: Traditional (left) and adaptive forecast-based (right) operation for the Blankaart reservoir, scenario 

2. Red dotted line (Volume) = hard volumetric constraint. Green dotted line (Volume) = soft volumetric 

constraint.  

Groundwater use  

The traditional strategy uses more groundwater than the newly proposed strategy, but both are using a low 

amount of groundwater compared to the other studied years. The advantage of the forecast-based strategy can 

be seen in July and August, where the model correctly predicts the end of a drought period what results in a 

high production rate. Contrary, the drought periods cause low production rate in the traditional strategy which 

results in more groundwater use.  

Risk of water shortages  

The risk of water shortages is zero for both strategies. The volume never exceeds the soft volumetric 

constraint. The drought periods are short and do not happen at the riskiest moments of the year.   
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5.2.3 Summary  
The results of both KPI’s (Total Groundwater Use and Days Minimum Volume) for the years 2019-2021 are 

shown in Figure 39. A “perfect forecast”-based strategy is included to show what the implications of forecast 

performance for the adaptive forecast-based approach are. The optimal strategy should minimize both TGWU 

and DMV in different years. 

 

Figure 39: Summary of the key performance indicators TGWU and DMV for the traditional strategy, the adaptive 

forecast-based strategy and the perfect forecast-based strategy, evaluated over the years 2019-2021.  

The adaptive forecast-based strategy shows advantages compared to the traditional strategy. The risk of 

water shortages, explained with DMV, is lower or equal to the traditional strategy, for all years. The total 

groundwater use can certainly be confined for years with multiple short droughts, but not for a year with one 

long drought. However, the strategy lowers the risk of water shortages.  

The perfect forecast shows how the results of the adaptive forecast-based approach can be improved. It 

was expected that the perfect forecast performs better in all cases, but the results do not agree with this 

hypothesis. The forecast model does not always accurately predict high peaks in the water quality parameters. 

This means that the production rate remains high because the model predicts good water quality, although the 

actual water quality is low. The perfect forecast will in that case predict low water quality, leading to a lower 

production rate and using more groundwater. However, the perfect forecast heavily limits the risk of water 

shortages, which becomes obvious when considering the year 2020.   
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5.2.4 Uncertainty analysis  
The results of the uncertainty analysis are shown in Figure 40. Next to the extreme scenarios, the results of 

the actual prediction and the perfect forecast were plotted.  

 

Figure 40: Uncertainty analysis for four different intake scenarios based on the model performance of the water 

quality forecasting model.  

The lower bound forecast leads to a lower TGWU and a higher DMV compared to the other scenarios. The 

model always predicts low values for the water quality parameters, never exceeding their limit values. This 

means that the production rate stays high, but the risk of water shortages is much higher, leading to increased 

values for DMV. The upper bound forecast shows results contrary to the lower bound. The model more often 

predicts low water quality, which leads to a lower production rate and more groundwater use. A safe strategy 

with regard to water shortages is used, which leads to higher groundwater use.  

Comparing the actual prediction to a perfect forecast model shows contradictory results. The perfect 

forecast does not show better results for all years. The perfect prediction performs better on DMV in 2019 and 

better on TGWU in 2020. The risk of water shortages is lower for the perfect prediction in 2019, but the amount 

of groundwater used was higher than for the actual forecast. The actual forecast predicted high water quality 

for most of the dry periods, which caused the production rate to remain higher. The perfect forecast, however, 

switched to a lower production rate and adopts a safer strategy. This leads to a lower DMV.  

In 2020, the TGWU is lower for the perfect prediction than for the actual prediction. The actual prediction 

wrongly forecasts the end of the long dry period in 2020, which means that the reservoir is not emptied before 

intake can start again. The perfect prediction does predict this perfectly which means that more groundwater 

can be saved. However, the perfect prediction exceeds the soft constraint of the minimum volume, leading to a 

higher value of DMV.  
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5.2.5 Sensitivity analysis  
A sensitivity analysis was done to find how the model constraints and initial conditions influence the 

performance of the adaptive forecast-based strategy.  

5.2.5.1 Initial volume 

Figure 41 shows how the Total Groundwater Use and the Days Minimum Volume depend on the initial volume 

in the reservoir.  

 

Figure 41: Sensitivity of TGWU and DMV to initial reservoir volume V init.  

Both TGWU and DMV are not influenced by the initial volume. The initial intake rate in the first week of each 

year is maximum. This ensures that the reservoir fills during the first week of the year, such that the initial volume 

does not have much influence on the model outcome. In practice, a lower initial volume would cause more 

groundwater use. It is not expected to influence the DMV because this KPI is determined only over the summer 

months (1 April – 1 October) while the initial volume is defined on January 1st.    

5.2.5.2 Initial production rate  

Figure 42 shows how TGWU and DMV depend on the initial production rate.  

 

Figure 42: Sensitivity of TGWU and DMV to initial production rate Qinit.  

The initial production rate has a minor influence on the TGWU. A lower initial production rate causes a minor 

increase in the TGWU. Less water can be produced from surface water which leads to a slightly higher TGWU.  

Similar to the initial volume, the initial production rate does not influence DMV.  
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5.2.5.3 Minimum reservoir volume  

Figure 43 shows how the minimum reservoir volume influences the TGWU and DMV.  

 

Figure 43: Sensitivity of TGWU and DMV to minimum reservoir volume Vmin. 

Both the TGWU and DMV depend on the minimum reservoir volume. 2019 and 2020 show that a higher 

minimum volume causes an increased TGWU, while no such dependency can be found for 2021. An increased 

minimum volume leads to a lower total reservoir volume and therefore a lower buffer capacity. Similarly, DMV 

increases with a larger minimum volume for 2020 and 2021. The soft constraint for minimum volume depends 

on the actual hard constraint of minimum volume (which is altered here). A higher minimum volume thus leads 

to a higher soft constraint and more violation of this constraint, obviously leading to a higher DMV. An abrupt 

change in DMV can be seen in 2020, indicating an extreme change in performance between a minimum 

reservoir volume of 7*105 and 8*105 m3. Although the performance indicator shows very different results, the 

actual difference in volumetric response between the cases is not that large. In the latter case, the volume just 

minimally exceeds the soft constraint, resulting in a higher value for DMV. This is a shortcoming of the DMV 

indicator.  

5.2.5.4 Maximum reservoir volume  

Figure 44 shows how TGWU and DMV depend on the maximum reservoir volume.   

 

Figure 44: Sensitivity of TGWU and DMV to maximum reservoir volume Vmax.  
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Increasing the reservoir volume leads to less groundwater use because of an increased buffer capacity. 

Doubling the reservoir volume from 3*106 to 6*106 m3 would lead to (close to) zero groundwater use for all 

considered years.  The DMV indicator highly depends on the maximum reservoir volume. The buffer capacity is 

increased when the maximum reservoir volume increases, which causes a lower DMV. On the other hand, the 

soft constraint for DMV depends on the maximum volume and increases when Vmax increases. This causes a 

trade-off with an optimal value between 5*106 and 7*106 m3.  

5.2.5.5 Production capacity  

Figure 45 shows how the production capacity influences TGWU and DMV.  

 

Figure 45: Sensitivity of TGWU and DMV to production capacity Qmax.  

A higher production capacity leads to less groundwater use because of increased buffer capacity. Increasing 

the production capacity to 5*104 m3/day leads to zero Total Groundwater Use for all considered years. However, 

this comes at the cost of having a higher DMV. Similar as the performance jump in 2020 for minimum reservoir 

volume, an abrupt change in DMV can be seen when comparing a production capacity of 2.5*104 and 3*104 

m3/day. The same happens in 2019 between a production capacity of 5.5*104 and 6*104 m3/day. This is the 

limit where the actual reservoir volume just exceeds the soft volumetric constraint in summer. The same 

happens for a higher production capacity in 2019. 

5.2.5.6 Intake rate  

Figure 46 shows how the intake rate of river water to the reservoir influences TGWU and DMV.  

 

Figure 46: Sensitivity of TGWU and DMV to intake rate Qin.  
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Lower intake rate causes more groundwater use. This effect is greater for years in which multiple short 

droughts occur. The reservoir cannot be filled completely during short periods of good water quality, which 

causes more groundwater use. An intake rate higher than 1*105 m3/day causes a minor decrease in 

groundwater use for 2019 but not for the other years. The volumetric constraints limit the buffer capacity of the 

reservoir here. The same effect holds for the risk of water shortages. The reservoir does not fill completely during 

short periods, which causes the reservoir volume to be lower during summer, leading to a higher risk of water 

shortages.  
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6. Discussion  
This section discusses the shortcomings as well as the relevance of the performed research. The two major 

research steps are discussed: water quality forecasting and reservoir operation.  

6.1 Water quality forecasting 
The first part of this research concerned the forecasting methods for water quality prediction for the 

conjunctive use of surface and groundwater resources.  

6.1.1 Previous work on water quality forecasting  
Table 13 compares the performance of previous research on water quality forecasting using machine 

learning methods. Water-related problems are often characterized by noisy and poor quality data, which 

stresses the need to compare different combinations of algorithms and features to find the best performance in 

predicting the target variable (Solomatine & Ostfeld, 2008). The selection of research includes a large variety 

of study areas and evaluates different machine learning algorithms. The variety of algorithms shows the case-

dependency of best performing algorithms. There is not one algorithm that performs best in all different 

situations and study areas. 

Table 13: Comparison between results of the current study and previous works in literature. WT = Water 

Temperature, TURB = Turbidity; TDS = Total Dissolved Solids; WOY = Week Of Year; SMRI = Snow Melt Rainfall 

Index; EC = Electric Conductivity; SAR = Sodium Adsorption Ratio. R2 was not available for Alnahit et al. (2022). 

Literature Study area ML algorithm Target variable Features Performance 

Ahmed et al. 

(2019) 

Rawal Lake, 

Pakistan 

Gradient 

boosting 

Water quality 

index 

WT, TURB, pH, 

TDS  

R2 = 0.75 

Polynomial 

regression 

Water quality 

index 

WT, TURB, pH R2 = 0.54 

Simeonov et 

al. (2003) 

Aliakmon River, 

Greece 

Principal 

Component 

Analysis, Multiple 

Linear 

Regression 

NO3  N.A. (PCA)  R2 = 0.57 

PO4 R2 = 0.67 

Conductivity R2 = 0.49 

Asadollah et 

al. (2021) 

Lam Tsuen River 

network,  

Hong Kong 

Extra Tree 

Regression  

Water quality 

index  

EC, pH, WT, 

TURB, BOD, 

COD, NO3, 

NO2, PO4 

R2 = 0.98 

BOD, TURB, 

PO4 

R2 = 0.97 

Koranga et 

al. (2022) 

Nainital Lake, 

India 

Random Forest  Water quality 

index 

pH, TURB, TDS R2 = 0.92 

Sattari et al. 

(2016) 

Lighvan Chay 

River,  

Iran 

Support Vector 

Machine  

Conductivity SAR, Na, Mg, 

Ca, Cl, P, SO4, 

HCO3 

R2 = 0.92 

TDS SAR, Na, Mg, 

Ca, Cl, P, SO4, 

HCO3 

R2 = 0.91 

Chang et al. 

(2015) 

Dahan River, 

Taiwan 

Artificial Neural 

Network 

NH3-N Q, P, industrial 

parameters, WQ 

parameters 

R2 = 0.93 

Zaniolo et al. 

(2019) 

Lake Como,  

Italy 

Extreme Learning 

Machines 

Water deficit WOY, SMRI, T R2 = 0.74 
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Alnahit et al. 

(2022) 

 

 

South Carolina, 

North Carolina 

and Georgia, 

USA 

Random Forest 

 

Total Nitrogen LU, P RMSE  = 

0.82 

Total 

Phosphorus 

LU, watershed 

soil properties 

RMSE = 0.07 

 

No comparable research was found that uses water quality forecasting to develop an adaptive forecast-

based approach for the conjunctive use of surface and groundwater resources. Other works focused either on 

water quality forecasting or on reservoir operation with other limitations to surface water availability. Previous 

research on water quality forecasting with machine learning models focuses on nowcasts rather than 

forecasting multiple weeks ahead with a multi-step forecasting approach.  

Different target variables are used in the comparable literature. Some research focuses on the prediction of 

the water quality index, which is an integrated indicator of several physical and chemical factors that describe 

water quality (Asadollah et al., 2021). Other research focuses on the prediction of one or two water quality 

parameters, while the current research focuses on the prediction of five water quality parameters. Most research 

does not include climatic processes as features, but only depends on measured water quality features such as 

turbidity, pH and total dissolved solids. This often results in better model performance compared to when 

climatic processes are used, because all data comes from the same data source which needs less data 

preprocessing.  

A similar study with the same case study was performed in 2019 by VITO NV (confidential source). Their 

analysis focuses on climate effects in modeling nitrate, phosphate, electric conductivity, and bentazon. A similar 

dataset was used to find the predictive power of historic values, seasonal effects, temperature, and discharge 

in water quality forecasting. A comparison between the VITO and the FH1 forecasting models in the current 

study are shown in Table 14. The VITO research focuses on a nowcast rather than a forecast.  

Table 14: Results of VITO research conducted in 2019 on the case study.  

 VITO research Current research (FH1) 

Optimal feature set R2 Optimal feature set R2 

Nitrate T + Q/P + lagged NO3 0.73 Cald + P + Q + lagged 0.85 

Phosphate T + Q/P + lagged PO4 0.56 Cald + P + T + Q + LU + lagged 0.76 

Conductivity Q + T + water levels 0.80 Cald + P + T + Q + LU 0.82 

Bentazon T 0.66 Cald + T + Q 0.59 

 

The performance of the current research is better for nitrate, phosphate, and conductivity. The performance 

for bentazon here is lower compared to the VITO research. Improved performance for nitrate, phosphate and 

conductivity can be caused by the larger dataset that is used for training and testing the model in the current 

research. The training set contains more periods where limit concentrations were exceeded, which can lead to 

better performance. The lower performance for bentazon can be explained by the fact that the governmental 

regulations have changed such that the test set differs too much from the training set, an issue that was less 

problematic for the VITO research because it took place earlier in time.  

Lagged values and rolling statistics of the water quality data were always used as important contributions in 

the forecasting models of the current research. They did not result in better model performance for all 

forecasting models in the VITO research. Calendar features always showed to improve model performance in 

the current research while they were not included in the VITO research. Land use was not covered in the VITO 

research. Underestimation of peak concentrations was found for both the current and the VITO research. Low 

data availability causes imbalance of peak concentrations to occur in both training and testing set, which leads 

to an underestimation of this event in both studies.  
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The VITO research focuses on finding the optimal model for predicting the water quality parameters. This is 

part of the current research, although this research focuses more on finding the actual predictive power of each 

individual climatic process and the interactions with other processes. Besides, the current research proposes a 

methodology to forecast several weeks ahead in time, while the VITO research only predicts the current values 

of water quality parameters. A nowcast with the current methodology would result in better results due to the 

autoregressive behaviour of the models, which leads to even more improvement compared to the VITO 

research.  

6.1.2 Machine learning algorithms  
The studied machine learning algorithms in this research were Linear Regression, Decision Trees, Support 

Vector Machines, K-Nearest Neighbors, and Random Forest. Although the focus of the present research is not 

to compare machine learning algorithms, it is interesting to see that the best performing algorithm differs per 

water quality compound. Random Forest Regressor performs best for phosphate, sulfate, and conductivity 

prediction. Random Forest Regressors perform well on noisy and nonlinear data, which works as an advantage 

for these water quality compounds. Linear Regression is the best performing algorithm for nitrate. This can be 

explained by the high autocorrelative behaviour of nitrate, which has more linear characteristics than the 

external features. (Linear) Support Vector Machines performed best for bentazon prediction, which indicates 

complex and highly nonlinear relations for this compound.  

6.1.3 Climatic processes 
The present research focuses specifically on using climatic variables in water quality forecasting. Chang et 

al. (2015), Zaniolo et al. (2019), and Alnahit et al. (2022) do include external climatic features, watershed soil 

properties, land use and industrial parameters. Zaniolo et al. (2019) show model improvement when calendar 

features are included in the prediction of water deficit. In the present research, calendar features improve model 

performance for almost all models and is always included in the best performing models, which indicates high 

seasonal behaviour for the water quality parameters.  

A strong relation between precipitation and the nutrients and pesticides was expected in the present 

research, due to the wash-off effect (Rostami et al., 2018). Precipitation improved model performance for all 

water quality parameters except nitrate. Nitrate has strong autocorrelative effects, which might cause all other 

features to be less important. Nitrate is the only negatively correlated parameter with precipitation, which might 

cause the decreased predictive power. This does not agree with the findings in Alnahit et al. (2022), where 

precipitation was used as an important process in predicting nitrogen concentrations. All optimal models for the 

water quality parameters did include precipitation, which coincides with the expectation that precipitation is an 

important climatic process in water quality prediction.  

A strong relation between nitrate and phosphate and temperature was expected, while a low importance of 

temperature in the prediction of conductivity, sulfate and bentazon was expected. Nevertheless, temperature 

improves all models, except for nitrate prediction, where it severely diminishes model performance. 

Temperature was an important process to include in phosphate and bentazon prediction. Enhanced nutrient 

cycling rates might cause more phosphate to accumulate in the water system, although this does not comply 

with the findings for nitrate (Fukushima et al., 2000). Enhanced crop growth during high temperatures might 

lead to a stronger predictive value of temperature for bentazon concentrations. Zaniolo et al. (2019) also found 

improved model performance when temperature is included in predictive models for water quality.  

Discharge is an important process in the prediction of all water quality parameters. It quantifies the amount 

of water in the stream, which is directly related to concentration or conductivity. Precipitation and discharge 

showed similar performance results for all water quality parameters, indicating that these processes are related 

in their predictive value. Chang et al. (2015) also found the best model performance when discharge and 

precipitation are included in water quality prediction.  
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A strong relation between land use and the nutrients and pesticides was expected, but this relation was not 

found. Land use only appeared to add noise to the models and has no predictive value in the present research. 

This effect is related to the specific composition in which land use is included in the model. The crop type 

features are constant over the year and do not change on a smaller time scale. This time scale does not coincide 

with the time scale of how water quality changes over the year, which leads to noise. Figure 22 also shows that 

some crops cover only a very small land area and do not change much over the years, leading to extra noise. 

Alnahit et al. (2022) did find that land use has a predictive value for water quality prediction, but their research 

does not focus on predicting time series values. Ahearn et al. (2005) performed a similar analysis to the current 

research and did find predictive value for some of the land cover types. Their research includes many more sub-

watersheds, which leads to improved predictive value.  

Low model performance indicates that not all variability in the water quality concentration is captured in the 

model. Relatively low model performance can be found for sulfate and bentazon prediction. Sulfate 

concentration is known to be related to the amount of industrial effluent discharged on the river (Silva et al., 

2002). Industrial processes were not included in the model, which explains the missing amount of variability that 

is not explained by the model. Bentazon is a highly diffuse source of pollution, for which it is unknown in the 

current model when and where it exactly originates from. Additional features such as timing of pesticide 

application should be included to capture more bentazon variability over the year. The governmental regulations 

of bentazon application in the area have also changed in the year 2018 (Vlaamse Milieumaatschappij, 2017). 

This means that the system in the test set (2019-2021) is not comparable to the train set (2011-2018) for 

bentazon, which causes low performance.  

6.1.4 Model performance and feature importance  
The R2 performance metric was chosen for evaluation because it gives a general indication of the 

performance and most of comparable research is evaluated with this score, which enables easy comparison to 

literature. Tuning the models to this metric implicates focus on the overall performance. This means that 

performance in predicting peak concentrations can come at the cost of performance for lower concentrations, 

especially in imbalanced datasets. Additional performance metrices that capture peak prediction better can be 

used to improve the methodology. Good model performance  (R2>0.5) was found for all water quality parameters 

forecasting 1 week ahead, while forecasting further ahead in time leads to lower model performance. This shows 

the importance of autocorrelation in water quality modelling: less autocorrelation leads to lower model 

performance.  

Evaluating the importance of climatic processes in the forecasting model is not always straightforward and 

easy to explain (Feng et al., 2019; Freeman et al., 2018; Guo et al., 2018). Some climatic processes were  

always important and their combination with other features did not cause major performance changes. In many 

cases, however, model performance differed with specific combinations of climatic processes. The performance 

difference between specific combinations of climatic processes shows the complexity of the climate system and 

its interconnections. Different combinations of climatic processes can lead to different information that is 

included in the model. Different algorithms and forecast horizons also showed different best performing feature 

sets.  

 Feng et al. (2019) used machine learning approaches to predict atmospheric pollution and also found that 

feature importance differs much per target variable and algorithm used. The relations between forecasted 

parameters and independent variables are sometimes not explainable due to the complexity of the climatic 

system. Including more input features did not necessarily lead to better model performance in the present 

research. Freeman et al. (2018) used meteorological inputs to predict air quality and found that less features 

often results in better performance. Time series of input features are often collinear and nonstationary, which 

can lead to high system complexity (Freeman et al., 2018). System complexity can be reduced when a selection 

of input features are removed, which often leads to better model performance. The engineered features in the 

current research are complex and cover a large memory of past climatic data. Improvements in the methodology 
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can be made to investigate the effect of system complexity by doing an extensive feature engineering process 

of including and excluding different sets and configurations of the climatic processes.  

Algorithm performance can be improved with hyperparameter tuning. A cross validation grid search can be 

used to find the optimal combination of hyperparameters per model. The performance of each model is then 

evaluated for each combination of hyperparameters. Since hyperparameter tuning is an extensive process, it 

was not implemented in the current research. Especially more complicated algorithms like the Support Vector 

Machine could benefit from hyperparameter tuning.  

6.1.5 Site-specific investigation 
The inconsistent findings between different studies and study areas for water quality prediction and their 

important variables (see Table 13) shows the importance of site-specific investigation, as highlighted by 

Fukushima et al. (2000). Urban areas might have much more point source pollution while diffuse pollution occurs 

more in agricultural areas. Important climatic processes can therefore differ much between different areas. 

Agricultural areas also contain more diffuse pollutants while urban areas are easier to model because they 

contain more point source pollution. If the proposed methodology is to be repeated in a new study area, an 

extensive investigation of the study area and the expected important climatic processes is needed.  Interesting 

anthropogenic features to add would be GIS information on urbanization rate, percentage of impervious land, 

industrialization, or other features that capture anthropogenic processes. Weather forecast, next to past 

weather conditions, would also be interesting to implement as input features.  

6.1.6 Model performance influence on reservoir operation 
The model performance in water quality forecasting influences model performance in reservoir operation. If 

good water quality is forecasted while the actual water quality is not good, the risk of water shortages becomes 

higher. The reservoir will continue production while the intake rate is switched down. If a period of poor water 

quality is predicted while the water quality is actually good, groundwater use becomes higher because the 

surface water is not optimally used. The performance of all forecasting models decreased for longer forecast 

horizons. Most forecasting models (especially on longer forecast horizons) underestimate the water quality 

concentrations, which leads to a higher risk of water shortages. Increasing the model performance therefore 

leads to a lower risk of water shortages and a higher total groundwater use, when compared to the actual 

forecast (see Figure 40). Better model performance improves overall performance over multiple scenarios. 

6.2 Reservoir operation  
This section discusses the second major part of the research: developing an optimal production strategy for 

the reservoir operation. 

6.2.1 Previous work on adaptive forecast-based production strategies 
Gavahi et al. (2019) developed an adaptive forecast-based approach in which streamflow is predicted 

instead of water quality as a measure for water availability. They showed the adaptive forecast-based approach 

has better reliability than a predefined strategy. Implementing a receding operation horizon causes a major 

improvement in its adaptation to changes and uncertainties. Ahmadi et al. (2015) compared a non-adaptive 

and an adaptive approach in reservoir operation for hydroelectric power generation. They showed that applying 

adaptive operational rules improves reliability and vulnerability of the system under a changing climate.  

The currently proposed adaptive forecast-based strategy always improves vulnerability (risk of water 

shortages). In contrast to previous research, reliability (groundwater use) is not always improved in the current 

study. Reliability does improve in years where multiple short drought periods occur, but not when one long dry 

period occurs (2020). Other studies use a longer evaluation period for the retrospective analysis: nine years for 

Gavahi et al. (2019) and three times periods of 14 years for Ahmadi et al. (2015). Due to low data availability, it  

was not possible to include more years in the current research.  
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6.2.2 Simplifications with respect to real-world case 
The reservoir model that was used in the present research was a simplification of the actual situation. Natural 

in- and outgoing fluxes such as the precipitation and evaporation were neglected. The effect of adding these 

fluxes would be minimal since their value relative to the other system parameters is small. Adding these extra 

fluxes would not result in different. An extra groundwater inlet and river outlet were artificially added to overcome 

problems with the model constraints, such as overflowing of the reservoir. Besides this, the intake of river water 

was always maximum or zero, with no flexibility of in-between values. This is not the case in the real-world 

situation, where the operator is able to flexibly set the intake rate of water to the reservoir. Complicating the 

reservoir is not expected to lead to different model results, because the limitations similarly influence both 

strategies. A simple approach is advantageous because it improves communication and understanding of the 

system parameters and response variables.     

The modelled current strategy is a simplification of the actual current strategy. In the real-world situation, the 

strategy is handled with much more flexibility. In reality, a buffer zone (‘Evaluate’) is implemented for the limit 

concentrations. The evaluation zone is used to consider many more variables, such as weather forecasts and 

the current water quality and quantity in the reservoir, to decide about the production rate. The actual current 

strategy is therefore more anticipative than the modelled one and is closer to the newly proposed adaptive 

forecast-based production strategy. This could lead to a lower risk of water shortages and less groundwater 

use than the modelled situation and therefore better performance for the actual strategy. To quantify how well 

the modelled strategy resembles the actual strategy, the simulated years can be compared to the actual 

measured production data.  

6.2.3 Performance assessment 
Two key performance indicators were used to assess the performance of the production strategies. 

Reliability was expressed with the Total Groundwater Use (TGWU), while the vulnerability of the strategies was 

assessed with a measure for the risk of water shortages: the Days of Minimum Volume (DMV).  

TGWU is the sum of all groundwater use over the year. The measure highly depends on the yearly drought 

pattern. In years with more drought days, more groundwater is expected to be needed to complement surface 

water production. Water demand in the modelling phase was always equal to the production capacity of the 

reservoir. All water that could not be produced from surface water through the Blankaart reservoir was replaced 

with groundwater. This choice was made because the production from surface water resources should always 

be maximum, so it does not depend on the water demand. In reality, groundwater use does depend on water 

demand, because higher water demand leads to higher groundwater use. Since the same scenarios were used 

to evaluate both production strategies, the fluctuating water demand is not expected to influence the 

comparison of groundwater use.  

DMV depends on the soft constraint for minimum drought volume in the reservoir. This constraint only holds 

in summer and rigorously changes from minimum to the maximum reservoir volume between the 31st of March 

till the 1st of April. The soft constraint should capture the risk of water shortages. If the complete summer period 

is dry and we do not want to end up with an empty reservoir before the end of summer, the reservoir should 

have that minimum volume if the production rate is 30% of the production capacity. This is an artificial constraint 

and merely an approximation of the actual natural system. The method can be improved by assessing the actual 

probability that intake is not possible from each moment in summer until the end of summer, based on the 

historical data.  

Because of complexity, the key performance indicators could not be expressed in terms of costs. The costs 

for the risk of water shortages are partly measures that the company can take to avoid a low reservoir volume, 

and the costs of the consequences of a water shortage. Consequences of a water shortage are low water 

pressure and low drinking water quality. One measure that the operators can take to avoid reaching the 

minimum level is flushing the reservoir. Part of the produced surface water is then used as input to the reservoir. 
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The reservoir can remain operational because the minimum volume is not reached. This approach is highly 

inefficient, because clean water is used as input to the reservoir and treated twice before supplied to the area. 

Other measures can be more focused on raising awareness with the end users about their water use in times 

of drought.  

The water quality models were trained on the years 2011-2018 and tested on 2019-2021. The best 

performing models were selected from the tested data and used in the reservoir operation phase, for 2019-

2021. The same time period was thus used for testing the water quality models and evaluating reservoir 

operation performance. This leads to improved performance in the evaluation of the forecast-based strategy 

compared to when completely new data would be used. However, it is necessary to assess the performance of 

the production strategy on these dry years to show what the implications of a forecast-based production strategy 

would be in a real-world case. Improvements can be made when more historic data on years with limited surface 

water availability is available.  

 

6.2.4 Data availability 
Water quality measurements were available on a weekly frequency. The data was not resampled to a daily 

frequency because this reduces credibility. The intake forecast therefore only changes on a weekly time step. 

This reduces flexibility in the response to river water quality. Increasing the data frequency of water quality 

measurements can therefore improve performance in limiting total groundwater use and the risk of water 

shortages.  

6.3 Recommendations for future work 
The methodology for developing water quality forecasting can be applied to other system parameters that 

limit surface water availability under uncertain climatic conditions. Investigation of the study area and the 

important climatic and system parameters is necessary to reduce complexity and focus on the necessary 

processes. The forecasting model can be improved by increasing the data resolution to a daily basis, which not 

only increases operational flexibility, but also results in better model performance. With more available data, 

more advanced models such as an Artificial Neural Network can be applied which is expected to lead to better 

forecasting results. 

The sensitivity analysis showed that the initial conditions do not influence the key performance indicators 

much. The initial conditions are set at the start of each calendar year, while the performance is mostly evaluated 

during the summer months. The reservoir constraints do influence model performance. Increasing the reservoir 

volume to 6*106 m3 could lead to zero groundwater use when a forecast-based production strategy is 

implemented. The sensitivity analysis also shows that the current production capacity is a limiting factor in the 

total groundwater use. If the production capacity increases, the reservoir can be emptied more quickly before 

the end of a dry period. This increases the buffer capacity of the reservoir because more surface water can be 

stored and produced, which limits the use of groundwater resources.  

The approximation of the traditional strategy can be improved in the reservoir operation optimization phase. 

Investigation and communication with the case study’s operators is necessary to develop an accurate model 

that resembles the real-world situation. A complete set of different drought scenarios is necessary to properly 

evaluate different production strategies in periods with low surface water availability.  
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7. Conclusion 
Periods with low surface water availability are expected to increase in the future in severity and frequency. 

The aim of this research was to explore the role of uncertainty in climatic conditions in the conjunctive use of 

surface and groundwater resources for drinking water production by developing an adaptive forecast-based 

production strategy. A case study of conjunctive use of surface and groundwater resources by a Belgian 

drinking water company was used to obtain the research goal. The present research focused on developing an 

adaptive forecast-based production strategy using four climatic processes in the prediction of river water quality. 

Implementation of the forecast-based approach has shown to improve operational performance for the 

conjunctive use of surface and groundwater resources. The following two research questions were answered.  

1. How can conjunctive use of surface and groundwater resources be decided on under uncertain 

climatic conditions?  

Conjunctive use of surface and groundwater resources can be decided on with a forecast of river water quality 

that limits surface water availability. Data-driven approaches are used to predict water quality parameters using 

the parameter’s autoregressive behaviour, precipitation, temperature, discharge, and land use. Experiments 

with alternating machine learning algorithms, input feature sets, forecast horizons and water quality parameters 

resulted in different forecasting performance. Machine learning algorithms have different characteristics that 

are suitable to specific cases. Feature sets consisting of different configurations of precipitation, temperature, 

discharge, and land use resulted in different performance because of site-specificity and the interrelatedness of 

climatic processes. For nitrate prediction, the autocorrelation and seasonal effects are of main importance, while 

all other features reduce model performance. For the other water quality parameters, all external features except 

land use improve model performance. Land use shows no improvement to any of the models, except when it is 

combined with all other features. Adding climatic processes shows most effect for longer forecast horizons.  

With relatively simple machine learning models and open-source data, good to moderate model performance 

was found for all models forecasting 1 or 2 weeks ahead in time. Low model performance was found for longer 

forecast horizons, although climatic processes have more predictive power here.  

2. How can an adaptive forecast-based strategy be developed for the optimal conjunctive use of surface 

and groundwater resources under uncertain climatic conditions?  

An adaptive water quality forecast-based production strategy was developed to optimize the conjunctive use 

of surface and groundwater resources under uncertain climatic conditions. An adaptive approach is favored 

over a predefined one when climatic conditions are uncertain. The goal of the new production strategy was to 

meet the water demand with the trade-off of minimizing groundwater use and minimizing the risk of water 

shortages, under the physical constraints of the operating reservoir and surface water availability. The adaptive 

forecast-based approach maximizes the use of the surface water reservoir by emptying it before a period of 

good water quality and regulating the production rate such that production is never stopped. The adaptive 

forecast-based approach was compared to a predefined production strategy. The new strategy always averts 

the risk of water shortages, and reduces groundwater use for years with multiple short droughts. Improving the 

water quality forecasting model results in a lower risk of water shortages.  

The current research uses relatively simple machine learning models to develop an adaptive forecast-based 

approach. The methodology is easy to implement when water quality data is available. All other data sources 

are open-source data that are publicly available. Due to the data-driven approach, it is not necessary to 

investigate all individual relations in the climate-water system to develop good performing predictive models. An 

extensive analysis of the relation between climatic processes and water quality parameters shows the predictive 

power of climatic processes in water quality forecasting. The forecasting models were evaluated through a real-

world case study in which improved performance over multiple years of retrospective analysis was found. The 

adaptive forecast-based approach performs better than the predefined approach because it better averts the 

risk of water shortages and performs well in years with short periods of low water quality.   
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Appendix 1 – Methodology: additional material   

1A: Intake strategy  
The intake strategy of De Watergroep is based on the concentration of several compounds. The parameters 

considered in this research are nitrate (NO3), (orto-)phosphate (oPO4), sulfate (SO4), conductivity and 

bentazon. These compounds represent nutrients, pesticides and the salination of water which are all important 

parameters for water quality. From all measured compounds, these five also have the longest historic record 

and are thus useful for machine learning applications. Table A1 shows the limit concentrations for the intake 

strategy for each water quality parameter.  

Table A1: Intake limit concentrations (De Watergroep, 2021). 

Okay  Evaluate Alarm 

 Intake possible Operator should decide Intake not possible Unit 

NO3 < 40 40 – 60 > 60 mg/l 

oPO4 < 1 1 – 2 > 2 mg/l 

SO4 < 150 150 – 180 > 180 mg/l 

Conductivity < 1000 1000 – 2000 > 2000 μS/cm 

Bentazon < 0.3 0.3 – 0.8 > 0.8 μg/l 

 

The water quality compounds are measured at several measurement locations along the river Yser. The 

most influential measurement point is located directly next to the Blankaart reservoir and therefore chosen to 

consider in the current research. The limit concentrations are used to support the operator to assess whether 

intake to the reservoir is possible or not. If the measured concentration is below the “Okay” limit, intake is 

possible. If the concentration exceeds the “Alarm” concentration, intake is not possible. Although this scheme 

assists the operators, it is not directive. The operator can take a different decision if other processes and 

conditions play a role at that moment.   

1B: Autocorrelation of water quality parameters  
Figures A1 – A5 show the autocorrelation plots of all water quality parameters.  The correlations are plotted 

on the vertical axis and the lags on the horizontal axis. 95% confidence intervals are plotted in light blue. 

Correlation of R>0.5 is considered to be contributive to the predictive power of each model.  
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Figure A1 – A5: Autocorrelation plots with 95% confidence intervals for all water quality parameters. Red dotted 

line: correlation coefficient = 0.5.  

1C: Rainfall spatial interpolation methods  
Three spatial interpolation methods were used to approximate the mean areal precipitation in the Yser 

catchment with data from the seven rainfall stations. All methods are used to calculate the weights of each 

rainfall station to the mean areal precipitation (MAP) and are based on (Garcia et al., 2008; Shaw, 2011):  

M. A. P. = w1*Plofintele + w2*Pzarren + w3*Ppoperinge + w4*Pvlamertinge + w5*Pieper + w6*Pgeluwe + w7*Proeselare 

Arithmetic mean 
The simplest method applied is the arithmetic mean. All rainfall stations are assigned equal means, such that 

they contribute equally to the mean areal precipitation. The rainfall stations Roeselare and Geluwe are both 

assigned a weight of 0 in this case. They are situated far outside the catchment and expected to have a much 

lower contribution to the MAP than the other stations.  

wx =  1/#stations 

More sophisticated methods to determine the MAP are the use of Thiessen polygons and the inverse 

distance weighting method.  

Thiessen polygons 
The Yser catchment is divided into seven polygons, each describing the area of influence for each rainfall 

station, see Figure A6.  
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Figure A6: Thiessen polygons describing the area of influence of each rainfall station. The green area is the Yser 

catchment upstream of the Blankaart intake point.   

The weight assigned to each rainfall station is determined by dividing the polygon area by the total catchment 

area. The open source QGIS software was used to calculate the catchment area and the area of each polygon.  

wx =
Apolygon

Acatchment

 

Inverse distance weighting  
The QGIS software was used to divide the catchment area into a number of grid cells and perform inverse 

distance weighting. Each rainfall station contributes to the interpolated value of a grid cell based on the inversed 

distance between the rainfall station and the intended grid cell. The mean areal precipitation is found by taking 

the average of all grid cells in the area. To find the weights of each rainfall station to the mean areal precipitation, 

a dataset of 24 values for each rainfall station and the mean areal precipitation based on inverse distance 

weighting was obtained. Multiple linear regression was then used to find the weight of each rainfall station to the 

mean areal precipitation.   

Table A2: Weights for all rainfall stations found with each spatial interpolation method.  

Rainfall station Arithmetic mean Thiessen Inverse Distance Weighting 

Lofintele 0.2 0.2629 0.2235 

Ieper 0.2 0.2560 0.1982 

Vlamertinge 0.2 0.2019 0.1929 

Poperinge 0.2 0.1607 0.1920 

Zarren 0.2 0.1173 0.0951 

Roeselare 0 0.0007 0.0349 

Geluwe 0 0.0006 0.0632 

 

The methods with the strongest correlation between the cumulative antecedent precipitation and the current 

concentration were used for each water quality parameter (see Table 7).  
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Table A3: Strongest correlated methods for spatial interpolation of precipitation. Methods are explained in 

Appendix 1B.  

Parameter Method 

NO3 Lo-Fintele rainfall station  

oPO4 Arithmetic mean 

SO4 Inverse Distance Weighting 

Conductivity Inverse Distance Weighting 

Bentazon Lo-Fintele rainfall station 

 

1D: Feature engineering  

Precipitation 
Table A4: Pearson correlation coefficient and optimal lag for cumulative antecedent precipitation per water 

quality parameter.  

Parameter R Optimal lag (days) 

NO3 0.65 77 

oPO4 -0.4 100 

SO4 -0.3 46 

Conductivity -0.4 77 

Bentazon -0.3 100 

 

Temperature  
Table AA5: Pearson correlation coefficient and optimal lag for average antecedent daily maximum temperature 

per water quality parameter.  

Parameter R Optimal lag (days) 

NO3 -0.78 33 

oPO4 0.60 86 

SO4 0.12 14 

Conductivity 0.48 36 

Bentazon 0.46 28 

 

1E: Days of Minimum Volume  
DMV is the percentage of summer (1 April – 1 October) days that the reservoir volume exceeds the minimum 

drought volume (Vmin,drought). The minimum drought volume is a soft constraint that describes the risk of water 

shortages. It defines what the reservoir volume should be on each summer day to overcome a dry summer that 

extends till 1 October, with a production rate of 0.3*Qprod,max.  It depends on the day of the year, the production 

capacity and the hard constraint of the minimum volume.  

The period from 1 April until 1 October has 183 days. If this period starts with a full reservoir (V = 3*106 m3) 

and the reservoir should be empty (V = 7*105 m3) at the end of the period, the production rate should be around 

12,568 m3/day, which is approximately 30% of the production capacity. The minimum production rate in summer 

is therefore 0.3*Qprod,max. The minimum drought volume is approximated as follows:   

Vmin,drought = 0.3*Qprod,max*(t1 October-tdate) + Vmin  

 

The minimum drought volume when Qprod,max = 4*104 m3/day and Vmin = 7*105 m3
 is shown in Figure A7.  
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Figure A7: Minimum drought volume for Qprod,max = 4*104 m3/day and Vmin = 7*105 m3. 

DMV is defined as the percentage of summer days that the actual reservoir volume is below the minimum 

drought volume.  
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Appendix 2 – Model performance of water quality forecasting  

2A: Experiments 
This appendix shows the model performance of all combinations of water quality parameters, forecast 

horizons, feature sets and algorithms. Negative model performance was indicated with a blue color. The 

red/green color scales show how well each model performs relative to the other models in the forecast horizon. 

Green is good model performance, red resembles low model performance. Extremely negative numbers (<< -

1) were excluded from calculating the average performance per feature set or algorithm since they were 

considered outliers.  

Table A6: Performance (R2) for nitrate – forecast horizon 1. 
 

LR DT LSVR KNR RFR SVR average 

base 0.829 0.387 0.772 0.698 0.745 0.523 0.659 

base_P 0.848 0.423 0.794 0.738 0.770 0.583 0.693 

base_T 0.807 0.611 0.757 0.650 0.738 0.529 0.682 

base_Q 0.833 0.461 0.727 0.733 0.768 0.578 0.684 

base_LU 0.829 0.580 0.772 0.698 0.747 0.523 0.691 

base_P_T 0.815 0.776 0.763 0.678 0.780 0.587 0.733 

base_P_Q 0.838 0.675 0.724 0.699 0.764 0.567 0.711 

base_T_Q 0.816 0.424 0.724 0.663 0.770 0.558 0.659 

base_P_T_Q 0.817 0.614 0.733 0.664 0.768 0.582 0.696 

base_P_T_Q_LU 0.817 0.657 0.732 0.664 0.774 0.582 0.704 

cald 0.845 0.450 0.797 0.695 0.750 0.542 0.680 

cald_P 0.854 0.687 0.795 0.717 0.782 0.613 0.741 

cald_T 0.830 0.392 0.785 0.664 0.737 0.545 0.659 

cald_Q 0.839 0.450 0.757 0.669 0.782 0.555 0.675 

cald_LU -7.21E+25 0.658 0.583 0.517 0.751 0.374 0.577 

cald_P_T 0.834 0.467 0.785 0.695 0.754 0.593 0.688 

cald_P_Q 0.850 0.394 0.769 0.667 0.761 0.601 0.674 

cald_T_Q 0.826 0.623 0.738 0.640 0.761 0.542 0.688 

cald_P_T_Q 0.834 0.666 0.754 0.641 0.769 0.584 0.708 

cald_P_T_Q_LU -3.83E+28 0.506 0.749 0.518 0.769 0.443 0.597 

average 0.831 0.545 0.750 0.665 0.762 0.550   

 

Table A7: Performance (R2) for nitrate – forecast horizon 2. 
 

LR DT LSVR KNR RFR SVR average 

base 0.692 0.513 0.636 0.607 0.658 0.435 0.590 

base_P 0.706 0.597 0.656 0.596 0.663 0.471 0.615 

base_T 0.612 0.481 0.630 0.552 0.628 0.426 0.555 

base_Q 0.701 0.396 0.583 0.614 0.659 0.454 0.568 

base_LU 0.692 0.492 0.637 0.607 0.663 0.435 0.587 

base_P_T 0.615 0.442 0.615 0.554 0.658 0.467 0.559 

base_P_Q 0.697 0.413 0.589 0.553 0.654 0.440 0.558 

base_T_Q 0.621 0.409 0.570 0.545 0.611 0.433 0.532 

base_P_T_Q 0.619 0.344 0.568 0.526 0.631 0.457 0.524 

base_P_T_Q_LU 0.619 0.435 0.568 0.526 0.639 0.457 0.541 

cald 0.742 0.506 0.712 0.647 0.675 0.479 0.627 

cald_P 0.752 0.408 0.708 0.657 0.672 0.529 0.621 

cald_T 0.690 0.487 0.693 0.628 0.633 0.460 0.598 

cald_Q 0.744 0.403 0.664 0.636 0.681 0.476 0.601 

cald_LU -3.67E+26 0.411 0.686 0.481 0.657 0.334 0.514 

cald_P_T 0.697 0.506 0.675 0.647 0.635 0.500 0.610 

cald_P_Q 0.758 0.495 0.670 0.614 0.673 0.508 0.620 

cald_T_Q 0.695 0.374 0.647 0.592 0.640 0.458 0.568 

cald_P_T_Q 0.706 0.402 0.655 0.605 0.633 0.493 0.583 

cald_P_T_Q_LU -2.50E+28 0.397 0.505 0.509 0.648 0.385 0.489 

average 0.685 0.446 0.633 0.585 0.651 0.455   
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Table A8: Performance (R2) for nitrate – forecast horizon 3. 
 

LR DT LSVR KNR RFR SVR average 

base 0.616 0.081 0.539 0.487 0.555 0.350 0.438 

base_P 0.609 0.289 0.549 0.495 0.563 0.358 0.477 

base_T 0.452 0.263 0.516 0.475 0.510 0.342 0.426 

base_Q 0.619 0.353 0.476 0.503 0.560 0.380 0.482 

base_LU 0.616 0.061 0.538 0.487 0.558 0.350 0.435 

base_P_T 0.431 0.368 0.518 0.474 0.539 0.364 0.449 

base_P_Q 0.598 0.214 0.488 0.443 0.542 0.336 0.437 

base_T_Q 0.450 0.149 0.459 0.483 0.509 0.340 0.398 

base_P_T_Q 0.430 0.166 0.481 0.441 0.507 0.350 0.396 

base_P_T_Q_LU 0.430 0.238 0.481 0.441 0.500 0.350 0.407 

cald 0.684 0.529 0.641 0.642 0.625 0.422 0.590 

cald_P 0.677 0.393 0.647 0.616 0.605 0.470 0.568 

cald_T 0.593 0.300 0.635 0.592 0.538 0.405 0.510 

cald_Q 0.685 0.383 0.607 0.595 0.633 0.421 0.554 

cald_LU -6.44E+27 0.495 0.634 0.469 0.611 0.279 0.498 

cald_P_T 0.593 0.350 0.620 0.598 0.534 0.434 0.521 

cald_P_Q 0.687 0.122 0.624 0.595 0.612 0.448 0.515 

cald_T_Q 0.598 0.206 0.587 0.540 0.530 0.393 0.476 

cald_P_T_Q 0.609 0.217 0.592 0.590 0.539 0.419 0.495 

cald_P_T_Q_LU -5.80E+29 0.166 0.607 0.490 0.531 0.348 0.428 

average 0.575 0.267 0.562 0.523 0.555 0.378 
 

 

Table A9: Performance (R2) for phosphate – forecast horizon 1.  

  LR DT LSVR KNR RFR SVR average 

base 0.700 0.549 0.693 0.573 0.712 0.595 0.637 

base_P 0.721 0.539 0.701 0.572 0.724 0.611 0.645 

base_T 0.726 0.572 0.707 0.502 0.730 0.644 0.647 

base_Q 0.709 0.635 0.695 0.612 0.744 0.633 0.672 

base_LU 0.700 0.595 0.693 0.573 0.702 0.595 0.643 

base_P_T 0.737 0.570 0.714 0.521 0.751 0.659 0.658 

base_P_Q 0.713 0.589 0.700 0.558 0.748 0.624 0.655 

base_T_Q 0.726 0.672 0.703 0.512 0.758 0.668 0.673 

base_P_T_Q 0.734 0.640 0.715 0.534 0.747 0.666 0.673 

base_P_T_Q_LU 0.734 0.714 0.717 0.534 0.760 0.666 0.687 

cald 0.696 0.634 0.693 0.524 0.719 0.555 0.637 

cald_P 0.715 0.558 0.695 0.561 0.739 0.616 0.647 

cald_T 0.711 0.526 0.701 0.488 0.739 0.613 0.630 

cald_Q 0.695 0.727 0.688 0.550 0.753 0.576 0.665 

cald_LU -1.32E+26 0.596 0.077 0.230 0.709 0.373 0.397 

cald_P_T 0.723 0.505 0.702 0.539 0.749 0.648 0.644 

cald_P_Q 0.709 0.564 0.697 0.559 0.731 0.621 0.647 

cald_T_Q 0.708 0.663 0.694 0.503 0.760 0.621 0.658 

cald_P_T_Q 0.720 0.656 0.701 0.553 0.751 0.654 0.672 

cald_P_T_Q_LU -4.25E+29 0.615 -1.166 0.248 0.764 0.427 0.178 

average 0.715 0.606 0.576 0.512 0.740 0.603   

 

Table A10: Performance (R2) for phosphate – forecast horizon 2.  

  LR DT LSVR KNR RFR SVR average 

base 0.420 0.152 0.432 0.403 0.433 0.404 0.374 

base_P 0.478 0.221 0.458 0.454 0.558 0.453 0.437 

base_T 0.453 0.416 0.447 0.353 0.529 0.461 0.443 

base_Q 0.444 0.333 0.445 0.475 0.581 0.414 0.449 

base_LU 0.420 0.142 0.432 0.403 0.467 0.404 0.378 

base_P_T 0.494 0.265 0.481 0.344 0.554 0.487 0.437 

base_P_Q 0.470 0.480 0.460 0.433 0.570 0.456 0.478 

base_T_Q 0.453 0.513 0.449 0.356 0.594 0.477 0.474 

base_P_T_Q 0.500 0.507 0.485 0.356 0.588 0.486 0.487 

base_P_T_Q_LU 0.500 0.529 0.483 0.356 0.599 0.486 0.492 

cald 0.467 0.305 0.464 0.384 0.505 0.420 0.424 

cald_P 0.513 0.266 0.483 0.426 0.569 0.477 0.456 

cald_T 0.457 0.509 0.469 0.355 0.543 0.456 0.465 
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cald_Q 0.473 0.408 0.471 0.400 0.590 0.447 0.465 

cald_LU -1.66E+27 0.301 -0.559 0.178 0.485 0.276 0.136 

cald_P_T 0.504 0.316 0.493 0.360 0.545 0.506 0.454 

cald_P_Q 0.512 0.498 0.481 0.433 0.599 0.479 0.500 

cald_T_Q 0.461 0.487 0.470 0.342 0.605 0.478 0.474 

cald_P_T_Q 0.510 0.497 0.494 0.373 0.599 0.510 0.497 

cald_P_T_Q_LU -3.68E+27 0.438 -1.641 0.158 0.603 0.355 -0.017 

average 0.472 0.379 0.310 0.367 0.556 0.447   

 

Table A11: Performance (R2) for phosphate – forecast horizon 3. 

  LR DT LSVR KNR RFR SVR average 

base 0.341 0.103 0.317 0.258 0.273 0.298 0.265 

base_P 0.430 -0.145 0.365 0.352 0.356 0.408 0.294 

base_T 0.395 -0.032 0.372 0.382 0.411 0.386 0.319 

base_Q 0.364 0.176 0.332 0.333 0.448 0.340 0.332 

base_LU 0.341 0.154 0.319 0.258 0.284 0.298 0.276 

base_P_T 0.434 0.089 0.384 0.357 0.481 0.458 0.367 

base_P_Q 0.424 0.225 0.360 0.338 0.420 0.389 0.359 

base_T_Q 0.394 0.157 0.368 0.351 0.468 0.373 0.352 

base_P_T_Q 0.448 0.235 0.391 0.346 0.504 0.450 0.396 

base_P_T_Q_LU 0.448 0.301 0.392 0.346 0.504 0.450 0.407 

cald 0.440 0.018 0.382 0.352 0.386 0.388 0.328 

cald_P 0.491 0.211 0.423 0.405 0.456 0.451 0.406 

cald_T 0.423 0.046 0.407 0.386 0.411 0.394 0.344 

cald_Q 0.440 0.216 0.390 0.367 0.447 0.401 0.377 

cald_LU -8.08E+27 -0.014 -1.10 0.153 0.339 0.218 -0.080 

cald_P_T 0.466 0.133 0.451 0.382 0.495 0.496 0.404 

cald_P_Q 0.503 0.242 0.432 0.406 0.428 0.441 0.409 

cald_T_Q 0.425 0.141 0.411 0.370 0.489 0.421 0.376 

cald_P_T_Q 0.370 0.298 0.464 0.383 0.523 0.486 0.421 

cald_P_T_Q_LU -4.68E+27 0.363 -6.40 0.170 0.518 0.338 -1.002 

average 0.424 0.146 -0.027 0.335 0.432 0.394   

 

Sulfate 
Table A12: Performance (R2) for sulfate – forecast horizon 1. 

  LR DT LSVR KNR RFR SVR average 

base 0.595 0.102 0.383 0.560 0.607 0.180 0.404 

base_P 0.610 0.358 0.436 0.502 0.676 0.188 0.462 

base_T 0.608 0.206 0.338 0.383 0.598 0.125 0.376 

base_Q 0.612 0.259 0.391 0.614 0.681 0.164 0.454 

base_LU 0.595 0.118 0.386 0.560 0.590 0.180 0.405 

base_P_T 0.606 0.230 0.395 0.449 0.685 0.144 0.418 

base_P_Q 0.608 0.425 0.437 0.500 0.701 0.172 0.474 

base_T_Q 0.621 0.396 0.330 0.417 0.670 0.134 0.428 

base_P_T_Q 0.590 0.244 0.395 0.460 0.706 0.139 0.422 

base_P_T_Q_LU 0.590 0.182 0.395 0.460 0.714 0.139 0.413 

cald 0.590 0.233 0.373 0.362 0.620 0.052 0.372 

cald_P 0.606 0.308 0.416 0.413 0.666 0.096 0.418 

cald_T 0.593 0.208 0.357 0.326 0.610 0.053 0.358 

cald_Q 0.607 0.332 0.384 0.380 0.688 0.061 0.409 

cald_LU -2.578 0.202 -0.051 -0.190 0.592 -0.005 -0.338 

cald_P_T 0.587 0.319 0.409 0.404 0.674 0.091 0.414 

cald_P_Q 0.595 0.330 0.419 0.431 0.715 0.092 0.430 

cald_T_Q 0.604 0.444 0.361 0.383 0.673 0.071 0.423 

cald_P_T_Q 0.570 0.130 0.408 0.427 0.706 0.088 0.388 

cald_P_T_Q_LU -1.14E+27 0.165 -0.096 0.030 0.703 0.029 0.167 

average 0.425 0.260 0.343 0.394 0.664 0.110   

 

Table A13: Performance (R2) for sulfate – forecast horizon 2. 

  LR DT LSVR KNR RFR SVR average 

base 0.331 -0.009 0.163 0.273 0.346 0.059 0.194 

base_P 0.334 -0.166 0.172 0.133 0.378 0.072 0.154 

base_T 0.326 -0.058 0.138 0.173 0.394 0.022 0.166 
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base_Q 0.331 -0.052 0.145 0.277 0.377 0.050 0.188 

base_LU 0.331 -0.024 0.163 0.273 0.354 0.059 0.193 

base_P_T 0.329 -0.263 0.148 0.224 0.391 0.049 0.146 

base_P_Q 0.323 -0.164 0.170 0.132 0.430 0.070 0.160 

base_T_Q 0.323 -0.020 0.098 0.193 0.405 0.023 0.170 

base_P_T_Q 0.302 -0.215 0.144 0.218 0.407 0.047 0.150 

base_P_T_Q_LU 0.302 -0.226 0.145 0.218 0.420 0.047 0.151 

cald 0.324 0.018 0.141 0.151 0.364 -0.002 0.166 

cald_P 0.333 -0.069 0.178 0.202 0.413 0.024 0.180 

cald_T 0.293 -0.116 0.153 0.084 0.409 -0.008 0.136 

cald_Q 0.331 -0.088 0.132 0.146 0.419 0.003 0.157 

cald_LU -2.52E+26 -0.139 0.177 -0.319 0.392 -0.028 0.017 

cald_P_T 0.288 -0.236 0.179 0.216 0.400 0.017 0.144 

cald_P_Q 0.314 -0.054 0.173 0.203 0.434 0.021 0.182 

cald_T_Q 0.296 0.051 0.124 0.086 0.414 -0.007 0.161 

cald_P_T_Q 0.266 -0.388 0.161 0.204 0.433 0.014 0.115 

cald_P_T_Q_LU -1.26E+27 -0.143 0.182 -0.139 0.410 0.001 0.062 

average 0.319 -0.118 0.154 0.147 0.400 0.027   

 

Table A14: Performance (R2) for sulfate – forecast horizon 3. 

  LR DT LSVR KNR RFR SVR average 

base 0.151 -0.549 0.043 -0.042 0.023 0.007 -0.061 

base_P 0.154 -0.208 0.039 -0.019 0.114 0.016 0.016 

base_T 0.125 -0.264 0.022 0.109 0.131 -0.025 0.016 

base_Q 0.150 -0.238 0.019 0.073 0.141 -0.002 0.024 

base_LU 0.151 -0.357 0.044 -0.042 0.058 0.007 -0.023 

base_P_T 0.115 -0.430 0.038 0.086 0.157 -0.007 -0.007 

base_P_Q 0.138 -0.346 0.039 0.016 0.165 0.013 0.004 

base_T_Q 0.116 -0.236 0.015 0.117 0.203 -0.022 0.032 

base_P_T_Q 0.098 -0.418 0.039 0.100 0.151 -0.011 -0.007 

base_P_T_Q_LU 0.098 -0.365 0.039 0.100 0.179 -0.011 0.007 

cald 0.161 -0.263 0.047 -0.017 0.089 -0.029 -0.002 

cald_P -0.090 -0.296 0.057 0.119 0.112 -0.018 -0.019 

cald_T 0.115 -0.352 0.052 0.056 0.149 -0.034 -0.002 

cald_Q 0.150 -0.080 0.039 -0.028 0.169 -0.032 0.036 

cald_LU -0.912 -0.231 -0.295 -0.399 0.062 -0.032 -0.301 

cald_P_T 0.104 -0.493 0.061 0.140 0.171 -0.027 -0.007 

cald_P_Q 0.134 -0.248 0.052 0.098 0.182 -0.020 0.033 

cald_T_Q 0.118 -0.304 0.038 0.055 0.195 -0.036 0.011 

cald_P_T_Q 0.091 -0.282 0.064 0.113 0.170 -0.028 0.021 

cald_P_T_Q_LU -2.14E+27 -0.288 -0.014 -0.212 0.138 -0.011 -7.74E-02 

average 0.060 -0.312 0.022 0.021 0.138 -0.015  

 

Conductivity 
Table A15: Performance (R2) for conductivity – forecast horizon 1. 

  LR DT LSVR KNR RFR SVR average 

base 0.763 0.632 -0.675 0.581 0.753 -0.101 0.326 

base_P 0.771 0.634 -0.598 0.692 0.777 -0.105 0.362 

base_T 0.769 0.640 0.062 0.589 0.774 -0.090 0.457 

base_Q 0.768 0.639 -0.710 0.601 0.801 -0.122 0.329 

base_LU 0.763 0.576 -0.675 0.581 0.761 -0.101 0.317 

base_P_T 0.770 0.599 0.012 0.698 0.786 -0.088 0.463 

base_P_Q 0.771 0.604 -0.626 0.685 0.808 -0.110 0.355 

base_T_Q 0.769 0.571 0.053 0.605 0.805 -0.098 0.451 

base_P_T_Q 0.771 0.644 0.010 0.701 0.804 -0.090 0.473 

base_P_T_Q_LU 0.771 0.571 0.008 0.701 0.797 -0.090 0.460 

cald 0.759 0.614 -0.610 0.583 0.764 -0.119 0.332 

cald_P 0.769 0.595 -0.554 0.583 0.785 -0.113 0.344 

cald_T 0.759 0.605 0.060 0.520 0.763 -0.106 0.434 

cald_Q 0.763 0.608 -0.660 0.606 0.810 -0.123 0.334 

cald_LU 0.405 0.575 0.040 0.195 0.752 -0.123 0.307 

cald_P_T 0.758 0.607 0.007 0.545 0.781 -0.098 0.433 

cald_P_Q 0.769 0.580 -0.583 0.570 0.801 -0.115 0.337 

cald_T_Q 0.759 0.653 0.050 0.531 0.799 -0.105 0.448 

cald_P_T_Q 0.763 0.665 0.003 0.530 0.798 -0.100 0.443 

cald_P_T_Q_LU -6.92E+28 0.598 0.119 0.307 0.817 -0.111 0.346 
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average 0.746 0.610 -0.263 0.570 0.787 -0.105   

Table A16: Performance (R2) for conductivity – forecast horizon 2. 

  LR DT LSVR KNR RFR SVR average 

base 0.504 0.312 -0.721 0.259 0.473 -0.110 0.119 

base_P 0.493 0.250 -0.615 0.399 0.569 -0.106 0.165 

base_T 0.517 0.314 0.017 0.357 0.512 -0.093 0.271 

base_Q 0.508 0.327 -0.716 0.279 0.532 -0.117 0.135 

base_LU 0.504 0.295 -0.721 0.259 0.507 -0.110 0.122 

base_P_T 0.504 0.295 -0.041 0.434 0.569 -0.090 0.278 

base_P_Q 0.499 0.331 -0.643 0.406 0.576 -0.108 0.177 

base_T_Q 0.518 0.243 0.007 0.377 0.568 -0.092 0.270 

base_P_T_Q 0.513 0.212 -0.049 0.437 0.564 -0.087 0.265 

base_P_T_Q_LU 0.513 0.220 -0.048 0.437 0.582 -0.087 0.269 

cald 0.500 0.320 -0.659 0.365 0.490 -0.122 0.149 

cald_P 0.490 0.246 -0.594 0.409 0.560 -0.117 0.166 

cald_T 0.501 0.331 0.018 0.306 0.506 -0.109 0.259 

cald_Q 0.503 0.296 -0.672 0.355 0.539 -0.120 0.150 

cald_LU -0.388 0.247 0.004 0.076 0.500 -0.126 0.052 

cald_P_T 0.481 0.223 -0.040 0.388 0.546 -0.105 0.249 

cald_P_Q 0.497 0.290 -0.617 0.402 0.566 -0.117 0.170 

cald_T_Q 0.503 0.287 0.001 0.301 0.566 -0.110 0.258 

cald_P_T_Q 0.495 0.231 -0.045 0.373 0.565 -0.106 0.252 

cald_P_T_Q_LU -2.90E+28 0.246 0.062 0.254 0.589 -0.116 0.207 

average 0.453 0.276 -0.304 0.344 0.544 -0.107   

 

Table A17: Performance (R2) for conductivity – forecast horizon 3. 

  LR DT LSVR KNR RFR SVR average 

base 0.296 -0.068 -0.760 0.017 0.254 -0.110 -0.062 

base_P 0.277 0.101 -0.662 0.100 0.367 -0.108 0.012 

base_T 0.320 -0.092 -0.031 0.123 0.287 -0.100 0.085 

base_Q 0.301 0.033 -0.736 0.039 0.322 -0.112 -0.025 

base_LU 0.296 0.063 -0.760 0.017 0.251 -0.110 -0.041 

base_P_T 0.304 0.254 -0.093 0.183 0.361 -0.092 0.153 

base_P_Q 0.280 0.288 -0.686 0.117 0.391 -0.106 0.047 

base_T_Q 0.316 -0.092 -0.048 0.145 0.323 -0.099 0.091 

base_P_T_Q 0.310 0.155 -0.095 0.190 0.372 -0.092 0.140 

base_P_T_Q_LU 0.310 0.140 -0.095 0.190 0.363 -0.092 0.136 

cald 0.315 -0.108 -0.720 0.172 0.231 -0.123 -0.039 

cald_P 0.284 0.168 -0.635 0.231 0.360 -0.121 0.048 

cald_T 0.328 -0.089 -0.038 0.245 0.256 -0.112 0.098 

cald_Q 0.310 -0.013 -0.702 0.175 0.319 -0.121 -0.005 

cald_LU -1.65E+28 0.117 -0.023 -0.117 0.305 -0.128 0.031 

cald_P_T 0.005 0.195 -0.096 0.285 0.331 -0.109 0.102 

cald_P_Q 0.288 0.214 -0.653 0.236 0.361 -0.118 0.055 

cald_T_Q 0.326 -0.157 -0.051 0.247 0.368 -0.111 0.103 

cald_P_T_Q 0.307 0.161 -0.096 0.289 0.366 -0.109 0.153 

cald_P_T_Q_LU -2.14E+28 0.207 0.022 0.079 0.387 -0.119 0.115 

average 0.286 0.074 -0.348 0.148 0.329 -0.110   

 

Bentazon 
Table A18: Performance (R2) for bentazon – forecast horizon 1. 

  LR DT LSVR KNR RFR SVR average 

base 0.516 0.106 0.539 0.323 0.236 0.564 0.381 

base_P 0.486 0.204 0.539 0.148 0.314 0.464 0.359 

base_T 0.410 -1.390 0.548 0.043 0.141 0.534 0.048 

base_Q 0.501 -0.855 0.538 0.328 0.251 0.560 0.221 

base_LU 0.516 -0.489 0.539 0.323 0.259 0.564 0.285 

base_P_T 0.388 -0.600 0.542 0.042 0.184 0.497 0.176 

base_P_Q 0.484 -0.379 0.544 0.119 0.326 0.478 0.262 

base_T_Q 0.407 -1.439 0.549 -0.053 0.162 0.531 0.026 

base_P_T_Q 0.379 -0.521 0.558 -0.040 0.276 0.499 0.192 

base_P_T_Q_LU 0.379 -0.574 0.556 -0.040 0.240 0.499 0.177 

cald 0.512 -0.569 0.582 0.125 0.285 0.527 0.244 

cald_P 0.471 -0.007 0.578 0.108 0.375 0.447 0.329 
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cald_T 0.467 -1.320 0.585 0.170 0.202 0.545 0.108 

cald_Q 0.505 -0.559 0.584 0.111 0.306 0.534 0.247 

cald_LU -9.644 -0.304 0.236 -0.017 0.348 0.181 -1.533 

cald_P_T 0.413 -0.443 0.577 0.186 0.316 0.501 0.258 

cald_P_Q 0.459 -0.664 0.587 0.083 0.331 0.445 0.207 

cald_T_Q 0.452 -0.870 0.587 0.201 0.198 0.548 0.186 

cald_P_T_Q 0.385 -0.516 0.586 0.191 0.277 0.512 0.239 

cald_P_T_Q_LU -1.30E+25 -0.506 0.537 0.063 0.322 0.101 0.104 

average -0.106 -0.585 0.545 0.121 0.267 0.476   

 

Table A19: Performance (R2) for bentazon – forecast horizon 2. 

  LR DT LSVR KNR RFR SVR average 

base 0.247 -2.809 0.311 0.053 -0.162 0.354 -0.334 

base_P 0.222 -1.041 0.325 -0.128 0.010 0.309 -0.051 

base_T 0.165 -3.329 0.343 -0.093 -0.088 0.342 -0.443 

base_Q 0.238 -3.156 0.317 0.077 -0.055 0.350 -0.372 

base_LU 0.247 -2.702 0.311 0.053 -0.139 0.354 -0.313 

base_P_T 0.135 -0.421 0.350 -0.449 -0.003 0.320 -0.011 

base_P_Q 0.214 -1.063 0.325 -0.153 0.063 0.335 -0.046 

base_T_Q 0.161 -1.872 0.345 -0.262 -0.126 0.332 -0.237 

base_P_T_Q 0.135 -1.130 0.342 -0.493 -0.069 0.314 -0.150 

base_P_T_Q_LU 0.135 -1.257 0.347 -0.493 -0.071 0.314 -0.171 

cald 0.240 -3.557 0.404 -0.012 -0.138 0.370 -0.449 

cald_P 0.148 -1.305 0.393 -0.012 -0.074 0.302 -0.091 

cald_T 0.269 -0.503 0.417 -0.048 -0.087 0.356 0.067 

cald_Q 0.236 -1.646 0.403 -0.105 -0.119 0.341 -0.148 

cald_LU -16.622 -2.431 -0.108 -0.058 -0.114 0.128 -3.201 

cald_P_T 0.153 -0.701 0.402 -0.147 -0.069 0.311 -0.008 

cald_P_Q 0.126 -0.972 0.403 -0.058 -0.100 0.307 -0.049 

cald_T_Q 0.267 -3.121 0.418 -0.136 -0.135 0.353 -0.392 

cald_P_T_Q 0.112 -0.988 0.403 -0.141 -0.062 0.322 -0.059 

cald_P_T_Q_LU -4.29E+27 -1.090 0.373 0.001 -0.099 0.016 -0.160 

average -0.738 -1.755 0.341 -0.130 -0.082 0.307   

 

Table A20: Performance (R2) for bentazon – forecast horizon 3. 

  LR DT LSVR KNR RFR SVR average 

base 0.065 -0.760 0.117 -0.233 -0.173 0.106 -0.146 

base_P 0.020 -2.703 0.155 -0.180 -0.158 0.068 -0.466 

base_T -0.041 -1.572 0.196 -0.241 -0.149 0.238 -0.262 

base_Q 0.059 -1.789 0.124 -0.272 -0.377 0.119 -0.356 

base_LU 0.065 -1.623 0.116 -0.233 -0.160 0.106 -0.288 

base_P_T -0.103 -0.864 0.210 -0.501 -0.095 0.222 -0.189 

base_P_Q 0.041 -1.631 0.158 -0.299 -0.276 0.118 -0.315 

base_T_Q -0.054 -1.424 0.198 -0.378 -0.204 0.245 -0.269 

base_P_T_Q -0.079 -1.360 0.206 -0.420 -0.137 0.224 -0.261 

base_P_T_Q_LU -0.079 -0.933 0.206 -0.420 -0.180 0.224 -0.197 

cald 0.033 -1.573 0.227 -0.281 -0.057 0.264 -0.231 

cald_P -0.063 -1.464 0.203 -0.194 -0.128 0.191 -0.242 

cald_T 0.031 -1.688 0.222 -0.260 0.029 0.280 -0.231 

cald_Q 0.036 -3.494 0.230 -0.431 -0.198 0.226 -0.605 

cald_LU -20.816 -1.778 -1.440 -0.045 -0.211 0.144 -4.024 

cald_P_T -0.068 -0.852 0.208 -0.256 -0.015 0.211 -0.129 

cald_P_Q -0.044 -3.663 0.207 -0.269 -0.167 0.182 -0.626 

cald_T_Q 0.026 -1.396 0.226 -0.334 -0.057 0.288 -0.208 

cald_P_T_Q -0.037 -0.870 0.217 -0.215 -0.112 0.211 -0.134 

cald_P_T_Q_LU -1.10E+29 -1.328 0.265 0.055 -0.184 0.100 -0.218 

average -1.165 -1.638 0.113 -0.270 -0.150 0.188   
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2B: Optimal performing water quality models  

2B1. Nitrate 
The optimal performing water quality models for nitrate prediction are shown in Table A21. The scatterplots 

and time series are included in Figures A8 – A13. 

Table A21: Optimal performing models for nitrate prediction.  

Variable Forecast horizon Algorithm Feature set Model R2 Baseline R2 ΔR2 

NO3 1 week LR Calendar + P  0.854 0.858 -0.004 

2 weeks LR Calendar + P + Q 0.758 0.722 0.036 

3 weeks LR Calendar + P + Q 0.687 0.59 0.097 

 

  

  

  

Figures A8 – A13: Scatterplots and time series showing nitrate predictions and observations for all tested years.  

  



 
82 

2B2. Phosphate 
The optimal performing water quality models for phosphate prediction are shown in Table A22. The 

scatterplots and time series are included in Figures A14 – A19. 

Table A22: Optimal performing models for nitrate prediction.  

Variable Forecast horizon Algorithm Feature set Model R2 Base R2 ΔR2 

oPO4 1 week RFR Calendar + P + T + Q + LU 0.764 0.737 0.027 

2 weeks RFR Calendar + T + Q 0.605 0.411 0.194 

3 weeks RFR Calendar + P + T + Q 0.523 0.241 0.282 

 

  

  

  
Figures A14 – A19: Scatterplots and time series showing phosphate predictions and observations for all tested 

years. 
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2B3. Sulfate 
The optimal performing water quality models for sulfate prediction are shown in Table A23. The scatterplots 

and time series are included in Figures A20 – A25.  

Table A23: Optimal performing models for sulfate prediction.  

Variable Forecast horizon Algorithm Feature set Model R2 Base R2 ΔR2 

SO4 1 week RFR Calendar + P + Q 0.715 0.489 0.226 

2 weeks RFR Calendar + P + Q 0.434 0.149 0.285 

3 weeks RFR Base + T + Q 0.203 -0.239 0.442 

 

  

  

  

 

Figures A20 – A25: Scatterplots and time series showing sulfate predictions and observations for all tested 

years. 
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2B4. Conductivity 
The optimal performing water quality models for conductivity prediction are shown in Table A24. The 

scatterplots and time series are included in Figures A26 – A31. 

Table A24: Optimal performing models for conductivity prediction.  

Variable Forecast horizon Algorithm Feature set Model R2 Base R2 ΔR2 

Conductivity 1 week RFR Calendar + P + T + Q + LU 0.817 0.743 0.074 

2 weeks RFR Calendar + P + T + Q + LU 0.589 0.475 0.114 

3 weeks RFR Base + P + Q 0.391 0.168 0.223 

 

  

  

  

Figures A26 – A31: Scatterplots and time series showing conductivity predictions and observations for all tested 

years.  
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2B5. Bentazon 
The optimal performing water quality models for bentazon prediction are shown in Table A25. The 

scatterplots and time series are included in Figures A32 – A37. 

Table A25: Optimal performing models for bentazon prediction.  

Variable Forecast horizon Algorithm Feature set Model R2 Base R2 ΔR2 

Bentazon 1 week LSVR Calendar + P/T + Q 0.587 0.452 0.135 

2 weeks LSVR Calendar + T + Q 0.418 0.066 0.352 

3 weeks SVR Calendar + T + Q 0.288 -0.214 0.502 

 

  

  

  

Figures A32 – A37: Scatterplots and time series showing bentazon predictions and observations for all tested 

years. 
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2C: Weighted optimal feature sets 
The feature sets are weighted over all forecast horizons to find a general feature set per water quality 

parameter for all forecast horizons. The results are shown in Figures A38 – A42.  

 

 

Figures A38 – A42: Weighted optimal feature set per water quality parameter over all forecast horizons.  
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