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1 ABSTRACT 

Introduction: Lower limb deformities can lead to osteoarthritis and impaired function of the knee. An 
osteotomy can be performed to relieve the injured knee compartment and improve the function. In 
the challenging cases like large deformities or multiplane deformities, 3D-planning of the osteotomy 
can increase the correction accuracy. However, this process is not yet standardized and automated in 
the UMC Utrecht. Therefore, this study aims to develop a standardized and automated process.  
Method: Semi-automatic algorithms were developed for deformity analysis, virtual osteotomy 
planning, and patient specific instrumentation (PSI) design. Intra- and interobserver variability were 
calculated to validate the deformity analysis algorithm. Moreover, intraclass correlation coefficients 
were computed for the angles of the lower limb. Furthermore, intra-observer variability was calculated 
for manual landmark detection. The accuracy of the virtual osteotomy algorithm was calculated by 
comparing a desired lower limb geometry to the achieved geometry after correction. The PSI algorithm 
is evaluated by visual inspection and several measurements of the PSI.  
Results: Overall, perfect agreement was achieved. The intra-observer variability of manually placed 
landmarks was higher when compared to semi-automatic algorithm. Mean virtual osteotomy accuracy 
ranged between 0.01 ± 0.04° and 0.14 ± 0.16°. Visual inspection and measurements of the PSI indicated 
that all design requirements were met.  
Conclusion: In this study the 3D-workflow for the use of 3D technology in osteotomies around the 
knee was protocolized and automated. This was achieved through the development of several 
algorithms for deformity analysis, virtual osteotomy, and PSI design. 
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2 INTRODUCTION 

 
Knee osteoarthritis (OA) is the most common joint disease globally.1 In 2019, 48,700 new cases of knee 
OA were diagnosed in the Netherlands.2 In that year a total of 704,600 knee OA patients were 
registered in the Netherlands.2 In 2017, total health care costs associated with knee OA were estimated 
to be € 488.2 million.3 The pathogenesis of OA consists of mechanical, metabolic and inflammatory 
factors which result in alterations of the cartilage, subchondral bone, synovium, capsule, ligaments, 
and periarticular muscles.4,5 Knee OA symptoms include pain, reduced range of motion, stiffness, and 
weakness of the muscles, all leading to an increased disability.6 Several risk factors are associated with 
OA such as older age, obesity, female gender, previous knee injury, occupational factors, and varus or 
valgus malalignment.4  
 
The population of OA patients is highly heterogeneous. Possible underlying reason for this 
heterogeneity is the multiplicity of OA phenotypes, malalignment being one of them.7 Figure 1 shows 
a varus and valgus malalignment of the lower limb. Such a malalignment increases stresses in the 
medial either the lateral knee compartment.8 These increased stresses lead to a progression of 
cartilage loss in the corresponding compartment, resulting in an increased risk of OA.9–11 A study by 
Bellemans et al. indicates that a constitutional varus is present in 32% of the male knees and 17.2% of 
the female knees. Whereas a valgus deformity was only present in 2% of the male knees versus 2.8% 
of the female knees.12 Malalignment can also be caused by growth or developmental disorders of 
cartilage or bone. This group of rare disorders are also called skeletal dysplasia, which is a genetic 
disorder. Skeletal dysplasia can lead to malalignment in multiple planes.13  
 

 
Figure 1: Three types of different lower limb alignments. The left lower limb shows valgus malalignment, the middle a normal 
stance and the right lower limb has a varus deformity.14 

 
Weight-bearing whole leg radiographs (WLR) are considered the gold standard for hip knee ankle angle 
(HKA) measurements, indicating patients’ leg axes.15,16 The HKA is defined by the angle between the 
femoral mechanical axis and the tibial mechanical axis. The mechanical axis is the line which connects 
the centres of the proximal and distal joints of each bone. The mechanical axis of the femur runs from 
the femoral head centre to the intercondylar notch of the distal femur.17 The mechanical axis of the 
tibia runs from the centre of the tibial eminences to the centre of the ankle.17 Next to the tibial and 
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femoral mechanical axis, the mechanical axis (Mikulicz line) of the whole lower limb is important too, 
as it shows the load distribution through the knee joint.18 This axis runs from the femoral head centre 
to the centre of the ankle, passing the knee joint 4 ± 2 mm medial to the centre.18 In varus 
malalignment, this line runs medial of the knee joint, whereas in valgus the Mikulicz line runs lateral 
of the knee joint. Figure 2 shows the mechanical axes of the femur, tibia, and the lower limb. The 
mechanical axis of the femur and tibia are drawn in blue, whereas the Mikulicz line is shown in red. In 
the right lower limb, a varus deformity can be seen. The left lower limb shows slight valgus 
malalignment of the lower limb. Normally in healthy adults, a constitutional varus between 1-2° can 
be observed.17,19 
 

 
Figure 2: Illustration of a whole leg radiograph. The leg on the left is the right lower limb and the leg on the right is the left 
lower limb. In red, the Mikulicz lines are displayed. In blue, the mechanical axis of the femur and tibia are shown. A varus 
deformity of the right lower limb and a slight varus deformity of the left lower limb are present. Adjusted from original image 
20. 

Besides a deformity in the coronal plane, patients may also present deformities in the sagittal and axial 
plane. 21,22 In the sagittal plane, tibial slope has an influence on knee joint stability. Sagittal plane 
deformities can be a result of skeletal dysplasia. A decreased tibial slope is associated with an increased 
tension on the anterior cruciate ligament (ACL), which leads to an increased risk of rupture.23 
Furthermore, a decreased tibial slope is associated with accelerated knee OA.24 However, no 
association with common knee OA was found.24 The sagittal plane mechanical axis is equal to the 
coronal plane mechanical axis. This axis, shown in Figure 2, runs anteriorly through the knee joint when 
in full extension.21 When the knee is roughly in 5-10° flexion, the mechanical axis runs through the 
knee joint centre of rotation.21,25 In the axial plane existing deformities are for example tibial torsion 
and femoral neck anteversion. Tibial torsion is responsible for patellofemoral instability, medial OA, 
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and patellar chondromalacia.26,27 Furthermore, femoral neck anteversion is associated with slipped 
capital femoral epiphysis and early hip OA.28,29 
 

 
Figure 3: The left lower limb shows the mechanical axis of the lower limb in the sagittal plane in full extension. On the right, 
the mechanical axis runs through the knee centre of rotation. For this, the knee has to be flexed 5-10°.25  

Patients with a clinical manifestation of unicompartmental knee OA with malalignment or skeletal 
dysplasia patients are indicated for a correction osteotomy.30 An osteotomy  shifts the mechanical axis 
from the injured knee compartment to the healthy knee compartment, which relieves the injured 
compartment.8,31,32 An osteotomy preserves  the knee joint, while a total knee arthroplasty (TKA) 
resects the knee joint. TKA is effective in patients with end-stage OA and 60-65+ years of age.9 
Therefore, the ideal osteotomy patients with unicompartmental knee OA are fairly active, rather young 
(between 40-60 years), a BMI < 30, malalignment < 15°, non-smokers, have a full range of motion, and 
have an unaffected contralateral knee compartment.30 Absolute contra-indications for a knee 
osteotomy are rheumatoid arthritis or a (total) meniscectomy in the compartment intended for 
weightbearing.33  
 
Knee osteotomies can be classified into several techniques, high tibial osteotomy (HTO), distal femur 
osteotomy (DFO), or a double level osteotomy (DLO).30 HTO is indicated in patients with a tibial 
deformity. DFO is indicated for patients with malalignment of the lower limb as a result of a femur 
deformity.10 Both HTO and DFO can be performed using open wedge (OW) or a closed wedge (CW) 
technique.9 Each technique has its own advantages and disadvantages. OW HTO has a higher 
correction accuracy, better ten-year survival, wider range of motion, is easier and faster to perform, 
and the tibiofibular joint is preserved.34,35 The advantages of CW included that in case of large 
corrections no autologous iliac bone graft is required, and the posterior slope and limb length do not 
increase.9 Furthermore, CW has a decreased likelihood of opposite cortical fractures as compared to 
OW osteotomies. 34 CW osteotomies are indicated in patients with higher risk of delayed healing or 
when a higher construction stability is required.10 Moreover, choice for opening wedge and closing 
wedge osteotomy can be based on leg length discrepancy. Figure 4 shows all types of osteotomies 
around the knee. The MOW DFO is not performed in the UMCU due to the increased chance of 
complications.  
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Figure 4: The various type of distal femur (DFO) and high tibial osteotomies (HTO). The red lines show the cutting lines of the 
osteotomy. The red areas are the wedges which are removed during a closed-wedge osteotomy. Medial opening wedge DFO 
is not recommended. Adapted from original image.36 

Adequate pre-operative planning of the surgical correction is important. Pre-operative planning is 
currently performed on antero-posterior weight bearing whole leg radiographs (WLR). This 2D 
approach can lead to overlooked sagittal and transversal deformities. Moreover, multiplane 
deformities affect measurement accuracies in the coronal plane.37–39 
 
A large systematic review by Van den Bempt et al. found that eight out of 14 studies reported a success 
rate below 75% using the conventional osteotomy procedure.40 Success rate was defined as  
percentage of procedures falling within the proposed accuracy range (AR). An interval including al ARs 
of the studies in the review ranges from 3° of varus to 8° of valgus.40 This shows that achieving the 
planned correction per-operatively remains difficult.41  
 
Planning the osteotomy using three-dimensional (3D) visualization from computed tomography (CT) 
images increases the accuracy.41,42 3D-planning and the use of personalized surgical instruments (PSI) 
enables the translation of the pre-operative planning into the per-operative setting without computer-
assisted surgical navigation.41,43,44 A final advantage of PSIs is the reduced operating time, reduction of 
total fluoroscopic images, and shortening of the surgical learning curve.44 
 
In the challenging cases (large deformities or multiplane deformities), 3D-planning of the osteotomy 
can increase correction accuracy.41,42  The first step in the current 3D-workflow in the University 
Medical Center Utrecht (UMCU) is acquisition of CT-data, followed by segmentation and deformity 
analysis. During deformity analysis, landmarks on both the femur and tibia are located. Using these 
landmarks, several axes and angles are calculated. in 3D. After deformity analysis, the correction is 
planned in the 3-matic (Materialise, Version 16.0, Leuven, Belgium) environment and eventually 
translated into a 3D-printed PSI. 
 
In the current clinical practice in the UMCU, the workflow of performing 3D deformity analysis, creating 
a pre-operative planning, and designing a PSI is not standardized yet. Standardization is required to 
reduce variability in treatment, improve correction accuracy and reduce preplanning effort.45 This can 
be achieved by protocolizing and automating the 3D-workflow. Automation reduces the amount of 
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user input, whereas protocolization reduces input variability. Both lead to a minimization of intra- and 
interobserver variability. The aim of this study is to protocolize and automate the 3D-workflow for the 
use of 3D technology in osteotomies around the knee in the UMCU. This aims to reduce the intra- and 
interobserver variability, add a quality control to the entire process and reduce the total time needed 
to design PSI for the use in lower limb osteotomies. 
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3 OBJECTIVES 

 
Currently, several projects on 3D technology in deformity analysis and personalized surgical instrument 
(PSI) development have been conducted at the UMCU. However, the entire process from CT-scan to 
deformity analysis, virtual osteotomy planning, and PSI design has not been standardized yet. The main 
objective of this study is to protocolise and to automate the entire 3D-workflow in lower limb 
malalignment care.  
 
First, 3D deformity analysis has only been partly studied and implemented for the femur and tibia. This 
project will further develop and implement methods for 3D analysis of these two bones. The developed 
methods must be validated before implementing them into the clinical care of patients.  
 
The second objective of this study is protocolizing the translation of the deformity analysis into pre-
operative planning. Pre-operative planning of osteotomies is based on measured bone geometry, 
combined with patient and surgeon demands. Based on these variables, the algorithm must perform 
a virtual osteotomy. The algorithm will propose a surgical correction angle, based on the osteotomy 
site, hinge location, and location of plate fixation.  
 
Third is the development of the PSI. This part of the project aims to develop a clinically viable semi-
automatic algorithm for the creation of PSIs. This method must include the six current types of lower 
limb osteotomies. Standardization and automatization are important for clinical processing time, 
accuracy, and repeatability. 
 
Finally, the implementation of the entire 3D-workflow into clinical care must be validated. The goal is 
to standardise and automate the process of performing corrections in multiple planes.  
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4 RESEARCH QUESTIONS 

Is an automated, protocolized, and standardized 3D workflow in lower limb realignment surgery 
clinically achievable? 

- What is important and needed for reliable and repeatable semi-automated measurements on 
3D lower limbs? 

o What are the intra- and interobserver variabilities of the semi-automatic deformity 
analysis algorithm? 

o What is the accuracy of the deformity analysis script as compared to manual 
localisation of all landmarks? 

- What is the accuracy of the achieved virtual osteotomy correction by the algorithm as 
compared to the desired geometry? 

- What is necessary to standardize, optimise, and automate the design process of a PSI for high 
tibial and distal femur osteotomies? 
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5 METHOD  

5.1 METHOD 3D DEFORMITY ANALYSIS 

5.1.1 Study population 

The 3D deformity analysis section of this project included fifty lower extremity CT-scans. The 
indications for the CT-scans were not related to the orthopaedic field. All scans were collected from 
the UMCU. database, of which the included patients signed a broad informed consent for the use of 
their imaging materials. A separate approval of the Medical Ethical Committee of the UMCU for 
conducting this study was not necessary for this study.  
 
CT-scans were acquired using Philips iCT scanner or Philips Brilliance 64 (Philips Medical Systems, Best, 
The Netherlands). The following settings were used: tube voltage of 120 kVp and tube current of 150 
mAs. The slice thickness was 1.0 mm. The reconstructions were made using a field of view including 
both legs with a matrix size of 512x512 pixels and a slice increment of 0.7 mm. Voxel sizes for the 
systems were 0.63 mm × 0.63 mm × 1.00 mm and 0.98 mm × 0.98 mm × 1.00 mm. Both systems applied 
the iDose reconstruction system.  
 
Sample size calculations were performed based on estimations of the ICC as described by Walter et 
al..46 For calculation an excepted reliability of ICC was 0.97, minimal acceptable reliability was 0.90, the 
significance level was 0.05, power was 80%, and number of raters was three. This resulted in a minimal 
sample size of seventeen subjects.  

5.1.2 Methods 

All CT-scans were segmented using Mimics 24.0 (Materialise, Leuven, Belgium). The segmentation was 

based on the CT bone threshold of 226 Hounsfield units as applied in the advanced bone segmentation 

tool. The segmentations were visually inspected, and manual adjustments were made if required. 

Segmentation resulted in a 3D-models of the lower limbs (femur, tibia, and fibula). For deformity 

analysis, several angles of the femur and tibia were measured. The femur angles include the lateral 

proximal femur angle (LPFA), mechanical lateral distal femur angle (midface), and femoral rotation. 

The definitions of these angles are displayed in Table 2. The angles of the femur and their definitions 

are based on 11 landmarks as described by Fürmetz et al..47 The definitions of the landmarks are shown 

in Table 1. The angles of the tibia (Table 3) include the mechanical medial proximal tibial angle 

(mMPTA), mechanical lateral distal tibial angle (mLDTA), posterior proximal tibial angle (PPTA), and 

tibial rotation. These angles are based on 10 landmarks, shown in Table 4.47 Figure 5 and Figure 6 show 

all landmarks as described in the tables.  
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Table 1: Landmarks of the femur with their definitions 

Landmark Definition 
Femoral hip centre (FHC) Midpoint of the femoral head 
Femoral notch point (FNP) Most cranial point of the femoral notch 
Femoral neck centre (FNC) Midpoint on the line across the narrowest part 

of the femoral neck 
Femoral condyle medial (FCM) Most medial point of medial condyle 
Femoral condyle lateral (FCL) Most lateral point of lateral condyle 
Transepicondylar midpoint (TEM) Midpoint between FCM and FCL 
Tip of greater trochanter (TGT) Most cranial point of the greater trochanter 
Femoral lateral condyle distal (FLCD) Most caudal point on the lateral condyle 
Femoral medial condyle distal (FMCD) Most caudal point on the medial condyle 
Femoral lateral condyle posterior (FLCP) Most dorsal point on the lateral condyle 
Femoral medial condyle posterior (FMCP) Most dorsal point on the medial condyle 

 

Table 2: Angles and axes of the femur with their definitions and planes 

Angle or axis Definition Plane 
Mechanical femoral axis (MFA) FHC-FNP Coronal and sagittal 
Mechanical lateral distal 
femoral angle (mLDFA) 

Angle between MFA and the axis FLCD-
FMCD 

Coronal 

Lateral proximal femur angle 
(LPFA) 

Angle between MFA and the axis FHC-
TGT 

Coronal 

Femoral torsion Angle between axis FHC-FNC and FLCP-
FMCP 

Transversal 

 

 

Figure 5: Anterior and posterior view of the femur. Ten landmarks required by the algorithm are shown. The transepicondylar 
midpoint, which is in the middle of the axis between the medial and lateral epicondyle, is not displayed. Adjusted from original 
image.48 
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Table 3: Landmarks of the tibia with their definitions 

Landmark Definition 
Tibial knee centre (TKC) Midpoint of the medial and lateral intercondylar tubercle 
Tibial ankle centre (TAC) Midpoint of the tibial plafond area 
Medial intercondylar tubercle Protrusion on the intercondylar eminence on the medial 

side 
Lateral intercondylar tubercle Protrusion on the intercondylar eminence on the lateral side 
Tibial medial condyle posterior (TMCP) Most dorsal and cranial point on the medial condyle 
Tibial lateral condyle posterior (TLCP) Most dorsal and cranial point on the lateral condyle 
Tibial medial malleolus (TMM) Most medial point of the medial malleolus 
Tibial lateral malleolus (TLM) Most lateral point of the lateral malleolus 
Posterior cruciate ligament insertia (PCL 
insertia) 

Posterior aspect of the tibial plateau, 1 cm distal to the joint 
line 

Medial border of tibial tuberosity A point on the border of the medial side of the tibial 
tuberosity 

 
Table 4: Angles of the tibia with their definition and plane 

Angle Definition Plane 
Medial proximal tibial angle 
(MPTA) 

Angle between MTA and axis TLCL - 
TMCM 

Coronal plane 

Mechanical lateral distal tibial 
angle (mLDTA) 

Angle between transmalleolar axis and 
mechanical tibial axis.  

Coronal plane 

Posterior proximal tibial angle 
(PPTA) 

Angle between proximal tibial plateau 
plane and mechanical tibial axis 

Sagittal plane 

Tibial torsion Angle between axis TLCP-TMCP and 
TLM-TMM 

Transversal plane 

 

 

Figure 6: Anterior and posterior view of the tibia. All landmarks required by the algorithm are shown. Adjusted from original 
image.49 
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5.1.3 Requirements deformity analysis algorithm 

Semi-automatic algorithms were developed for both the tibia and the femur to detect bony landmarks. 
The algorithms must fulfil several requirements, namely: 

• Reduce the time needed to find all bony landmarks and angles as compared to manual 
selection 

• Orthopaedics department staff, i.e.: Technical Physicians, Biomedical Engineers, or Technical 
Medicine students, should be able to work with the algorithm 

• Must be usable on 95% of all patients 

• Must be capable of performing measurements on both the right and left lower limb 

• Minimal manual actions should be conducted 

• Have an excellent reproducibility and repeatability. Intra- and interobserver ICCs in other 
studies range from 0.90 to 0.99.50–54 

5.1.4 Algorithm femoral landmarks and angles 

The developed algorithm for finding the femoral bony landmarks requires four manual steps by the 
user. First the spherical part of the femoral head is marked, next the medial and lateral epicondyle 
must be selected globally (within 5 mm). Finally, the trochlea is marked. Based on this information, the 
semi-automatic algorithm finds all angles and landmarks as listed in Table 1 and 2.  
 
Femoral hip centre 
Based on the marked spherical part of the femoral head, a sphere is fitted. The marked part should go 
around the entire femoral head completely, as displayed in Figure 7. The FHC is defined as the centre 
of this sphere, as shown in Figure 7.  
 
Femoral neck centre 
To obtain the FNC, the radius of the sphere is iteratively enlarged by 0.1 mm. An intersection between 
the sphere and femoral neck is made and the volume of this intersection is calculated. This is done for 
the entire femoral neck. The centre of gravity of the intersection with the smallest volume is indicated 
as the FNC. The line between the FHC and FNC represents the femoral neck axis, which is shown in 
Figure 7.  
 

 
Figure 7: The left image shows the marked part of the femoral head. In the middle image the sphere is fitted based on the 
marked area. The femoral hip centre and femoral neck centre which together form the femoral neck axis are displayed on the 
right. 

Lateral and medial femoral epicondyle 
First the user indicates the global location of the lateral femoral epicondyle (FCL) and medial femoral 
epicondyle (FCM). Between these two points, a cylinder with a radius of 5 mm is designed. This 5 mm 
radius was based on the study of Fürmetz et al. which observed mean intra- and interobserver error 
for manual landmark selection of less than 5 mm.47 Using an extrema analysis in the z-direction of the 
cylinder, the outermost points of the medial and lateral condyles are found. Between these two points 
a line is drawn which indicates the transepicondylar axis (TEA). The centre of this axis is the 
transepicondylar midpoint (TEM). The TEM and epicondyles are displayed in Figure 8. 
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Figure 8: The transepicondylar axis between the medial and lateral epicondyle. The middle of this axis is the transepicondylar 
midpoint. 

Femoral notch point 
The femoral notch point (FNP) is located by marking the trochlea. The algorithm then created an inertia 
axis based on the marked area. Two points on the y-axis of the inertia axis and the FHC are used to 
create a plane. Next the contour of the femur in this plane is drawn. Then, the most distal point of this 
contour is found by performing an extrema analysis in the direction of a line running from the FHC to 
the TEM. The FHC and FNP together form the mechanical axis of the femur (Figure 9).  
 

 
Figure 9: The mechanical axis of the femur, which is the line between the femoral hip centre and femoral notch point (FHC-
FNP). 

Tip of greater trochanter 
The tip of the greater trochanter (TGT) is obtained by drawing a line between the FCM and the FNC. 
Next, the femoral head and femoral neck are subtracted from the femur. Extrema analysis is then used 
to find the TGT in the direction of the line drawn before. An axis between these two points is then 
constructed as displayed in Figure 10.  
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Figure 10: The axis running between the femoral hip centre and the tip of the greater trochanter (FHP-TGT). 

Posterior points medial and lateral condyle 
First, the mechanical axis is constructed by drawing a line between the FHC and the FNP. Perpendicular 
to this line a plane is constructed. After this, the femur is split in a proximal and distal part by creating 
a plane between the FHC and the TEM. Next, the distal femur is split by a midplane between the 
epicondyles. Lastly, the medial and lateral distal femur are split into an anterior and posterior part. 
This is done by a plane perpendicular to the first plane, which runs from the medial epicondyle to the 
lateral epicondyle. Extrema analysis, which calculates the outermost points, is performed 
perpendicular to this last plane to find the posterior points. An overview of all planes is given in Figure 
7.  
 

 
Figure 11: Planes dividing the distal femur in four parts, namely: anteromedial, anterolateral, posteromedial, posterolateral. 

Distal points medial and lateral condyle 
The distal points are found using the extrema analysis in the direction of the mechanical axis. For this, 
the left and right distal femur as described before are used.  
 
Transversal, coronal, and sagittal plane 
The transversal plane is constructed in the FNP. This plane is perpendicular to the mechanical axis. The 
coronal plane runs perpendicular to the transversal plane and between the medial and lateral 
epicondyle. Lastly, the sagittal plane is perpendicular to the transversal and coronal plane. Figure 8 
shows the coronal, sagittal and transversal plane of the femur. 
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Figure 12: Orientation of the planes around the femur. The coronal, sagittal and transversal planes are displayed. 

5.1.5 Tibial landmarks 

The landmarks of the tibia are also found by the algorithm with four manual steps as input. First the 
distal and proximal tibial plateau are marked. Then the location of the tibial posterior cruciate ligament 
attachment is marked. Finally, the user indicates a point medial to the tibial tuberosity. With this 
method all angles and landmarks as described in Table 3 and 4 are found.  
 
Tibial ankle centre and distal tangent 
The tibial ankle centre (TAC) is found by marking the distal tibia plateau. Next, the centre of gravity of 
the marked area is calculated. This is the tibial ankle centre. Furthermore, the distal tangent is 
calculated by fitting a line to the marked surface. The TAC and distal tangent are displayed in Figure 
14. 
 
Proximal tibia plateau 
To find the proximal tibia plateau, the medial and lateral plateau are marked. Next, a plane is fitted 
based on the marked areas.  
 
PCL insertia 
This landmark is obtained by marking the area where the PCL attaches to the tibia. The point is found 
by calculating the centre of gravity of the marked area.  
 
Medial tuberosity and Akagi’s line.  
This point is manually selected by placing a point medial to the tibial tuberosity. The algorithm displays 
a curvature analysis of the tibia, which highlights the transition between tuberosity and tibia. The line 
between the PCL insertia and medial tuberosity is the Akagi line, which is shown in Figure 13.  
 

 
Figure 13: The Akagi line runs between the PCL insertia and medial tuberosity. 
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Lateral and medial malleolus 
First, a cylinder is fitted to the marked area of the distal tibia plateau. The radius of this cylinder is then 
reduced by 1 mm. Next, an intersection between the two cylinder walls and the medial and lateral 
malleoli is made. This intersection between cylinder walls and malleoli, results in transversal slices of 
both the lateral- and medial malleolus. The centre of gravity of the malleolar slices are computed by 
the algorithm. The computed points are the landmarks of the malleoli (Figure 14).  
 

 
Figure 14: The two outer points are the centres of the medial and lateral malleolus. The middle point is the tibial ankle centre. 
Furthermore, the distal tangent is displayed. 

Eminentia and tibial knee centre 
To find the eminentia, a plane is constructed between the PCL insertia and the medial tuberosity. The 
plane is perpendicular to the proximal tibia plateau. Using this plane, the tibia is cut in a lateral and 
medial part. Next, a temporary mechanical axis of the tibia is constructed between the centre of this 
plane and the TAC. The eminentia are found by computing an extrema analysis for the lateral and 
medial tibia in the direction of this mechanical axis. The user then visually inspects the location of the 
landmarks. If the landmarks are not located correctly, the user is prompted to manually locate the 
eminentia. A cylinder in the direction of the temporary mechanical axis is constructed on the manually 
selected points. This cylinder is intersected with the eminentia. Again, an extrema analysis is computed 
for these intersections in the direction of the temporary mechanical axis. Finally, a midplane is 
constructed between the two eminentia. The origin of this plane is the tibial knee centre (TKC).  
 
Anatomical axis 
The anatomical axis of the tibia is the line drawn between the centre of the tibial shaft at 1/3 and 2/3 
of the total length.47 The length of the tibia is equal to the length of the mechanical axis. A plane 
perpendicular to the mechanical axis is created at 1/3 and 2/3 of this length. The plane is then 
intersected with the tibia. The centres of gravity of these intersections are then used to draw the 
anatomical axis. 
 
Transversal, sagittal, and coronal plane 
The transversal plane is placed at the TKC and is perpendicular to the mechanical axis. The sagittal 
plane is perpendicular to the transversal plane and runs through the medial tuberosity and the PCL 
attachment point. Finally, the coronal plane is perpendicular to those two planes and its centre is 
located at the TKC. Figure 15 shows the coronal, sagittal and transversal plane of the tibia.  
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Figure 15: The planes describing the direction of the tibia. Shown are the coronal, sagittal and transversal plane. 

Tibial plateau coronal and sagittal tangent 
The coronal tangent is the line that is formed by the intersection of the coronal plane and the proximal 
tibia plateau plane. The sagittal tangent is the intersection of the sagittal plane and the proximal tibia 
plateau plane. The coronal and sagittal tangent are shown in Figure 16. 
 

 
Figure 16: Coronal and sagittal tangent of the tibia plateau. 

Lateral and medial posterior points 
The posterior points are found in the area between the top of the fibula and just below the proximal 
tibia plateau. First, the tibia is split in a lateral and medial part. Next, the most posterior points of the 
lateral, medial, and distal tibia are found by computing an extrema analysis in the direction 
perpendicular to the coronal plane. These three points are then used to create a posterior plane, which 
is used to cut the tibia. This results in three small parts of the tibia. Iteratively, the three points are 
relocated. This is done until the volume of the three parts is less than 0.1 mm3. The location of the 
points on the lateral and medial part of the tibia are then indicated as the most posterior points.  

5.1.6 Manual landmark registration 

Besides semi-automatic landmark detection using the 3D deformity analysis script, manual registration 
can be performed. The manual registration was performed as described by Fürmetz et al..47 This was 
done to compare semi-automatic and manual registration. In total ten lower limbs were analysed. 
Manual registration was visually compared to semi-automatic registration for all landmarks. 
Landmarks of both methods were projected on a single lower limb. The landmarks were then assigned 
to one of three groups, namely: semi-automatic registration most accurate, manual registration most 
accurate and landmark could not be assigned to one of two other groups. 
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5.1.7 Statistical analysis 

Ten segmentations were used to create the algorithm and were therefore excluded from analyses. In 
total, forty segmentations of both lower limbs were included for statistical analysis. The intra- and 
interobserver variability were calculated for all landmarks and angles of both the femur and tibia. One 
observer (SL) performed all measurements twice, with two weeks in between, to compute intra-
observer agreement. This resulted in a total of 160 measurements of both the femur and tibia. Two 
researchers of the 3D Lab UMCU (JM, CN) with several years of experience in deformity analysis 
performed measurements once for interobserver variability. This resulted in another 160 
measurements of both the femur and tibia. In total 240 measurements were used to calculate 
interobserver variability. For the landmarks, the mean Euclidian distance and the standard deviation 
was calculated. Measurements for the left and right femur were combined to find a final mean 
Euclidian distance and standard deviation. For the angles, the absolute difference and standard 
deviation were computed. Besides these angles, an additional angle was calculated. This angle was 
used to define the orientation of the tibia plateau. To calculate this angle, the angles between z-axes 
of the tibia plateau plane were used. Furthermore, the intraclass correlation coefficient (ICC) and 95% 
confidence interval (CI) were calculated for all angles for both intra- and interobserver measurements. 
This was done with the model: two-way random absolute agreement and a confidence interval of 95%.  
 
Moreover, the intra-observer variability of manual detection was calculated for ten measurements 
using the Euclidian distances. Additionally, manual and software derived landmarks were compared 
by calculating Euclidian distances between corresponding landmarks. Lastly, the corresponding 
landmarks of one set of manual and semi-automatic landmarks were projected on a lower limb. This 
resulted in each landmark being shown twice on a single limb. These landmarks were visually 
compared and a score of one was given to the point which was located most accurately. 
 
Euclidian distances were calculated using Excel (Microsoft Corporation, Microsoft Excel). ICC was 
computed using SPSS (IBM SPSS statistics, Chicago, USA).  

5.1.8 Exclusion criteria 

When the algorithm was not able to locate all landmarks, the set of measurements were excluded. 
Therefore, exclusion criteria were drafted. Measurements were excluded if visual analysis showed 
clear user errors. To evaluate whether the error was user related, the algorithm was applied again 
three times. When the algorithm could locate the landmarks correctly in all instances, the 
measurements were excluded. However, when errors were still present, the measurements were 
included as it was a shortcoming of the algorithm. Furthermore, when users manually selected 
landmarks, the measurements were excluded, as it results in validation of manual landmark selection.  

5.2 METHOD VIRTUAL OSTEOTOMY 

5.2.1 Study population 

The second phase of this project entails the creation of virtual osteotomies. This phase included twenty 
femora and twenty tibiae from the same study population as used in the deformity analysis part. For 
both the femur and tibia, ten left and right limbs were included.  

5.2.2 Methods 

The segmentations of the lower limbs used in the deformity analysis script were used again for the 
virtual osteotomy. Using the deformity analysis algorithm, all landmarks, and angles of both the 
femur and tibia were found.  

5.2.3 Requirements virtual osteotomy algorithm 

The algorithms must fulfil several requirements, namely:  
- Must work for both the left and right side of the lower limb. 
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- Capable of performing uniplanar and biplanar tibial osteotomies. 
- Capable of performing an HTO and/or a DFO. 
- If novel studies lead to new insights, the algorithm must be able to be adapted on these new 

insights.  
- Contain a review process which compares the virtually achieved geometry to the proposed 

geometry.  
- The algorithm should optimize the correction until the new geometry is within 0.1° of the 

proposed geometry. The cut-off value of 0.1°, which corresponds to 0.1 mm, was based on the 
UMCU SLS-printing precision of 0.1 mm. Therefore, the virtual osteotomy needs a maximum 
inaccuracy of 0.1°. Furthermore, increasing the accuracy results in a longer runtime of the 
algorithm. Whereas the goal is to keep the algorithm fast.  

5.2.4 Distal femoral osteotomy algorithm 

User input 
First, the landmarks and angles of the femur, as noted in Table 1 and 2, are located and measured. 
Next, the user is asked if the virtual osteotomy must be performed on the left or right femur. After 
this, a pop-up box is shown in which the user must indicate the desired geometry of the femur after 
the osteotomy. The algorithm then calculates the needed correction wedge angles. In the case of 
valgisation osteotomy, the user is asked if a lateral opening wedge DFO or a medial closing wedge DFO 
should be performed. The next step is defining the cutting plane.  
 
Cutting plane and hinge 
First the entrance point of the osteotomy must be defined. For this a plane is constructed which runs 
through both the medial and lateral epicondyle. This plane is perpendicular to the coronal plane. Next, 
the plane is translated 25 mm proximally in the direction of the mechanical axis of the femur. This 
entrance height is in accordance with expert opinion of the orthopaedic surgeons at the UMCU. In case 
of a lateral opening or closing osteotomy, the entrance is located on the most lateral point of the femur 
in this plane. In a medial closing osteotomy, the point is located most medial. The user is then asked 
to globally indicate the location of the hinge. In medial closing wedge osteotomies, this point is located 
just above the lateral femoral condyle. The study of Kim et al. has shown that a hinge 15 mm above 
the upper border of the lateral condyle resulted in more hinge fractures as compared to a hinge on the 
upper border.55 A plane parallel to the transversal plane is constructed with the hinge point as the 
origin. In this plane, the hinge is located. When a lateral osteotomy is performed, the hinge is the most 
medial part of the femur in this plane. In a medial osteotomy, the hinge is located lateral. The cutting 
plane runs through two points, the entrance of the saw cut and the osteotomy hinge. This plane is 
perpendicular to the coronal plane. After the cutting plane is constructed, the femur is cut in a proximal 
and distal part. All three planes can be seen in Figure 11. 

 
Figure 17: A) Shows the plane which is used to find the entrance point of the osteotomy. B) The plane that defines the location 
of the hinge. C) The cutting plane which runs through the entrance and hinge and is perpendicular to the coronal plane.  
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Rotation correction 
After the femur is cut, rotational correction can be performed. The correction angle calculated earlier 
is used to perform the derotation. The axis of rotation is the mechanical axis. The axis itself is located 
at the hinge point. After a first derotation of the distal femur, the new femoral rotation is calculated. 
To find the new femoral rotation, the medial and lateral posterior condyle points are recalculated with 
the same method as used in the deformity analysis algorithm. This new femoral rotation is then 
compared to the desired femoral rotation. The difference between these angles is then calculated. If 
the difference is smaller than 0.1°, the algorithm advances to the next section. If the difference is larger 
than 0.1°, the distal femur is derotated again with the calculated difference. This process is repeated 
until the difference between desired and achieved femoral rotation is less than 0.1°. All rotations are 
added up to calculate the final performed correction.  
 
Varisation or valgisation osteotomy 
Derotation is followed by varisation or valgisation of the femur. Again, the correction angle is 
calculated by subtracting the current mLDFA from the desired mLDFA. The axis of rotation is a line 
perpendicular to the coronal plane. The line is located at the hinge. Around this axis, the distal femur 
and the lateral and medial epicondyle are rotated. After rotation, the distal points of the femur are 
remeasured. Using these new distal points, the new mLDFA is calculated. This new mLDFA is calculated 
in the new coronal plane which is formed after varisation or valgisation. As with derotation, the new 
mLDFA is compared to the desired mLDFA. When the difference is more than 0.1°, fine-tuning is 
performed with the same method as described in the derotation part. When the difference is less than 
0.1°, the algorithm recalculates the femoral rotation and the LPFA. Also, the total mLDFA correction 
angle is calculated. Finally, the differences between all corrected angles and the desired angles are 
displayed.  
 
Closed wedge osteotomy 
In case of a closing wedge osteotomy, another cut must be made. By virtually rotating the femur, the 
distal and proximal part of the femur overlap. The earlier defined cutting plane is used to cut out the 
overlapping part of the proximal femur.  

5.2.5 High tibial osteotomy algorithm 

User input 
Large parts of the algorithm for the HTO are comparable to the DFO algorithm. For the virtual HTO, 
the user is asked to input the desired four angles of the tibia, namely the MPTA, PPTA, rotation and 
LDTA. In case of a valgisation, the user is asked if a medial opening wedge (MOW) or lateral closing 
wedge (LCW) HTO should be performed. If a MOW HTO is chosen, a pop-up box appears in which the 
user must indicate if a biplanar osteotomy should be performed. A biplanar osteotomy is not possible 
when a valgisation and a decrease of tibial rotation are combined. As a result, the option of a biplanar 
osteotomy will not be available. 
 
Cutting plane and hinge 
The cutting plane for the HTO is constructed using three points. The first point is the entrance of the 
sawcut. This point is located most medial in the MOW and MCW HTO. For the LCW HTO, the entrance 
point is located most lateral. To define the entrance, the user indicates a point on the tibia. A plane 
parallel to the transversal plane is constructed based on this point. The most medial or lateral point of 
the tibia in this plane is the entrance of the sawcut. The second point is the hinge point. This point is 
located at the same height as the tip of the fibula. Again, a plane parallel to the transversal plane is 
constructed. The most lateral point in this plane is the hinge in case of an MCW or MOW HTO. The 
most medial point is the hinge in an LCW HTO. The last point is found by translating the sagittal tangent 
of the tibial plateau to the entrance point. The endpoint of this line is the third point used for the 
cutting plane. Using this endpoint ensures that the osteotomy is sawn in parallel to the tibial plateau. 
This is done to make sure that no slope correction is induced when varisation or valgisation is 
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performed.56 With this plane, the tibia is cut in a proximal and distal tibia. Figure 18 shows the two 
planes used to find the entrance and hinge. Furthermore, the cutting plane and translated sagittal 
tangent are displayed.  

 
Figure 18: A) The plane used to find the entrance point. B) The plane used to find the hinge. C) The translated sagittal tangent, 
which is parallel to the proximal tibia plateau. D) The cutting plane which is based on the hinge, entrance, and sagittal tangent. 
The plane enters the tibia parallel to the tibial plateau.  

Biplanar osteotomy 
In case of a MOW HTO a biplanar osteotomy can be performed. In the case of a proximal biplanar the 
user must indicate a point just proximal of the tuberosity. A plane through this point and parallel to 
the coronal plane is constructed. This plane is then rotated so that it makes an angle of approximately 
110° with respect to the transversal plane.57 The biplanar plane is used to cut the tuberosity of the 
proximal tibia. After performing the cut, the tuberosity is merged with the distal tibia. An advantage 
of a biplanar osteotomy is that the smaller gap volume and wider bone contact is expected to result in 
faster bone formation. 58 Furthermore it increases rotational stability.59 
 
Fibula  
When an LCW HTO is performed, the fibula must be cut. This cut is made at 2/3 of the length of the 
fibula, from the tip of fibula down to the most distal part of the fibula.60  
 
Derotation 
First, derotation of the tibia can be performed. The axis of rotation is the mechanical axis of the tibia. 
This axis is relocated to the hinge point. In the same manner as in the DFO, fine-tuning is conducted to 
match the achieved and desired correction to within 0.1°. The distal tibia, tibial ankle centre, lateral 
and medial malleolus, distal tangent, and anatomical axis are rotated along.  
 
Varisation or valgisation 
After derotation of the tibia, varisation or valgisation is performed. The axis of rotation is the line 
perpendicular to the coronal plane. The axis runs through the hinge point which is found earlier by the 
algorithm. Fine-tuning of the correction is performed as mentioned earlier.  
 
Slope correction 
For a slope correction, the axis of rotation is parallel to the coronal tangent of the tibial plateau. This 
axis is then relocated to the hinge. When the desired slope is achieved, the algorithm advances to the 
last part.  
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Derotation optimisation 
After the first derotation, varisation/valgisation, and slope correction, the tibial rotation is measured 
again. Due to the varisation, valgisation or slope correction, the tibial rotation can be changed, and 
therefore derotation must be optimised again. Derotation is performed as described under the 
heading derotation.  
 
When the optimal tibial rotation is achieved, the other angles are calculated again. The differences 
between the desired and achieved angles are displayed. Also, the individual corrections are added to 
show total rotation, MPTA and PPTA correction.  

5.2.6 Statistical analysis 

For statistical analysis of the DFO algorithm, ten femora with a mLDFA smaller than or around 85° were 
selected to undergo LOW or MCW DFO. The virtual osteotomy was performed with a desired mLDFA 
5° higher than the original mLDFA. This was combined with a derotation of the femur of 5°. 
Furthermore, a virtual osteotomy to achieve a desired mLDFA of 10° higher than original was 
performed. This correction was combined with a rotation of 10°. An overview is given in Table 5.  
 
Table 5: Validation of the LOW DFO and MCW DFO. Desired angles and number of performed osteotomies are shown. 

 NO. OF 

OSTEOTOMIES 
AVERAGE ORIGINAL 

MLDFA (°) 
AVERAGE DESIRED 

MLDFA (°) 
AVERAGE 

ORIGINAL 

ROTATION (°) 

AVERAGE 

DESIRED 

ROTATION (°) 

10X Original mLDFA Original mLDFA + 5° Original 

rotation 

Original 

rotation +/- 5° 

10X Original mLDFA Original mLDFA + 10° Original 

rotation 

Original 

rotation +/- 10° 

 
For the LCW DFO, ten femora with a mLDFA larger than or around 90° were selected. Here the same 
corrections are applied. Table 6 shows an overview of performed osteotomies. In total, sixty virtual 
osteotomies were performed. 
 
Table 6: Validation of the LCW DFO. Desired angles and number of performed osteotomies are shown. 

 NO. OF 

OSTEOTOMIES 
AVERAGE ORIGINAL 

MLDFA (°) 
AVERAGE DESIRED 

MLDFA (°) 
AVERAGE 

ORIGINAL 

ROTATION (°) 

AVERAGE 

DESIRED 

ROTATION (°) 

10X Original mLDFA Original mLDFA - 5° Original 

rotation 

Original 

rotation +/- 5° 

10X Original mLDFA Original mLDFA - 10° Original 

rotation 

Original 

rotation +/- 10° 

 
Statistical analysis for the HTO algorithm is performed with the same approach as for the DFO 
algorithm. 10 Tibiae with a MPTA smaller than or around 85° are collected for virtual MOW and LCW 
HTO. Valgisation of 7° was performed in combination with a slope correction or rotation correction of 
10°. Table 7 shows the combinations of the virtual osteotomies.  
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Table 7: Validation of the MOW HTO and LCW HTO. Desired angles and number of performed osteotomies are shown. 

  NO. OF 

OSTEOTOMIES 
AVERAGE 

ORIGINAL MPTA (°) 
AVERAGE DESIRED 

MPTA (°) 
AVERAGE 

DESIRED 

ROTATION (°) 

AVERAGE 

DESIRED PPTA (°) 

10X Original MPTA Original MPTA + 7° Original rotation Original PPTA +/- 

10° 
10X Original MPTA Original MPTA + 7° Original rotation 

+/- 10° 
Original PPTA 

 
Furthermore, ten tibiae with a MPTA larger or around 90° were selected for virtual MCW HTO. Here, a 
varisation of 5° and 10° was performed. Again, this was in combination with a 10° slope or rotation 
correction. This resulted in a total of sixty virtual osteotomies.  
 
Table 8: Validation of the MCW HTO. Desired angles and number of performed osteotomies are shown 

  NO. OF 

OSTEOTOMIES 
AVERAGE 

ORIGINAL MPTA (°) 
AVERAGE DESIRED 

MPTA (°) 
AVERAGE 

DESIRED 

ROTATION (°) 

AVERAGE 

DESIRED PPTA (°) 

10X Original MPTA Original MPTA - 7° Original rotation Original PPTA +/- 

10° 
10X Original MPTA Original MPTA - 7° Original rotation 

+/- 10° 
Original PPTA 

 
For all corrections, the difference between the achieved and desired angle is calculated. Furthermore, 
for each technique, the ten measurements are combined to find a mean difference and the standard 
deviation. Also, the mean and standard deviation of the performed correction are calculated.  

5.3 METHOD PERSONALIZED SURGICAL INSTRUMENT 

5.3.1 Requirements PSI algorithm 

After virtual osteotomy planning, the PSI is developed. This process is captured in a semi-automatic 
algorithm. After the design of the PSI, it is printed using an inhouse SLS-printer. Therefore, the PSI must 
take various requirements into account: 
- The PSI should be 3D printable. Therefore, it needs a minimum thickness of 0.7 mm and does not 
contain details smaller than 1.5 mm.62,63  
- The PSI base must match with the surface of the underlying bone, either the tibia or the femur.  
- The drill guides of the PSI must pair with the location of the screws. In total, the PSI should contain, 
depending on the plate, three to eight drill guides with a diameter of 4 mm. The drill guides should be 
at least 10 mm deep. The minimal inner diameter of the holes should be 4.2 ± 0.1 mm, so the drill does 
not make contact with the PSI. Moreover, the drill holes should give maximal support to the stainless-
steel inserts. The outer diameter of the holes should be 6.0 ± 0.1 mm.  
- Take the thickness and width of the saw blade into account. The thickness of the sawblade is 1.2 mm. 
The width of the sawblade is 27 mm. Therefore, the saw guide must at least have a dimension of 1.4x29 
mm.  
- Contain three holes for the k-wire inserts. The k-wires hold the PSI in place during surgery. The holes 
should be at least 10 mm deep. The diameter should be 3.5 ± 0.1 mm.64 In the bottom 5 mm, the inner 
diameter of the holes for the k-wires should have a diameter of 2.25 ± 0.1 mm. 
- The PSI must be easy to place during surgery; therefore, a trade-off is made between smallest possible 
size and largest possible surface for an optimal fit.  
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- The PSI cannot have any sharp edges, as these edges could injure tissue surrounding the knee joint 
during surgery. 
 
Besides the requirements to the PSI, the algorithm that is used to develop the PSI has several 
prerequisites: 
- Must work for both left and right lower limb. 
- Both the design of a PSI for an HTO and/or DFO must be possible. 
- Should contain several check points where the user can adjust the PSI if necessary.  

5.3.2 PSI algorithm 

After performing the virtual osteotomy, the PSI can be designed. First, the user must load and place 
the osteotomy plate. The osteotomy plate includes cylinders, which resemble the screws. These 
cylinders fit in the screw holes.  
 
Inverse osteotomy 
After placement of the plate, the distal femur or tibia and the cylinders are rotated inversely to the 
virtual osteotomy. In this way, the femur resembles the pre-operative state.  
 
PSI base 
Next, the user must manually select several points on which a curve is based. This curve is used to 
design the base of the PSI. The surface of this base is then given an offset of 15 mm. For the DFO 
algorithm, the offset is given into the sagittal direction. For the HTO algorithm, a plane is fitted to the 
surface of the base. The offset is then given perpendicular to this plane. The contour of the base is 
found and given a fillet with a radius of 2 mm.  
 
Screw guides 
The cylinders for the screw holes, with a diameter of 4.2 mm are then subtracted from this base. Next, 
a diameter of 6 mm is assigned to the cylinders. The cylinders are then translated, so they are in the 
upper 10 mm of the base. Again, the cylinders are subtracted, which leaves room for the stainless-
steel inserts.  
 
Sawguide 
The following step is to design the sawguide. The sawguide is designed in such a way, that when the 
oscillating saw is inserted fully, it just reaches the hinge. Therefore, the distance of the hinge to the 
entrance of the sawguide is 69 mm maximal. The width of the inlet is 1.4 mm. The length of the inlet 
is equal to the width in the AP-direction of the bone. 6.7 mm is added because of the oscillation of the 
saw. In case of an opening wedge osteotomy, this inlet is wrapped. The sawguide is then cut 10 mm 
inward from the osteotomy entrance. In case of a closing wedge osteotomy, two inlets are needed. 
Around these inlets, a box is created, which is then wrapped. This results in smooth edges of the box.  
 
K-wires 
Next, holes for the three k-wire inserts are designed. The first two k-wires are located close to the 
sawplane and run perpendicular to this plane. The algorithm places these two k-wires anterior and 
posterior to the sawguide. In case of a DFO the hinge protecting k-wire is located next to the second 
most proximal screw. When an HTO is performed, the k-wire is located near the most distal screw. The 
algorithm evaluates whether this k-wire intersects with one of the screws. Again, cylinders with a 
diameter of 2.2 mm are subtracted from the base. Duplicates of these cylinders with a diameter of 3.5 
mm are subtracted from the upper 10 mm of the base, to make space for the inserts. If the PSI is not 
able to give enough support, an additional guide is constructed with an outer diameter of 4.5 mm.  
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Winglets 
Besides the winglets from the sawguide, two additional winglets are constructed. These winglets are 
located at the same height as the hinge protecting k-wire. The winglets have a width of 10 mm and a 
thickness of 3 mm. The edges are rounded using a fillet with a radius of 2 mm.  

5.3.3 PSI analysis 

For analysis of the PSI algorithm, six PSI’s were designed for the femur and four for the tibia. Several 
measurements were taken using the measurement software available in 3-matic. The diameters of the 
drill guides and k-wire guides were measured and compared to the design criteria. Furthermore, the 
width and length of the sawguide were measured. The direction of the screws and k-wires were visually 
inspected.  
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6 RESULTS 

6.1 RESULTS 3D-DEFORMITY ANALYSIS 
In this study, forty lower limbs of patients who underwent a lower limb CT-scan were analysed. In 
Figure 19 an example of the result of a segmentation in Mimics is shown. The femora and tibiae of this 
patient were segmented. The bones were wrapped and smoothed, however, minor imperfections 
were still present.  

 
Figure 19: Front and back view of the segmentation of the lower limbs. 

6.1.1 Deformity analysis of the femur 

Intra-observer variability ranged from 0.0 ± 0.2 mm for the FLCD to 2.1 ± 3.3 mm for the FCM. The 
epicondyle points showed the largest variability. Interobserver variability ranged between 0.1 ± 0.8 
mm for the FLCD to 5.3 ± 5.2 mm for the FCM. Again, the mean Euclidian distance was largest for the 
landmarks related to the epicondyles. All mean Euclidian distances are stated in Table 9, Figure 20 and 
21. 
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Table 9: Euclidian distance of all bony landmarks of both the left and right femur for the intra-observer variability. 

BONY LANDMARK INTRA-OBSERVER 
EUCLIDEAN DISTANCE, 
MM (MEAN ± SD) 

INTEROBSERVER 
EUCLIDEAN DISTANCE, 
MM (MEAN ± SD) 

FEMORAL HIP CENTRE (FHC) 0.2 ± 0.3 0.3 ± 0.3 
FEMORAL NECK CENTRE (FNC) 0.3 ± 0.4 0.3 ± 0.4 
LATERAL EPICONDYLE (FCL) 0.8 ± 1.4 1.9 ± 2.4 
MEDIAL EPICONDYLE (FCM) 2.1 ± 3.3 5.3 ± 5.1 
TRANSEPICONDYLAR MIDPOINT (TEM) 1.2 ± 1.5 2.4 ± 2.2 
FEMORAL NOTCH POINT (FNP) 1.0 ± 1.1 0.8 ± 0.9 
TIP OF GREATER TROCHANTER (TGT) 0.1 ± 0.9 0.4 ± 1.8 
FEMORAL LATERAL CONDYLE POSTERIOR (FLCP) 0.4 ± 1.1 1.1 ± 2.0 
FEMORAL MEDIAL CONDYLE POSTERIOR (FMCP)  0.4 ± 1.3 1.2 ± 2.0 
FEMORAL LATERAL CONDYLE DISTAL (FLCD) 0.0 ± 0.2 0.1 ± 0.8 
FEMORAL MEDIAL CONDYLE DISTAL (FMCD) 0.4 ± 1.6 0.3 ± 1.3 

 

 
Figure 20: Boxplot of the intra-observer variability for all landmarks of the femur. 
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Figure 21: Boxplot of the interobserver variability for all landmarks of the femur. 

Table 10 shows the intra- and interobserver agreement for the measured angles of the femur. The 
mean intra-observer difference ranged between 0.1° ± 0.1° and 0.2° ± 0.2°. The mean interobserver 
difference ranged between 0.1° ± 0.1° and 0.3° ± 0.5°. 
 
Table 10: Intra-observer agreement for the angles of the left and right femur 

ANGLE INTRA-OBSERVER, DEGREES (MEAN 
± SD) 

INTEROBSERVER, DEGREES (MEAN 
± SD) 

LPFA 0.2 ± 0.4 0.3 ± 0.5 
MLDFA 0.1 ± 0.1 0.1 ± 0.1 
FEMORAL ROTATION 0.2 ± 0.2 0.3 ± 0.2 
 
 

 

  

Figure 22: Boxplots of the intra- and interobserver agreement for the angles of the femur. 

Furthermore, ICCs were calculated for the angles of the femur. Perfect agreement for both intra- and 
interobserver measurements was achieved for all angles, as can be seen in Table 11. 
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Table 11: Intraclass correlation coefficient (ICC) for the angles of the femur for the intra-observer and interobserver 
measurements 

ANGLE ICC INTRA-
OBSERVER 

95% CI INTRA-
OBSERVER 

ICC 
INTEROBSERVER 

95% CI 
INTEROBSERVER 

LPFA 1.00 0.99 < ICC < 1.00 0.99 0.99 < ICC < 1.00 
MLDFA 1.00 1.00 < ICC < 1.00 1.00 1.00 < ICC < 1.00 
FEMORAL ROTATION 1.00 1.00 < ICC < 1.00 1.00 1.00 < ICC < 1.00 

6.1.2 Deformity analysis of the tibia 

Intra-observer variability ranged between 0.0 ± 0.1 mm for the tibiofibular point to 3.1 ± 2.9 mm for 
the medial tuberosity. The interobserver agreement was calculated using 231 measurements. Three 
sets of measurements (nine in total) were excluded due to several reasons. In one instance, one 
observer was not able to complete the entire deformity analysis process, due to the algorithm missing 
landmarks. The two other sets were excluded because of erroneous user input resulting in a faulty 
landmark location. This was decided after visual inspection and applying the algorithm again. 
Furthermore, five sets of the TLCP and tibial rotation were excluded, as users manually selected the 
TLCP. Interobserver agreement ranged between 0.1 ± 0.1 mm for the TAAP to 3.8 ± 4.0 mm for the 
medial tuberosity. In Table 12, the intra- and interobserver agreement for all landmarks are listed. 
Figures 23 and 24 show boxplots of the Euclidian distances of the landmarks for the intra- and 
interobserver agreement. Figures 23 and 24 display boxplots of all intra- and interobserver Euclidian 
distances.  
 
Table 12: Euclidean distance of all bony landmarks of the left and right tibia 

BONY LANDMARK INTRA-OBSERVER 
EUCLIDEAN DISTANCE, 
MM (MEAN ± SD) 

INTEROBSERVER 
EUCLIDEAN DISTANCE, 
MM (MEAN ± SD) 

TIBIAL KNEE CENTRE (TKC) 0.4 ± 0.3 0.4 ± 1.3 
TIBIAL ANKLE CENTRE (TAC) 1.2 ± 0.6 1.3 ± 0.7 
TIBIAL MEDIAL INTERCONDYLAR TUBERCLE (TMIT) 0.3 ± 1.5 0.8 ± 2.6 
TIBIAL LATERAL INTERCONDYLAR TUBERCLE (TLIT) 0.3 ± 1.7 0.8 ± 2.7 
TIBIAL MEDIAL CONDYLE POSTERIOR (TMCP) 0.3 ± 0.4 0.4 ± 0.6 
TIBIAL LATERAL CONDYLE POSTERIOR (TLCP) 0.5 ± 1.8 1.1 ± 3.1 
TIBIAL ANATOMICAL AXIS PROXIMAL (TAAP) 0.1 ± 0.1 0.1 ± 0.1 
TIBIAL ANATOMICAL AXIS DISTAL (TAAD) 0.1 ± 0.1 0.2 ± 0.1 
TIBIAL MEDIAL MALLEOLUS (TMM) 1.1 ± 2.8 0.7 ± 1.5 
FIBULAR LATERAL MALLEOLUS (FLM) 0.6 ± 0.5 0.9 ± 2.2 
TIBIOFIBULAR POINT 0.0 ± 0.1 0.1 ± 0.3 
PCL INSERTIA 1.3 ± 0.8 2.0 ± 1.1 
MEDIAL TUBEROSITY 3.1 ± 2.9 3.8 ± 4.0 
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Figure 23: Boxplot of the intra-observer variability for all landmarks of the tibia. 

 

Figure 24: Boxplot of the interobserver variability for all landmarks of the tibia. 

Mean intra-observer variability for the measured angles ranged between 0.2° ± 0.2° for MPTA to 1.0° 

± 1.2° for the LDTA. Mean intra-observer variability for the direction of the tibia plateau was 0.6° ± 

0.5°. Mean interobserver variability ranged between 0.3° ± 0.3° for the MPTA to 0.8° ± 0.8° for the 

LDTA. Tibia plateau orientation interobserver variability was 0.7° ± 0.5°.  Table 13 shows the intra- and 

interobserver variability. Boxplots of the measured angles are displayed in Figure 25.  
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Table 13: Intra observer agreement for the angles of the left and right tibia 

  INTRA-OBSERVER, DEGREES 
(MEAN ± SD) 

INTEROBSERVER, DEGREES (MEAN ± 
SD) 

MPTA 0.2 ± 0.2 0.3 ± 0.3 
LDTA 1.0 ± 1.2 0.8 ± 0.8 
PPTA 0.5 ± 0.5 0.7 ± 0.6 
TIBIAL ROTATION 0.5 ± 1.1 0.6 ± 1.3 

 

  

Figure 25: Boxplots of the intra- and interobserver agreement for the angles of the tibia. 

Furthermore, ICC calculations for the intra-observer agreement for the angles of the femur showed 
good reliability for the LDTA and perfect agreement for the MPTA, PPTA and tibial rotation. The 
interobserver ICC was perfect for all angles as can be seen in Table 14. 
 
Table 14: Intraclass correlation coefficient (ICC) for the angles of the tibia for the intra- and interobserver measurements 

ANGLE ICC INTRA-
OBSERVER 

95% CI INTRA-
OBSERVER 

ICC 
INTEROBSERVER 

95% CI 
INTEROBSERVER 

MPTA 0.99 0.98 < ICC 0.99 0.99 0.97 < ICC < 0.99 
LDTA 0.89 0.83 < ICC < 0.93 0.93 0.89 < ICC < 0.95 
PPTA 0.97 0.95 < ICC < 0.98 0.96 0.95 < ICC < 0.98 
TIBIAL ROTATION 0.99 0.98 < ICC < 0.99 0.98 0.97 < ICC < 0.99 

6.1.3 Manual landmark detection intra-observer variability 

Table 15 and 16 show the mean Euclidian distances of the manually annotated femoral and tibial 
landmarks. Intra-observer agreement of the manual process was lower for all landmarks when 
compared to the algorithm. Figures 26 and 27 show the boxplots for the femoral and tibial landmarks.  
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Table 15: Intra-observer variability of the manual detection of the femoral landmarks 

BONY LANDMARK MANUAL 
MEASUREMENT, 
EUCLIDEAN DISTANCE, 
MM (MEAN ± SD) 

SEMI-AUTOMATIC 
MEASUREMENT, 
EUCLIDEAN DISTANCE, 
MM (MEAN ± SD) 

FEMORAL HIP CENTRE (FHC) 3.8 ± 1.6 0.2 ± 0.3 
FEMORAL NECK CENTRE (FNC) 5.7 ± 6.3 0.3 ± 0.4 
LATERAL EPICONDYLE (FCL) 2.8 ± 3.1 0.8 ± 1.4 
MEDIAL EPICONDYLE (FCM) 4.0 ± 3.1 2.1 ± 3.3 
TRANSEPICONDYLAR MIDPOINT (TEM) 3.0 ± 2.6 1.2 ± 1.5 
FEMORAL NOTCH POINT (FNP) 3.2 ± 2.1 1.0 ± 1.1 
TIP OF GREATER TROCHANTER (TGT) 6.3 ± 4.9 0.1 ± 1.0 
FEMORAL LATERAL CONDYLE POSTERIOR 
(FLCP) 

3.2 ± 1.4 0.4 ± 1.1 

FEMORAL MEDIAL CONDYLE POSTERIOR 
(FMCP)  

3.7 ± 1.2 0.4 ± 1.3 

FEMORAL LATERAL CONDYLE DISTAL (FLCD) 8.0 ± 5.6 0.0 ± 0.2 
FEMORAL MEDIAL CONDYLE DISTAL 
(FMCD) 

7.6 ± 5.7 0.4 ± 1.6 

 
Table 16: Intra-observer variability for the manual selection of the tibial landmarks 

BONY LANDMARK MANUAL 
MEASUREMENT, 
EUCLIDEAN DISTANCE, 
MM (MEAN ± SD) 

SEMI-AUTOMATIC 
MEASUREMENT, 
EUCLIDEAN 
DISTANCE, MM 
(MEAN ± SD) 

TIBIAL KNEE CENTRE (TKC) 1.8 ± 1.6 0.4 ± 0.3 
TIBIAL ANKLE CENTRE (TAC) 1.2 ± 0.7 1.2 ± 0.6 
TIBIAL MEDIAL INTERCONDYLAR TUBERCLE 
(TMIT) 

1.1 ± 0.4 0.3 ± 1.5 

TIBIAL LATERAL INTERCONDYLAR TUBERCLE 
(TLIT) 

1.4 ± 1.0 0.3 ± 1.7 

TIBIAL MEDIAL CONDYLE POSTERIOR (TMCP) 2.9 ± 2.0 0.3 ± 0.4 
TIBIAL LATERAL CONDYLE POSTERIOR (TLCP) 3.1 ± 3.6 0.5 ± 1.8 
TIBIAL ANATOMICAL AXIS PROXIMAL (TAAP) 1.2 ± 0.4 0.1 ± 0.0 
TIBIAL ANATOMICAL AXIS DISTAL (TAAD) 0.9 ± 0.0 0.1 ± 0.1 
TIBIAL MEDIAL MALLEOLUS (TMM) 1.0 ± 0.6 1.1 ± 2.8 
FIBULAR LATERAL MALLEOLUS (FLM) 0.6 ± 0.3 0.6 ± 0.5 
TIBIOFIBULAR POINT 1.4 ± 1.0 0.0 ± 0.1 
PCL INSERTIA 1.4 ± 0.9 1.3 ± 0.8 
MEDIAL TUBEROSITY 4.2 ± 3.4 3.1 ± 2.9 
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Figure 26: Intra-observer variability for manual selection of landmarks of the femur 

 

 
Figure 27: Intra-observer variability for manual selection of landmarks of the tibia. 

6.1.4 Manual versus semi-automatic landmark detection 

The Euclidian distances between the manually and software derived landmarks were calculated. As 
listed in Table 17 and 18, these distances were comparable to the manual intra-observer 
measurements. Visual inspection of manually versus software derived landmarks resulted in the scores 
as displayed in Table 19. This showed that the algorithm has a better accuracy than manual annotation.  
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Table 17: Mean Euclidean distance between manual selection of landmarks versus semi-automatic detection with the 
algorithm 

BONY LANDMARK EUCLIDEAN DISTANCE, 
MM (MEAN ± SD) 

FEMORAL HIP CENTRE (FHC) 3.8 ± 1.6 
FEMORAL NECK CENTRE (FNC) 5.7 ± 6.3 
LATERAL EPICONDYLE (FCL) 2.8 ± 3.1 
MEDIAL EPICONDYLE (FCM) 4.0 ± 3.1 
TRANSEPICONDYLAR MIDPOINT (TEM) 3.0 ± 2.6 
FEMORAL NOTCH POINT (FNP) 3.2 ± 2.1 
TIP OF GREATER TROCHANTER (TGT) 6.3 ± 4.9 
FEMORAL LATERAL CONDYLE POSTERIOR (FLCP) 3.2 ± 1.4 
FEMORAL MEDIAL CONDYLE POSTERIOR (FMCP)  3.7 ± 1.2 
FEMORAL LATERAL CONDYLE DISTAL (FLCD) 8.0 ± 5.6 
FEMORAL MEDIAL CONDYLE DISTAL (FMCD) 7.6 ± 5.7 

 
Table 18: Mean Euclidean distance between manual selection of landmarks versus semi-automatic detection with the 
algorithm 

BONY LANDMARK EUCLIDEAN DISTANCE, MM 
(MEAN ± SD) 

TIBIAL KNEE CENTRE (TKC) 6.8 ± 4.3 
TIBIAL ANKLE CENTRE (TAC) 1.5 ± 0.5 
TIBIAL MEDIAL INTERCONDYLAR TUBERCLE (TMIT) 2.5 ± 1.0 
TIBIAL LATERAL INTERCONDYLAR TUBERCLE (TLIT) 1.0 ± 0.8 
TIBIAL MEDIAL CONDYLE POSTERIOR (TMCP) 3.8 ± 3.8 
TIBIAL LATERAL CONDYLE POSTERIOR (TLCP) 8.9 ± 8.8 
TIBIAL ANATOMICAL AXIS PROXIMAL (TAAP) 0.9 ± 0.8 
TIBIAL ANATOMICAL AXIS DISTAL (TAAD) 1.1 ± 0.4 
TIBIAL MEDIAL MALLEOLUS (TMM) 2.7 ± 1.1 
FIBULAR LATERAL MALLEOLUS (FLM) 3.5 ± 1.7 
TIBIOFIBULAR POINT 2.0 ± 0.9 
PCL INSERTIA 1.9 ± 0.7 
MEDIAL TUBEROSITY 2.9 ± 1.3 

 

Table 19: Scores for the algorithm versus manual landmark location as determined by visual inspection.  

 FEMUR TIBIA 

ALGORITHM 41x 35x 
MANUAL 3x 2x 
NO CHOICE POSSIBLE 11x 28x 

6.2 RESULTS VIRTUAL OSTEOTOMY 
After deformity analysis was completed, the virtual osteotomy was performed. In this part of the study, 
forty patients were included. In total, twenty femora and twenty tibiae were included.  

6.2.1 Distal femoral osteotomy 

6.2.1.1 LOW DFO 

For validation of the virtual LOW DFO algorithm, ten femora were used. Mean mLDFA was 83.8° ± 0.9° 
and mean femoral version was 9.0° ± 5.8°. In total, twenty virtual osteotomies were performed. Table 
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20 shows the differences between the desired and achieved mLDFA and rotation correction. The 
mLDFA correction accuracy was within 0.12° and the rotation correction accuracy was within 0.55°. 
Mean mLDFA correction accuracy was 0.06° ± 0.05° and mean rotation correction accuracy was 0.15° 
± 0.17°. Furthermore, the total performed correction is displayed. In Figure 28 a virtual DFO is shown. 
Appendix A Figure 33 shows histograms of the difference between achieved and desired geometry.  
  
Table 20: In the first column the desired new geometry can be seen. Next, the difference between the achieved geometry 
and desired geometry is displayed. The last column shows the amount of correction which has been performed to reach the 
achieved geometry. 

mLDFA correction (°) Difference (°) 
(Mean ± SD) 

Performed correction (°) 
(Mean ± SD) 

Original + 5.0 0.06 ± 0.06 5.29 ± 0.25 
Original + 10.0 0.05 ± 0.05 10.86 ± 0.37 

 
Rotation correction (°) Difference (°) 

(Mean ± SD) 
Performed correction (°) 

(Mean ± SD) 
Original +/- 5.0 0.10 ± 0.11 4.64 ± 0.05 

Original +/- 10.0 0.20 ± 0.23 9.29 ± 0.10 
 

 
Figure 28: Virtual osteotomy of a femur. A 6.34° MPTA correction was performed. 

6.2.1.2 MCW DFO 

Validation of the virtual MCW DFO algorithm used the same ten femora as used in validation of the 
LOW DFO algorithm. Again, twenty virtual osteotomies were performed. In Table 21 the differences 
between the desired and achieved mLDFA and rotation correction are displayed. The mLDFA correction 
accuracy was within 0.13° and the rotation correction accuracy was within 0.47°. Mean mLDFA 
correction accuracy was 0.04° ± 0.04° and mean rotation correction accuracy was 0.12° ± 0.17°. 
Histograms of the difference between achieved and desired geometry are displayed in Appendix A 
Figure 34. 
 
Table 21: In the first column the desired new geometry can be seen. Next, the difference between the achieved geometry 
and desired geometry is displayed. The last column shows the amount of correction which has been performed to reach the 
achieved geometry. 

mLDFA correction (°) Difference (°) 
(Mean ± SD) 

Performed correction (°) 
(Mean ± SD) 

Original + 5.0 0.04 ± 0.04 5.32 ± 0.23 
Original + 10.0 0.05 ± 0.06 10.88 ± 0.41 
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Rotation correction (°) Difference (°) 
(Mean ± SD) 

Performed correction (°) 
(Mean ± SD) 

Original +/- 5.0 0.05 ± 0.06 5.35 ± 0.04 
Original +/- 10.0 0.18 + 0.23 10.70 ± 0.07 

6.2.1.3 LCW DFO 

Virtual LCW DFO algorithm validation required ten different femora. Mean mLDFA was 89.1° ± 1.15° 
and mean rotation was 8.1° ± 5.4°. In total, eighteen virtual osteotomies were performed. Of these 
eighteen osteotomies, ten had a mLDFA correction of -5.0° and rotation correction of +/- 5.0°. Eight 
virtual osteotomies had a mLDFA correction of -10.0° and rotation correction of +/- 10.0°. Virtual 
correction of two femora resulted in error messages of the script and could therefore not be 
performed. The mLDFA correction accuracy was within 0.10° and the rotation correction accuracy was 
within 0.48°. Mean mLDFA correction accuracy was 0.03° ± 0.04° and mean rotation correction 
accuracy was 0.16° ± 0.13°. Table 22 shows the final differences and performed corrections. 
Histograms of the difference between achieved and desired geometry are shown in Appendix A Figure 
35. 
 
Table 22: In the first column the desired new geometry can be seen. Next, the difference between the achieved geometry 
and desired geometry is displayed. The last column shows the amount of correction which has been performed to reach the 
achieved geometry. 

mLDFA correction (°) Difference (°) 
(Mean ± SD) 

Performed correction (°) 
(Mean ± SD) 

Original – 5.0 0.03 ± 0.02 -5.45 ± 0.15 
Original – 10.0 0.03 ± 0.05 -10.59 ± 0.64 

 
Rotation correction (°) Difference (°) 

(Mean ± SD) 
Performed correction (°) 

(Mean ± SD) 
Original +/- 5.0 0.10 ± 0.10 4.70 ± 0.06 

Original +/- 10.0 0.21 ± 0.11 9.45 ± 0.10 

6.2.2 High tibial osteotomy 

6.2.2.1 MOW HTO 

Analysis of the MOW HTO algorithm required ten tibiae. These tibiae had a mean MPTA of 83.8° ± 1.2°, 
mean tibial rotation of 35.4° ± 8.7°, and a PPTA of 79.2 ± 2.5°. A MPTA correction of 7.0° in combination 
with a rotation or slope correction of +/- 10.0° was performed. The differences between achieved and 
desired correction are shown in Table 23. MPTA correction accuracy was within 0.09°, PPTA correction 
accuracy within 0.07° and rotation correction accuracy within 0.09°. Mean correction accuracies were: 
MPTA 0.03° ± 0.04°, PPTA 0.01° ± 0.03° and tibial rotation 0.02° ± 0.04°. Table 28 shows the mean 
performed corrections. In Figure 29 a biplanar osteotomy after a 5.0° MPTA correction can be seen. 
Appendix A Figure 36 shows the histograms of the differences in achieved and desired geometry.  
 
Table 23: The desired corrections in all three planes of the tibia and the average differences between the desired and 
achieved geometry. 

MPTA 
correction (°) 

Difference 
(°) 

(Mean ± SD) 

Rotation 
correction (°) 

Difference 
(°) 

(Mean ± SD) 

PPTA 
correction (°) 

Difference 
(°) 

(Mean ± SD) 
Original + 7.0 0.03 ± 0.04 Original +/- 10.0 0.02 ± 0.04 Original +/- 10.0 0.01 ± 0.03 
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Table 24: Average performed correction of the MPTA, rotation and PPTA. 

Performed MPTA 
correction (°) 
(Mean ± SD) 

Performed rotation 
correction (°) 
(Mean ± SD) 

Performed PPTA 
correction (°) 
(Mean ± SD) 

7.37 + 0.14 10.01 + 0.14 9.02 + 2.07 

 

 
Figure 29: Virtual biplanar osteotomy of a tibia. A 5.0° MPTA correction was performed. 

6.2.2.2 LCW HTO 

LCW HTO algorithm validation used the same tibiae as MOW HTO validation. Table 25 and 26 show 
the mean differences between desired\achieved geometry and performed correction. MPTA 
correction accuracy was within 0.06°, PPTA correction accuracy within 0.05°, and rotation correction 
accuracy within 0.08°. Mean correction accuracies were: MPTA 0.02° ± 0.03°, PPTA 0.01± 0.02°, and 
tibial rotation 0.00° ± 0.05°. Appendix A Figure 37 shows the histograms of these differences.  
 
Table 25: The desired corrections in all three planes of the tibia and the average differences between the desired and 
achieved geometry. 

MPTA 
correction (°) 

Difference 
(°) 

(Mean ± SD) 

Rotation 
correction (°) 

Difference 
(°) 

(Mean ± SD) 

PPTA 
correction (°) 

Difference 
(°) 

(Mean ± SD) 
Original + 7.0 0.02 ± 0.03 Original +/- 10.0 0.00 ± 0.04 Original +/- 10.0 0.01 ± 0.02 

 
Table 26: Average performed correction of the MPTA, rotation and PPTA. 

Performed MPTA 
correction (°) 
(Mean ± SD) 

Performed rotation 
correction (°) 
(Mean ± SD) 

Performed PPTA 
correction (°) 
(Mean ± SD) 

7.34 + 0.08 9.98 + 0.20 10.00 + 0.07 

6.2.2.3 MCW HTO 

MCW HTO validation required ten new tibiae. The mean MPTA of these tibiae was 89.5 ± 0.9°. Mean 
tibial rotation was 34.3° ± 8.5° and mean PPTA was 81.8° ± 2.6°. Again, Table 27 and 28 show the 
differences and performed corrections. MPTA correction accuracy was within 0.13°, PPTA correction 
accuracy within 0.09° and rotation correction accuracy within 0.20°. Mean correction accuracies were: 
MPTA 0.03° ± 0.04°, PPTA 0.01° ± 0.06° and tibial rotation 0.01° ± 0.03°. The histograms are shown in 
Appendix A Figure 38.  
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Table 27: The desired corrections in all three planes of the tibia and the average differences between the desired and 
achieved geometry. 

MPTA 
correction (°) 

Difference 
(°) 

(Mean ± SD) 

Rotation 
correction (°) 

Difference 
(°) 

(Mean ± SD) 

PPTA 
correction (°) 

Difference 
(°) 

(Mean ± SD) 
Original – 7.0 0.03 ± 0.04 Original +/- 10.0 0.01 ± 0.03 Original +/- 10.0 0.01 ± 0.06 

 
Table 28: Average performed correction of the MPTA, rotation and PPTA. 

Performed MPTA 
correction (°) 
(Mean ± SD) 

Performed rotation 
correction (°) 
(Mean ± SD) 

Performed PPTA 
correction (°) 
(Mean ± SD) 

-7.45 + 0.18 10.13 + 0.42 9.53 + 1.59 

6.3 RESULTS PSI 
For validation of the PSI algorithm ten PSI were developed. Two PSI were developed for each 
osteotomy type, excluding the LCW HTO. An example of a PSI for a LOW DFO can be seen in Figure 30. 
The algorithm required minimal user input. The user had to place the osteotomy plate, indicate the 
type of osteotomy, and draw a curve for the base of the PSI. All other steps in the design process were 
automated. This resulted in a mean design time of 01:49 min. 
 
The PSIs were visually inspected on several requirements. First, the fit of the PSI on the bone was 
evaluated. Next, location and direction of the drill- and k-wire guides were evaluated. Furthermore, it 
was checked whether the hinge protecting k-wire intersected with one of the screws. Lastly, the 
location and direction of the sawguide were compared to the original sawplane. All these requirements 
were met by all PSIs.  
 

 

Figure 30: Front and back of a PSI for distal femoral lateral opening wedge osteotomy. 

After visual inspection, several measurements were made to the PSI. First, the radius for the drill guides 
was measured. As shown in Figure 31 all radii were 3.00 mm as described in the requirements. The 
radii of the k-wires also corresponded with the requirements. Furthermore, the depth of holes was 
measured, using the measurement tools in 3-matic. Depths ranged from 9 – 11 mm. Lastly, the 
dimensions of the sawguide were evaluated, as shown in Figure 31. All PSI reached the dimensions as 
noted in the requirements.  
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Figure 31: Measurements of the drill holes, k-wire guides and sawguide 
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7 VALORISATION 

After validation of the deformity analysis and virtual osteotomy algorithm, several changes were made 
based on newly gained insights. First, the process around location of the posterior tibial points was 
adjusted, as these could not be found in some instances. This resulted in the algorithm to crash and 
not producing the angle measurements, despite most landmarks being found. When the algorithm 
does not find the posterior points, it lets the user indicate these points manually. These manually 
selected points are then used to produce the angle measurements. 
 
Furthermore, validation of the femur virtual osteotomy algorithm showed that rotation correction 
accuracy could be improved. For this, another loop of rotation correction optimalisation was added to 
the algorithm. Previously, the algorithm would optimise the rotation correction, followed by varisation 
or valgisation. This correction of the mLDFA resulted in minor changes to the femoral rotation, which 
decreased accuracy. Therefore, the rotation correction loop was added again after mLDFA correction. 
This resulted in more accurate corrections and did not lead to noticeable longer run times.  
 
Another problem of the femur virtual osteotomy was relocating the FLCD and FMCD. In some 
instances, the algorithm came in an infinite loop because of this. Therefore, the algorithm was adjusted 
to not relocate the distal landmarks.  
 
In the design process of the PSI several considerations had to be made. The PSI uses surgical stainless-
steel inserts for the drill guides and k-wire guides. These inserts were produced by the Medical 
Technology and Clinical Physics (MTKF) department of the UMCU. Figure 32 shows the design of the 
drill guide and the k-wire guide inserts. After insert design, the ideal diameter of the drill guide holes 
in the PSI had to be determined. Three blocks with holes with increasing diameter were SLS printed. 
Furthermore, the holes had a distinctive design, which is displayed in Figure 33. After printing, the 
inserts were fitted into the holes. The 6.1 mm round hole resulted in the best fit, as it resulted in the 
insert not being able to wobble or rotate very easily.  

 

Figure 30: The left image shows the design of the drill guide. The right displays the k-wire guide. 

 

Figure 31: Design of one of the blocks used to find the optimal design for the drill holes of the PSI. The hole second from the 
left had the optimal design.  
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8 DISCUSSION 

8.1 DISCUSSION DEFORMITY ANALYSIS 
In this study, algorithms were developed for deformity analysis of the femur and the tibia. ICC 
calculations showed perfect agreement. The deformity analysis algorithms decreased the intra-
observer variability as compared to manual deformity analysis. Visual inspection of manually versus 
software derived landmarks indicated better accuracy using the algorithm. 
 
Manual landmark registration in the current study was less reliable when compared to Furmetz et al..47 
Intra-observer variability in their study ranged between 0.6 mm to 4.6 mm, whereas this ranged 
between 0.6 mm to 8.9 mm in this study. Furthermore, Fürmetz used a different method to calculate 
the intra-observer precision. They conducted measurements three times and calculated a mean 
Euclidian distance to the mean position from three measurements. Lastly, the mean of this Euclidian 
distance was calculated to find the final intra-observer variability of each landmark. In our study, the 
Euclidian distances were directly between the landmarks. The method using mean positions 
automatically leads to lower intra-observer variabilities compared to the method of direct landmark 
comparison proposed in our study. Moreover, Fürmetz et al. reported interobserver variabilities 
between 0.22° and 5.25°, while the semi-automatic algorithm ranged between 0.09° to 0.97°. ICCs 
were similar between the two studies, except for the tibial rotation, where the present study reports 
an ICC of 0.987 as compared to an ICC of 0.69 reported by Fürmetz. This was expected, as posterior 
tibial points were hard to manually locate consistently. Furthermore, outliers were compared. Outliers 
of femoral deformity analysis were similar between the studies. However, a few outliers of tibial 
deformity analysis were higher in our study. This might be due to the larger amount of analysed lower 
limbs in our study, namely eighty versus six by Fürmetz et al.. Victor et al. conducted a study on intra- 
and interobserver variability in lower limb deformity analysis on CT-scans.65 This study calculated 
variability by computing the Euclidian distances of a landmark to the mean location of this landmark.  
The study reported mean interobserver variability between 0.3 mm and 3.5 mm, comparable to the 
results obtained of the semi-automatic algorithm. In this study, variability was calculated with the 
same method as by Fürmetz. Furthermore, Subburaj et al. developed an algorithm for 3D deformity 
analysis, which achieved an accuracy of 1.9 mm to 4.9 mm.66 The higher limit of this accuracy range 
was comparable to the higher limit found in this study. However, the lower boundary in our study was 
close to 0.1 mm, which was far below the lower limit of the algorithm developed by Subburaj et al.. 
 
As expected, the landmarks which required more manual input, had a higher variability (i.e., medial 
tuberosity, pcl-insertion, and epicondyles). However, this was not in range with the variability of the 
angles, which showed to be lower. This was probably because these landmarks were not being used 
directly in measurement of the angles, as these landmarks are only used to define the orientation of 
the coordinate system. Explanations for the higher variability observed for the LDTA and PPTA laid in 
the orientation of the distal tangent and the tibia plateau plane. Larger variabilities were observed in 
these landmarks, which directly corresponded to some of the angles of the tibia. Moreover, the distal 
tangent and tibia plateau plane were based on marking of the distal and proximal tibia plateau. As 
these were manual tasks, it could have resulted in the larger variability.  
 
Furthermore, the accuracy of the algorithm was compared to the accuracy of the CT-scan. In this study 
the pixel size of the CT-scan were 0.98x0.98 mm and slice thickness was 1.0 mm. Observer variabilities 
for most landmarks were below this 1.0 mm range. However, not all measurements fell below this 
range. Nevertheless, the larger deviations seen in the landmarks of the femur, did not lead to large 
variability for the angles of the femur.  
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Comparing Euclidian distances of manual registration versus semi-automatic registration showed that 
these were in a comparable range to the manual intra-observer measurements. Therefore, to assess 
the accuracy of the algorithms, visual comparison of these landmark positions was required. This was 
necessary to assess the accuracy of the algorithms. Hence, the position of the corresponding landmarks 
was scored. This led to the conclusion that the software derived landmarks had a higher accuracy. A 
limitation to this method was that it is still very subjective due to visual analysis. Especially in the 
present study this could have had an influence on the results, as a single rater performed scoring. 
Further research should include more raters to reduce subjectivity.  
 
A limitation of this study was that validation was performed on non-deformed legs. The choice for a 
healthy population was made, as no large database of deformed lower limbs was available and sample 
size calculation showed that a minimum of seventeen individuals was needed to validate the algorithm. 
Therefore, this was not completely representable for the intended patient population. Hence, 
deformity analysis was performed on five deformed femora and five deformed tibiae to get an 
impression of the performance of the algorithms on deformed lower limbs. Based on this, several 
adjustments were proposed to the algorithms as described in Chapter 7. However, as this sample of 
deformed lower limbs was so small, it cannot be ruled out that additional adjustments to the algorithm 
must be made, to create a functioning algorithm for all deformed lower limbs.  
 
Furthermore, in the population with lower limb deformation, osteophytes are present around the 
knee. These osteophytes drastically influence the localisation of the landmarks, as the algorithm is not 
able to differentiate between osteophytes and regular bone. Therefore, the algorithm should also be 
validated on deformed lower limbs. Currently, if osteophytes are present, the user can manually 
relocate a landmark. Furthermore, the radius of the cylinder used to find the FCL and FCM cannot not 
be made larger than 5 mm, due to possible osteophytes which could affect landmark location. 
Therefore, this results in larger observer variabilities, due to manual input variabilities. Therefore, 
future research should add an option to exclude or remove osteophytes from the segmentation.  
 
As mentioned in Chapter 7: valorisation, the algorithm was not able to locate all posterior tibial 
landmarks. Therefore, a work-around was created. Future research should focus on improving the 
localisation of these posterior landmarks, as these are directly used for calculation of the tibial rotation. 
Moreover, the algorithm could be further improved for localisation of the distal tangent of the tibia. 
Visual inspection showed that this line was often incorrect located. Therefore, the current method of 
marking the distal tibia should be replaced with a new method. An example of this could be using a 
curvature analysis. Further improvements could be made in locating the medial tuberosity and pcl-
insertia, as these steps are still completely manual. This is also reflected in the high intra- and 
interobserver variability. These two landmarks were used to orientate the sagittal plane and could 
therefore have influenced measurement of the tibial slope.  
 
Furthermore, future research may investigate the automated segmentation of lower limbs. Especially 
when volumes and speed of deformity analysis improves, segmentation will take most of the time. 
Currently, segmenting a lower limb takes 15-30 minutes depending on CT quality. Therefore, further 
investigation of automated segmentation can reduce the total time required to perform a deformity 
analysis. Also, future research could investigate the use of weight bearing CT-scans or artificially 
created weight bearing scans. The frontal plane knee alignment is influenced by weight bearing.67 
Therefore, angles like the HKA and Joint Line Convergence Angle (JLCA) cannot be measured by the 
deformity analysis algorithm. Hence, these angles must be measured on standard WLRs. To optimise 
the workflow, this could also be incorporated in the deformity analysis algorithm.  
 
The algorithm reduces the intra- and interobserver variability as compared to manual deformity 
analysis. Furthermore, it increases reliability and repeatability and reduces the total time needed to 
perform deformity analysis. Therefore, it can contribute to current clinical practice. However, as not 
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all landmarks can be located with a very high accuracy, it is suggested to perform visual inspection 
after application of the algorithm. Furthermore, future recommendations should be considered to 
further improve the algorithm.  

8.2 DISCUSSION VIRTUAL OSTEOTOMY 
The present study outlined the development and validation of algorithms for virtual femoral and tibial 
osteotomies. These algorithms achieved high accuracies, with tibial osteotomy accuracies slightly 
better than the femoral osteotomy accuracies. Additionally, the algorithms reduced time of virtual 
osteotomy planning.  
 
The mean correction accuracies indicated a very good accuracy as compared to the accuracy 
requirement in the coronal plane of approximately 0.45° as described by Jones et al..68 Furthermore, 
the mean accuracies of the virtual HTO algorithm were below 0.10°. The maximal achievable accuracy 
of the SLS-printer used for printing of the PSI is 0.10 mm which roughly corresponds to a 0.08°  
correction.69 However, the mean accuracy of the DFO rotation correction does not fall within this 
range. This was due to the order of the performed corrections. The algorithm first performed a rotation 
correction, followed by a coronal plane correction. This coronal plane correction resulted in changes 
to the femoral rotation. As the algorithm does not re-evaluate the femoral rotation, a difference 
between desired and achieved rotational geometry arose. Therefore, it is proposed that future 
research should re-evaluate the femoral rotation after a coronal plane correction. After this further 
rotation corrections could be performed, which would result in even more accurate virtual distal 
femoral osteotomies.  
 
One of the strengths of this study was that the algorithm required very little user input, namely: the 
desired geometry and the rough frontal plane location of the hinge. This minimal user input resulted 
in the variability of the newly achieved lower limb geometry being extremely low. Moreover, 
corrections were validated for all techniques in DFO and HTO surgery. This showed that accurate 
corrections can be performed in multiple planes at the same time.  
 
A drawback of this study was that not all multi-planar corrections were validated for the tibia. The 
combination of a slope correction and a rotational correction was not validated. Nevertheless, it is 
expected that this combination can be achieved with a high accuracy, due to the high accuracies of 
these corrections when not combined. Moreover, a tibial correction in all three planes was not 
performed, as these corrections are barely performed in the clinic. Furthermore, a substantial 
reduction in time needed to perform the virtual osteotomy is achieved, as it only took 2-3 minutes to 
perform a virtual osteotomy with the new algorithm.  
 
A limitation of this study was that validation was performed on a dataset of healthy subjects. 
Therefore, the dataset did not include patients with large deformities as normally present in the 
patient group which undergo osteotomies with the aid of a PSI. The decision to use healthy subjects 
was made as a large database of CT-scans and segmentations was available, as compared to the small 
dataset of patients with deformities. To investigate the performance and accuracy of the algorithm for 
the targeted patient population, ten virtual osteotomies were performed on segmentations of lower 
limb deformity patients. The algorithm was able to perform corrections in eight of the ten cases. 
However, in two cases the algorithm ended up in the infinite loop as mentioned in the chapter 
valorisation. After the proposed changes were made, the algorithm was able to perform the 
corrections. Furthermore, coronal plane correction of the tibia was only validated for roughly 7° 
varisation or valgisation. However, in clinical practice, larger corrections are often performed using PSI. 
As seen in the validation of the virtual femur osteotomy algorithm, larger corrections tend to have a 
less accurate outcome. Therefore, it is suggested to perform validation of larger corrections on a new 
dataset with large deformities.  
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Furthermore, this study briefly investigated the option of a variable hinge position in tibial osteotomies 
where a frontal and sagittal plane (slope) correction were combined, as it was hypothesized that this 
would lead to less stress on the hinge. An algorithm was developed which was able to create a variable 
hinge position. However, when the slope required an increase, which is most often the case, this led 
to an anterolateral position of the hinge. An anterolateral hinge position is difficult to achieve during 
surgery, as an anteromedial approach is used. Due to this approach, it is difficult to position the 
oscillating saw and osteotomes enough posteromedial to create the desired (anterolateral) hinge 
position. Future research could investigate different sawguide designs, which would aid in achieving 
this anterolateral hinge position.  

8.3 DISCUSSION PSI 
The algorithm developed in this study was able to design PSIs for all types of HTO and DFO, excluding 
the LCW HTO. As the algorithm was able to make PSIs for ten bones, it showed to be robust. Most of 
the criteria as formulated in the requirements were met except for the ability to adjust during the 
design process. Furthermore, user input was reduced to a minimum, with the algorithm only requiring 
manual placement of the osteotomy plate and manual indication of the PSI base.  
 
Strengths of this study include that the time required to develop a PSI was significantly reduced from 
around one hour to two minutes. This is due to the significant reduction of user input. A reduced 
development time also leads to a decreased lead time and a decreased cost. This faster lead time can 
also result in an increase of production scale. Furthermore, this minimal amount of user input resulted 
in a high reproducibility and reliability. Because most of the user input is standardized, the k-wires 
guide the oscillating saw will always parallel to the sawplane to provide optimal guidance. 
Furthermore, the hinge protecting k-wire goes through the optimal position. By standardizing all 
dimensions as noted in the design requirements, user errors can be ruled out. Therefore, this algorithm 
adds some quality control to the entire process. This added quality control in combination with 
validation of the entire design process, aids the UMCU in subjecting to the Medical Device Regulation 
(MDR). Moreover, the MDR requires technical documentation and clinical evaluation. The algorithms 
in this study can aid with faster and more accurate technical documentation.  
 
Another advantage of this study was that first steps were taken in the design of stainless-steel inserts 
for the PSI. These inserts were made more accurately as compared to the previously used 3D-printed 
drill- and k-wire guides. This resulted in inserts with smaller tolerances which reduced wiggling of the 
drill and k-wires.  
 
One of the weaknesses of the algorithm is that there are no checkpoints during the design process of 
the algorithm. These checkpoints were drafted as one of the requirements to examine the PSI at 
several moments during the design process, so necessary adjustments could be made. An example of 
a checkpoint could be after the design of the k-wire guides. Currently, a problem can rise with the 
location of the hinge protecting k-wire. If the k-wire intersects with one of the screws, it is located 
more medially, which can lead to a surgically unachievable medial location of the k-wire. Therefore, 
the user should be able to relocate the k-wire guide. Due to time limitations, it was impossible to 
incorporate these checkpoints into the algorithm. Further research should focus on including the 
checkpoints, as the user currently must restart the algorithm and make the adjustments accordingly.  
 
Furthermore, the algorithm is not able to design PSI in case of an LCW HTO. Integrating this technique 
into the algorithm proved to be very time consuming. Because the number of times an LCW HTO is 
performed in the UMCU is extremely low, it was decided to make further improvements on the leg 
measurement and virtual osteotomy algorithm instead of the LCW HTO integration. However, as the 
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LCW HTO is performed in other hospitals, future research should focus on implementation of the PSI 
design for LCW HTO.  
 
Another drawback of this study was that the algorithm was only validated for the design of ten PSIs, 
due to the small dataset of deformed lower limbs. This resulted in merely two PSIs per technique. In 
these ten instances, the PSIs were developed successfully. However, as this is a small sample size, it 
cannot be excluded that in some cases the design process could not be successful. Therefore, the 
algorithm should be assessed using a larger sample.  
 
Future research should focus on the design of the inserts and the geometry of the holes in the PSI. In 
this study a first design was made for the inserts. A cylindrical shape was chosen for the inserts. 
However, one of the problems with this design is that during the drill, the insert could start to rotate. 
If this occurs, it is suggested to look further into different insert shapes, like a hexagonal or conical 
shape. This could prevent the insert from rotating in the PSI. Furthermore, the UMCU 3D printer batch 
accuracy should be investigated further, as the insert size should be consistent. Differences in 
dimensions between batches, could result in misfitting of the drill in the guide hole. Additionally, 
further research could focus on automatic placement of the osteotomy plate. This is currently user 
dependant and therefore requires most of the time in the design process. It was further observed that 
osteotomy plate location had a considerable influence on the design of the PSI. This was especially the 
case in the proximal-distal position of the plate. Deviations in this direction led to an overlap of the 
sawguide with the drill guides, which reduced the structural strength of the PSI. A possible solution for 
this is that the plates have a marking which would correspond with the location of the sawplane. This 
ensures that the osteotomy plate is positioned more accurately.  
 

  



48 
 

9 CONCLUSION 

In this study the 3D-workflow for the use of 3D technology in osteotomies around the knee was 
protocolized and automated. This was achieved through the development of several algorithms used 
in deformity analysis, virtual osteotomy, and PSI design. The semi-automatic deformity analysis 
algorithm reduced the intra- and interobserver variability as compared to manual lower limb deformity 
analysis. Furthermore, the semi-automatic virtual osteotomy algorithm ensures that pre-operative 
planning for multiplanar corrections can be achieved with a high accuracy, only ranging up to a mean 
inaccuracy of 0.2°. Finally, the semi-automatic PSI development algorithm adds standardization and 
quality control to the entire process. Furthermore, it reduces the design process time and reduces lead 
times.  
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APPENDIX 

APPENDIX A 
The histograms of the corrections for the DFO and HTO.  

 
Figure 32: Histograms of differences between the achieved and desired mLDFA and rotation in virtual LOW DFO 

 
Figure 33: Histograms of differences between the achieved and desired mLDFA and rotation in virtual MCW DFO 

 
Figure 34: Histograms of differences between the achieved and desired mLDFA and rotation in virtual LCW DFO 
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Figure 35: Histograms of differences between the achieved and desired MPTA, PPTA and rotation in virtual MOW HTO. 

 

 
Figure 36: Histograms of differences between the achieved and desired MPTA, PPTA and rotation in virtual LCW HTO. 
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Figure 37: Histograms of differences between the achieved and desired MPTA, PPTA and rotation in virtual MCW HTO. 

 


