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Management summary 
Introduction  

This research is conducted on behalf of the domestic planning department at the branch Transport s'-

Heerenberg of Mainfreight. Mainfreight is a global logistic provider which offers various supply chain 

services such as air & ocean freight, warehousing, and transport services. This research addresses the 

lack of reliable predictive information of the domestic planning of the Branch Transport 's-Heerenberg. 

At the moment, hardly any use is made of predictive information within the company. As a result, 

predictive information could contribute to the solution of several problems, such as vehicle capacity 

allocation and the routing process. However, not all those problems benefit from the same type of 

predictive information. Based on the collective interest, this research focuses on predictive information 

that contributes to a better distribution of the shared capacity of vehicles between the domestic and 

international planning departments. This focus leads to the following research goal: develop a forecast 

model that forecasts the demand, expressed in loading meters for the domestic planning team with a 

time interval of one day and lead times from one day to two weeks ahead, meaning a forecast is produced 

for one day ahead up to and including two weeks ahead. The forecast is used to predict the required 

transport capacity of the domestic planning. 

Methods 

Historical demand data is obtained from the transport management system of Mainfreight which 

collects historical shipment information. The obtained dataset needed to be thoroughly cleaned and 

transformed before it could be used. After cleaning and transforming the data to the required format, a 

data analysis is conducted to obtain insight in the factors that have an influence on the demand forecast 

of the domestic planning. The data analysis showed that the within-week seasonality dominates the 

demand, but the within-year seasonality, based on week numbers, also provides additional information 

about the demand. Furthermore, national holidays also significantly affect the demand on the day itself 

and surrounding days. Considering these characteristics of the demand, two forecasting models are 

proposed, called exponential smoothing and seasonal ARIMA, to forecast the demand of the domestic 

planning. Demand on days affected by national holidays require an alternative approach, called rule-

based forecasting. Rule-based forecasting allows us to forecast days affected by the national holidays 

separately, according to a 'special day' rule, from days that are not affected by national holidays. In 

order to arrive at the required transport capacity of the domestic planning, the forecast is converted into 

an optimal required transport capacity based on the trade-off between the cost of understocking and 

overstocking vehicles. 

Results 

Domestic planning lacks a forecast, but there is some documentation on which we can reconstruct the 

current forecasting approach. The reconstructed current forecasting model is used as a benchmark for 

the developed model. The results show that exponential smoothing performs best if the effect of special 

days is not treated separately. When comparing the performance of this model with the reconstructed 

current forecasting model, we find that this model has increased performance by 23% in terms of mean 

absolute deviation. An interesting result is the stable performance of the forecasting model across the 

lead time, meaning that the forecast for one day ahead is approximately just as accurate as two weeks 

ahead.  

By zooming in on the forecasting performance of the exponential smoothing on the national holidays 

and surrounding days, we proved that the model is not able to produce a reasonable forecast for days 

that are affected by national holidays. Applying the 'special day' rule of the rule-based forecasting model 

on just days affected by national holidays approximately doubles the forecasting performance, in terms 

of mean absolute deviation, compared to the previously mentioned exponential smoothing model.  

The results show that applying rule-based forecasting, which allows us to forecast days not affected by 

national holidays according to the Exponential smoothing model and to forecast affected days according 
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to the 'special day' rule, leads to the highest forecasting performance. This model is considered the final 

forecasting model. It still has the stable forecasting performance across the one to fourteen steps 

forecast. By comparing the final model with the reconstructed current forecasting model, we proved 

that a professional forecast model decreases the mean absolute deviation from 235.87 to 130.76 loading 

meter, which represents an 44.2% increase in forecasting performance. However, there are still 

opportunities for higher forecasting performance, especially in the area of the effect of national 

holidays. 

Conclusions and recommendations  

We provide the following conclusions and recommendations to Mainfreight and, in particular, to 

domestic planning: 

1. We recommend domestic planning to use the developed forecasting model over the current 

forecasting model because we conclude that the developed forecasting model resolves the 

underestimation problem of the current model and increases the forecasting accuracy by 

44.2%.  

2. We conclude that the developed model has a constant forecasting accuracy, meaning that the 

forecast for one day ahead is approximately just as accurate as fourteen days ahead. It is more 

valuable to Mainfreight to know the demand two weeks ahead with a certain accuracy than one 

day ahead with the same accuracy. Therefore, the forecasts that predicts more than a week 

ahead have a relatively higher added value than those for less than a week ahead.  

3. We recommend the domestic planning to use the forecast model with its corresponding capacity 

advice as a starting point for the planning if no actual demand information is known. However, 

if a part of the demand is known, we recommend that the domestic planning revisit the advised 

capacity based on the latest actual demand information. The added value of the model lies in a 

better and timely estimation of the required vehicle capacity so that domestic planning does not 

have to upscale and downscale much at the last minute.  

4. The forecast enables domestic planning to give an indication of the expected demand which 

can be used to arrive at a better distribution of the collective vehicle capacity between domestic 

and international planning. Therefore, we also recommend the domestic planning to use the 

advised vehicle capacity obtained from the forecasting model to communicate with Trucks and 

Drivers and international planning. 

5. To increase the forecasting  performance, we advise further research on the influence of 

anomalous demand caused by national holidays because the research showed that the forecast 

performance around national holidays is lower than average.   

6. Finally, the significantly contaminated data is a major obstacle to easily implement the forecast. 

We recommend domestic planning to keep track of the observed demand by constructing a 

database from which the demand, expressed in the load meter, can be derived directly. For 

validity, it is also essential to use consistent conversion rules to indicate shipment sizes, such 

as gross weight, cubage, and loading meter, in the various databases. Furthermore, we advise 

the branch to set up KPIs regarding transport capacity utilization rate to keep track of the 

efficiency of the collective vehicle capacity. 
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1. Introduction 
In this chapter, we provide an introduction to our research. Section 1.1 gives a concise description of 

Mainfreight and the importance of the planning process. Section 1.2 addresses the problem statement 

by introducing the stakeholders in the planning process of the Transport Branch in 's-Heerenberg and 

the main problems encountered. From these problems, we chose the problem that will be solved in this 

research. Section 1.3 gives a brief introduction to the current situation. Section 1.4 describes the research 

goal, and Section 1.5 provides the research question, which answers are needed to accomplish the 

research goal.  

1.1 Company description  
Mainfreight is a global logistic provider which offers various supply chain services such as air & ocean 

freight, warehousing, and transport services. With 297 branches in 26 countries, Mainfreight possesses 

a powerful global reach. Mainfreight's largest cross-docks and warehouses in Europe are located in 's-

Heerenberg. The location is convenient because it lies near the Rhine and on the German border. Sea 

containers entering the port of Rotterdam can be transported by inland vessel to the warehouses in 's-

Heerenberg. This easy access, in combination with the large warehouses and cross docks located there, 

has ensured that these branches supply a large part of the Dutch and European markets. Consequently, 

most road transport activities from the Netherlands to Europe and from Europe to the Netherlands are 

planned here. This research is conducted on behalf of the Branch Transport 's-Heerenberg and is aimed 

at the planning department. 

1.2 Problem statement 
This section addresses the problem statement of this research by introducing the stakeholders in the 

planning process of the Transport Branch in 's-Heerenberg and the main problems encountered in the 

planning process. From the problem context, we chose the problem that will be solved in this research.  

The branch in 's-Heerenberg accounts for a large of the supply to the European network. The team 

responsible for this road supply is divided into domestic and international transport. International 

planning is responsible for all road transport from 's-Heerenberg to Europe and from Europe to 's-

Heerenberg, whereas domestic planning is responsible for road transport from 's-Heerenberg to the 

Netherlands and from the Netherlands to 's-Heerenberg. For example, a small shipment to be transported 

from Enschede to Madrid is picked up by domestic planning in Enschede and taken to 's-Heerenberg, 

after which the international planning takes over and ensures that it is transported to Madrid. 

The domestic and international share a collective capacity of vehicles managed by another team called 

Truck and Drivers. The international and domestic planning teams consult individually with Trucks and 

Drivers about the needed vehicles on a daily basis. This system of dividing vehicles presents problems 

due to the little communication about the distribution of vehicles between the two teams with a 

collective capacity. Furthermore, as a rule, international planning takes precedence over domestic 

planning. A problem caused by this system of communication and precedence is the varying capacity 

of vehicles available for domestic planning. The variety of available capacity can cause idle vehicles or 

less efficient use of the vehicles and, therefore, suboptimal use of the shared capacity of vehicles. Due 

to the varying capacity of domestic planning in contrast to international planning and on the advice of 

the branch director of Transport s'-Heerenberg, we decided to focus the research on the domestic 

planning team. All problems mentioned further in this report are therefore related to domestic planning. 

At the moment, domestic planning cannot change this way of allocating capacity because they do not 

possess reliable predictions regarding the expected demand to make capacity allocation requirements. 

This can be explained by looking closer at the order placement process of the customers because if a 

customer places an order before 5 p.m., then the transport is arranged for the next day. This policy 

ensures that the domestic planning has not yet received a part of the orders one day in advance when 

the last changes to the capacity allocation are made. If there is a reliable prediction regarding the 
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expected demand, then a pull relationship can arise between domestic planning and truck and drivers 

instead of the current push relationship. Moreover, if international planning also has reliable predictive 

information, the collective capacity can be distributed more efficiently among the two parties.  

The late arrival of part of the orders also causes inconvenience for the planning process because the 

planning teams already start planning for the next day at noon even though not all orders have been 

received yet. This early start of planning is necessary because the driver's departure times depend on 

the planned routes and the drivers need to receive that information at the latest in the evening since they 

need to know how late they must be at Mainfreight the next day. Starting with planning without knowing 

all the orders that must be arranged results in poor routes and, therefore, suboptimal use of the own 

vehicle capacity. As a solution for the initial poor routes, the planning team updates the planning during 

the day accordingly to the newest information. However, this continuous process of updating the routes 

according to the newest information is time-consuming.  

The domestic planning team does not have a professional and structural demand forecasting model, and 

the demand fluctuates. The lack of a professional forecast and the highly fluctuating demand cause 

ignorance of the expected demand. Planning without a reliable forecast of the missing information also 

contributes to the poor quality of the routes and, therefore, the time-consuming planning process. In 

addition, a part of the shipments is sold to third parties, such as couriers and charters. Couriers are 

partner transport companies with whom Mainfreight does business because of their strong network in 

regions where Mainfreight's network is somewhat smaller. Mainfreight has fixed agreements with 

couriers about the shipment area and the bandwidth for the number of shipments they can perform for 

Mainfreight. Charters are hired for specific individual shipments, mostly FLT or LTL. However, unlike 

couriers, there are no fixed agreements with charters, and charters must buy individual shipments. The 

ignorance of the expected demand ensures an unreliable number of shipments that must be sold to 

charters, and the later the shipments are offered for sale, the smaller the chance that they will be bought. 

The poor quality of the routes and the inaccurate volume sold to charters also cause suboptimal use of 

the Mainfreight capacity, in other words, suboptimal use of the own vehicle capacity.   

The two core problems are the late availability of a part of the shipping information and the absence of 

a professional demand forecasting model. The late availability of a part of the shipping information is 

a problem that cannot be solved entirely because it is a strategic objective needed to compete in the 

competitive transport business. There are, however, opportunities for improvement, such as improving 

communication between the warehouses and the transport teams. The problem that will be solved in 

this research, which is also commissioned by Mainfreight, is the absence of a professional demand 

forecasting model. As discussed, a professional forecast model can contribute to better communication 

between the planning team and ensure that domestic planning can also express substantiated 

expectations for the number of necessary capacity vehicles. In addition, a better distribution of vehicles 

can increase the capacity utilization efficiency of domestic planning vehicles. Furthermore, busy 

periods can be considered early by arranging extra capacity with couriers or charters.

1.3 Current situation 
The domestic planning team focuses primarily on the demand that needs to be fulfilled tomorrow, 

meaning the shipments that must be transported tomorrow. Due to this one-day forward-looking 

approach, the team primarily responds to the demand instead of anticipating it. They are overwhelmed 

when there is very little or very little demand. In a day's slack, there are only limited options to increase 

capacity in the event of too much demand and to decrease the capacity in the event of too little demand. 

For example, international vehicles are often away for a few days, so receiving more vehicles one day 

in advance from the international planning team is not always possible. However, suppose the domestic 

planning team has an indication of the expected demand a week in advance. In that case, the 

international planning team can take this into account by chartering fewer or more shipments. In 

addition, responding to demand creates a higher workload among planners because scaling down and 
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scaling up capacity often has to be done at the last minute. To look further ahead, reliable predictive 

information is needed, but the problem is a lack of reliable predictive information. So, without reliable 

predictive information that can be obtained from a professional forecast, anticipating demand is 

impossible. 

Until now, we have said that there is no professional forecasting model, but there is an excel file that 

can be reconstructed into a forecast model. The limitations of the current approach are explained in 

Section 2.2. However, the main problem is that the forecasting performance of the current method is 

not established, which makes domestic planning unknown to what extent their current approach is an 

accurate method of forecasting demand. The ignorance of the accuracy makes domestic planning 

cautious about using the forecast, which is logical since a forecast without the accuracy information is 

trivial and unreliable. Therefore, a desirable result of this research is to determine the accuracy of the 

current forecasting method. 

1.4 Statement of research goal 
As indicated in Section 1.3, this research is aimed to solve the problem of the lack of reliable predictive 

information due to the lack of a professional forecast with the associated accuracy information. We 

have identified several factors that benefit from reliable predictive information, but not all factors 

benefit from predictive information at the same aggregate level, time bucket, and forecast horizon. 

Therefore, in the remainder of the Section, we will first look at which forecast model has the most value 

for Mainfreight. Then we will explain the needed aggregation level, time bucket, and lead of that 

forecast model.  

For operational assistance in the planning of domestic planning, a very disaggregated forecasting model 

is required with a time bucket of one day and lead times of one day to one week ahead. However, the 

domestic planning team is only one part of Mainfreight. Therefore, it is good to also look at the forecast 

model with a zoomed-out perspective, meaning that it would be better if a forecast model could also 

contribute to improvements in other departments instead of being only beneficial for the domestic 

planning team. After all, Mainfreight's capacity of vehicles is shared between domestic and international 

and managed by Trucks & Drivers. If we look at the collective interest, then a forecast model that 

contributes to a more optimal distribution of the shared capacity of vehicles has more value. Therefore, 

we decided to focus on a forecast that can estimate how much capacity domestic planning needs on a 

daily basis. 

In order to forecast the daily needed capacity of domestic planning, a forecast bucket of one day is 

needed. Appropriate lead times are forecast for one day ahead up to 2 weeks. In other words, we forecast 

the demand for tomorrow up to two weeks ahead. As will be explained in Section 2.1, the demand needs 

to be disaggregated into three transportation flows because the relationships between these flows 

determine the necessary transport capacity of domestic planning. Finally, we need to determine the 

forecast unit. The demand of the domestic planning team can be expressed in different units, such as 

volume weight, cubage, and loading meters. The domestic planning team plans their routes in loading 

meters, the space that a shipment takes up in a vehicle. Therefore, the demand in the forecast model 

will also be expressed in loading meters. 

Thus, the goal of this research is to develop a forecast model that forecasts the demand, expressed in 

loading meters for the domestic planning team at the Branch Transport s'-Heerenberg with a time bucket 

of a day and lead times from one day to twee weeks ahead for each transportation flow in order to 

predict the required transport capacity of the domestic planning. 
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1.5 Research questions  
At this stage, Mainfreight is introduced, and the problem and research goal are identified. In order to 

achieve the research goal, research questions must be defined. Each research question provides an 

interim result needed input for a later question. This research considers the following research question 

in order to reach the research goal.  

1. What is the forecasting performance of the reconstructed current forecasting method of the 

domestic planning team at the Branch Transport s'-Heerenberg?  

The answer to this research question provides insight into the forecasting performance of the current 

forecasting method. One of the major limitations of the current method is that domestic planning does 

not know the accuracy of this current method. A desirable result of this research is, therefore, to 

determine the accuracy of the current forecasting method. In addition, the performance of the current 

forecasting model is used as a benchmark for the developed forecasting method. The answer to the 

research question is provided in Chapter 2.  

2. Which factors significantly influence the demand forecast of the domestic planning team at the 

Branch Transport s'-Heerenberg? 

The answer to this research question provides insight into the factors that influence the demand forecast 

of domestic planning. We have to analyse the demand characteristics because they are important for the 

choice of the forecasting model. In the analysis, we look for patterns and remarkable events in the 

demand data of the domestic planning team, which can help us to develop an accurate forecasting 

model. Before this analysis, we have to investigate what type of data is available and for which time 

there is reliable data. The answer to the research question is provided in Chapter 3.  

3. Which forecasting models are most appropriate to forecast the demand, expressed in loading 

meters, of the domestic planning team at the Branch Transport s'-Heerenberg? 

The answer to this research question is found by reviewing the literature for suitable forecasting 

methods. In this review, we use the factors found in the previous research question to help determine 

whether a forecasting method is appropriate. The answer to the research question is provided in Chapter 

4.  

4. How much does a professional forecast model increase the performance of demand forecast 

compared to the current situation of the domestic planning team at the Branch Transport s'-

Heerenberg? 

The answer to research question 1 provides the forecasting performance of the reconstructed current 

forecasting model, and the answer to research question 3 provides a forecasting model. With these 

answers, we compare the forecasting performance of the current forecasting method with the developed 

forecasting method to measure the performance improvement of a professional forecasting model. The 

answer to the research question is provided in Chapter 5.  

5. How much transport capacity does the domestic planning team at the Branch Transport s'-

Heerenberg require on a daily basis?  

To answer this research question, we use the forecast to arrive at the required transport capacity on a 

daily level. The answer to the research question is provided in Chapter 6. 
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2. Current forecasting approach 
This chapter addresses the current forecasting performance of domestic planning. Before we explain 

and evaluate the current forecasting model, Section 2.1 first explains the three types of shipments flows 

which are handled by the domestic planning. Then, Section 2.2 addresses the reconstructed current 

forecasting model. Section 2.3 provides an overview of forecasting measures and Section 2.3 evaluates 

the reconstructed current forecasting model using the selected forecasting measures. Section 2.5 

summarized the findings of this chapter.  

2.1 Shipment flows   
Domestic planning mainly handles the following three types of shipment flows:  

1. Pick-up flow; from a warehouse or customer in the Netherlands to the hub in 's-Heerenberg, 

2. Drop-off flow; from the hub in 's-Heerenberg to a warehouse or customer in the Netherlands, 

3. Direct flow; from a warehouse or customer directly to another warehouse or customer. 

  

The pick-up flow consists of export and domestic shipments, whereas the drop-off flow consists of 

import and domestic shipments. However, the domestic shipment flow only consists of domestic 

shipments.  

International shipments, i.e., import and export shipments, can be transported via groupage or direct 

transport. Groupage shipments are picked up at the customer warehouse and transported to a nearby 

cross-dock owned by Mainfreight or a partner. At the cross-dock, shipments with similar destinations 

are gathered and sent to a cross-dock near the final destination in a linehaul. There, shipments with the 

same or near destination are again gathered and transported to the final destination. Direct shipments 

are transported from origin to destination in one trip.  

Domestic planning executes the drop-off of an import shipment if the shipment is transported via the 

groupage transport, whereas domestic planning executes the pick-up of an export shipment if the 

shipment is transported via the groupage flow. Suppose an import or export shipment is transported 

directly. In that case, domestic planning is not responsible for any transport movement, and therefore, 

this research will not consider these shipments. Note that in import and export shipments, the domestic 

planning only executes the drop-off respectively and pick-up. Other departments handle other transport 

activities; therefore, this research will only handle transport activities executed by domestic planning.  

Domestic shipments are both picked up and dropped off within the Netherlands, plus a piece of the 

German Ruhr area, as depicted in Figure 1. This type of shipment can also be handled via groupage or 

direct transport. Domestic groupage shipments go over the cross-dock in 's-Heerenberg, which means 

the shipment is transported via two trips, usually in two days. In the direct transport, the shipment is 

picked up and dropped off on one trip and usually on the same day.  

Whether a domestic shipment is transported via groupage or direct transport is a choice of domestic 

planning. In reality, groupage or direct transport choice depends on various factors, such as the pick-up 

and drop-off location, shipment size, and available capacity. We cannot identify whether domestic 

planning transported shipments via groupage or directly from the data. However, it is possible to define 

a rule of thumb based on the planners' experience. In consultation with the planners, we decided to only 

look at the shipment size as the rule of thumb because the shipment size is the most critical factor, and 

the shipment size can be easily extracted from the data, in contrast to the locations and available 

capacity. According to domestic planning, 7.5 loading meters can be considered the threshold to 

transport a shipment directly. So, as a rule of thumb, a domestic shipment is said to be transported 

directly if the number of loading meters is larger than 7.5. Otherwise, the shipment is transported by 

groupage transport. 
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Figure 1 Delivery area of the domestic planning 

 

Table 1 provides an overview of the ratios between pick-up, drop-off, and direct flow per year. The 

table shows that 6.1 percent of the loading meter is transported directly. The other 93.9 percent is 

transported indirectly via the groupage flow. The ratio between pick-up and drop-off is essential for the 

efficiency of domestic planning because a truck can use its loading capacity twice per trip. An optimally 

used vehicle departs 's-Heerenberg full of drop-off shipments and returns full of shipments they must 

pick up. Table 1 shows that the ratio between the pick-up and drop-off volume is close to zero. 

Theoretically, the fleet can be used for 0.96 percent if this ratio continues in the daily data and other 

constraints for capacity are ignored.  

Table 1 Ratios between pick-up, drop-off, and direct transport per year 

Pick-up (%) Drop-off (%) Direct (%) 

45.1% 48.9% 6.1% 

   

2.2 Current forecast model  
Recall that in Section 1.3, we said that domestic planning does not possess a professional forecasting 

model, but there is some documentation that can be reconstructed into a forecast model. The major 

limitation of the current approach is its unknown forecasting performance. The ignorance of the 

accuracy makes domestic planning cautious about using the forecast, making the evaluation of the 

forecasting performance one of the desirable results of the research. In this section, we start by 

describing this current forecasting approach.  

The documentation that we can reconstruct into an official forecasting method consist of an overview 

of the total number of trucks deployed per day over the past four years. Based on this overview, the 

domestic department estimates the number of needed trucks per day. This approach to forecasting has 

several limitations. First, this approach makes no distinction between the several types of trucks and 

their corresponding loading capacities. Not distinguishing the load capacity of the vehicles ensures that 

the domestic department cannot make a valuable forecast of the number of loading meters because the 

available types of vehicles differ per day. Second, the estimation procedure is not defined, with the 

consequence that the forecast has to be calculated manually, and the estimation procedure is subjected 

to the interpretation of the forecaster. This own interpretation of the forecaster leads to an instable 

model. Finally, the approach ignores the type of transport flow, which is important because the ratio 

between pick-up and drop-off is an essential efficiency indicator, as a truck can use two times the 

loading capacity per trip.  
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We reconstructed this existing overview of the total number of trucks deployed per day into an actual 

forecasting model by defining the estimation procedure together with the domestic planning team. The 

defined estimation procedure has to be applied to a dataset containing loading meters to predict the 

number of loading meters instead of the number of trucks because, as mentioned before, the number of 

trucks is not a reliable unit for forecasting demand. 

The forecast focuses on weeks and weekdays because it assumes that the weekday and week numbers 

indicate the expected demand. For example, the number of loading meters transported on Monday of 

week two last year indicates the expected number of loading meters that must be transported on Monday 

of week two this year. In the same way, the forecast considers the number of loading meters of the 

concerning day two and three years ago, but through weighting, more emphasis is placed on nearby 

years. The forecasting model also includes a trend based on the department's targeted growth rate (4%). 

The reconstructed current forecast is mathematically expressed in the following formula: 

 𝐿𝐷𝑀𝑦,𝑤,𝑑 = (0.2 ∙ 𝐿𝐷𝑀𝑦−3,𝑤,𝑑 + 0.2 ∙ 𝐿𝐷𝑀𝑦−2,𝑤,𝑑 + 0.6 ∙ 𝐿𝐷𝑀𝑦−1,𝑤,𝑑) ∙ 1,04 (1) 

where 𝐿𝐷𝑀𝑦,𝑤,𝑑 is the number of loading meters transported in year y, week w, and weekday d. 

In order to evaluate the performance of the current model, we need to determine suitable forecasting 

measures. Therefore, the next section first gives an argumentation for suitable forecasting measures. 

2.3 Forecasting measures  
The main challenge of selecting a suitable forecasting performance measure is that different measures 

may lead to different conclusions. Even scientists have not agreed on which performance accuracy 

measure should be preferred to compare forecasting methods. This chapter discusses which 

performance measures are the most suitable to evaluate and compare the various forecasting methods. 

We identify the most popular forecasting performance measures utilized in the literature and analyse 

their differences. Then, an explanation will be given about the forecasting measure preference.  

The forecast accuracy of a model is rarely 100%. The forecast can be slightly higher or lower than the 

actual values (Klimberg, Sillup, Boyle, & Tavva, 2010). The difference between the forecast value and 

the actual value is called the forecasting error: 

 𝑒𝑡+ℎ  = 𝑦𝑡+ℎ − ŷ𝑡+ℎ 

 
(2) 

where 𝑒𝑡+ℎ is the forecasting error at time t + h, 𝑦𝑡+ℎ is the actual value at time t + h, and ŷ𝑡+ℎ is the 

forecasted value at time t + h. Time t is the time at which the forecast is made, and h is the lead time of 

the forecast.  

In general, accuracy measures can be split into three groups: directional measures, scale-dependent 

measures, and scale-independent measures. Directional performance measures are useful to measure 

the direction of the error. Scale-dependent performance measures are useful when comparing 

forecasting methods applied to similar scaled data, whereas scale-independent is more appropriate for 

comparing forecasting methods applied to different scaled data.  

A forecasting measure that evaluates the direction of the forecasting error is the bias (or mean error). 

The bias can be calculated as the average of the forecasted errors: 

 
𝐵𝑖𝑎𝑠𝑡+ℎ = 

∑ 𝑒𝑡+ℎ𝑛

𝑛
 

 

(3) 

where 𝑒𝑡 is the forecasting error at time t and 𝑛 is the number of forecasting values. The bias measures 

the degree by which the forecasting model either overestimate or underestimate the actual values. The 

expected value of the bias should be close to zero. A forecast with a positive bias tends to underestimate 
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the actual values, so the actual values are on average greater than the forecasted values. Conversely, a 

forecast with a negative bias tends to overestimate the actual values. 

Scale-dependent performance measures are measures for which the error's size depends on the data's 

scale. Popular scale-dependent performance measures in the literature are the mean square error (MSE), 

root mean square error (RMSE), mean absolute error deviation (MAD), and mean absolute error 

(MAE), defined as follows: 

 
𝑅𝑀𝑆𝐸𝑡+ℎ = √𝑀𝑆𝐸𝑡+ℎ = √

1

𝑛
∑𝑒𝑡+ℎ

2

𝑛

 
(4) 

 
𝑀𝐴𝐷𝑡+ℎ = 

1

𝑛
∑|𝑒𝑡+ℎ|                   

𝑛

 
(5) 

where 𝑒𝑡+ℎ is the forecasting error at time t + h and 𝑛 is the number of forecasting values. 

The RMSE (and MSE) is related to the variance of the forecast error. In fact, the random component of 

the demand has a mean of 0 (𝐸[𝑟𝑎𝑛𝑑𝑜𝑚] = 0) and variance of RMSE (𝑉𝑎𝑟[𝑟𝑎𝑛𝑑𝑜𝑚] = 𝑀𝑆𝐸. In other 

words, the RMSE measures the spread of the errors. RMSE penalizes large errors much more 

significantly than small errors because all errors are squared. According to Sunil Chopra (2019), MSE 

is an appropriate performance measure to compare forecasting methods if the cost of a large error is 

much higher than the gains from very accurate forecasts. In addition, Chopra argues that the MSE is 

only appropriate when the forecast error has a symmetric distribution around zero. If the forecast errors 

are normally distributed, then the MAD can also be used to estimate the standard deviation of the 

random component. The standard deviation of the random component is the MAD multiplied by 1.25.  

The MAD is more appropriate than RMSE if the forecast error does not have a symmetric distribution. 

Even when the error distribution is symmetric, MAD is more appropriate if the cost of a forecast error 

is proportional to the size of the error because RMSE gives high penalizes to large errors relative to 

small errors. The smaller the MAD or RMSE, the more accurate the forecasting model. A major 

shortcoming of MAD and RMSE is that they are ignorant of the magnitude of the actual values. 

Consequently, there is no context that says something about the accuracy of the model.  

A popular scale-independent performance measures is the mean absolute percentage error (MAPE). A 

popular scale-independent performance measures is the mean absolute percentage error (MAPE). The 

MAPE considers the effect on the magnitude of the actual values. The MAPE is defined as follows: 

𝑀𝐴𝑃𝐸𝑡+ℎ =
1

𝑛
 ∑

|𝑒𝑡+ℎ|

𝑦𝑡+ℎ
𝑛

 

 

(6) 

where 𝑒𝑡+ℎ is the forecasting error at time t + h, 𝑦𝑡+ℎ is the actual value at time t + h, and 𝑛 is the 

number of forecasting values. MAPE is an appropriate forecasting performance measure if the 

underlying forecast has significantly seasonality, which is the case, and if demand varies significantly 

from one period to the next (Sunil Chopra, 2019). MAPE has the major limitation that it gives infinite 

or undefined values for zero values or close to zero values. On weekends and public holidays, it is 

common that the actual value is zero or close to zero and this leads to infinite or undefined MAPE 

values, which makes the performance measure useless. In addition, the measure is based on percentage 

errors puts different penalty on positive errors than on negative errors, so those types of measures are 

asymmetric. 

There have been attempts to resolve this problem. Makridakis (1993) proposes to exclude outliers from 

the averaging of the absolute error, where an outlier can be defined as an actual value that has a value 

of less than one or as an absolute percentage error value greater than MAPE plus three standard 

deviations. However, in this approach, removing the outliers can be a problem, and the exclusion of 
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outliers can distort the results, mainly because the data involves multiple small actual values (Kim & 

Kim, 2016). In addition, Makridakis proposed the symmetric MAPE, which is more robust to values 

close to zero. However, the robustness of the symmetric MAPE is not strong enough to overcome the 

zero values during the weekends and national holidays because on those days, the symmetric APE value 

is regularly around 200%, with the result that those values influence the forecasting performance too 

much. 

Considering the benefits and drawbacks of the forecasting measures, we conclude that the mentioned 

scale-dependent forecasting measures are more appropriate than the scale-independent ones. Because 

the MAPE and symmetric MAPE do not have the required robustness to zero values, and all forecasting 

methods will be evaluated on the same dataset, making the scale independence unnecessary. Regarding 

the scale-dependent RMSE, and MAD forecasting measures, we prefer the MAD because the forecast 

errors do not have symmetric distributions for the most forecasting models which are introduced later 

in this paper. In addition, domestic planning prefers a forecast for regular days, and they do not want to 

emphasize incidents, such as customer promotions too much. Despite the aforementioned advantages 

of MAD, we will also compare the RMSE values of the forecast models to check whether they lead to 

the same conclusions. 

2.4 Evaluation current forecasting method 
In order to evaluate the forecasting model, we need to collect data containing information about the 

number of loading meters per day because we said that the forecasting method defined in equation 1 

has to be applied to a dataset containing loading meters. For the explanation of the data collection 

method and the cleaning and transforming process, we refer to Section 3.2. In order to fairly compare 

the current forecast performance with the forecast performance of other methods, the forecasting model 

is evaluated on the same data set, which is the last 306 days of 2021. For the explanation of the testing 

set, we refer again to Section 3.2. 

Table 2 presents the forecasting performance of the reconstructed current forecast model. The model 

consists of a weighted average of actual demands from one, two, and three years ago on the 

corresponding days, with the result that a forecast with a lead time of one day gives the same accuracy 

as a forecast with lead times up to a year. The bias shows that the forecasting model tends to 

underestimate the actual demand. The mean absolute deviation is also relatively high because, on 

average, the forecast is 15.1 percent off by the actual demand.  

Table 2 Forecasting performance of the reconstructed current forecast model. 
 ME RMSE MAD 

LDM 170.34 407.19 235.87 
LDM/actual (%) (10.90%) (26.5%) (15.09%) 

Note. The forecasting performance is based on the test dataset. 

 

In conclusion, even if forecasting equation 1 is applied to a data set containing information about the 

number of load meters, the forecast still needs to be improved. The positive bias is especially 

problematic because the forecast underestimates the number of loading meters on average by 170.34 

meters. In addition, the forecast has a mean absolute deviation of 236.67, which is approximately 

15.89% of the total demand. 

2.5  Conclusion 
In this chapter, we have addressed the first research question: What is the forecasting performance of 

the reconstructed current forecasting method? Domestic planning handles three types of shipment 

movements which can be referred to as pick-up, drop-off, and direct flow. A truck can a truck can use 

its loading capacity twice per trip. Therefore, it is essential to distinguish these flows because the ratio 

between pick-up and drop-off is crucial for the efficiency of domestic planning. Domestic planning 

lacks a professional forecast, but there is some documentation that is reconstructed into an actual 
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forecasting model. This reconstructed forecasting model has some limitations, including its inability to 

distinguish these three types of transport flows. In addition, the overview uses the number of needed 

trucks as a forecast unit instead of loading meters. Finally, the evaluation of the model showed that even 

applying the reconstructed forecasting model to the obtained data set containing information about the 

number of load meters; the forecast still needs to be improved. In order to improve forecasting accuracy, 

we will propose and evaluate alternative forecasting methods in the remaining of this paper. Chapter 3 

addresses the data analysis where the demand characteristics are identified. Chapter 4 describes some 

potential model to forecast the demand of domestic planning.  
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3. Data analysis 
The chapter provides insight into the factors that influence the demand forecast of domestic planning. 

Section 3.1 explains which forecasting class is the most suitable to forecast the demand and the 

associated required data. Next, Section 3.2 describes the data collection and cleaning process. Section 

3.3, identifies the factors that influence demand based on plot analysis. Then, we decompose the time 

series in Section 3.4. Next, in Section 3.5, we address the effect of national holidays on demand, and 

Section 3.6 summarizes the main finding of this chapter.  

3.1 Selection of forecasting class and associated data  
A forecasting class needs data, but the type of data required depends on the forecasting class. This 

section aims to identify the needed company-specific data by determining the most appropriate 

forecasting class. We will not evaluate the specific forecasting methods. So, in this section, we will 

evaluate the suitability of the forecasting classes in order to identify the required data. Later, in Section 

4.1, we will provide an evaluation of suitable forecasting methods of the most suitable forecasting class 

determined in this section.  

Forecasting methods can be classified as quantitative and qualitative methods. Quantitative methods 

need data that can be analysed in terms of numbers of equations, and qualitative methods do not have 

that need. The data requirement of quantitative methods is fulfilled because Mainfreight has historical 

records, including the demand of the domestic planning team. Due to the objective nature and some 

characteristics of quantitative methods, such as numerical values, quantitative methods have an 

advantage over qualitative methods in this situation. Therefore, we will focus on quantitative forecasting 

classes.  

From the literature, we found the following three classes of quantitative forecasting methods:  

1. Time-series forecasting methods 

2. Causal forecasting methods 

3. Artificial intelligence forecasting methods 

Each quantitively forecasting class consists of various forecasting methods. Ghalehkhondabi, 

Ardjmand, Weckman, & Young (2017) concluded that, based on their studied review articles about 

demand forecasting methods in the energy sector, there is an agreement among all authors that none of 

the methods outperforms the others in all situations. So, the most suitable forecasting method depends 

on domestic planning-specific circumstances.  

The main advantage of artificial intelligence over statistical methods is its ability to deal with complex 

and highly nonlinear problems and randomness (Velasquez, Zocatelli, Estanislau, & Castro, 2022). 

Particularly, artificial neural networks are commonly used in the literature as an artificial intelligence 

forecasting method. However, artificial neural networks do not provide a systematic means to improve 

the understanding of the system, which is desirable. Furthermore, the company's maturity regarding 

forecasting is still in its early stages, so no forecasting methods are currently used. Since simplicity is 

preferred over complexity, more straightforward methods, such as statistical methods, should be 

evaluated first to see if they can provide satisfactory results.  

Causal methods are helpful when understanding the factors influencing the dependent variable is 

desired. However, identifying company-specific independent variables that explain the demand of the 

domestic planning team is difficult. It is also costly and time-consuming to obtain the entire data set for 

the independent variables. Therefore, we also omit regression. 

Time series methods are the most used quantitative methods for estimating future transport demand 

when reliable historical data is available (Profillidis & Botzoris, 2018). Time series are series of data 

recorded and analysed in a time order, where the only independent variable is time. The fundamental 



3.1     Selection of forecasting class and associated data L. Verkerk 

 

12 
 

assumption of time series is that all other factors affecting the transport demand follow the same path 

in the future as in the past, with the same characteristics and degree of influence. The shorter the 

forecasting horizon, the more likely the assumption is close to reality (Profillidis & Botzoris, 2018). 

The forecasting horizon of the forecast for the domestic planning team is a week; therefore, it is likely 

that the assumption holds. Besides that, the forecasting class seems suitable because the Mainfreight's 

data availability consists of time series. Therefore, we decide to forecast based on time series.

 

3.2 Data collection and cleaning process 
Times series forecasting methods need time series data. This need for data is by Mainfreight's historical 

records of the executed shipments. The dataset with historical shipment records is obtained from the 

information stored in the transport management system (TMS) of Mainfreight. The ability of TMS to 

collect transportation data makes it possible to view it as a database in which information about 

shipment movements is stored. This information, stored by a TMS, can be used to perform data analysis 

in order to forecast future demands. The same dataset can also be used to develop the forecast model.  

Before using the dataset, we have to clean and transform the dataset to the required format. Data 

cleaning is the process of preparing data for analysis by removing or modifying incorrect, corrupt, or 

inaccurate observations. Transformation is the process of converting data into a convenient format. For 

the cleaning process, we need multiple steps because the data has a high degree of contamination. The 

cleaning steps are performed carefully, but not all contaminating elements may have been filtered from 

the data due to the high degree of contamination of the dataset. We suspect that the residual 

contamination is negligible because we compared our dataset with a dataset based on trip lists. However, 

this suspicion cannot be established with certainty because the loading meters in the trip list database 

are not calculated in the same way as those for our database. The transforming process mainly consists 

of aggregating the data to both the total daily aggregated level (all flow) and the daily aggregated level 

separated by flows (pick-up, drop-off, direct flow). A detailed explanation of the cleaning and 

transforming process can be found in Appendix A.2 Data cleaning and transforming.  

In general, empirical evidence based on the out-of-sample forecast is considered more reliable than 

empirical evidence based on in-sample forecast performance. Therefore, the given dataset is divided 

into a training set used for initialization and parameterization of the forecasting methods and a testing 

sample used to evaluate forecasting performance. The first 1155 observations of the data are used to 

estimate method parameters, and the remaining 306 observations to evaluate the post-sample 

forecasting performance. This gives a training/test ratio of approximately 4:1, which is a commonly 

used ratio.  

3.3 Plot analysis 
The cleaned and transformed dataset can be used to identify the characteristics of the demand. A good 

start to identifying trends and seasonality is to plot the data. Figure 2 depicts the time plot for the total 

daily demand, expressed in loading meters, of domestic planning. In this graph, no distinction is made 

between the three transport directions, i.e., pick-up, drop-off, and direct flow. The plot reveals a slightly 

positive trend that seems linear, i.e., an additive trend. However, additional research is needed to 

confirm this presumption. For an explanation of the composition of time series, we refer to Appendix 

A.3 Time series composition. As for seasonality, the data shows multiplicative seasonality because the 

magnitude of the seasonal fluctuations does vary over time. The figure reveals that seasonality consists 

of multiple seasonal cycles. It shows a short and long seasonal cycle where the long cycle is mainly 

visible during the summer and Christmas holidays. The shorter seasonal cycle dominates the data, and 

it is probably a within-week cycle with a period of seven days. The length of longer cycle, within-year 

cycle, is harder to identify. It requires further investigation by looking closer at some potential seasonal 

cycles.  
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Figure 2 Total daily loading meter demand of Domestic planning from 1-1-2018 to 31-12-2021. 

 

Figure 3 shows three seasonal cycles. The month and week number plots represents the two potential 

within-year seasonal cycles, and the weekday plot represents the within-week seasonal cycle. In the 

figure, the index represents the ratio between the average cycle period and the total yearly average. The 

plot with the monthly seasonal cycles does not show robust seasonality. The monthly plot does show a 

weak seasonality in the second part of the year, in contrast to the first part of the year. The plot with the 

week number seasonality reveals a more robust seasonality. As a result, we prefer the weekly seasonal 

cycle over the monthly one as the within-year seasonal cycle. From now on, the within-year seasonality 

indicates the week number seasonality. The weekly plot also exhibits some noise in the year's first half, 

especially between weeks 14 and 24. However, this noise is mainly caused by the effect of national 

holidays, such as Eastern, Ascension Day, and White Monday, which fall on different days and weeks 

each year and significantly influence the demand for domestic planning. Suppose we correct the effect 

of national holidays according to the smoothing-out process introduced in Section 5.3. In that case, we 

observe a reduction of the noise between weeks 14 and 24 and a more robust week seasonality. The 

weekday plot shows a strong within-week seasonality where Sunday (period 1) and Saturday (period 7) 

have much lower demand than the weekdays. To conclude, the within-week seasonality dominates the 

demand for domestic planning, but the week seasonality also provides additional information about the 

demand.  

Figure 3 Season plots for three potential seasonal cycles.  

 

The ratio between pick-up and drop-off is also essential for optimal vehicle capacity because a vehicle 

can use its loading capacity twice per trip. An optimally used truck departs 's-Heerenberg full of drop-

off shipments and returns full of pick-up shipments. Figure 3 depicts the daily demand, expressed in 

loading meters, for the three transportation flows of domestic planning. The figure reveals that the pick-

up and drop-off demand are similar and match's trend and seasonality. However, the direct flow exhibits 

a different demand pattern. The direct flow shows a within-week seasonality, but the week seasonality 

disappeared. A remarkable feature of the direct plot is the low demand in the second half of 2020. The 

available data cannot explain this event, and domestic planning cannot explain this either. 
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We also investigate the three potential seasonal cycles (monthly, weekly, and within-week) for the three 

transportation flows. These seasonal plots, depicted in Figure 20 in Appendix A1, confirm the transport 

activities' trend and seasonality assumptions made for the total daily demand.  

Figure 4 Daily demand in loading meter for the three flows.  

3.4 Time series decomposition 
According to Brockwell & Davis (2016), there are multiple methods to estimate and eliminate the trend 

and seasonality. The classical decomposition model is the first method to estimate and eliminate trends 

and seasonality, as described by Brockwell & Davis (2016). The second method eliminates the trend 

and seasonality by differencing and finding an appropriate stationary model for the differenced series. 

In this section, we will use the classical decomposition method to eliminate the trend and the within-

week and within-year seasonality. Later, in Section 4.4, we will use the second method, differencing, 

for ARIMA forecasting models.  

In the decomposition method, we assume that the seasonal components are constant in time. It starts 

with deseasonalizing the demand by applying a moving average filter, defined by Sunil Chopra (2019) 

to eliminate the seasonal components. As the time series suggests a within-week (weekday) seasonality 

and the within-year seasonality (week number), we set the length of the within seasonality to 7 (m1=7), 

and the within-year seasonality is set accordingly to the ISO week numbers where a year has 52 or 53 

weeks. The long years, with 53 weeks, occur on years that start on Thursday and on leap years that start 

on Wednesday, which is the case in 2020. This extra week is referred to as the leap week. For all other 

periods in the time series, the within-year cycle consists of 52 weeks. The moving average filter is 

expressed in the following equation:  
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(7) 

where m is equal to 364 in a year with 52 weeks and 371 in a year with 53 weeks.  

The level and trend components are estimated by fitting a linear trend using linear regression on ȳ𝑡. The 

initial level estimate is equal to the intercept coefficient, and the trend is equal to the slope coefficient 

of the linear trend. In the case of multiplicative decomposition, the seasonal factors are computed by 

averaging the ratio of the actual demand to deseasonalized demand obtained from the linear regression. 

For additive decomposition, the seasonal factors are computed by the average deviations between the 

actual demand and deseasonalized obtained from the linear regression. The seasonal factors are 

normalized so that they add to m for multiplicative seasonality and add to zero for additive seasonality. 

 

Figure 5 shows that the random components of the time series, with the additive trend and multiplicative 

seasonality, are not white noise, meaning there is information left in the residuals. For an explanation 

of the composition of time series, we refer to Appendix A.3 Time series composition. The spikes in the 

pick-up and drop-off flow graphs confirm the suspicion that the national holidays significantly influence 

demand. The effect of national holidays on demand is further addressed in the Section 3.5. The direct 

flow graph shows that linear regression is an inadequate approach to capturing the trend component for 

the direct flow. However, the direct flow only represents 6.1% of the total demand, which raises the 

question of whether estimating a higher-order polynomial fit significantly affects the total demand. To 

model demand adequately, special day effects must be considered, along with the trend and seasonality. 

Figure 5 Random component of the time series. 

 

 

https://en.wikipedia.org/wiki/%C8%B2
https://en.wikipedia.org/wiki/%C8%B2
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3.5 Anomalous demand 
We concluded that the national holidays cause noise in the seasonality and spikes in the random 

component. Later in the study we will see even more effects of the national holidays. Therefore, national 

holidays significantly influence the data and should be incorporated into the forecasting model.  

Figure 6 depicts some averages regarding special days calculated using the dataset. Special days consist 

of national holidays, listed in Table 7 in Appendix A.1 Figures and tables, and the day before and after 

the holiday because we know from experts in domestic planning that the days around national holidays 

also show a deviation from normal demand. This deviation can also be seen in the figure. It shows that 

the average demand is generally higher on normal days than on special days, with the highest difference 

on national holidays. The low average of a normal day before a national holiday on day 3 (Tuesday) is 

remarkable, but this can be explained by the fact that this event only occurred once in the dataset on 

December 24, 2019. In addition, the average demand after a national holiday is relatively low on 

Thursday and Friday, probably caused by long weekends. 

Figure 6 Holiday plot from 2018 to 2021.  

 

 

3.6 Conclusion  
In this chapter, we have addressed the second research question: Which factors significantly influence 

the demand forecast of the domestic planning team at the Branch Transport s'-Heerenberg? We conclude 

that the only forecasting methods based on time series are suitable for forecasting the demand of 

domestic planning. In addition, we determined that the data shows a strong seasonal cycle where the 

within-week seasonal cycle dominates the demand. However, even though the within-week seasonal 

cycle dominates the data, the week number seasonality also provides additional information about the 

demand. From the time series decomposition, we found that the direct flow cannot be captured 

adequately with linear regression, but the direct flow only represents 6.1% of the total demand. 

Therefore, we conclude that estimating a higher order polynomial fit probably does not significantly 

affect the total demand. Furthermore, we found that national holidays significantly influence the data 

and should be incorporated into the forecasting model.  

Note. The week starts on Sunday (weekday 1) and ends on Saturday (weekday 7). 
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4. Forecasting methods 
In this chapter, we select appropriate forecasting models to predict demand for domestic planning. 

Section 4.1 discusses some well-known time series methods, and from these methods, we select 

Exponential smoothing and seasonal ARIMA models to forecast the demand. Then, in Section 4.2, we 

elaborate on Exponential smoothing, and in 4.3, we discuss the initialization and estimation procedure 

of Exponential smoothing. Next, Section 4.4 elaborates on the ARIMA models, and the associated 

estimation procedure is discussed in Section 4.5. In Section 4.6, we propose Rule-based forecasting for 

demand on special days because we argued that univariate methods could generally not produce 

reasonable forecasts. Finally, we summarize the finding of this chapter in Section 4.7. 

4.1 Selection of time series forecasting methods 
This section addresses the following four well-known time series forecasting methods: Moving average, 

Exponential smoothing, Autoregressive integrated moving average, and Trend projection. We start by 

explaining why the Moving average and Trend projection are not appropriate methods to forecast the 

demand for domestic planning. Then, we argue that Exponential smoothing and Autoregressive 

integrated moving averages are appropriate methods to forecast the demand for domestic planning. 

Finally, Exponential smoothing and Autoregressive integrated moving averages are weighed against 

each other. 

Moving average is a simple forecasting method that averages the most recent observations and does not 

incorporate a trend and seasonality, which makes it inappropriate to forecast the demand of domestic 

planning. Trend projection projects historical statistical data to the future, requiring a large amount of 

reliable data, at least 7 to 10 years (Profillidis & Botzoris, 2018). Only four years of historical data are 

available, making Trend projection also inappropriate to forecast the demand of the domestic planning.  

Exponential smoothing methods are recursive time series where new historical data values update the 

forecast. As the name exponential smoothing suggests, the weights of past observations decrease 

exponentially as the observations are more distant in time. Exponential smoothing was first introduced 

in the literature without citation to previous work by Brown in 1956. In 1957, it was expanded by Holt. 

Exponential smoothing is a well-known method for forecasting time series. Tayler (2003) states that 

the robustness and accuracy of exponential smoothing methods are the reason for their widespread use 

in applications where many series require an automated procedure. Exponential smoothing is a class of 

forecasting methods consisting of models that can capture various trends and seasonalities. This 

suggests that exponential smoothing with trend and seasonality might be a reasonable candidate for the 

demand forecasting of domestic planning. 

Autoregressive integrated moving average (ARIMA) is a sophisticated econometric model that uses 

correlations between historical data at various times. The ARIMA model is a combination of three parts, 

the autoregressive part (AR), the moving average part (MA), and the integrated part (I). In addition, a 

seasonality index should be added to account for the seasonality in the demand data of the company. 

The ARIMA model can be generalized to a class of multiplicative ARIMA models to accommodate a 

seasonal cycle. These models are also known as seasonal ARIMA models or SARIMA models. This 

suggests that ARIMA models might be a reasonable candidate for the demand forecasting of domestic 

planning. 

Both exponential smoothing and seasonal ARIMA might be appropriate methods to forecast the demand 

of the domestic planning team. However, Brockwell & Davis (2016) state that general theoretical 

statements about the appropriateness of the various forecasting methods for particular problems are 

challenging. However, they also argue that actual data is rarely generated by a simple mathematical 

model such as an ARIMA process. Therefore, heuristic models, such as exponential smoothing, should 

be seriously considered in practical forecasting problems. In addition, Beaumont, Makridakis, 

Wheelwright, & McGee (1984) say that the data characteristics are essential for choosing a forecasting 
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model. When the trend-cycle is the dominant component in the data, sophisticated models such as 

ARIMA are appropriate. However, if the randomness is dominant, then simple methods are preferred, 

such as exponential smoothing (Li, Rose, & Hensher, 2010). Furthermore, from the point of view that 

simple methods which provide reasonable results with a satisfactory degree of accuracy should be 

preferred above complex methods and that real data is rarely generated by a simple mathematical model 

such as an ARIMA, we conclude that exponential smoothing methods. Particularly Holt Winter's model 

should be considered first. However, we will also investigate the possibilities of the ARIMA model as 

a second approach.  

4.2 Description of Exponential smoothing  
Exponential smoothing is a class of forecasting methods. The class consists of various forecasting 

methods with the property that forecasts are a weighted combination of past observations. If the error 

component is ignored, then there are fifteen exponential smoothing models, given in Table 3. This 

classification of exponential smoothing methods originated with Pegel's taxonomy in 1969, and it was 

later extended or modified respectively by Gardner (1985), Hyndman et al. (2002), and Taylor (2003). 

Some of these methods are better known under different names. For example, the “N,N” describes the 

simple exponential smoothing method and the “A,N” describes Holt's linear method, and the “A,M”. 

The “A,A” is also known as Holt-Winters with additive trend and “A,M” as Holt-Winters with 

multiplicative trend.  

Table 3 Classification of exponential smoothing methods. 
Trend component Seasonal component 

 N (None) A (Additive) M (Multiplicative) 

N (None) N,N N,A N,M 

A (Additive) A,N A,A A,M 

Ad (Additive damped) Ad,N Ad,A Ad,M 

M (Multiplicative) M,N M,A M,M 

Md (Multiplicative damped) Md,N Md,A Md,M 

 

We will investigate the methods listed in Table 3 except for the damped trend methods. Damped trends 

dampen the trend as the length of the forecast horizon increases. Therefore, damped trends improve 

forecast accuracy over a long lead time (R. Hyndman, Koehler, Ord, & Snyder, 2008). However, the 

lead time of this research is up to 2 weeks, so the damped trends are unnecessary. The data analysis 

suggests that the time series contain an additive trend and multiplicative seasonality, but we also see 

value in testing the other models and benchmarking them.  

In 2003, Taylor adapted the Holt-Winters (AM) exponential smoothing formulation to accommodate 

two seasonal cycles and showed that the forecasts produced by the new double seasonal Holt-Winters 

method outperform exponential smoothing with one seasonal cycle. In the plot analysis in 3.3, we saw 

that the within-week and within-year seasonal cycle shows some pattern where the within-week 

seasonal cycle is dominant over the within-year seasonal cycle. Therefore, the within-week seasonality 

cycle will be used for exponential smoothing methods that can accommodate one seasonal cycle. For 

Taylor's double seasonal Holt-Winters method, the within-week and within-year seasonalities will be 

used. 

In this section, we will only show the equations Taylor's adapted Holt-Winters with double seasonality 

because that model has the highest expectation based on the demand characteristics found in Chapter 3. 

For the other exponential smoothing method, we refer to Appendix A.4 Formulas of the Exponential 

smoothing methods. Taylor's double seasonal Holt-Winters model (2003) with an additive trend and 

two multiplicative seasonalities gives the following component form: 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:           ŷ𝑡+ℎ = (𝑙𝑡 + ℎ𝑏𝑡) ∙ 𝑠𝑡+ℎ−𝑚1 ∙ 𝑤𝑡+ℎ−𝑚2    (8) 
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          𝐿𝑒𝑣𝑒𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:                        𝑙𝑡 =  𝛼
𝑦𝑡

𝑠𝑡 ∙ 𝑤𝑡
+ (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1)       (9) 

 
𝑇𝑟𝑒𝑛𝑑 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛                       𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1        (10) 

 𝑆𝑒𝑎𝑠𝑜𝑛 1 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:                 𝑠𝑡 =  𝛾
𝑦𝑡

𝑙𝑡−1 ∙ 𝑤𝑡−𝑚2
 
+ (1 − 𝛾)𝑠𝑡−𝑚1

 (11) 

 𝑆𝑒𝑎𝑠𝑜𝑛 2 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:                𝑤𝑡 =  𝛿
𝑦𝑡

𝑙𝑡−1 ∙ 𝑠𝑡−𝑚1
 
+ (1 − 𝛿)𝑤𝑡−𝑚2

 

 

(12) 

 

where 0 ≤ α ≤ 1 is the smoothing parameter for the level, 0 ≤ 𝛽 ≤ 1 is the smoothing parameter for the 

trend, 0 ≤ 𝛾 ≤ 1 is the smoothing parameter for the within-week seasonal cycle 1, 0 ≤ 𝛿≤ 1 is the 

smoothing parameter for the within-year (week number) seasonal cycle. Smoothing parameters control 

the rate at which the weights decrease. A forecast with high smoothing parameter values is responsive 

to recent observations, whereas a forecast with a low value of α is more stable and less responsive to 

recent observations.  

4.3 Initialization and parameterization of Exponential smoothing  
In this section, we give an argumentation for the choice of initialization and parameterization methods. 

We use the training data set for initialization and parameterization. For more information about the 

training set, we refer to Section 3.2.  

Koutsandreas, Spiliotis, Petropoulos, & Assimakopoulos (2021) argue that scientists disagree about the 

appropriate measures and approaches that should be used for training a forecasting model, i.e., optimally 

selecting its parameters. Matching the utilization of the parameter with the forecasting performance 

measure is widespread practice in machine learning but not statistical forecasting. They state that 

forecasting models are usually parameterized by optimizing information criteria or by minimizing the 

in-sample one-step ahead sum of squared errors, regardless of the measure used for evaluating the 

forecasting accuracy in the test set. In 2021, they studied the effect of mismatching the training and 

testing measures on forecasting models' performance, and they concluded that mismatching has only a 

minor effect on forecasting accuracy. In addition, Sunil Chopra (2019) states that smoothing parameters 

should be parametrized by minimizing performance measures, such as MSE, MAD, and MAPE, which 

are also commonly used to evaluate the test set. Therefore, we will use both the MSE and MAD 

performance measures to estimate the parameters and evaluate the accuracy of the test set. The MAD 

measure derives the parameter values by minimizing the sum of absolute one-step ahead forecast errors 

using a nonlinear optimalisation method. In contrast, the MSE measure derives the parameter values by 

minimizing the sum of squared one-step ahead forecast errors.  

In order to calculate the forecasts using exponential smoothing, we need to specify the initial values. 

Depending on the smoothing method, the set of initial values consists of a scalar value for the initial 

level and initial trend and a column vector of length m for the initial seasonality factor. For the 

initialization, we use both the method proposed by Sunil Chopra (2019) and R. J. Hyndman, Koehler, 

Snyder, and Grose (2002). 

For the initialization process of the exponential smoothing models by Chopra, we refer to Section 3.4 

except for simple exponential smoothing. The initial level value of simple exponential smoothing is 

estimated by taking the average of all historical data because simple exponential smoothing ignores 

trend and seasonality. Hyndman, Koehler, Snyder, and Grose determine the initial values slightly 

different. The main differences are that they also provide a method for calculating the initial 

multiplicative trend and additive seasonality. In addition, they refined the initial values by estimating 

them along with the parameters. The smoothing parameters and the initial states are estimated by 

minimizing performance metrics, which are the one-step ahead mean squared error or the one-step 

ahead mean absolute error in this research.  
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When estimating smoothing parameters, we set a minimum bound on the level smoothing parameter 

because the forecasting models tend to select zero as the optimum parameter value. The consequence 

of a zero-level parameter is that the model does not include a trend, while Section 3.3 shows that there 

is indeed a trend in the data. We suspect this tendency is due to the low trend, as we use a daily time 

unit. The effect of the national holidays also might be a factor that disrupts the level component because 

the low demand around national holidays unduly lowers the level component. 

4.4 Description of ARIMA models 
ARIMA models forecast the demand for domestic planning based on autocorrelations in the data.  

Autocorrelation is conceptually similar to correlation, but autocorrelation measures the relationship 

between the current demand of domestic planning and its past demands. We will explain ARIMA model 

by outlining each of its components.  

The autoregressive component is the component that forecasts the variable of interest, and the demand 

of domestic planning, using a linear combination of past values of the variable. The term autoregression 

indicates regression of the variable against its historical values. Thus, the autoregressive part of order p 

can be written as: 

 𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 

 

(13) 

where c is the intercept, 𝜙1,…, 𝜙𝑝 are the parameters, and 𝜀𝑡 is white noise. i.e., it is independent and 

identically distributed with a mean of zero.  

Rather than using past values of the demand of domestic planning in a regression, the moving average 

component uses a linear combination of past forecast errors. In other words, the forecast can be 

considered a weighted average of past forecast errors. Thus, the moving average component of an order 

op q can be written as: 

 𝑦𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 

 

(14) 

where c is the intercept, 𝜃1,…, 𝜃𝑞 are the parameters, and {𝜀𝑡} is white noise. Note that the word 

"moving average" in the context of ARIMA models differs from its use in the forecasting method 

Moving average.  

The integrated component addresses the stationarity requirement of ARIMA models. A time series is 

stationary if its probability distribution does not change over time  (Stock & Watson, 2019). Section 3.3 

identified trend and seasonality components in the data, which means that the data is non-stationary 

because the trend and seasonal components will affect the data at various times. The advantage of 

stationary time series over non-stationary time series is its relatively simple predictability since the 

statistical properties can be assumed to be the same in the future as in the past. Non-stationary time 

series can be converted into stationary time series using mathematical transformations, such as 

differencing.  

Differencing is a method of transforming non-stationary time series into stationary time series by taking 

differences between certain values. Differencing can contribute to the stabilization of the mean of time 

series by removing changes in the time series level and therefore eliminating or reducing trend and 

seasonality. For differencing, it is important to distinguish the lag operator and the difference operator. 

The lag operator, also called the backshift operator, operates on an observation of the time series to 

produce the previous observation. Formally defined, the lag operator (or backward shift) 𝐿 is an operator 

that maps 𝑌𝑡 to 𝑌𝑡−1. The difference operator gives the number that the time series is differenced.  

As said in Section 4.1, the ARIMA model can be generalized to a class of multiplicative ARIMA models 

to accommodate a seasonal cycle. The multiplicative seasonal ARIMA model with one seasonal pattern 

can be expressed as ARIMA(p,d,q) × (P,D,Q)m, where p and P are the orders of the autoregressive part, 
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d and D are the degrees of differencing, q and Q are the orders of the moving average part, and m is the 

number of periods in a seasonal cycle. The model is multiplicative in the sense that the polynomial 

functions L and Lm are multiplied on both sides of equation 15. Note that the word "multiplicative" in 

the context of seasonal ARIMA models differs from its use in exponential smoothing. The backshift 

notation of the multiplicative seasonal ARIMA model with one seasonal pattern, for the time series 𝑦𝑡, 
can be written as: 

 𝜙𝑝(𝐿)Ф𝑃(𝐿
𝑚)𝛻𝑑𝛻𝑚

𝐷𝑦𝑡 = 𝜃𝑞(𝐿)Θ𝑄(𝐿
𝑚 )𝜀𝑡  

 

(15) 

where L is the lag operator, 𝛻 is the difference operator (1-𝐿), 𝛻𝑚 is the seasonal difference operator, 

(1-𝐿𝑚), 𝜀𝑡 is the error term, and 𝜙𝑝,Ф𝑝, 𝜃𝑞 and Θ𝑄 are polynomial functions of orders p, P, q, and Q, 

respectively. 

4.5 Initialization and parameterization of ARIMA models 
As with exponential smoothing, the training set is used for the initialization and parameterization of the 

ARIMA models. When fitting the ARIMA model to the forecasting flows (all flows, pick-up flow, 

drop-off, and direct flow), each forecasting flow has completed the following steps. In the remainder of 

this section, we will explain each of these steps in detail. 

1. Transform the datasets to stationary time series.  

a. If necessary, the data is transformed using a Box-Cox transformation to stabilize the 

variance. 

b. If necessary, the data is stationarized through differencing to stabilize the mean.  

2. Examine the autocorrelation function (ACF) and the partial autocorrelation function (PACF) to 

identify possible candidate models. 

3. Compare all models with polynomials up to order two using the Akaike information criterion 

(AIC) and the Bayesian information criterion (BIC). 

4. Estimate the values of the parameters using maximum likelihood estimation 

5. Conduct goodness-of-fit checks on the residuals to investigate whether the model describes the 

data adequately by inspecting if information is left in the residuals.  

We investigated logarithmic transformation for the demand in the training dataset to stabilize the 

variance because we determined that the magnitude of the seasonal fluctuations varies over time. Box-

Cox transformation was used to resolve this instability of the variance in Section 3.3. The method of 

Guerrero (1993) was applied to the training set to estimate the lambda of the Box-Cox transformation. 

A problem with using a Box-Cox is that the back-transformed point forecast usually reports the median 

of the forecast distribution instead of the mean (source forecasting: principles and practice). To extract 

the mean point forecast, we used bias-adjusted back-transformation.  

A method to remove the data trend is to take the first difference, which is the difference between 

consecutive observations (d=1). A method to remove the weekly seasonality of the data is to use 

seasonal differencing. A seasonal difference is the difference between an observation and past 

observations from the same season. Seasonal differencing uses the lag-d differencing operator, where 

the d represents the period of the season. Equation 15 accommodates only one seasonal cycle. Due to 

the dominancy of the within-week seasonal cycle over the within-year seasonal cycle, this will be the 

within-week seasonal cycle (D=1). 

Figure 7 shows the time series of the total demand after taking the first trend difference (d=1), the first 

seasonal difference (D=1), and the first seasonal differencing and trend difference (D=1 and d=1). We 

also analysed this for the pick-up, drop-off, and direct flow, but we do not report these results because 

the plots are very similar, leading to the same conclusion as in Figure 7. In all three graphs, the mean 

seems to approach zero, and the trend seems to be removed. In the first difference, the weekly 
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seasonality is strongly present, but the weekly seasonality is removed in the seasonal difference. There 

is, however, another type of pattern related to the national, summer, and Christmas holidays. 

Figure 7 Various types of differencing on the total demand of the domestic planning.  

 

Note. The x-as represents the time in weeks, starting at week 1 of 2018.  

A more objective method to determine whether differencing is required is to use a unit root test. Wang, 

Smith, & Hyndman's (2006) test determines whether seasonal differencing (seasonal period of one 

week) is required. This test indicates that the four-time series requires one seasonal difference. The 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test and the Augmented Dickey-Fuller (ADF) test are used 

to determine whether trend differencing is required after seasonal differencing. The KPSS test has a 

null hypothesis of stationary data, but the ADF test has a null hypothesis of non-stationary. Both tests 

indicate that the time series does not require a trend differing at a 5% significance level. Therefore, only 

one seasonal difference will be applied to the four-time series to make it stationary.  

Figure 8 plots the autocorrelation function (ACF) and the partial autocorrelation function (PACF) of 

the Box-Cox transformed and seasonal differenced training data of the total aggregated dataset. The 

ACF and PACF are plotted after seasonal differencing because we concluded that all four-time series 

requires one seasonal difference with the seasonal cycle of 7 periods. The ACF and PACF are used to 

see the correlation between the point, up to and including the lag unit. The ACF gives the autocorrelation 

with its lagged values, but the PACF gives the autocorrelation with its lagged values after removing the 

effects already explained by earlier lags.  

The ACF and the PACF are used to identify possible candidate models. The ACF and PACF for the 

pick-up, drop-off, and direct flow are shown in Figure 21 in Appendix A.1 because they display a 

similar plot in terms of patterns, and the same conclusion is drawn for those time series. The PACF in 

Figure 8 shows an exponential decay in seasonal lags, and the ACF only has two significant seasonal 

lags, lags 7 and 14, which suggest a seasonal MA(2). Furthermore, the ACF shows an exponential decay 

in non-seasonal lags, whereas the PACF shows a significant lag 1, followed by insignificant lag two, 

which suggests a non-seasonal AR(1) lag. So, based on the ACF and PACF plots, we suspect that an 

ARIMA(1,0,0)(0,1,2) model can capture the characteristics of time series. 
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Figure 8 ACF and PACF plot for total daily aggregated trainings dataset.  

 

Note. The training dataset used in this figure is already Box-Cox transformed, and the first seasonal difference 

with period seven is already taken.  

We start with considering all models with polynomials up to order two and compare them using the 

Akaike information criterion (AIC) and the Bayesian information criterion (BIC). If necessary, the 

autocorrelation function of the residuals for higher-order autocorrelations is also checked. The AIC and 

BIC are measures of model performance that incorporate a penalty for the number of used parameters 

to avoid overestimation. According to the AIC, the best models are the ARIMA(2,0,2) × (1,1,2)7, 

ARIMA(1,0,2) × (2,1,2)7, ARIMA(2,0,1) × (1,1,1)7, and ARIMA(2,0,1) × (1,1,2)7 for the all, pick-up, 

drop-off, and direct flow, respectively. The best models according to BIC is the same as the best models 

for AIC for the drop-off and direct flow, but the BIC selects the ARIMA(1,0,0) × (0,1,2)7 and the 

ARIMA(1,0,2) × (0,1,2)7 as the best model for the total and pick-up flow, respectively. This difference 

is caused by the BIC penalizing additional parameters more than AIC.  

An investigation of the in-sample and out-of-sample performance for both models reveal that 

ARIMA(2,0,2) × (1,1,2)7 outperforms the ARIMA(1,0,0) × (0,1,2)7 both in-sample as out-of-sample 

based on both the RMSE and MAD. Therefore, we choose the ARIMA(2,0,2) × (1,1,2)7 to forecast the 

total flow demand. Regarding the pick-up flow, there is hardly any difference between the RMSE and 

MAD of the AIC and BIC models. The MAD of the BIC model is slightly lower than the MAD of the 

AIC model for both in-sample and out-of-sample, but the RMSE of the AIC model is slightly lower 

than the BIC model. We choose to use the BIC model, the ARIMA(1,0,2) × (0,1,2)7 model, because 

overfitting is undesired, and this model corresponds best with the conclusions of the manual ACF and 

PACF inspection. From now on, we shall refer to the chosen models as the seasonal ARIMA model.  

Once the model's non-seasonal, seasonal, and differencing order has been identified, the parameter 

values are estimated using maximum likelihood estimation. Maximum likelihood estimation finds the 

parameter values such that they maximize the likelihood of obtaining the observed data. According to 

Brockwell & Davis (2016), maximum likelihood estimation can also be used for choosing the parameter 

coefficients and as a measure of goodness of fit of non-Gaussian distributions. For the ARIMA 

equations with parameter values of the four-time series, we refer to Appendix A.6 Formulas and 

parameter values of the ARIMA models. 

Goodness-of-fit checks are conducted on the residuals to investigate whether the model adequately 

describes the data by inspecting if information is left in the residuals. The residuals should be white 

noise with zero mean, constant variance, and uncorrelated in time. In other words, 𝑦𝑡 should be 

covariance stationery. In addition, the residuals should be strictly stationary to produce confidence 

intervals, which means that the residuals should also follow a gaussian distribution. The time series are 

stable because the inverse roots of the coefficients lie inside the unit circle.  

Figure 9 shows four plots that check whether the residuals are normally independently distributed for 

the total flow. We do not report the results of the pick-up, drop-off, and direct flow because the plots 
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are very similar, leading to the same conclusion as in Figure 9. The ACF and PACF plot shows that the 

residuals are autocorrelated because there are significant lags in the residuals. Many of these significant 

lags probably correspond with the national holidays. For example, lag 11 represents the number of days 

between Ascension Day and White Monday, lag 39 represents the number of days between Easter 

Monday and Ascension Day, and lag 50 represents the number of days between Easter Monday and 

White Monday. The national holidays also cause residual outliers in the residual time plot. The 

presumption of autocorrelation is supported by the Ljung-Box test, which rejects the null hypothesis 

that the residuals do not show autocorrelation. Finally, the histogram shows that the residuals are not 

gaussian distributed, and the Jarque-Bera test supports this conclusion. To conclude, the model's fit is 

not optimal but increasing the number of polynomials is not the solution because the suboptimal fit is 

caused by the national holidays and including 49 lags would cause major overfitting. We will use this 

model to produce a point forecast. 

Figure 9 Goodness-of-fit checks for the ARIMA(2,0,2) × (1,1,2)7 of the total flow. 

4.6 Anomalous demand forecasting method 
In Chapter 3, we concluded that the national holidays cause noise in the seasonality, and spikes in the 

random component. In addition, later in Section 4.5, we saw that ignoring national holidays leads to 

significant lags in the ACF and PACF plots of the residuals corresponding with the national holidays. 

Therefore, they contribute to the autocorrelation in the residuals of the ARIMA forecasting models. 

Thus, national holidays significantly influence the data and should be incorporated into the model.  

In the literature, numerous forecasting methods have been proposed for forecasting the demand for 

normal days. However, modelling anomalous demand has often been ignored in the research literature 

by choosing periods with no special days, such as national holidays and long weekends. Anomalous 

demand poses modelling challenges because of its infrequent occurrence and the significant deviation 

from normal demand (Arora & Taylor, 2013). Taylor already argued in 2003 that demand on these days 

significantly differs from the normal demand and that univariate methods generally cannot produce 

reasonable forecasts. This statement is consistent with the findings found so far, such as the spikes in 

the random component and with finding in later sections.  
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Existing models have been modified to account for special days. For example, Smith (2000) accounts 

for special days by treating them as Sundays, and Taylor (2010 & 2012) smooths the special days out 

before modelling. However, Smith's method will lead to inaccurate estimations for special days because 

Smit assumes that all special days have similar demand profiles to Sundays, which is incorrect. 

Regarding Tayler's approach, smoothing out the special days will exclude the important potential 

contribution of the forecast to domestic planning because especially an accurate forecast for special 

days and the day around the special days can make a major contribution to domestic planning. In 

addition, smoothing out special days was not felt appropriate because it means that 28 days per year are 

excluded from the sample, which is almost one month per year.  

An approach for short-term forecasting of normal and anomalous demand is based on regression, where 

dummy variables incorporate the effects of special days (Cancelo, Espasa, & Grafe, 2008). To avoid 

over-parameterization, some authors assume that the demand profile for different special days can be 

treated as similar or classified. The data shows that the assumption of treating special days as similar is 

too restrictive and classifying similar special days will still result in over-parameterization. Other 

approaches to incorporating special days are based on rules or Artificial neural networks. The latter 

method is disregarded because, as mentioned in Section 3.1, the maturity of the company regarding 

forecasting is still in its early stages. Therefore, more straightforward statistical methods should be 

considered first. We choose to use a rule-based approach to incorporate the effects of special days 

because the method gives the freedom to allow the incorporation of the special days' characteristics into 

a statistical modelling framework without over-parameterization.  

The prior knowledge and the data properties are quantified and expressed in the form of a rule. The rule 

aims to estimate a suitable point forecast for the special days in the formulations of double seasonal 

Holt-Winters because this method has the highest forecasting accuracy, which will be later seen in 5.2. 

The mathematical expression of the Rule-based double seasonal Holt-Winters with additive trend and 

multiplicative seasonality is given as follows:   

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:     ŷ𝑡+ℎ = 𝐼𝑁𝑡+ℎ[(𝑙𝑡 + ℎ𝑏𝑡) ∙ 𝑠𝑡+ℎ−𝑚1 ∙ 𝑤𝑡+ℎ−𝑚2] + 𝐼𝑆𝑡+ℎ[𝑎𝑡+ℎ]       

 

(16) 

where the [(𝑙𝑡 + ℎ𝑏𝑡) ∙ 𝑠𝑡+ℎ−𝑚1 ∙ 𝑤𝑡+ℎ−𝑚2] is the forecast equation for double seasonal Holt-Winters. 

The 𝑎𝑡+ℎ value is the forecast for the special day on day t + h according to the special day rule, and the 

𝐼𝑆𝑡+ℎ and 𝐼𝑁𝑡+ℎ are the binary indicator terms for the occurrence of a special day. The binary indicator 

𝐼𝑆𝑡+ℎ equals one if t occurs on a special day and zero otherwise, whereas 𝐼𝑁𝑡+ℎ equals one if t occurs on 

a normal day and zero otherwise. So, at any given day t, the sum of 𝐼𝑆𝑡+ℎ and 𝐼𝑁𝑡+ℎ is equal to one. The 

forecast of the special day 𝑎𝑡 is determined according to the special day rule, explained in the following 

paragraph.  

The special day rule treats weekdays as having a distinct impact on anomalous demand compared to 

weekends. There are two special days: special days that occur on the same day of the week each year 

(e.g., Ascensions Day and Pentecost) and special days that occur on the same date each year (e.g., New 

Year's Day and King's Birthday). We know that seasonality has a major impact on demand within the 

week. However, there is only reliable historical data available for four years, so we cannot extract the 

effect of national holidays on every day of the week from the data. We also know that demand on the 

weekend days is somewhat similar. The same applies to weekdays; therefore, this rule will only 

distinguish between weekends and weekdays. However, for several special days, there is no historical 

data available for the special days. In that case, the average demand of the historical days for that 

weekday or weekend day will be taken. For special days that occur on the same day of the week each 

year, this rule refers to the historical demand observed on the same special day from the previous year. 

The special day rule is depicted in Figure 10. 
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Figure 10 Graphical representation of special day rule. 

4.7 Conclusion  
In this chapter, we have answered the third research question: Which quantitative forecasting models 

are most appropriate to forecast the demand, expressed in loading meters, of the domestic planning team 

at the Branch Transport s'-Heerenberg? We concluded that exponential smoothing and seasonal 

ARIMA might be appropriate methods to forecast the normal demand of the domestic planning team 

because both models can capture various trends and seasonalities. In addition, we argued that univariate 

methods generally could not produce reasonable forecasts due to their infrequent occurrence and the 

significant deviation from normal demand. Therefore, we proposed a Rule-based forecasting method 

where the demand on special days is forecasted according to the special day rule and on normal days 

according to the double seasonal Holt-Winters because this method has the highest forecasting 

accuracy, which will be later seen in Section 5.2. 
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5. Forecasting performance 
This chapter evaluates the performance of the proposed forecasting methods. In Section 5.1, we start 

with describing the model evaluation procedure. Then, Section 5.2 compares the forecasting 

performance of the proposed exponential smoothing and ARIMA models. Next, Section 5.3 evaluates 

the performance of Rule-based forecasting for special days. We investigate whether Rule-based 

forecasting, used in conjunction with the best model of Section 5.2, also leads to better forecast accuracy 

for normal days. Section 5.4 discuss whether the rule-based double exponential smoothing model with 

the smoothing and updating adjustment can be further improved by investigating the errors. Section 0 

provides prediction intervals in order to evaluate the uncertainty associated with the forecast. Finally, 

Section 5.6 summarizes the main findings of this chapter.  

5.1 Model Evaluation Procedure 
This section describes the procedure of determining the forecasting performance in terms of root mean 

squared error (RMSE) and mean absolute error (MAD) for the h-step ahead forecasting error (h = 1, 2, 

…, 14).  

The parameters for the methods are estimated using the training set according to the estimation methods 

described in Chapter 4. These parameters are used to produce an out-of-sample forecast for the testing 

sample. Starting at observation 𝑦𝑡 where t = 1156, we forecast the demand, in terms of loading meters, 

for lead times from one- up to and including 14-step ahead. In other words, forecasts are made one day 

to two weeks ahead. After the forecasts at time 1156 are produced, the actual demand observation is 

added to the set of known observations. Then, forecasts are produced for ŷ1157+ℎ after which the actual 

demand observation at time 1157 is added to the set of know observations. This procedure repeats until 

the last observation of the testing set, observation 𝑦1463 is added to the set of known values. The forecast 

for observations beyond the testing set, for example, ŷ1550+14, are omitted from the set of forecasts 

because the actual observation of the demand for it is not in the testing set. 

The performances of the one- up to and including 14-step ahead lead times are evaluated as the average 

of the error measure of the respective step-ahead forecasts, i.e., the performance of the 1-step ahead 

error is the average of all 1-step ahead errors in the testing sample and the performance of the 2-step 

ahead error is the average of all 2-step ahead errors in the testing sample, etc.  

5.2 Comparison of forecasting methods 
Exponential smoothing and seasonal ARIMA are appropriate methods to forecast the normal demand 

of the domestic planning team. The performance of those proposed models for normal days is 

estimated according to the model evaluation procedure and compared using the MAD and RMSE. We 

have only proposed and tested one model regarding ARIMA models, but for exponential smoothing, 

we tested several models. In order to keep the result figures clear, we first give three observations 

regarding some exponential smoothing models. 

First, exponential smoothing models with multiplicative trend cannot capture the deterministic 

components correctly. Its inability to capture the deterministic components results in large values of 

RMSE and MAD. This result is consistent with earlier findings. For example, Section 3.3 already 

suggested that a multiplicative trend is inappropriate. The conclusion is also consistent with Hyndman 

and Athanasopoulos (n.d.) statement that multiplicative trend methods tend to produce poor forecasts. 

Second, the results of exponential smoothing with both additive trend and seasonality are very 

similar those of exponential smoothing with additive trend and multiplicative seasonality. Therefore, 

we decide only to show the results of Holt-Winters with multiplicative seasonality to avoid plotting 

models with similar results. Finally, the results of the forecasting models initialized and parameterized 

by Chopra are very similar to those of the models initialized by R. J. Hyndman, Koehler, Snyder, and 

Grose (2002).  
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Figure 11 compares the out-of-sample forecasting performance of the exponential smoothing and the 

ARIMA models for lead times up to 14 days ahead for the four-time series (all flows, pick-up flow, 

drop-off flow, and direct flow). The figure depicts the MAD, the preferred performance measure in this 

research, as explained in Section 2.3. Note that the figure has a logarithmic scale to fit the models' 

forecasting performance in the plot. In addition to the MAD lead times, we also calculated the RMSE 

lead times, but we do not report these results here because the relative performances of the methods for 

this measure were very similar to those of the MAD. The results for the RMSE lead times can be found 

in Figure 22 in Appendix A.1 Figures and tables.  

The reconstructed current forecast can only be seen in the “all flows” plot because the current approach 

cannot forecast the demand of the three shipment flows. The reconstructed current forecasting model 

depends on observed historical demands of at least one year ago, resulting in a straight line at 235,87 

for the "all flows" time series in Figure 11. The reconstructed forecasting model outperforms simple 

and trend exponential smoothing models and the ARIMA model at all lead times, except for the ARIMA 

model with a lead time of one. However, the reconstructed forecasting model is outperformed by Holt-

Winters and Double seasonal Holt-Winters. In the remaining Section 5.2, we will take a closer look at 

the performances of the proposed forecasting models. 

Figure 11 shows that the MAD of the simple and trend exponential smoothing methods reflects the 

seasonality of the demand of the domestic planning in the all, pick-up, and drop-off flows. The 

performance of those models is inadequate due to their inability to capture seasonality. This inability of 

simple and trend exponential smoothing to capture trend causes the smoothing parameters to go to 

extremes, with the MAD optimized smoothing parameters often approaching one, resulting in a model 

with high responsibility to recent observations. A notable result is that trend exponential smoothing 

performs worse than simple exponential smoothing, while we determined that the data contains a trend 

in Chapter 3. This event is due to the initial parameters being calculated based on the training set, where 

the trend is relatively flat compared to the trend in the test sample. In addition, the high responsiveness 

causes the forecast to be one day behind, which ensures that the forecast error is greatest when the 

demand differs from the previous day, i.e., on Monday and Saturday. The prediction error is the slightest 

if we predict seven days in advance because the prediction is made precisely for the same day of the 

week. The trend component does not capture the trend correctly due to the large differences between 

the levels due to the high responsiveness. It makes the forecast more extreme, resulting in trend 

exponential smoothing performing worse than simple exponential smoothing. 

The ARIMA model is not competitive with the seasonal exponential smoothing methods for the time 

series, except for the direct flow. This result is consistent with the statement made by Li, Rose, and 

Hensher (2010) in 4.1 that ARIMA is preferred if the trend-cycle component is dominant in the data 

and exponential smoothing if the randomness is dominant. In the Section 3.3, it can be seen that the 

trend-cycle component is only dominant in the direct flow, which explains that ARIMA does 

outperform double exponential smoothing for the direct flow but not for the other flows.  

Despite ARIMA's better performance of the direct flow forecast, we will forecast the direct flow using 

Double seasonal Holt-Winters for several reasons. Firstly, the difference in performance between 

double exponential smoothing and ARIMA is not large enough to significantly influence the required 

vehicle capacity because the share of direct flow is only 6.1% of the total demand. In addition, ARIMA 

models require more statistical knowledge than exponential smoothing models, and the difference in 

performance does not outweigh the more straightforward model of exponential smoothing for domestic 

planning. Finally, it is easier to integrate the forecasts if they are predicted using the same method. 

The Holt-Winters outperform simple exponential smoothing, Holt's model, and ARIMA across all lead 

times and flows, except the direct flow. However, Holt-Winters is outperformed by the Double seasonal 

Holt-Winters model across all lead times and flows. Thus, incorporating within-year seasonality based 
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on week numbers results in a better forecast performance in terms of mean squared error. In the Holt-

Winters and double seasonal Holt-Winters, we observe two notable events: 

1. Notable is the relatively constant performance of the Holt-Winters and double seasonal Holt-

Winters across the lead times for all flows. The forecast for one day ahead is approximately 

just as accurate as 14 days ahead. We can explain this consistent performance by looking at the 

effect of the level, trend, and seasonality components on the forecast value. As said in Section 

4.3, the level smoothing parameters tend to select the minimum bound (0,0001) as the optimal 

parameter value. The low smoothing parameter causes a stable level component. In addition, 

the short time bucket (one day) and the stable level component keep the trend component small 

and relatively constant. So, if we forecast a short period ahead, the seasonality component(s) 

mainly determine the forecasting values. In a forecast with lead times of one to fourteen days, 

the within-week seasonal cycle has the greatest influence on the forecasting values. Each 

within-week seasonal factors (Sunday, Monday, ..., Saturday) is updated once a week, which 

ensures that the forecasting performance is fairly constant for lead times of one to seven days. 

A shift between lead times seven and eight is therefore caused by a seasonal factor derived from 

data from two weeks ago instead of one. 

2. Remarkably, despite the minimum bound on alpha, the model does not capture the trend in the 

beta parameters in the intended way. It seems that the model is trying to capture the trend in the 

seasonality factors. This event may be caused by the relatively high incorrect update of the 

smoothing parameters on special days due to the major deviations from the observed demand. 

This unfavourable update on national holidays, in combination with the flat trend from 2018 to 

2019, could have resulted in the benefits of the level parameter update being secondary to the 

unfavourable update on national holidays. 

Figure 11 Comparison of methods for normal days using MAD. 
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In Figure 12, we also briefly look at the direction of the forecasting error using the bias. The current 

forecast has a bias of 170.34. The positive bias is especially problematic because the forecasts 

underestimate the number of loading meters on average by 170.34. This under-forecasting tendency of 

the current approach can be explained by the fact that the trend from 2018 to 2020 is much lower than 

in 2021, as a result of which the current approach gives too low forecast values. The ARIMA models 

also give a high bias for all lead time for the all, pick-up, and drop-off flow. The double seasonal Holt-

Winters do not have a large directional deviation, except for the direct flow.  

To summarize, Double seasonal Holt-Winters outperforms the reconstructed current forecasting models 

and all other proposed models across all lead times and flows, except the direct flow. The forecast based 

on ARIMA has the highest performance for the direct flow due to the dominance of the trend-cycle 

component in that flow. However, despite the higher performance of the ARIMA model, we will 

forecast the direct flow with Double seasonal Holt-Winters because the difference in required vehicle 

capacity is not big enough to justify the difference in necessary statistical knowledge and the more 

difficult forecast integration. In the next section, we evaluate the performance of double exponential 

smoothing, where a rule is included to forecast the demand on special days.  

Figure 12 Comparison of methods for normal days using bias. 

 

 

5.3 Performance of rule-based forecasting 
This section aims to evaluate the results of rule-based forecasting. The special rule has the purpose of 

estimating a suitable point forecast for special days in the formulations of double exponential 

smoothing. For a description of the special rule and the equation of rule-based forecasting equation, we 

refer to Section 4.6. First, we compare the results of double exponential smoothing and the rule only 

for special days to investigate whether the rule leads to a better forecast on special days. Then, we 

compare the forecasting performance of the original double exponential smoothing and the rule-based 

version across normal days to determine whether the rule-based version also leads to better forecast 

accuracy for normal days.  

Table 4 presents the results of the rule for just the special days. The figure shows that the original double 

exponential smoothing method is outperformed by the rule-based approach for the four flows. The root 

mean squared error (RMSE) and the mean absolute value (MAD) has been more than halved for all 
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flows except the direct flow. The RMSE and MAD also decreased by approximately one-third for the 

direct flow. The table also shows that the rule-based forecast underestimates the value of the forecast, 

which is reflected in the positive bias. This underestimation is caused by the trend not being included 

in the rule and by not distinguishing whether an after-holiday day can constitute a long weekend with a 

special day. The trend is not included in the forecast because the special day rule looks to the most 

recent value of the special day that is representative of the special day this year, i.e., it looks at the most 

recent value of the special day falls on the weekend if it falls on the weekend this year and weekday if 

it falls this year falls on a weekday.  

Table 4 Forecast accuracy on special days expressed in loading meters. 

 
 Total aggregated flow 
 Bias RMSE MAD 

Original double seasonal Holt-Winters -328.17 801.96 496.23 
Special day rule 97.30 351.75 187.56 

 

 Pick-up aggregated flow 
 Bias RMSE MAD 

Original double seasonal Holt-Winters -152.99 348.20 206.57 
Special day rule 42.03 147.15 76.36 

 

 Drop-off aggregated flow 
 Bias RMSE MAD 

Original double seasonal Holt-Winters -162.43 402.68 243.02 
Special day rule 49.71 198.82 110.72 

 

 Direct aggregated flow 
 Bias RMSE MAD 

Original double seasonal Holt-Winters -19.33 68.96 44.19 
Special day rule 5.56 47.87 28.50 

    

Note. The original double seasonal Holt-Winters model is the model with the lowest out-of-sample MAD and 

MSE in Section 5.2 Data 2019 to 2021.  

 

Now that we have concluded that the rule-based approach on special days performs better than the 

original double exponential smoothing method, we present the forecast accuracy of the double 

exponential smoothing when used in conjunction with the rule as specified in equation 16 in Section 

4.6. In addition, we will present three rule-based double exponential models with the following 

adjustments.  

Adjustment 1. No updating on special days. 

In Section 5.2, we suspected that the special days caused major deviations resulting in a relatively 

high incorrect update of the smoothing parameters. Therefore, we need to test whether not updating 

the smoothing parameters on special days results in better forecasting performance. So, on normal 

days, the smoothing parameters are updated according to equations 9 to 12 of Section 4.2, whereas 

there will be no updating on special days.  

Adjustment 2. Specials days are smoothed out. 

In weeks with special days, the forecast model generally underestimates the demand because special 

days lower the week number seasonal factors. Note that smoothing out in this context has a different 

meaning than in exponential smoothing. In this context, smoothing out means that we compensate 

for the low demand on special days in order to derive better initial seasonal factors for within-year 
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seasonality (week number factors). The smoothing out process is described in Appendix A.7 

Smoothing out process.  

Adjustment 3. No updating on special days and special days are smoothed out. 

The last adjustment is a combination of adjustments 1 and 2. With this adjustment, we can test whether 

the combination increases the performance of original rule-based double exponential smoothing models 

and whether it increases the individual performance of adjustments 1 and 2. Figure 13 presents the 

forecasting performance using the MAD of the four rule-based double seasonal Holt-Winters methods. 

The RMSE shows very similar results and can be found in Figure 23 in Appendix A.1 Figures and 

tables. As benchmarks, we use the original double seasonal Holt-Winters methods. The figure shows 

that the original model is outperformed by all versions of the rule-based forecasting models. Thus, we 

can conclude that the rule-based double seasonal Holt-Winters also leads to better forecast performance 

for normal days. Furthermore, rule-based double seasonal Holt-Winters with adjustment 2, smoothing 

special days, outperforms the models that do not have the smoothing adjustment. Adjustment 1, no 

updating during special days also increases the performance of the model compared the rule-based 

model without adjustments. Combining the two adjustment gives the highest forecasting performance 

in terms of MAD.  

Figure 13 Forecast performance of Rule-based double seasonal Holt-Winters using MAD. 

 

 

In Figure 14, we also briefly examine the direction of the forecasting errors using the bias measure. The 

figure reveals that rule-based double seasonal Holt-Winters increases the bias across all lead times and 

flows compared to the original double seasonal Holt-Winters model, except for the direct flow. This 

increase in positive bias is mainly caused by special days. In Table 4, it can be seen that the bias on 

special is very negative for the original model and positive for the special day rule. Figure 14 also shows 

that adjustment 2, not updating on special days, increases the forecasting performance in terms of bias. 

Not updating the smoothing parameters results in a lower bias across all lead times and flows. The 

smoothing parameters of the double seasonal Holt-Winters model with adjustment can be found in 

Appendix A.5 Smoothing parameters of the final developed forecasting model.  
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Figure 14 Forecast performance of Rule-based double seasonal Holt-Winters using the bias. 

 

 

5.4 Error analysis 
In this section, we discuss whether the rule-based double seasonal Holt-Winters model with the 

smoothing and updating adjustment can be further improved by investigating the forecasting errors. 

Recall that we said that the random component of the time series should be white noise, meaning no 

pattern can be found in the errors because that means that there is information unused.  

Figure 15 shows the forecast errors of applying smoothed Rule-based double seasonal Holt-Winters 

without updating on special days on the four-time series. The figure shows the forecast errors of the 

training and testing set so that we can study the difference between the in-sample and out-of-sample. In 

the errors of the flows, an undulating pattern can be seen, indicating unused information left in the 

errors. In addition, the magnitude of the undulating pattern also seems to increase as we approach the 

test sample. Furthermore, the figure shows that the most prominent errors still occur on special days, 

and there seems to be a pattern on some special days. We also observe high errors on days around 

special days, especially on non-special days that are the missing link for long weekends and on non-

special days in holiday periods, such as Christmas. Therefore, we conclude that the national holidays 

significantly affect more days than just the day before and after the national holiday. Thus, even though 

the special rule has already halved the MAD and MSE, improving the performance of the forecast model 

is still possible. Particularly in the area of the effect of national holidays on demand for domestic 

planning. 



5.5     Prediction intervals  L. Verkerk 

 

34 
 

Figure 15 Forecasting errors for the time series.  

 

The black errors are errors on normal days, and the blue ones are on special days. 

5.5 Prediction intervals 
The point forecasts express the uncertainty associated with the forecast. Forecast distributions can be 

used to express the forecasts' uncertainty because they describe the probability of observing future 

values. The point forecast is the mean of the forecast distribution. The prediction interval gives an 

interval within the expected demand of domestic planning with a specific probability, called the 

coverage distribution. The prediction interval for the h-step forecast is:  

  ŷ𝑡 ± 𝑧�̂�  , �̂�  = 1.25 ∙  𝑀𝐴𝐷 (17) 

where �̂�  is an estimate of the standard deviation of the forecast distribution, and z is the multiplier of 

the normal distribution.  

This prediction interval assumes that the forecast errors are normally distributed, but this assumption is 

incorrect, as seen in Figure 24 in Appendix A.1 Figures and tables.  However, the Central Limit 

Theorem states that the errors approximately follow a normal distribution when the sample size is large 

enough. The test sample consists of 306 observations, allowing us to assume that the errors are 

approximately normally distributed.  

Table 5 exhibits the standard deviation of the reconstructed current forecasting method and the Rule-

based double seasonal Holt-Winters method in loading meters which are needed to calculate the 

prediction interval. The table shows that the prediction interval bounds for the rule-based double 

seasonal Holt-Winters have become smaller for the total demand (all flows). This shows less uncertainty 

in the point forecast because the width of the prediction intervals of all probability coverage is decreased 

by 44.2%. Domestic planning can determine the necessary daily fleet capacity based on the desired 

probability coverage. Note that the constant performance of the forecasting model ensures that these 

prediction intervals apply to all lead times from one day to two weeks. 
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Table 5 Standard deviation for the prediction interval. 
Model Flow Probability coverage 

  75% 80% 90% 95% 

Reconstructed current forecasting model All 339,07 377,40 483,54 577,89 

Rule-based double seasonal Holt-Winters All 189,14 210,53 269,74 322,37 

Rule-based double seasonal Holt-Winters Pick-up 97,16 108,14 138,56 165,59 

Rule-based double seasonal Holt-Winters Drop-off 112,63 125,36 160,62 191,96 

Rule-based double seasonal Holt-Winters Direct 54,40 60,55 77,58 92,72 

5.6 Conclusion 
In this chapter, we have answered the fourth research question: How much does a professional forecast 

model increase the performance of the demand forecast compared to the current situation of the 

domestic planning team at the Branch Transport s'-Heerenberg? 

We performed an out-of-sample evaluation to compare the reconstructed forecasting model with 

proposed models based on exponential smoothing, ARIMA, or Rule-based forecasting. We used the 

parameters, estimated using the training dataset, as input to compare the forecasting models on de 

testing sample. Forecasting performances of the one-up to and including 14-step ahead lead times are 

evaluated to compare forecasting methods. As a forecasting performance measure, we used MAD and 

RMSE. 

The reconstructed current forecast can only be compared with the daily total aggregated demand (all 

flows) because the forecast cannot forecast the demand of the individual three shipment flows. We 

conclude that the reconstructed current forecasting model is outperformed by Holt-Winters and double 

seasonal Holt-Winters across all lead times, whereas Holt-Winters is outperformed by the double 

seasonal Holt-Winters model across all lead times and flows. Thus, double seasonal Holt-winter has the 

best forecast performance if special days are not treated separately.  

A remarkable result is the relative constant performance of the Holt-Winters and the double seasonal 

Holt-Winters models. This means that the forecast for one day ahead is approximately just as accurate 

as 14 days ahead. The reconstructed current model also has consistent performance, but that is because 

the model relies on the observed historical demand from at least a year ago. The consistent performance 

allows us to extend the conclusions drawn for the one-step forecast to the other lead times used. Thus, 

the double seasonal Holt-Winters increase the forecast performance, in terms of MAD, by 23% 

compared to the reconstructed current forecasting method for all lead times.  

Furthermore, we conclude that the double seasonal Holt-Winters cannot produce a reasonable forecast 

for special days. Rule-based forecasting for just the special days approximately halves the MAD and 

MSE for the time series, except for the direct flow, where the MAD and MSE decreased by 

approximately one-third. When the rule for special days is used in conjunction with double seasonal 

Holt-Winters for normal days, we see that the original model is outperformed by the rule-based 

forecasting across all lead times and flows. The two proposed adjustments for the rule-based forecasting 

model even increased this forecast performance. Like the original double seasonal Holt-Winters, the 

rule-based double seasonal Holt-Winter with the two proposed adjustments also has a constant 

forecasting performance across all lead times for all flows.  

In order to answer the research question, we compare the forecasting performance of the best-proposed 

model, Rule-based double seasonal Holt-Winters, with the reconstructed current forecasting model. We 

conclude that a professional forecast model increases the performance of the demand forecast by 44.2%. 

In addition, the width of the prediction intervals with probability coverage of 0,75, 0,80, 0,90, and 0,95 

are also decreased by 36.8%. Despite this improvement in forecasting performance, the forecasting 

errors show an undulating pattern which indicates unused information left in the errors which can be 
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used to increase the performance of the forecasting model. Especially the effect of holidays can be 

investigated further to improve the forecast performance.  
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6. Required transport capacity 
This chapter addresses the process of converting the forecast into the required transport capacity of 

domestic planning. Section 6.1 explains how the optimal order capacity can be determined using the 

newsboy problem. Then, Section 6.2 investigate whether the forecast can better predict the required 

capacity than what has actually been deployed. Finally, Section 6.3 summarizes the main findings of 

this chapter.  

6.1 Optimal order capacity from Trucks & Drivers  
This research aims to develop a forecasting model that contributes to the vehicle allocation problem. 

Domestic planning (and international planning as well) do not possess reliable predictions regarding 

the expected demand, which makes it difficult to distribute collective capacity optimally. The previous 

chapters focused on developing the forecast model, and this section concentrates on converting the 

predictive information of forecasting into an optimal ordered transport capacity at Truck & Drivers by 

using the newsboy problem.   

The newsboy uses the trade-off between the cost of understocking and overstocking of vehicles to 

determine the required transport capacity. Understocking means there is not enough vehicle capacity to 

transport all shipments, and overstocking means there are idle or redundant vehicles. We assume the 

cost of overstocking (𝐶𝑢) by one vehicle is €100,00, and the cost of understocking (𝐶𝑜) is approximately 

three times as high. These costs are based on the expert opinion of Mainfreight and can be refined if 

desired. 

The optimal cycle service level (CSL) can be calculated according to the following equation: 

 
𝐶𝑆𝐿 =

𝐶𝑢
𝐶𝑢 + 𝐶𝑜

= 0,75 

 

(18) 

 

Then, the optimal ordered transport capacity at Truck & Drivers (O*) can be computed with the 

following equation:  

 𝑂∗ = 𝐹−1(𝐶𝐿𝑆, µ, 𝜎) (19) 

where µ is the point forecast and 𝜎 is the standard deviation of the point forecasts in the test set.  

As mentioned before, the pick-up/drop-off ratio is essential for the efficiency of domestic planning 

because a vehicle can use its payload twice per trip. The larger of the two determines the necessary 

capacity for the groupage shipments. The required capacity is equal to the sum of the necessary capacity 

for the groupage and direct flow shipments. In addition to the flow, we also distinguish the days of the 

week as the standard deviations are significantly different. The optimal order capacity of loading meters 

for the first week of the test set is given in Table 6. Recall that we have concluded, in Chapter 5, that 

the forecast for one day ahead is approximately just as accurate as 14 days ahead. As a result, the optimal 

order capacity calculated two weeks ahead is just as accurate as one day ahead.  

Table 6 Optimal ordered capacity of the first week of the test set.  
Date Optimal order capacity 

 
𝑂∗ Pick 

(LDM) 

𝑂∗ Drop 

(LDM) 

𝑂∗ Direct 

(LDM) 

𝑂∗ Total 

(LDM) 

01/03/2021 865,57 1.092,71 102,09 2.287,50 

02/03/2021 959,68 1.142,10 89,53 2.373,72 

03/03/2021 971,94 1.169,72 98,08 2.437,52 

04/03/2021 967,23 1.167,09 129,45 2.463,64 

05/03/2021 957,18 1.170,96 151,36 2.493,28 

06/03/2021 4,81 67,32 0,06 134,70 

07/03/2021 0,65 0,48 0,07 1,36 
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Until now, the demand is expressed in loading meters, but domestic planning orders vehicles at Trucks 

& Drivers who manage the collective transport capacity. So, the number of loading meters must be 

converted into vehicles. A potential problem for this conversion is the varied loading capacities of the 

various vehicles. To avoid this problem, this study will use a standard-size vehicle of 13.6 loading 

meters. The collective vehicle capacity has been converted into standard-sized vehicles, and from now 

on, the word 'vehicle' refers to the standard-sized vehicle. The previously mentioned under and 

overstocking costs per vehicle are also based on the standard-sized vehicle.  

A standard-sized vehicle has a transport capacity of 13.6 loading meters. However, there are other 

limiting factors for the number of loading meters a vehicle can transport per day, such as the number of 

stops, distance, and driving time. To determine the vehicle capacity utilization, the total available 

capacity is divided by the used capacity for each day in the test sample. The exact deployed capacity 

per day is unknown, but we have estimated the deployed capacity based on the following assumptions: 

1. Domestic planning has a standard fleet of vehicles consisting of several types of vehicles with 

different capacities. Table 8 of Appendix A.1 gives overview of the domestic standard fleet of 

vehicles.  

2. If less than the standard capacity is deployed, the deployed capacity is the ratio between the 

deployed vehicles and standard fleet vehicles multiplied by the standard fleet capacity. 

3. If more than the standard capacity has been deployed, we assume that the extra capacity 

consists of vehicles with a transport capacity of 13.6. 

Figure 16 depicts a histogram of the daily capacity utilization in the test sample. The figure shows that 

the most commonly achieved capacity utilization is between 70 and 74%. In the optimal situation, we 

want a high-capacity utilization rate on the one hand, but on the other hand, the workload for the drivers 

should not be too high. This consideration leads to an optimal capacity utilization rate of around 78%. 

The actual capacity utilization is lower than depicted here because not all types of capacity deployment 

are included due to insufficient information. Nevertheless, because the performance of all forecasting 

models and the capacity advised by the forecast are both based on this number, it does not heavily 

influence on the outcome of this analysis. 

Figure 16 Histogram capacity utilization. 

 

Note. The capacity utilization is based on the weekdays of the test set because the deployed vehicle 

capacity on weekend days is unknown.  

Based on the optimal capacity utilization rate and the observed demand in the dataset, it is possible to 

calculate the required transport capacity for each day. Dividing this required transport capacity by the 

standard-sized vehicle capacity utilization gives the required capacity in standard-sized vehicles.  
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Figure 17 shows the theoretical average daily under and overstocking costs of domestic planning during 

the test period. This figure confirms that the double seasonal Holt-Winters outperforms the 

reconstructed current forecasting model. 'Theoretical' refers to the fact that in real life, domestic 

planning does not only rely on the recommended optimal order quantity from the forecast but also 

includes other factors that may not always have been included in the forecast, such as already received 

demand information. For example, suppose much more demand for tomorrow has already been 

confirmed at a certain time today than domestically expected based on the forecast. In that case, they 

will respond to this situation by hiring extra capacity. The costs that should actually be compared are 

the costs of additional renting and scaling down capacity in a certain period of time. However, those 

costs are not well established at the moment. Therefore, we decided to use €100,00 and €300 as over 

and understocking costs, respectively, because these could be determined with sufficient certainty. 

Suppose these scaling up and down costs can be determined with sufficient accuracy in the future. In 

that case, domestic planning can use the same approach to compare the actual costs of the reconstructed 

current forecasting model and the developed double seasonal Holt-Winters. 

Figure 17 Theoretical average daily under and overstocking costs.  

 

 

6.2 Forecast vs. reality 
In this section, we examine whether the advised optimal order capacity from Section 6.1 is competitive 

with the actually deployed capacity. The outcome of the analysis actually determines whether the 

forecast can be trusted blindly until the last moment. In reality, the domestic can scale up and down the 

transport capacity to a point until the evening based on the actual number of incoming demand.  

Figure 18 depicts the average daily under and overstocking costs of domestic planning if the advice 

according to the developed forecast model is 100% followed and the costs of what actually happened. 

The figure shows that the forecast is not competitive with the actual deployed capacity between capacity 

utilization rates of 0,71 and 0,80. Utilization rates above 0.80 almost do not occur in the test sample, as 

can be seen in Figure 16, and rates below 0,71 are not desired. Thus, the forecasting model is 

competitive with the actually deployed capacity. It is not advised to rely blindly on a forecasting model. 

The last-minute upscaling and downscaling of capacity based on the actual number of incoming 

demands is more competitive. 
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Figure 18 Costs of understocking or overstocking.  

   

 

Note. The average daily costs are based on the weekdays of the test set because the deployed vehicle 

capacity on weekend days is unknown. The total daily aggregated flow is used. 

It should be noted that this is a somewhat skewed comparison. The forecast model and the associated 

required transport capacity are based on the situation that no demand is known yet. In contrast, the 

actual deployed capacity is partly based on the observed demand. What should actually be compared 

with the starting situation at least one full day in advance, on which the largest part of the demand is 

not yet known because the minimum lead time of the forecast model is also one day. However, 

unfortunately, this information is not available. Despite the skewed comparison, we chose to perform 

the analysis because it was a request from the company.  

6.3 Conclusion  
In this chapter, we have answered the last research question: How much transport capacity does the 

domestic planning team at the Branch Transport s'-Heerenberg require on a daily basis? The required 

daily transport capacity of the domestic planning is calculated using the newsboy problem, which 

calculates the optimal ordered transport capacity at Truck & Drivers based on the trade-off between the 

cost of understocking and overstocking of vehicles. By comparing the average daily costs of under and 

overstocking, we conclude that the developed model (double seasonal Holt-Winters) outperforms the 

reconstructed current forecast model across all plausible vehicle capacity utilization rates. Furthermore, 

the advised transport capacity, based on the forecasting model, is not competitive with the actual 

deployed capacity. The added value of the model lies not in predicting the demand when part of the 

demand is already confirmed but in the better and timely estimation of the required capacity so that 

domestic planning does not have to upscale and downscale much at the last minute.  
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7. Conclusions and recommendations 
This chapter provides the conclusion and recommendations of our research conducted to solve the main 

problem of the domestic planning of the Transport Branch in 's-Heerenberg. Section 7.1 states the main 

conclusions of the research, and Section 7.2 addresses some discussion points. Section 7.3 provides our 

recommendations and suggestions for future research.  

7.1 Conclusion 
This research aims to solve the lack of reliable predictive information on the domestic planning of the 

Branch Transport 's-Heerenberg. We argued that predictive information contributes to solving several 

problems, such as vehicle capacity allocation and the inefficient routing process. However, these do not 

all benefit from the same type of predictive information. Looking at the collective interest of the 

stakeholders, we decided to focus on a forecast that can estimate the required domestic transport 

capacity daily. In the remainder of this section, we first give our conclusion regarding the current 

forecasting method. Then, we propose some forecasting methods based on the demand characteristics. 

Next, we evaluate and compare the forecasting performance of the proposed forecasting models and we 

close with our conclusion on the capacity predictions. 

The current forecasting approach cannot be evaluated because the used forecasting unit is inconsistent, 

and the estimation procedure is not defined. We needed to reconstruct the current forecasting approach 

into an actual forecasting model in order to determine the forecast performance. The evaluation of the 

reconstructed current forecasting model showed that the model underestimates the actual demand by 

10.9%. In addition, the mean absolute error of the forecasting is 15.1%, suggesting that the forecast 

performance is inadequate. Note that an improvement was already made during the reconstruction since 

the current model could not be evaluated. Thus, the forecast performance showed that even the 

reconstructed model is inadequate to forecast the demand of domestic planning. Therefore, we proposed 

and evaluated some alternative forecasting methods.  

Suitable forecasting methods are determined based on the characteristics of the demand. The data 

analysis showed that within-week seasonality (Sunday, Monday, …, Saturday) dominates the demand, 

but the within-year seasonality (week numbers) also provides additional information about the demand. 

In addition, national holidays also significantly affect the demand on the day itself and its surrounding 

days. Considering these demand characteristics, we concluded that exponential smoothing and seasonal 

ARIMA might be appropriate methods to forecast demand. Demand on days affected by national 

holidays, called special days, requires an alternative approach. We concluded that rule-based 

forecasting is appropriate to forecast the demand on special days.  

The forecasting models are evaluated for one-up to and including 14-step ahead lead times using the 

mean absolute deviation (MAD) and the root mean squared error (RMSE). The out-of-sample 

evaluation reveals that the reconstructed current forecasting model is outperformed by Holt-Winters 

and double seasonal Holt-Winters across all lead times, while Holt-Winters is outperformed by the 

double seasonal Holt-Winters model across all lead times and flows. So, double seasonal Holt-winter 

has the best forecast performance if special days are not treated separately.  

In line with our expectations of the data analysis, we conclude that the double seasonal Holt-Winters 

cannot produce reasonable forecast for special days. Using a separate rule that specifies the demand on 

special days approximately halves the MAD and MSE for the time series, except for the direct flow 

where the MAD and MSE decreased by approximately one-third. Rule-based forecasting combines the 

separate rule for special days with double seasonal Holt-Winters for normal days. Rule-based 

forecasting outperforms earlier double seasonal Holt-Winters, where no distinction is made between 

normal and special days. Like the original double seasonal Holt-Winters, the Rule-based double 

seasonal Holt-Winter (with two small adjustments) has a constant forecasting performance across all 

lead times for all flows. This constant performance suggests that this model may also be constant for 
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longer lead times.  Due to the constant performance, forecasts with longer lead times have a higher 

value than forecasts with shorter lead times. As a result, the forecast for two weeks ahead has the most 

value for domestic planning because it has the same accuracy as for one day ahead. 

Comparing this final model with the reconstructed current forecasting model, we determine that a 

professional forecast model increases the performance of the demand forecast by 44.2% in terms of 

mean absolute error. In addition, the width of the prediction intervals with probability coverage of 0.75, 

0.80, 0.90, and 0.95 are also decreased by 44.2%. Finally, we conclude that the final model can still be 

improved, especially the effect of the holidays, as there is still information left in the forecast errors. 

The forecast is converted into an optimal ordered transport capacity at Truck & Drivers by using the 

newsboy problem. This method calculated the optimal ordered capacity based on trade-off between the 

vehicle under and overstocking costs.  We conclude that the added value of the model lies not in the 

predicting the demand when part of demand is already be confirmed, but in the better and timely 

estimation of the required capacity, so that domestic planning does not have to upscale and downscale 

much at the last minute. 

The forecast is converted into an optimal ordered transport capacity at Truck & Drivers using the 

newsboy problem. This method calculated the optimal ordered capacity based on a trade-off between 

the vehicle under and overstocking costs. We conclude that the added value of the model lies not in 

predicting the demand when part of the demand is already confirmed, but in the better and timely 

estimation of the required capacity, so that domestic planning does not have to upscale and downscale 

much at the last minute. 

Regarding insight for science, the research confirmed the statement made by Li, Rose, & Hensher in 

2010). They stated that simple methods, such as exponential smoothing, are appropriate when the trend-

cycle is the dominant component in the data and sophisticated models, such as ARIMA, when the 

randomness is dominant. We proved that exponential smoothing outperforms ARIMA when the trend-

cycle is not dominant in the data, such as in the pick-up and drop-off flow. In contrast, ARIMA 

outperforms exponential smoothing when the trend-cycle is dominant, such as in the direct flow. 

7.2 Discussion points 
This research is accompanied by several assumptions and decisions that has led to a set of limitations 

and points of discussion.  

The research only considers statistical methods because Mainfreight's maturity regarding forecasting is 

still in its early stages. We argued that simplicity is preferred over complexity. Therefore, we decided 

to evaluate statistical methods over artificial methods in order to investigate whether they can provide 

satisfactory results.  

Secondly, the dataset obtained from Mainfreight is significantly contaminated. In order to use this 

dataset, multiple steps needed to be taken to clean and transform the data to the appropriate format. The 

cleaning and transforming processes have been carefully performed, but not all contaminating elements 

may have been filtered from the data. We suspect that the residual contamination is negligible because 

we compared our dataset with a dataset based on trip lists. However, this suspicion cannot be established 

with certainty because the loading meters in the trip list database are not calculated in the same way as 

those for our database.  

Next, in the initialization and estimation procedure of the smoothing parameters, we set a minimum 

bound on the level smoothing parameter to prevent the parameter of selection zero as the optimum 

value. Despite this minimum bound, the seasonal smoothing parameters tend to capture a part of the 

trend through the update. We suspect this also contributes to the undulating pattern in the forecasting 

errors in Section 5.4. The cause of this behaviour of the seasonal smoothing parameters is the effect of 
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the national holidays. The results show that national holidays significantly affect more days than just 

the day before and after the national holiday. 

Lastly, the analysis regarding the question the forecast can better predict the required capacity than what 

has actually been deployed is not fair. The forecast model and the associated required transport capacity 

are based on the situation that no demand is known yet. In contrast, the actual deployed capacity is 

partly based on the observed demand. In addition, the minimum lead time of the forecasting model is 

one full day, while the actually deployed data is based on information less than one day ahead.  

7.3 Recommendations 
Based on this research, we provide several recommendations for the domestic plannings department at 

the Branch Transport 's-Heerenberg of Mainfreight. The recommendations consist of advice for 

domestic planning based on this research and suggestions for further research. 

We start by discussing the data availability and reliability. The significantly contaminated data is a 

major obstacle to easily implementing the forecast. At the shipment level, there is only a database that 

contains all shipments executed by the Transport Branch. This database does not indicate which 

department was involved in transporting the shipment. As a result, it is impossible to determine 

straightforwardly whether the domestic was involved in the shipment and was, therefore, part of the 

demand of the domestic planning. In addition, the branch uses multiple rules to convert the shipment 

size into units such as gross weight, cubage, and loading meter. We advise domestic planning and the 

Transport Branch in 's-Heerenberg to construct or modify an existing database so that the number of 

loading meters performed by the domestic planning per day can be directly derived. It is also convenient 

to use consistent conversion rules in the various databases. The available data regarding the collective 

vehicle capacity efficiency can also be improved. In order to keep track of the vehicle utilization, we 

recommend domestic planning to set up a KPI regarding transport capacity utilization rate.  

Based on the conclusion of this research, we recommend domestic planning to employ rule-based 

forecasting with the two adjustments, as described in Section 5.3, as an indicator of the expected demand 

instead of the current forecasting method. The rule-based forecasting model reduces the under-

forecasting tendency of the current model, and it increases the forecast performance by 44.2% in terms 

of mean absolute error compared to the current model.  

To increase the forecasting performance and to better understand the effect of national holidays on their 

surrounding days, we advise further research on the influence of anomalous demand caused by national 

holidays. The special rule used to forecast the demand on special days has already significantly 

increased the forecasting performance, but the forecast errors show that it is possible to improve the 

performance. Furthermore, we suspect that the national holidays significantly affect more days than just 

the day before and after the national holiday. Thus, there are also opportunities for higher forecasting 

performance in that area. 

We do not recommend domestic planning to follow the forecast blindly if a part of the demand is already 

known. However, we advise domestic planning to take the forecast model with the associated capacity 

as a starting point if the demand is unknown. The added value of the model lies in a better and timely 

estimation of the required capacity so that domestic planning does not have to upscale and downscale 

much at the last minute. The forecast enables domestic planning to give an indication of the expected 

demand which can be used to arrive at a better distribution of the collective vehicle capacity between 

the two planning parties. 

The forecast for two weeks ahead has the most added value for domestic planning because it has the 

same accuracy as for one day ahead. This constant performance suggests that this model may also be 

relatively constant for longer lead times. Further research is needed to confirm this suggestion. Suppose 

domestic planning would like to use the forecast as an operationally assistant of the planning team 
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during the routing. In that case, we suggest further research in forecasting models that can incorporate 

live data, such as already received demand information.  

Lastly, we advise the Transport Branch to extend the research to international planning in 's-Heerenberg. 

Mainfreight and other Transport companies with little forecasting experience as well can use this paper 

as a guideline to introduce predictive information in the company, especially forecasting information. 

The forecasting methods proposed for domestic planning are also appropriate for international planning. 

Those methods can be initialized, parameterized, and compared according to the procedures described 

in this research. As the ultimate goal, we recommend that the site integrates the forecast from domestic 

and international planning to arrive at the optimal collective vehicle allocation.
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Appendices

A.1 Figures and tables 
Figure 19 Season plots for three potential seasonal cycles with modified for special days. 

 

Note. The seasonal plots are modified for special days according to the adjustment 2 explained in Section 5.3. 

Figure 20 Season plots of the pick-up, drop-off and direct flow.  
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Figure 21 ACF and PACF plot for pick-up, drop-off, and direct flow. 

 

Note. The trainings data sets used in this figure are already Box-Cox transformed and the first seasonal 

difference with a period 7 are already taken.  
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Table 7 National holidays 

Name national holiday Date  Weekday 

New Year's Day 1 January - 

Good Friday - Friday 

Easter Day - Sunday 

Easter Monday - Monday 

King's Birthday 27 April - 

National Remembrance Day 4 May - 

Liberation Day 5 May - 

Ascension Day - Thursday 

Pentecost Sunday - Sunday 

Whit Monday - Monday 

Christmas Day 25 December - 

St. Stephen's Day 26 December - 

New Year's Eve 31 December - 

Note. National holidays with a data occur on the same date each year and national holidays with a weekday 

occur on the same day of the week. 

 

Figure 22 Comparison of methods using RMSE 
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Figure 23 Comparison of Rule-based forecasting adjustments using RMSE  

 

 

Figure 24 Histogram of forecast errors for the four-time series 

 

Table 8 Overview of domestic planning's standard fleet of vehicles. 

Type of vehicle Available vehicles Loading meters capacity 

Trailer 74 13.6 

Combi 37 14.4 

Lf 24 7.2 

Sprinter 5 1.5 

Total 140 3,439.00 
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A.2 Data cleaning and transforming 
Data cleaning is the process of preparing data for analysis by removing or modifying incorrect, corrupt, 

or inaccurate observations. Transformation is the process of converting data into a convenient format. 

The data is cleaned with the following steps: 

Step 1: Remove duplicates and irrelevant observations: 6 filters 

Step 2: Fix structural errors 

Step 3: Filter unwanted outliers  

Step 4: Handle missing data 

Step 1: Remove duplicates and irrelevant observations.  

The TMS database consists of all shipments executed by the 's-Heerenberg Transport Branch. Chapter 

1 states that the forecast is developed for the domestic planning department, which is mainly responsible 

for domestic transport and therefore we have to extract the domestic shipments from the database. 

Domestic shipments are extracted from the TMS database through the following six filters, depicted in 

figure 1.  

1. Waybill or pick-up request 

A domestic waybill and pick-up request indicate that the shipment is linked to domestic 

planning. Shipments without waybill or pick-up requests are removed from the data.  

2. DPD 

DPD shipments are small shipments that DPD transports. These shipments have no distribution 

costs, and they have no load on the distribution device of domestic planning. 

3. Standard-pick up 

Domestic planning has agreements with several customers that they reserve a certain amount 

of space in the trucks on certain days as standard. These types of pick-ups are called standard 

pick-ups. Because the number of shipments to pick up is often not known in advance, a fictitious 

number of shipments is placed on the pick-up request. In theory, this fictitious pick-up request 

should be replaced with a pick-up request with the exact number of shipments after the pick-

up. Due to a system error, this does not always happen, and with this filter, these fictitious 

shipments are removed. 

4. Dummy 

Dummy shipments are used if the shipment has not yet been officially booked, but it is known 

that the shipment is coming. These dummy shipments are fictitious shipments that are later 

replaced by official bookings. As with standard pick-ups, these fictitious shipments are not 

always automatically deleted due to a system error. 

5. Tilburg and Genk 

Most international shipments from and to the delivery area of Tilburg are transported by line 

hauls to 's-Heerenberg because a lot of volume passes through 's-Heerenberg. The transport 

branch in Tilburg has recently been opened, and as a result, among other things, little volume 

passes through the branch for international line hauls. The shipments in the delivery area are 

transported via a linehaul from 's-Heerenberg to Tilburg. In addition, Tilburg has line hauls 

with several Belgian branches. The linehaul between 's-Heerenberg and Tilburg does not 

burden the domestic planning; therefore, these shipments will be removed from the data. 
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Due to the location, the transport branch Genk is responsible for transport in South Limburg; 

therefore, these shipments are also removed from the data.  

6. System plus non-NL 

System plus shipments are special shipments transported only in the Netherlands by domestic 

planning.  

Figure 25 Filtering process of the data 

 

 

Step 2: Fix structural errors. 

The given number of loading meters per shipment is sometimes incorrectly zero. Therefore, we check 

for every shipment whether the zero loading meters are correct by looking at the cubage and gross 

weight. A shipment with a gross weight of less than 30 kg rightly has a loading meter value of zero 

because these are boxes and not pallets and can therefore be placed on something which does not take 

up floor space. If a shipment has a gross weight of 30 kilograms or more, the load meter value of zero 

is considered incorrect. In the case of an incorrect zero value, the number of loading meters is derived 

from the cubage value. If the cubage value is unknown or equal to zero, the number of loading meters 

is derived from the gross weight. Table 9 shows the origin of the loading meters per year.  

Table 9 Origin of loading meters 

  Year 

Origin LDM 2017 2018 2019 2020 2021 

Shipment (%) 92.19% 93.80% 94.94% 95.04% 95.54% 

CMB (%) 6.81% 5.69% 4.81% 4.75% 4.29% 

Gross weight (%) 0.99% 0.52% 0.25% 0.22% 0.17% 

      

Step 3: Filter unwanted outliers. 

Outliers are shipments with a negative loading meter number and shipments with more than 13,6 

loading meters. Only the latter type of outliers is found in the data. Shipments with more than 13,6 

loading meters are considered an outlier because a shipment can, in principle, not exceed 13.6 loading 

meters. However, we do not delete shipments with more than 13,6 loading meters; we adjust the number 

of loading meters of those shipments to 13.6 loading meters.  

Step 4: Handle missing data. 

A problem is the shipments of which the trip list is missing a date. All shipments contain the number of 

transported load meters, but some of the shipments do not have the trip list date. The missing shipments 

can be attributed to a year. Table 10 gives an overview of the number of loading meters that misses a 

trip list since the forecast focuses on loading meters for which the trip list date is missing. 

• Waybill and/or pickup request1
• DPD2

• Standard pick-up3
• Dummy4

• Tilburg and Genk5
• System plus non-NL 6
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Table 10 Number of loading meters without a trip list date 

 LDM that miss a trip list date 

Year Unload (%) Load (%) Direct (%) All (%) 

2017 8.49% 19.10% 0.69% 13.03% 

2018 2.05% 8.11% 0.58% 4.71% 

2019 0.45% 1.57% 2.32% 1.08% 

2020 0.33% 1.39% 4.42% 0.96% 

2021 0.30% 1.54% 0.59% 0.86% 

  

The missing percentage decreases over the years, influencing the trend estimation of the time series. 

Removing the shipments with missing trip list dates will negatively bias the trend estimates, meaning 

that the parameters are underestimated. Suppose that the shipments with a missing trip list date are not 

correlated with the date, loading meters, transport type, region, or loading/unloading, which seems to 

be the case. In that case, it is possible to correct the data for this by distributing the loading meters with 

missing trip list dates accordingly to the distribution of the loading meters of the days of the year. This 

correction will only be applied to the data for 2018 to 2021 because 2017 has too many updated loading 

meters to correct for. 
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A.3 Time series composition 
According to Profillidis & Botzoris (2018), a time series is composed of one or more of the following 

components: 

• trend, 

• seasonal, 

• cyclical 

• random.  

The trend component reflects the long-term increase or decrease in the data. The trend does not have to 

be linear. Seasonal components exist when a series exhibits regular fluctuations based on a season, such 

as a week, month, quarter, or year. Seasonality is always a fixed and known period. The cyclic 

component exists when data shows the rise and fall that are not of a fixed period. These fluctuations are 

usually caused by economic conditions and are often connected to the "business cycle" (Klimberg et 

al., 2010). The length of cycles is longer than the length of seasonal patterns. The random component, 

sometimes called the remainder, noise, residual, or irregular component, includes everything that the 

deterministic components cannot capture.  

The appropriateness of the forecasting model is related to the degree to which it can capture the 

deterministic components adequately. In order to remove the deterministic components, the time series 

can be decomposed into stationary and deterministic components. The decomposition can be 

mathematically expressed as follows:  

 𝑌𝑡 = 𝑓(𝑇𝑡 , 𝑆𝑡 , 𝐸𝑡) (20) 

where  

𝑌𝑡 is the number of loading meters at period t; 

𝑇𝑡 is a deterministic trend-cycle or general movement component; 

𝑆𝑡 is a deterministic seasonal component; 

𝐸𝑡 is the irregular (stationary) component. 

The functional form depends on the decomposition method. There are multiple decomposition methods 

in which the time series components can be combined. Sunil Chopra (2019) mentions three types of 

these functional forms: additive, multiplicative and mixed.  

Additive means that the components are added together to give the number of loading meters at period 

t. A time series is additive if the time series' increasing or decreasing pattern is similar throughout the 

series (Verma, 2021). The mathematical function of an additive time series can be represented by: 

 𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐸𝑡 (21) 

Multiplicative means that the components are multiplied together. A times series is multiplicative if the 

increasing or decreasing pattern is not similar throughout the series. The mathematical function of an 

additive time series can be represented by: 

 𝑌𝑡 = 𝑇𝑡 ∙ 𝑆𝑡 ∙ 𝐸𝑡 (22) 

Both trend and seasonality can be additive or multiplicative. An additive trend indicates a linear trend, 

and a multiplicative trend indicates a non-linear trend. An additive seasonality is appropriate if the 

magnitude of the seasonal fluctuations does not vary over time, and a multiplicative model is 

appropriate if the seasonal fluctuations increase or decrease proportionally with time. If an additive 
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trend is combined with a multiplicative seasonality or if a multiplicative trend with an additive 

seasonality, then the functional form can be called mixed. 
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A.4 Formulas of the Exponential smoothing methods 
Simple exponential smoothing uses weighted averages where the weights decrease exponentially as 

observations come from further in the past. The forecast at time t+1 is equal to a weighted average 

between the most recent observation: 

 ŷ𝑡 =  𝛼𝑦𝑡 + (1 − 𝛼)ŷ𝑡 

 
(23) 

where 0 ≤ α ≤ 1 is the smoothing parameter that controls the rate at which the weights decrease. A 

forecast with a high value of α is more responsive to recent observations, whereas a forecast with a low 

value of α is more stable and less responsive to recent observations.  

Simple exponential smoothing can also be represented in the component form. The component 

representation consists of a forecasting equation ŷt+h and a smoothing equation for each component 

included in the method. Simple exponential smoothing only includes the level (𝑙𝑡) component, which 

gives the following component form: 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:         ŷ𝑡+ℎ = 𝑙𝑡                                   (24) 

 𝐿𝑒𝑣𝑒𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:                      𝑙𝑡 =  𝛼𝑦𝑡 + (1 − 𝛼)𝑙𝑡−1 (25) 

where 0 ≤ α ≤ 1 is the smoothing parameter for the level. 

Holt (1957) extended the simple exponential smoothing method by incorporating a trend. Holt's model 

with an additive trend gives the following component form: 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:       ŷ𝑡+ℎ = 𝑙𝑡 + ℎ𝑏𝑡                                            (26) 

 𝐿𝑒𝑣𝑒𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:                      𝑙𝑡 =  𝛼𝑦𝑡 + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) (27) 

 𝑇𝑟𝑒𝑛𝑑 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:                    𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1  (28) 

where 0 ≤ α ≤ 1 is the smoothing parameter for the level and 0 ≤ 𝛽 ≤ 1 is the smoothing parameter for 

the trend.  

Holt and Winters extended Holt's method by incorporating seasonality. Holt-Winters' model with an 

additive trend and multiplicative seasonality gives the following component form: 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:       ŷ𝑡+ℎ = (𝑙𝑡 + ℎ𝑏𝑡) ∙ 𝑠𝑡−𝑚                    
 

(29) 

 𝐿𝑒𝑣𝑒𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:                      𝑙𝑡 =  𝛼𝑦𝑡 + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) (30) 

 𝑇𝑟𝑒𝑛𝑑 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:                    𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1  (31) 

 𝑆𝑒𝑎𝑠𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:                  𝑠𝑡 =  𝛾
𝑦𝑡
𝑙𝑡−1 

+ (1 − 𝛾)𝑠𝑡−𝑚           
(32) 

where 0 ≤ α ≤ 1 is the smoothing parameter for the level, 0 ≤ 𝛽 ≤ 1 is the smoothing parameter for the 

trend, 0 ≤ 𝛾 ≤ 1 is the smoothing parameter for the within-week seasonal cycle, and m is the length of 

the within week seasonal cycle.
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A.5 Smoothing parameters of the final developed forecasting model 
Table 11 Smoothing parameters of the Rule-based double seasonal Holt-Winter (with two small adjustments) 

Smoothing 

parameters 
All flows Pick-up flow Drop-off flow Direct flow 

α 0.0001 0.0001 0.0001 0.0001 

β 0.0319 0.0135 0.0006 0.0001 

γ 0.0961 0.0436 0.1162 0.0498 

δ 0.1664 0.0427 0.1432 0.0000 
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A.6 Formulas and parameter values of the ARIMA models 

𝑇𝑜𝑡𝑎𝑙 𝑓𝑙𝑜𝑤:        
(1 − 1,02𝐿 + −0,12𝐿2)(1 + 0.84𝐿7)𝑦𝑡

= (1 − 0,61𝐿 − 0,13𝐿2)(1 − 0,10 𝐿7 − 0,90𝐿14)𝜀𝑡 
(33) 

𝑃𝑖𝑐𝑘𝑢𝑝 𝑓𝑙𝑜𝑤:     (1 − 0,85𝐿)𝑦𝑡 = (1 − 0,44𝐿 − 0,20𝐿
2)(1 − 0,85𝐿7 − 0,14𝐿14)𝜀𝑡 (34) 

𝐷𝑟𝑜𝑝 𝑜𝑓𝑓 𝑓𝑙𝑜𝑤: (1 − 1.12𝐿 + 0,21𝐿2)(1 − 0,12𝐿7)𝑦𝑡 = (1 − 0,78𝐿)(1 − 0,98𝐿
7)𝜀𝑡 (35) 

𝐷𝑖𝑟𝑒𝑐𝑡 𝑓𝑙𝑜𝑤:      (1 − 1.13𝐿 + 0,14𝐿2)(1 + 0,80𝐿7)𝑦𝑡 = (1 − 0,93𝐿)(1 − 0,08𝐿
7 − 0,82𝐿14)𝜀𝑡 (36) 
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A.7 Smoothing out process  
The specials day are smoothed out by replacing the original demand with the multiplication of the initial 

within-week seasonal factors and the average demand on that day of the week in the training set. The 

equation for the smoothing demand is mathematically expressed as follows: 

𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑:  𝑑𝑡 = 𝐼𝑁𝑡 ∙ 𝑦𝑡 + 𝐼𝑆𝑡 ∙ �̅� ∗ 𝑠0 (37) 

where 𝑠0 represents the initial within-week seasonal factors determined according to Chopra in Section 

4.3 for the four flows and �̅� is the average demand of the training dataset of the corresponding flow. 

The 𝐼𝑁𝑡 and 𝐼𝑆𝑡 are the binary indicator terms for the occurrence of a special day. Recall that the binary 

indicator 𝐼𝑆𝑡 equals one if t occurs on a special day and zero otherwise, whereas 𝐼𝑁𝑡 equals one if t occurs 

on a normal day and zero otherwise. Thus, on normal days the smoothed demand equals the original 

demand and on special days the multiplication of initial within-week seasonal factors and the average 

demand of the training dataset of the corresponding flow.  

 

 


