
Realtime and Onboard fault diagnosis of UAV motors using RNN prediction model

M. Boe, A.Y. Mersha, N. Alachiotis
aSaxion University of applied sciences, Ariensplein 1, Enschede, 7511 JX, , The Netherlands

bUniversity of Twente, Drienerlolaan 5, Enschede, 7522 NB Enschede, , The Netherlands

Abstract

In recent years public interest in UAVs (unmanned aerial vehicles) has increased. Existing solutions are used to reduce
risks and detect critical failures on system level or single output sensors. This research presents a solution for fault
diagnosis of UAV motors using RNN prediction models. The work presented distinguishes itself from standard and
existing solutions by not only performing fault diagnosis on a component level rather than using system models or
analytical redundancies but also presenting on board, in real-time, physical experiments. The fault diagnosis accuracy
is evaluated for several types of input functions including hand-flown flights and the fault diagnosis timing aspects are
evaluated using the onboard processor. Results show on a static test setup, input data with high dynamic nature impose
problems for the developed prediction model. The physical hand-flown experiments show that when the input data
is generated by the PX4 flight controller, 100% detection rate is achieved. The developed prediction model runs at
3322Hz on the selected RPI4B and theoretical approaches are presented to calculate the response time of the system
and calculate a theoretically maximum network size based on measurements.

Keywords: Fault-Diagnoses, Real-Time, Machine-learning

1. Introduction

In recent years Unmanned Aerial Vehicles (UAVs) tech-
nologies have advanced to such a degree that companies
and universities are researching the possibility of UAV in-
tegrating technologies into our day-to-day life[1]. Numbers
show that in 2020, the number of registered UAVs, also
known as drones, already counts a total of 2.851 million
in the US alone[2]. This shows that the public interest
for using drones is increasing. The usage and integration
of drones are hindered due to restrictions and regulations.
For example, Locally in the Netherlands, a drone must
be remotely piloted and stay within visual line-of-sight.
Moreover, the drones may only be flown within designated
areas, and usage of autonomous systems is limited because
a pilot needs to be present during flight operations. Such
restrictions limit the vast use potential of UAVs in terms
of speed, safety, limited workspace, cost-effectiveness, and
overall efficiency [3] [4][5].

On the 11th of June 2019, the European Union Law
Commission published new EU-wide drone regulations
that aim to make drone regulations among state members
uniform and facilitate the position of the European drone
market[6]. The new regulations relax restrictions that pro-
hibited flights in populated areas and autonomous flights
that go beyond visual line-of-sight. The usage of drones in
civil applications has therefore become more feasible.

These regulations classify UAVs based on their weight
and level of autonomy. These classifications still impose
limitations on the usage of UAVs in or near urban areas to
minimize risks. Currently, most drones are equipped with

redundant sensors such as accelerometers, gyroscopes, and
magnetometers[7] however, drones are not equipped with
redundant actuators, speed controllers, or batteries. Fail-
ure of these components can lead to critical failure. New
techniques help to overcome risks associated with the fail-
ure of sensors and actuators [8] [9]. Simple and standard
measures have been used for the past few years to address
priory known challenges, such as flyaway, RC communica-
tion loss, critical battery level [10][11][12]. The application
of these techniques and measure help to reduce the risk
when using drones however unforeseen circumstances can
cause a drone to malfunction during flight and become a
falling object.

According to a study[13], there is a direct translation
between kinetic energy and levels of injuries. According
to this study, we can assume that at 19.8J, a crossover
is reached at which skull fractures occur, and above 99J,
fatal injuries can occur. From calculations, we analyse
that a drone weighing 1.9KG in a free fall crosses the skull
fracture threshold after only 0.4 seconds and becomes a
fatal impact after only 1.2 seconds of falling. For exam-
ple, a parachute, giving enough time for a malfunction to
be detected, the parachute to be deployed, and the termi-
nal velocity to be reached, can reduce impact energy to
such levels that the impact would no longer cause skull
fractures.

The detection of a failure in actuators and propellers,
according to this study[14] is done by measuring the sys-
tem dynamics as a whole. Fault isolation can be performed
by inversion of the dynamic model. This limits a system

Preprint submitted to Robotics and Autonomous Systems September 7, 2022

into a static configuration and needs to be modelled by a
modelling expert. This is a limitation in the current tech-
nological era, where rapid prototyping and Agile workflows
are the new standard.

During this research, work is done to provide a poten-
tial solution towards a system capable of fault diagnosis
on component level rather than system level that does
not require modelling expertise mentioned earlier. A
component-based off-the-shelve solution would maintain
the benefit of rapid prototyping whilst maintaining safety
guarantees. The proposed solution uses a recurrent neural
network based solution to create a prediction model that
predicts the velocity, power consumption behaviour of the
motor and temperature of the ESC based on historical
data and the throttle set point. A significant deviation
between the predicted and measured response indicates
faulty behaviour.

During this research the following research question will
be answered:

• To what extend can neural network based prediction
models be used to reliably perform real-time fault
diagnosis of UAV actuators on component level on
board and in real-time?

In order to answer this main research question, the fol-
lowing sub questions are formulated:

• How accurate does a prediction model have be met to
preform fault diagnosis reliably?

• What timing constraints have to be satisfied to meet
the required reliability?

• Can a processor based solution be used to meet the
timing and reliability constraints?

In order to answer the research questions proposed
above the following steps are taken that contribute to the
final results

• A test setup was made to create training data sets in
a static situation

• Various network architectures are trained and com-
pared, and the prediction behaviour and its error is
analysed with propellers in various conditions of dam-
aged and undamaged.

• The timing statistics of the prediction model are anal-
ysed and a processing platform is chosen to use the
prediction model onboard and in real-time

• The system was built and mounted on a UAV, and
test flights were performed with propellers in various
conditions, and the results have been analysed.

Section 2 describes the background of this project, Sec-
tion 3 describes the test setup, data collection process
and different network architectures, Section 4 describes the

evaluation methods used to answer the research questions,
Section 5 Evaluates the results obtained during testing, in
Section 6 we concluded on the research and evaluate the
research questions and recommendations for future work
are given.

2. Background

This Section will describe the theoretical and mathemat-
ical background required for this research. In Subsection
2.1 the motivation that led to this research is described,
Subsection 2.2 describes the related work and gap this the-
sis is going to fill, Subsection 2.3 gives a brief introduction
into the mathematics of the used neural network architec-
tures, and in Subsection 2.4 the feasibility of component-
based fault diagnosis is explored based on ESC measure-
ment data.

2.1. Motivation
UAV Motors and propellers inherently have a high

dynamic behaviour that depends on many external distur-
bances like, for example, airflow, angle and forces on the
rest of the UAV. Because of this, fault diagnosis is usually
done using model prediction, or analytical redundancy
[14]. Existing literature focuses on finding and isolating
faults on system level, which means that for a given UAV,
system models are created[15][16][17]. In this research,
we will focus on fault diagnosis at component level. The
theoretical benefit of fault diagnosis at component level
is that the system will be configurable at component
level, and no further work on fault diagnosis needs to be
performed.

Model prediction methods that have been proposed[18],
[19], [20], [21], [22], predict the dynamic output of a sys-
tem and classify correct or faulty behaviour based on a
relative threshold. From the comparison results presented
in Section 3, a Recurrent Neural network(RNN) solution
provides the best results as a prediction model for the given
motor and propeller setup.

2.2. Related work
This subsection summarises related work and looks at

their result. From this, a conclusion is drawn about the
current state of the art. Table 1 provides an overview of
the related work and shows what gaps the proposed work
will fill.

A survey has shown that prediction models offer the
most promising results over Analytical redundancy and
signal processing [14]. Therefore, we will focus on several
prediction model methods in this section.

Zhang et al. 2020[22] propose a Kalman filter(KF)
based solution to do model prediction on component level.
The paper provides a set of state transition equations
describing a quadrotor UAV’s behaviour. The results

2

Table 1: Contributions of related work

Paper Model prediction
method

fault diagnosis
abstraction level

Input
dimensions Onboard Realtime Experimental

validation
Zhang et al. 2020 KF System level 2D n n y
Wang et al. 2019 LSTM Component level 1D n n y
Fu et al. 2019 CNN-LSTM hybid System level 2D n n y
Liu et al. 2018 SVM Component level 1D n y y
Avram et al. 2017 non-linear adaptive estimator System level 2D n n n
Proposed work RNN Component level 2D y y y

of the KF-based system are tested against actual sensor
measurements. Fault diagnoses of individual components
are done based on system inversion. The results of the
paper promise good function bases on simulation but does
not provide actual statistics.

Wang et al. 2019[18] propose an LSTM solution to do
model prediction on component level. The paper presents
a system architecture and training framework to reason
about fault diagnosis in sensor data. Results in the paper
show a near-perfect fault diagnosis in a sample set of
about 1000 samples. The input to the system is a 1D
input stream over time, and the results are based on
offline real flight data.
Fu et al. 2019[19] propose a hybrid CNN-LSTM solution
to do model prediction on system level. The paper
gives a structure used to combine the RNN and LSTM
techniques. The paper describes the experimental setup
where one of the propellers is cut to provide less torque
in one of the data sets. The results of this paper show
an average of 92.74% accuracy based on 11 element input
stream over time based on offline real flight data.

Liu et al. 2018[20] propose a State vector ma-
chine(SVM) to do model prediction on component level.
The paper gives an architecture and instruction set
implemented and tested on an FPGA. Results in this
paper show a false positive rating of 5.88% and a false
negative rating of 2.2%. The implementation on FPGA
shows a significant speed-up of 2.6 and a quantization
error in the order of 10−5. The input to the system is a
1D input stream over time, and the results are based on
offline real flight data.

Avram et al. 2017[21] propose a non-linear adaptive
estimator to do model prediction on system level. A
set of dynamic equations are given provided to model a
quad-rotor. The control signals and sensor measurements
are fed to the estimator, and a decision schema are used to
do fault diagnose and to estimate the magnitude of fault.
The results show improving results as the magnitude of
faults increases. The results are based on real-time and
online CPU based computation.

Finally a overview in Table 1 of the related work dis-

cussed in Section 2.2. The Table classifies for each paper
what model prediction method is used, the fault diagnosis
abstraction level, whether the input dimension is single-
(1D) or multi-dimensional(2D) , whether the fault diagno-
sis was performed onboard on physical hardware, the fault
diagnosis was performed in real-time and finally whether
an experiment was done to validate the proposal. From the
third column, red and green colours indicate whether the
proposal meets the requirement that started this research.

From the Table and summaries of each contribution, we
can conclude that existing contributions can not be di-
rectly used to do hardware implementation of fault diag-
nosis of UAV actuators on component level. The proposed
work in this research can be seen to cover all those criteria
in the last row.

2.3. Neural networks
To understand the concept of RNN, we first have to un-

derstand Artificial Neural networks, that are also called
Neural networks(NN)[23][24]. A NN is an artificial repre-
sentation of biological neurons and is used to solve prob-
lems in various fields that are non-trivial to solve with
more classical approaches. A biological neuron is imitated
in a single so called node. This node has various amounts
of inputs that all get multiplied by a weight. All the multi-
plied inputs are passed through a transfer function whose
output is passed through a non-linear activation function.
The transfer function usually is a sum function of all the
inputs. A training algorithm determines the bias and the
weights for each node. The output of this activation func-
tion, in turn, is the node’s output. A visual representation
of a single NN node can be seen in Figure 1.

The chosen activation function is the SELU activation
function described by Equation 1. The SELU activation
function has self normalizing properties which work well in
the presence of noise and perturbations compared to other
activation functions.[25]:

σ(x) = λ

x x > 0
α(ex − 1) x ≤ 0

(1)

Where α = 1.6732632423543772848170429916717 and
λ = 1.0507009873554804934193349852946.

A NN with three layers where each layer has a size of
at least three nodes, as shown in Figure 2 can be used to

3

Figure 1: A single node of a neural network (Adapted from [26].)

model any non-linear second order system[23]. When the
amount of layers and the size of each layer is increased,
a NN can be used to model higher order systems and in-
clude dynamic behaviour. As classical NN have no mem-
ory, previous inputs and elapsed time are not considered
when calculating the output.

Figure 2: A neural network with an input layer, one hidden layer
and one output layers (Adapted from [27].)

As described above, we need to take previous inputs
into account. We can do this by either using previous
inputs such as xt, xt−1...xt−m for a history of m + 1 values
and the th value. Alternatively, create a RNN that includes
intermediate feedback where the input to either the input
layer or one of the hidden layers includes the output from
the previous iteration. A sample RNN network can be
seen in Figure 3. The benefit of doing this is that we
automatically incorporate state information as input[28].
A downside of using RNN is that a feedback loop can result
in saturation or exploding gradients during training and,
at some points, even cause overflow issues in hardware [29].

Another flaw of RNN, as opposed to NN, is that back-
propagation through the network used to take time or pre-
vious states into consideration also feeds back error sig-
nals[31]. Error signals flowing backwards in time tend to
explode or vanish, resulting in unstable systems. LSTM
networks, a special kind of RNN, can be used to solve this
vanishing/exploding gradient problem. An LSTM cell is
shown in Figure 4 and its structure can be described by
the following set of equations[19]:

ft = σ(Wx f xt +Ws f st−1 + b f) (2)

Figure 3: Recurrent neural network illustration where the hidden
layer is recurrent with itself (Adapted from [30].)

it = σ(Wxixt +Wsist−1 + bi) (3)

c∗t = tanh(Wxcxt +Wscst−1 + bc) (4)

ot = σ(Wxoxt +Wsost−1 + bo) (5)

ct = ft ~ ct−1 + it ~ c∗t (6)

st = ot ~ thanh(ct) (7)

where the subscript t indexes the timestamp, it, ft and ot

are input gate, forget gate and output gate. The σ denotes
the activation function, and ~ denotes the convolution op-
erator. W is the set of weights, and b is the bias. A sample
LSTM cell can be seen in Figure 5.

Figure 4: LSTM cell architecture (Adapted from [19].)

Figure 5: LSTM neural network illustrated where the LSTM cells
are recurrent with them self.

4

2.4. Qualitative data analysis

To verify the feasibility of performing fault diagnosis, we
first examine the output of the available data. The Myxa
CAN ESCs described in Section 4.1 provide details about
the status of the ESC at 100 Hz. The information on the
CAN bus is available using the UAVCAN V1 standard in
the format[32] sportance of feen in Listing 1:

Listing 1: UAVCAN status message format
uint32 error_count
float16 voltage
float16 current
float16 temperature
int18 rpm
uint7 power_rating_pct
uint5 esc_index

From this data, we can reason about the performance
of the motor by monitoring the RPM, voltage and cur-
rent. Any significant deviation in the rotational speed of
the motor or power consumption can indicate faulty func-
tioning. To verify this hypothesis, 5 sets of 10 tests are
executed for a combined of 50 tests. Each set of tests is
performed with a different propeller. Three different un-
damaged propellers (labelled T, S1 and S2) are used as
a control group. One slightly chipped propeller (labelled
D1) and one modified propeller (labelled D4), which is
shortened by 5 millimetres on both sides, are used. All 5
propellers can be seen in Figure 6.

An input pattern is generated a priory and used for all
tests. The input pattern is a time series of the function
that is a random combination of constant, ramp and step
functions, see Figure 7.

After a series of 50 tests, we can plot the RPM of the
motor and power consumption of the ESC over time, see
Figures 8 and 9 on page 6 respectively. From these graphs,
an immediate observation can be made that some of the
tests have significant outliers during the first stage. How-
ever, after frictions have been overcome and the controller
has stabilised, the signals all follow the same relative pat-
tern.

When zooming in on a smaller part of the graphs see
Figures 10 and 11, it becomes clear that the deviations
that were slightly visible in the larger graphs seen in Fig-
ures 8 and 9 on page 6 actually contain distinguishable
differences. From the zoomed-in plots, the observation
can be made that the control group propellers have a high
power consumption and a lower RPM compared to the
damaged propellers. It can also be observed that as the
propeller becomes more damaged, the RPM increases and
the power consumption decreases, but the motion profile
is maintained.

A prediction model capable of predicting the behaviour
of the control group good enough can use data outside of a
range around its prediction and compare it to a measure-
ment to execute fault diagnosis.

Figure 6: propellers used during data collection

3. Prediction Model

In this Section, the process of developing the prediction
model is described. Firstly in Subsection 3.1 the different
architectures are proposed, in Subsection 3.2 explains how
some parameters are set to values limiting the solution
space, in subsection 3.3 it is explained how the training
data is gathered and labelled and finally in Subsection 3.4
it is explained how the final architecture is chosen.

3.1. Architectures

For the prediction model, three types of architectures
are considered. A classical Feed Forward Neural network
see Subsubsection 3.1.1, A Recurrent Neural Network
see Subsubsection 3.1.2 and a LSTM Recurrent Neural
network see Subsubsection 3.1.3. GRU[33] or Trans-
former[34] type networks are not considered to reduce the
solution space.

The available input data for the prediction model are the
motor speed set-point and historical measurement data.
The input value Xt at a specific step in time is defined as
seen in Equation 8 where dtt is the time difference between
the current and the previous measurement, rpmt the RPM
measurement of the motor, vt the voltage measurement of

5

0 100 200 300 400 500
Input sample number

0.0

0.2

0.4

0.6

0.8

1.0

T
ho

tt
le

be
tw

ee
n

0
an

d
1

Figure 7: 50 tests input pattern

the ESC, ct the current measurement of the motor and
finally tempt, the temperature measurement of the ESC.

X(t) =
(
dtt rpmt vt ct tempt

)
(8)

For all architectures, the network is going to predict the
output Ŷt, see Equation 9.

Ŷt =
(
rpmt vt ct tempt

)
(9)

All architectures will map to some function PM, see Equa-
tion 10 where input(t) can be different based on the archi-
tecture, this will be explained in each respective Subsub-
section.

Ŷt = PM(input(t)) (10)

3.1.1. NN
The first to consider architecture will be a classical feed

forward neural network. The input is defined as seen in
Equation 11 where ut is the motor throttle set-point, Xt

is as described in Equation 8 and nHist the number of
historical inputs used.

input(t) =
(
ut | Xt−1 | Xt−2 | ... | Xt−nHist−1

)
(11)

The input size of the network depends on the value of
nHist and can be calculated using (nHist ∗ 5) + 1. The
number of hidden layers and the size of those layers will

2245 2250 2255 2260
Time in seconds

0

2000

4000

6000

8000

10000

Po
w

er
in

w
at

t

ontrol group
chipped
shortened

Figure 8: RPM graph

2245 2250 2255 2260
Time in seconds

0

25

50

75

100

125

150

175

200

Po
w

er
in

w
at

t

ontrol group
chipped
shortened

Figure 9: Power graph

6

2253.8 2253.9 2254.0 2254.1 2254.2 2254.3 2254.4
Time in seconds

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9.0

Po
w

er
in

w
at

t

×103

control group
chipped
shortened

Figure 10: RPM graph zoomed in

2253.8 2253.9 2254.0 2254.1 2254.2 2254.3 2254.4
Time in seconds

80

90

100

110

120

Po
w

er
in

w
at

t

control group
chipped
shortened

Figure 11: Power graph zoomed in

depend on the training process. This will be further ex-
plained in Subsection 3.3. A visualisation of the network
architecture can be seen in Figure 12.

Figure 12: A feed forward architecture that takes previous inputs
into account.

3.1.2. RNN
The second to consider architecture is the Recurrent

Neural Network. The input is defined as seen in Equation
12 where the variable are similar to the ones presented
in Subsubsection 3.1.1. When using recurrent neural net-
works, the input shape varies as opposed to the one used
for the feed forward neural networks. In this case, each
row in the matrix will be a separate iteration of calcula-
tions where the recurrent feedback will substitute as state
feedback. The initial values rnnout

t0 will be set to 0 on each
iteration.

input(t) =

ut | Xt−1

ut−1 | Xt−2
... | ...

ut−nHist | Xt−nHist−1

 (12)

The input size of the network is always 6 because of the
number of measurable inputs, and the number of sample
iterations depends on the value of nHist. The number of
hidden layers and the size of those layers will depend on
the training process, as explained in Subsection 3.3. A
visualisation of the network architecture can be seen in
Figure 13.

3.1.3. LSTM
The third and final considered architecture is the LSTM

neural network. The input, initial states, input sizes,
amount of hidden layers and hidden layer sizes are defined
similarly to the RNN architecture as seen in Equation 12
and explained in Subsubsection 3.1.2. A visualisation of
the network architecture can be seen in Figure 14.

3.2. Limiting parameters
To reduce the solution space of different networks,

some parameters will be set to specific values. Small trial

7

Figure 13: A recurrent network architecture that takes previous in-
puts into account.

Figure 14: A LSTM network architecture that takes previous inputs
into account.

on qualitative error processes obtain the chosen values.
However, only the final results are shown.

The weight vector w =
(
0.3 0.3 0.3 0.1

)
for rpm,

voltage, current and temperature respectively. During
training, it was observed that the RPM prediction was
matched reasonably quickly with the RPM measurements,
but the power profile was not. It was also observed that
the deviations of temperatures are extremely small and no
notable local differences can be found. The assumption
can be made that only significant differences (order of
magnitude or larger) may reason about the functioning of
the ESC. That’s why emphasis was given to the power pro-
file prediction, which is the product of voltage and current.

The number of historical measurement points nHist = 5
is used because it was observed that a low value of
historical measurement points, 2 to 3, already produces
satisfactory results. The value of 5 was chosen to have a
safe value with some margin for error in the estimate.

During training the batch size bs = 128, the maximum
number of Epochs Epochmax = 3000, the initial learning
rate lrinitial = 0.001 and the learning rate decay rate
lrk = 0.001.

Figure 15: Caged test setup used to collect measurement data.

The inputs used as motor set-points ut are bound
between 0.2 and 0.8 duty cycle during training and
validation of the network. During the evaluation of
the transfer-ability in Subsection 5.4, motor inputs are
generated by the flight controller and thus not limited.

3.3. Gathering training data

A static test setup was created and used to generate
the data set for training and evaluation purposes. The
test setup is a mechanical arm that mounts the motor and
ESC in a cage to use the motor in a safe and controlled
manner. The mechanical structure is similar to what one
might find on a UAV limiting airflow obstructions. Figure
15 shows the test setup with the Myxa ESC and Holybro
propeller, more information on the hardware can be found
in Subsection 4.1.

To generate a sample set that is going to be turned into
a data-set, a set-point profile is generated with 136,000
inputs which translate to 22 minutes and 40 seconds of
inputs at 100 Hz. The input file is a collection of constant
inputs (see Figure 16 on page 9), ramp inputs (see Figure
17 on page 9) and step inputs (see Figure 18 on page 9). As
explained in Subsection 3.2, the inputs are bound between
0.2 and 0.8.

Via the CAN adapter (see Subsection 4.1), the motor
set-points are given, and the motor status is sampled. All
this data is logged in a text file and later post-processed.
As the real-time data samples are collected in order, a
data-set can easily be generated and labelled as the out-
put of the network should is simply the subsequent mea-
surement. This means that a data collection of N samples
can provide a data-set of N − nHist − 1 training inputs.

8

0 2000 4000 6000 8000 10000
samples

0.1

0.2

0.3

0.4

0.5

0.6 throttle input

Figure 16: Constant input data example

0 1000 2000 3000
samples

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

throttle input

Figure 17: Ramp input data example

0 2500 5000 7500 10000 12500
samples

0.2

0.4

0.6

0.8

1.0
throttle input

Figure 18: Step input data example

After Labeling, the data set is shuffled to reduce the time
continuity and increase variety within training batches.

3.4. Training the different architectures

During training, it became clear that TimeSeriesFore-
caster from AutoKeras[35] which would be the go to au-
tomatic training framework, was not suitable. The Time-
SeriesForecaster feature had issues at the time of this re-
search being worked on. To circumvent these issues, a
similar manual approximation was performed. The fol-
lowing steps take the manual process and the results of
this process can be seen in Subsection 5.1:

1. Start with guaranteed overestimate of the network
and train

2. Take away an entire hidden layer and train again
3. If results perform similar or better repeat last step, if

only 1 hidden layer is left continue to the next step.
4. Reduce the number of cells of all hidden layers (16

cells were taken away every time) and train again
5. If results perform similar or better repeat last step,

otherwise continue
6. If the number of cells in each layer was reduced, add

an extra hidden layer with the same amount of cells
as the other hidden layers and train again

7. If results perform similar or better repeat last step,
otherwise stop

9

Figure 19: System diagram

It is noted that a larger network always has the capabil-
ity of performing at least similar to any smaller network.
However, with a given limited training time, results may
not converge as well[36].

4. Methods

In this Section, the methods used to evaluate the re-
sults will be described. The evaluation method for train-
ing is explained in Subsection 4.2, the evaluation of the
model accuracy is described in subsection 4.3, the evalu-
ation method of timing characteristics is described in 4.4
and in Subsection 4.5 the evaluation method of transfer-
ability is described.

4.1. Equipment
The used equipment is split up into two separate setups.

The first setup is the testing setup that was already shown
in Figure 15 and the second setup is an UAV with a X500
v1 frame from holybro[37] with 4 2216 KV880 Motors
from holybro, 4 Myxa model A2 ESCs[38] with UAVCAN
support, a Pixhawk 4 [39] as flight controller, and a CAN
adapter[40] to interface with the CAN bus, a Raspberry
Pi Model 4B[41] as processing unit. A system diagram
can be found in Figure 19 and the UAV can be seen in
Figure 20.

During data gathering and evaluation of the training
process in Subsection 5.1, accuracy in Subsection 5.2, and
timing in Subsection 5.3 the testing setup is used with
only a single motor. The UAV will be used to evaluate the
transfer ability in Subsection 5.4.

4.2. Training
To evaluate the neural network’s performance and com-

pare the different types of network architectures, the Keras
Neural network framework is used with Tensorflow. A
weighted euclidean distance cost function is used. Equa-
tion 13 shows the used cost function where y is the mea-
sured output, ŷ is the predicted output, and w is the weight
vector as explained in Subsection 3.2.

Figure 20: The UAV used for testing

D(y, ŷ) =

√√√ N∑
i=1

w(y − ŷ)2 (13)

For training, the Adam optimizer[42] is used with the de-
fault tuning values and an exponentially decaying learning
rate that corresponds with the current epoch. See Equa-
tion 14 where i is the current epoch, lrinitial is the initial
learning, and lrk is the decay rate as previously explained
in Subsection 3.2.

lr(i) = lrinitiale−lrk∗i (14)

To evaluate the different networks, we first compare the
lowest achieved loss of all networks in the same network
architecture and then compare the best network of each
architecture to the other architectures.

4.3. Accuracy
To evaluate the accuracy of the Prediction model and to

use a set of 7 different propellers is used, three propellers
as a control group and four different types of damage. The
propellers can be seen in Figure 21 on page 11.

The individual tests are performed for each propeller
where the inputs are:

• A set of constant inputs at a slow 0.2 speed and fast
0.7 speeds

• A set of ramp inputs at different ramping rates be-
tween 0.2 and 0.8

• A set of step functions at different varieties of differ-
ences between 0.2 and 0.8

10

Figure 21: The props used for validation

The output Y is recorded similarly to during network
training, and the best-trained model is used to compute
the predicted output Ŷ. To compare the accuracy of the
different propellers we are interested in The maximum er-
ror value, the mean and the standard deviation to reason
about performance. As explained in Subsection 3.2, the at-
tributes that will hold the most information are the power
and RPM measurements. Because of this we will compare
the normalized error for Power Ep, see Equation 16, and
the normalized error for RPM Erpm, see Equation 15.

Erpm =
∣∣∣ ˆYrpm − Yrpm

ˆYrpm

∣∣∣ (15)

Ep =
∣∣∣ ŶvŶc − YvYc

ŶvŶc

∣∣∣ (16)

Etemp =
∣∣∣ ˆY temp − Y temp

ˆY temp

∣∣∣ (17)

4.4. Timing
To evaluate the timing characteristics of the prediction

model, we can let the CPU measure the execution time
of the prediction model process. With the current equip-
ment, see Subsection 4.1, the maximum measurement sam-
ple rate is 100 Hz. A lower processing frequency could still
be used to perform fault diagnosis but would reduce the
response time.
To get a realistic time measurement, the start time will be
recorded, and then the prediction model will be processed
100,000 times, after which the end time will be recorded.
By doing this, a more realistic time measurement is taken,
and the time each iteration takes can simply be calculated
by dividing the total elapsed time by 100,000. This test

will be repeated three times for validity. The time mea-
surement algorithm can be seen in Algorithm 1.

Algorithm 1: Time measurement algorithm
start time ts

for m ∈ {1, . . . , 10, 000} do
ŷ := PM(input(i)))

end for
end time te

iteration time tpm := te−ts

10,000

As the timing results depend on the processing unit and
methodology of processing, the target device and method
of processing will be determined during evaluation in Sub-
section 5.3.
The response time tr of the Prediction model will depend
on the processing time of the network tpm, the delay caused
by potential required filtering and the accuracy of the net-
work. The response time can be calculated by multiplying
the response time and the delaying factor caused by fil-
tering d f ilter see Equation 18 where tpm is the processing
time of the network as explained in Subsection 4.4. The
average expected detection time of the system would de-
pend on the accuracy and response time of the Prediction
model.

tr = tpmd f ilter (18)
During this evaluation, the timing of the prediction

model will be analysed, and timing aspects for data ac-
quisition will not be taken into account.

Finally, To answer the research question related to tim-
ing,”What timing constraints have to be satisfied to meet
the required reliability?”, an evaluation will be performed
about what would happen during a crisis and if the X500
V1 particularly would fall from a great height. During this
evaluation, the impact energy mentioned earlier in Section
1 is estimated using a simple falling object model and a
response strategy using a parachute is explored.

4.5. Transfer-ability
Finally, this research aims to do fault diagnosis onboard

and in real-time. The final evaluation performed during
this research is aimed at how well the prediction model
performs when transferred from the test setup that was
used to generate the training data sets to the UAV de-
scribed in Subsection 4.1. The accuracy of fault diagnosis
will be evaluated during flight in which several short hand
flown flights will be flown using the same propellers used
in Subsection 4.3, see Figure 21. Because these tests will
be hand flown, the inputs generated by the flight controller
will not be repeatable for each test.

5. Evaluation

In this section, the results of this research will be shown.
Subsection 5.1 shows the results of the different architec-
tures produced during the training process, Subsection 5.2

11

nl/nn NN RNN LSTM
6/128 1.6621 1.2252 1.352
4/128 1.6237 1.1627 1.321
2/128 1.5934 0.9413 1.232
1/128 1.3284 0.7316 0.9424
1/102 1.0123 0.6899 0.8782
1/96 0.9672 0.6894 0.8186
2/96 1.2527 - -
1/72 1.0032 0.6656 0.8466
2/72 - 0.6693 0.7558
3/72 - - 0.8342
1/48 - 0.7287 0.8224

Table 2: Table of final validation losses for different network
archetypes

goes into detail about the prediction accuracy of the Pre-
diction model, Subsection 5.3 shows the results of a timing
analysis of the Prediction model, finally in Subsection 5.4
shows test results of UAV flight tests and reasons about
the applicability of using the prediction model on UAVs.

5.1. Training
Table 2 shows the best evaluation loss values for

each type of network architecture in their different
configurations using the training procedure described
in Subsection 3.4 and the evaluation method described
in Subsection 4.2. The first column shows the config-
uration nl/nn where nl is the number of hidden layers
in the network, and nn is the number of nodes in each layer.

From the results, we can read that configuration 1/96
provides the best results for the Feed forward network ar-
chitecture described in Subsubsection 3.1.1. Configuration
1/72 provides the best results for the RNN network archi-
tecture described in Subsubsection 3.1.2. Configuration
2/72 provides the best results for the LSTM network ar-
chitecture described in Subsubsection 3.1.3. Between the
three proposed network architectures. The RNN network
architecture with configuration 1/72 configuration results
in the overall best result and will therefore be implemented
as the Prediction model when evaluating the Accuracy in
Subsection 5.2, the timing statistics in Subsection 5.3 and
the transfer-ability in Subsection 5.4.

5.2. Accuracy
In the testing process the input patterns described in

Subsection 4.3 are tested and recorded for every propeller
shown in Figure 21.

During this accuracy testing phase, it was discovered
that the measurement data includes high-frequency noise.
This high-frequency noise was captured in the training
data, and the prediction model has learned about this
noise. However, this noise is amplified because the predic-
tion model contains a feedback loop, as earlier explained

in Subsection 2.3. The noise and its amplification can be
observed in Figure 22. To mitigate the noise, a moving
average filter was used as described in Equation 19 where
ut is the input at time t and ninp f is the size of the average
filter. Based on observations the size of ninp f = 10 was
chosen, and the results after filtering can also be observed
in Figure 22 on page 22.

ut =
1

ninp f

ninp f∑
i=0

ut−i (19)

Introducing the average filter on the input data means
that a new dataset had to be collected, and the network
had to be retrained. Due to time constraints, the same
1/72 RNN network was used without taking the steps ex-
plained in Subsection 3.4.

The measurement results for the constant inputs can
be seen in Table 4, The measurement results for the
ramp inputs can be seen in Table 5 and the measurement
results for the step inputs can be seen in Table 6, all
tables can be found on page 17. In the tables, reasonable
deviations from the undamaged propeller labelled ”T” are
coloured in a light red colour, and significant deviations
are coloured in a darker shade of red. From these, it can
be read that in all measurements, the maximum values,
mean and standard deviation of the more significantly
damaged propellers D2 and D3 exceeds that of the
undamaged propeller. In several cases, the mean of
damaged propellers exceeds that of the maximum of
undamaged propellers. From this, a simple classification
can be performed by thresholding. In other cases, further
research needs to be done into classification approaches or
how damaged a propeller needs to be even to constitute
action.
To get a less abstract grasp of the normalized error data,
all sets of data can be seen in Figure 25 on page 18 where
the Y Axis is the normalized error and the X axis are the
samples. These figures show nine separate plots, where
each Row corresponds to RPM, Power or Temperature
measurements, and each column represents the output
for Static, Ramp or Step inputs. From These plots we
can conclude that even though Tables 4, 5 and 6 suggest
a clear distinction between the Undamaged propeller
and damaged propeller can be made, this is not the
case. One more thing to note is that there is no linear
correlation between the normalized error and the speed
at which the motor turns. For example, look at the first
column of plots, the propeller labelled D2 has significantly
larger errors compared to the other propellers. It can be
concluded that this higher deviation must be a result of
the unbalanced centre of mass introduced by the damage
only on one side.

12

0 500 1000 1500 2000 2500 sample

48

50

52

54

56

58

po
w

er
in

w

T measurement
T prediction

(a) unfiltered

0 500 1000 1500 2000 2500 sample
48

50

52

54

56

58

po
w

er
in

w

T measurement
T prediction

(b) average filter with size 10

Figure 22: Power measurement and prediction for constant input

5.3. Timing
As described in Subsection 4.4, a target processing de-

vice was chosen during the timing evaluation. An imple-
mentation of the RNN prediction model was created in the
language C, see Algorithm 2. This algorithm uses steps to
calculate the output; during the initialization, the weights
are loaded where wi are the input kernel, wr is the recur-
rent kernel, br is the bias for the hidden layer, wo is the
output kernel, and finally bo is the output bias. All weight
and bias variables used are stored in one dimensional ar-
rays. This listing does not show the data sampling and
assumes that the data is correctly put into a FIFO.

Algorithm 2: RNN algorithm.
load weights wi,wr, br,wo, bo

repeat
X := X[1 :]+x {shift in fifo data}
Or := 0 {reset initial recurrent values}
for i ∈ {1, . . . , nHist} do

for j ∈ {1, . . . , nNodes} do
Oh

j := selu(
∑nInputs

k=0 Xi, jwi
j,k +
∑nNodes

k=0 Or
i,kwr

j,k + br
j)

end for
for l ∈ {1, . . . , nOutputs} do

Oo
k := selu(

∑nNodes
h=0 Oh

l,hwo
h,l + bo

l)
end for
Or := Oh

end for
Fault diagnosis of proppeler using Oo

until {The system is unpowered}

During development, a timing test using the algorithm
described in Algorithm 1 on an HP Zbook Studio G5
with an Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz,
resulted in a processing rate of 12,000 Hz. Because this

test 1 2 3
time(s) 30.0929 30.1063 30.0859

Table 3: Results of the timing test

exceeds the maximum sampling frequency of the Myxa
ESC by a factor of 120, the choice was made to use
an (RPI4B) Raspberry Pi model 4B, with a Quad-core
Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz.

Repeating the timing test on the RPI4B results in the
values seen in Table 3. From these results, we can see
that the three tests result in very similar results, with an
average of 30.095 seconds resulting in a processing rate of
3322,811 Hz exceeding the maximum sampling frequency
of the Myxa ESC by a factor of 33.2.

When analysing the RNN architecture, the number of
multiply accumulate instructions (MAI) can be calculated
using the formula seen in Equation 20 where nn is the num-
ber of nodes per hidden layer, ni is the number of inputs,
no is the number of outputs, and nl is the number of hidden
layers and nh the number of historical samples defined as
nHist in Subsection3.2.

nMAI = nnnh(ni + no + nn(2nl − 1)) (20)

When calculating the formula with, nn = 72, ni, 6, no =

4, nl = 1, nh = 5 it results in a total of 29520 MAI per
iterations of the Recurrent neural network. Theoretically,
the RPI4B could execute up to 29520 ∗ 33.2 = 980, 064
MAI per second on each of its four cores. The largest sized
network used during training (see Subsection 2) is the 6
hidden layers of 128 nodes each configuration calculates
(using Equation 20) to a total of 907,520 MAI. This leaves
plenty of room for future architecture improvement while

13

using an RPI4B.

The testing data presented in Subsection 5.2 shows that
the fault diagnosis classification method is not straightfor-
ward. Thus, the system’s response time can not be based
on test data. Instead, a theoretical estimate of the de-
laying factor for the average filter can be calculated using
Equation 21. Where E f is the threshold at which the nor-
malized error is coincided to be a fault, Eg is the expected
normalized error average, and Et is the Normalized error
value that is to be detected.

d f ilter = dninp f
E f − Eg

Et − Eg e (21)

For example when the expected normalized error aver-
age Eg = 0.05, the fault diagnosis threshold E f = 0.1 and
the error value Et = 0.12 and average filter size ninp f = 10
we calculate a delaying factor d f ilter = 8 and the response
time of the system is tpmd f ilter = 0.01 ∗ 8 = 0.08s

To estimate the impact energy of the UAV if it were
to fall out of the sky, a simplified dynamic model of a free
falling object[43] is used to estimate its falling velocity and
can be seen in Equation 22:

vi+1 = vi + δt(g −
kv2

i

m
), g = 9.81m/s2, m = 1.9kg (22)

Where vi is the objects velocity at sample i, t is time, g is an
acceleration constant due to gravity, m is the object mass
and k is a collection of constants expressed by Equation
23 and Equation 24

k =
cwρ(Ad + Ap)

2
, ρ = 1.225

kg
m3 (23)

cw = 2.2, Ad = 0.058487m2 (24)

Where ρ is the air density coefficient, cw is the drag
coefficient, Ad is the area of the X500 v1 UAV, and Ap

is the area of the parachute, which for now will be set
at 0. Finally, the impact energy can be calculated using
Equation 25.

ji =
mv2

i

2
(25)

Figure 23 shows the falling velocity and impact energy
over time assuming that t0 = 0 and v0 = 0. It can be
seen from this plot that after only slightly more than 0.4
seconds of free fall, the threshold at which skull fractures
start occurring has already been passed, and after around
1.2 seconds of free fall, lethal impacts can start occurring.
As no action is taken, the fall velocity will keep increasing
until the terminal velocity is reached.

To model the parachute mentioned in Section 4.1 a sim-
ple change in the object’s surface area is sufficient. Based
on the information provided by the vendor and analysis
of the product videos on the website, a conclusion can be
made that the parachute takes approximately 1.5 seconds
to deploy, whereas the parachute starts to unfold in the

Figure 23: Object velocity and impact energy during a free fall

last 0.1 seconds[44]. If we assume 0.1 seconds for detec-
tion time, the area of the parachute is a simple linear model
given by Equation:

Ap
i =

0 ti < 1.5
(t(i)−1.5)0.8938319931

1.6−1.5 1.5 ≤ ti ≤ 1.6
0.89383199312 otherwise

(26)

When we integrate the parachute into the model shown
earlier, we get the following plot shown in Figure 24. From
this plot, the conclusion can be made that if the model is
a good enough representation of the physical system, the
system reaches a terminal velocity below the thresholds at
which skull fractures start occurring after approximately
2.1 seconds. Another observation that can be made is that
it before the falling velocity converges to a stable falling
speed, the UAV has been falling for at least 13.5 meters.
This means that if we assume a minimum flying height of
20 meters, a safety margin of 33.5% is introduced, and the
maximum response time of the parachute deploy time is
increased to 0.6 seconds.

Figure 24: Object velocity and impact energy during free fall includ-
ing a parachute

14

5.4. Transfer-ability
The test flights were performed as described in Sub-

section 4.5, and 12 tests were performed, of which three
tests were performed with the undamaged propeller and
two tests each with the four damaged propellers D1 - D4.
The tests performed with the propeller D2 were severely
limited in duration because the damaged propeller caused
unstable behaviour in the UAV during flight. One of the
tests after recording only lasted about 1.5 seconds, and
the other stopped after approximately 10 seconds. On
flight with the D3 propeller was also shorter and lasted
only around 7.5 seconds. This instability might have
been prevented by better ESC PID tuning or flight PID
controller tuning, but this was outside of the scope of
expertise during this research. The reduced sample set
can be seen in the results described below.

Table 7 on page 17 shows the maximum value, mean
and standard deviation based on the normalized error
between the prediction and measurement obtained during
live flight. From these measurements, it can be seen that
there is a significant difference between the unbroken and
broken propellers. Unlike the data obtained in the static
propeller setup, the propeller labelled D2 has significant
differences in all measurements and not only significant
or small differences in most measurements. The mean
normalized error for the power of the propeller labelled
D2 even exceeds that of the propeller labelled T by a
factor of 9.6.

Figure 26 on page 19 shows the plots for normalized
error for RPM, Power and Temperature over time. The
RPM plot shows that no simple classification can be per-
formed similarly to the results shown in Subsection 5.2.
However, this is where the results show that if we look
at the power and temperature graphs, it can be seen that
classification or fault diagnosis can be performed by sim-
ple thresholding. An example threshold has been added
to these plots as a striped red horizontal line labelled ’E’.
The normalized error data for the propeller labelled T is
significantly closer to 0 in these graphs.

5.5. Discussion
In the first part of this Section, it was shown that

several types of neural network architectures could be
used to create the prediction model. The RNN network
architecture performed best with the LSTM network
architecture as a close second. However, the LSTM
network architecture is much more resource intensive and
thus should not be considered even if it would be slightly
better than the RNN network architecture.

The results that are obtained through the static mea-
surement setup show that it should be possible to perform
fault diagnosis, but the methodology is not straight for-
ward as expected at the start of this thesis project. The

normalized error plots of the static input show that when
the motor speed set-points are in the higher part of the
spectrum, the damaged propeller labelled D2 can clearly
be distinguished. However, the other plots show that no
simple measure can be used for classification. Based on
the Maximum, Mean and Standard deviation, fault diag-
nosis may still be performed but will require additional
research.

The timing requirements are met with a factor of
33.2, an approximation of maximum network size is also
considered, and a mathematical expression is given to
calculate the number of MAI instructions performed for a
specific network size.

During test flights, the results showed high potential
where the power and temperature normalized error plots
showed that simple thresholding techniques can be used
to perform fault diagnosis. Compared to the static input,
these results are much better. It can be assumed that
the input signals generated by the flight controller are
in a favourable range as to the generated training data.
The accuracy evaluation was also performed on relatively
dynamic data in the form of ramps and steps; however
the flight controller generates a much less dynamic input.
Because of the limited knowledge of ESCs and flight
controller tuning, the test data was limited, and thus,
further research will need to be done into the stability of
the data.

It can also be noted the processing time for the predic-
tion model is much shorter than the sampling time of the
ESC, but a delaying factor is introduced by filtering the
input data. The processing platform and ESCs used dur-
ing this research are off-the-shelf products. It is expected
that hardware created explicitly for this purpose would
significantly outperform the system designed during this
research.

6. Conclusion

To finalise this research, The proposed research ques-
tions are reviewed in Subsection 6.1 and potential future
work is presented in Subsection 6.2.

6.1. Research questions
First, in this Subsection, the sub research question pro-

posed back in Section 1 are addressed. After which, the
main research question will be addressed.

• How accurate does a prediction model have be met to
preform fault diagnosis reliably?

For a UAV to detect failure and respond accordingly,
reliability is essential. As can be seen from the calculation
in Subsection 5.3, a falling UAV turns into a dangerous
object quickly. Given a limited allotted response, it can
therefor be assumed that a very high detection rate (close

15

to 100%) is required. In other use cases where the risk
is lower and the allotted response time is longer, a near
100% detection might not be required.

The essence of this research question refers to reliability,
but as described above, the system’s reliability depends
on the use case. During this research, it is assumed that
UAVs are used for civil applications. Thus, the risks of
collateral damages are much higher, and the very high
detection rates mentioned earlier are required.

• What timing constraints have to be satisfied to meet
the required reliability?

Regarding timing constraints, as discussed in Subsection
4.4, there are two topics to consider. The processing
time of each sample and the response time of the system.
When the processing frequency of the prediction model is
slower than the sensor’s sample rate, only multiples of the
maximum sample rate will be used, inherently increasing
the response time of the fault detection. The response
time has a lower bound of at least the processing time of
the system and an upper bound potentially introduced by
filtering.

The timing constraints are a product of the use case
and the allotted time for response. The example given
in Subsection 5.3 allows for a 0.6 second response time
provided that the UAV flies at least 20 meters above
objects that could potentially be harmed. In other use
cases where the UAV flies much higher, this maximum
response can be increased further.

• Can a processor based solution be used to meet the
timing and reliability constraints?

In Subsection 5.3, it is explained that the processor-based
RNN prediction model developed during this research runs
on an RPI4B model runs at a factor of 33.2 faster than
state-of-the-art ESC maximum sampling rate. From the
results in Subsection 5.4 though limited data has been
analysed thusfar, it can also be concluded that the reli-
able detection of damaged propellers during flight is also
possible using simple classification methods such as thresh-
olding.

• To what extend can neural network based prediction
models be used to reliably perform real-time fault
diagnosis of UAV actuators on component level on
board and in real-time?

Based on the previous research questions, it can be
concluded that given some limited testing data, it is
possible to perform fault diagnosis of UAV actuators on
board and in real-time. It is to be noted that during the
hand-flown test flights presented in Subsection 5.4, the
flight controller’s input data was relatively non-dynamic.

If the input data in other use-cases has a more, then based
on the results shown in Subsection 5.2 we can conclude
that the prediction model used during this research is not
reliable enough.

6.2. Future work
Based on the results, discussion and conclusion the

following topics are proposed as future work:

Classification

Data from live flights have shown that simple classifi-
cation such as thresholding would suffice for reliable fault
diagnosis. However, data obtained through testing on
the static propeller setup has shown that more advanced
classification methods would be required when the motor
speed set-points are more dynamic.

Customized sampling hardware

The output quality of a system can only ever be as
good as the quality of its input. Though excellent speed
controllers, the state-of-the-art ESCs used during this
research were not built with fault diagnosis based on
sampling data in mind. Better quality sampling could
significantly improve the reliability and response time.

Improvement of the prediction model, using more
varied training data

Based on the results shown in Subsection 5.2, the
prediction model performed poorly at correctly predicting
the system’s output whenever the motor set-points have
a dynamic nature. The input generated during the
training phases consists of only constant, ramp, step and
randomized data. However, training data based on live
flights generated by a flight controller was not considered.

Improvement of the prediction model, using training
optimization

During the training process, a procedure involved
picking the network sizes and architectures by hand. Op-
timization algorithms such as AutoKeras might prove to
outperform this process. Different training optimization
algorithms and parameters will also be considered in
future work.

Extend use cases

During this research, and especially due to time con-
straints, only the surface of UAV motor fault diagnosis
on component level was touched. It is to be researched
whether the fault diagnosis system is still reliable in dif-
ferent use cases such as physical interaction or a change in
system dynamics such as package delivery.

16

max mean stdev
rpm

T 0.001114 0.0004867 0.0000874
D1 0.001126 0.0004672 0.0000825
D2 0.002202 0.0008750 0.0004501
D3 0.002345 0.0006167 0.0001685
D4 0.001323 0.0004134 0.0000960

power
T 0.092911 0.0115844 0.0083384
D1 0.105042 0.0144945 0.0078959
D2 0.113306 0.0575010 0.0348189
D3 0.111283 0.0168913 0.0050223
D4 0.105499 0.0186164 0.0067951

temp
T 0.001533 0.0002370 0.0001552
D1 0.001004 0.0002159 0.0001376
D2 0.009960 0.0043048 0.0041692
D3 0.001423 0.0001931 0.0001562
D4 0.001011 0.0001349 0.0001389

Table 4: constant input normalized error between prediction and
measurement

max mean stdev
rpm

T 0.002136 0.001054 0.000461
D1 0.001896 0.001036 0.000378
D2 0.006038 0.002357 0.001639
D3 0.003237 0.001632 0.000776
D4 0.003383 0.001395 0.000814

power
T 0.147440 0.080936 0.029019
D1 0.154980 0.083917 0.031979
D2 0.301802 0.131455 0.059312
D3 0.163149 0.090605 0.033384
D4 0.159425 0.096552 0.027612

temp
T 0.002172 0.001490 0.000349
D1 0.001533 0.000708 0.000200
D2 0.013349 0.003710 0.003778
D3 0.002998 0.001165 0.000566
D4 0.002067 0.000965 0.000274

Table 5: Ramp input normalized error between prediction and mea-
surement

max mean stdev
rpm

T 0.002637 0.001209 0.000550
D1 0.003098 0.001232 0.000623
D2 0.009770 0.002982 0.002566
D3 0.007304 0.001915 0.001393
D4 0.003638 0.001402 0.000842

power
T 0.173714 0.051949 0.045161
D1 0.168963 0.048598 0.043467
D2 0.227429 0.079839 0.054583
D3 0.183345 0.050118 0.041628
D4 0.177913 0.049898 0.043880

temp
T 0.002104 0.001142 0.000353
D1 0.001533 0.000834 0.000362
D2 0.015572 0.002739 0.003792
D3 0.005129 0.001070 0.000846
D4 0.001743 0.000766 0.000383

Table 6: Step input normalized error between prediction and mea-
surement

max mean stdev
rpm

T 0.005 0.0013 0.0009
d1 0.0061 0.0016 0.0012
d2 0.0106 0.0029 0.0019
d3 0.0045 0.0015 0.0009
d4 0.0064 0.0018 0.0013

power
T 0.0506 0.0217 0.0104
d1 0.1066 0.0417 0.0128
d2 0.3264 0.2084 0.0438
d3 0.1126 0.0926 0.0083
d4 0.1998 0.1174 0.0268

temp
T 0.0035 0.0023 0.0007
d1 0.0041 0.0034 0.0003
d2 0.01 0.0116 0.002
d3 0.0063 0.0057 0.0007
d4 0.0111 0.0086 0.0017

Table 7: live flight normalized error between prediction and mea-
surement

17

0 200

0.0

0.5

1.0

1.5

2.0

2.5

×10−3 Static input

T
D1
D2
D3
D4

0 100

0

2

4

6

8

×10−3 Ramp input

T
D1
D2
D3
D4

0 200 400

0.00

0.25

0.50

0.75

1.00

1.25

×10−2 Step input

T
D1
D2
D3
D4

(a) Normalized error for RPM

0 200

0.00

0.25

0.50

0.75

1.00

1.25

×10−1 Static input

T
D1
D2
D3
D4

0 100

0

1

2

3

4

×10−1 Ramp input

T
D1
D2
D3
D4

0 200 400

0

1

2

3

4

×10−1 Step input

T
D1
D2
D3
D4

(b) Normalized error for Power

0 200

0.0

0.2

0.4

0.6

0.8

1.0

×10−2 Static input

T
D1
D2
D3
D4

0 100

0.0

0.5

1.0

1.5

2.0

×10−2 Ramp input

T
D1
D2
D3
D4

0 200 400

0.0

0.5

1.0

1.5

2.0

×10−2 Step input

T
D1
D2
D3
D4

(c) Normalized error for Temperature

Figure 25: Measurement data on the propeller setup
18

0 200 400 600 800 1000 1200 sample
0.000

0.002

0.004

0.006

0.008

0.010

0.012

no
rm

al
iz

ed
er

ro
r

T
D1
D2
D3
D4

(a) Normalized error for RPM

0 200 400 600 800 1000 1200 sample
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

no
rm

al
iz

ed
er

ro
r

T
D1
D2
D3
D4
E

(b) Normalized error for Power

0 200 400 600 800 1000 1200 sample
0.000

0.005

0.010

0.015

no
rm

al
iz

ed
er

ro
r

T
D1
D2
D3
D4
E

(c) Normalized error for Temperature

Figure 26: Measurement data during live flight
19

References
[1] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Al-

maita, I. Khalil, N. S. Othman, A. Khreishah, M. Guizani, Un-
manned aerial vehicles (uavs): A survey on civil applications
and key research challenges, Ieee Access 7 (2019) 48572–48634.

[2] D. Tezza, M. Andujar, The state-of-the-art of human–drone
interaction: A survey, IEEE Access 7 (2019) 167438–167454.
doi:10.1109/ACCESS.2019.2953900.

[3] A. Y. Mersha, Towards the first and Best EU-approved Au-
tonomous Security drone for BVLOS flighT (The BEAST),
2019.

[4] L. Marconi, F. Basile, G. Caprari, R. Carloni, P. Chiacchio,
C. Hurzeler, V. Lippiello, R. Naldi, J. Nikolic, B. Siciliano, et al.,
Aerial service robotics: The airobots perspective, in: 2012 2nd
International Conference on Applied Robotics for the Power In-
dustry (CARPI), IEEE, 2012, pp. 64–69.

[5] A. Y. Mersha, On autonomous and teleoperated aerial service
robots, Lateral 12 (2014) y0u.

[6] E. union law, Commission implementing regulation (eu)
2019/947 of 24 may 2019 on the rules and procedures for the
operation of unmanned aircraft (text with eea relevance.) [cited
09.09.2021].
URL https://eur-lex.europa.eu/legal-content/EN/TXT/PDF
/?uri=CELEX:32019R0947from=EN

[7] W.-H. Lee, C.-G. Park, A fault detection method of redun-
dant imu using modified principal component analysis, Interna-
tional Journal of Aeronautical and Space Sciences 13 (3) (2012)
398–404.

[8] Z. Tu, F. Fei, M. Eagon, X. Zhang, D. Xu, X. Deng, Redundan-
cyfree uav sensor fault isolation and recovery, arXiv preprint
2018 (1812).

[9] S. Sun, G. Cioffi, C. De Visser, D. Scaramuzza, Autonomous
quadrotor flight despite rotor failure with onboard vision sen-
sors: Frames vs. events, IEEE Robotics and Automation Letters
6 (2) (2021) 580–587.

[10] DJI, Dji [cited 17.09.2021].
URL https://www.dji.com/

[11] D. Volt, Spraying drone [cited 17.09.2021].
URL https://www.dronevolt.com/en/drone-volt-services-en

[12] Aerialtronics, Aerialtronics [cited 17.09.2021].
URL https://www.aerialtronics.com

[13] A. V. Shelley, A model of human harm from a falling unmanned
aircraft: Implications for uas regulation, International Journal
of Aviation, Aeronautics, and Aerospace 3 (3) (2016) 1.

[14] G. K. Fourlas, G. C. Karras, A survey on fault diagno-
sis methods for uavs, in: 2021 International Conference on
Unmanned Aircraft Systems (ICUAS), 2021, pp. 394–403.
doi:10.1109/ICUAS51884.2021.9476733.

[15] R. Da Costa, Q. Chu, J. Mulder, Reentry flight controller design
using nonlinear dynamic inversion, Journal of Spacecraft and
Rockets 40 (1) (2003) 64–71.

[16] S. Sun, M. Baert, B. S. Van Schijndel, C. De Visser, Upset
recovery control for quadrotors subjected to a complete rotor
failure from large initial disturbances, in: 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), IEEE,
2020, pp. 4273–4279.

[17] P. Lu, E.-J. van Kampen, Active fault-tolerant control for
quadrotors subjected to a complete rotor failure, in: 2015
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2015, pp. 4698–4703.

[18] B. Wang, Z. Wang, L. Liu, D. Liu, X. Peng, Data-driven
anomaly detection for uav sensor data based on deep learning
prediction model, in: 2019 Prognostics and System Health Man-
agement Conference (PHM-Paris), IEEE, 2019, pp. 286–290.

[19] J. Fu, C. Sun, Z. Yu, L. Liu, A hybrid cnn-lstm model based
actuator fault diagnosis for six-rotor uavs, in: 2019 Chinese
Control And Decision Conference (CCDC), IEEE, 2019, pp.
410–414.

[20] D. Liu, Z. Wang, S. Wang, Y. Pang, L. Liu, Uav sensor data
anomaly detection using predictor with uncertainty estimation
and its acceleration on fpga, in: 2018 IEEE International Instru-

mentation and Measurement Technology Conference (I2MTC),
IEEE, 2018, pp. 1–6.

[21] R. C. Avram, X. Zhang, J. Muse, Quadrotor actuator fault di-
agnosis and accommodation using nonlinear adaptive estima-
tors, IEEE Transactions on Control Systems Technology 25 (6)
(2017) 2219–2226.

[22] H. Zhang, Q. Gao, F. Pan, An online fault diagnosis method
for actuators of quadrotor uav with novel configuration based
on imm, in: 2020 Chinese Automation Congress (CAC), 2020,
pp. 618–623. doi:10.1109/CAC51589.2020.9326877.

[23] S.-C. Wang, Artificial neural network, in: Interdisciplinary com-
puting in java programming, Springer, 2003, pp. 81–100.

[24] B. Yegnanarayana, Artificial neural networks, PHI Learning
Pvt. Ltd., 2009.

[25] A. D. Rasamoelina, F. Adjailia, P. Sinčák, A review
of activation function for artificial neural network, in:
2020 IEEE 18th World Symposium on Applied Machine
Intelligence and Informatics (SAMI), 2020, pp. 281–286.
doi:10.1109/SAMI48414.2020.9108717.

[26] K.-E. P. Sang-Gu LEE with Jae Hwa LEE, Yoonmee HAM,
Introductory Mathematics for Artificial Intelligence, 2021.

[27] Wikipedia, Connectionism [cited 08.11.2021].
URL https://en.wikipedia.org/wiki/Connectionism

[28] L. R. Medsker, L. Jain, Recurrent neural networks, Design and
Applications 5 (2001) 64–67.

[29] R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of train-
ing recurrent neural networks, in: International conference on
machine learning, PMLR, 2013, pp. 1310–1318.

[30] researchgate, The comparison between recurrent neural network
(rnn) and feed-forward neural network (ffnn). it demonstrates
in ffnn there is only one direction for the data to move, whereas
in rnn there is a loop. [cited 08.11.2021].
URL https://www.researchgate.net/figure/The-comparison-
between-Recurrent-Neural-
Network-RNN-and-Feed-Forward-Neural-
Network f ig1338672883

[31] S. Hochreiter, J. Schmidhuber, Long short-term mem-
ory, Neural Computation 9 (8) (1997) 1735–1780.
doi:10.1162/neco.1997.9.8.1735.

[32] UAVCAN, list of standard data types [cited 01.02.2022].
URL https://legacy.uavcan.org/Specification/7._List_of
_standard_data_types/status-2

[33] R. Dey, F. M. Salem, Gate-variants of gated recurrent unit
(gru) neural networks, in: 2017 IEEE 60th International Mid-
west Symposium on Circuits and Systems (MWSCAS), 2017,
pp. 1597–1600. doi:10.1109/MWSCAS.2017.8053243.

[34] Z. Wang, Y. Ma, Z. Liu, J. Tang, R-transformer: Recur-
rent neural network enhanced transformer, arXiv preprint
arXiv:1907.05572 (2019).

[35] H. Jin, Q. Song, X. Hu, Auto-keras: An efficient neural architec-
ture search system, in: Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining,
2019, pp. 1946–1956.

[36] S. Lawrence, C. L. Giles, A. C. Tsoi, What size neural network
gives optimal generalization? convergence properties of back-
propagation, Tech. rep. (1998).

[37] HolyBro, Holybro x500 v1 [cited 21.01.2022].
URL http://shop.holybro.com/x500-kitp1180.html

[38] Zubax, Zubax myxa [cited 24.01.2022].
URL https://shop.zubax.com/collections/motor-contr-
ollers/products/zubax-myxa?variant=12528945496163

[39] P. autopilot, Px4 user guide [cited 24.01.2022].
URL https://docs.px4.io/master/en/flight_controller/pix
hawk4.html

[40] Zubax, Zubax babel [cited 24.01.2022].
URL https://shop.zubax.com/products/zubax-
babel?_pos=1_
sid=b3a9b92db_ss=rvariant=6012823404573

[41] raspberri pi, Raspberrypi4b [cited 30.06.2022].
URL https://www.raspberrypi.com/products/raspberry-pi-
4-model-b/

20

[42] Z. Zhang, Improved adam optimizer for deep neural net-
works, in: 2018 IEEE/ACM 26th International Symposium
on Quality of Service (IWQoS), 2018, pp. 1–2. doi:10.1109/I-
WQoS.2018.8624183.

[43] D. W. MacDougal, Galileo’s great discovery: How things fall,
in: Newton’s Gravity, Springer, 2012, pp. 17–36.

[44] F. C. P. Manufacturer, Fruity chutes promotion video [cited
13.08.2022].
URL https://www.youtube.com/watch?v=6YrCD23PA-
At=17sab_channel=FruityChutes-ParachuteManufacturer

21

