
MSc Thesis: Developing a
Recommendation Algorithm for Patients

using the Healthentia Platform

Alex Bujorianu
Business Information Technology: Data Science

University of Twente
Student no. s2451980

a.bujorianu@student.utwente.nl

Prof. Dr Peter Lucas, MD
First Supervisor

EEMCS, University of Twente
p.j.f.lucas@utwente.nl

Saskia Kelders, PhD
Second Supervisor

BMS, University of Twente
s.m.kelders@utwente.nl

Harm op den Akker, PhD
Industry Supervisor
Innovation Sprint

hopdenakker@innovationsprint.eu

September 9, 2022



Executive Summary

The purpose of this work is to develop a high-level recommendation algorithm
that provides medical advice to users of the Healthentia Virtual Coaching plat-
form. The algorithm is tasked with choosing the most relevant recommendations
from a set of 11 possible recommendations. For example, a patient that suffers
from obesity may be told to eat less, consume more fibre and exercise more. The
algorithm must not provide generic or irrelevant advice, but should take into ac-
count data about the patient and choose only the most relevant recommendations.
Formally, this is treated as a multi-label classification problem.

Training data is generated using a proprietary simulation part-developed by
the author, and manually labelled. A variety of machine learning algorithms are
trained and their performance evaluated on the training set using cross-validation.
In addition, a “knowledge algorithm” is created by formalising domain knowledge
rules. The results indicate that the knowledge algorithm performs the best.

Additionally, a number of practical concerns are also discussed; the knowledge
algorithm is the best option in terms of development effort (also called time to
Minimum Viable Product), modifiability, and explainability. It also has a fast
prediction time, making it very scalable. The problem of data collection and
imputation is also considered: the advantage of the knowledge algorithm is that
it can handle missing data relatively easily, without requiring the use of multiple
models for each missing feature.

In terms of its contribution to the literature, this work emphasises the fact
that rules-based knowledge algorithms can perform better than learning-based
approaches, provided that the problem is well-understood by domain experts and
formalisable. Given the disadvantages of supervised learning-based approaches –
sensitivity to unbalanced data, labelling requirements, overfitting, training/opti-
misation time, and sensitivity to missing data – knowledge-based algorithms pro-
vide a compelling alternative. This is particularly true of the medical field, where
labelling often needs to be done by experts, and data is frequently incomplete.

Keywords: eHealth, Supervised Machine Learning, Domain Knowledge, Rules-
based Algorithms, Simulation
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List of Acronyms

• BMI : Body Mass Index. The patient’s weight divided by the square of their
height.

• CHD : Coronary Heart Disease. An obstruction of the arteries by cholesterol
plaques.

• COPD : Chronic Obstructive Pulmonary Disease. A chronic inflammatory
disease of the lungs that causes obstruction.

• DEXA : Dual-Energy X-ray absorbptiometry. A type of X-ray that is used
to measure a patient’s body fat.

• DHIs : Digital Health Interventions.

• GI : Glycemic Index. A measure of how rapidly carbohydrates are converted
into blood glucose. Values range from 0 to 100.

• GIGO : Garbage In Garbage Out

• GL : Glycemic Load. The amount of carbohydrates multiplied by the
glycemic index determines how much blood sugar levels will rise.

• HDL : High Density Lipoprotein. A type of cholesterol with a protective
effect on the heart.

• JSON : Javascript Object Notation. A data storage format.

• KNN : K nearest neighbours. A type of distance-based classification algo-
rithm.

• LBFGS : Limited-memory BFGS. An alternative to stochastic gradient de-
scent optimisation.

• LDL : Low Density Lipoprotein. The “bad” kind of cholesterol that causes
heart disease.

• LLOC : Logical Lines of Code. The number of programming statements in
a file of code (as opposed to comments).

• MAP: Maximum a Posteriori. A statistical technique that involves the cal-
culation of a conditional probability given a model weighted by a prior belief
about the model. It is used by multi-label K-nearest neighbours.
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• MCAR : Missing Completely at Random. The missing values are indepen-
dent of other variables.

• ML : Machine Learning. An automated way of mapping inputs to correct
target outputs.

• MLKNN : Multi-Label K nearest neighbours.

• MRI : Magnetic Resonance Imaging.

• MVP : Minimum Viable Product.

• NHS : National Health Service (of the UK)

• ReLU : Rectified Linear Unit. A type of activation function used in deep
neural networks. ReLU(x) = x if x is greater than 0 else 0.

• SARIMA : Seasonal Autoregressive Moving Average. A time-series model
used to predict seasonal data.

• SGD : Stochastic Gradient Descent. A numerical optimisation method that
is used to find the best weights of a neural network.

• SQL : Structured Query Language. A language for querying databases.

• SVM : Support Vector Machine. A type of classification algorithm.

• TAM: Technology Acceptance Model. A psychological model that represents
the person’s intention to use a technology. It is typically used by researchers
in the IT domain.

• UTAUT: Unified Theory of Acceptance and Use of Technology: A competi-
tor to TAM that focuses on different psychological concepts.
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1 Introduction

The Healthentia mobile application, developed by Innovation Sprint, is a class-I
medical device that is currently used by doctors to collect data for clinical trials
(figure 1). The purpose of this work is to investigate how the planned Virtual
Coaching features could be delivered by the Healthentia app. Virtual Coaching is
a new field that combines technology, medicine and applied psychology in order
to deliver personalised lifestyle advice; it usually encompasses the areas of diet,
exercise and sleep; may incorporate mental health; and may also include more
specialised advice for patients with chronic conditions like diabetes, heart disease
and Chronic Obstructive Pulmonary Disease (COPD). The idea behind Virtual
Coaching is that the program can interact with the user in a similar way to a
personal trainer or a doctor. The app not only gives advice, but it may also hold
“conversations” with the user, or provide encouragement. The advice comes in
two forms: day-to-day advice, and general advice that is meant to be followed
for a longer period of time. So, for example, the patient may receive the advice
to consume more fibre; the day-to-day algorithm may suggest eating oats for
breakfast. One can also think of these algorithms as carrying out “diagnosis” and
“treatment plan”.
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Figure 1: Screenshot of the Healthentia mobile application on Android.

For the purpose of my thesis, I am concerned only with developing the long-
term diagnostic part of the program, which I term the recommendation algorithm.

What is the rationale for building a digital health intervention system, like vir-
tual coaching? The burden of chronic disease has increased dramatically through-
out the world since 1970. The majority of chronic diseases are caused, at least in
part, by lifestyle factors, and are therefore, to some extent, preventable (see [1] for
a discussion). Examples include diabetes; atherosclerosis; a weak heart muscle;
COPD; skin cancer; obesity-related morbidities (e.g. lower back pain) and to a
lesser extent, cancers of all types. Obesity and diabetes, in particular, have seen
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a dramatic rise in prevalence over the past decades: obesity has gone from 13%
in 1970 to 36% in 2010 [2]. It has since increased to 41%. [3] Diabetes has been
following a similar trend [4].

The key to tackling these chronic diseases is behaviour: eating less, eating
better, and moving more. Unfortunately, it is very hard to get people to change
their behaviour. This is because there are powerful physiological mechanisms
at play that make it difficult to lose weight and cut sugar consumption. For
example, Bray presents a number of physiological arguments for why sugar should
be considered addictive [5]. Jastreboff et al. have shown that teenagers who are
obese have a different brain response to sugar when compared to teenagers who
are of normal weight [6]. Furthermore, Drenowski [7] has shown that naxolone can
inhibit binge-eating. Although it may be tempting to think that pharmacological
interventions can substitute for behavioural change (the colloquial “magic pill”)
the unfortunate reality is that appetite suppressants have nasty side-effects on
cardiovascular health [8, 9]. Moreover, they are not effective enough on their own
to prompt a substantial improvement in weight; at best, they can be coupled with
behavioural interventions to provide encouraging weight loss in the short-term.

Digital health intervention systems (DHIs) are promising because they may be
more effective than traditional approaches at persuading people to make changes,
owing to two characteristics. Firstly, DHIs have the characteristic of being always-
on, whereas a patient might only see a doctor once a month. Secondly, DHIs
can adapt to user input and behaviours, making them a type of personalised
healthcare. While in principle doctors can do the same thing with patients they
see often, in reality, the large number of patients makes it difficult for them to do
this in practice. Research has shown that personalised healthcare can sometimes
be more effective than one-size-fits-all approaches. [10]

Even if automated recommendation algorithms have only a modest impact
in reducing the incidence of new chronic diseases, as well as managing existing
conditions, the economic savings are huge. The NHS spends [11] £10 billion
pounds a year on treating diabetes-related morbidity – that’s nearly 10% of its
entire budget. If a recommendation algorithm can prevent 10% of diabetes cases
then, over time, it could save the NHS £1 billion a year. When considered on
a global scale, electronic health intervention systems like virtual coaching are a
multi-billion euro industry: McKinsey estimates that the sector is worth $350
billion. [12]

It is important to note that the numbers above are only rough estimates, and
should be treated with a tablespoon of salt. So far, there is very limited data
quantifying the cost savings of eHealth interventions, and this is partly because
of methodological challenges [13]. The eHealth sector is very diverse in terms of
technologies used, the diseases being tackled, and the outcome measures; it is also
changing rapidly. In other words: at present, nobody really knows how effective

9



virtual coaching is at saving money. I use the potential financial savings as a
justification for this proof-of-concept work, but I do not attempt to quantify how
effective this system would be and how that would translate into financial savings.
That is an area for future research.

One of the main technical questions addressed by this work is whether the
approach to giving recommendations should be based on Machine Learning, or
whether a so-called “knowledge-based algorithm” is the better choice. This is a
design decision with important consequences for how well the algorithm will work,
how easy it is to understand, and how much time is required to develop it.

What is a knowledge algorithm, and how does it differ from the machine learn-
ing approaches that are common today? The difference lies in how a knowledge
base is acquired. Using machine learning, the knowledge is “learned” from the
data. For example: if we have a group of patients that are labelled healthy, and
another group that are labelled unhealthy, and only one feature, BMI, the ML
algorithm can infer that patients with a BMI greater than 30 are unhealthy, and
those with a BMI less than 30 are healthy. Very simple algorithms like linear
perceptron and nearest-neighbours are good at making this kind of classification.

With a knowledge-based algorithm, however, we already know that healthy
patients have a BMI less than 30 because doctors have documented this fact in
the literature. This classification can therefore be performed with a simple if-else
statement.

The advantage of machine learning is two-fold. Firstly, it does not require the
programmer to have deep domain knowledge about the problem area; the pro-
grammer’s only responsibility is to choose the right algorithm that will arrive at
a good solution. Knowledge-based algorithms, on the contrary, rely on a deep
understanding of the underlying problem [14]. Thus, ML is advantageous when
the knowledge of the problem area does not exist. Secondly, even when the knowl-
edge is available, it is not necessarily easy to formalise in a classical rules-based
algorithm. For example, interaction effects are not easy to model, and they may
not be (fully) known even by domain experts. Machine Learning approaches, on
the other hand, are good at handling this.

However, knowledge-based algorithms have a number of practical advantages.
They do not require labelled data (so-called training sets) – which is a major plus,
as labelling can take a long time. Knowledge-based algorithms are less sensitive to
unbalanced data, whereas ML algorithms tend to perform well on more frequent
labels and poorly on less frequently-encountered labels. Nevertheless, it was not
possible to know a priori whether a knowledge algorithm would perform better
than a ML algorithm.

Regardless of what approach is chosen, whether it be machine learning or
a knowledge-based algorithm, the architecture of the recommender system will
basically be the same. What does this mean? It means that the choice of algorithm
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for the classification task does not affect the choice of algorithm for the coaching
task, since the interface stays the same. It is useful to refer to figure 5.

Goals The recommendation algorithm should fulfill the following criteria in or-
der to be considered a good solution:

1. Its performance must match, or at least approach, that of a human. For an
indication of how well a human performs, see the section titled Interannota-
tor reliability.

2. It must be explainable to humans, in order for doctors to entrust the algo-
rithm with their patients. Why did the algorithm make the decision that it
did?

3. It must be cost-effective to develop in a reasonable amount of time, e.g. a
few months. Ehealth is a fast-moving field and the firm’s budget is limited.

4. It must have low latency (less than 0.1ms per patient) and be able to handle
a reasonably large number of users, anywhere from e.g. 10K to 100K users.
The algorithm is going to run server-side.

2 Related Research

Although a huge amount of work has been carried out to develop recommendation
algorithms, primarily by media giants like Netflix, Google and Amazon, the actual
implementation details of most of these algorithms are trade secrets. This is also
the case in the eHealth domain. The problem of multi-label classification is a
generally well-studied one, which is why I have chosen to use it; the difference lies
in the context. Most multi-label classification algorithms have been used for text
or movie categorisation (see e.g. [15], and [16]). They have not typically been
applied to medical uses. This is not necessarily an issue; there are a wide variety
of approaches used in the eHealth domain, and because the field is so new, many
of them are untested.

Stark et al. [17] conducted a thorough literature review on the state-of-the-art
in medical recommender systems. They included papers written after the year
2000 which were published in ACM Digital Library, IEEExplore, ScienceDirect,
Elsevier, John Wiley or Google Scholar. This resulted in a total of 52 papers; after
some more criteria were applied, the authors narrowed it down to 13 papers. What
is most interesting about this literature review is the wide variety of methods that
were used in each paper, which can be categorised into three main approaches. The
first, rules- and ontology-based algorithms, is similar to the knowledge algorithm
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that I develop in this thesis. The second approach is to use supervised machine
learning algorithms, like SVM and neural networks, which are also used in this
paper. The third approach focuses on unsupervised learning methods, though this
is primarily for feature engineering, i.e. the output of an unsupervised algorithm
is typically used as the input for a supervised learning algorithm. This study does
not directly provide input on the technical question being addressed, rather, it
illustrates the fact that many approaches are possible, and the choice of algorithm
is very situation-dependent.

The outcomes and disease types were extremely varied, but diabetes and drug
interactions were well-represented. In terms of software engineering, integration
challenges (that is, interoperability between different databases and systems used
in hospitals, especially legacy software) and scalability were identified as key prob-
lems. Indeed, the motivation for developing these algorithms in the first place is
usually to treat large numbers of patients for whom doctors have to prescribe
medications, as this can save valuable time. The IRS-T2D study [18] is a prime
example of this. Another motivation for developing these systems is to account
for the large number of medications that are available on the market; some may
are more appropriate for patients with certain conditions than others, and there
are often complex interaction effects between other medications, which are not
sufficiently well-understood by doctors.

The DiaTrack study [19] is particularly interesting, as it uses a more novel
approach: it searches for diabetes patients that are most similar to a patient, in
order to optimise the recommendations (drug selection and treatment regimen).
It does this not through conventional means like clustering algorithms, but us-
ing linked data, which is mainly useful for simplifying database design. Another
study, T-Recs [20], trained a decision tree classifier on tweets (from the Twitter
social media platform) to provide appropriate advice, taking into account patient
comorbidities, symptoms, duration, and sentiment. What’s unusual about this
study is both the source of data and the inclusion of sentiment analysis/NLP as
a higher-dimensional input.

Irrespective of the approach chosen, the basic challenges are the same: a large
number of patients requiring scalability; interoperability with different systems;
and the need to take into account complex interactions between the recommenda-
tions and patient characteristics. The first and third challenges are addressed in
this work as well. What the study also shows is that the best solution is highly
dependent on the problem, and there is no one-size-fits-all approach.
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3 Methods

This section covers a wide range of methods that were used for several tasks:
generating realistic data using a simulation; labelling said data; selecting the right
models; and optimising the models. Each subsection starts with a high level
overview and progressively becomes more detailed.

3.1 Generation of Synthetic Data

The Healthentia app is sold as a software service (SaaS) for doctors to collect
patient data with. As such, Innovation Sprint does not own the rights to the
data collected by their partners; they are considered data processors. Therefore, a
synthetic dataset had to be generated. In order to do this, a proprietary in-house
simulation was modified. The purpose of this section is to describe what data is
generated, how, and why. The simulated data had to fulfill three criteria:

Available. It must be possible for the data to be collected by the Healthentia
mobile app in some fashion, either through wearables or questionnaires. Sleep
duration and sleep quality can be determined using a Fitbit or similar device.
Some exercise data (e.g. number of steps, duration and intensity of exercise) can
also be obtained using these devices. Data about diet has to come from self-
reporting.

Realistic. The data has to be a good match, statistically, with real data, and
it must incorporate realistic relationships between variables, such as diabetes and
obesity.

Clear mapping. The data must make sense given our recommendations,
and individual input variables should map onto recommendations in a clear way.
(This criterion, if fulfilled, implies that a knowledge algorithm would perform well.)
Variables which are interesting to humans can be simulated, but such “nuisance”
variables should be removed before being passed to the recommender algorithm
– which is exactly what I do (see the get data function in the code). The same
applies to real data which collects variables of interest to researchers or patients.
The reason it is important to do this is because adding more variables to a ML
algorithm increases the number of parameters, and thus makes it harder to train.

The simulation creates patients and simulates their life for three months. Each
patient is independent from another (they do not interact). The simulation is
imperfect because it does not model long-term relations between variables. For
example: the patient’s intake of saturated fat does not determine their lifetime
risk of developing coronary heart disease (CHD). CHD occurs because of a process
called atherosclerosis, whereby plaques begin to accumulate in the major arteries,
caused by a combination of many Low-Density Lipoprotein (LDL) cholesterol par-
ticles and the inflammatory secretions of senescent cells. However, since we only
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simulated a relatively short portion of the patient’s lives, this was not a priority
to implement – atherosclerosis is a process that occurs over many years. Likewise,
it should be noted that a patient’s weight does not vary with their calorie intake
– patients with a high BMI are assumed to eat a large number of calories.

The patients may also start with chronic diseases, which are determined by
random draws at the beginning of the simulation, and considered incurable for
the remainder of the simulation. For example, some patients will be classed as
type-2 diabetics. This is based on their sex and BMI:

Underweight Healthy Weight Overweight Obese
Female 1.9% 1.9% 4.3% 10.7%
Male 0% 3.3% 6% 14.6%

Prevalence of diabetes by weight and sex. Source: Health Survey for England
combined data 2010–12. Joint Health Surveys Unit (Nat Cen Social Research &
UCL) 2014

Patients are also classed as having coronary heart disease (CHD) and the
likelihood is based primarily on their age, see figure 2.

Figure 2: Statistics used to calculate the likelihood of the patient having coronary
heart disease. [21]
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3.2 Visualisations

Figures 3 and 4 show the distribution of the patients’ weight and age, respectively.
For weight, I tried to model the worldwide prevalence of obesity, although the rate
of obesity varies between countries. In lieu of data about Healthentia users, I used
national statistics from European countries. The number of underweight people
is probably too high for a developed nation. The mean age of the patients is set
to 40, with a good representation of both very old and very young people. The
distribution of overweight and obese patients is important given that it directly
affects some of the recommendations. The height of patients is also taken into
account in the weight distribution, with taller people being on average 700g heavier
for every cm above the mean. [22]

Figure 3: Distribution of overweight and obese patients.
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Figure 4: Distribution of patient ages.

3.3 Sleep

For sleep, we generate data about both the duration of sleep in a day, and the
quality of sleep. The latter is a number between 0 and 1, which is a representation
of how well the patient slept. If a patient has sleep apnea, for example, the
quality of their sleep will be reduced by 40% (studies show that around 5% of
the population suffers from sleep apnea [23]). Anxiety also reduces sleep quality:
each point of anxiety reduces sleep quality by 2%. Anxiety is determined by a
random draw – some patients are naturally more anxious than others, with values
ranging from 1 to 10. If a patient is unemployed, their anxiety is increased by
50%; the proportion of unemployed people is configurable, and the default is 20%.
The patient’s sleep quality also varies day-to-day, based on factors like how much
stamina they had remaining when they finished the day.

Sleep quality is not easy to quantify; the numbers above are simply a repre-
sentation of a complex reality.

Variables like stamina, health and apnea are important, in that they determine

16



characteristics of the patient, but they are only used internally and not included
in the dataset. This is because sleep apnea is often not diagnosed (so the patients
don’t know they have it). Likewise, characteristics like stamina and health are
not known – they have to be inferred from other available data.

3.4 Diet

In terms of diet, we classify the foods the patient eats using the same guidelines
used by the Diet Widget of the Healthentia app. The foods are structured in a
tree, see the Appendix.

We want to classify the types of foods the patient eats. We are primarily
interested in what type of fats the foods contain: it is well-established that certain
saturated fatty acids, such as the ones found in meat, butter and palm oil increase
Low-Density Lipoprotein (LDL) cholesterol and lower High-Density Lipoprotein
(HDL) cholesterol; they also lead to other pathologies like fatty liver disease ([24]).
The LDL:HDL ratio is an important because low HDL and high LDL increases
the risk of coronary heart disease and stroke ([25]). Additionally, we also want
to know whether the patient’s diet contains enough fibre, since fibre is known to
promote weight loss, increase insulin sensitivity, reduce the chance of developing
colon cancer, and benefits heart health ([26]). The consumption of sugar is known
to increase triglycerides, promote weight gain, tooth decay, and metabolic diseases
([27]).

For diabetics, the Glycemic Load (GL) of the food is important—foods with a
low glycemic load do not lead to large spikes in blood sugar and can help control
both hyperglycemia and hypoglycemia. Foods that are low in carbohydrates have a
low GL, but even some foods that are mainly starchy – like many fruits, vegetables,
pulses and wholegrains – do not have a high GL because their Glycemic Index
(GI) is low. These foods are appropriate for diabetics to consume, and are even
recommended because of their high fibre content and ability to promote satiety.

We model each patient as being a healthy eater, a random eater, or an un-
healthy eater. Healthy eaters are concerned about their diet and will choose to eat
healthy foods while avoiding bad foods; unhealthy eaters tend to eat unhealthy
foods; and random eaters are indifferent, with a very wide variance in food pref-
erences. Not only do unhealthy eaters eat unhealthy foods, but they are also
more likely to eat more, as unhealthy foods tend not to promote satiety as well
as healthier foods. This characteristic is modelled as “gluttony” within the simu-
lation, with the values major overeater, minor overeater, and normal eater. The
following table shows the mean daily calorie intake of each type of eater. Gen-
erally, to maintain a healthy weight, women should eat 2000 kcal/day, and men
2500. The standard deviation equals 10% of the mean, which is based on the
literature. [28].
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Type of Eater Women Men
Normal eater 2000 2500

Minor overeater 2200 2750
Major overeater 2700 3300

3.5 Body Fat Percentage vs BMI

One of the things we did not model in the simulation was whether patients with
a high BMI are obese, or muscular; it is simply assumed that patients with a
high BMI are obese by definition. In the real world, this is not always the case,
with for example body builders. Body fat, on the other hand, is a more reliable
indicator of whether a patient is actually obese or not, and it can be combined
with BMI to give a more detailed picture of the patient’s health. Furthermore,
body fat percentage can detect patients who may appear be a of a good weight but
have low muscle mass due to a sedentary lifestyle. These patients are at increased
risk of infirmity and sarcopenia as they age [29]. Since such patients don’t carry
out sufficient strength training, the algorithm should still provide them with the
correct advice, however. [30]

There are a few reasons for this decision though. Firstly, although body fat per-
centage can be estimated using cheap devices that rely on bio-electrical impedance,
the results are not that reliable [31], and an accurate measure typically requires
sophisticated devices like DEXA, MRI or ultrasound (ibid). Body fat percentage
is not currently recorded by the Healthentia application. Secondly, the number
of people with high BMI but low body fat are a relatively small proportion of
the population. Finally, it is possible to workaround the issue by combining BMI
data with exercise data: patients who have a high BMI but carry out a lot of
strength training can be classified as not obese. For example, Hafthor Björnsson,
who played the Mountain in Game of Thrones, weighed 155kg when he fought
Eddie Hall [32], and with a height of 200cm, he had a BMI of 38.8 – well into the
territory of obesity. Yet his body fat was estimated at just 16.5% 1, which is in
the healthy range for men. [33]

Still, in an ideal world, body fat percentage should be simulated/recorded in
order to provide a better picture of the patient’s health, provided that the veracity
of the data is taken into account.

1No official data has been published, this data came from a website called BodyWHAT. But
since body fat percentage is easy to estimate from pictures, especially by professionals in the
fitness industry, this number can be considered reliable.
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3.6 Exercise

In terms of exercise, the patients can pick one of the following activities: run,
walk, hike, cycling, swimming, gym and dance. They carry out this activity for
a duration of time measured in minutes. This time is subdivided into sedentary,
light, moderate and very intensive exercise moments. Ideally, we would like to see
a patient that carries out a varied mix of exercises.

Different activities train the body in different ways. Core involvement is higher
in some activities and less in others: gym training involves a high degree of core
exercises (planks, crunches etc.); dance and swimming build core strength to some
extent, while hiking does not involve the core muscles very much. The level of core
involvement is treated as a percentage, and computed based on the type of exercise
carried out by the patient. In terms of strength training, working out at the gym
is considered 100% strength exercise; swimming and cycling are treated as 50%
strength, 50% cardiovascular; and the other exercises are considered cardiovascular
only.

Patients are classed into a number of phenotypes which affect the amount of
exercise they carry out. These are: athletic; normal; sleep lover and unfit. Within
these phenotypes, additional tweaks can be made, such as those that determine
the patient’s preference to working out indoors vs outdoors.

We considered simulating other parameters which could possibly be collected
by the Healthentia app, such as blood glucose levels, serum cholesterol, and LDL
count. However, this proved quite difficult, and I deemed that the time available
for the thesis was not sufficient to justify the effort of doing this.

3.7 Scope of Recommendations

There is a wide area of specificity in which the recommendations may fall under.
In this section, I clarify which “level of abstraction” the algorithm works on.
Think of the recommendations as a tree: we start with raw data at the root, we
formulate more specific recommendations as we go down the tree, and we finish
with day-to-day advice at the nodes.

Levels of abstraction:

• Level 0: raw patient data. This is the root of the tree.

• Level 1: More specific advice within that area, but still higher-level. So, for
example, a level 1 recommendation would be “patient needs to focus on core
strength”, or “patient needs to focus on reducing intake of high GL foods”.
This type of recommendation is memory-less. Formally, we treat this as
being a multi-label classification problem.

19



• Level 2: very specific, day-to-day advice, e.g. “eat some oats instead of
sugary cereals this morning” or “plank for 1 minute this afternoon”. This
advice can change regularly based on the patient characteristics and past
responses, so if a patient doesn’t like doing planks, the algorithm can suggest
crunches instead. This type of recommendation requires the algorithm to
“remember” patient responses. Giving recommendations at this level may
involve analysing time series: for example, we want to analyse the trend in
the patient’s daily exercise activity, and if it is statistically significant, we
can congratulate them for doing more exercise.

For my thesis, I focused on level 1. The Healthentia “virtual doctor” gives L1
advice, whereas the Healthentia “coaches” give L2 advice. So, for example, the
virtual doctor can give 3 recommendations, two of which are related to diet and
one which is sleep-related. The patient will then be asked to interact with the
diet coach and the sleep coach. If the patient disagrees with the recommendations
provided by the virtual doctor, they can change it.

The L1 advice changes over long periods of time, typically months; the L2
advice changes over days or weeks. The L2 advice needs to be evaluated for
medical accuracy; it has to be appropriate for the patient, and it also has to
prioritise the more important advice. It is personalised in the sense that it uses
patient data, and the advice changes at different points in time (months). But
it is not personalised to the same extent as L2 advice is; the Healthentia coaches
are designed to actually have a kind of conversation with the user. See 5 for a
diagrammatic representation.

The main advantage of decoupling L1 from L2 advice is that different ap-
proaches can be used. For L1 advice, it is possible to use machine learning by
treating the problem as one of multi-label classification: each patient is labelled
with 1–5 recommendations, and an algorithm is trained on the labelled dataset.
The L1 advice generated by my algorithm can then be used as input for a virtual
coaching algorithm that will be developed by my company at a later date.
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Figure 5: Data flow diagram of L1 and L2 algorithms.

Note that positive re-enforcement/support falls under L2 recommendations
and won’t be included in my list of L1 recommendations. This is not to say that
positive re-enforcement isn’t important, as research suggests it is. For example,
Appel et al. [34] found that patients who received support lost significantly more
weight than those who did not. Likewise, Matteson [35] found that positive re-
enforcement increased the amount of exercise that elderly patients carried out.

3.8 List of Recommendations

1. (Exercise) Patient should do more cardiovascular exercise.
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2. (Exercise) Patient needs to focus on core strength.

3. (Exercise) The patient needs to do more resistance training.

4. (Exercise) The patient needs to do more intense exercise.

5. (Diet) Patient should reduce their intake of unhealthy saturated fats.

6. (Diet) The patient should eat fewer sugary foods and drinks.

7. (Diet) The patient needs to eat foods with a low GL index and high fibre
content.

8. (Diet) Portion sizes need to come down.

9. (Sleep) The patient has to focus on getting more sleep.

10. (Sleep) The patient needs to improve the quality of their sleep.

11. Patient is healthy, does not need to do anything.

In total there are 11 possible recommendations from which the algorithm must
pick at least one and maximum 5. We initially chose a maximum of 3 recom-
mendations, because psychology research shows that people can only work on a
limited number of goals at a time (see [36] and [37]) – giving the patient too many
recommendation would overwhelm them. However, it was discovered that some
patients needed more than 3 labels; if the limit of 3 were enforced, it would make it
difficult for a machine learning algorithm to learn, since some labels would be cho-
sen arbitrarily. We decided to extend the limit to 5 when the patient had multiple
values that were very poor. See the labelling section for more information.

We only intend to give the patient at most 3 recommendations at a time in the
Healthentia app. The idea is that we give the patient time to focus on the first
three recommendations, and record their progress over time; if we are satisfied that
real changes have been made, we can call the algorithm at a later point in time to
re-evaluate the patient’s situation. The patient would then focus on the remaining
2 recommendations, or perhaps different ones will be needed. A person’s lifestyle
habits naturally change over time anyway, so the recommendations given by this
algorithm only represent a snapshot.

3.9 Labelling of the data

Labelling was carried out by multiple coders using Google Docs. The data was
colour-coded into red, green and amber, based on whether the patient met the
official guidelines published by public health authorities.
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Parameter Men Women
Saturated fats Less than 10% of energy intake Same

Fibre Minimum 31g per day Minimum 25g
Sugar Maximum 31g per day Maximum 25g

Exercise At least 150 minutes per week Same
BMI over 30 is obese; over 25 overweight Same

For strength training, less than 50 minutes per week was labelled red; values
between 50 and 75 were labelled amber; and values greater than 75 were labelled
green. This is computed as the product of proportion and duration.

For core exercise, the lower bound was 60 minutes per week (red), and the
upper bound 75 minutes (green), with amber for values in between.

The exact guidelines for labelling are included in the appendix. We had to be
strict about the labelling to ensure consistency. For example, we specified that a
patient could only receive 4 or 5 recommendations for values that were labelled
red, not amber. In hindsight, this was too strict, as a number of patients had
many amber variables, and it was difficult to choose.

3.10 Ranking of recommendations

We discussed the possibility of ranking the recommendations in order of impor-
tance. But this idea was rejected because it was hard to agree on which recom-
mendations should be considered more important than others. For example, if a
patient only sleeps 7 hours a day but is obese, can we say that increasing sleep is
more important than cutting down on calories? Furthermore, it is unlikely that
we would obtain good inter-annotator agreement, as we would be testing not only
which recommendations, and how many, but also in what order.

It should be noted that there is an implicit ranking of recommendations in
that not all recommendations are chosen if there are more than 3 amber values,
or more than 5 red.

Another possibility is to split the recommendations into two sets, with very
important recommendations in the first set, and less important recommendations
in the second set; this would generally correspond to whether the respective values
were coded red or amber. The order within these two sets would not matter. I
think this would be an improvement over the present solution, but due to time
concerns, it was not implemented (as a large number of patients would have to
re-labelled this way). It would also significantly complicate the machine learning
task, as it would become a multi-output problem.

23



3.11 Visualisation of labels

We can see that the data is very unbalanced. Recommendations 6, 7 and 9 are very
frequent, which makes sense as a large percentage of the population overeat sugar,
do not enough fibre and do not sleep sufficiently. Label 2 is completely unused,
which may be a consequence of how we modelled exercise in the simulation, as
all the patients who exercised did some amount of core training. This is not
necessarily realistic. Label 4 was only used once, though again this does not
necessarily reflect real data. Recommendation 11 is unsurprisingly rarely used,
since few patients are perfect.

Figure 6: Frequencies of the labels

3.12 Model Selection

A multi-label classification problem is inherently different from a standard multi-
class or binary classification problem in that the labels are not mutually exclusive.
This makes it challenging because most types of machine learning algorithms were
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designed with a simple classification problem in mind. There are a few different
ways to handle this.

The first is to use an algorithm that can is inherently capable of handling multi-
label data; a neural network with a sigmoid activation function in the output layer
is perfect for this, as each neuron corresponds to a label, and the neurons with the
highest probability can be chosen. For example, if neurons 3, 5, and 7 in the output
layer have probabilities 0.9, 0.75 and 0.7 respectively, while the other neurons have
probabilities below 0.5, we know that 3, 5 and 7 are the best recommendations
(and we are very sure about number 3). If 5 neurons have a high probability, then
we know the patient might need 5 recommendations. If only one neuron has a
high probability, we give them only one recommendation, and so on. Thus, the
neural network gives as an idea about the certainty of a prediction, in contrast to
some other algorithms like decision trees or SVM.

An adapted algorithm is where an algorithm that is not usually capable of
multi-label classification is adapted to do this. One such implementation is a K-
nearest-neighbours algorithm proposed by Zhang et al. named MLKNN. [15]. It uses
the Maximum A Posteriori (MAP) principle in order to take into account correla-
tions between labels. It does this by estimating prior and posterior probabilities
from the training set (based on frequency).

The second approach is called binary relevance, and the idea is to turn each
label into a binary classification problem. So if we have a list of 11 0/1 encoded
variables, we classify each one individually. This approach has the advantage of
being compatible with a wide range of algorithms, such as Support Vector Ma-
chine (SVM), logistic regression, decison trees and so on. However, this approach
is somewhat naive in that it does not consider correlations between labels. For ex-
ample, we know that labels 5, 6, and 7 are correlated because we model unhealthy
eaters as eating poorly in all three areas. In this category, KNN, decision trees
and SVM were used.

For KNN, the BRKNNClassifier was used. In general, KNN also has the ad-
vantage of giving us some idea of the certainty of a prediction because it allows
us to inspect the distances between points, unlike most decision trees, although it
is still a discriminative algorithm. For decision trees, I used the DecisionTree-

Classifier of sklearn. A random forest classifier was not considered because,
although it is less likely to overfit, it is harder to visualise and understand com-
pared to a simple decision tree. As we see in the results section, overfitting is not
a problem if a bit of pruning is done.

SVM is a model that generally performs very well on binary classification
problems. It is similar to a linear perceptron classifier in that it splits classes
using a straight line, the difference being that SVM calculates the line that is the
midpoint between the two classes. It would probably perform well on labels 1 and
9, since it is easy to determine whether those labels are relevant based on whether
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the patient does enough exercise and gets enough sleep. However, SVM is not
designed for multi-label classification, and it cannot take into account relations
between labels, e.g. if a patient does not do enough exercise in general, labels 2,
3, and 4 do not apply.

A third approach is called Label Powerset, and it transforms the problem into
a mutually exclusive classification problem where each class represents a combina-
tion of labels. In theory, there are a large number of possible combinations since
we have 11 labels and up to 5 recommendations. But in practice, there are only
62 combinations present in the dataset. This is because of a few different reasons.
Firstly, recommendation 11 is mutually exclusive with the others. Secondly, we
don’t have duplicate recommendations, and thirdly, we are indifferent to the order
of recommendations. We also know that recommendations 2 and 4 are very rarely
used. However, this approach would not generalise well to novel data because a
patient may require combinations of recommendations that were not present in
our training set. Therefore I decided not to use it.

What characteristics are desirable in a machine learning algorithm, in the con-
text of our problem? I have already mentioned quantifying uncertainty: we want
an algorithm that gives us an idea of the sureness of a prediction. Neural net-
works, logistic regression and to some extent KNN are good at this, whereas SVM
and decision trees are not. A second characteristic of a good algorithm is that it
is understandable: we can explain how it works to a doctor. KNN and decision
trees are relatively easy to understand, whereas neural network are notoriously
difficult, as the weights have no intuitive meaning, and a well-performing neu-
ral network may have a lot of neurons. A third characteristic is that we want
an algorithm with few parameters, applying the principle of Occam’s Razor. A
nearest-neighbour algorithm might have one or two parameters, whereas a neural
network has several, and the possible combinations of neurons are theoretically
infinite, limited only by computational resources.

3.13 K-fold Cross Validation

An 80:20 split was chosen for the train:test ratio, and k was chosen to be 5. Since
we have 300 samples, that means 240 datapoints are used for training, 60 are used
for testing, and the process is repeated 5 times to calculate the mean and variance.
The assignment between training and testing is randomised.

3.14 Scaling

Many machine learning algorithms require the data to be scaled in order to calcu-
late distances, otherwise variables with a larger scale (e.g. 1–100 instead of 0 and
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1) will skew the predictions. For the KNN and SVM algorithms, normalisation
was used:

y =
x−min

(max−min)
(1)

For the neural network, using standardisation gave better results. I think this
is because standardisation leads to a smaller gradient than normalisation, so it is
easier for the algorithm to converge using gradient descent.

y =
x− µ

σ
(2)

Standardisation assumes that the data is approximately normally distributed,
which is not always the case. For example, gender is either 0 or 1 with nothing
in between. I generally prefer normalisation for this reason (standardisation is
intended to be used by algorithms that assume a normal distribution, like logistic
regression). But the algorithms proved surprisingly sensitive to what kind of
scaling was done, so I opted for the type of scaling that gave the best performance
in order to provide as fair a comparison as possible.

The decision tree does not require standardisation so none was performed.

3.15 Hyperparameter Optimisation

KNN: MLKNN has two parameters: k, the number of points to use for distance
calculation and voting; and s, which controls is a smoothing parameter that de-
termines the strength of the uniform prior (the default, 1, corresponds to Laplace
smoothing). The third parameter is the type of distance metric, be it Minkowski
(the default), Manhattan or Euclidean. The k parameter is the most important.
K is important because using too small a value for k will result in unstable de-
cision boundaries, whereas too high a k leads to too much smoothing. A good
rule-of-thumb is the root of n training samples, which is 15 in our case. Therefore
I picked a range of k from 10 to 20. For the smoothing parameter, I chose the
range 0.5, 0.7 and 1. As MLKNN is not very computationally expensive, optimi-
sation was carried out using GridSearchCV from sklearn, which tests all possible
combinations. This resulted in k=13 and s=0.7 as the best parameters.

Decision Tree: For the decision tree, Gini was used as the impurity metric,
and pruning was done using minimal cost complexity. Initially, I chose ccp alpha

parameter as 0.03, because it seems to give the best trade-off between test and
train accuracy, see figure 7.

27



Figure 7: Train vs test accuracy for the decision tree

However, the decision tree had very poor accuracy on label 11, and further
investigation revealed that there were no splits for label 11 because the tree had
been pruned too aggressively. Reducing the alpha parameter to 0.01 increased
performance both on this label, and across the board, since the tree was too
conservative in giving recommendations. This came at the cost of slightly increased
variance, but this was a worthwhile tradeoff given the significant improvement in
performance.
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Figure 8: Label 11 split with ccp al-
pha=0.03 Figure 9: Label 11 split with ccp alpha=0.01

SVM: Hyperparameter optimisation was carried out in the same manner as
for KNN, using GridsearchCV. Linear, poly and rbf kernels were optimised along-
side the C parameter. The best C parameter was 0.5 and the polynomial kernel
performed the best - this suggests that the higher-dimensional data is not linearly
separable.

Neural Network: As neural networks have a large number of hyperparam-
eters, with a virtually infinite combination of neurons in the hidden layers, it is
essential that hyperparameter optimisation is carried out. Choosing the wrong
hyperparameters can have a big impact on model performance. However, neural
networks are computationally expensive to train, especially if there are a lot of
neurons, and it is often not viable to iterate over the entire search space using
GridSearchCV.

Some hyperparameters are known a priori, though:

• Input neurons: 17, which corresponds to the number of predictors.

• Neurons in the output layer: 11, which corresponds to the number of labels.

• Activation function of the output layer: sigmoid. Sigmoid is the perfect func-
tion for representing probabilities, since the output will always be between
0 and 1. Softmax is inappropriate for multi-label classification because it
assumes the classes are mutually exclusive, leading to problems. For exam-
ple, when multiple classes are true, the confidence interval is incorrectly split

29



between them. When no classes are true, softmax picks a winner anyway.
[38]

• Activation function of the hidden layers: ReLU is preferred when there are
many hidden layers because of the vanishing/exploding gradient problem
[39] so this is what I went with. In short, the exploding gradient problem
occurs during backpropagation when multiplying many derivatives that are
large, leading to an overflow error. The vanishing gradient problem happens
when the product of the derivatives becomes zero, so that the model is no
longer able to update its weights and learn.

The choice of solver should be considered carefully. We know that the adam
solver (the default in sklearn) is inappropriate for small datasets because it con-
verges slowly, like most stochastic gradient descent methods – it was designed to
work on large datasets with the idea of being fast. The lbfgs solver is probably
best because although it is computationally expensive on a per-iteration basis, it
converges faster, and is therefore perfect for small training sets. Stochastic gradi-
ent descent might also perform well if the learning rate is chosen appropriately. If
the learning rate is too low, the neural network will not converge; if the learning
rate is too fast, the neural network will “overshoot” (fail to converge to the right
value). It is best to start with a higher learning rate and gradually reduce the rate
during each step. This can be accomplished by setting the learning rate to inverse
scaling, and finding the right values for learning rate init and power t.

A different option is to use the lbfgs solver. This generally converges faster
than stochastic gradient descent and has fewer parameters to optimise. However,
I discovered that it does not perform any better than stochastic gradient descent
for our dataset, see figure 11.

Two other parameters that need to be considered when using SGD are mo-
mentum and the mini-batch size. Momentum is used to smooth out noisy data
by taking the mean of past values. The default value of 0.9 takes the mean of 10
points, which has empirically been shown to work well ([40]), though a reasonable
range should be considered. The mini-batch size determines how many points
to sample for the stochastic gradient descent. Like momentum, using too many
points leads to much smoothing (and thus a failure to reach the global optimum;
the algorithm gets stuck at a local optimum), whereas using too few points leads
too much noise.

The alpha parameter determines the amount of L2 regularisation: the idea
is to penalise large weights to prevent overfitting. Too large a value results in
underfitting, too small a value leads to overfitting.

The first approach is to optimise the hyperparameters using a genetic algo-
rithm. Of the available libraries, PyGAD does not support multi-label classification
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at the time of writing, but GASearchCV from sklearn-genetic-opt does. There are
two criteria a problem must satisfy to it suitable for a genetic algorithm:

1. Clear and fast way to evaluate fitness: we can use any performance metric
like Hamming Loss or partial accuracy to minimise or maximise, respec-
tively. These functions are very fast to compute, especially with such a
small training set.

2. Search space is well-constrained: we have a finite number of parameters
with a finite range for each. The biggest uncertainty is around the number
of layers and how many neurons should be in each layer, but we can use a
reasonable range.

The idea behind a genetic algorithm is to create a population, keep a number
of elites in the next generation, and combine “genes” from the best-performing
“parents”. This is known as cross-over. Some features can also be changed ran-
domly; this is called mutation. Generally speaking, genetic algorithms are adept
at obtaining a “good enough” solution in a reasonable amount of time, just like
evolution in the real world. There is no mathematical guarantee that a genetic al-
gorithm will converge to the “best” (global optimum) solution – but they perform
well in practice.

A different approach to hyperparameter optimisation is to use so-called se-
quential model-based optimisation, which is implemented by BayesSearchCV and
various other libraries. The idea is that if the objective function (the neural
network, in other words) is expensive to compute, a surrogate function – an ap-
proximation – is used instead. Over multiple iterations, the surrogate function is
updated to more and more closely match the real function. The algorithm does
this by remembering previous hyperparameter:score pairs. A “selection function”
is then used to intelligently choose the next hyperparameters, which is done by
maximising the expected improvement function.

Yet another approach proposed in the literature is to use gradient-based opti-
misation for hyperparameters. But gradient-based methods perform well when the
function is smooth and convex, and hyperparameters are neither of those things
[41]. For example, deciding between L1 and L2 regularisation is non-smooth.

In the end I chose to use a genetic algorithm for optimisation. The results are
presented in figure 10. Note that cross-validation is used internally to compute
the fitness function for each individual neural network.
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Figure 10: Performance of the SGD-based neural
network during each generation.

Figure 11: Performance of the lbfgs-based neural
network during each generation.

The optimal parameters for the SGD neural network are:

Table 1: Optimal hyperparameters

learning rate init 0.275
hidden layer sizes 102

power t 0.413
momentum 0.917

Interestingly, using a deeper neural network (up to 10 layers) did not improve
performance, as the best-performing one has a single hidden layer. Nor did in-
creasing the number of neurons lead to better performance.

4 Outcome Measures

The purpose of this section is to describe which outcome measures were chosen to
evaluate the performance of the different algorithms, and why.
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4.1 Inter-annotator metrics

Krippendorff’s alpha was chosen initially as the best measure of inter-annotator
agreement for multiply labelled data (since Cohen’s kappa does not support multi-
ple labels). Krippendorff’s alpha is a number between 0 and 1 where 1 represents
perfect agreement and 0 represents agreement that is no higher than what would be
expected by chance. This is an important distinction. Krippendorff’s alpha can
be low even when raw measures of agreement are high – especially if the dataset is
small, or the labels are unbalanced. For example, in a binary classification prob-
lem where 98% of 100 patients are labelled 0 (no cancer) by one coder, and the
other coder labels 99% with no cancer, the alpha score can be quite low (sensitiv-
ity would be a better metric to use). Thus, in certain situations, Krippendorff’s
alpha may not be appropriate.

The implementation provided by the nltk package was used, as it had the best
documentation compared to the other Python libraries (namely krippendorff and
disagree). MASI was chosen as the distance metric, although Jaccard distance
would be an equally valid choice. The choice of implementation should not be
treated as a mere technicality: different implementations gave totally different
results. The lack of documentation specifying how the input should be formatted
likely led to GIGO.

4.2 Strict accuracy

Strict accuracy, also known as zero-one loss, refers to the proportion of predictions
that perfectly matches the target output. For example, if the target output is {6,
7, 8} and the prediction is also {6, 7, 8} the score is 1 for that patient. However, if
the prediction differs even a little, say {5, 6, 7} then the score is 0. This is a very
strict measure that does not accurately represent performance in a multi-label
scenario [42]. However, it is easy to implement and has an intuitive meaning.

4.3 Hamming Loss

In addition strict accuracy, Hamming Loss was computed using the sklearn.metrics
library. Hamming Loss represents the number of substitutions required to make
two sets match, with matching sets requiring 0 substitutions. Hamming Loss is a
better measure of agreement than zero-one loss in our situation because there are
a lot of instances where the recommendations have a partial match. For example,
the recommendations {5, 6, 7} and {1, 6, 7} have two correct matches. However,
Hamming Loss is not very intuitive because a lower number is better. This makes
it hard to interpret.
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4.4 Partial accuracy

Because Hamming Loss is difficult to interpret, I coded my own performance mea-
sure specifically for multiply labelled data. It is named partial accuracy, and
it calculates the average percentage of matching recommendations between two
coders. So if coder 1 gives a patient the recommendations {5, 6, 7} while coder 2
gives {1, 6, 7}, the score will be 0.66. It also works if the number of recommen-
dations is different. For example, if coder 1 gives recommendation 10 while coder
2 gives {1, 5, 7, 9, 10}, the score will be 0.2. Thus, this metric penalises greedy
algorithms that give too many recommendations. If the recommendations match
perfectly, the score is 1, as expected, and 0 if no recommendations match. This
function is commutative; it does not assume a “ground truth”, so it is also an
appropriate measure of inter-annotator agreement as well as model performance.

4.5 Label accuracy

We are not only interested in knowing a model’s performance in the aggregate; we
also want a breakdown of its performance on individual labels. I therefore coded
a measure of label accuracy, where each label is assigned a score from 0 to 1.

Note that unlike partial accuracy, label accuracy is not commutative; it as-
sumes a ground-truth.

4.6 Length Mismatch & Length Ratio

Length mismatch is simply the number of instances where predicted sets do not
have the same length as the target output, divided by the total number. A value
closer to 0 indicates better performance. Note that the length mismatch function
does not care whether the predictions actually match the targets; it is simply a
measure of whether the algorithm is giving the right number of recommendations.

The length ratio can be interpreted in conjunction with the length mismatch
ratio to tell us whether an algorithm is giving too few or too many recommen-
dations. A ratio above 1 indicates that an algorithm has a tendency to give the
patient too many recommendations; a ratio below 1 indicates too few. If the ratio
is 1, this does not mean that the algorithm gives the right number of recommen-
dations – it just means that the tendency goes either way, with too many or too
few recommendations depending on the patient. Therefore, these two numbers
only have meaning when taken together.
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4.7 Confusion Matrix

A multi-label confusion matrix works just the same way as it does for binary
classification; each individual label can be thought of as a separate binary classi-
fication. It is also possible to calculate precision and recall for each label in this
way, although this is left as an exercise for the reader.

5 Results

The purpose of this section is to report on the results of all the outcome measures
aforementioned.

5.1 Interannotator reliability

Me and two of my colleagues at Innovation Sprint labelled the first 50 patients of
the dataset independently. The Krippendorff’s alpha statistic was calculated using
a 3-way comparison; the other statistics are the means of pairwise comparisons.
The results are summarised in table 2 rounded to two significant figures.

Table 2: inter-annotator reliability

Metric Score
Krippendorff’s alpha 0.64

Hamming Loss 0.067
Strict accuracy (zero-one loss) 0.61

Partial accuracy 0.86

We see that 61% of the recommendations match perfectly and 86% of the
sub-recommendations match, which we consider a good result. The Hamming
Loss is quite low and Krippendorff’s alpha is significantly better than chance. In
particular, the partial accuracy score serves as a good intuitive benchmark; it also
gives us an upper bound for how well an algorithm can perform.

We think that if 4 or 5 recommendations could be given more freely, the inter-
annotator metrics would improve – this is because it’s difficult to choose only 3
recommendations when the patient has numerous issues that need fixing. This is
something we would change in the future.

5.2 Partial accuracy

Table 3 summarises the partial accuracy scores for each algorithm. The knowledge-
based algorithm performs the best. The neural network and SVM tie with the de-
cision tree, but they have lower variance, meaning they perform more consistently
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than the decision tree. The difference between MLKNN and BRKNN is marginal:
both perform poorly.

Table 3: Partial accuracy results (using cross-validation)

Algorithm Mean Partial accuracy Standard Deviation
MLkNN 0.72 0.015
BRkNN 0.71 0.017

Neural Network 0.83 0.014
Decision tree (a=0.03) 0.78 0.024
Decision tree (a=0.01) 0.83 0.027
Knowledge algorithm 0.87 NA

SVM 0.83 0.012

5.3 Strict Accuracy

We see the same story repeated with the strict accuracy metric. The KNN algo-
rithms perform poorly; the other ML algorithms perform about the same (though
the decision tree has higher variance). The knowledge-based algorithm still per-
forms the best by quite a margin.

Table 4: Strict Accuracy

Algorithm Mean Strict Accuracy Standard deviation
MLkNN 0.33 0.038
BRkNN 0.35 0.034

Neural network 0.53 0.036
Decision tree 0.42 0.048

Decision tree (a=0.01) 0.52 0.049
Knowledge algorithm 0.65 NA

SVM 0.54 0.025

5.4 By Label

Recall that we are not only interested in comparing the algorithms in the aggre-
gate; we would also like to see a breakdown by individual label, as this gives an
idea about the consistency of the algorithm’s performance. We can observe that
MLKNN performs very inconsistently, see figure 12. The KNN algorithm exhibits
not only a large variance between labels, but also a large variance in the cross-
validation scores, which are represented by the error bars. The neural network
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(figure 15) and SVM (figure 13) perform the most consistently. The decision tree
(figure 14) falls somewhere in the middle. It still struggles with label 11.

The knowledge algorithm is similarly consistent, although it does not perform
so well on predicting label 10, referring to sleep quality. It is the only algorithm
to have predicted label 4, of which there is a single instance in the entire training
set. The advantage of an algorithm that does not rely on machine learning is that
it can predict labels which come up rarely in a dataset.

Figure 12: MLkNN performance on each label. Figure 13: SVM performance on each label.

37



Figure 14: Decision tree performance on each label. Figure 15: Neural network performance on each label.
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Figure 16: Knowledge algorithm performance on each label.

5.5 Length Mismatch and Length Ratio

The table below summarises the proportion of recommendations that do not match
in length. The knowledge algorithm performs much better in this regard than any
of the ML algorithms, which really struggle with this. Note that for the ML
algorithms, cross-validation was used to compute these scores.

Table 5: Length mismatch

Algorithm Length Mismatch Proportion
MLkNN 0.47
BRkNN 0.43

Neural network 0.34
Decision tree 0.49

Decision tree (a=0.01) 0.36
Knowledge algorithm 0.06

SVM 0.31
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Looking at length ratio, we can see that the KNN algorithms do not give
enough recommendations, which partly explains their poor performance.

Table 6: Length ratio

Algorithm Length Ratio
MLkNN 0.909
BRkNN 0.845

Neural network 1.004
Decision tree 0.959

Decision tree (a=0.01) 0.995
Knowledge algorithm 1.01

SVM 0.995

5.6 Confusion Matrices

It is not practical to report 66 confusion matrices to account for every label and
every algorithm. Therefore, label 11 was chosen as the most interesting, since
it represents the absence of recommendations. Moreover, a large variance was
observed between the different algorithms on this particular label. The results
were computed with a train-test split of 80:20 and are reproducible.

Table 7: Neural Network Confusion Matrix

TN = 57 FP = 1
FN = 0 TP = 2

Table 8: MLKNN Confusion Matrix

TN = 57 FP = 1
FN = 0 TP = 2

Table 9: DT Confusion Matrix

TN = 57 FP = 1
FN = 2 TP = 0

The decision tree and SVM do not detect any of the true positives for this
particular train:test split. The knowledge algorithm performs the best on this
label, with no false positives or false negatives – unlike the neural network, which
does have a false positive. This is not a distinction that can be observed simply
by looking at the label accuracy.
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Table 10: Knowledge Algorithm Confusion Matrix

TN = 58 FP = 0
FN = 0 TP = 2

Table 11: SVM Confusion Matrix

TN = 58 FP = 0
FN = 2 TP = 0

5.7 Applicability to different human coders

The training set was labelled independently by a co-worker at my company. I ran
the algorithms with the same hyperparameters on this dataset, in order to see
how much of an impact a different human coder makes. The results are presented
in table 13. We can see that the results are somewhat lower overall, especially
for the knowledge algorithm and neural network. From this I conclude that the
human coder does make a difference, and ensuring high levels of inter-annotator
agreement is important.

Table 12: Partial accuracy results: Tessa

Algorithm Mean Partial accuracy Standard Deviation
MLkNN 0.65 0.029
BRkNN 0.65 0.014

Neural Network 0.76 0.018
Decision tree 0.78 0.03

Decision tree (a=0.01) 0.80 0.017
Knowledge algorithm 0.78 NA

SVM 0.80 0.014

5.8 Benchmarks

The following table reports how long it takes each algorithm to predict all 300
patients, in milliseconds. If scalability is important, e.g. a server that needs to
handle a large number of requests, the load can be parallelized as the patients are
independent. Additionally, it is possible to realise large speedups in the knowledge
algorithm (around 100X faster) by compiling it to machine code using a tool like
numba or CPython, or by rewriting it in a more performant language like Julia.
This is beyond the scope of this work, but I did attempt to do this. The main
challenges are that numba cannot work with standard Python dictionaries and
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lists, nor with Pandas dataframes – this makes it hard to write idiomatic Python
code, and requires a lot of additional reworking. This would be an interesting
avenue for further development.

The MLKNN algorithm is the only one that does not meet the stated criteria
of less than 0.1ms per patient (i.e. less than 30ms to predict 300 patients). This is
because MLKNN is computationally expensive and implemented in pure Python,
whereas the sklearn algorithms mostly use C libraries like numpy behind-the-
scenes.

Table 13: Benchmark results

Algorithm Time to predict (ms)
Knowledge algorithm 2.55

Neural network 0.457
SVM 11.5

Decision tree 4.27
MLKNN 172

6 Discussion

The purpose of this section is to reflect on both the results, and the goals stated
in the introduction, in order to assess whether the algorithms meet the functional
and non-functional criteria. Functional criteria refers to quantitative measures
like partial accuracy and time-to-predict; non-functional criteria refer to qualities
like explainability and modifiability.

6.1 Which algorithm has the best performance?

Multi-label classification is inherently difficult to evaluate because there are so
many performance metrics to consider. Nevertheless, a clear story emerges from
the data: the knowledge-based algorithm performs better than the ML algorithms
regardless of what metric one looks at, be it partial accuracy, strict accuracy, the
length mismatch proportion, and precision or recall. Furthermore, the knowledge
algorithm is not subject to the bias/variance tradeoff in the way ML algorithms
are, since it does not overfit. Speaking strictly about performance – and ignoring
any other practical considerations – the knowledge algorithm is the best. The
only reason one might choose a different algorithm is if some labels are considered
more important than others, because the knowledge algorithm does not perform
the best for every label, even if it performs the best in the aggregate. For example,
the decision tree performs better on label 10, sleep quality. But there is no reason
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to consider sleep quality more important than any of the other labels like sleep
duration or exercise.

What surprised me, from a machine learning perspective, was how well the
binary relevance algorithms (SVM, BRKNN, DT) performed compared to the
multi-label algorithms (neural network and MLKNN) despite the fact that binary
relevance algorithms are “blind” to the other labels. The most likely explanation
for this is that the between-label interaction effects are weak. We should not be
too quick in jumping to this conclusion, however, as we may wish to incorporate
more recommendations in the future, leading to more complex interaction effects.

6.2 Introducing new recommendations

I chose what I thought was a reasonable number of recommendations, but this
is a compromise. On the one hand, we want the algorithm to be useful to as
many people as possible, therefore we would like to incorporate every relevant
recommendation. On the other hand, we wanted the training set to be reasonably
easy to label, and time was limited. It is very likely that we would want to add
more recommendations in the future as Healthentia gains more features.

The problem with a machine learning based approach is that we would have
to label an entirely new training set to take into account the new labels and input
features; this is a shortcoming with any supervised algorithm. Further, the set of
optimal hyperparameters might also change with the data, requiring optimisation.
This is a time-consuming process. Furthermore, I remain skeptical that a binary
relevance approach would continue to work well once the relationship between
labels starts to grow more complex, though there is no way to know this until it is
actually done. If I had to use a ML algorithm for this task, I would use a neural
network despite its disadvantages, simply because it is multi-label aware. But my
first choice would be the knowledge algorithm, because it is easy to adapt – new
recommendations can easily be added, and inter-dependencies can be coded in.
This is a major advantage in terms of time-to-MVP (Minimum Viable Product).

6.3 Explainability

Of the five different algorithms, it is fair to say that the neural network is the
hardest to explain conceptually to a layperson; this is because the neural network
requires a relatively deep knowledge of mathematics in order to understand. The
neural network incorporates many different concepts, such as non-linear activation
functions, stochastic gradient descent, linear algebra, calculus and backpropaga-
tion. Furthermore, even for an expert, it is difficult to say exactly why a neural
network gives a certain recommendation, since the weights don’t really have an
intuitive meaning.
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The other machine learning algorithms are fairly straightforward to understand
and visualise. The SVM draws a line that separates each label. (Granted, this
is a hyperplane, not a line, and it involves a kernel trick, but the basic concept
is simple.) The decision tree can be plotted and explained split-by-split, while
K-nearest neighbours is very intuitive.

I think the best algorithm in terms of explainability, however, is the knowledge
algorithm. Yes, it requires a certain amount of domain knowledge to understand –
but for anyone with a background in medicine, the inner workings of the algorithm
would seem pretty logical.

In terms of convincing the doctors to accept eHealth technologies, a study
conducted by Ketikidis et al. [43], which used the Technology Acceptance Model
(TAM), showed that ease of use was the most important predictor of intention-
to-use. Surprisingly, perceived usefulness was not significantly correlated with
intention-to-use in this study. The authors could not explain why, and this results
is not replicated by other studies. For example, a meta-analysis conducted by
Strudwick et al. [44] found that both perceived usefulness and ease of use were
strongly correlated with intention-to-use among nurses. Ease of use is related to
UX (user experience) design and falls outside the scope of this article. Perceived
usefulness, however, can be bolstered by showing high accuracy scores, and having
relevant recommendations.

The issue is that the majority of studies in this area use classical models like
TAM or UTAUT to evaluate the acceptance of healthcare professionals to various
eHealth technologies. These are very broad, generic models that were designed
to be applied to any kind of IT technology. As far as I am concerned, they do
not accurately represent the unique challenges entailed by the use of machine
learning in medicine. In particular, the issue of explaining black-box models has
deservedly received a lot of attention, especially when there are legal ramifications
[45]. In short, some of the biggest advantages of using a knowledge algorithm over
a black-box algorithm like a neural network is GDPR compliance and malpractice
law. Another problem is moral hazard, as discussed by Watson in the BMJ [46].
Using a knowledge-based algorithm avoids the moral hazard of diagnosing and
treating patients using an algorithm that neither doctors nor patients understand.

6.4 Is domain knowledge superior to ML?

One of the interesting questions that comes up from these results is whether it even
makes sense to use Machine Learning to tackle a problem that is well-understood
by domain experts, when the “rules” can be easily formalised and coded in. At
least for this particular problem, it would seem that indeed machine learning is
not the way to go. However, there was no way to be sure of this a priori. Also,
in the interest of fairness, not every kind of reasoning can be easily formalised,

44



whereas ML algorithms tend to be pretty good at dealing with “fuzzy” reasoning.
Finally, from a product-development standpoint, many programmers don’t

know much about medicine, but are probably familiar with basic machine learn-
ing techniques. Machine learning also helps to market products because it sounds
sexy, though this is a rather trivial argument.

This discussion does not come up very often in the literature because re-
searchers are focused on the latest trends in machine learning (where the funding
is); expert systems are considered an old, 1980s technology. I would argue that
if an expert system works as well as a machine learning algorithm, it should be
the preferred solution, on account of its high explainability. Machine learning
should not be the ‘default’ – particularly as eHealth adoption grows, we will see
malpractice law and GDPR compliance become priorities.

6.5 Further testing

The performance of the algorithms has been judged against human coders, how-
ever, the coders are not doctors, personal trainers or nutritionists. Thus, the
target labels cannot be considered the “baseline truth”. It would have been very
interesting to test the performance of the algorithms against recommendations
given by actual doctors, and indeed this was my intent. The main reason this
was not carried out was a practical one: it is difficult to label patients using a
spreadsheet, and the only realistic way to get busy professionals to label the pa-
tients would have been to carry out a proper vignette study. This would have
entailed developing a fully interactive website with drop-down menus, pictures,
input validation, and an SQL backend. There was not enough time to do this and
carry out the machine learning. But it could definitely be done in the future.

Another obvious aspect that we have not tested is performance with real users.
Since the virtual coaching algorithm is still at the early prototype stage, a pilot
study would be useful. The question is, what would a pilot study with users
look like? What would be the metrics by which the recommendation algorithm
is judged? In my mind, there are two types of results that would be interesting.
The first, user satisfaction, would incorporate a number of psychological measures
like perceived relevance, sense of being personal, and whether the user would
want to keep using the virtual coaching service. The second type of result would
be measurement of behavioural changes. In other words, does using the virtual
coach result in changes in the user’s behaviour compared to either baseline (for a
longitudinal study) or control (for a cross-sectional study). It would also help to
know how lasting these changes might be; the ideal study might run for several
months or a few years.
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6.6 Limitations

The first limitation, concerning the entire methodology, is that some of the bound-
aries for amber/red were decided arbitrarily (see the section titled “Labelling of
the data”). Of course, I could have chosen to colour code the patients red/green
– or not colour code them at all – but that was simply not practical given the
volume of patients we had to label, and the experience of the coders, since we are
not trained as doctors or nutritionists.

The second limitation, regarding the neural network especially, is hyperparam-
eter optimisation. Although I have done my best to optimise the hyperparameters,
I am using a rather small population for the genetic algorithm due to runtime
concerns. It is not beyond the realm of possibility that the neural network could
perform a bit better with a different combination of hyperparameters.

The third limitation, regarding the knowledge algorithm, is that I have imple-
mented the knowledge algorithm using discrete rules, simply because this was the
easiest way to program it. For example, if a patient eats less than 25g of sugar,
the label is marked 0 in importance; if they eat more than 25g but less than 50g,
the label is marked 1, and if the patient eats more than 50g, it is marked 2. But
what if a patient eats 27g of sugar? One might say that the patient should make
a small reduction in their consumption, but in this scenario it is likely that other
labels, also marked 1, should have higher precedence. Given more time, I think a
continuous scoring methodology could be developed that would perform better in
these edge cases.

The fourth limitation is that the statistical power of this study is quite low
because 300 patients is still a small dataset. Related to this, the fifth caveat, which
has already been mentioned, is that the simulated data is not a perfect match for
real data. In particular, we see that labels 2 and 4 are basically unused, but this
is a consequence of how we modelled exercise, and isn’t necessarily realistic. Any
ML algorithm trained on the simulated dataset would perform poorly on real data
where labels 2 and 4 come up more frequently.

Finally, there is a whole problem that I have not touched on: missing data and
imputation. This requires its own section.

6.7 Imputation

Missing data is a problem with real-world data obtained from humans; in fact it
is rare for data to be complete. There are a number of reasons why data for a
patient might be missing: they may not have replied to a question/questionnaire;
they may not own a smart fitness device; they may not wear the device every
day, or it may have run out of battery; and so on. Neither a ML algorithm nor a
knowledge-based algorithm can give a patient accurate advice if it is missing too
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much data.
There are two ways to handle this problem. The simplest way is to prompt

the user to fill in missing data (or to charge, wear and sync their device). This is
the best solution in the sense that it gives actual data, however, it is not realistic
to expect the user to always respond to questions or always wear a device. An
overly “pushy” approach may frustrate the user and prompt un-installation of the
Healthentia app. Therefore, some sort of imputation is needed.

For the recommendation algorithm I have developed, I expect imputation will
be less of a problem, since my algorithm works with the mean of time-series data.
So, for example, it does not matter if the patient doesn’t have sleep data for every
night; we can simply take the mean of the last few weeks. However, if a variable
is missing entirely, then we have a problem. It might be possible to “guess” some
missing feature using available data as a predictor – so if a patient has high BMI,
we can assume they eat a lot of calories, to take one example. But this is indeed
a guess, and doesn’t work for variables that are Missing-Completely-at-Random
(MCAR). In my opinion, the best way to handle this is to prompt the user to
fill in these missing input features – but allow them to continue using the virtual
coach with the warning that the recommendations will be less reliable.

From a programming perspective, the easiest way to implement this would
be for the knowledge algorithm (I provide a pseudocode example below; see the
Appendix for actual Python implementation). For the ML algorithm, it would
be more complicated, as you would need a different model to handle each type of
missing input.

1 IF total_exercise is not nan:

2 LABEL 1 = CALL score_exercise

3 ELSE:

4 LABEL 1 = 0

5 IF total_exercise AND core_proportion are not nan:

6 LABEL 2 = CALL score_core

7 ELSE:

8 LABEL 2 = 0

For the virtual coaching algorithm that gives advice on a day-to-day basis,
the problem is harder, and imputation will be pretty much unavoidable. Since
the daily recommendation algorithm uses time-series data, time-series imputation
is required, of which there are two basic types: univariate and multivariate. In
the former camp, the simplest approach is to use autoregression, which is simply
linear regression using the past n values; the best value of n is determined using
an autocorrelation plot. If the time-series data has seasonality (for example, the
patient sleeps more on weekends – which is very common), a SARIMA model
might be appropriate. This model takes into account trend as well as seasonality.
For irregular time series data, it may be better to use a Kalman Filter [47] or
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Continuous Time Bayesian Network; that said, these types of models tend not
to perform as well as dicrete-time models [48], so it would good to avoid this if
possible. Rather than trying to predict values hour-by-hour, it is better to predict
day-by-day. For example, it is much easier to predict if a patient will exercise
on a given day than to try to predict whether they will exercise at 4 o clock in
the afternoon. This would imply giving the patient recommendations once a day
rather than at set hours during the day.

In any case, one should never use mean imputation. This type of imputation is
very simple, but it comes with two great drawbacks: firstly, it artificially reduces
the standard errors, because the imputed values have no variance. Secondly, it
does not preserve the relationship between variables. [49, 50] Thirdly, for time-
series data in particular, mean imputation obviously does not take into account
trends or seasonality.

Multivariate time series imputation is perhaps the most complex imputation
of all. One relatively simple model in this class is Vector Autoregression, which is
like autoregression but where the output is a vector instead of one number, and
multiple lagged variables are used to make the prediction (see [51] for more a more
in-depth mathematical description). A more complex approach that might work
well for our data is a Recurrent Neural Network (see the Tensorflow documentation
[52]) which has the advantage of being able to take into account more complex
relationships between variables, especially non-linear ones; VAR assumes linearity.
As for which type of imputation would perform the best, that would have to be
determined empirically. One way to do this is to use actual data that becomes
available after-the-fact (for example, the patient forgot to sync their FitBit). This
data could be stored in a database alongside the imputed value, allowing us to
compare how closely the imputation matched real data.

For a more detailed overview, see the Research Topics included at the end of
this document.

6.8 Conclusion

In terms of performance, the knowledge algorithm performed better than any of
the ML algorithms: whether on partial accuracy; strict accuracy; giving the right
number of recommendations; sensitivity to unbalanced data; or precision and re-
call, the knowledge algorithm performed the best. The knowledge algorithm also
does not have the characteristic of overfitting. Furthermore, the knowledge al-
gorithm is the most practical to implement. It is easy to modify in order to
handle new features and recommendations; it is much faster than re-labelling,
re-training and re-optimising the ML algorithms. This is particularly true when
compared to the binary relevance algorithms, as the knowledge algorithm is in-
herently multi-label, and will handle interactions between labels. Another area
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where the knowledge algorithm is easier to work with is missing data, as it does
not require creating multiple models to handle each missing input feature.

In terms of explainability, the knowledge algorithm is probably more difficult to
understand than a simple ML algorithm like a decision tree or nearest-neighbours
algorithm for someone with no background in medicine (in other words, patients).
However, for a doctor, the knowledge algorithm would seem very logical and intu-
itive, more so than a ML algorithm. The knowledge algorithm is certainly easier
to understand conceptually than a neural network, for both laymen and doctors.
Given its huge practical advantages and superior performance, the knowledge al-
gorithm is clearly the best solution in this particular case.
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Appendix

Software Engineering

The code and data are available on Github.
I wrote 1274 lines of code in total, with a total of 796 LLOCs and 156 com-

ments. The cyclomatic complexity of the code was analysed with radon. The av-
erage complexity of all the code I wrote is 3.51, which corresponds to an A grade.
Cyclomatic complexity is important, because programs with a large number of
branches in the logic are hard to read and difficult to debug. The main offenders
in terms of cyclomatic complexity are actually type-checking statements: because
Python is a dynamically-typed language, it does not enforce type constraints in
the function parameters. This led to a lot of problems – some functions from the
scikit-multilearn library returned sparse matrices that were incompatible with my
functions. Moreover, some of my functions were deliberately not designed to work
with numpy arrays but with Python lists.

It would have been possible to lower the cyclomatic complexity further by using
assert statements instead of if statements. However, using if statements allowed
me to raise exceptions, and since the cyclomatic complexity is low, I deemed this
tradeoff a good one. For additional clarity, I also used Python’s type annotations
and docstrings.

I decided to code each algorithm in its own .py file, for several reasons. First of
all, some algorithms performed better with normalisation, others with standardisa-
tion of the data. Secondly, runtime was a concern, especially with hyperparameter
optimisation code – therefore, the optimal hyperparameters were stored in JSON
files for easy re-use and decoupling. Finally, this approach made it much easier to
digest all the data and graphs that were being generated.

However, this approach risked duplicating a lot of boilerplate code. Duplication
is bad because it makes errors more likely. Therefore, I structured all of the
functionality that was common between models into the helper.py file. This is the
largest file in the project, with 323 lines of code.

The most complex function in the project is plot label accuracy cv, which is
used to generate the graphs, and its helper function cross validate; this is because
the function uses a lot of complex data structures such as lists of dictionaries and
list comprehensions. One annoying characteristic of the SVM implementation is
that it fails if a label only has one class. Thus, labels 2 and 4 had to be removed
from the target output Y – and re-inserted in order to visualise the label accuracy
graph. Inserting the missing columns in the correct place proved difficult because
although numpy’s insert function will accept a list of integers for the index, it
does not take into account the fact that the index changes upon inserting the first
element.
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1 def plot_label_accuracy_cv(model , X: np.ndarray , Y: np.ndarray ,

model_name: str , offset =[]):

2 """

3 Like the function above , but includes cross -validation

4 :param model: An sklearn -like model

5 :param X: The input features

6 :param Y: The labels (must be a numpy array)

7 :return: Plots a graph

8 """

9 list_of_cv_predictions = cross_validate(k=5, X=X, Y=Y, model=

model)

10 if len(offset) > 0:

11 for dictionary in list_of_cv_predictions:

12 values = np.zeros(( dictionary[’Predictions ’]. shape[0],

len(offset)))

13 # insert is a HORRIBLE function , because the index

CHANGES after the first insertion

14 dictionary[’Predictions ’] = np.insert(arr=dictionary[’

Predictions ’],

15 obj=offset ,

16 values=values ,

17 axis =1)

18 # Labels are also missing from the truth.

19 dictionary[’Truth ’] = np.insert(arr=dictionary[’Truth ’

],

20 obj=offset ,

21 values=values ,

22 axis =1)

23 list_of_results = []

24 for dictionary in list_of_cv_predictions:

25 results = {}

26 # Note that the MLB inverse transform is 0 indexed!

27 # Deliberately hard -coded

28 for i in range(0, 11):

29 results[str(i)] = label_accuracy(y_true=

inverse_transform(dictionary[’Truth ’]),

30 y_predicted=

inverse_transform(dictionary[’Predictions ’]), label=i)

31 list_of_results.append(results)

32

33 #print(list_of_results)

34 final_results = {}

35 final_results_stdev = {}

36 # Labels are numbered 1 11 not 0 10

37 # This is deliberately hard -coded

38 for i in range(1, 12):

39 final_results[str(i)] = mean([d[str(i-1)] for d in

list_of_results ])

40 final_results_stdev[str(i)] = stdev([d[str(i - 1)] for d

51



in list_of_results ])

41 #print(final_results)

42 values = list(final_results.values ())

43 names = list(final_results.keys())

44 plt.bar(names , values , color=’tab:blue’, yerr=list(

final_results_stdev.values ()),

45 ecolor=’tab:orange ’, capsize =3.0)

46 plt.xlabel("Label number")

47 plt.ylabel("Correctly predicted proportion")

48 plt.title(model_name + " per -label performance")

49 plt.show()

50

51 def cross_validate(k: int , X: np.ndarray , Y: np.ndarray , model) ->

list:

52 """

53 This function is almost but not exactly identical to KFold

from sklearn.

54 It is intended for use by plot_label_accuracy_cv ()

55 :param k: The k in k-fold.

56 :param X: The numpy array representing the input features

57 :param Y: The numpy array representing the correct output , as

a binary mask

58 :param model: An sklearn -like model

59 :return: A list of truth:prediction pairs (as dict) of length

k

60 """

61 if type(Y) != np.ndarray:

62 Y = Y.toarray ()

63 if type(k) != int:

64 raise TypeError("k needs to be an integer")

65 if X.shape [0] != Y.shape [0]:

66 raise TypeError("Lengths need to be the same")

67 if X.shape [0] % k != 0:

68 raise Exception("Pick a more sensible k value. The chosen

k value does not divide the data evenly.")

69 length = X.shape [0]

70 split_number = int(length / k)

71 start = 0

72 predictions = []

73 for i in range(split_number , X.shape [0]+ split_number ,

split_number):

74 X_test = X[start:i]

75 X_train = np.concatenate ((X[i:length], X[0: start]))

76 # print(" Length of first part: ", X[i:length ].shape [0], "

Length of second part ", X[0: start]. shape [0])

77 # print(" Length of X train: ", X_train.shape [0])

78 # print(" Length of X test: ", X_test.shape [0])

79 Y_test = Y[start:i]

80 Y_train = np.concatenate ((Y[i:length], Y[0: start]))
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81 start += split_number

82 model.fit(X_train , Y_train)

83 prediction = model.predict(X_test)

84 prediction = prediction if type(prediction) == np.ndarray

else prediction.toarray ()

85 predictions.append ({"Predictions": prediction , "Truth":

Y_test })

86 assert len(predictions) == k

87 return predictions

Missing data handling

Missing data handling in the knowledge algorithm:

1 # Recommendations that rely on missing data cannot be given

2 scores [1] = self.score_exercise(input_features[’total_exercise ’])

if not math.isnan(input_features[’total_exercise ’]) else 0

3 # Check that neither total exercise nor core proportion

are nan

4 scores [2] = self.score_core(total_exercise=input_features[

’total_exercise ’],

5 core_proportion=input_features[’

core_proportion ’]) if (math.isnan(input_features[’

total_exercise ’]) == False)

6 and (math.isnan(input_features[’

core_proportion ’]) == False) else 0

7 # And so on

Diet Widget

Healthentia diet widget:

• Fruits and vegetables

– Fruit

– Anti-oxidant fruit, e.g. berries, mangoes.

– Vegetables

• Carbohydrates

– Potatoes

– Bread

∗ Wholemeal bread

∗ White bread
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– Rice and Grains

∗ Rice

∗ Grains, e.g. oats, barley, rye, porridge

– Pasta

∗ White pasta

∗ Wholemeal pasta

• Dairy

– Milk

– Yogurt and white cheeses

– Butter and fatty cheeses

• Protein-containing foods

– Pulses (beans, peas, lentils)

• Fish

– Oil-rich fish

– Shellfish and white fish

• Eggs

• Plant-based protein (e.g. tofu)

• Meat

– Red meat

– White meat

– Processed meat

• Fats

– Nuts, seeds, oils & spreads

– Confectionery
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1 Abstract

A medical recommendation algorithm that advises patients on lifestyle changes, based on data
collected by the Healthentia platform, is proposed. The problem of giving recommendations
is a treated as a multi-label classification, where a patient may receive 1–3 pieces of advice out
of a set of possible suggestions. The research would compare a supervised learning approach
(decision tree, neural network, and KNN) with a handcrafted rule-based algorithm; the quality
of the different approaches will be evaluated against the recommendations of a medical
professional, using the Hamming Loss and Kripendorff’s alpha statistics. The problem of
imputation is discussed and the MLE approach is chosen. For time-series imputation, a
Continuous Time Bayesian Network is considered along with Kalman filter. The scope of
the evaluation is limited to just medical accuracy, as following the patients long-term is not
possible.

2 Introduction

Thesis objective: The goal of my thesis research is to design and implement a recom-
mendation algorithm that gives general health & wellbeing advice to Healthentia patients.
Healthentia is a mobile app developed by Innovation Sprint which is used to monitor patient
data (collected mainly by wearables) and to aid doctors conducting clinical trials. The al-
gorithm is intended for use by Healthentia users with a wide variety of different illnesses,
comorbidities, and behaviours, and focuses mainly on lifestyle changes; but it should also
be possible to modify the algorithm to accommodate different kinds of patients who re-
quire more specialised advice, such as patients with COPD (Chronic Obstructive Pulmonary
Disease).

Based on this, I formulate a number of different research questions.
Research Question 1: According to the literature, what are the best features for a virtual

coaching medical recommendation algorithm, and how does this compare to the data that is
present in the Healthentia platform? This is an empirical question, but is also necessary to
inform the design science of a recommendation algorithm.
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Research Question 2: According to the literature, what is the best methodology for
designing an interpretable, adjustable, personal and medically accurate health & wellbeing
recommendation algorithm? By interpretable, I mean that the algorithm is not a “black box”:
it can be explained and understood by humans. Adjustable here means that the algorithm
can be easily tailored towards groups of patients with specific illnesses that require specialist
advice. Personal means that the algorithm adapts and responds to the individual user’s inputs.
Medical accuracy is self-explanatory: the algorithm must provide good advice, or at least, it
must not hand out dangerous advice.

Research Question 3: How should missing data be handled by the recommendation
system at runtime, and during training? Given that much of the available data relies on
user action – be it self-reported information about diet and exercise, adherence to charging
and wearing a smart device, etc. – it is likely that the data will be incomplete, or split into
irregular time intervals. A few different approaches are possible: there are various methods
of imputation, and some machine learning algorithms are more robust to missing data than
others. The chosen solution must be sound from a statistical point of view: it most not
underestimate standard errors, and it must preserve the relationship between variables.

Research Question 4: How should the medical accuracy of a recommendation algorithm
be evaluated? Should the algorithm be tested according to its agreement with experts, or
should it be evaluated based on user opinions?

Research Question 5: How should persuasion principles be incorporated in an electronic
health intervention system in order to produce positive changes in lifestyle and behaviour?
This question is about translating theory from the psychological literature into actionable
advice.

2.1 What is a recommendation?

So far, I have discussed the term recommendation without giving a concrete example of
what constitutes a recommendation. In my mind, a good recommendation has a three key
properties:

• it is actionable;

• it is personalised rather than generic;

• and naturally, it must be medically correct.

Let’s discuss each property in more depth.

Actionable By actionable, I mean that the recommendation is not vague, but focuses on one
concrete action that the patient can make. Thus, “eat healthily” is not a good recommendation
because it is non-specific; a better recommendation would be something along the lines of,
“I notice that you eat a lot of foods high in saturated fat, like cheese, butter and pork. These
foods substantially increase your LDL (bad) cholesterol and cause many cardiovascular
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complications. Maybe you can try eating more unsaturated fats like those found in nuts, olive
oil and avocados?”

Personalised Notice, furthermore, that this recommendation is personal: “I notice that
you eat a lot of. . . ” Personalised recommendations are more effective than one-size-fits-
all imperatives that are addressed to whomever it may concern (indeed the entire modern
advertising industry is based on this principle). Personalisation is done on the basis of data
we have about the patient, such as their dietary habits, medical conditions etc.

Medically correct Finally, the recommendation is medically accurate because it reflects
decades of research into the link between saturated fats in the diet and cardiovascular disease.
[1, 2, 3] as well as AHA guidelines. In general, recommendations must be supported by high-
quality RCT (randomised clinical trial) or intervention-based research that can establish cause-
and-effect; note that I used the word cause and not “associated with” (a perennial favourite in
nutrition research backed by statistical analysis of survey data). Recommendations must also
follow best practices as set out by the relevant medical experts and public health authorities,
such as the European Heart Network, American Heart Association and so on.

3 Available Data

The following data is available in the Healthentia platform. Note that some variables are only
available for patients with a certain diagnosis, for example, diabetics have blood sugar data
whereas other patients do not.

1. Age.

2. Sex.

3. Body Mass Index: reliable, easy to calculate, but quite a crude metric. BMI does not
tell you the body fat percentage or where the fat is located in the body: is it visceral or
subcutaneous fat? Is it stored in the belly or in the thighs, arms and bum?

4. Sleep patterns: duration, quality of sleep (nightmares, interruptions), and stages (N1,
N2, N3, REM). Also, time taken to fall asleep. Is this self-reported or measured by a
device?

5. Level of activity: number of steps taken (as measured by a smart wearable) and
self-reported data.

6. Pre-existing conditions diagnosed by a medical professional.

7. Diet: self-reported. Studies indicate that self-reported data collected by food ques-
tionnaires is unreliable, as people don’t remember what they ate, and obese people
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drastically under-report the amount they eat. [4, 5, 6] Therefore, the veracity of the
data needs to be taken into account.

8. Heart rate: resting heart rate and peak measured by a wearable in beats per minute.

9. Cholesterol, particularly LDL vs HDL.

10. (For diabetics) Glucose readings over time. We need to distinguish between fasting
glucose vs peak glucose after a meal.

11. (For people with heart disease) Systolic and diastolic blood pressure (measured in
mmHg).

12. Possibly, test results, which can contain various data like inflammatory markers IL-1,
TNF and lactate dehydrogenase; antibody titers; hemoglobin; white blood cell count;
vitamin and mineral readings like vitamin D and calcium. This data is ad-hoc, so
whether it can actually be used for a recommendation algorithm is debatable. On the
other hand, if it is available, it’s potentially very useful, high-quality data.

All of this data is unlabelled: there is no recommendation(s) associated with a patient.
That said, the dataset can be considered partially labelled on the basis that some of the
variables are easily to classify; for example, glucose and cholesterol have well-standardised
normal ranges. Some variables may be a little harder to classify: to judge whether the resting
heart rate is within a healthy range, we need some information regarding what activity the
patient is doing at the time of the reading. We can combine this data with other available
information, such as location (we can determine whether the patient is at the gym or not,
cycling, etc.)

4 Possible Approaches

4.1 Recommendation Algorithms

This section addresses research question 2, concerning how best to design a medical recom-
mendation algorithm. To avoid confusion, I should clarify that when I say recommendation
algorithm, I really mean recommendation system. The recommender system will likely use
multiple “helper algorithms” to pre-process the data, to perform classification, and impute
missing values. There are two basic types of machine learning algorithms: supervised and
unsupervised. A supervised approach requires some of the data to be labelled to make a
training set, whereas an unsupervised algorithm does not need labels. For our purposes, we
need to use a supervised algorithm and create a labelled training set.

The way I will approach this problem is to treat it as a multi-label classification problem:
we have a patient with multiple features (activity level, blood sugar, sleep, phenotype,
diagnosis etc.) and we wish to choose the best advice out of a set of possible recommendations.
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In some cases, we may want to hand out more than one recommendation – as they are not
mutually exclusive – which makes this problem multi-label (in multiclass classification it is
assumed the categories are mutually exclusive). We may also decline to offer any advice until
the patient provides more information, as the strength of the evidence is insufficient to draw
a conclusion. Therefore, we would ideally prefer a probabilistic model over a discriminative
model, as probabilistic models give an indication of the strength of a classification. If two
recommendation “classes” have similar probabilities, we can choose both.

A neural network with a sigmoid activation function in the output layer is the standard
solution for a multi-label neural network classifier. The softmax activation function should
not be used because it assumes the classes are mutually exclusive—this assumption makes
the softmax function better at optimising exclusive classification problems, but works against
it in a multi-label problem. For example, if two neurons both have the value 0 (i.e. neither
class is a good recommendation) a neural network with a softmax activation function will
pick a winner anyway. In cases where multiple classes are correct, using softmax will split
the confidence between them. [7] For the hidden layers, either ReLU or sigmoid activation
functions would work, and which is better would have to be determined empirically. The
number of neurons in the output layer will equal the number of possible recommendations.

Since one of the conditions stipulated in RQ1 is that the algorithm must be understand-
able, such a neural network should be as simple as possible, while still providing good
representational power. It is helpful if the neural network does not have too many hidden
layers (i.e. it is not very deep). Crucially, neural networks can deal with a missing input value,
by coding it as 0. An input neuron with a value of 0 will not have an impact on the output
of the other neurons in the hidden layer, since the other neurons calculate a dot product
between the input vector and the weight vector. If we, for example, have a patient with no
blood glucose data present – because they are not diabetic – this means the recommendation
algorithm is unlikely to give inappropriate advice that is meant for diabetics. It also means
we can use the same algorithm for patients with different diseases. In practical terms, I would
most likely use the MLPClassifier in the scikit-learn library. The scikit documentation
recommends using the lbfgs solver for small training sets.

Another approach would be to use a Decision Tree algorithm. This has the benefit of
being more easily understood than the sometimes opaque neural network, as it is a simple
algorithm with an intuitive interpretation: the input data is split on the features in order to
separate classes. (I will leave out the exact details of how to achieve an optimal split; which
heuristic to use, be it classification error rate, Gini impurity or entropy; whether to prune the
tree and how etc. These are implementation details.) Additionally, modern implementations
of decision trees, like CART, can deal with missing data. However, there are some issues with
decision trees that might not necessarily make them the best for this task. Firstly, they work
best with discrete features rather than continuous variables (ratio data) like blood glucose
level in nmol/litre, which have to be discretised. A good portion of our data is continuous so
this is not ideal. Secondly, decision trees are discriminative models, so they are not good at
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giving estimating uncertainty. Thirdly, decision trees, like many machine learning models,
have a tendency towards overfitting. This is discussed in the section below.

K nearest neighbours (KNN) can also be used to solve a multi-label classification problem
using the MLkNN implementation in Scikit. The main advantage of this model is that, although
it is not a generative model, it gives us a better idea of the “fuzziness” of a prediction than a
typical discriminative model. Because KNN calculates the distance of the data point to the
nearest classes, we can tell which label was a “near miss”.

4.2 Overfitting

Overfitting is a common phenomenon in machine learning whereby a model with high
expressive power—that is, a model capable of learning many patterns in the data—will start
to learn the noise in the data. Thus, the model loses its ability to generalise well on unseen
data. It is less likely to be a problem with models that have a lower expressive power, such
as Naive Bayes, and quite likely to happen with neural networks, particularly if they have
many hidden layers (deep networks). For neural networks, L1 or L2 normalisation is used to
reduce overfitting. This adds a penalty term to the loss function that penalises large weights.

Decision trees are a “greedy” algorithm and are known to overfit. There are various
solutions, such as using random forest, and pruning the tree based on various heuristics
like information gain. It is also possible to use the chi squared statistic for pruning, but this
does not work well if the training set is small, as even good splits would be statistically
insignificant. This is important because we know our training set will be quite small.

The standard approach for evaluating overfitting is to split the labelled set into train,
test and validation sets. The performance of the model is evaluated on both the testing and
validation set: if the accuracy improves in the testing set but starts to drop off in the validation
set, we know that the model is overfitting. Since our labelled set is small, however, this
approach is inappropriate because it gives an unrealistic idea of the model’s performance
for both bias (underfitting) and variance (overfitting). The standard solution for dealing with
small datasets is to use k-fold cross-validation, with a k value of 10 being the rule-of-thumb.
[8] The idea is to split the data into mini-sets (randomly shuffling the data between them),
testing the model on one set and training it on the other sets, and doing this repeatedly for all
the different combinations in order to calculate the mean performance, and variance.

4.3 Approaches to Multi-Label Classification

Multi-label classification presents some challenges that multi-class classification does not.
To begin with, the search space equals 2N , so the search space increases exponentially with
the number of labels [9]. We would like to keep the number of labels, i.e. recommendations,
small because of this, but we also want the recommendations to be useful for every patient,
so there is a trade-off there. I think somewhere around 10–30 labels would be manageable.
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It is possible to use unsupervised algorithms to cluster related recommendations together.
One such example is the NetworkXLabelGraphClusterer (ibid). This is typically done
when there are many labels. To understand clustering intuitively, think about comorbidities.
Patients who are obese typically have diabetes and cardiovascular problems, and will likely
receive similar recommendations. So we expect “eat fewer saturated fats” and “limit the
intake of foods with a high Glycemic Load” (for example) to be clustered together. Using
an unsupervised algorithm to first cluster the labels can help the supervised algorithm to
perform better.

It is possible to treat each target variable in the multi-label classification problem sepa-
rately, and combine the results. This method is known as Binary Relevance (ibid). The main
issue with this method is that is slow if the label space is large, but should be manageable if
the number of labels is not too high. The scikit multilearn library contains a good practical
implementation of this solution, and it works well with a decision tree.

Another approach is to use Label Powerset. This reduces the multi-label classification
problem into a multi-class classification problem, where each target variable is combined
and each combination is treated as a class (ibid). This method requires all possible labels to
be in the training set.

The main advantage of a neural network compared to a decision tree is that it is inherently
multilabel, and does not need to use either of the above strategies. A neural network gives a
probability for each label, and the top 3 can be selected, or only one if the probabilities are
low.

4.4 How big should the training set be?

The main problem with any supervised algorithm, particularly a neural network, is that it
requires a sufficiently large training set to learn from, whereas all of our data is unlabelled.
I can think of two ways to bridge this problem: one, to look for a dataset containing
recommendations for patients. Since this field of study is quite new, it may be difficult
to find such a dataset, particularly if the input features differ from the ones that are available.
The second solution would be to find some experts who can help me label the data. This
seems viable, but realistically, such a dataset would end up being quite small – at most 100
patients, possibly as low as 20 or 30. A training set of n=100 would be large enough, but
twenty or thirty labels would be insufficient to train a neural network properly: if we consider
the perceptron learning rule,

wnew = wold −η∆E(w) (1)

We see that we can increase the learning rate η to make the algorithm converge faster.
However, this risks making the algorithm “overshoot” (i.e. not converge to the most optimal
value). Moreover, it would be very difficult to validate this algorithm to ensure it has a good
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bias-variance tradeoff; it seems unlikely the algorithm would generalise well to a larger
population, as it cannot learn more subtle patterns in the data from such a small training set.

4.5 A Knowledge-Based System

Perhaps the best approach, then, and the one I discussed with my company supervisor, is to
just do what doctors do: apply a series of rules based on domain knowledge. The advantage of
this approach is that it does not require a training set, and it is also extremely understandable:
it can be visualised with a simple flowchart, and experts in the field will have no trouble
understanding the reasoning. Thus, the recommendation algorithm can be thought of as
a kind of “virtual GP”. It should be noted that this approach is equivalent to a decision
tree, except that the splits are constructed manually rather than by a machine. Such manual
algorithms are sometimes referred to as “expert systems” or “knowledge-based systems” in
the literature. [10]

Consider the simple example provided in figure 1.
Let’s go through the reasoning. Firstly, we want to know if the patient is classed as

diabetic: this can be a Boolean variable. If the patient is diabetic, we look at whether their
glucose value falls within the acceptable values range for diabetics. If it does, we provide
positive re-enforcement for the patient, so that they feel motivated to continue with their
good habits. If not, we look at the data we have about diet, which we have classified as
appropriate for diabetics, or not. If we know the diet is not appropriate – the most likely
explanation is that the patient is eating too many refined carbohydrates such as white bread
and pasta, rice etc. – we tell the patient to change their diet by eating foods with a lower
GI/GL (Glycemic Index/Glycemic Load), such as fruit instead of desserts, wholemeal grains,
beans and legumes, as well as foods with more fat, like walnuts and olive oil. If we believe
the patient is eating correctly, then we recommend a visit to a specialist doctor, who may
adjust their insulin dose, or prescribe medication to regulate glucose levels.

If the patient is not classed as diabetic but has abnormally high glucose values, we
recommend they visit the doctor, as they may be an un-diagnosed diabetic. We could also
use proxy values instead of blood glucose, as people not classed as diabetics typically don’t
measure their glucose levels: for example, we can ask them if their urine smells sweet.

Note that the flowchart simplifies the real algorithm for the sake of illustration. To begin
with, flowcharts are not very good at modelling time, and they assume a fixed process,
whereas this algorithm changes and adapts over time based on past inputs (in technical terms,
it is not memoryless). Secondly, the decision rules seem quite simple, which they are for
the sake of illustration; in reality, a decision rule would involve time-series and statistical
analysis. So we would not just look at whether the blood glucose is high now – but we would
look at whether it is consistently high over time.

Some pseudocode is provided in figure 2.
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Figure 1: A flowchart showing the decision logic for patients who are diabetic, or are not
classed as diabetic, but have high blood sugar.
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4.6 Prioritising the Recommendations

We have formalised the problem of giving recommendations as being a multi-label classifica-
tion problem with between 1–3 recommendations per patient. The limit of 3 recommendations
is for practical reasons, to keep it manageable for patients. If we were to use a knowledge-
based system, we could easily end up giving more than 3 recommendations though, so this
has to be taken into account in the control flow. We need to score the recommendations and
give only the most important and relevant advice.

This can be done using a scoring system, taking into account data about the patient and
combining it with domain knowledge. This could be on a scale of 1–3, with 3 indicating
high importance (e.g. very high blood sugar levels, large number of cigarettes smoked per
day, very little sleep etc.) and 1 indicating low importance. A score of 0 would indicate
irrelevance. The recommendation and its importance could be stored as a key-value pair (in a
tuple or a dictionary), inserted into a list, and the list can be sorted based on the importance
score. The first three recommendations are then selected.

4.7 Time Series Analysis

As we have seen in the pseudocode example, we need to perform some time series analysis.
Mainly, we’re interested in detecting changing trends over time, such as changes in exercise
or diet. We want to provide positive re-enforcement to a patient if the data shows they are
making a lifestyle change. The length of the moving average window is important: we have
to smooth out minor day-to-day fluctuations. This would have to be determined empirically,
but a 3 day window seems like a reasonable guess. Most time-series models such as ARIMA
(Autoregressive integrated moving average) and Kalman Filter deal with moving averages,
which are fine in many cases, but possibly insufficient in the case of diabetes. For a diabetic
patient, the mean is less important; we want to see a reduction in hypoglycaemia events
(blood glucose levels below 70 mg/dl) as well as a reduction in hyperglycaemia (above 140
mg/dl).

Using the output of the time-series model, we apply a classification to the patient, such
as “Decreasing trend”, “Increasing trend” or “Staying the same” next to blood sugar levels
or saturated fat intake.

5 Imputation

5.1 Training Set Imputation

Data with high missingness is a frequent problem in data analysis, and there are two main
ways to approach the problem. One, to subset only the data for which observations are
available. This approach is impractical when there are multiple variables, and can significantly
limit the size of the available training set. At runtime, missing data is usually unavoidable.
The second approach is to use imputation; however, the method of imputation needs to be
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carefully considered in order to ensure it has good statistical properties. Mean imputation is
the simplest method, but it is considered statistical malpractice. Martin [11] shows that mean
imputation introduces two problems: firstly, it artificially reduces standard errors, because
the imputed data does not have any variance. Secondly, it does not preserve the relationship
between variables – for example, it can weaken a strong correlation, or artificially inflate
it. Two methods have been developed to achieve a better quality of imputation: Maximum
Likelihood (MLE) and MICE (Multivariate imputation with chained equations). Firstly, I
will discuss some assumptions that apply when doing multivariate imputation, regardless of
the method.

5.2 Multivariate imputation

When doing imputation with multiple variables, it is important to consider whether rela-
tionships between the variables should be taken into account. For example, if a patient is
missing LDL cholesterol measurements but does have high blood pressure, we have to take
into account that people with high blood pressure tend to have high LDL cholesterol.

There are three types of assumptions that can be in multivariate imputation: Missing-
Completely-at-Random (MCAR), Missing-at-Random (MAR) and Not-Missing-at-Random
(NMAR). The least realistic assumption is MCAR, where we assume that the variables
are independent. In equation 2 consider response, R, a 0/1 encoded variable; X is a vector
without missing values, and Y is a vector with some missing values [12]. If missing values
are MCAR, then the missing values have nothing to do with the observed values in Y.

P(R = 1|X ,Y ) = P(R = 1) (2)

MAR is a more realistic assumption. It assumes that the variables can be correlated, like
in the example with LDL cholesterol and blood pressure. It does still assume that patients
with missing data are missing the data for random reasons (such as forgetting to the charge
the battery) and not because of bias, such as sicker patients not using the device. Formally,
MAR states that the probability of the response depends on another variable for which we
have observations. See 3.

P(R = 1|X ,Y ) = P(R = 1|X) (3)

For data that is NMAR (Not Missing at Random), it is extremely difficult to make a good
imputation solution [12]. But this should not be a problem in our case.

5.3 MICE and MLE

The first, more sophisticated method of imputation is MICE. This has the advantage of
theoretical robustness [13] and has a practical implementation in Python [14]. In particular,
MICE takes into account the fact that other variables can be predictive of the missing data.
However it is very complicated and hard to understand. What MICE does is generate multiple
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datasets with slightly different imputations. This is typically done with a linear regression
model and a random draw from a standard normal distribution. If we have 3 variables, Z, X
and Y, of which Z has missing values and X & Y are complete, then the linear regression
equation will look something like equation 4 – see [12].

Ẑ = b0 +b1X +b2Y + sE (4)

(Where s is the root mean square error (RMS) and E is a draw from a standard normal.)
From equation 4 we see that MICE makes two assumptions: that missing values can be

predicted with a linear model (i.e there is a linear relationship between the variable with
missing values and the complete predictor variables), and that the errors follow a multivariate
normal distribution. One obviously has to be careful with these assumptions. If there are
categorical or binary variables in the dataset, FCS (Fully Conditional Specification) can be
used instead of MCMC (Markov Chain Monte Carlo), as it uses logistic regression for the
categorical or binary variables.

Both FCS and MCMC are similar in that they create multiple datasets with imputed
values, and update the weights of the linear regression model (b) iteratively – this makes
them somewhat similar to a machine learning algorithm. The downside is that this process is
very memory-intensive, especially for large datasets or many iterations. The iterations are
required in order to converge to a good posterior distribution and ensure that the imputed
values between datasets are statistically independent.

The second approach I will consider is imputation by Maximum Likelihood Estimation.
In general, the idea behind MLE which is to find a parameter θ that maximises the likelihood
function, which is typically done by taking the log-likelihood function, as finding the
derivative of a sum is easier than a product. If the log-likelihood function is monotonically
increasing, the solution that maximises the log-likelihood also maximises the likelihood
function. This is not always the case, so this assumption needs to be treated with some
caution. Generally, MLE works well when the underlying data has a normal distribution or
some other common parametric distribution.

Note that this parameter θ is not the parameter to some theoretical distribution; it is,
rather, the missing value which we are trying to find. Consider the case that the the first
variable y1 is missing a value at the ith observation. If you look at equation 5, you will see
that we sum the joint pdf function f of all the other variables, over the observations of y1 for
which we have data. (If the variables are continuous, we use integrals instead of summations,
but the basic idea is the same.)

L =
n

∏
1

∑
y1

f (yi1 . . .yik,θ) (5)

Allison [12] argues that MLE is a superior approach compared to MICE, for several
reasons:
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1. Allison points out that MICE always gives a different result (because of randomisation)
whereas MLE does not. This is an issue for reproducibility, but it can easily be worked
around by setting a seed value for the random number generator.

2. MLE is more memory efficient than MICE, especially for large datasets. Allison does
not mention this, but it could be a problem.

3. Allison points out that MICE requires making many more decisions than MLE, which
introduces uncertainty.

4. If the relationship between missing data and predictor variables is non-linear, then
obviously one cannot use a MICE algorithm that depends on linear regression. The
assumption of normality is another assumption that MICE makes and MLE does not.

5. Finally, in MICE, the analysis model must be compatible with the imputation model.
In particular, the analysis model must not include variables that were not included in
the imputation model. Likewise, if one is using a non-linear or interaction model, e.g.
a neural network, one also has to use an imputation model that takes into account these
interactions and non-linearities, adding further complexity.

The variety of issues associated with MICE makes me lean towards MLE as the superior
solution.

One might reasonably wonder if a neural network could be used for imputation and not
just regression. This is an area of active research: Yoon [15] used a Generative Adversarial
Net with good results, and Cheng [16] had success using a deep-learning (multiple hidden
layers) neural network. See [17] for a discussion about the merits of this imputation approach.
As promising as it looks, there aren’t – to the best of my knowledge – any off-the-shelf
machine learning algorithms for imputation yet.

5.4 Imputation at Runtime

So far I have discussed imputation in the training set. There are some key differences between
imputing data on a training set versus at runtime. For one, it is possible to avoid having
to impute data at all in a training set (although this may not be desirable, especially if
it makes the training set small). During runtime, imputation is likely to be unavoidable.
However, it is possible to prompt the user to input some missing data, especially if that
data is very important to the final outcome. It would be nice to have some way of judging
the importance of a variable to an outcome; one simple way to do this is using Principal
Component Analysis (PCA). The top 3 variables with the highest explained variance can be
prioritised (for example). In terms of the control flow, the user should be prompted to input
the important missing data before any recommendations are calculated.
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5.5 Time Series Imputation

Performing imputation on time-series data is quite different from performing imputation
on non-time-series data. To begin with, time-series data is not i.i.d (identically distributed
and independent): there is a strong correlation between my cholesterol levels today and
my cholesterol levels yesterday, for example. Secondly, the time-series data is likely to be
irregular. A diabetic, for example, does not measure their blood sugar levels every 24 hours
like clockwork, but in irregularly spaced intervals. Additionally, it is possible that the data for
one variable might not depend purely on past values for that variables (univariate time-series)
but that it might have dependencies on other variables for which we have observations
(multi-variate time-series). For example, a diabetic’s blood sugar levels also depend on their
activity level and their diet. In other words, univariate imputation implicitly assumes MCAR.

A good option would be to use a Continuous Time Bayesian Network (CTBN). Research
indicates that when the time-series data is irregularly spaced, MAR rather than MCAR, and
there is no strong prior knowledge about the distribution of the data, continuous time Bayesian
networks perform equally or better than discrete time Bayesian networks. [18] Another
approach would be to use a Generative Adversarial Network (GAN) but this typically requires
a large training set, which would be problematic. [19] The main issue with using a CTBN is
that it requires a Directed Acrylic Graph (DAG), which is a model-based representation of
the causality between different variables. This often requires the help of a domain expert to
construct. For a CTBN, we can use MLE parameter estimation, which makes no particular
assumptions about the underlying prior probability, or a Bayesian estimator. MLE has a
tendency to overfit on a small datasets, whereas a Bayesian estimator is more theoretically
robust. The Bayesian Dirichlet equivalent uniform prior distribution can used as a reasonable
starting point. [20] In terms of a practical implementation, pomegranate cannot be used
because it only implements a discrete Bayesian network. One promising library would be
tsBNgen .

Alternatively, we can choose to use a simpler method by assuming the time-series data is
MCAR, that is, it does not depend on other variables (for which we have data). Although this
assumption is a little unrealistic, a multivariate model might not necessarily perform better
than a univariate model if we have few observations for the other variables, or the dependent
variables are only weak predictors. Applying the principle of Occam’s Razor, we should
prefer a simpler model if that’s the case. One good candidate is the Kalman Filter, which
is available in the imputets R package. Basically, the Kalman Filter calculates a moving
average of the data [21]. So if we notice that a patient’s exercise level has been trending
up for a good period of time, we can take this into account for imputing a day that has no
data. The Kalman filter is good at dealing with data that is somewhat noisy and sampled at
irregular time intervals.
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6 Persuasion Principles

This section addresses research question 5. The purpose of the Healthentia virtual coaching
platform is ultimately to produce a beneficial change in lifestyle and behaviour. But to do
this, we need to be aware of human psychology and incorporate this a priori knowledge in
the design of our recommendations. Consider the following New Year’s resolution: “This
year, I will go to the gym and lose weight.” We’ve likely all heard some variation of this
promise (the reader may even have made it themselves). But how often is it successful? The
person typically buys a gym membership, goes there for a week, maybe a month, and then
gradually loses interest. Research shows that between 50–60% of New Year resolutions fail.
[22, 23]

So how can we improve on this? Both Norcross and Oscarsson found that “approach-
orientated” goals are more effective than avoidance-orientated goals. An approach-orientated
goal is one in which the patient tries to introduce a positive habit, such as going to the gym
or learning to play the ukulele. An avoidance-orientated goal is about quitting a bad habit.
For example: “This year, I will give up on smoking.” Oscarsson found that the group which
received some support had a significantly higher success rate than the group which received
no support: the 95% confidence interval was 59–65% for the support group versus 53–58%
for the control group. This is important, because the Healthentia virtual coach can act like a
human personal trainer, providing support and smart goal-setting.

It is known that certain bad habits are physiologically addictive; nicotine is recognised as
being extremely addictive. Research has shown it is comparable to cocaine in addictiveness.
[24] The fact that nicotine or caffeine is addictive is uncontroversial, but could unhealthy
eating habits be motivated by similar mechanisms? In other words, is sugary or fatty food
addictive? An article published in Diabetes [25] tries to answer this very question. The author
adduces a fascinating study by [26] which found that, in obese adolescents, consumption
of fructose or glucose was associated with an increase in activity in the limbic system (the
“pleasure centre” of the brain) and a decrease in the activity of the pre-frontal cortex, which
is responsible for executive control. This did not occur in lean, healthy adolescents. Fur-
thermore, consumption of fructose and glucose lowers the levels of acyl-ghrelin, effectively
increasing hunger (ibid). A study by Drewnowski [27] found that blocking opioid receptors
using naxolone resulted in a decrease in binge-eating behaviour. Whether sugar can be
considered addictive in the pharmacological sense is debatable, and beyond the purpose
of this work to answer. But we have to recognise the fact that sugary foods have profound
effects on the brain and metabolic system, and that this pattern of behaviour is therefore very
difficult to break.

Dieting has been shown to be more effective in conjunction with pharmacological inter-
ventions [28]. Previous appetite-suppressing drugs, such as fenfluramine, were withdrawn
from the market due to their association with cardiac abnormalities. [29] Until as recently
as 2010, sibutramine was available on the market, and was withdrawn after a randomised
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clinical trial found a significant association with sibutramine use and heart attacks. [30]
Appetite suppressants are an ongoing area of research, but so far, there do not appear to be
many medications available that are both safe enough to be used without medical supervision,
and effective.

Finally, I wish to draw on the research that has been conducted in the field of electronic
persuasion systems, including advertising and social media. Perhaps the most well-known
author in this space is Robert Cialdini [31]. He came up with six “persuasion principles”,
after which this section is named. They are:

1. Reciprocity: When humans receive an unsolicited gift, they feel obligated to return
the favour. This does not necessarily have to be in the form of financial gifts; it can be
a small thing, like a personalised gift card. The reader may be inclined to ask if it is
practical to include this principle in a piece of software (because how can software
offer a physical gift?) But virtual gifts can be used as well. Reddit, for example, has
implemented the ability to give virtual gifts (“Awards”) to other users.

2. Consistency: What Cialdini seems to mean by this word is that humans are inclined
to honour public commitments. Subtly changing the formulation of a question or
suggestion, so that the user makes a promise, can significantly improve commitment to
a particular task. For example, “Will you please call if you change your plans?” (pause)
is more effective than “Please call if you change your plans.” The former prompts the
user to make a commitment. The Healthentia Virtual Coach could employ a similar
principle, asking the user for input at key times.

3. Social Validation: Humans have a subconscious idea that the more people believe
in or comply with an idea, the more valid that idea is. This explains the success
of religion, for example, or bestsellers. This principle is one of the most frequently
used in marketing, and one hardly needs any imagination to see how it could be
incorporated into Healthentia recommendations. They practically write themselves:
“Millions love their oats for breakfast, as it is filling, fibre-rich, and nutritious. Try it
now.” Cialdini does give a very clear warning to health authorities who try to use this
principle in the wrong way, as it can backfire to produce the opposite effect of what
is desired. Crucially, this principle cannot be used to discourage bad behaviour. In
one egregious example, when a New Jersey suicide prevention programme informed
teenagers of the high number of teenage suicides, the kids actually become more
likely to consider suicide a viable solution, found David Shaffer and his colleagues at
Columbia University. 1

4. Liking: People are more likely to be persuaded by a person they like, be it that the
person is attractive, praises them, or fights for their cause. The most practical way to

1Cialdini mentions this example in the 2001 Scientific American article cited, but I was unable to find a
citation for this specific claim. The best source I could find is a 1991 study by Shaffer et al., but the article is
paywalled. [32]
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incorporate this in the Healthentia Virtual Coach would be to use praise or positive
re-enforcement.

5. Authority: This one is straightforward. People are more likely to trust in recommenda-
tions made by experts, so recommendations could start, “According to the American
Heart Association, eating soluble fibre reduces your chance of getting a heart attack.”

6. Scarcity: If people perceive something to be scarce, or the knowledge about that
product being scarce, they are more likely to buy it. This is one principle that I don’t
think is relevant for our purposes.

Of the six, I think authority and social validation are the most important for a medical
recommendation algorithm, for they are both powerful and easy to implement. Liking and
consistency could also be employed, with some creativity. Reciprocity and scarcity are the
least relevant.

But can we test whether the formulation of a recommendation makes a difference to the
patient’s response? It would be possible to perform randomised A/B testing on the patients to
test this hypothesis. The patients could be asked to rate the recommendation with a thumbs
up/thumbs down, or on a Likert scale of usefulness. The main theoretical problem with this
approach is that patient satisfaction is not necessarily a good proxy for recommendation
effectiveness in the long-run; that a patient is happy with the advice does not mean they act on
it. But it would at least give an indication of the perceived relevance of the recommendations.
The main practical problem is whether there would be sufficient time to incorporate the
algorithm into the Healthentia app in order to carry out A/B testing.

7 Evaluation

This section concerns RQ4, evaluation of the medical accuracy of the algorithm. There are
two types of evaluation that are useful for this algorithm: 1) an evaluation of whether a
recommendation is medically appropriate for a patient, and 2) an evaluation of whether these
recommendations actually lead to a change in lifestyle. The first problem relates directly to
Research Question 4. The second evaluation is unfortunately not possible to do, as it would
require following the patients for an extended period of time (months, years) to see if their
weight improves, or if they exercise more, and so on.

My proposed method for evaluating the medical accuracy of the recommendations is to
to use expert evaluation: one or more medical experts can offer 1–3 recommendations per
patient to a group of patients, out of a set of possible recommendations, based on the available
data. As discussed in the multi-label classification section, I expect we will have anywhere
from 10–30 possible recommendations, which should be manageable for the doctors. If there
are multiple experts, we ask them to advise different patients (since we are not interested in
the agreement between experts, but in the agreement between experts and the machine.) The
experts labeling the test set would have to be different people from the expert who helped

17



me label the training set, to prevent bias. The output of the algorithm is then compared to the
experts’ recommendations, and an agreement score can be calculated on the nominal ratings.

Calculating agreement scores between the algorithm and experts is tricky, because this is
a multi-label classification and not an exclusive classification. This involves some challenges:
it is no longer the case that an agreement is hard wrong/right, but rather, we are interested in
the number of labels that the algorithm got right, e.g. 2 out of 3 or 1 out of 3 (we find have to
find what is common between two sets). It also means that traditional tests of agreement, for
example Cohen’s kappa, Bhapkar or McNemar, cannot be used. [33].

One possibility is to use Kripendorff’s alpha. This statistic was developed in response to
the need for an inter-coder reliability metric in qualitative research [34]. It has several nice
properties that make it ideal for this problem: it can handle multi-label data; it can handle
missing data; and it works with a wide variety of data, be it nominal, ordinal or ratio. Finally,
Kripendorff’s alpha is also very easy to understand—a score of 1 indicates perfect agreement,
and 0 indicates no agreement. A practical implementation can be found on pypi.

It is also possible to use the same evaluation metrics for multi-label classification as
for exclusive classification, such as precision, recall, and F1 score, with the use of micro-
averaging or macro-averaging. In micro-averaging, we average the individual true positive,
false positives and false negatives. [35] In macro-averaging, we average the precision and
recall on the different labels (ibid.) Macro-averaging is useful for judging performance at-a-
glance, and micro-averaging gives a more in-depth performance overview. Micro-averaging
is particularly important when the data is unbalanced, i.e. some labels are recommended
frequently while others are rarely recommended; it allows us to judge whether the algo-
rithm is good at predicting the less frequent recommendations, which might otherwise be
overshadowed by its average performance.

For accuracy scores, we can use Hamming Loss, which tells us the fraction of labels that
were predicted correctly (ibid). A much stricter accuracy score would be exact match, which
as the name suggests, only classifies the sets of labels that match exactly as being correct.
For our purposes, Hamming Loss would be a better metric, because it is unlikely we will
have a perfect match, especially with so many labels.

One might wonder if it is possible to refute the null hypothesis that the recommendations
of the algorithm agree with the experts’ recommendations by chance. This would be a
problem if we only had, say, 5 possible recommendations from which to pick the 3. This is
the problem that Cohen’s kappa aims to solve. However, the standard Cohen’s kappa cannot
be applied to a multi-label classification problem, although extensions that would allow for
this have been suggested, e.g. using weighting [36]. But since we will have anywhere from
10 to 30 possible labels, it seems unlikely that the results would agree by chance. I am also
not sure if any implementations of multi-label Cohen’s kappa are available.
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8 List of Abbreviations

• BMI: Body Mass Index

• COPD: Chronic Obstructive Pulmonary Disease

• FCS: Fully Conditional Specification, a type of algorithm used for multivariate impu-
tation by chained equations.

• IL-1: Interleukin 1, an inflammatory marker.

• HDL: High-Density Lipoprotein, a type of cholesterol that has a protective effect on
the heart.

• KNN: K-nearest neighbours, an algorithm that performs classification based on how
far a point is from the other classes.

• LDL: Low-Density Lipoprotein, a type of cholesterol that causes blood vessels to
narrow and clog, leading to heart attacks.

• MAR: Missing at Random. This assumes that data is missing at random, but the
missing values can depend on other observed variables. For example, high blood
pressure is correlated to high LDL cholesterol.

• MCAR: Missing Completely at Random: A generally unrealistic scenario where
missing values are assumed to be independent of of other observed variables.

• MICE: Multivariate Imputation by Chained Equations.

• MCMC: Markov Chain Monte Carlo, another type of MICE algorithm.

• MLE: Maximum Likelihood Estimation. A way of estimating population parameters
from a sample.

• MOM: Method of Moments. A way of calculating population parameters based on
moments, like the mean.

• MSE: Mean Square Error. A measure of how well an estimate fits the population
parameter.

• REM: Rapid Eye Movement sleep.

• RCT: Randomised Controlled Trial, a type of clinical study where one group is given
a placebo, and the other group receives the intervention. Patients are assigned to one
group at random, to prevent bias. An RCT can be single-blind, where the doctor knows
what group the patient is in, or double-blinded, where neither patient nor doctor know,
only the study investigators.
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• RMS: Root Mean Square Error.

• TNF: Tissue Necrosis Factor, a biomarker of inflammation.
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1 READ PatientData
2 #See if one of the top 3 variables has a high missingness score
3 IF IS.NA PatientData [" Important_variable1", "Important_variable2", "

Important_variable3 "] > 0.4
4 PRINT("Sorry , we do not have sufficient data to provide a

recommendation. Please can you fill in the following missing data
.")

5 PROMPT_INPUT
6 ELSE
7 FILL_MISSING PatientData
8 #Classify_glucose () calls some time series functions.
9 DEFINE Classify_Glucose(PatientData):

10 IF time_series_peaks(PatientData [" Glucose "]) > 140
11 PatientData [" Glucose_classification] = "Too high"
12 ELIF time_series_lows(PatientData [" Glucose "]) < 70:
13 PatientData [" Glucose_classification] = "Too low"
14 ELSE:
15 PatientData [" Glucose_classification] = "Just right"
16 CALL Classify_Glucose(PatientData)
17 IF PatientData [" Diagnosis "] IS "Diabetic"
18 GO TO diabetes
19 ELSE
20 IF PatientData [" Glucose_classification "] IS "Too high" OR "Too low

"
21 RECOMMEND ("Your blood glucose levels are outside the normal

levels for a healthy person. We recommend a visit to the GP.")
22 ELSE
23 #Go to some other subroutine
24 SUBROUTINE diabetes:
25 IF PatientData [" Glucose_classification "] IS "Just right"
26 RECOMMEND ("You ’re keeping your diabetes under control. Well done

!")
27 ELSE
28 IF PatientData ["Diet"] IS "Appropriate"
29 RECOMMEND (" Please see your endocrinologist , you may need an

adjustment to your medication or insulin dose .")
30 ELSE
31 RECOMMEND ("Hmm , it seems you ’re having some trouble keeping

your diabetes under check. Diabetics should follow a diet with a
low glycemic load (GL). You should try to eat more wholegrain
foods (e.g. oats , beans , lentils , wholegrain bread and pasta) and
fewer sugary foods and processed carbohydrates like white bread ,
rice and crisps .")

Figure 2: Pseudocode for flowchart 1.
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