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Abstract  
The detection time of clinical deterioration (clinical adverse events) has long been viewed as a 
key factor in indicating the response rate of necessary interventions. However, this detection 
time is impacted by the frequency of nurse assessment and the number of patients in a given 
ward. To improve assessment time, nurses employ threshold-based track-and-trigger systems 
to monitor adverse events, but they suffer from high false alarm rates given the heterogeneity 
of population. It is desired to improve the performance of clinical deterioration monitoring 
systems. This study aimed to develop a fully automatic machine learning based system to detect 
clinical adverse events in 60 postoperative patients with short-termed (two minutes per hour) 
vital sign data from wearable sensors. Our system focused on extracting and highlighting the 
most important features from the vital sign data, and using these features, perform a 
comprehensive test of decision support models from the machine learning sphere. This includes 
models from the classical statistical machine learning, deep learning and time-series 
classification domains. Finally, the top three model’s performances were compared to existing 
threshold-based systems. Overall, the best decision support model in the system exhibits a 
significant boost in performance compared to existing threshold-based systems. It could detect 
all clinical adverse events ahead of time with an accuracy of 86% and a precision of 42%. The 
system model also reported an average false positive rate of 15%, almost 67% lesser than 
existing threshold-based systems.  
 

Keywords  
Clinical deterioration, machine learning, deep learning, vital signs, wearable sensors, clinical 
adverse event, tele-monitoring, eHealth.  
  
Introduction  
There are concerns with the growing incidence of complications as the number of patients 
undergoing surgery every year increases [1]. A complication, or more specifically, a clinical 
adverse event (CAE) can be defined as a high-risk adverse event that requires immediate 
medical intervention. Studies have shown the risk of a CAE to be the greatest in the 
perioperative and postoperative phases of a patient's hospital stay [2]–[4]. Nurses play a major 
part [5], [6] in a patient's postoperative trajectory, and one of their most important roles 
involves patient status assessment and monitoring. However, more patients can negatively 
impact the amount of time nurses spend of patient assessment [7], which could have more 
serious implications [8]. The most frequent non-operative management errors involve 
aperiodic vital-sign monitoring and delayed treatment. Hence, there was a requirement for 
better systems or procedures to address these concerns. 
  
To reduce patient assessment time, track-and-trigger systems were accepted and adopted to 
assist clinicians in clinical deterioration monitoring. A track-and-trigger system is a monitoring 
chart that is generally applied to physiological signals that is used to indicate patients of 
deteriorating conditions. The most adopted track and trigger system used is that of the Early 
Warning Score (EWS). The EWS works on the principle that the deterioration state of a patient 
can be scored based on pre-defined thresholds that apply to the primary vital signs – body 
temperature, heart rate, respiration rate and blood pressure. The Modified Early Warning Score 
(MEWS), a variation of the EWS, is the most validated system for CAEs and is regarded as the 
gold standard of CAE monitoring systems. However, its threshold-based nature cannot capture 
the complexities of the physiological states of patients across multiple cohorts and 
demographics, and suffer from high false positive rates [9]–[11].  Hence, for clinical 
deterioration, approaches that do not solely rely on thresholds needed to be explored. 
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The primary goal for systems looking to improve upon the drawbacks of MEWS is to be able 
to effectively model the physiological states of patients. But which technique is best suited for 
CAE detection using just vital signs? Multiple data mining techniques from the machine 
learning domain have been shown to model physiological states of patients from multiple 
cohorts using vital sign data. A previous study [12] showed a kernel density estimate model 
exhibited the best performance in detecting CAEs in its experiments, while another study [13] 
suggested that a 1-class support vector machine has the best performance for CAE detection. 
While this study [14] is the most thorough paper which compared multiple machine learning 
techniques with MEWS, it does so on electronic health record data and not on continuous 
wearable sensor data, and also does not expand into the deeper, more complex domains of 
machine learning. Hence, there is still no agreement to the single best algorithm to use for CAE 
detection, and whether the algorithm actually improves upon the drawbacks of the MEWS.  

 
This study answered these questions by performing an extensive test of 33 models from the 
machine learning sphere and comparing their performances to that of the MEWS. We proposed 
a fully automatic system capable of extracting features from vital signs and applying a decision 
support model to observe its overall performance in comparison to the golden standard of 
clinical deterioration monitoring systems. The most important indication of an improvement in 
performance of the final system versus the MEWS is whether the final system had a better false 
positive rate than that reported by the MEWS. Based on these comparisons, we ensure the final 
system is able to truly capture the physiological states of patients. 
 

Materials and Methods   

Dataset 
This retrospective study was conducted on the MoViSign dataset, which was compiled in 
Almelo, the Netherlands. The data collection was done in MoViSign project funded by 
Pioneers In Health Care Innovatiefonds, the University of Twente, the Netherlands. The dataset 
consisted of data from wearable sensors during the ward stay of 60 patients of two surgical-
based groups: upper gastrointestinal (GI) tract surgery (n=33) and hip fracture surgery (n=27). 
In this dataset, 28 patients encountered CAEs comprising 7 pulmonary complications, 2 
anastomotic leakages and 12 cardiac complications. The average ward stay of the patients was 
5.42 ± 0.25 days. The male-to-female ratio was 7:8 in this dataset.  
 
Wearable Sensors  
The wearable sensors used in this study were the Isansys LifeTouch, the Isansys LifeTemp and 
the Nonin 3150 WristOx2 pulse oximeter. The sensors provided two types of data — the vital 
sign trace signals and the sensor pre-computed vital signs. The vital sign trace signals are raw 
physiological signals that allow us to extract additional (and possibly informative) features 
apart from the standard vital signs, and were chosen as the primary data inputs. The pre-
computed vital signs are the heart rate, respiration rate, body temperature and oxygen 
saturation. The vital sign trace signals are recorded at 99 Hz and the pre-computed vital signs 
are recorded per minute. Although the trace signals are recorded at a faster rate, they have a 
maximum per-hour recording time of 2 minutes due to sensor limitations. The target vital sign 
signals are the electrocardiogram (ECG) and photoplethysmography (PPG) signals, along with 
the body temperature and oxygen saturation data from the wearable sensors. 
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Additional Variables 
Data based on demographic information like age, height and weight and previous comorbidity 
history was collected during patient admission. This data had a primary function to be used for 
model personalization.  
 
Outcome 
The CAEs, marked by the onset of therapeutic actions initiated and confirmed by an expert 
clinician, were the golden standard in this study.  
 
 

 
 

Fig. 2: Flowchart of the various steps in the analysis pipeline 
 

a) Feature Extraction and Preparation   
The study design also sets the foundation for setting up the analysis pipeline. Figure 2 provides 
an overview of the different sections of the analysis pipeline. Initially, we extracted multiple 
timespan features, with a maximum span of 2 minutes as mentioned earlier, as it was the 
maximum per-hour recording duration of the sensors and to explore how informative vital sign 
waves of multiple time periods are to predicting CAEs. The features were grouped into six-
second, minute, and patient-specific features. The second-based features were comprised of 
features extracted from 6-second windows with a 50% overlap, adding up to a theoretical 
maximum of 39 windows per hour. These included the heart rate, the respiratory rate, the 
quality of R-peaks, heart rate variability indices extracted from the ECG signal and the 
morphological features [15] extracted from the PPG signal. The minute-based features included 
the body temperature and oxygen saturation data. The patient-specific features were 
quantitative and qualitative variables that include the patient demographic and previous 
comorbidity data collected during admission. The entire list of features extracted in this study 
is presented in Appendix A. 
 
A custom automatic extraction process (Fig. 3) was developed for this study to suppress motion 
artefacts and noise in raw ECG and PPG signals. The process consists of four steps: Firstly, we 
rejected segments where the ratio of tracepoints were more than one standard deviation from 
the mean in a 6-second span to eliminate the extremely noisy segments. Next, we needed to 
check the recognizability of arbitrary ECG waves. An approach based on using the properties 
of Q,R and S-waves of the ECG signal (or QRS) to measure the ECG quality was chosen due 
to its capability in distinguishing non-standard waves [16]. This is based on three indices 
multiplied with the weight vector [0.6, 0.2, 0.2] that was chosen to provide the best accuracy 
of determining ECG quality from tests conducted in [16]. Based on this final score (OverScore) 
in Eq. 1.4, we rejected segments having an OverScore greater than the decision value of 1.25, 
selected based on the evaluation rating in [16], and in turn the accuracy of ECG quality. As 
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mentioned previously, the three indices, the power spectrum signal quality index (pSQI), the 
kurtosis SQI (kSQI) and the baseline SQI (baseSQI), each characterize properties of QRS 
segments of the ECG signal. The pSQI is based on the fact that the QRS wave accumulates 
~99% of the energy of an ECG signal. This QRS wave is centered at 10 Hz with a width of 10 
Hz. Hence, pSQI is the ratio of the QRS energy (integral of the spectral power P(f) in the 5-15 
Hz band) to the overall energy (integral of the spectral power P(f) in the 5-40 Hz band) and is 
described in Eq. 1.1. This ratio is ideally in the range of 0.5 to 0.8 based on experiments on 
normal heart rate ranges. The kSQI is based on the measure of kurtosis of the signal. The 
kurtosis is the measure of the number of outliers compared to the normal distribution. It is the 
fourth standardized moment (the expected value E of a random variable x shifted by its mean 
µx, divided by the signal’s standard deviation σ whole raised to the fourth power)  of the ECG 
signal distribution and is computed as per Eq. 1.2. Good signals have an kSQI in the range 
greater than 5, that is based on low skewness in the signal. The baseSQI is a measure of the 
baseline drift of the ECG signal. If there is a significant amount of very low-frequent energy 
(integral of the spectral power P(f) in the 0-1 Hz band), this could be attributed to an abnormal 
shift from the baseline. Hence, Eq. 1.3 describes the computation of the baseSQI where no 
baseline shift gives the baseSQI an ideal value of 1 and higher values of low-frequent energy 
is linked with low values of baseSQI. 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
∫ 𝑃𝑃(𝑓𝑓)𝑑𝑑𝑓𝑓𝑓𝑓=15𝐻𝐻𝐻𝐻
𝑓𝑓=5𝐻𝐻𝐻𝐻

∫ 𝑃𝑃(𝑓𝑓)𝑑𝑑𝑓𝑓𝑓𝑓=40𝐻𝐻𝐻𝐻
𝑓𝑓=5𝐻𝐻𝐻𝐻

 

                               (1.1)  f – Frequency of QRS segment  
          P(f) – Spectral power density at frequency value f   

 

𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝 =  
𝐸𝐸(𝑥𝑥 − μ𝑥𝑥)4

σ4
 

                             (1.2)       x – Random variable of QRS distribution  
μx – Mean of QRS distribution 
E(a) – Expected value of a 
σ – Standard deviation of QRS distribution 
  

  
 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝 =  
1 − ∫ 𝑃𝑃(𝑓𝑓)𝑑𝑑𝑓𝑓𝑓𝑓=1𝐻𝐻𝐻𝐻

𝑓𝑓=0𝐻𝐻𝐻𝐻

∫ 𝑃𝑃(𝑓𝑓)𝑑𝑑𝑓𝑓𝑓𝑓=40𝐻𝐻𝐻𝐻
𝑓𝑓=0𝐻𝐻𝐻𝐻

 

     (1.3)               f – Frequency of QRS segment  
P(f) – Spectral power density at frequency                

value f   
 

OverScore = 0.6pSQI +  0.2kSQI +  0.2baseSQI 
 

                                                       (1.4) 
 
        Thirdly, we extracted the R-peaks based on the steepness of the absolute gradient of the 
ECG signal functions [17]. The fourth step entailed rejecting peaks (rather than entire 
segments) whose peak-to-peak intervals fall outside the 99% range of intervals. The 99% range 
was chosen for completeness to reject isolated outlier peaks that might have remained after 
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removing noisy segments from the previous steps. The complete second and minute-features 
were then extracted using the library Neurokit2, which is a collection of pre-written ECG and 
PPG signal processing algorithms in Python [17].  
        The feature extraction procedure of the PPG signal was conducted according to the above 
procedure with slight differences. The step dealing with the properties of the QRS segments 
was not needed for PPG signals due to a lack of QRS segments. Also, instead of rejecting peaks 
based on their interval range, we instead used an Isolation Forest model [18] to delete outlying 
peaks as superior accuracy in PPG quality was reported. The final PPG features, were 
computed from the PPG wave, its first derivative (known as the velocity plethysmogram or 
VPG), and its second derivative (acceleration plethysmogram or APG). The general principle 
of the feature extraction implementation was based on the presence of characteristic peaks and 
troughs in the PPG waveform. Through these peaks and troughs, it was possible to mark the 
start and end of waves, and the corresponding peaks through a counter as every single 
(standard) PPG waveform has the same number of peaks. Hence through this technique, it was 
possible to mark all the interest points in a PPG wave and compute the PPG features. In this 
way, the complete list of features was available. 
 
Data preparation is also necessary to ensure the models are fed with appropriate inputs. The 
data preparation consists of two steps. Firstly, from the feature extraction steps, discontinuity 
present from rejected noisy segments needed to be filled in, since the machine learning models 
are hard to train with missing values. For this purpose, linear imputation was used. Secondly, 
models such as the support vector machine and neural networks are sensitive to feature ranges. 
Feature scaling was done to ensure the techniques employed are invariant to the feature ranges 
and ensure certain features do not overly affect the model prediction by their magnitude. The 
feature scaling was applied to ensure standardization of overall feature spaces by first 
standardizing to remove the mean and scale to unit variance and then restricting the range to 
(0-1), and hence as a result, each feature is able to contribute to the final outcome equally. 
 

b) Feature Selection  
The feature extraction step generated 45 features with a possibility of redundant and “low-
importance” features. Here, “low-importance” is used to describe features that have loose 
correlations with the outcome. Hence, the feature selection step was necessary to eliminate 
these unnecessary features. The feature selection was comprised of two steps — the first step 
deals with redundancy and the second step deals with prioritizing “high-importance” features. 

The first step was performed by retaining the high variant features from sets of 
correlated features in an unsupervised manner [19]. The correlated feature sets were generated 
using pairwise permutations of features and then marked if their Pearson’s correlation 
coefficient is 0.8 or higher, with 0.8 selected to select only highly correlated features. This step 
marked seven features as redundant, which left us with 38 features. 

The second step was split into two approaches to reduce the method-specific bias. The 
first approach for measuring the “importance” of a feature was based on the change in accuracy 
after the feature is removed (sequential dropping of features) from an arbitrary estimator’s input 
[31, p. 5], [32]. The second approach is more nuanced. The approach is based on the idea that 
the global “importance” of features can be approximated from the accumulated local 
“importance” of features [33] as an alternate method to the first approach. While the first 
approach focuses on how a model acts with and without certain features, the second approach 
deals with how the local values of each feature contributes to the outcome. These “importance” 
values are called Shapley values [34]. The average of the feature “importance” values from the 
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two approaches for a given feature was computed and features were sorted based on this 
average. 

However, not all features can be selected in this fashion. The patient-specific features 
only vary per patient and hence had to be treated differently.  

 
For the patient-specific features, instead of selecting features, we reduced the dimensionality 
of the final patient-specific features to reduce information loss. We argue that since these 
features have the primary function of incorporating model personalization without needing its 
interpretation, a dimensionality reduction technique would be adequate. The dimension 
reduction technique used was the Uniform Manifold Approximation and Projection (UMAP) 
[35], in which features are reduced to lower dimensions based on their topological structures. 
The reduced features from this step were then added to the final feature list. 
 

c) Statistical Machine Learning 
We selected 25 supervised models from 4 model classes (Fig. 6) grouped by their type of 
learning/function. The decision of choosing diverse models was motivated from the type of 
algorithms better suited for binary classification (CAE detection) with the final feature set. The 
performance results from the tests conducted on these models would establish the top decision 
support model (and model class) from the machine learning sphere. The grouped classes are 
linear, non-linear, probabilistic, and tree models with implementations provided by Scikit-learn 
[20], a universal Python repository containing machine learning model implementations. In 
addition, we also included models like LightGBM [21], XGBoost [22] and CatBoost [23] into 
the final model list. These models are based on sequential training decision trees on the negative 
gradients of the data instances with improved training times. Each model that has been tested 
falls either within or exhibits close resemblance with the mentioned model classes. 
 

d) Deep Learning 
We also decided to branch out to the deep learning sphere. While the previous models were 
easy to interpret, they lacked complexity and had questionable results in generalizing unseen 
data. Hence, using more complex models could push the possibility of identifying better 
structures from the feature set. The most familiar models within the deep learning sphere are 
deep neural networks. Deep neural networks (DNNs) are feed-forward neural networks that 
incorporate a greater number of layers to extract higher-level representations from the raw 
inputs and perform gradient-based optimization using backpropagation [40]. This ensured that 
all abstractions of the combinations of the feature set could be utilized for the final prediction. 
This study created a custom architecture using a set of application programming interfaces 
(APIs) defined in the Python deep-learning library, Pytorch, which is a framework used for the 
design of deep-learning architectures [24]. An illustration of the custom architecture used is 
presented in Appendix B. The final model properties or hyperparameters were decided through 
multiple runs of different model versions in a grid-search fashion for the best performance. 
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Fig. 6: Complete model list over all model classes for supervised learning classification tasks. The starred models 
indicate independent models that are not part of the Scikit-learn model list.  
 

e) Time Series Classification 
Finally, we decided to use deep learning to explore the temporal structures in the feature set 
(time series classification). The main purpose for pursuing this direction was to check whether 
the order of feature values add extra benefit to the CAE detection quality. This study only 
utilizes the base configuration of the recurrent neural network (RNN) [24] and its other 
variants, like the Long Short-Term Memory (LSTM) model [25] and the Gated Recurrent Unit 
(GRU) model [26]. These models are based on the principle that each cell in a recurrent neural 
network takes the previous time step’s output as input in a sequence. One could think of such 
models as the layers of deep neural networks folded onto each other per time step. The 
abstractions of these sequences are fit recursively into multiple cells and then provided to a 
deep neural network as inputs. This was how we modified RNNs for classification purposes. 
This complete model was termed the LSTM-NN model and was designed using Pytorch as 
well. Since this is a high-dimensional time series classification problem, the deficiencies of 
performing backpropagation in the RNN would be compounded. Hence, the testing was only 
performed on configurations of the LSTM model. An illustration of the custom LSTM-NN 
architecture used is presented in Appendix B. 
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f) Model Evaluation 
The evaluation of the chosen techniques is also pivotal in assessing the performance of our 
system model. The evaluation was comprised of two parts– the data split strategy and the 
evaluation policy.  
The dataset was split into a train set of 50 patients and a test set of 10 patients with a CAE-to-
non-CAE ratio of roughly 50%. However, the data splitting was done differently (Fig. 5) in the 
case of hyper-parameter tuning and final model comparison. The hyper-parameter tuning was 
performed with the help of a 10-patient validation set repeated thrice (general cross-validation 
strategy with 4:1:1 ratio), where the performance metrics of a particular model configuration 
were saved in each split. The average of these metrics is the final performance of that particular 
model configuration, which is repeated with a new configuration, and so on. The final model 
comparison was done differently than what is standard practice. For the final model 
comparison, we opted out of using a validation set and instead took three separate splits of the 
dataset. An untrained version of the model was taken per split and the performance metrics 
were saved in each split, repeating with untrained versions of the model per split. This was 
done to not escalate the class imbalance issue further and reduce the possibility of passing 
lesser CAE data instances to the models. The final performance values of the model were the 
average of the performance metrics over the three splits. 
While many different evaluation policies exist for event detection, the evaluation policy (Fig. 
4) used in this paper was based on the number of correctly classified “positive” and “negative” 
windows across patients. The policy states that positive windows generated by the model 
within 8-24 hours prior to a registered CAE count as correctly classified CAE instances, while 
positive windows generated in other time windows are false positives. The policy also states 
that negative windows generated by the model within 8-24 hours prior to a registered CAE 
count as false negatives. A “positive”/”negative” window is termed the hour window in which 
the model under evaluation indicates/does not indicate a CAE moment. Because the exact time 
at which the CAE registered by an expert clinician is based on the availability of the clinician, 
a soft margin of 7 hours was added to each CAE. This custom policy was developed to get a 
bigger picture into how sensitive a model is to a CAE and how selective it is to non-CAE 
periods. 
 

g) MEWS 
The MEWS is a scoring-based algorithm that is computed as an aggregated sum of weighted 
scores that have vital signs within particular thresholds. The MEWS was only used with 
continuously measured features so only three vital signs - heart rate, respiration rate and 
temperature contributed to the MEWS computation. Since the original paper suggests using a 
MEWS threshold of 4 for the best results [28], we followed the guidelines of the authors.  
 

h) Performance Comparison 
To demonstrate the utility of the final system, we performed a comparison of MEWS vs ML 
techniques.  The performance of the top performing models from each ML sub-domain was 
compared with the MEWS performance as well. For simplification, the MEWS score has been 
scaled to make it into a familiar probability form. Hence, the maximum score is 1 and its 
threshold is 0.44. All other models retain a standard threshold of 0.5.  
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Results  
e) Feature Selection  
From the feature selection tests, the relative importance of the top features is presented in Fig. 
7.  The top 10 features are as follows. The top ranked feature was the body temperature. The 
2nd-8th most important features all originate from the velocity and acceleration 
photoplethysmogram (VPG+APG) waves. The 9th most important feature is the high frequent 
heart rate or spectral power density of the heart rate in [0.15-0.4] Hz frequency range. Finally, 
the 10th most important feature is the oxygen saturation. Since no improvement in accuracy 
over a decision tree (with all other conditions frozen) was observed beyond a relative 
importance of 25%, we set the selection threshold at this percentage. Hence, the ideal number 
of features that retain enough information to detect adverse events without risking overfitting 
was 15. For the patient specific features, UMAP reduced 17 patient features to just 3 features 
- able to explain 90% of total variance. 

f) Statistical ML models 
The results of the machine learning model tests are summarized in Table 1. From these tests, 
the best performing model was the Gaussian Naïve-Bayes classifier. Over the three train-test 
splits (i.e. training and evaluation runs of the model), the Gaussian Naïve-Bayes classifier 
detected 4 out of 6 cardiovascular CAEs and 7 out of 12 CAEs in total. The classifier detected 
2 cases of atrial fibrillation, 2 (out of 3) cases of pneumonia, 1 case of urinary retention, 1 case 
of urinary tract infection, 1 case of wound blistering and 1 case of delirium. 
 

Model  Accuracy Precision Sensitivity Specificity F1 Score 
Gaussian Naïve-Bayes 65.3% ± 10% 30% ± 13% 62.3% ± 18% 66.3% ± 9% 40% ± 15% 
Quadratic Discriminant 

Analysis Classifier 
62.3% ± 10% 28.3% ± 12% 61% ± 10% 62.6% ± 10% 37.5% ± 13% 

Decision Tree 60% ± 3% 20.3% ± 5% 60.1% ± 16% 60% ± 2% 30% ± 7% 
Table 2: Comparison of test-set performance of top 3 ML models over 3 splits 

 
  
g) Deep Learning models 
The results of the deep learning model test are summarized in Figure 8. The best 
hyperparameters used to train the model over the three splits are shown in Appendix B. Over 
the three train-test splits, the deep neural network classifier was able to classify 11 out of 12 
CAEs, and all cardiovascular CAEs. The only CAE it could not detect was that of wound 
blistering. 
 
e) Time Series Classification models 
The results of the LSTM-NN time-series model are summarized in Figure 8. The best 
hyperparameters used to train the model over the three splits are shown in Appendix B. Over 
the three train-test splits, the LSTM-NN model was able to classify 12 out of 12 CAEs.  In   
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the case of the LSTM-NN model, there is a shift in resolution as the multivariate time series 
yield a single prediction for an arbitrary hour window. This resolution shift contrasts with the 
deep neural network model, where the resolution of a prediction is essentially 6-seconds. To 
maintain a similar resolution as the time-series model, we establish the strict criterion that states 
that even a single 6-second epoch in an hour that renders a positive CAE classification yields 
a positive CAE classification for that hour and vice versa. 
 
e) MEWS 
The results of MEWS was also compared to the other models in Figure 8. With the MEWS, we 
were able to classify 11 out of 12 CAEs, and all cardiovascular CAEs. The only CAE that was 
not detectable by MEWS was a myocardial ischemia CAE. However, despite the impressive 
sensitivity, the results of the MEWS score came with a downfall. It reported classifications 
with a false positive rate of 46.6%. That means approximately half of non-CAE hour windows 
were incorrectly classified as CAEs.  

 
f) Performance Comparison 
In terms of the AI models, we observed that as the complexity of model increases (MEWS < 
Gaussian NB < DNN < LSTM-NN), then so does the overall performance of the model. The 
functioning of the models could be demonstrated for two patients against MEWS with the help 
of 2 random patients, A and B from the test set. 

 
Discussion  
This study has developed a robust system capable of accurately predicting CAEs. The analysis 
pipeline extracted and synchronized raw short-term vital sign features from wearable sensor 
data in a deterministic fashion robust to motion artefacts. We then tested several candidate 
models that utilize these features and compared their performances. Although each candidate 
model scaled up and improved performance compared to existing threshold-based systems, the 
LSTM-NN decision support model stood out as the best support model. It improved the false 
positive rate that existing threshold-based track-and-trigger systems suffer from while being 
used as decision support models. 

We also shortlisted the most important research insights from our tests. 
        Firstly, a 6 second window span is ideal for retaining granular data from our extracted 
features. Selecting 6 seconds stems from picking a resolution that would not smooth the high 
frequent variance present in the features. The overlap also provides a smooth window-to-
window progression of feature values. This window length choice is not universal and is 
different for specialized features like respiratory rate and the low-frequency power of the 
heart rate (two 6-second windows).  
        Secondly, linear imputation excels over other imputation techniques when dealing with 
missing values. The reason linear imputation was confirmed was through a small test. Two 
copies of the feature table were filled using linear and k-nearest neighbor imputation and 
fitted against a decision tree model. With no other changes in either the feature table or the 
model parameters, the model fitted on the linear-imputed feature table had better accuracy, 
hence why linear interpolation was chosen as the final imputation method. 
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 Fig. 7: Relative Importance plot for feature selection. The boldened features represent the final feature list whose mean importance is 

greater than 25% of the maximum feature importance derived from both methods. 
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Fig. 8: Overall comparison of the performance of different decision support models 

Thirdly, the morphological features of the PPG wave are crucial for CAE detection. While 
the body temperature being the highest-ranked feature is not a surprise, the following seven 
features are derived from the morphological properties of the PPG wave and its derivative 
forms. The role of these features is in line with other studies using these features for disease 
classifications. For example, Alty et al. [46] proved how the crest time, which is number 5 on 
the list, could be used to detect cardiovascular diseases. This study [47] also shows how the 
APG waveform features are good indicators of artery stiffness and possible atherosclerosis. 
         Fourthly, there is a tradeoff between extracting high-frequent respiration rate values and 
the amount of noise rejection that could be applied. It has been accepted that an unstable 
breathing rate is an excellent indicator of clinical deterioration. However, the results put the 
breathing rate as one of the bottom-3 features. One probable source of error could lie in the 
method of extracting the breathing rate in this study. In this study, since we extract the 
instantaneous breathing rate within 2 minutes, we count the number of peaks from the ECG-
derived respiration (EDR) signal. While this method is ideal for extracting low-and-medium 
values of the breathing rate, there may be a mismatch with the higher breathing rate values. 
Since the automatic noisy window rejection procedure also depends on whether peak 
intervals fall in the outlying range, it is likely that a portion of good ECG beats may also be 
rejected. Hence, there exists a tradeoff between the quality of the breathing rate value and the 
amount of high-frequent noise to mix in the feature table. In this study, we prioritized the 
latter.  
        Fifthly, the impressive performance of the LSTM-NN affirms that utilizing temporal 
context in AI models do improve the prediction quality. When it comes to the LSTM-NN 
model, one might question whether machine learning based models primed for time series 
classification would also show respectable results. Other recommended ML models 
customized for time-series classification tasks like tree-ensemble models like the Time Series 
Forest [48] and dictionary-based models like the WEASEL+MUSE model [49] were also 
tested. Unfortunately, despite these models being less complex than the LSTM-NN model, 
they were not sensitive enough to render positive classifications and were discarded. 
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We can now discuss the functioning of the models for the two patients A and B. 
        Patient A has had previous cardiovascular comorbidities. We can gain some interesting 
insights from observing the model’s predictions which is presented in Figure 9. The red and 
yellow zones represent 0-8 hours and 8-24 hours prior to a CAE respectively. In the case of 
MEWS, it seems to perform fairly well for Patient A where an alarm is raised well right 
before the start of the “in-time” window and 10 hours before the CAE. When we look at the 
Gaussian NB model, it also has a similar alarming point and has a frequent alarm rate to the 
point of complication. The deep neural network exhibits a more surged alarm progression. 
However, it is still consistent with the level change of the physiological state of patient A as 
is seen from the previous two models. The best performing model, the LSTM-NN provides 
its first positive classification later that the other three models. However, although it is 
comparatively later, we still see 3 alarms being generated from the model.  
        Patient B had no history of previous CAEs. For Patient B, the progression of the four 
models is presented in Figure 10. Here, the focus is on the negative window reporting 
capabilities or the false alarm rate of the four models. The MEWS score might look like it is 
doing a good job, but in the span of 5 days, it reported 15 false alarms. That is significant 
when compared to the performance of the other models on Patient B’s trajectory. The 
Gaussian NB model shows perfect selectivity on his trajectory as it doesn’t report a single 
alarm in his entire ward stay. The deep neural network does report three false alarms, but that 
is still 1/5th of the total alarms reported by MEWS. The LSTM-NN model reports 4 false 
alarms, but that is still less than half of the MEWS reported false alarms. In this way, we get a 
clearer picture of the capabilities and the prediction styles of each of the main candidate 
models in comparison with the golden standard. 

The advantages of the candidate models lie in their specificity compared to the results of the 
MEWS score. The Gaussian Naïve-Bayes, deep learning model and LSTM-NN classifiers was 
also able to predict CAEs at a false positive rate of 33.7%,  24% and 15.6%. The LSTM- NN 
reported a 66.5% reduction in the false-positive rate reported by MEWS. Another advantage is 
the data coverage needed for making a prediction. For this study, only 2 minutes of vital sign 
signal data was available per hour. This means the system is flexible with recorded values any 
time during the hour, and can be beneficial in periods of heavy motion, since any 2 minutes 
within an hour can be used for feature extraction and inference. In essence, such types of 
flexible recording schemes in wearable sensors could significantly reduce the noise rejection 
algorithms used. 

Despite the success demonstrated, there are some limitations to consider. The biggest concerns 
are that of overgeneralization and interpretability. The question still arises of how the candidate 
models will behave with patients of other cohorts. It has to be seen in the face of unseen data 
whether the model tends to be more selective or more sensitive. The deep neural network and 
LSTM-NN models also lack interpretability. While the MEWS score has its drawbacks, its 
simple-to-use algorithm means its end-user can effectively pinpoint the sources of the largest 
score-affecting variables for diagnosis purposes. Meanwhile, in the deep neural network and 
the LSTM-NN architectures, it is significantly difficult to pinpoint the root predictors. Hence, 
an interesting direction to look into could involve studies to explore more interpretable time-
series models.   
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Fig. 9.(a) 

Fig. 9.(b) 

Fig. 9.(c) 

 

Fig. 9.(d) 
 

Fig. 9: 9.(a) presents the progression of the MEWS score for the trajectory of Patient A. 9.(b) presents 
the progression of the Gaussian NB probability for the trajectory of Patient A. 9.(c) presents the 
progression of the DNN probability for the trajectory of Patient A. 9.(d) presents the progression of the 
LSTM-NN probability for the trajectory of Patient A. The green bar is the threshold for the respective 
model. 
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Fig. 10.(a)      

 
Fig. 10.(b)   

 

     
               Fig. 10.(c)      

 
Fig. 10.(d) 

Fig. 10: 10.(a) presents the progression of the MEWS score for the trajectory of Patient B. 10.(b) presents 
the progression of the Gaussian NB probability for the trajectory of Patient B. 10.(c) presents the 
progression of the DNN probability for the trajectory of Patient B. 10.(d) presents the progression of the 
LSTM-NN probability for the trajectory of Patient B. The green bar is the threshold for the respective 
model. 

 

In order to dismiss concerns about the generalizability of the system, external validation is 
crucial. Additionally, although the current deep learning models are black-box solutions, 
converting the problem from binary classification to multiclass classification could help 
redefine the problem space and make smaller and more specialized models for detecting certain 
CAEs. Furthermore, for longer time periods, it might be useful to use additional features that 
measure points of deviations in trends of the original features (change point analysis) to 
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improve the interpretation of time-series based predictors. For the case of the LSTM-NN 
model, current research in interpreting recurrent network time-series classifications is limited. 
However, work on interpreting convolution-based deep networks or transformers is thriving. 
This would involve converting the time series streams into images that could be trained with 
such image networks. As a continuation to this study, testing with multiple populations, more 
focused time-series analysis techniques or better time series representations are possible 
directions that could be explored further. 

Conclusion  

This study focused on the development of a remote monitoring system that utilizes features 
from wearable sensor data and a decision support model capable of  predicting CAEs. We 
developed an analysis pipeline to extract features from short-term vital signs from wearable 
sensors and tested various candidate models to establish their performance. Although all the 
tested models provide good sensitivity to CAEs with good false-positive rates, the LSTM-NN 
model has superior performance in every metric compared to the golden standard of track-and-
trigger systems. The results also provide clarity to certain research choices undertaken in the 
study. While this study presents preliminary results that posit the proposed model positively, 
additional multi-hospital testing and experimentation with other techniques are necessary to 
confirm its generalization and interpretability capabilities, respectively. 
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Appendix A: List of Features 
The complete list of features extracted from the dataset are provided below as a key to the 
final features used, their purposes and the category they belong to. The feature category refers 
to which time span the feature was extracted from: 6S denotes the 6-second time span, M 
denotes the minute-based time span, and PS denotes the patient specific features.  

 

Feature 
no.  

Feature 
Category 

Feature Description of feature 

1 6S ECG Rate – Baseline The baseline heart rate within a 6-second 
span, from which other ECG rate features 
are relatively computed. 

2 6S ECG Rate – Maximum (R) The maximum heart rate recorded within a 
6-second span. 

3 6S ECG Rate – Minimum The minimum heart rate recorded within a 
6-second span. 

4 6S ECG Rate – Mean The mean heart rate recorded within a 6-
second span. 

5 6S ECG Rate – SD The standard deviation of the heart rate 
recorded within a 6-second span. 

6 6S ECG Rate – Maximum Time The time at which maximum ECG rate 
occurs. 

7 6S ECG Rate – Minimum Time The time at which minimum ECG rate 
occurs. 

8 6S ECG Atrial Phase Indicator Indication of whether the onset of the event 
concurs with respiratory systole (1) or 
diastole (0). 

9 6S ECG Atrial Phase Completion 
Indicator 

Indication of the stage of the current 
cardiac (atrial) phase (0 to 1) at the onset of 
the event. 

10 6S ECG Ventricular Phase Indicator Indication of whether the onset of the event 
concurs with respiratory systole (1) or 
diastole (0). 

11 6S ECG Ventricular Phase Completion 
Indicator 

Indication of the stage of the current 
cardiac (ventricular) phase (0 to 1) at the 
onset of the event. 

12 6S ECG Quality – Mean Index denoting the relative quality of ECG 
signal. 

13 6S Breathing Rate Respiratory rate from the ECG-derived 
respiratory (EDR) signal in 12-second span. 
(2-6S stitched) 

14 M Heart Rate Variability – High 
Frequency Power 

The spectral power density pertaining to 
high frequency band i.e., 0.15 to 0.4 Hz. 

15 M Heart Rate Variability – Very High 
Frequency Power 

The variability, or signal power, in very 
high frequency i.e., 0.4 to 0.5 Hz. 

16 M Heart Rate Variability – Low-High 
Power ratio 

The ratio of low frequency power to high 
frequency power. 

17 M Heart Rate Variability – Normalized 
Low Frequency Power 

The normalized low frequency, obtained by 
dividing the low frequency power by the 
total power. 

18 M Heart Rate Variability – Normalized 
High Frequency Power (R) 

The normalized high frequency, obtained 
by dividing the high frequency power by 
the total power. 

19 M Heart Rate Variability – Log 
transformed HF (R) 

The log transformed HRV_HF. 
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20 M Heart Rate Variability –Low 
Frequency Power 

The spectral power density pertaining to 
low frequency band i.e., 0.04 to 0.15 Hz 

21 6S Systolic amplitude The mean of the amplitude of the systolic 
peaks of the PPG wave in a 6-second span. 

22 6S Dicrotic notch amplitude The mean of the amplitudes of the dicrotic 
notches of the PPG wave in a 6-second 
span. 

23 6S Inter-beat interval – mean The mean time interval between successive 
systolic peaks of the PPG wave in 6-second 
span. 

24 6S Inter-beat interval – SD The standard deviation of the time intervals 
between successive systolic peaks of the 
PPG wave in 6-second span. 

25 6S Pulse interval – mean The mean of the difference of the start and 
end of a PPG waveform in a 6-second span. 

26 6S Pulse interval – SD The standard deviation of the difference of 
the start and end of a PPG waveform in a 6-
second span. 

27 6S Inflection Point Area – Mean The mean inflection point area ratio i.e. the 
ratio of the two sub-areas separated by the 
dicrotic notches in a 6-second span. 

28 6S Inflection Point Area – SD The standard deviation of the inflection 
point area ratio i.e. the ratio of the two sub-
areas separated by the dicrotic notches in a 
6-second span. 

29 6S Augmentation Index – Mean (R) The mean ratio of the dicrotic amplitude to 
that of the systolic peak in a 6-second span. 

30 6S Augmentation Index – SD The standard deviation of the ratio of the 
dicrotic amplitude to that of the systolic 
peak in a 6-second span. 

31 6S Time Delta – Mean The mean peak-to-peak time interval in the 
velocity photoplthysmogram (VPG) 
waveform in a 6-second span. 

32 6S Time Delta – SD The standard deviation of the peak-to-peak 
time interval in the velocity 
photoplthysmogram (VPG) waveform in a 
6-second span. 

33 6S Crest Time – Mean The mean of the time from the foot of VPG 
waveform in a 6-second span. 

34 6S Crest Time – SD (R) The standard deviation of the time from the 
foot of VPG waveform in a 6-second span. 

35 6S Main Circulation Quality Indicator variable used to show how many 
waves are recognizable from the APG in a 
6-second span. 

36 6S b-to-a waves amplitude ratio The mean of the ratios of the early systolic 
negative wave to the early systolic positive 
wave in a 6-second APG waveform span. 

37 6S c-to-a waves amplitude ratio The mean of the ratios of the late systolic 
reincreasing wave to the early systolic 
positive wave in a 6-second APG 
waveform span. 

38 6S d-to-a waves amplitude ratio (R) The mean of the ratios of the late systolic 
decreasing wave to the early systolic 
positive wave in a 6-second APG 
waveform span. 

39 6S e-to-a waves amplitude ratio The mean of the ratios of the early diastolic 
positive wave to the early systolic positive 
wave in a 6-second APG waveform span. 
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40 6S bcde-a-waves amplitude ratio The mean of the (𝑏𝑏 − 𝑐𝑐 − 𝑑𝑑 − 𝑏𝑏)/𝑏𝑏 ratios 
in a 6-second APG waveform span. 

41 6S cdb-a-waves amplitude ratio (R) The mean of the (𝑐𝑐 +  𝑑𝑑 −  𝑏𝑏)/𝑏𝑏 ratios in 
a 6-second APG waveform span. 

42 M Temperature The per-minute measured body 
temperature. 

43 M Oxygen Saturation The per-minute measured oxygen 
saturation. 

44 M Time of Day – Day Indicator Categorical variable used to indicate the 
measurement recorded from 08-16 hours. 

45 M Time of Day – Evening Indicator Categorical variable used to indicate the 
measurement recorded from 16-24 hours. 

46 PS Age The age of a patient. 
47 PS Length The height of a patient. 
48 PS Comorbidity – Infective indicator Categorical variable (0/1) used to indicate 

the presence of infective diseases. 
49 PS Gender The gender of a patient. 
50 PS Weight The weight of a patient. 
51 PS Comorbidity – Pulmonal indicator Categorical variable (0/1) used to indicate 

the presence of pulmonal comorbidities. 
52-54 PS Additional features The representation of patient data in 3 

dimensions using dimensionality reduction. 
Table A1: Complete list of all features extracted for this study. Only relevant features shown in literature to have 
links with CAEs were chosen. The label (R) stands for redundant features that were omitted.   
Appendix B: Deep Learning  
 

The best hyperparameters used in this study for the deep learning networks is presented in 
Table B1. A visualization of the DNN and the LSTM-NN networks are presented in Fig. B2. 

 
 
 
 
 
 
 
 
 
 

 
         Table B1.(a)   
             Table B1.(b) 

Table B1: B1.(a)  is the final hyperparameters of the deep neural network tested. B1.(b) is the final 
hyperparameters of the complete LSTM neural network tested. 
 

Hyperparameter  Value 
Hidden layer size (NN) 64 

Number of  LSTM 
layers 

3 

Number of NN layers 1 
Embedding size 47 

Batch size 14 
Optimizer Adam 

Learning rate 0.001 

Hyperparameter  Value 
Hidden layer size 256 
Number of layers 3 

Batch size 494 
Dropout threshold 0.1 

Optimizer Adam 
Learning rate 0.001 
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Fig. B2.(a)                                                         

Fig. B2.(b) 
 

Fig. B2: B2.(a)  is the base architecture of the deep neural network. B2.(b) is the base architecture of the 
complete LSTM neural network. 

Input Layer ∈ ℝ¹⁹ Hidden Layer ∈ ℝ⁶⁴ Hidden Layer ∈ ℝ⁶⁴ Output Layer ∈ ℝ¹
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