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Abstract

Forest conversion is occurring in the Isiboro Sécure National Park and Indigenous Territory (TIPNIS),

Bolivia. Activities such as agricultural encroachment and forest extraction are leading to a rapid loss

of primary forest and also have disturbed the traditional life of the indigenous communities. The

present study has integrated the statistical approach of logistic regression and also that of artificial

neural networks with GIS in an attempt to analyze and predict forest conversion in the TIPNIS.

Based on information obtained from land cover maps and satellite images, forest loss for the years

1976, 1986, 1991, 2001, 2004 and 2006 were calculated. According to the results of the study, during

the period 1976 – 2006, 23% of primary forest has been lost in the southern part of the TIPNIS. The

deforestation rates presented variations, they rose and fell and then rose again. The rates of

deforestation were 0.005%.a −1 until 1986, 1.3%.a −1 until 1991, 0.5%.a−1 until 2001, and 2.3%.a−1

until 2004 and 3.5%.a−1 until 2006. This study revealed that the variations of deforestation rates in the

TIPNIS coincide with the degree of control of coca (Erythroxylum coca) cultivation that the Bolivian

government has permitted in the Chapare Province. When government controls of coca growing were

more lax, the deforestation rates increased.

To model forest conversion this study considered the change that has occurred in the forest areas as a

categorical dependent variable. The univariate tests of association Cramer’s V was used to test five

potential explanatory variables for forest conversion (“Distance from Forest Edge”, “Distance from

Roads”, “Distance from Settlements”, “Landscape Position” and “Type of Settlement”). “Type of

Settlement” was excluded from the modelling because the data input (map) was too coarse.

Logistic regression analysis was used (i) to assess the relative significance of explanatory variables on

forest change during the period 2001-2004; and (ii) to predict probability of forest change for the

period 2004-2006. “Landscape Position” was the most significant explanatory variable, followed by

the explanatory variables “Distance from Forest Edge”, “Distance from Roads”, and “Distance from

Settlements”. Logistic regression prediction resulted in an Area Under a ROC Curve (AUC) of 85%.

Finally, the study made use of the artificial neural network Multi-Layer Perceptron (MLP) to improve

the prediction of probability of forest change for the period 2004 to 2006. The prediction performed

used the same data set used by the logistic regression prediction. The AUC obtained by MLP was

92%.

The predictive performance of both models proved successful. While MLP produces better prediction

results in general, logistic regression analysis is still needed to understand the relative significance of

the explanatory variables on the forest change.
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1.1 Motivation and Problem Statement

According to the Global Forest Resources Assessment (FAO - FRA) (2005) [23], of the 20 countries

clearing the most forest between 1990 and 2005, Bolivia occupied the twelfth position with a rate of

135,200 hectares of forest loss per year. In spite of Bolivia’s environmental laws1, deforestation2[24]

is occurring even in protected areas[44].

Isiboro Sécure National Park and Indigenous Territory (TIPNIS) is located in the Sub-Andean strip of

the tropical Andes in Bolivia. Because there is a great diversity of species and ecosystems in the

TIPNIS, the park is considered one of the most important places in the country to preserve fauna and

flora [73]. The TIPNIS National Park is also called “indigenous territory” because three native ethnic

groups traditionally live inside of it. In recent years the presence of additional and illegal settlers have

been reported [72]. According to the managers of the park [59, 72], the TIPNIS faces two main

threats: internal threats stemming from the non-rational and unplanned use of natural resources by the

resident communities (e.g., agriculture, hunting, fishing, and forest extraction), and external threats

resulting from political decisions at the departmental and national levels (e.g., building of new roads,

oil concessions, etc.). Among the internal threats, activities such as agriculture and forest extraction

are leading to a rapid loss of primary forest and also have disturbed the traditional life of the

indigenous communities [60]. Due to the park’s limited funding, there is no current information about

how exactly the deforestation process has been and is still happening inside the TIPNIS [59].

Modelling the forest change occurring inside the park can be an important additional tool to help to

understand the deforestation process in the TIPNIS. But, deforestation modelling is not simple

because deforestation is simultaneously a dynamic, spatial, and socio-economic process [29].

Deforestation has multiple causes. The particular mix of causes varies from place to place [70] cited

by[27]. The usual causes of deforestation are spatial pattern drivers (proximate causes such as

agriculture expansion, population growth, roads, etc.) and drivers or forcing functions that explain root

causes and pressure on the forest (underlying causes such as economic factors, institutions, national

policies, etc. ) [9, 27].

1 Environmental Law 1333 and General Regulation of Protected Areas DS 24781.

2 The United Nations Food and Agriculture Organization (FAO)-Global Forest Resources Assessment (FRA)

define deforestation as “the conversion of forest to another land use or the long-term reduction of the tree canopy

cover below the minimum 10 percent threshold”.
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Lambin (1994) [38] and Mas et al., (2004) [47] mention that deforestation models are motivated by

the following potential benefits: (1) to provide a better understanding of how driving factors govern

deforestation, (2) to generate future scenarios of deforestation rates, (3) to predict the location of forest

clearing and, (4) to support the design of policy responses to deforestation.

According to Kaimowitz and Angels (1998) [37], one way to model deforestation is to make use of

empirical models. Empirical models quantify the relationships between variables using empirical data

and statistical methods. Several studies have analyzed land use change under these approaches [51, 63,

64, 68, 71]. In the particular case of deforestation, the spatial forest change is a categorical dependent

variable which results from the interaction of several explanatory variables. Authors like [16, 20, 41,

42, 48, 69, 79] have worked successfully making use of logistic regression and Geographic

Information Systems (GIS) as tools to analyze deforestation and its causes.

Logistic regression analysis has the advantage of taking into account several independent

explanatory variables for prediction of a categorical variable [77]. In this case, the dependent

variable is the change and no change that has occurred in the forest areas. Logistic regression analysis

fits the data to a logistic curve instead of the line obtained by ordinary linear regression. In addition to

the prediction, logistic regression is also a useful statistical technique that helps to understand the

relation between the dependent variable (change) and independent variables (causes) [47].

Proximate causes of forest conversion such as roads or settlements can be identified making use of

GIS tools [29]. Underlying causes are more difficult to identify than are proximate causes, sometimes

because the information is not available and sometimes because the information is general in nature

and so eludes easy measurement (insufficient socio-economic data, land tenure, influence of national

policies, etc.). Thus, the ability to link underlying causes of forest conversion to spatial patterns

obtained by GIS is another important tool to be considered [6, 56]. An interesting example of this is

given by Van Gils and Loza (2006) [79] who identified the importance of an underlying driving force,

land tenure in their case, based on the size, shape and spatial patterns of the parcels in the Carrasco

province of Bolivia.

In recent years, improved performance in land use change modelling has been achieved successfully

by combining statistical methods with other approaches such as decision trees [49], Bayesian

methods [1] or with stochastic spatial models such as cellular automata [54] and artificial neural

networks [46].

Other studies also related to land use change have reported that the artificial neural network “Multi-

Layer Perceptron” has shown good potential for predicting future scenarios [43, 47, 55, 61].

According to Mas et al., (2004) [47], artificial neural networks are powerful tools for models because

they have the ability to handle non-linear functions, to perform model-free function estimation, to

learn from data relationships that are not otherwise known and, to generalize to unseen situations. In

addition, the same authors also mention that artificial neural networks are able to directly take into

account any non-linear complex relationship between the explanatory variables and deforestation.

Based on the availability of data, the present study has integrated the statistical approach of logistic

regression and also that of artificial neural networks with GIS in an attempt to analyze and predict

forest conversion in the TIPNIS.
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1.2 Research Objectives

The main objective of this study is to analyze and predict processes of forest conversion in the Isiboro

Sécure National Park and Indigenous Territory (TIPNIS) in Bolivia.

In order to reach the goal, the following specific objectives are considered:

 To determine and quantify forest changes that occurred in the TIPNIS from 1976 to 2006.
 To identify and analyze the most significant explanatory variables that lead to forest

conversion in the TIPNIS.
 To establish a predictive model based on the validation and comparison of two approaches:

Logistic Regression and Multi-Layer Perceptron.

1.3 Research Questions

1. What are the causative factors associated with forest conversion in the TIPNIS?

 Agricultural Encroachment
 Distance from Roads
 Distance from Settlements
 Distance from Forest Edge
 Type of Settlement
 Landscape Position
 Underlying Forces

2. Can an artificial neural network improve the forest conversion prediction performed by the
Logistic Regression Model?

1.4 Hypotheses

1. No hypothesis; depends on the research results.
2. H1: The prediction of TIPNIS deforestation by an artificial neural network is significantly

better than the prediction of deforestation by the logistic regression model
H0: The prediction of TIPNIS deforestation by an artificial neural network is not significantly

better than the prediction of deforestation by the Logistic Regression Model.
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1.5 Research Approach

To model and predict forest conversion in the TIPNIS, it was necessary to:

1. Analyze the forest conversion that occurred from 1976 to 2006.

2. Analyze the relationship between significant factors and forest change.

3. Select statistically the best predictor set of explanatory variables.

4. Predict forest conversion.

To carry out the study, three approaches were combined.

GIS was used to measure the forest loss for the years 1976, 1986, 1991, 2001, 2004 and 2006 and to

provide dependent and explanatory variables as spatial data for the modelling of forest conversion that

occurred during the period 2001 to 2004. Also, GIS provided spatial data for the validation of forest

change prediction for the period 2004 - 2006.

Logistic regression analysis was used to: i) help to understand the relationship between the dependent

variable and the explanatory variables based on the behaviour of forest change during the period 2001

- 2004; ii) select the best combination of explanatory variables for forest conversion prediction and iii)

predict forest change for the period 2004-2006.

Finally, the study made use of the artificial neural network Multi-Layer Perceptron (MLP) to predict

forest conversion for the period 2004 to 2006. Figure 1 illustrates the general research approach.
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Figure 1 Modelling and Predicting Forest Conversion in the TIPNIS, General Approach

1.6 Thesis Structure

This study is divided into five chapters and includes references and appendices.

Chapter 1, Introduction, is a general introduction to the research and states the main objectives and

research questions.

Chapter 2, Materials and Methods, describes the study area, and presents the materials and methods

involved during the execution of the research.

Chapter 3, Results, presents the main results obtained by the research.

Chapter 4, Discussions, discusses the main findings of this study, analyzing the results in the context

of other studies.

Chapter 5 Conclusions is dedicated to the presentation of the main findings of this research and

includes some recommendations for future work.

The References Section details the sources used as references in this document.

The Appendices contain detailed information supporting the methods used in this document.
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This chapter is divided into three sections:

 2.1 Study Area; describes the characteristics of the study was carried out.

 2.2 Materials, describes the materials used during the study.

 2.3 Methods; describes the methods used to reach the objectives.

2.1. Study Area

Isiboro Sécure National Park and Indigenous Territory (TIPNIS) is located in Bolivia, covering parts

of both the Departments of Beni and Cochabamba, between the geographic coordinates 65º08” -

66º35” West and 15º 37” - 16º 40” South (See Figure 2). In the Department of Cochabamba, it is

located in the Chapare Province. TIPNIS was created in 1965 and has an approximate extension of

950,661 ha [72]. The climate is humid with annual rainfall ranging from 2000 to 3000 mm. The

temperatures are highest (25 to 32 degrees Celsius) from December through January and coldest from

May through June (15 to 25 degrees Celsius). Occasionally, the temperature can fall below 5°C during

southern wind episodes. The area’s location is on the eastern slopes of the Andes range. The

topography of the TIPNIS is characterized by a mountain range to the west (up to 3000 m.a.s.l.) and

large flood plains to the east (down to 300 m.a.s.l.). The most important rivers are the Isiboro, the

Ichoa and the Sécure, all tributaries of the Mamoré River, which, in turn, forms part of the Amazon

Basin [72] [60].

The altitudinal range of the TIPNIS fosters a very high species and ecosystem diversity, forming very

distinct ecological systems, such as montane cloud forests, sub-Andean Amazonian forests, mid- to

lowland evergreen rain forests, and flooded savannas. Each of these ecosystems harbours a unique

flora and fauna [72] [60].

According to Parkswatch (2004) [60], the protected area is also legally recognized as Indigenous

Territory, property of the natives of the region: Chimán, Yuracaré, and Moxeño (Trinitarios) ethnic

groups. Most human settlements are located along the area’s two most important rivers or near the

park’s boundaries. The south-eastern sector has been settled by colonists. This fourth group is

composed of immigrants of Aymara and Quechua cultures who came from the country’s highlands

(altiplano), especially from the Cochabamba, Oruro, Potosí, and La Paz Departments in the second

half of the 20th century.

The managers of the national park [60, 72] provided the following information about these four human

groups:

The Yuracaré ethnic group settled in the TIPNIS and its surrounding areas several centuries ago.

At present, they have taken over almost all of the TIPNIS area, aside from the central zone, but

have mainly settled in the southern zone and along the lower Isiboro and Sécure rivers.
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The Moxeño people (Trinitarios) historically occupied a much smaller area than the Yuracaré near

the confluence of the area’s most important rivers (Isiboro and Sécure), where their settlement

patterns emulated those of the Jesuit missions. Today, they occupy a much larger territory, having

spread out into the Park’s central region and to an important portion of the southern zone.

The Chimán are not native to the area, but are found throughout the south of the Beni Department

and in the foothills and mountains of the upper Sécure River. In recent years, some Chimán

families have settled in Santo Domingo, which was formerly an exclusive Moxeño area.

The colonists began to settle in the area in the 1960s. The new access roads built in the 1970s

brought even more migrants. In the 1980s the closure of the Government-owned mines, the

opening of the Cochabamba-Santa Cruz highway (See Figure 3) and the perspective brought about

by the production of leaves of coca (Erytroxylum coca) for the drug trade brought large numbers

of new colonists to the area.

The people who crop coca are called ´cocaleros´. They have invaded the southern part of the park

[72]. They are responsible for most of the forest conversion in the Chapare Province [44].

Because most of the encroachment process has occurred in the southern part of the park, the study area

for this research has focussed in this southern zone. The actual area of the study is located to the north

of the Isiboro River, between the rivers Corijota, Sasasama and Lipurcy (See Figure 2). The zone

under analysis has an area of 143,700 ha.

The main access into the study area is from the south, at a distance of about 55 km from the primary

road Cochabamba – Santa Cruz (See Figure 3).
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Figure 2 Study Area: Isiboro Sécure National Park and Indigenous Territory (TIPNIS) Cochabamba,
Bolivia

Figure 3 Roads Accessibility to the Study Area

Bolivia
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2.2. Materials

To fulfil the objectives of this study, the following data was available.

2.2.1. Satellite Images

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite has two

types of Level-1 data; Level-1A and Level-1B data. Level-1A data are formally defined as

reconstructed, unprocessed instrument data at full resolution. According to this definition the ASTER

Level-1A data consist of the image data, the radiometric coefficients, the geometric coefficients and

other auxiliary data without applying the coefficients to the image data to maintain the original data

values. The Level-1B data are generated by applying these coefficients for radiometric calibration and

geometric correction [18].

ASTER Level-1B images were obtained from the United States Geological Survey (USGS) Global

Visualization Viewer (GLOVIS) [76]. The dates of the images are March 18th 2001, November 4th

2004 and October 17th 2006. The images are projected by default as UTM images and the datum

default is World Geodetic System 1984 (WGS 84) [58]. The characteristics of the ASTER images are

summarize in Table 1.

Landsat (Thematic Mapper) TM 5 Images for the years 1986 and 1991 were provided by the

Aerospacial Surveys and GIS Applications Centre for Sustainable Development of Natural Resources

(CLAS) [12]. They were already properly geo-referenced. The projection was Universal Transverse

Mercator (UTM) and the Datum was Provisional South American 1956 (PSAD 56). The images were

in ILWIS raster format. Table 1 also summarizes the characteristics of these images.

Table 1 Satellite Images Features

Table based on information provided by USGS 2008 [76] Mandgroup 2000 [53] and Yale 2007 [58]

Year Satellite Sensor Spectral Range Band #s Scene Size Pixel Res Source

1986 Landsat 5
TM multi-

spectral

0.45-0.52 µm

0.52-0.60 µm

0.63-0.69 µm

0.76-0.90 µm

1, 2, 3, 4 185 X 185 km 30 meter

CLAS

[12]

1991 Landsat 5
TM multi-

spectral

0.45-0.52 µm

0.52-0.60 µm

0.63-0.69 µm

0.76-0.90 µm

1, 2, 3, 4 185 X 185 km 30 meter

CLAS

[12]

VNIR

0.52 - 0.60 µm

0.63 - 0.69 µm

0.78 - 0.86 µm

1, 2, 3N 60 X 60 km 15 meter
2001 ASTER

SWIR 1.600 - 1.700 µm 4 60 X 60 km 30 meter *

USGS

GLOVIS

[75]

VNIR

0.52 - 0.60 µm

0.63 - 0.69 µm

0.78 - 0.86 µm

1, 2, 3N 60 X 60 km 15 meter
2004 ASTER

SWIR 1.600 - 1.700 µm 4 60 X 60 km 30 meter *

USGS

GLOVIS

[75]

VNIR

0.52 - 0.60 µm

0.63 - 0.69 µm

0.78 - 0.86 µm

1, 2, 3N 60 X 60 km 15 meter
2006 ASTER

SWIR 1.600 - 1.700 µm 4 60 X 60 km 30 meter *

USGS

GLOVIS

[75]

* Image re-sampled to 15 meter
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2.2.2. SRTM DEM

A Digital Elevation Model (DEM) is a digital representation of ground surface, topography or terrain.

A DEM consists of a raster grid of regular elevation values (pixels) with a resolution of 3-arc seconds

(90 m approx). The NASA Shuttle Radar Topographic Mission (SRTM) has provided DEMs for over

80% of the globe. These DEMs are available in both ArcInfo ASCII and GeoTiff format to facilitate

their ease of use in a variety of image processing and GIS applications [11]. Data can be downloaded

using a browser or accessed directly from the internet for free. The SRTM - DEM used in this study

was provided by CLAS [12]. The SRTM - DEM was properly geo-referenced (UTM zone 20/

PSAD56).

2.2.3. Thematic Maps

The following thematic maps were provided by the managers of the TIPNIS [72] and CLAS [12] in

vector and raster format.

 Deforestation maps for the years 1976, 1986, 1991, 2001 and 2004. These maps were obtained

from 30 X 30m pixel size raster maps (Landsat5 TM).

 Maps of roads of the years 2004 and 2006; Esc: 1: 100,000

 A map of villages 2004, Esc: 1: 100,000

 A map of Type of Settlement 2004 Esc: 1: 250,000

These maps were also already geo-referenced in UTM projection and WGS84 datum.

2.3. Methods

This section describes the methods and criteria used to reach the objectives of this study. The section

is divided into 4 subsections:

2.3.1 General Description

2.3.2 Data Preparation

2.3.3 Forest Loss, Deforestation Rates and Deforestation Pattern

2.3.4 Modelling Forest Conversion, describes:

 Creating dependent and independent variables for forest conversion
 Logistic Regression Model
 Multi-Layer Perceptron Model

2.3.1. General Description

In order to obtain information about forest conversion in the TIPNIS, this study was interested in

identifying forest areas that have suffered changes between 1976 and 2006. To identify changes in the

forest, the first step was to obtain maps of forest conversion using two main general categories:

“Forest” and “Disturbed Forest”. In this study, the category “Forest” is assigned to forest areas

relatively undisturbed by human activity, where human impacts have normally been limited to low

levels of hunting, fishing and harvesting of forest products. The category “Disturbed Forest” consists

of those areas where forest disturbance or changes have occurred resulting from anthropogenic

activities.
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In the Data Preparation Section, forest conversion maps were extracted from the land cover maps and

satellite images. For land cover maps, a reclassification of land use categories into the new categories

“Forest” and “Disturbed Forest” was performed. To extract forest conversion maps from satellite

images, the following sequence was performed: Geo- referencing, supervised classification

(Maximum Likelihood Algorithm), validation of the classification (Confusing Matrix) and, a final

reclassification was carried out to obtain the “Forest” and “Disturbed Forest” categories.

Based on measuring forest areas in different but correlative years (1976, 1986, 1991, 2001, 2004 and

2006), in the Forest Loss, Deforestation Rates and Deforestation Pattern Section forest loss was

obtained by comparing map areas. Deforestation rates were calculated using the formula proposed by

Puyravaud, (2003) [65] . The deforestation pattern was determined based on the size of patches of

disturbed forest, making use of the land metric “Area”.

The Modelling Forest Conversion Section, i) describes how the dependent and independent variables

were created in order to be analyzed in a GIS environment; ii) describes the statistical procedures to

analyze the relationship between variables; iii) describes logistic regression, analysis and prediction,

and, finally, iv) describes prediction of the artificial neural network. The Modelling Forest Conversion

Section summarizes the procedures to be performed as follows:

After the creation of variables, potential explanatory variables for forest conversion were tested

with Cramer’s V (Univariate tests of association).

Forest conversion was analyzed using binomial logistic regression and GIS data using IDRISI

15 software. The purpose of modelling was (i) to assess the relative significance of explanatory

variables on forest change during the period 2001-2004; and (ii) to predict probability of forest

change for the period 2004-2006.

An alternative model for forest conversion prediction was also performed using the IDRISI 15

software. The artificial neural network Multi-Layer Perceptron was executed to predict forest

change for the period 2004-2006. The prediction performed used the same data set used by the

logistic regression prediction. Finally, the comparison between the models was made using the

Area Under the ROC Curve (AUC).

For purposes of description, the methodological approach has been divided into three main blocks.

1. Data Preparation (Subsection 2.3.2)

2. Forest Loss, Deforestation Rates and Deforestation Pattern (Subsection 2.3.3)

3. Modelling Forest Conversion (Subsection 2.3.4)

Table 2 summarizes the steps for each block and Figure 4 contains a methodological flowchart of the

steps.
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Table 2 Methodological Approach Building Blocks

Block Step Input
Methodological

approach
Output

a. Satellite images:
importing and
geo-referencing

Satellite images

without geo

references

-ITC exercise book

guide

Geo-referenced

images

b. Land cover
classification

Geo-referenced

images

-Maximum

Likelihood Algorithm

(MLA)

Land cover map

c. Validation of the
classification

Land Cover map

and Ground

Control Points

-Cross tabulation

assessment

Validated land cover

map

1. Data
Preparation

d. Land cover
reclassification

Validated land

cover maps
Reclassification

Binary maps: Forest

and Disturbed Forest;

1976;

1986;1991;2001;2004

and 2006

a. Forest Loss and
deforestation rates

Binary maps

(Output 1.d)

-Area calculation

-Deforestation rates

-calculation

Forest loss table,

graphics,

deforestation rates

2. Forest loss,
Deforestation
Rates and
Deforestation
Pattern b. Deforestation

pattern

Binary maps

(Output 1.d)

-FRAGSTATS: Land

metric area
Land metric indexes

a. Creating
dependent and
independent
variables for forest
conversion

-Binary maps

(Output 1.d)

-Roads maps

(2004, 2006)

-Villages map

-DEM Digital --

Elevation Model

-“Type of

Settlement” map

-Creating the

dependent variable

-Creating

explanatory

variables

-Tests of

independence: Chi

square test and

Cramer’s V.

-Dependent variable

-Explanatory variables

b. Logistic
Regression Model

-Dependent

variable (Output

3.a)

-Explanatory

variables (Output

3.a)

-Calibration

-Prediction

-Validation

Probability for forest

conversion for the

year 2006 LRM

c. Multi-Layer
Perceptron Model

-Dependent

variable (Output

3.a)

-Explanatory

variables (Output

3.a)

-Calibration

-Prediction

-Validation

Probability for forest

conversion for the

year 2006 MLP

3. Modelling
Forest
Conversion

d. Comparison
between models

-Probability for

forest conversion

for the year 2006

LRM (Output 3.b)

-Probability for

forest conversion

for the year 2006

MLP (Output 3.c)

-AUC/ROC AUC/ROC results
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Figure 4 shows the sequence of the complete process for analysis and prediction of forest conversion

in the TIPNIS.

Correlation analysis

Figure 4 Methodological Approach Flowchart
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2.3.2. Data Preparation

In this subsection, the areas of “Forest” and “Disturbed Forest” were determined making use of GIS

software. GIS tools were used to standardize geographic reference systems, to classify satellite

images, to validate the classification and finally to prepare data to be used as input in the modelling

and prediction of forest conversion.

Subsection 2.3.2 procedures are described next in the following subsections:

2.3.2.1 Satellite Images: Importing and Geo-referencing
2.3.2.2 Land Cover Classification
2.3.2.3 Validation of the Classification
2.3.2.4 Land Cover Reclassification

2.3.2.1. Satellite Images Importing and Geo-referencing

Three ASTER Level-1B images for the years 2001, 2004 and 2006 were needed to extract forest

conversion maps. All images were imported and geo-referenced into the same coordinate system

(UTM/PSAD56) using ERDAS 9.2.

In order to be manageable in GIS software, ASTER Level-1B images had to be converted from

Hierarchical Data Format (*.hdf’ or *.hdf.met’) to Tagged Image File Format (TIFF). The importing

of ASTER Level-1B images (TIFF format) was performed using the Erdas 9.2 Import/Export option

and the images were converted to Imagine format (IMG). Visible and Near Infrared (VNIR) and

Shortwave Infrared (SWIR) bands were imported for the supervised classification. The sequence of

the importation and geometric correction was preformed according to the ITC Exercises book guide.

Natural Resources Management, Modules 3&4 RS and RS/GIS 2007 [35].

All the images were geometrically referenced to a common spatial reference system, as follows:

Projected Coordinate System: PSAD_1956_UTM_Zone_20S

Projection: Transverse Mercator

False Easting: 500000.00000000 meters

False Northing: 10000000.00000000 meters

Central Meridian: -63.00000000 degrees

Scale Factor: 0.99960000

Latitude of Origin: 0.00000000 degrees

Linear Unit: Meter
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2.3.2.2. Land Cover Classification

Once the images were properly geo-referenced, ILWIS 3.3 software was used to perform a supervised

classification procedure. The objective of the classification was to obtain two single categories

“Forest” and “Disturbed Forest”. To classify with only two categories was too coarse. More categories

were needed to differentiate the two forest categories.

To reach this goal, the Maximum Likelihood Algorithm (MLA) classifier (Subsection 2.3.2.2.1) was

used to preliminarily classify six categories. The categories are described in Subsection 2.3.2.2.1.1. In

order to assess the classification accuracy, the classified image was compared with ground control

points (Subsection 2.3.2.3).

After the accuracy assessment, there were still water areas that needed to be separated. The ArcGIS

9.2 polygon editor was used to correct polygons of burnt areas misclassified as water. Finally, a

reclassification of categories was performed to obtain only two categories, "Forest” and "Disturbed

Forest" (Subsection 2.3.2.4)

As mentioned in Section 2.3.1, the final category ¨Forest¨ consisted of those areas with no disturbed

forest: Primary Forest, Grassland, River Shores and Water. The final category ¨Disturbed Forest¨

consisted of those areas where forest disturbance or change had occurred.

The classification procedures are described below.

2.3.2.2.1 Supervised Classification of Land Cover Categories

The classifier selected for the classification was Maximum Likelihood Algorithm. The classification

was performed using ERDAS 9.2 software.

Maximum Likelihood Algorithm (MLA) is a statistical decision rule applied to raster images that

examines the probability function of a pixel for each of the classes and assigns the pixel to the class

with the highest probability. MLA has been widely used in land cover classification because it usually

provides high classification accuracies [13, 31]

The supervised classification resulted in six categories of land cover: ‘Primary Forest’, ‘Secondary

Forest’, ‘Crops and Cattle Pastures’, ‘Grassland’, ‘River Shores’, and ‘Water’. These categories are

described below (Subsection 2.3.2.2.2).

During the classification, the category ‘Water’ presented similar values of reflectance to forest burnt

areas. The ArcGIS polygon editor was used to correct this issue. The water areas depicted in images

earlier than 2006 were compared with the water areas in the 2006 image. If they remained the same,

they were classified as water. If not, they were classified as burnt areas.

After these procedures were performed, a final map of land cover classification was obtained. Figure

11 (Subsection 3.1.1) depicts the categories of land cover in percentages.
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The cover classification for the year 2006 was used as reference to help determine the classification of

images of earlier years (2001 and 2004) based on the assumption that a Disturbed Forest cannot return

to Primary Forest within 5 to 20 years. According to Etter et al (2006) [19], time intervals of less than

10 years are too short to regenerate effectively a forest cover from a cleared area. Brearley F. (2007)

[8], also mentions that it takes 55 years for a secondary forest cleared for agriculture to achieve

approximately 80% of the biomass of tropical primary forest.

The categories of classification were supported taking into account four basic references:

 Vegetation map of the TIPNIS 2004 [72]

 FAO CETEFOR Report 2002 [22]

 Ritter N (2006) [67]

 Observations during the field work.

To collect information about Land Cover in the TIPNIS, this study registered names of common

(usual) plants in the same place in which the Ground Control Points were registered. Four TIPNIS

park guards were the source of local knowledge to identify common species of plants. The land cover

for forest areas was estimated using a method of transect sampling: the line intercept method also

called the line-intercept ground sampling. Finally, the presence of cattle was registered by simple

observation or by evidence such as cattle prints, cattle dung, fences, etc. Appendices Ia, Ib, Ic contain

the form used to collect this data and the data collected.

2.3.2.2.1.1 Categories of Classification

Primary Forest

‘Primary Forest’ is defined as a forest ecosystem, relatively undisturbed by human activity, with the

principal characteristics and key elements of native ecosystems such as complexity, structure, and

diversity and an abundance of mature trees. Human impacts in such forest areas have normally been

limited to low levels of hunting, fishing and harvesting of forest products. Such ecosystems are also

referred to as "mature," "old-growth," or "virgin" forests. FAO 2002 [26].

The most common species of trees in the Primary Forest of the TIPNIS are: “Almendrillo”,

(Dypterix odorata ); “mapajo” (Ceiba pentandra); “bibosi” (Ficus sp.); “mara o caoba” (Swietenia

macrophylla K.); “palo maría” (Calophyllum brasiliensi); “yesquero” (Cariniana sp.); “cedro”

(Cederla sp.); “ochoó “ (Hura crepitans L.); “coquino” (Chrysophyllum sereceun); “coloradillo”

(Byrsonina sp.); “sangre de toro” (Virola sp.); “gabetillo” (Aspidosperma sp.); “ocoró” (Reedia

acuminata); “blanquillo” (Buchenavia oxicarpa); “peloto” (sapiun marmieri); “verdolago”

(Terminalia amazónica); “piraquina” (Xylopia amazónica); “chonta” (Astrocarium chonta), and

“pachiuba” (Socratea sp.).SERNAP-TIPNIS 2004 [72] and field work.
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Secondary Forest

‘Secondary Forest’ is rainforest that has been disturbed, naturally or unnaturally. Secondary Forest

can be created in a number of ways from degraded forest recovering from selective logging to areas

cleared by slash-and-burn agriculture that have been reclaimed by forest. Due to the lack of a full

canopy, more light will reach the floor supporting vigorous ground vegetation. Butler, Rhett A. 2006

[10].

‘Secondary Forest’ in the TIPNIS, is characteristically dominated by Cecropia peltata, Ochroma

pyramidal,, Inga spp., Copaifera sp., and Sapium spp. as mentioned by SERNAP-TIPNIS 2004

[72], Ritter 2006 [67] and field work.

Grassland

In this study, Grassland is defined as a land where grass or grass-like vegetation grows and is the

dominant form of plant life. Grasslands occur generally in areas near rivers and lowlands. The most

common plant species are: “grama Negra” (Paspalum notatum), “pata de gallo” (Sporolobus

poireti), “pasto amargo” (Paspalum conjugatun),”goma negra” (Eleusini indica), “sujo” (imperata

brasiliensi), etc. SERNAP-TIPNIS 2004 [72] and fieldwork.

Crops and Cattle Pastures

‘Crops’ are areas where agricultural activity is present. The most common crops are “coca”

(Erytroxylum coca), “plátanos” and “bananos” (Musa spp.), rice (Oryza sativa), “yuca” (Manihot

utillisima), “maiz” (Zea maíz), some fruits like “cacao” (Theobroma cacao L.), “cítricos” (Citrus

spp.) and other species in lesser quantities.

‘Cattle Pastures’ are forest areas that have been burned and converted into pastures for cattle. These

pastures contain grass, leguminous plants and weeds with a few trees. In general, cattle pastures in

the TIPNIS frequently contain Brachiara decumbens, Brachiaria brizantha, Axonopus scoparius,

Desmodium ovalifolium, and Pueraria phaseoloides SERNAP-TIPNIS 2004 [72] and fieldwork.

For purposes of this study, crops and cattle were combined into a single category ‘Crops and Cattle

Pastures’ because the final objective of the Land Cover classification was to obtain maps that

discriminate Primary Forest from Disturbed Forest caused by anthropogenic activities.

River Shores and Water

“River Shores” describes sandbanks near to the shores of rivers, which are common in the borders

of the study area. The category ‘Water’ is used to represent rivers and lagoons.

The result of the classification is depicted in Figure 11, Subsection 3.1.1.
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2.3.2.3. Validation of the Classification

The assessment of land cover classes was performed using an ILWIS 3.3 Confusion Matrix, taking

into account both Ground Control Points obtained through field work and the classified image

obtained for the year 2006.

2.3.2.3.1 Ground Control Points (GCPs)

The stratified clustered representative sampling scheme [34], was used to determine the GCPs. The

sampling is done by interpretation unit. In this method, an equal number of sample points is allocated

to each legend unit. The size of the unit and the number of polygons that belong to the unit do not

influence the number of sample points. The total area covered by one legend unit is not taken into

account either.

According to the ITC, 2005 [34], ‘Cluster sampling’ means that sample points are concentrated in

more accessible areas where several legend units occur within a short distance. The areas where

observation sites are concentrated are called ‘Sample areas’. These sample areas should contain

representative examples of all legend units delineated during the image interpretation or image

classification. For each unit a relative equal number of samples is extracted in order to be validated

during the field work with GPS marks. At least 80 GCPs were anticipated for this study. Due to social

conflicts between “cocaleros” and TIPNIS managers, only 39 points could be taken during the field

work (see Appendix Ib).

2.3.2.3.2 Confusion Matrix

The Confusion Matrix was calculated in ILWIS 3.3 and displays graphically the results of the

comparison between the GCPs taken during the field work and the classified image. According to

Gong 1997 [28] the Confusion Matrix is an N x N matrix of "observed" and "classified" cells

corresponding to N land cover classes. The matrix depicts the land cover classification category

versus the field-observed land cover type. The diagonal cells indicate correct observations, meaning

that the observations were classified correctly according to the field observations. Any observation

off the diagonal indicates a misclassified accuracy control point. The result of the Confusion Matrix

showed an overall accuracy of 85.58%. Table 4 (Subsection 3.1.2) shows the matrix between

classified and observed cells.

2.3.2.4. Land Cover Reclassification

The objective of the classification was to discriminate forest without disturbance from areas with

forest conversion. Areas with forest needed to be separated from areas that have suffered change due

to anthropogenic influence. Then, the classified land cover maps were reclassified into two categories

as follows:

‘Primary Forest’, ‘Grassland’, ‘River Shores’, and ‘Water’= “Primary Covers”

‘Secondary Forest’, ‘Crops and Cattle Pastures’ = “Secondary Covers”

According to Figure 11 (Subsection 3.1.1), the categories ‘Grassland’, ‘River Shores’, and ‘Water’

occupy, respectively, 8.5%, 1.2 %, and 0.5 % of the total area of study. As these categories have not
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shown evidence of change due to human activities, they have been included as part of the category

‘Forest’ in order to generalize the information. The same logic has been applied to the categories

‘Secondary Forest’ and ‘Crops and Cattle Pastures’, which have been reclassified as part of the

category ‘Disturbed Forest’.

This reclassification resulted in three maps containing only the two area categories “Forest” and

“Disturbed Forest” for each of the years 2001, 2004 and 2006 (see Subsection 3.1.3). Deforestation

maps for the years 1976, 1986, 1991 were already properly geo-referenced and ready to be used. All

these maps provided the information used to calculate deforestation rates and also to obtain binary

maps of change and no change.

2.3.3. Forest Loss, Deforestation Rates and Deforestation Pattern

General Description

In this block, forest areas were measured for each year of study. Forest loss values for each year were

calculated and then used for calculating deforestation rates. Finally, relationships between the patch

area size and pattern deforestation were found.

The block procedures are described in the following three subsections:

 Forest Loss (Subsection 2.3.3.1)
 Deforestation Rates (Subsection 2.3.3.2)
 Deforestation Pattern (Subsection 2.3.3.3)

2.3.3.1. Forest Loss

Forest loss was quantified for five sequential periods: 1976-1986; 1986-1991; 1991-2001; 2001; 2004;

2004-2006. ArcGIS 9.2 was used to calculate forest area for each year. Forest loss for each period was

obtained by simple subtraction of maps. The results are depicted in Table 5 in Subsection 3.2.1

2.3.3.2. Deforestation Rates

As pointed out by Armenteras et al 2006[2], this research also assumes that the deforestation rate does

not remain constant and needs to be calculated for each year. During the literature review, three

popular formulas were found: two of them provided by FAO (FAO 1996 [25] and FAO 1995 cited by

[65]) and the third recently proposed by Puyravaud 2003 [65] (The formulas are listed below).

All three formulas were tested yielding similar results; see Table 5 (Subsection 3.2.1). In the end, the

formula provided by Puyravaud 2003 [65] was selected because, according to its author, this formula

is derived from the Compound Interest Law. It is also derived from the mean annual rate of change

and, for this reason, is more intuitive than the formula used by FAO. Table 5 (Subsection 3.2.1) shows

deforestation rates for each year and Figure 13 (Subsection 3.2.2) shows graphically deforestation

rates for the periods 1976-1986, 1986-1991, 1991-2001, 2001-2004, 2004-2006.
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FAO 1995 formula

)/(1
12

12 ttAAq

q = deforestation rate (% lost area/year)

A1 = initial forest area

A2 = final forest area

t2-t1 = interval in years during which change in land

cover is being assessed

FAO 1996 formula

1

1

21 t

A

AA
DR

DR = deforestation rate (% lost area/year)

A1 = initial forest area

A2 = final forest area

t = interval in years during which change in

land cover is being assessed

Puyravaud formula

1

2

21 A

A

tt
r

r = deforestation rate (% lost area/year)

A1 = initial forest area

A2 = final forest area

t2-t1 = interval in years during which change in

land cover is being assessed

2.3.3.3. Deforestation Pattern

Forest patterns have been successfully identified using GIS [2, 6, 78]. Mertens and Lambin (2000)

[51] contend that land-cover changes often exhibit high degrees of spatial and temporal complexity.

To help clarify the spatial pattern of forest conversion in the study area, FRAGSTATS software was

used to obtain forest fragmentation indexes.

FRAGSTATS is a spatial pattern analysis program for categorical maps. The landscape subject to

analyze is user-defined and can represent any spatial phenomenon. FRAGSTATS simply quantifies

the areal extent and spatial configuration of patches within a landscape [50]. While this software

computes several statistics for each raster map, in this thesis only “class (patch type) in the landscape”

is used to calculate a single class because information is being collected only for the patch type

“Disturbed Forest”. Figure 14 Subsection 3.2.3 shows the frequency of patches of “Disturbed Forest”

for each year of study.

Three software programs were used to format data for input to FRAGSTATS. First, ArcGIS 9.2 was

used to resample categorical raster maps of deforestation from 15 m into 50 m pixel. Then, ERDAS

9.2 was used to transform the maps into *.GIS format. Finally, LANDISVIEW beta 1.0 9 [5] was used

to import the formats into ASCII. Use of ASCII format facilitates importing data into FRAGSTATS.

The land metric Area is described as follows:

Expression: aij = area (m2) of patch ij.

Units: Hectares

Range: The range in area is limited by the grain and extent of the image. In this case, the minimum

area was 0.25 ha because the pixel size was resampled to 50m since FRAGSTATS was not able to

work with the original pixel size of 15m and the large number of pixels in the raster of the study area.

Loza (2004) reported the same issue with pixels of 30 by 30m. The method of resampling was ‘nearest
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neighbour’, which consists of assigning coordinate map values and pixel size to the nearest pixel.

When using nearest neighbour resampling, the value of the input pixel closest to a new output pixel is

used as the output value [33].

2.3.4. Modelling Forest Conversion

2.3.4.1. General Description

Before the modelling procedures could be performed, the dependent variable was defined as the

presence or absence of forest change between two observation years (Subsection 2.3.4.2.1) Then, the

explanatory variables were defined and also their association with the dependent variable was tested

using Cramer’s V. Finally, linear regression analysis was performed to verify independence between

explanatory variables (Subsection 2.3.4.2.2). The explanatory variables were: “Distance from Forest

Edge”, “Distance from Roads”, “Distance from Settlements”, “Landscape Position” and “Type of

Settlement”.

The Logistic Regression Model (LRM) (Subsection 2.3.4.3) was used (i) to assess the relative

significance of explanatory variables on forest change during the period 2001-2004; and (ii) to predict

probability of forest change for the period 2004-2006 based on the forest conversion that occurred

during the period 2001-2004.

The artificial neural network Multi-Layer Perceptron (MLP) was used in an attempt to improve the

prediction of probability of forest change for the period 2004 to 2006. The prediction performed made

use of the same data set used by the logistic regression prediction (Subsection 2.3.4.3).

The probability of change was assessed comparing the results of both models to the real change that

occurred between the two years 2004 and 2006. The Area Under the ROC Curve (AUC) was used as

the tool of assessment. The whole modelling process was performed in an IDRISI 15, Andes Edition

environment.

The Modelling procedures are described in the following subsections:

 Creating Dependent and Independent Variables for Forest Conversion for Forest conversion
(Subsection 2.3.4.2)

o Dependent Variable (Subsection 2.3.4.2.1).
o Explanatory Variables (Subsection 2.3.4.2.2)

 Logistic Regression (Subsection 2.3.4.3)
 Multi-Layer Perceptron (Subsection 2.3.4.4)

2.3.4.2. Creating Dependent and Independent Variables for Forest Conversion

As mentioned before, the analysis and prediction of forest conversion was performed using two

models: LRM and MLP. Both models require that the input data must be in a continuum or ranked

scale. The dependent variable and independent variables were created to respond to this requirement.
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In order to fulfil this requirement, as first step, all data were imported to IDRISI 15 software, using the

Import option. This step is very important and must be done very carefully. IDRISI 15 requires that

the user specify the exact number of rows and columns for the raster data and geo-reference in order to

have the proper pixel size for all the raster data. The following parameters were used:

Columns : 3661

Rows : 3061

Reference System : UTM Zone 20 S

Reference Units : Meters

Distance Units : 1.00

Minimum X : 185665.00

Maximum X : 240580.00

Minimum Y : 8155985.00

Maximum Y : 8201900.00

Y Resolution : 15

X Resolution : 15

2.3.4.2.1 Dependent Variable

The dependent variable is a binary presence or absence event, where 1=change and 0=no change.

According to Rossiter & Loza (2008) [69], this is a logical response variable, which takes only two

values: True or False. Thus, a Boolean map with categories of Change and No change was needed.

This map was obtained for the period 2001 – 2004.

Change and No change (2001 – 2004)

IDRISI 15 was used to subtract the spatial distribution of forest for the year 2004 from the

areas of forest for the year 2001.

Map 2001= Forest area

Map 2004= Forest area

Map 2001 minus Map 2004 = Change 2001 2004

Figure 16 in Subsection 3.3.1 contains the map of the dependent variable can be visualized.
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2.3.4.2.2 Explanatory Variables

“Distance from Forest Edge”, “Distance from Roads”, “Distance from Settlements”, “Landscape

Position” and “Type of Settlement” were considered as potential explanatory variables of forest

conversion. This section explains why these variables have been considered as explanatory variables

for forest conversion.

Distance from Forest Edge

Forest borders have a high probability to be deforested [42, 80] and experience has shown that

deforestation tends to start from the edge of existing forest [15]. Figure 5 illustrates that deforestation

near the border is pronounced but that after 1,500 meters the amount of deforestation drops off to

virtually nothing, which means that the relationship between forest change and forest edge is non-

linear. After testing with Cramer's V was completed (Subsection 2.3.4.2.3), the independent variable

“Distance from Forest Edge” was used as input for the models.

Figure 5 Frequency of Occurrence of Forest Change from Forest Edge

Distance from Roads and Settlements

Deforestation is also highly related to proximity to roads and urban areas [42, 80]. The frequency of

forest change near roads is pronounced but also drops off to virtually nothing for roads after 6.5 km

and after around 1 km for settlements (Figure 6 and Figure 7). Thus, these variables were tested with

Cramer’s V (Subsection 2.3.4.2.3), and then they were incorporated in the model as well.
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Figure 6 Frequency of Occurrence of Forest Change from Roads

Figure 7 Frequency of Occurrence of Forest Change from Settlements

Landscape Position

According to Figure 8, the frequency of deforestation for each category of “Landscape Position” is

unequal. The deforestation tends to occur markedly in areas of gentle slope. Topography seems to

have some influence on deforestation of the TIPNIS. Thus, “Landscape Position” was also tested to

see the influence on the forest clearing (Subsection 2.3.4.2.3), and then it was incorporated in the

modelling as an explanatory variable.

Forest Conversion for Each Landscape Position Class in the TIPNIS
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Figure 8 Frequency of Occurrence of Forest Change for Each “Landscape Position”
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Type of Settlement

As mentioned earlier, TIPNIS is occupied by four different ethnic groups. But in the Study Area

(southern part) only three ethnic groups were identified. The areas that they occupy were defined as a

categorical variable called “Type of Settlement¨. The frequency of deforestation for each group is

depicted in Figure 9.

Frequency of Forest Change According to the Type of Settlement
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Figure 9 Frequency of Occurrence of Forest Change According to the “Type of Settlement”

The relationship between the “Type of Settlement” variable and change areas was also evaluated

(Subsection 2.3.4.2.3), but the categorical variable has not been included as an input for the model

(The reasons are discuss in Chapter 4).

2.3.4.2.2.1 Creating Continuous Variables

Distance from Forest Edge

The following procedure was implemented for “Distance from Forest Edge”:

 The vector files (shp) Forest2001 and Forest2004 were imported.
 Raster files were created from each of the vector files.
 To obtain forest edge:

A PATTERN command was applied to the Boolean raster map “Forest2001” making use of

the option “Center versus neighbours” and a window size of 3*3. The result was a raster map

with coarse forest borders called “Forest pattern”. To make the forest borders thinner, “Forest

pattern” and “Forest2001” were multiplied making use of the OVERLAY command. As a

result, a raster map of forest borders “Forest edge” was obtained. Finally, the Distance from

Forest Edge was obtained with the DISTANCE command. The map of Distance from Forest

Edge is depicted in Figure 17, Subsection 3.3.4.
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Distance from Settlements and Distance from Roads

The map of settlements and the map of roads were provided by the managers of the park (TIPNIS).

The following procedure was used to obtain the variable distances:

 The settlements and roads vector files (shp) were imported.
 Raster files were created from each of the vector files.
 The Operator DISTANCE was applied.

All maps obtained can be seen in Figure 17, Subsection 3.3.4.

2.3.4.2.2.2 Creating Categorical Variables

Landscape Position

The Topographic Position Index (TPI) was used to characterize the landscape position. TPI is an

algorithm developed by Andrew Weiss 2001 [36] that has been incorporated into ArcGIS 9.2 to

separate a region into landscapes classes.

The degree to which a pixel is higher or lower plus the slope of the pixel can be used to classify the

pixel into slope position. If it is significantly higher than the surrounding neighbourhood, then it is

likely to be at or near the top of a hill or ridge. Significantly low values suggest the cell is at or near

the bottom of a valley. TPI values near zero could mean either a flat area or a mid-slope area, so the

cell slope can be used to distinguish the two grids from elevation grids. TPI values provide a simple

and repeatable method to classify the landscape into slope position and landform category [36].

Making use of the slopes obtained from a SRTM DEM (91x91 m), the Topographic Position Index

(TPI) extension of ArcGIS 9.2 was performed to classify the study area. Four categories were obtained

(See Table 3). The threshold parameters were assigned based on the default ranges of the ArcGIS

software. The map of Landscape Position is depicted in Figure 17, Subsection 3.3.4.

Table 3 Landscape Categories Obtained from the TPI

TPI Threshold Parameters Landscape Category

- 10 m Gully bed

+ 12 m Ridge top

- 6 m Gentle slope

+ 6 m Steep slope
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Type of Settlement

Based on the “Type of Settlement” map provided by the managers of the park (TIPNIS 2007), three

ethnic groups were identified in the study area: “Trinitarios”, “Yuracarés” and “Cocaleros”. It is

important to mention that the fourth ethnic group present in the TIPNIS, Chimanes, live in the

northern part of the park. Because this study was carried out in the southern part of the park only, the

Chimanes were not included as part of the study. The “Type of Settlement” map is depicted in Figure

17, Subsection 3.3.4.

2.3.4.2.3 Measuring the Strength of the Relationship between Explanatory Variables and Forest

Change (Univariate tests of association Cramer’s V)

To assess preliminarily the relationship between the categorical variables and occurred change, Chi

square test of independence was performed for categorical variables in SSPS 17. For the two

categorical variables “Landscape Position” and “Type of Settlement”, the significance level was <

0.05 (see Subsection 3.3.2.1 and Appendix II).

Chi-square says that there is a relationship between variables, but it does not say just how significant

this relationship is. Cramer’s V is a post-chi square test that was used to provide this additional

information.

Cramer's V is a statistic that transforms chi-square (for a contingency table larger than two rows by

two columns) to a range of zero to one, where unity indicates complete agreement between two

nominal variables [39] and [81]. V is calculated by first calculating chi-square, then using the

following calculation:

1

2






kN
V

Where:

2 = square root of chi square

N = number of cases in the table

k = the lesser of the number of rows and

columns.

In 2006, IDRISI 15 was released including a new tool called the "explanatory variable test procedure".

According to IDRISI Help 2006 [21], the explanatory variable test procedure is based on Cramer´s V

contingency table analysis. This procedure can test the strength of the association between the

dependent variable and both quantitative and qualitative variables.

Quantitative variables (‘Distance’ variables in our case) are binned to 256 categories in order to

conduct this test. “Distance from Forest Edge”, “Distance from Roads” and “Distance from

Settlements” were tested using IDRISI’s explanatory variables test. The test results obtained are

shown in Table 7 Subsection 3.3.2.2.

For qualitative variables, the procedure uses the native categories of the variable to test association

with the distribution of land covers in the later land cover map.
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Before performing the explanatory test procedure, the qualitative variables “Landscape Position” and

“Type of Settlement” needed to be transformed from nominal to numeric values. The Evidence of

Likelihood tool was used to perform this transformation. This procedure looks at the relative

frequency of pixels belonging to the different categories of that variable within areas of change. In

effect, it asks the question of each category of the variable, "How likely is it that you would have a

value like this if you were an area that would experience change?" [12, 21]

After the classification, the ‘Landscape Position’ map was imported to IDRISI 15 and was

transformed with the “Evidence of Likelihood” tool in order to get quantitative data input. Then, the

map was separated into four individual maps, one per category. Each Landscape category was tested

with the explanatory variable test based on Cramer’s V, using as dependent variable the Boolean map

“Change 2001-2004”. The results are shown in Table 7 Subsection 3.3.2.2.

The map “Type of Settlement” was imported to IDRISI and also transformed with the “Evidence of

Likelihood” tool. The types of settlement were separated into three individual categories which were

tested with the explanatory variable test based on Cramer’s V, using as dependent variable the

Boolean map “Change 2001-2004”. The results are shown in Table 7 Subsection 3.3.2.2.

The results of the explanatory test procedure for each variable were Cramer’s V values. According to

Eastman, 2006 [15], variables that have a Cramer’s V of about 0.15 or higher are useful while those

with values of 0.4 or higher are good. The p value expresses the probability that the Cramer’s V is not

significantly different from 0. Thus, a low value of p is not a good indicator of a variable’s worth, but

a high value is a sure sign that it can be rejected.

Although Cramer’s V assessed the relationship between an individual explanatory variable and forest

change (Subsection 3.3.2.2), a deeper analysis was needed in order to see the significance of each

variable when there are other variables involved in the forest change process. Logistic regression was

used to give a better insight (Subsection 2.3.4.3).

2.3.4.2.4 Relationship between Explanatory Variables

To avoid multicollinearity, correlation analysis between the independent variables was performed.

None of the variables showed high correlation. The results are described in (Subsection 3.3.3).
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2.3.4.3. Logistic Regression Model (LRM)

Forest conversion was modelled and analyzed using Logistic Regression Model in IDRISI 15, Andes

edition. The purpose of modelling was (i) to assess the relative significance of four explanatory

variables on forest change during the period 2001-2004; and (ii) to predict probability of change for

the year 2006.

Logistic regression is a variation of ordinary regression which is used when the dependent (response)

variable is a dichotomous variable.

In this study, as mentioned before, the dependent variable is a binary presence or absence event, where

1= forest change and 0= no change, for the period 2001–2004. The logistic function gives the

probability of forest change as a function of the explanatory variables. In other words, the probability

of forest change for each pixel is a function of the values that the other variables have for the same

pixel.

According to Schneider and Pontius 2001 [62] the function is a monotonic curvilinear response

bounded between 0 and 1, given by a logistic function of the form:

(1)
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Where: p is the probability of forest loss in the cell, E(Y) the expected value of the binary dependent

variable Y, β0 a constant to be estimated, βi a coefficient to be estimated for each independent variable

Xi. The logistic function can be transformed into a linear response with the transformation:
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(3) p'=β0+β1X1+β2X2+β3X3+…..

The transformation (Eq. (2)) from the curvilinear response (Eq. (1)) to a linear function (Eq. (3)) is

called a logit or logistic transformation. The transformed function allows linear regression to estimate

each βi. Since each of the observations is a pixel, the final result is a probability score (p) for each

pixel.

In logistic regression the significance of the coefficients βi is tested with the Wald test, which is

obtained by comparing the maximum likelihood estimate of every βi with its estimated standard error

(Hosmer and Lemeshow, 1989 cited by [32]). A coefficient is significant if the tested null hypothesis

that the estimated coefficient is 0 can be rejected at a 0.01 (or 0.05) significance level [77].
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According to Ayalew and Yamagishi 2005 [3], in order to appropriately interpret the meaning of Eq.

(1), one has to use the coefficients as a power to the natural log(e). The result represents the odds ratio

or the probability that an event will occur divided by the probability that it fails to do so. If a

coefficient is positive, its transformed log value will be greater than one, meaning that the event is

more likely to occur. If a coefficient is negative, the transformed log value will be less than one and

the odds of the event occurring decreases. A coefficient of 0 has a transformed log value of 1, and it

does not change the odds one way or the other. For a positive coefficient, the probability plotted

against the values of an independent variable follows an S-shaped curve. A mirror image will be

obtained for a negative coefficient (Menard, 1995 cited by [4]).

2.3.4.3.1 Calibration of the Model

The Logistic Regression Model requires that the variables be linearly related to the forest change.

Thus, before introducing the variables in the model, all the variables were normalised between 0.1 and

0.9. The natural log transformation was performed for continuous variables (Distances). The Evidence

of Likelihood transformation was applied for the categorical explanatory variable “Landscape

Position”.

To calibrate the Logistic Regression Model, the explanatory variables measured for the year 2001

were incorporated in the IDRISI’s Logistic Regression Module as independent variables. The forest

change for the period 2001-2004 was incorporated as the dependent variable. In order to decrease

processing time and to reduce the negative spatial interdependence, the stratified sampling was

selected with a 10% sampling proportion.

The stepwise method was used to select the best set of predictor variables since the study considered 6

different predictor sets (Table 9, Subsection 3.3.5). Finally, and following the methodology used by

van Gils and Loza 2006 [79], the selection of the best-fitted model with the minimum amount of

predictors was done by means of the Akaike Information Criterion (AIC) index. The smaller the AIC

is, the better the fit of the model (Table 10, Subsection 3.3.5).

The results were the regression equation of the best-fitted predictors set (Subsection 3.3.5) and a map

of probability of deforestation for the year 2004 “Calibration 2004” (see Figure 18 Subsection 3.3.5).

2.3.4.3.2 Prediction

The prediction for forest change between the year 2004 and the year 2006 was performed using the

obtained probability of deforestation for the year 2004. For the new prediction, the dynamic variables

“Distance from Forest Edge” and “Distance from Roads” were changed as long as they were in the

year 2004. The variables “Distance from Settlements” and “Landscape Position” remained the same.

The result was a new map of probability of forest change for the year 2006 (see Figure 19 Subsection

3.3.5).
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2.3.4.3.3 Validation

The real “forest change” map for the year 2006 (Figure 22 Subsection 3.3.7) was used to assess the

prediction of probability of forest change performed by the model.

The validation was performed with the Relative Operating Characteristic (ROC) curve, which is an

effective and widely used method for evaluating the discriminating power of a statistical model [19,

30, 62]. Eastman 2006 [15], also mentions that ROC can be used to determine how well a continuous

surface predicts the locations given the distribution of a Boolean variable. (In this study, Forest

Change is the Boolean variable).

A ROC curve is a graph of the True Positive Fraction (sensitivity) vs. False Positive Fraction (1-

specificity). The Area Under an ROC Curve (AUC) is a measure of overall performance. The

maximum area is 1.0: The test is useless if the diagonal line is from 0.0 to 1.0 and the area under

ROC=0.5, so a more meaningful measure is the area in excess of 0.5. As test performance improves,

the curve moves towards the upper left corner and the area under ROC increases. The obtained AUC

is shown in (see Figure 23 Subsection 3.3.7).

2.3.4.4. Multi-Layer Perceptron Model (MLP)

To make a parallel prediction of forest conversion from the year 2004 to the year 2006, the IDRISI’s

Multi-Layer Perceptron operator was used. IDRISI’s MLP was created to undertake the classification

of remotely sensed imagery through an MLP neural network classifier using the feed back propagation

algorithm. In the year 2006, MLP was incorporated into the Land Change Modeler for Ecological

Sustainability in IDRISI 15.0 (the Andes Edition), offering an alternative tool for cover change

modelling.

Lippitt 2008 [40] mentions that MLP has three primary components: an input layer, an output layer,

and one or more hidden layers. Each layer is composed of a user-defined number of neurons

(mathematical functions conceived as an abstraction of biological neurons). Output neurons represent

the classes specified by the calibration data. Input variables and hidden layer neurons are randomly

weighted and assigned membership to an output neuron.

According to Nefeslioglu et al 2008 [57], the feed-forward back-propagation learning algorithm is a

well recognized procedure for training neural networks (Multi-Layer Perceptron—MLPs topology). It

is based on searching a performance surface (error as a function of neural network weights) using

gradient descent for point(s) with minimum error.

In other words, the input data (explanatory variables set) is repeatedly presented to the neural network.

With each presentation the output of the neural network is compared to the desired output (forest

change 2001-2004) and an error is computed. This error is then fed back (back-propagated) to the

neural network and used to adjust the weights such that the error decreases with each iteration and the

neural model gets closer and closer to producing the desired output [47]. This process is known as

"training".



SPATIAL MODELLING AND PREDICTION OF TROPICAL FOREST CONVERSION IN THE ISIBORO SÉCURE NATIONAL PARK AND

INDIGENOUS TERRITORY (TIPNIS), BOLIVIA

32

The purpose of training the network is to get the proper weights both for the connection between the

input and hidden layer, and between the hidden and the output layer for the classification of the

unknown pixels [15]. The training result is a parameter file (*.bpn), where weights and other

information are recorded. This information is visualized in this study in a map of propensity of

deforestation for the year 2004. The parameter file (*.bpn) is then used to make the prediction for the

year 2006.

2.3.4.4.1 Calibration

Similar to the LRM, the explanatory variables measured for the year 2001 were incorporated in the

IDRISI’s Multi-Layer Perceptron module as independent variables. The forest change for the period

2001-2004 was incorporated as the dependent variable.

A sample set was needed to create both the training subsets and test subsets. According to Nefeslioglu

et al 2008 [57], it is expected that the training data include all the data belonging to the problem

domain. Certainly, the training subset is used in the training stage of the model development to update

the weights of the network. On the other hand, the test data should be different from those used in the

training stage. The main purpose of the test subset is to check the network performance using

untrained data and to confirm its accuracy. No exact mathematical rule to determine the required

minimum size of any of these subsets exists.

This was a critical point during the process as the number of training samples for all subsets affects the

accuracy of the training results. According to Eastman 2006 [15], too few samples may not represent

the population for each category, while too many samples may cause samples to overlap, leading to a

possible over training of the network. Additionally, too many iterations can also cause over training.

Finally, after several attempts the sample set was determined to be in the range 180,000 to 200,000,

and the training stage was performed. The training process entails running patterns through the

network until the network has “learned” how to apply the data in the future. The parameters used for

the training stage are shown in Figure 10 (Nex page).

After 5,000 iterations, an accuracy rate of 84.24% was obtained. According to Eastman 2006 [15], one

should achieve an accuracy rate in the vicinity of 80%. If the range is lower than 75%, the neural

network must be trained again. Finally, the classify option was performed and the result was a single

output: the map of probability of deforestation for the year 2004 (Figure 20 Subsection 3.3.6).
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Figure 10 Parameters Introduced to the MLP before the Training Stage

2.3.4.4.2 Prediction

Once the network has been trained, new data can be run through it. The network classifies new data

based on its previous training experience. If an exact match cannot be found, the network will select

the closest match found in memory (parameter file *.bpn). The prediction for the year 2006 was also

based on the replacement of the variables “Distance from Forest Edge 2004” and “Distance from

Roads 2004” with the new variables “Distance from Forest Edge 2006” and “Distance from Roads

2006”. The output of the MLP is an activation value which expresses, for each pixel, the propensity

to deforestation. The data layer consists of cells with continuous scores varying from zero to one:

the higher the pixel score, the higher the probability of change for that pixel [43]. The result is

then a “fuzzy” deforestation map that portrays gradations of the probability of being deforested for

the year 2006 (Figure 21 Subsection 3.3.6)

2.3.4.4.3 Validation

The result of the prediction for the year 2006 was compared to the real “forest change” map for the

year 2006. Validation was performed using the Area Under the ROC Curve (AUC). The obtained

AUC is shown in Figure 24 Subsection 3.3.7.
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2.3.4.5. Comparison between Models

The AUC curves obtained for each model during the validation of the prediction show which model

has performed the best prediction (see Figure 25 Subsection 3.3.8)
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3.1. Results for Land Cover Classification

3.1.1. Classification Results

The classification results (Figure 11) show that 66.7 % of the forest’s cover is still Primary Forest and

the category covering the smallest area in 2006 is River Shores (0.5 %).

Land Cover Categories, TIPNIS 2006
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Figure 11 Land Cover Categories, TIPNIS 2006

The methodological approach is described in Subsection 2.3.2.2.

3.1.2. Validation Results

Table 4 shows the Confusion Matrix comparing the classified categories (rows) to the Ground Control

Points (columns) taken during the field work. 81.58% was the overall accuracy obtained by the Land

cover classification. The methodological approach is described in Subsection 2.3.2.3.

Table 4 Confusion Matrix Output ILWIS 3.3 of Classified and Observed Cells

Confusion Matrix Forest
Crops and

Cattle
Pastures

Grassland
Secondary

Forest
ACCURACY

Forest 9 0 1 0 0.9

Crops and Cattle
Pastures

0 9 0 1 0.9

Grassland 0 0 5 0 1

Secondary Forest 1 3 1 8 0.62

RELIABILITY 0.9 0.75 0.71 0.89

Overall Accuracy = 81.58 %
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3.1.3. Reclasification Results

Figure 12 Final Maps with Two Categories: Forest and Disturbed Forest. Years: 1986, 1991, 2001, 2004
and 2006.

1986 1991

2001 2004

2006

Areas in white represent Forest.

Areas in black represent the extent of

Disturbed Forest.

Figure 12 shows the forest loss for each year of study. The methodological approach is described in

Subsection 2.3.2.4.
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3.2. Results for Forest Loss and Deforestation Rates

3.2.1. Forest Loss Results

Table 5 summarizes the forest loss for 6 years during the period 1976-2006. The year with the least

deforestation was 1986 (134 ha/year). The most deforestation (4066 ha/year) was registered for the

year 2006. Both Table 5 and Figure 13 (Next page) illustrate that the forest area has been decreasing

constantly during the period 1976 to 2006. In 1976, almost 100% of the area was forest. In 2006, only

77% of the area remained forest.

Table 5 Forest Area and Deforestation Rates During the Period 1976 – 2006

Deforestation Rates

Year

Forest

Area

Km2

Forest ha
% Forest

Area

%

Disturbed

Forest

ha/year

Forest

Loss

Forest

Loss Rate

Puyravaud
r

Puyravaud

q

FAO

2000

DR FAO

1996

1976 1424.7 142469.6 99.09 0.91

1986 1424.0 142402.1 99.04 0.96 134 0.005 -0.005 -0.005 -0.005

1991 1336.4 133644.9 92.95 7.05 1751 -1.27 -1.27 -1.26 -1.20

2001 1270.6 127062.8 88.37 11.63 658 -0.51 -0.51 -0.50 -0.48

2004 1187.6 118758.1 82.60 17.40 2768 -2.25 -2.25 -2.23 -2.13

2006 1106.3 110625.3 76.94 23.06 4066 -3.55 -3.55 -3.48 -3.37

Table 5 also lists Deforestation Rates calculated using three different formulas. There is a slight

difference between them. The difference tends to be bigger as the size of the calculated areas

increases. The biggest difference (0.18) was observed for the year 2006 between “r Puyravaud” and

“DR FAO 1996”.

Table 6 depicts the variation in deforestation rates for different periods. First, the rate for the entire

period of study 1986 – 2006 is presented, which is -1.9. Then, the table lists the rate for 1986 and 2001

(-0.9), and finally, Table 6 specifies the average deforestation rate of -2.9 for the last period 2001 to

2006.

Table 6 Average Deforestation Rates for Different Periods

Period
Deforestation

Rates Average

1986 - 2006 -1.9

1986 - 2001 - 0.9

2001 - 2006 - 2.9

3.2.2. Deforestation Rates Results

According to Figure 13, the forest area in the TIPNIS has been decreasing constantly from 1976 to

2006. The deforestation rates rise and fall and then rise again. The rate of deforestation until 1991 rose

from -0.005%.a −1 (period 1976 – 1986) to -1.3%.a −1 for the year 1991. Then, the deforestation rate

fell from -1.3 - 0.5%.a −1. For the year 2001, it rose again from -0.5 -2.3 %.a −1. For the period 2004 -
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2006, the rate continued increasing from -2.3 to -3.5. %.a −1. The deforestation rate average for the

period 1986 – 2006 is -1.9 %.a −1 and for 2001-2006 is - 2.9%.a −1.

The methodological approach is given in Subsection 2.3.3.
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Figure 13 Decreasing Forest Area for the Period 1976 – 2006 and Deforestation Rates

3.2.3. Deforestation Pattern Results

Figure 14 illustrates the frequency of patches of “Disturbed Forest” for each year of study. A pattern

of a large and growing number of small patches of deforestation can be observed each year. Note the

difference between small patches (0.5 up to 5 ha) of deforestation and larger deforested areas.

Patches Area Frequency

1954
2111

4073 4037

78 85 142
12 20 19 475 6 11 11 219 45 36 28

250
3525 7 37

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Year 1986 Year 1991 Year 2001 Year 2004 Year 2006

Patches area ha

0 up to 5 ha

5 up to 10 ha

10 up to 15 ha

15 up to 20 ha

20 more than 20 ha

Figure 14 Patches Area Frequency Obtained from FRAGSTATS Results
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Figure 15 depicts the number of patches that were present in five distance ranges from the nearest road

during the year 2004. The major number of patches is located between 250 and 750 m from the

nearest road.

Distance of Patches from Roads

571
525 495

808811

0
100
200

300
400
500
600

700
800
900

Distance from the Nearest Road

N
u

m
b

e
r

o
f

P
a
tc

h
e
s

(u
n

it
)

Number of Patches

Figure 15 Distance of Patches from the Nearest Road

3.3. Modelling Conversion Results

3.3.1. Dependent Variable Results

Figure 16 shows the forest change that occurred during the periods 2001 to 2004 and 2004 to 2006.

Areas of change are represented in black. Forest change for the period 2001 to 2004 was the

dependent variable used by the logistic regression analysis.

Figure 16 Forest Change That Occurred During the Periods 2001-2004 (1 = Change; 0 = No change)
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3.3.2. Univariate Test of Association Results

3.3.2.1. Chi Square Test of Independence, Categorical Variables

For both variables “Landscape Position” and “Type of Settlement”, the Pearson Chi-square calculated

was a p value of 0.000, which is less than the significance level of 0.05. (See the Tables in Appendix

II.)

3.3.2.2. Explanatory Variable Test Cramer’s V

Table 7 shows the strength of association that each explanatory variable has with Forest Change. The

measurement of association used is Cramer’s V. For continuous variables, V values are between 0.5

and 0.6 with a p value of 0.0, which means a good association exists.

Table 7 Relationship between Explanatory Variables and Forest Change Using Cramer’s V

Explanatory Variable
Cramer's

V
p value

Distance from Forest Edge 0.6003 0.0000

Distance from Roads 0.6147 0.0000

Distance from Settlements 0.5179 0.0000

Landscape Position

Gully bed

Gentle slope

Ridge top

Steep slope

0.9571

0.9597

0.0299

0.0000

0.0000

0.0000

0.0000

1.0000

Type of Settlement

Cocaleros

Trinitarios

Yuracares

0.9892

0.7293

0.0000

0.0000

0.0000

1.0000

Cramer’s V values for “Landscape Position” show a strong association with forest change for the

classes “Gully bed” and “Gentle slope” (0.96). On the other hand, class “Ridge Top” has a very low

value (0.023) and “Steep Slope” presents a V value of 0 and a p value of 1, meaning there is a very

poor association.

For “Type of Settlement”, Yuracares class has a V value of 0.00 and p value equal to 1, which means

there is a very poor association. Trinitarios have a V value of 0.73, a good association, while the

Cocaleros class shows a strong association with forest change with a V value of 0.98 and p=0.

The methodological approach is described in Subsection 2.3.4.2.3.
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3.3.3. Relationship between Explanatory Variables Results

According to Table 8, the variables related to “distance from roads” and “distance from settlements”

presented correlation coefficients between 0.3 and 0.5. This is understandable since settlements have

some dependence on roads and vice versa. Similar results occurred when Distance from Forest Edge

and Distance from Roads were correlated, reflecting some relationship between roads and ease of

entry into the forest. Note that the lowest coefficients (no more than 0.147) were found when the

variable Landscape Position was crossed with the distance variables confirming that no relationship

exists between these variables. See graphics in Appendix III.

Table 8 Correlation Coefficients between Independent Variables

Variable 1 Variable 2 Correlation Coefficient

Distance from Forest Edge Distance from Roads 0.554

Distance from Forest Edge Distance from Settlements 0.417

Distance from Forest Edge Landscape position 0.047

Distance from Roads Distance from Settlements 0.367

Distance from Roads Landscape Position 0.135

Distance from Settlements Landscape Position 0.147
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3.3.4. Creating Variables Results

Figure 17 depicts the explanatory variables of this study.

Figure 17 Explanatory Variables Used as Input in the Modelling

The methodological approach is described in Section 2.3.4.2.2
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3.3.5. Logistic Regression Model Results

Table 9 and Table 10 summarize the results obtained by the Logistic Regression Model for six sets of

predictor variables.

Table 9 Summary of Regression Equation Coefficients of 6 Sets of Predictor Variables

Regression Coefficients

Explanatory Variable M1 M2 M3 M4 M5 M6

Intercept 0.24 1.38 2.70 1.55 0.09 -0.10

Distance from Forest Edge -0.58 -0.46 -0.42 -0.34 -0.40

Distance from Roads -0.27 -0.23 -0.21 -0.26 -0.61

Distance from Settlements -0.23 -0.27

Landscape Position 1.27 1.20 1.66

Table 10 Statistics of the 6 Predictor Sets Obtained by Logistic Regression

Statistics M1 M2 M3 M4 M5 M6

Total Number of Pixels 11202660 11202660 11202660 11202660 11202660 11202660

−2ln L (L=likelihood) 251767 249364 246749 242639 246651 257327

−2ln L0 322696 323750 322424 321145 324237 320673

Model Chi-square 70928 74386 75675 78506 77586 63346

Goodness of Fit 600369 570442 566964 506280 519634 571994

Pseudo R2
0.22 0.23 0.23 0.24 0.24 0.20

AUC/ROC 0.88 0.88 0.88 0.89 0.89 0.87

Odds Ratio 3.97 3.56 4.25 4.23 3.82 5.04

AIC 251769.31 249367.97 246754.64 242646.83 246656.99 257330.73

This study selected the set predictor M4 as the best combination to be used in the prediction. The

selection procedure was performed as follows:

According to Ayalew and Yamagishi 2004 [3], a key starting point could be the model chi-

square, whose value provides the usual significance test for logistic regression. It is a difference

between −2ln L (L=likelihood) for the best-fitting model (Predictor set) and −2ln L0 for the null

hypothesis in which all the coefficients are set to 0. The value measures the improvement in fit

that the independent variables brought into the regression.

In this study, the high value chi-square (for the predictor set M4) indicates that the occurrence

of forest change is far less likely under the null hypothesis (without forest conversion

influencing parameters) than the full regression model (where the parameters are included).

The goodness of fit is an alternative to model chi-square for assessing the significance of

Logistic Regression Models. It is calculated based on the difference between the observed and

the predicted values of the dependent variable. The smaller this statistic is, the better fit it

indicates. Model M4 has a value of 506,280 which is the smallest “Goodness of fit” statistic

among the model sets.
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The pseudo R2 value, which can be calculated from 1−(ln L/ln L0), indicates how the logit

model fits the dataset (Menard, 1995 cited by [3]). Thus, pseudo R2 equal to 1 indicates a

perfect fit, whereas 0 shows no relationship. When a pseudo R2 is greater than 0.2, it shows a

relatively good fit (Clark and Hosking, 1986 cited by [4]). The pseudo R2 of the M4 predictor

set is 0.24.

Under ROC, the M4 predictor set obtained an accuracy of 89% and provided the smallest AIC index

making it the best-fitted predictor set.

Regression Equation best-fitted M4 predictor set3:

Linear probability (logit(change0104)) = 1.55

- 0.34*distance from disturbance log

- 0.21*distance from roads log

- 0.27*distance from settlements log

+ 1.27*Landscape Position

The relative significance of the explanatory variables can be assessed using the corresponding

coefficients in the Logistic Regression Model. According to Eastman 2006 [15], the intercept can be

thought of as the value for the dependent variable when each independent variable takes on a value of

zero. The coefficients indicate the effects of each of the explanatory variables on the dependent

variable.

Figure 18 and Figure 19 show the results of the calibration and the prediction of the LRM. The colour

in the figures indicates the degree of probability of deforestation. Areas in red show high probability

for forest conversion, while, areas in other colours have decreasing probability for deforestation.

3 The statistics of the Predictor ser M4 can be visualized in Appendix IV.



SPATIAL MODELLING AND PREDICTION OF TROPICAL FOREST CONVERSION IN THE ISIBORO SÉCURE NATIONAL PARK AND

INDIGENOUS TERRITORY (TIPNIS), BOLIVIA

45

Figure 18 Map of Probabilities of Deforestation Obtained by LRM (Calibration 2004)

Figure 19 Map of Probabilities of Deforestation Obtained by LRM (Prediction 2006)

The methodological approach is described in Subsection 2.3.4.3
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3.3.6. Multi-Layer Perceptron Model Results

Figure 20 and Figure 21 show the results of the calibration and the prediction of the MLP Model. The

colour in the figures indicates the degree of probability of deforestation. Areas in red show high

probability for forest conversion, while, areas in other colours have decreasing probability for

deforestation. Black dots in the maps represent areas that are already deforested.

Figure 20 Map of Probabilities of Deforestation Obtained by MLP (Calibration 2004)

Figure 21 Map of Probabilities of Deforestation Obtained by MLP (Prediction 2006)
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3.3.7. Validation for the Prediction for the Year 2006, Logistic Regression
Model and Multi Layer Perceptron

Figure 22 illustrates the real change occurred for the period 2004 to 2006, areas in black are areas of

change.

Figure 22 Forest Change Year 2006 (1 = Change; 0 = No change)

Figure 23 illustrates the AUC/ROC curve for the LRM. The Area Under the ROC Curve is 0.852

(Table in Appendix V), which gives an accuracy of 85%.
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AUC/ROC LRM = 85 %
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Figure 24 illustrates the AUC/ROC curve for the MLP. The Area Under the ROC Curve is 0.92 (Table

in Appendix VI), which gives an accuracy of 92%.
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Figure 24 Predictive Performance Assessment MLP (AUC/ROC)

3.3.8. Comparison between LRM vs. MLP (AUC/ROC)

Figure 25 shows the difference between the ROC curves obtained by the two models: Logistic

Regression and Multi-Layer Perceptron
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Figure 25 Predictive Performance Assessment LRM vs. MLP (AUC/ROC)

AUC/ROC MLP = 92%
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Classification

Classification of the image for 2006 was acceptable with an overall accuracy of 81.83 % (see Table 4

Subsection 3.1.2). This accuracy was relatively good taking into account that only 39 points were

sampled. In this study, the sampling designed was ‘Cluster sampling’ and it was expected that at least

80 points were sampled. That goal was impossible to reach because of the social conflicts caused by

cocaleros in the TIPNIS. The acceptable accuracy of the classification even though only 39 points

were used is perhaps due to the coarseness of the classified categories. The author of this study is

aware that more samples were needed to have better confidence in the performed classification.

Forest Loss, Deforestation Rates and Deforestation Pattern

In the southern part of the TIPNIS, 23 %.a −1 of Primary Forest has been lost from 1976 to 2006.

The average deforestation rate for the same period was 1.9 %.a −1. However, the annual rate registered

for the period 2001-2006 was 2.9%.a −1 (Table 5 and Figure 13 Subsections 3.2.1 and 3.2.2). These

rates are in the range obtained by other studies related to tropical deforestation in the country, which

registered annual rates of 2.6 % for the north-eastern part [74] and 1.5%–3.1% for the central part

[79].

The deforestation in the Chapare Province is linked to the cultivation of coca plant [7, 44]. In 1988,

Law 1008 (the Regulation of Coca and Controlled Substances Law) became effective which made

coca cultivation illegal in the Chapare Province as well as in the rest of Bolivia except for the Yungas

region in La Paz [44, 52]. Introduction of the United States Agency for International Development

(USAID) Program4, and cooperation by the Bolivian Government reduced the coca cultivation until

the middle of the 1990s [66]. In 2002, the Movement Towards Socialism (Movimiento al Socialismo

MAS) political party led by the leader cocalero Evo Morales, obtained about 21% of representation in

the National Congress. Their influence has introduced less control of coca cultivation and a result of

this has been increased levels of forest clearing [44]. Thus, the variations in the deforestation rates

observed in this study can be explained at least in part as a consequence of Government policies and

the cultivation of coca.

A pattern of a large and growing number of small patches (0.5 up to 5 ha) of deforestation for each

year of the study was observed (Figure 14 Subsection 3.2.3). This suggests that deforestation starts

with small patches that grow in size over time. The particular pattern of small spots of cleared forest

may be related to the cropping of coca (Erythroxylum coca), which, as explained above, is controlled

by the Bolivian government. Cocaleros traditionally work around government controls. The crop has

been and is still cultivated in a semi-hidden way a moderate distance from the roads, generally 250 to

4 USAID's assistance program in Bolivia focuses on poverty reduction and supports the Government of Bolivia's

National Development Plan (NDP). Efforts to increase business, agricultural, and trade opportunities for the

poor, plus support for the sustainable use of natural resources, and assistance to farmers to produce alternatives

to coca (USAID Bolivia, 2007 http://bolivia.usaid.gov/US/7Faq.htm ).
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750 m (Figure 15 Subsection 3.2.3). Figure 14 (Subsection 3.2.3) also shows that the small patches

have increased since 2001, which coincides with the political strength of the ‘cocaleros’

representatives in the government.

Forest Conversion Modelling

The modelling of forest conversion considered five explanatory variables: “Distance from Forest

Edge”, “Distance from Roads”, “Distance from Settlements”, “Landscape Position” and “Type of

Settlement”.

The univariate test of association Cramer’s V (Table7, Subsection 3.3.2.2), revealed that the three

“Distance” variables had good association with forest change (V value between 0.5 and 0.6).

“Landscape Position” variable showed a strong association with forest change only for the classes

“Gully bed” and “Gentle slope” (0.96), the classes “Steep slope” and “Ridge Top” showed poor

association (0.03 and 0.000).

On the other hand, in spite of the fact that the variable “ Type of Settlement” has two classes that

showed a strong association with forest change (V Cocaleros=0.98 and V Trinitarios=0.72), it has not

been included as an explanatory variable in the model for two main reasons:

 Cocaleros clear forest ignoring the borders delimited by the managers of the park. As a result,
deforestation is happening outside the area that the model would consider as Cocaleros
territory, as well as inside.

 The class “Yuracares” showed a V value of 0.000 and p value of 1. According to Eastman

2006 [15], a high p value is a sign that the variable can be rejected. This is logical, since the

model carried out by this study considers only potential variables that have shown that they

have an effect on the deforestation. In fact, the “Yuracares” tribe live near to the rivers in the

northern part of the study area, and because of their way of life, they do not cause

deforestation.

If the results of Cramers’ V are close to 1, the model assigns a higher probability of deforestation. If

the results are close to 0, the model assigns a lower probability of deforestation. If the class

“Yuracares” (with value 0) had been included in the model, it would have been assigned a very low

probability of deforestation. As “Type of settlement’ map (Figure 17 Subsection 3.3.4) illustrates, the

“Yuracares” class occupies the northern part of the park, which at this point is still Primary Forest.

This is where it is anticipated by the author that most future deforestation will occur. If values of 0

were assigned to this particular area, the model would not consider the area to have a potential for

forest conversion. Such a conclusion would be incorrect and would diminish the model´s performance.

To avoid this circumstance and because it would have been necessary to have the precise places where

“Yuracares” live, information that was lacking, it was decided not to take into account this variable.

Cramer’s V provided a quick view of the degree of association between the dependent variable and

each explanatory variable. The test helped to evaluate whether the explanatory variable was worthy to

be included in the model or not. This test is useful as a measure of strength of relationship [14]. And it

has been applied successfully in other studies related to spatial predictions [45, 77]
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In the Logistic Regression analysis (Subsection 3.3.5), six predictor sets were compared. The best-

fitted predictor set was a combination of all the variables incorporated into the model. For this

combination, the AUC was 89% and the AIC index was the lowest for the tested predictor sets.

“Landscape Position” was the best single predictor for forest change (2001 – 2004), with a β value of

+1.27. This means that this variable has the strongest positive influence on forest change among the

explanatory variables. The model assumes that the probability of deforestation is high in areas of

“Gentle Slope” and “Gully Beds” and low in areas of “Steep Slope” and “Ridge Top”.

"Distance from Forest Edge” is the second best single predictor. It is negative (β= -0.34). This means

that the probability of forest change decreases in direct proportion to the increase in distance from the

borders. In other words, the model assigns higher values of probability of change to areas which are

closer to the forest borders.

“Distance from Roads” and “Distance from Settlements” have the same negative value (β= -0.21 β= -

0.27). The model assigns the similar significance to these two variables. The negative value means

that the probability of forest change decreases in direct proportion to the increase in distance from

roads and settlements. In other words, the model assigns higher values of probability of change to

areas which are closer to roads and settlements.

“Landscape Position” is a static variable that remains constant because it does not change dynamically

during short periods of time and it was considered as a constant for the prediction. The “Distance”

variables are, on the contrary, very dynamic. Thus, these variables are the ones that will be used to

calculate predictions for future years.

The findings obtained in this study are in contrast to the study carried out by Loza A. (2004) [41] in

the Carrasco Province, which is next to the Chapare Province. Loza A. found that the topography was

not a significant factor for forest conversion. In the TIPNIS, deforestation is less frequent in areas with

steep slope and this study found that flat areas are strongly susceptible to forest conversion. The

topography of Loza’s study area presents mostly hills (lower altitude) and flat areas. Mountains are

located at the southern part, and, as the author mentions in page 58, elevation could play an

important role. But the highest mountains are located in the southern part of the Carrasco

Province and they are covered with clouds in the images used by Loza. The author also mentions that

in these areas Closed Forest was well represented. Perhaps the study carried out by Loza would have

had other results without the interference of the clouds.

The variables “Distance from Roads” and “Distance from Settlements” are significant factor for forest

conversion in this study, as well as other researches [16, 20, 21, 27, 41, 80] have found, In the

particular case of the deforestation in the TIPNIS, it is believed that first people (e.g., the cocaleros)

settle land reached beyond existing roads and then they develop roads to reach the already taken lands.

However, this is difficult to verify with the data and the analysis provided by this study.

The best-fitted predictor set obtained by the Logistic Regression analysis was used as input for the

artificial neural network Multi-Layer Perceptron incorporated in IDRISI 15. MLP does not provide

information about the relative significance of the explanatory variables on the forest change. MLP
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only performs the prediction based on the algorithm Back Forward Propagation. The user of the MLP

in IDRISI can modify basic parameters such as network topology, training parameter, and stopping

criteria. For the purpose of this study, it was advisable to keep the default parameters (Figure 10). The

critical point was to assign the number of samples to train the neural network. This was determined by

trial and error, and finally with an accuracy of training of 84.3%, the model was calibrated. The

weights assigned to the calibrated model are expressed in a specific format (*.bpn) that could be only

visualized in IDRISI as a matrix of byte values for each sampled pixel. This means that data were not

easy to interpret. Other studies which had worked with neural networks, even in a more complex way

than this study, report the same limitation [17, 47]

During the comparison of prediction performance (Subsection 3.3.7), the LRM prediction performed

from the year 2004 to the year 2006, obtained an AUC of 85.2%. The AUC for the same period

obtained by the MLP model was 92%.
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During the period 1976 – 2006, 23% of Primary Forest has been lost in the southern part of the

TIPNIS. The deforestation rates presented variations, 1.3% until 1991, 0.5% until 2001 and 2.9 until

2006. These variations coincide with the degree of control of coca cultivation that the Bolivian

government has permitted for the same periods in the Chapare Province. When government controls of

coca growing were more lax, the deforestation rates increased. This suggests that the main reason of

forest conversion in the park has been the cropping of coca.

The clearing of the forest also follows a particular spatial pattern. For each year of observation, an

increasing number of small patches appear in the middle of the forest near to the roads or near to

already deforested areas. This also could be related to the coca cultivation since the cocaleros

traditionally avoid government controls.

The modelling was successful in predicting forest change in the TIPNIS from 2004 to 2006.

The best predictor set obtained by the LRM was composed of the explanatory variables: “Distance

from Forest Edge”, “Distance from Roads”, “Distance from Settlements” and “Landscape Position”.

The variable “Type of Settlement” was not included in the modelling of forest change because doing

so could have led to contradictory performance of the predictive models.

The predictive performance of both models proved successful. While MLP produces better prediction

results in general (AUC=92 %). Logistic regression analysis is still needed to understand the relative

significance of the explanatory variables on the forest change.

The predictor set selected in this study is currently able to perform reliable predictions of forest

change by updating the dynamic variables “Distance from Forest Edge”, “Distance from Roads” and

“Distance from Settlements”.

This study worked with explanatory variables that were able to be represented spatially (maps, etc.).

While this study can use models to deal effectively with spatial factors, deeper analysis of the forest

conversion in the TIPNIS requires factoring in more elements, like socioeconomic data or more

detailed information about the explanatory variables.

Suggestions for Further Studies

TIPNIS has threats such as the construction of a road across the area and the granting of oil

exploration concessions. The processes followed in this study could be used with other explanatory

variables to create scenarios of areas of forest change where particular wild life and/or endemic

species could be affected.

The aim of this thesis was to predict probabilities of forest conversion. However, areas of change (not

only probabilities) can be predicted by incorporation of methods such as Markov Chains and Cellular

automata.
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While this study considered only two categories, Forest and Disturbed Forest, further studies could

model additional categories of land cover.

This study did not consider the variable “Type of Settlement” because of the poor quality of the

available input. Better results can be expected if the model is tested with better quality data for this

variable.
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Appendices

Appendix I. Field Work

Ia. Field Data Sheet Form

The Field Data Sheet Form was developed to document land use and land cover information and

identify their GPS coordinates in a systematic way.
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Ib. Ground Control Points: Collected Data Table

This table contains descriptions of the Ground Control Points measured during the field work.

ID X Y Landscape Data cover field work Classification
Interceptor

%

C1 212520.1 8156186 Plain Pastos, Arbustos, arboles dispersos Grassland < 10

C2 213270.1 8157176 Plain Pastos, Arbustos, arboles dispersos Grassland < 10

C3 212760.1 8157251 Plain Pastos, Arbustos, arboles dispersos Grassland < 10

C4 213615.1 8157296 Plain Pastos, Arbustos, arboles dispersos Grassland < 10

C5 216516.6 8158031 Plain Ambaibo Macho, Ambaibo Hembra, Secondary Forest 44

C6 210300.1 8159636 Plain Pastos, Arbustos, arboles dispersos Grassland < 10

C7 214039.8 8160247 Plain Ambaibo Hembra, Balsa, Pacay Secondary Forest 55

C8 219900.1 8161181 Plain Balsa, Pacay, gomerilla Secondary Forest 51

C9 202575.1 8162306 Plain Mandioca, Citricos, Coca ; Ganaderia Crops and Cattle pastures

C10 203970.1 8162321 Plain Ambaibo Hembra, Balsa, Pacay Secondary Forest 50

C11 206190.1 8162396 Plain Citricos, Mandioca, Coca ; Ganaderia Crops and Cattle pastures

C12 209475.1 8164826 Plain Ambaibo Hembra, Balsa, Pacay Secondary Forest 34

C13 206940.1 8164961 Hill slope
Verdolago, Almendrillo, Pachiuba, Gabetillo, Cedro,

Sangre de Toro, Bibosi, Ochoo, Blanquillo,
Forest 85

C14 202215.1 8166311 Hill slope

Mapajo, Mara o Caoba , Ochoo, Blanquillo,

Coquino, Bibosi, Almendrillo, Pachiuba Chonta

Ocoro

Forest 72

C15 214410.1 8166326 Plain Mandioca, Arroz, Coca; Ganaderia Crops and Cattle pastures

C16 203850.1 8167286 Hill slope
Verdolago, Sangre de Toro Ocoro Pachiuba,

Coquino, Bibosi, Almendrillo Peloto
Forest 68

C17 207270.1 8167301 Plain Plátano, Citricos, Mandioca, Coca Crops

C18 195300.1 8167346 Plain Plátano, Cítricos, Mandioca, Coca; Ganadería Crops and Cattle pastures

C19 218670.1 8167826 Plain Mandioca, Arroz, Coca Crops

C20 216960.1 8167886 Plain Gomerilla Ambaibo Hembra, Balsa, Pacay Secondary Forest 41

C21 203940.1 8168186 Hill slope

Verdolago, Ocoro, Cedro Peloto, Piraquina,

Pachiuba, Ochoo, Blanquillo, Coquino, Gabetillo,

Bibosi

Forest 85

C22 200355.1 8169236 Plain Ambaibo Macho, Ambaibo Hembra,gomerillo Secondary Forest 42

C23 215490.1 8170706 Plain Pacay, Ambaibo Macho, Ambaibo Hembra, Secondary Forest 46

C24 212400.1 8171336 Plain
Verdolago, Bibosi, Sangre de Toro, Coloradillo,

Peloto Mapajo, Palo María, Pachiuba, Ochoo
Forest 90

C25 206520.1 8171846 Plain Citricos, Mandioca, Coca; Ganaderia Crops and Cattle pastures

C26 213645.1 8172191 Plain
Verdolago, Cedro, Chonta, Yesquero, Mapajo, Palo

María, Almendrillo, Pachiuba, Gabetillo, Cedro
Forest 81

C27 204135.1 8172401 Plain Pastos, Arbustos, arboles dispersos Grassland < 10

C28 213360.1 8173901 Plain
Cedro, Chonta, Yesquero, Mapajo, Palo María,

Almendrillo, Pachiuba, Gabetillo, Bibosi, Piraquina
Forest 86

C29 204525.1 8173976 Plain
Ochoo, Mapajo, , Blanquillo, Coquino, Bibosi,

Almendrillo, Pachiuba, Chonta, Ocoro, Gabetillo,
Forest 79

C30 211200.1 8173991 Plain Plátano, Mandioca, Maiz, Coca Crops

C31 201780.1 8174306 Plain Mandioca, Citricos, Coca Crops

C32 209940.1 8174846 Plain
Bibosi, Coloradillo, Peloto Mapajo, Palo María,

Pachiuba, Ochoo, Blanquillo, Coquino, Verdolago
Forest 81

C33 194010.1 8175461 Hill slope Mandioca, Arroz, Cítricos, Coca: Ganadería Crops and Cattle pastures

C34 209640.1 8176061 Plain Ambaibo Macho, Ambaibo Hembra, Balsa, Pacay Secondary Forest 41

C35 203025.1 8176361 Plain Citricos, Mandioca, Maiz, Coca Crops

C36 202080.1 8176481 Plain Pastos, Arbustos, arboles dispersos Grassland < 10

C37 197948.9 8176786 Hill slope
Ochoo, Verdolago, Cedro, Mapajo, , Blanquillo,

Coquino, Bibosi, Almendrillo, Pachiuba, Ocoro
Forest 80

C38 198165.7 8176810 Plain
Bibosi, Coloradillo, Peloto Mapajo, Palo María,

Pachiuba, Ochoo, Blanquillo, Coquino, Verdolago Forest 83

C39 204090.1 8177996 Plain Mandioca, Maíz, Plátano, Coca Crops
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Ic. Field Work Pictures

Pictures of land cover categories in the TIPNIS
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Appendix II. CHI SQUARE “Landscape Position” and “Type of Settlement”
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Appendix III Correlation Analysis between Explanatory Variables Results

Distance from forest edge and Distance from roads Distance from forest edge and Distance from roads

Correlation Coefficient = 0.55 Correlation Coefficient = 0.37

Distance from forest edge and Distance from settlement Distance from forest edge and Landscape Position

Correlation Coefficient = 0.42 Correlation Coefficient = 0.05

Distance from forest roads and Landscape Position Distance from settlements and Landscape Position

Correlation Coefficient = 0.13 Correlation Coefficient= 0.15
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Appendix IV Logistic Regression Statistics (best fitted predictor set M4)

Logistic Regression Results:

Regression Equation :

logit(change0104) = 1.5483 - 0.341876*dist_from_disturlog - 0.211048*dist_from_roadslog - 0.275174*dist_from_urbanlog + 1.269546*evlikelihood_topo

Individual Regression Coefficient

--------------------------------------------------

Variables | Coefficient

--------------------------------------------------

Intercept | 1.54825200

dist_from_disturlog | -0.34187598

dist_from_roadslog | -0.21104795

dist_from_urbanlog | -0.27517425

evlikelihood_topo | 1.26954628

--------------------------------------------------

Regression Statistics :

Number of total observations = 11202660

Number of 0s in study area = 10813840

Number of 1s in study area = 388820

Percentage of 0s in study area = 96.5292

Percentage of 1s in study area = 3.4708

Number of auto-sampled observations = 1068664

Number of 0s in sampled area = 1031730

Number of 1s in sampled area = 36934

Percentage of 0s in sampled area = 96.5439

Percentage of 1s in sampled area = 3.4561

-2logL0 = 321144.7472

-2log(likelihood) = 242638.8269

Pseudo R_square = 0.2445

Goodness of Fit = 506280.2109

ChiSquare( 4) = 78505.9204

Means and Standard Deviations

------------------------------------------------------------

Mean Standard Deviation

------------------------------------------------------------

dist_from_disturlog 7.731486 2.223464

dist_from_roadslog 8.157789 1.520242

dist_from_urbanlog 8.768269 1.091226

evlikelihood_topo 0.505964 0.454772

change0104 0.034561 0.182665

------------------------------------------------------------

Classification of cases & odds ratio

----------------------------------------------------------------

Observed | Fitted_0 | Fitted_1 | Percent Correct

----------------------------------------------------------------

0 | 1031687 43 99.9958

1 | 36932 2 0.0054

----------------------------------------------------------------

Odds Ratio = 1.2993

Reclassification of cases & ROC (Sample-based computation when applicable):

(1) Select a new threshold value such that, after reclassification, the number

of fitted 1s matches the number of observed 1s in the dependent variable

New cutting threshold = 0.1983

Classification of cases & odds ratio by using the new threshold

-------------------------------------------------------------------

Observed | Fitted_0 | Fitted_1 | Percent Correct

-------------------------------------------------------------------

0 | 999261 32469 96.8530

1 | 32469 4465 12.0891

-------------------------------------------------------------------

Adjusted Odds Ratio = 4.2322

True Positive = 99.5319%

False Positive = 3.1470%

(2) ROC* Result with 100 thresholds (Sample-based computation when applicable):

ROC = 0.8877

* ROC=1 indicates a perfect fit; and ROC=0.5 indicates a random fit.
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Appendix V AUC / ROC Logistic Regression Model

(AUC/ROC) IDRISI Results for the Logistic Regression Prediction 2006 compared to Forest

Change 2006

ROC = 0.852

******************************************************************

The following section list detailed statistics for each threshold.

******************************************************************

With each threshold, the following 2x2 contingency table is calculated

_________________________________________________________________________

Reality (reference image)

-----------------------------------------------

Simulated by threshold 1 0

------------------------------------------------------------------------

1 A(number of cells) B(number of cells)

0 C D

For the given reference image: A+C=363655 B+D=10839005

_________________________________________________________________________

No. Thresholds(%) A True positive(%) B False positive(%)

----------------------------------------------------------------------------

1 0 0 0.000 0 0.000

2 1 6198 1.704 105830 0.976

3 2 15635 4.299 208419 1.923

4 3 26347 7.245 309734 2.858

5 4 38007 10.451 410100 3.784

6 5 51149 14.065 508985 4.696

7 6 65547 18.025 606614 5.597

8 7 79953 21.986 704234 6.497

9 8 95183 26.174 801031 7.390

10 9 109935 30.231 898305 8.288

11 10 124041 34.110 996226 9.191

12 11 137972 37.940 1094322 10.096

13 12 151527 41.668 1192793 11.005

14 13 164153 45.140 1292194 11.922

15 14 176827 48.625 1391546 12.838

16 15 188609 51.865 1491791 13.763

17 16 200866 55.235 1591561 14.684

18 17 213210 58.630 1691243 15.603

19 18 225027 61.879 1791453 16.528

20 19 235991 64.894 1892515 17.460

21 20 246710 67.842 1993823 18.395

22 21 257560 70.825 2095000 19.328

23 22 267736 73.624 2196850 20.268

24 23 277433 76.290 2299180 21.212

25 24 286648 78.824 2401991 22.161

26 25 294703 81.039 2505963 23.120

27 26 302271 83.120 2610422 24.084

28 27 309847 85.204 2714872 25.047

29 28 316612 87.064 2820134 26.018

30 29 322878 88.787 2925894 26.994

31 30 328764 90.405 3032035 27.973

32 31 333733 91.772 3139093 28.961

33 32 338527 93.090 3246325 29.950

34 33 342620 94.216 3354259 30.946

35 34 345511 95.011 3463394 31.953

36 35 347681 95.607 3573251 32.967

37 36 349875 96.211 3683084 33.980

38 37 351547 96.670 3793438 34.998

39 38 353643 97.247 3903369 36.012

40 39 355034 97.629 4014004 37.033

41 40 355900 97.867 4125165 38.059

42 41 356569 98.051 4236523 39.086

43 42 357056 98.185 4348062 40.115

44 43 357864 98.408 4459281 41.141

45 44 358647 98.623 4570524 42.167

46 45 359514 98.861 4681684 43.193

47 46 360142 99.034 4793083 44.221

48 47 360787 99.211 4904464 45.248

49 48 361821 99.496 5015457 46.272

50 49 362400 99.655 5126904 47.301

51 50 362825 99.772 5238506 48.330

52 51 362913 99.796 5350445 49.363

53 52 363118 99.852 5462266 50.395

54 53 363180 99.869 5574231 51.428

55 54 363248 99.888 5686189 52.460

56 55 363307 99.904 5798157 53.493

57 56 363375 99.923 5910116 54.526

58 57 363375 99.923 6022142 55.560

59 58 363375 99.923 6134169 56.593

60 59 363375 99.923 6246195 57.627

61 60 363380 99.924 6358217 58.661

62 61 363426 99.937 6470198 59.694

63 62 363460 99.946 6582190 60.727

64 63 363494 99.956 6694183 61.760

65 64 363495 99.956 6806208 62.794

66 65 363496 99.956 6918234 63.827

67 66 363542 99.969 7030215 64.860

68 67 363632 99.994 7142151 65.893

69 68 363655 100.000 7254155 66.926

70 69 363655 100.000 7366181 67.960

71 70 363655 100.000 7478208 68.993

72 71 363655 100.000 7590235 70.027

73 72 363655 100.000 7702261 71.061

74 73 363655 100.000 7814288 72.094

75 74 363655 100.000 7926314 73.128

76 75 363655 100.000 8038341 74.161

77 76 363655 100.000 8150368 75.195

78 77 363655 100.000 8262394 76.228

79 78 363655 100.000 8374421 77.262

80 79 363655 100.000 8486447 78.295

81 80 363655 100.000 8598474 79.329

82 81 363655 100.000 8710501 80.363

83 82 363655 100.000 8822527 81.396

84 83 363655 100.000 8934554 82.430

85 84 363655 100.000 9046580 83.463

86 85 363655 100.000 9158607 84.497

87 86 363655 100.000 9270634 85.530

88 87 363655 100.000 9382660 86.564

89 88 363655 100.000 9494687 87.597

90 89 363655 100.000 9606713 88.631

91 90 363655 100.000 9718740 89.665

92 91 363655 100.000 9830767 90.698

93 92 363655 100.000 9942793 91.732

94 93 363655 100.000 10054820 92.765

95 94 363655 100.000 10166846 93.799

96 95 363655 100.000 10278873 94.832

97 96 363655 100.000 10390900 95.866

98 97 363655 100.000 10502926 96.899

99 98 363655 100.000 10614953 97.933

100 99 363655 100.000 10726979 98.966

101 100 363655 100.000 10839005 100.000
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Appendix VI AUC / ROC Multi-Layer Perceptron

(AUC/ROC) IDRISI Results for the Multi Layer Perceptron 2006 compared to Forest Change

2006

ROC = 0.920

******************************************************************

The following section list detailed statistics for each threshold.

******************************************************************

With each threshold, the following 2x2 contingency table is calculated

_________________________________________________________________________

Reality (reference image)

-----------------------------------------------

Simulated by threshold 1 0

------------------------------------------------------------------------

1 A(number of cells) B(number of cells)

0 C D

For the given reference image: A+C=363655 B+D=10839005

_________________________________________________________________________

No. Thresholds(%) A True positive(%) B False positive(%)

----------------------------------------------------------------------------

1 0 0 0.000 0 0.000

2 1 35519 9.767 76509 0.706

3 2 63294 17.405 160760 1.483

4 3 88183 24.249 247898 2.287

5 4 112420 30.914 335687 3.097

6 5 134822 37.074 425312 3.924

7 6 157284 43.251 514877 4.750

8 7 178252 49.017 605935 5.590

9 8 198130 54.483 698084 6.440

10 9 214997 59.121 793243 7.318

11 10 229961 63.236 890306 8.214

12 11 244002 67.097 988292 9.118

13 12 256958 70.660 1087362 10.032

14 13 269074 73.992 1187273 10.954

15 14 279629 76.894 1288744 11.890

16 15 287864 79.159 1392536 12.847

17 16 295261 81.193 1497166 13.813

18 17 301814 82.995 1602639 14.786

19 18 308441 84.817 1708039 15.758

20 19 314678 86.532 1813828 16.734

21 20 320786 88.212 1919747 17.711

22 21 325942 89.629 2026618 18.697

23 22 330554 90.898 2134032 19.688

24 23 335610 92.288 2241003 20.675

25 24 338767 93.156 2349872 21.680

26 25 342237 94.110 2458429 22.681

27 26 344873 94.835 2567820 23.691

28 27 347824 95.647 2676895 24.697

29 28 351205 96.576 2785541 25.699

30 29 353534 97.217 2895238 26.711

31 30 355134 97.657 3005665 27.730

32 31 356538 98.043 3116288 28.751

33 32 357486 98.304 3227366 29.775

34 33 358586 98.606 3338293 30.799

35 34 359271 98.794 3449634 31.826

36 35 360317 99.082 3560615 32.850

37 36 361510 99.410 3671449 33.873

38 37 362192 99.598 3782793 34.900

39 38 363136 99.857 3893876 35.925

40 39 363350 99.916 4005688 36.956

41 40 363495 99.956 4117570 37.988

42 41 363655 100.000 4229437 39.021

43 42 363655 100.000 4341463 40.054

44 43 363655 100.000 4453490 41.088

45 44 363655 100.000 4565516 42.121

46 45 363655 100.000 4677543 43.155

47 46 363655 100.000 4789570 44.188

48 47 363655 100.000 4901596 45.222

49 48 363655 100.000 5013623 46.255

50 49 363655 100.000 5125649 47.289

51 50 363655 100.000 5237676 48.322

52 51 363655 100.000 5349703 49.356

53 52 363655 100.000 5461729 50.390

54 53 363655 100.000 5573756 51.423

55 54 363655 100.000 5685782 52.457

56 55 363655 100.000 5797809 53.490

57 56 363655 100.000 5909836 54.524

58 57 363655 100.000 6021862 55.557

59 58 363655 100.000 6133889 56.591

60 59 363655 100.000 6245915 57.624

61 60 363655 100.000 6357942 58.658

62 61 363655 100.000 6469969 59.692

63 62 363655 100.000 6581995 60.725

64 63 363655 100.000 6694022 61.759

65 64 363655 100.000 6806048 62.792

66 65 363655 100.000 6918075 63.826

67 66 363655 100.000 7030102 64.859

68 67 363655 100.000 7142128 65.893

69 68 363655 100.000 7254155 66.926

70 69 363655 100.000 7366181 67.960

71 70 363655 100.000 7478208 68.993

72 71 363655 100.000 7590235 70.027

73 72 363655 100.000 7702261 71.061

74 73 363655 100.000 7814288 72.094

75 74 363655 100.000 7926314 73.128

76 75 363655 100.000 8038341 74.161

77 76 363655 100.000 8150368 75.195

78 77 363655 100.000 8262394 76.228

79 78 363655 100.000 8374421 77.262

80 79 363655 100.000 8486447 78.295

81 80 363655 100.000 8598474 79.329

82 81 363655 100.000 8710501 80.363

83 82 363655 100.000 8822527 81.396

84 83 363655 100.000 8934554 82.430

85 84 363655 100.000 9046580 83.463

86 85 363655 100.000 9158607 84.497

87 86 363655 100.000 9270634 85.530

88 87 363655 100.000 9382660 86.564

89 88 363655 100.000 9494687 87.597

90 89 363655 100.000 9606713 88.631

91 90 363655 100.000 9718740 89.665

92 91 363655 100.000 9830767 90.698

93 92 363655 100.000 9942793 91.732

94 93 363655 100.000 10054820 92.765

95 94 363655 100.000 10166846 93.799

96 95 363655 100.000 10278873 94.832

97 96 363655 100.000 10390900 95.866

98 97 363655 100.000 10502926 96.899

99 98 363655 100.000 10614953 97.933

100 99 363655 100.000 10726979 98.966

101 100 363655 100.000 10839005 100.000

----------------------------------------------------------------------------
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