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Abstract

Tea is a very important economic crop in China and the quality of tea strongly influences its price. The
development of reflectance spectroscopy opens the possibility of predicting tea quality in an efficient
and non-destructive way, in contrast to the traditional wet chemistry way. This research demonstrates
the potential of reflectance spectroscopy to predict the tea quality related chemical compounds (total
tea polyphenols (TTP), free amino acids (FAA), and soluble sugar (SS)) across 6 tea varieties at three
levels of processing (ground powder , fresh leaves and canopy). Partial least squares regression
(PLSR) was performed to establish the relationship between the reflectance and biochemical contents.
PLSR model performances were assessed by regression coefficient of determination (R?), root mean
square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP).
Spectra were mean-centre transformed in order to increase the prediction accuracy of PLSR models.

Important wavelength regions for prediction of TTP and FAA at powder, leaf and canopy level were
identified using the PLSR B coefficients as the indicator. About 40% and 33% of the wavebands
selected by PLSR models using leaf spectra coincided with those selected using ground powder
spectra for prediction of TTP and FAA respectively. About 40% and 53% of the wavebands selected
by PLSR models using canopy spectra coincided with those selected using fresh leaf spectra for
prediction of TTP and FAA respectively.

PLSR models worked well for TTP and FAA. The highest accuracies were found at the powder level
with R? of 0.76 and 0.82, and RMSE of 7.42% and 4.89% for TTP and FAA respectively, and the
accuracy for the canopy level was lower but still reasonable (R? near 0.6 for both TTP and FAA). The
accuracy achieved at canopy level for TTP and FAA demonstrates the probable feasibility of using
airborne and spaceborne sensors to cover wide areas of tea plantation rapidly and cheaply. PLSR
models were not successful for predicting SS, likely due to the narrow range of sugar concentrations.
Comparing the prediction accuracy of TTP and FAA at the three levels, powder level outperformed
leaf level while the performance of leaf and canopy were approximately the same. This study shows
that reflectance spectroscopy can be used to predict concentrations of total tea polyphenols and free
amino acids not only at powder and leaf level, but also non-destructively at canopy level.

Key words: total tea polyphenols; free amino acids; soluble sugar; field spectroscopy; PLSR; ground
powder; fresh leaf; canopy
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ESTIMATION OF FOLIAR CHEMICALS AS INDICATORS OF TEA (CAMELLIA SINENSIS L) QUALITY USING REFLECTANCE
SPECTROSCOPY

1. Introduction

1.1. Background and problem statement

Tea is a very important cash crop in China and tea quality is an essential factor influencing its price.
The quality of tea is determined by the composition of tea leaves and the tea processing techniques
(Ravichandran and Parthiban, 2000). The processing can be tracked and controlled while the chemical
composition of tea leaves is more difficult to monitor (Wright et al., 2000). The traditional way of tea
quality testing requires a lot of professional knowledge. The process is handled by experienced tea
experts, who smell, taste and compare tea colour with certain standards (Acland, 1971; Shankar et al.,
2003). These methods are expensive, time consuming and labour intensive and may also be subjective
because of a lack of either sensitivity or quantitative information. More importantly, this can only be
done after tea harvesting. Recently, physical and chemical methods such as capillary electrophoresis,
electronic tongue and lipid membrane taste sensor have been developed to help estimate tea quality
(Ivarsson et al., 2001; Horie and Kohata, 1998). However, these methods are also time-consuming and
still can not fix the requirement of quality control of tea during growth in the field. The quantity and
quality of tea are both important information for tea farmers. The yield prediction of tea leaves has
been achieved using vegetation indexes from remote sensing images (Rao et al., 2007), but the quality
is not concerned. Thus, it is desirable to develop objective methods to obtain qualitative information in
a fast and non-destructive way at the stage of fresh leaves.

The development of hyper-spectral remote sensing has provided the possibility to detect
concentrations of chemicals in vegetation. A large number of narrow, contiguously spaced spectral
bands may enable the detection of chemical compounds in vegetation. A lot of biochemical contents
such as nitrogen, lignin cellulose, starch, protein and sugar have been detected using spectroscopy
(Kokaly and Clark, 1999; Curran et al., 1992). Most of the research on the detection of biochemical
content has focused on grass, forestry and agricultural crops such as wheat (Darvishzadeh et al., 2008;
Hansen and Schjoerring, 2003; Mutanga et al., 2004; Haboudane et al., 2002). However, application in
tea quality prediction has received little attention (Ishikawa et al., 2006). Using imaging spectrometry
for assessing tea quality, it is desired to analyze the spectral characteristics of tea-quality related
compounds and establish models to predict the content of these chemicals. The complexity in
spectroscopy changes with the form of the used plant material — it typically increases from ground
powder of dried leaves, via fresh whole leaves to canopies. It is easier to observe absorption features
from ground powder than from fresh leaves, because in fresh leaves leaf water has strong absorption
features and may mask the minor absorption features of organic compounds (Peterson et al., 1988).
Compared to the fresh leaf level, the canopy level is even more complicated when other factors such as
soil background and canopy structure influence the measured radiance signal (Peterson et al., 1988;
Elvidge, 1990).

This research will be carried out across different varieties of tea to investigate the possibility to predict
biochemical content at the level of ground powder, fresh leaf and canopy.




1.1.1. Tea-quality related biochemical compounds

There are almost two hundred varieties of biochemical compounds, both volatile and non-volatile
present in tea such as caffeine, tea polyphenols, proteins, amino acids, lipids and vitamins and each of
these compounds contributes to tea quality (Liang et al., 2003; Dutta ef al., 2003). Table 1.1 lists the
main biochemical compounds contributing to tea quality (Imp. and Exp. Co., 2001; Sumpio et al.,
2006). The concentration of amino acids, tea polyphenols and caffeine are considered the main factors
determining the quality of tea (Yamamoto et al., 1997). The content of amino acids, a major factor in
determining the freshness and mellowness of tea, is positively correlated with green tea quality (Wang
et al., 1988). Tea polyphenols, also named tea tannin can benefit people’s health because of its
antioxidant characteristics. Tea polyphenols compose of four main substances as catechins, flavonoids,
anthocyanins and phenolic acids, accounting for 20-35% of the total dry matter (Hui et al., 2002).
Catechins, which can make up 70% of tea polyphenols, have a great influence on the smell and
astringent taste of tea. Soluble sugars are important substances for the sweetness and viscosity of tea.
Soluble sugars in tea leaves are mainly composed of monosaccharide and disaccharide, such as
glucose, fructose, maltose, sucrose and so on. Caffeine, the most important alkaloid in tea, is important
for the bitter taste of tea (Hui et al., 2002). However, the measurement of caffeine in wet chemistry
analysis takes a long time (personal communication with Meng Bian). Constrained by the time
available, caffeine is not included in this research.

Table 1.1 Main biochemical compounds responsible for tea quality

Compounds Main contribution
Tea polyphenols Astringency
Caffeine Bitterness and briskness
Amino acids Freshness and mellowness
Soluble sugar Sweetness
Chlorophyll and other pigments Colour and appearance
Volatiles Aroma

1.1.2. Reflectance spectroscopy

Reflectance spectroscopy has long been applied to retrieve the biochemical composition of vegetation
from their optical properties (Baret and Fourty 1998; Mutanga and Skidmore, 2007; Curran, 1989).
The reflectance and transmittance of vegetation is sensitive to the specific chemical bonds in the
material and most of the chemical compounds absorb radiation at different wavelengths. Different
absorption processes can be distinguished. Electron transitions in chlorophyll and other pigments
cause absorption in the visible wavelength. Molecular vibration of the C-H, N-H, O-H, C-N and C-C
bonds within organic compounds cause strong absorptions in the wavelengths ranged from 2000nm to
2500nm. The overtones and harmonics of these strong absorptions cause minor absorptions in the
middle infrared (1300-2500nm) domain (Curran, 1989; Elvidge, 1990).

The minor absorption features of organic compounds are to a large extent masked by the presence of
water in fresh leaves but may be seen in spectra of dried leaves when the strong water absorption
influence is reduced (Peterson et al., 1988; Elvidge, 1990). By the 1970s, the relationship between 42
absorption features in visible and near-infrared wavebands and the concentration of organic
compounds (e.g., protein, oil, sugar) in dried leaves had been established by researchers from USDA
(Elvidge, 1990; Card et al., 1988). However, in order to remotely sense the biochemical concentration
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of vegetation at canopy level, the research of fresh leaf stage is of great importance. As suggested by
Kokaly and Clark (1999), it is very important to control water influence within 10% to enable an
accurate foliar prediction in a fresh leaf.

A lot of research has also been done to estimate canopy chemistry using reflectance spectroscopy
(Wessman et al., 1989; Martin and Aber, 1997). The previous studies stressed the importance of first
looking on dried and fresh leaves in controlled laboratory conditions with less noise levels before
aiming for extension to the canopy level.

1.1.3. Application of reflectance spectroscopy on Tea

Since the 1990s, NIR spectroscopy has been used to predict the content of water, alkaloid and phenol
substances in tea (Schulz et al., 1999; Hall ef al., 1988). Studies on the prediction of tea polyphenols
using ground powder were reported by Schulz et al. (1999). Their results showed high correlation for
the training data, but no test data was used to test the robustness of the relationship. Chen et al. (2006)
used NIR spectroscopy to predict the total polyphenols and caffeine in ground powder of tea leaves
using PLS (Partial Least Squares) regression. The correlation coefficients for predicting polyphenols
were 0.94 and 0.93 for training and test data respectively using spectrum processed by standard normal
transformation. But these previous studies were limited to ground powder of tea leaves. Research on
fresh leaves is of great importance, because it is a step towards the application of imaging
spectroscopy in predicting tea quality. Total antioxidant capacity, caffeine, epigallocatechin gallate
(EGCG) and epicatechin (EC) of green tea has been estimated using NIR spectra for whole fresh
leaves (Luypaert et al., 2003). The correlation coefficients of estimating EGCG, which is the most
abundant catechin in green tea, were all smaller or equal to 0.85 for test data using different prediction
models. The prediction of epicatechin (EC) gave low correlations and high errors (cross validated
RMSE), which might be due to the low concentration of EC in the tea according to the author. In
addition, the author explained that the less good performance for EGCG and EC compared to total
antioxidant capacity and caffeine might be attributed to the existence of many similar polyphenols in
tea. To achieve the goal of monitoring tea quality in situ without destroying tea leaves, the canopy
level plays an important role. To my knowledge, until now, no research has been conducted to relate
tea quality to spectral reflectance at the canopy level.

1.2. Research Objectives

1.2.1. Main Objective

This research aims to build models that estimate the concentrations of main tea quality-related
compounds (total tea polyphenols, free amino acids and soluble sugar) using reflectance spectroscopy
for three different levels—ground powder, fresh leaf and canopy.

1.2.2. Specific Objectives

® To establish empirical relationships between the concentrations of main tea quality-related
compounds with the transformations of reflectance across different varieties of tea at three
different levels—ground powder, fresh leaf and canopy.

® To assess the accuracy of the established models in predicting unknown sample concentrations.

® To determine the wavebands selected by PLSR models to be included into latent variables.

® To assess whether the wavebands selected by PLSR models for prediction using ground powder
spectra coincide with the wavebands selected using fresh leaf spectra.




To assess whether the wavebands selected by PLSR models for prediction using fresh leaf spectra
coincide with the wavebands selected using canopy spectra.

To compare the predictive power of models derived from absolute reflectance spectra and mean
centre transformed spectra.

Research Questions

Which level will achieve the best performance for prediction of total tea polyphenols, free amino
acids and soluble sugar across different varieties of tea —ground powder, fresh leaf or canopy?
What are the wavebands selected by PLSR models to be included into latent variables?

To what extent will the wavebands selected by PLSR models for prediction using ground powder
spectra coincide with the wavebands selected using fresh leaf spectra?

To what extent will the wavebands selected by PLSR models for prediction using fresh leaf
spectra coincide with the wavebands selected using canopy spectra?

Which spectra will generate more accurate estimates of biochemical compounds, absolute
reflectance spectra or mean centre transformed spectra?
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2. Methods and materials

2.1. Study area and Data sets

Six different varieties of tea including Fuding dabai (FD), Fu yun 6 (FY), E cha 1 (EC), Tai cha 12
(TC), Huang dan (HD) and Mei zhan (MZ) were selected as study objects. They grow in a tea garden
in Hua Zhong Agricultural University in Wuhan City of China. Figure 2.1 gives an impression of the
tea garden. The tea bushes are all growing in the open field. The tea bushes are so dense that soil
background is barely seen from the canopy above.

r

Figure 2.1 Tea garden in Hua Zhong Agricultural University

2.2. Experiment set-up

2.2.1. Spectral measurement of tea canopies

The experiment was carried out in the tea garden between 10:30 and 13:00 hrs on a cloud-free sunny
day. Canopy reflectance was measured using ASD FieldSpec Pro FR spectrometer (Analytical
Spectral Devices). The spectrometer covers a range from 350-2500 nm with sampling intervals of
1.4 nm between 350 nm and 1000 nm, and 2 nm between 1000 nm and 2500 nm. The spectral
resolution is 3 nm for the wavelength interval 350-1000 nm and 10 nm for the wavelength interval
1000-2500 nm.




A group of four tea bushes was considered one sample unit. Eight sample units were selected for each
tea variety. Together, there were 48 (8*6) sample units forming the sample. Two thirds of the sample
was used for calibration and one third for validation.

The fiber optic was handheld approximately 10-20 cm above the top of the canopy. 6 points were
chosen for each tea bush and each spectral measurement at each point was the average of ten single
measurements. Before taking a canopy measurement, the radiance of a white spectralon panel was
measured for normalization of the target reflectance. After spectral measurements of each sample unit,
the normalization procedure was performed again.

After the canopy measurements were finished, one bud with three or four leaves of tea bushes were
clipped. The weight of the fresh leaves for each sample unit has to been at least 40grams to satisfy the
need for wet chemistry analysis.

2.2.2. Spectral measurement of fresh tea leaves

After clipping, the leaves were taken to the lab immediately for spectral measurements. In order to
keep the leaf fresh, the leaves were stored in plastic bags under cool temperatures.

The experiment took place in a dark laboratory. The spectra of the fresh tea leaves were measured
using ASD spectrometer (FieldSpec Pro FR 25°lens). For each sample unit, the leaves stack was
spread on top of a leaf tray made by a black thick cardboard. The lens was fixed about 20cm above the
leaf tray at nadir position. The spectra of each sample unit were recorded 9 times, each of which was
the average of 10 times measurement. To minimize the influence of BRDF (Bidirectional reflectance
distribution function), the tray was rotated horizontally (120 degree) after each three records. Before
spectral measurement of ground powder, a white spectralon panel was measured for spectral
standardization. Figure 2.2 shows the experimental setup for spectral measurements of fresh tea leaves.
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Figure 2.2 Experimental setup for spectral measurements of fresh tea leaves

2.2.3. Spectral measurement of ground powder

After measuring spectra of fresh leaves, the leaves were steamed for three and a half minutes and dried
in an oven at constant 80 degrees to prevent moisture influence. Then, the dried leaves were ground
using an electric mill to pass through a mesh sieve with a mesh width of 425 um.

The experiment was conducted in a dark laboratory. The ground powder was placed on a piece of
black paper. The powder was scanned by ASD spectrometer (FieldSpec Pro FR 5°lens). The lens was
fixed at about 12 cm above the black paper. The spectrum of each sample unit was recorded 3 times,
each of which was the average of 10 measurements. Before spectral measurement of ground powder, a
white spectralon panel was measured for spectral standardization.

2.2.4. Wet chemistry analysis

Standard wet chemistry methods were used to determine the concentrations of soluble sugar. free
amino acids and total tea polyphenols in the laboratory of Hua Zhong Agricultural University.

Total tea polyphenols were determined by Ferrous Tartrate Colorimetry according to the Chinese
national standard of GB/T 8313—2002 and free amino acids were measured using Ninhydrin
Colorimetry according to the Chinese national method of GB/T 8314—2002 (Chen et al., 2007b).
Soluble sugar were measured using Anthrone Colorimetry (Wen et al., 2005).




2.3. Data pre-processing

2.3.1. Deletion of noisy spectra data

For the three levels, the spectral bands at 350-400nm, 1000nm and 2400-2500nm were deleted from
the data because they were considered noisy based on visual inspection. In addition, for the canopy
measurements additional wavebands were deleted from the data. Table 2.1 gives the details of
wavelengths deleted for each level. 2000 wavebands remained for analysis of ground powder and fresh
leaf level while 1838 wavebands remained for canopy level.

Table 2.1 Wavelengths deleted for spectra of powder, leaf and canopy

Level Wavelengths taken out
Ground Powder 350-400nm, 1000nm, 2400-2500nm
Fresh Leaf 350-400nm, 1000nm, 2400-2500nm

350-400nm, 1000nm, 1360-1361nm, 1364-1392nm, 1395-1396nm

C
0427 1399-1408nm, 1816nm, 1819-1823, 1826-1938nm, 2400-2500nm

2.3.2. Division of training data and test data

There are 48 sample units in total, 32 as training data and the remaining 16 as test data. To build
models that take into account the entire range of chemical concentration values, both training and test
data include sample units from all 6 tea varieties. The division was performed in this way: 6 sample
units were randomly selected from each of five tea varieties, and another 2 sample units were selected
from the remaining tea variety. Together, there were 32(6*5+2) sample units as training data. The
remaining was used for testing. To reduce the difference caused by the division, this division
procedure has been done for 6 times. The results presented in Chapter 3.3, 3.4 and 3.5 were the
average of the results for 6 data sets. Table 2.2 shows the range, mean value and coefficient of
variation of biochemical concentrations for 6 different divisions.

As shown in Table 2.2, some of the test data were not within the range of training data. For example,
the concentration of TTP from Division 5, the maximum value for test data was bigger than that for
training data. The coefficient of variation of 0.21 for test data was much bigger that that of 0.12 for
training data.

Table 2.2 Details of biochemical concentrations for six divisions
Coefficient of variation is the standard deviation divided by the mean value

Coefficient
Biochemical Division Range Mean of
variation
Total tea Division | Training 17.22-28.90 21.09 0.16
ivision
polyphenols Test 16.75-27.81 19.91 0.16
Training 16.75-27.81 20.54 0.17
Division 2
Test 17.22-28.90 21.00 0.16
Training 16.75-27.81 2091 0.16
Division 3
Test 17.22-28.90 20.26 0.17
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Training 17.22-28.90 21.04 0.17

Division 4
Test 16.75-26.73 20.01 0.14
Training 16.75-26.61 19.80 0.12

Division 5
Test 17.22-28.90 22.49 0.21
Training 16.75-27.45 20.49 0.17

Division 6
Test 17.63-28.90 21.10 0.16
Training 2.06-3.19 248 0.12

Division 1
Test 2.16-3.26 247 0.11
Training 2.06-3.26 248 0.12

Division 2
Test 2.09-2.97 247 0.10
Training 2.06-3.26 246 0.12

Division 3
Free amino Test 2.09-2.91 2.50 0.10
acids Training 2.06-3.26 2.43 0.11

Division 4
Test 2.07-2.97 2.56 0.11
Training 2.14-3.26 2.53 0.11

Division 5
Test 2.06-2.97 2.36 0.12
Training 2.06-3.26 2.50 0.12

Division 6
Test 2.09-2.91 243 0.09
Training 6.92 - 8.77 7.72 0.06

Division 1
Test 7.08-8.57 7.79 0.06
Training 6.92-8.77 7.78 0.06

Division 2
Test 7.24-8.41 7.67 0.05
Training 6.92-8.41 7.61 0.05

Division 3
Soluble Test 7.14-8.77 8.00 0.06
sugar Training 7.06-8.63 7.78 0.06

Division 4
Test 6.92-8.77 7.67 0.06
Training 7.14-8.77 7.81 0.06

Division 5
Test 6.92-8.32 7.61 0.06
Training 6.92-8.77 7.73 0.06

Division 6
Test 7.08-8.57 7.75 0.05

2.3.3. Selection of spectral processing methods

Spectral processing is very vital to enhance absorption features present in reflectance spectra. There
are many factors influencing spectral features such as light scattering, particle size, multicolinearity
among different variables, atmospheric influence etc. (Candolfi et al., 1999). In this study, several




processing methods have been applied to one division data set of powder (to do so on all data would
have been too time costly) and we tried to select the methods which deliver the best results. The results
are shown in Chapter 3.2. The methods are mean centre, SNV (Standard Normal Variate
Transformation) with detrending, first derivative and second derivative transformation after Savitzky-
Golay smoothing. The equations for SNV transformation and detrending are cited from Candolfi et al.
(1999) and the equations for derivative transformations are cited from Becker et al. (2005).

< Mean centre: It calculates the average reflectance for each wavelength and subtracts the average
from the reflectance of each individual wavelength:

Kijm = X5 = X;

Where x; ,, is the mean centre transformed reflectance of wavelength j in spectrum i, x; the original

reflectance, and X the the average reflectance for wavelength j across all the spectra.

< SNV transformation: SNV transformation can help remove the slope variation and correct scatter
effects. To remove the slope variations on individual spectrum, each object is transformed using

the following equation :
_ fz(x,.,. ~%)
X v = (x5 —=%)/ T

Where x; 5y is the transformed reflectance at wavelength j of spectrum i, x;; the original reflectance,

X, the mean of spectrum i and p the number of variables in the spectrum.

< Detrending: It is a baseline correction method, which can help remove offset and curvilinearity in
the case of powdered, densely packed samples. Detrending is usually applied combined with SNV
transformation (Candolfi et al., 1999).The baseline is modelled as a function of wavelength, with
a second-degree polynomial and subtracted from the spectrum. The calculation is :

X4 =%; —bl;
Where x; , is the transformed reflectance at wavelength j of spectrum i, x;; the original reflectance

and bl the baseline value at wavelength j of spectrum i.

< Savitzky-Golay smoothing: The Savitzky-Golay filter is used to reduce the effects of random
noise (Savitzky and Golay, 1964). The Savitzky-Golay filter uses a moving polynomical window
of any order and the size of filter consists of (2n+1) points, where n is the half-width of the
smoothing window. The points between the 2n’s are interpolated by the polynomial fit. In this
study, n=3

< First derivative and second derivative transformation: Derivative transformations enhance the
minor feature but also amplify the noise, so they are usually performed after smoothing. A first
derivative reflectance calculates the slope values from the reflectance and the calculation is
below :

dl.“ . (pn+l _pn)/(ﬂ’n-#l _ﬂ’n)
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Where d'* is the first derivative reflectance, n the band number, p, ., the reflectance at waveband

n+1, p, is the reflectance at waveband n and A the wavelength (nm).

The equation for the second derivative reflectance:

1st Ist
2nd - dn+l dn

0.5% (A4 = 4,)

Where d*™ is the second derivative approximation, n the band number, d'* the first derivative
reflectance, and A the wavelength (nm).

2.4. Statistical analysis—Partial least square regression

2.4.1. Introduction of PLSR

PLS regression combines the features of principal component analysis and multiple regressions. It
compresses a large number of variables to a few latent variables (PLS factors). It is particularly useful
when the size of independent variables is much larger than that of dependent variables. PLSR reduces
the problem of overfitting found with the multiple regression (Curran, 1989; Card et al., 1988).
However, it’s difficult to interpret the underlying relationships between variables from the results of
PLSR models. PLS regression has been applied in a lot of previous studies (Chen et al., 2006; Hansen
and Schjoerring, 2003; Luypaert et al., 2003). Especially in the field of chemometrics, PLSR has
become a standard tool for modelling linear relationships between multivariate measurements (Dejong,
1993). PLS regression is processed using the software of ParLes 3.1, which is developed by Rossel
(2008). A brief guide of using ParLes 3.1 is presented in the Appendices. More information can be
found in Rossel’s paper.

The performances of the PLSR models were assessed by the coefficient of determination (R?) between
predicted and measured concentrations, the root mean square error of calibration (RMSECV, cross-
validated) and the root mean square error of prediction (RMSEP). A good model should have
relatively high R, low RMSECYV, low RMSEP and a small difference between RMSECV and
RMSEP. For RMSECV, the “leave-one-out” method was performed. Each data point from the training
data was left out to establish the model on the remaining data points followed by predicting the value
of the left out data point. Then, the model prediction was compared with the removed data point. The
procedure was repeated until each data point in the training data has been left out. The optimum
number of PLS factors were chosen according to the lowest RMSECV. RMSECYV was calculated like

this:
RMSECV:,,Z i)
n

Where n=32 (number of data points in the training data), y, is the observed value of data point i and

¥, is the estimated value based on the model when data point i was left out.

ih



In addition to the cross validation of PLSR model, an independent validation was performed using test
data to test the robustness of the established model. The performance of the PLSR model using test
data was evaluated by RMSEP. RMSEP was calculated in this way:

n 1 i 2
n

Where n=16 (number of data points in the test data), y, is the observed value and Yy, is the predicted

value.
2.4.2. Determination of optimum PLS factors

The determination of PLS factors plays an important role in the performance of a PLSR model. In this
study, the optimum number of PLS factors was chosen according to the lowest RMSECV. Figure 2.2
exemplarily shows a relationship between the number of PLS factors and RMSECV. For un-processed
spectra (red line), RMSECYV firstly decreased sharply with the increase of PLS factors and remained
more or less the same when PLS factors were over 10. As for mean centre transformed spectra, the
trend was a little different. RMSECV continued decreasing with the increase of PLS factors. If we
choose the optimum PLS factors according the lowest RMSECV, the optimum number should be
bigger than 18. But too many PLS factors may lead to the problem of overfitting, which could result in
poor validation performance. Under this circumstances, we made a threshold that the number of PLS
factors should be no larger than 12.

4.5 {
4 ."\‘ —e—llean centre
3.5 T \ —a—No processing
3
£
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Figure 2.3 PLS factors versus RMSECV
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3. Resulis

3.1. Data description

3.1.1. Spectral comparison

Figure 3.1, Figure 3.2 and Figure 3.3 show the typical spectra for 6 tea varieties at powder, leaf and
canopy level respectively. Spectra f 6 tea varieties show some general features at all three levels. In the
visible range (400-700nm), the tea material absorbs red and blue light, and reflects green light. The
reflectance values are highest from 750nm to 1300nm.

In Figure 3.1, the reflectance at 750-1300 nm of FD, HD and TC were relatively lower than that of FY,
EC and MZ. The reflectance of HD was the lowest in the range of 1500-2500nm. At the leaf level,
compared to the powder level the 6 tea varieties have more pronounced reflectance differences in the
range of 750-1300nm and 1400-1850nm (Figure 3.2). The tea leaf spectra show four important water
absorption features centred near 970nm, 1200nm, 1450nm and 1940nm (Curran, 1989). In Figure 3.3,
the noisy parts of canopy spectra have been taken out.

Figure 3.4 shows an exemplary spectral graph of one tea variety (Fuding Dabai) for powder, leaf and
canopy. The noisy parts of canopy spectra were deleted for further analysis.
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Figure 3.1 Powder spectra of 6 tea varieties
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Figure 3.4 Spectral curves of Fuding Dabai for powder, leaf and canopy level

3.1.2. Biochemical concentrations of TTP, FAA and SS

Table 3.1 shows detailed information about the measured biochemical concentrations of TTP, FAA
and SS in the sample (n=48). Comparing the coefficient of variation, the value of SS is the lowest,
which indicates that the variability of soluble sugar content between different sample units was small.

Table 3.1 Summary statistics for biochemical concentrations in weigh percentage of dry matter
Coefficient of variation is the standard deviation divided by the mean value

: > . . Standard Coefficient of
Biochemical Minimum | Maximum | Mean .. .
Deviation Variation
Total tea 16.75 2890 | 20.69 337 0.16
polyphenols
Free amino acids 2.06 3.26 2.48 0.28 0.11
Soluble sugar 6.92 8.77 .74 0.45 0.06

3.2. Prediction results of different processing methods

Table 3.2 exhibits the results of PLSR models using different processing methods. First and second
derivative transformations after Savitzky-Golay smoothing are abbreviated as SG+1st and SG+2nd
respectively. The PLS factors shown are the optimum number of factors chosen in accordance with the
lowest RMSECV. The root mean squared errors (RMSECV and RMSEP) explain how accurate a
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derived model is and the coefficient of determination (R*) shows how strong the relationship between
predicted concentration and measured concentration is.

Generally, compared to absolute reflectance spectra, mean centre transformation has reduced RMSE
and increased R® (only except for the prediction of FAA using training data). Using SNV
transformation with detrending, although it improved accuracy for training data but RMSEP has
jumped to about 80%. This method was dropped because of its inconsistent performance. The
derivative spectra of reflectance has been commonly used to increase the accuracy of prediction in
previous research (Soukupova et al., 2002; Ferwerda and Skidmore, 2007; Ferwerda et al., 2006).
However, the derivative transformations were not working quite well in our research. The accuracy
was even lower than that of the un-processed data. The reason may be that derivative methods not only
highlighted the minor absorption features but also amplified the noise. Comparing the results of
different processing methods, mean centre transformation was selected in this study.

Table 3.2 Prediction results of different processing methods

Pre-Processing methods PLS Factors RM((S;;CV Rz(Training) RII/I(;;EP R*(Test)
Total tea polyphenols
No processing 10 8.60 0.71 11.37 0.61
mean centre 10 7.86 0.76 10.04 0.68
SNV with detrending 10 8.17 0.74 76.69 0.66
SG+1st 7 14.90 0.15 15.00 0.23
SG+2nd i 22.46 0.00 20.00 0.08
Free amino acids
No processing 7 5.13 0.80 4.85 0.82
mean centre 7 541 0.78 4.77 0.84
SNV with detrending 7 5.13 0.80 79.96 0.71
SG+1st 2 10.02 0.24 8.36 0.40
SG+2nd 4 13.62 0.11 13.98 0.11
Soluble sugar
No processing 10 5.19 0.34 4.11 0.48
mean centre 10 4.57 042 3.45 0.67
SNV with detrending 9 441 045 80.45 0.18
SG+1st 3 540 0.21 6.11 0.04
SG+2nd 3 10.03 0.18 12.80 0.10
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3.3. Prediction results of total tea polyphenols

Table 3.3 shows the results using the absolute reflectance spectra and mean centre transformed spectra
to predict the concentrations of TTP for three different levels.

RMSECYV values fell within the range of 7.42-13.27% while RMSEP values ranged from 10.63% to
15.60% of their average measured foliar biochemical concentrations.

Compared with absolute reflectance spectra, the mean centre transformation has increased the
prediction accuracy of PLSR models for both calibration and validation at all three levels. RMSE has
decreased by more than 1% while the corresponding R”has increased by approximately 0.1. Based on
transformed spectra, RMSECV was within the range 7.42-10.33% and RMSEP ranged from 10.63% to
13.32%, while R? obtained ranged from 0.56 to 0.76 and from 0.52 to 0.63 for training data and test
data respectively.

Using transformed spectra, the powder level achieved the highest calibration accuracy
(RMSECV=7.42%) and the canopy attained the lowest accuracy (RMSECV=10.33%) with
intermediate RMSECYV of 8.70%. However, the trend was not found with the validation results. The
leaf and canopy level outperformed the powder level using test data. At powder level, comparing the
results between calibration and validation using transformed spectra, RMSE has increased from 7.42%
to 13.32% while R? has dropped from 0.76 to 0.52. Compared to powder level, the error of canopy
level increased less from calibration (10.33%) to validation (11.57%) and R* even increased slightly
from calibration (0.56) to validation (0.58). In addition, the canopy level used the fewest PLS factors.

Table 3.3 Prediction Results of TTP

RMSECV RMSEP 2
Level Methods PLS factors Rz(Training) R*(Test)
(%) (%)
no processing 9 8.90 0.66 15.60 042
Powder
mean centre 9 7.42 0.76 13.32 0.52
no processing 9 10.66 0.57 11.53 0.60
Leaf
mean centre 10 8.70 0.69 10.63 0.63
no processing 5 13.27 0.39 14.36 0.41
Canopy
mean centre 7 10.33 0.56 11.57 0.58

3.4. Prediction results of free amino acids

Table 3.4 shows the results using the absolute reflectance spectra and mean centre transformed spectra
to predict the concentrations of FAA for three different levels. In general, the prediction accuracy of
FAA was higher than that of TTP. Compared to TTP with FAA, the RMSECV values fell to values
within a range of 4.89-8.45% and RMSEP values within a range of 6.59-8.10%. Mean centre
technique compared to absolute reflectance also improved the performance of PLSR models for leaf
and canopy level while the accuracy achieved at powder level declined slightly after transformation.
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Comparing the results of calibration and validation at powder level using transformed spectra, RMSE
increased just slightly from 4.90% to 6.97% while R? has dropped from 0.81 to 0.65. Comparing the
results of calibration and validation at leaf level reveals that RMSE did not increase and R*did not
decrease. The same holds for canopy level.

Comparing the results of three different levels, the powder level achieved the best results for both
training data and test data no matter the spectrum was transformed or not. The canopy level has also
achieved relatively good results with RMSE around 7-8% and R” around 0.6. As same to the
prediction of TTP, canopy level used fewer PLS factors compared to powder and leaf level.

Table 3.4 Prediction Results of FAA

RMSECV RMSEP
Level Methods PLS factors Rz(Training) Rz(Test)
(%) (%)
no processing 7 4.89 0.82 6.59 0.70
Powder
mean centre 7 4.90 0.81 6.97 0.65
no processing 8 8.45 0.53 8.10 0.52
Leaf
mean centre 7 715 0.62 7.73 0.57
no processing 6 7.89 0.63 7.75 0.55
Canopy
mean centre 4 6.96 0.63 7.09 0.61

3.5. Prediction results of soluble sugar

Table 3.5 shows the results using the absolute reflectance spectra and mean centre transformed spectra
to predict the concentrations of soluble sugar for three different levels.

Although mean centre transformation has improved the performance of PLSR models, the
performance remained still poor. Based on transformed spectra, RMSECYV ranged from 3.59% to
4.12% while RMSEP ranged from 4.82% to 6.19% while R* ranged from 0.52 to 0.60 and from 0.29 to
0.40 for training data and test data respectively. Despite errors of RMSECV and RMSEP being
relatively low, the models can not predict the relative variation of soluble sugar concentration in the
plant material on either level.

The powder level has encountered the same problem found with TTP. The models built on calibration
data didn’t work well for the prediction of the validation data. Comparing the performances of three
different levels, the canopy level achieved the most stable and best results based using mean centre
transformed spectra, with low RMSE and relatively high and consistent R*. And canopy level used
slightly fewer PLSR factors than other two levels.
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Table 3.5 Prediction Results of SS
RMSECV RMSEP
Level Methods PLSR factors RZ(Training) Rz(Test)
(%) (%)
no processing 9 3.93 0.54 6.98 0.21
Powder
mean centre 8 3.59 0.60 6.19 0.29
no processing 9 4.76 0.46 6.31 0.33
Leaf
mean centre 10 412 0.52 5.28 0.39
no processing 8 5.97 0.31 6.87 0.33
Canopy
mean centre 8 3.90 0.54 4.82 0.40

3.6. Observed versus predicted values

Exemplary scatter plots of observed versus predicted concentrations of TTP, FAA and SS for both
calibration (blue points) and validation (red points) are shown in Figure 3.5-3.10. The black line is the
unity line(y=x).

Figure 3.5, 3.6 and 3.7 show the scatter plots for TTP, FAA and SS using mean centre transformed
powder spectra respectively. All the three figures show that the calibration points (blue point) were
close to the unity line while validation points are scattered further away from the unity line, indicating
a decrease of prediction accuracy from calibration to validation. Most of the predicted TTP values for
validation (Figure 3.5) were over-estimated while most of the predicted SS values for validation
(Figure 3.7) were under-estimated. Figure 3.6 revealed that the range of the measured FAA values for
calibration was much lager than that for validation. Most of measured FAA values for validation
distributed in a small range.

Scatter plots for TTP, FAA and SS using mean centre transformed canopy spectra are shown in Figure
3.8,3.9 and 3.10. The same trend was found in all three figures that the calibrations points were closer
to the unity line than validation points. As same to powder spectra, most of the TTP values for
validation using canopy spectra (Figure 3.8) were over-estimated. According to Figure 3.10, most of
the predicted SS values for validation were over-estimated compared to the under-estimation (Figure
3.7) for powder level.
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Figure 3.5 Scatter plot of observed and predicted values of TTP for calibration (blue point) and
validation (red point) using powder spectra, the black solid line is y=x.
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Figure 3.6 Scatter plot of observed and predicted values of FAA for calibration (blue point) and
validation (red point) using powder spectra, the black solid line is y=x.
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Figure 3.7 Scatter plot of observed and predicted values of SS for calibration (blue point) and
validation (red point) using powder spectra, the black solid line is y=x.
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Figure 3.8 Scatter plot of observed and predicted values of TTP for calibration (blue point) and
validation (red point) using canopy spectra, the black solid line is y=x.
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Figure 3.9 Scatter plot of observed and predicted values of FAA for calibration (blue point) and
validation (red point) using canopy spectra, the black solid line is y=x.
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Figure 3.10 Scatter plot of observed and predicted values of SS for calibration (blue point) and
validation (red point) using canopy spectra, the black solid line is y=x.
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4. Discussion

4.1. Comparisons of PLSR model performances for three different levels

The performances of PLSR models were assessed in terms of PLS factors, RMSE (RMSECV and
RMSEP) and coefficients of determination (RY). A model was considered good when it achieved low
RMSE and high R? using a low number of PLS factors.

To make a direct comparison of the performances of ground powder, fresh leaf and canopy, Table 4.1
and 4.2 were created. PLS factors, RMSECV, R? (Training), RMSEP and R? (Test) were used
separately as indicators to choose the best performed level. The levels obtaining the lowest PLS
factors, the lowest RMSE and the highest R? were listed in Table 4.1. In contrast, the levels obtaining
the highest PLS factors, the highest RMSE and the lowest R? were displayed in Table 4.2. All these
results were derived based on mean centre transformed spectra.

Table 4.1 Best performed level for prediction of TTP, FAA and SS

iochemical TTP FAA ss
Indicators
PLS factors canopy canopy canopy & powder
RMSECV powder powder powder
R*(Training) Powder powder powder
RMSEP leaf powder canopy
R*(Test) leaf powder canopy

Table 4.2 Worst performed level for prediction of TTP, FAA and SS

\B‘% TTP FAA ss
Indicators
PLS factors leaf powder & leaf leaf
RMSECV canopy leaf leaf
R*(Training) canopy leaf leaf
RMSEP powder leaf powder
R*(Test) powder leaf powder

Comparisons were made for TTP, FAA and SS separately:

TTP: Powder level achieved the best (Table 4.1) performance for calibration but the worst (Table 4.2)
for validation, which could be an indicator of overfitting. Leaf level exceeded the performance of
canopy level for both calibration and validation, but canopy level used the fewest PLS factors.
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FAA: Powder level outperformed leaf and canopy for both calibration and validation. This has
justified our expectations. Many factors can be attributed to the better performance of powder level.
The water content in fresh leaves and in the plant canopies will mask the minor absorption features
(Elvidge, 1990) and make the absorption features more difficult to detect. The influence of leaf angle,
atmospheric effect and soil background effect may add more noise to the spectra. Canopy level
performed slightly better than leaf level and used the fewest PLS factors. The smaller number of PLS
factors necessary to achieve accuracy comparable to that obtained at the leaf level suggests that the
TTP signal is amplified by the high amount of leaves present in the canopy. This stronger signal can
be grasped in less PLS factors than at the leaf level. At the same time there seem to be limited
disturbances coming from the background and the atmosphere that normally may limit the
performance of the estimation at the canopy level.

SS: The predictive power at powder level varied a lot between the calibration and validation. Canopy
level achieved the best results for validation.

In general, there is a decrease in predictive ability from powder to leaf level based on training data.
This has met our expectation, because many factors (water content, leaf angle etc.) influenced the leaf
spectra. However, powder level attained lower prediction accuracy than that of leaf level based on test
data. This may be explained by the overfitting problem, which will be discussed further in Chapter 4.3.
There is no big difference between the prediction ability of leaf and canopy level. In some cases,
canopy level even outperformed leaf level. The similar performance of leaf and canopy level may be
due to several reasons: (1) Compared to leaf level, there was higher amount of chemicals in the canopy,
which may amplify the spectral signals; (2) In this case, the canopy density was high and there was
hardly effect from soil background effect, which normally decreases the prediction accuracy of canopy
level. (3)There was also little atmosphere effects as the target-sensor distance in the field work was
only about 10-20 cm.

4.2. Comparisons of PLSR model performances for TTP, FAA and SS

PLSR models proved to be successful for prediction of TTP and FAA. A model is considered
successful when the RMSE of prediction is below 15 percent of the average measured concentration
and the R of the test data set is above 0.5. Powder level achieved the highest R? of 0.76 and 0.82 using
training data for TTP and FAA respectively. R for canopy level were lower but still remained around
0.6. Using canopy spectra, R> was 0.56 and 0.63 for calibration and 0.58 and 0.61 for validation after
mean centre transformation for TTP and FAA respectively. The good accuracy achieved for TTP and
FAA at canopy level demonstrated the possibility to upscale from the field level to the airborne level.

Compared to TTP and FAA, predicting SS using PLSR model was considered not successful. The
highest R for test data achieved at canopy level was only 0.40. The low predictive power may be
attributed to several factors. Firstly, the content of soluble sugar has the lowest coefficient of variation
(0.06), which is much smaller compared to that of TTP and FAA (Table 3.1). To ensure a better
performance of the model, the range of the biochemical concentrations should be as large as possible
within a normal range (Chen et al., 2007a). The small variation of SS may result in minor spectral
change, which makes it more difficult for PLSR models to detect. The poor accuracy of SS may also
be caused by the composition of soluble sugar itself. Soluble sugar comprises several compounds, i.e.
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different types of sugar such as glucose, fructose, maltose, sucrose and so on. The diversified
compositions of soluble sugar could make it more difficult t to detect the biochemical content.

4.3. Overfitting problem found with powder level

Figure 4.1 and 4.2 show the comparisons of RMSE and R* for calibration and validation using mean
centre transformed spectra to predict the concentrations of TTP, FAA and SS at powder level. The
blue, red and yellow bars represent TTP, FAA and SS respectively. It is shown in Figure 4.1 that
RMSE has increased dramatically, especially RMSEP values of TTP and SS almost doubled their
corresponding RMSECV values. The big difference of R? for calibration and validation shown in
Figure 4.2 addresses the same problem. For TTP and SS, R? of calibration was 0.76 and 0.60 while R’
of validation decreased to 0.52 and 0.29 respectively. This problem most likely is caused by
“overfitting”. Overfitting often occurs when there are too many predictor variables (PLS factors). If
there are too many PLS factors applied in a model, the built model could be trained to exactly fit the
calibration data. In the case of overfitting, when the established relationship is applied to an
independent data set, the prediction performance becomes poor.

Observing the figures, the overfitting problem is less serious for FAA than for TTP and SS. Compared
to leaf and canopy level, overfitting problem mainly occurred to the powder level. According to Table
3.3, 3.4 and 3.5, canopy levels compared to powder level and leaf level used the fewest PLS factors.
The fewer PLS factors explain the more consistent results between calibration and validation at the
canopy level. But powder and leaf levels used more or less the same number of PLS factors. Why
overfitting affects the powder level more seriously than the leaf level remains unclear.
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Figure 4.1 Bar graphs for comparisons of RMSECV and RMSEP associated to prediction of TTP, FAA
and SS at powder level using mean centre transformed spectra
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Figure 4.2 Bar graphs for comparisons of R?of training and test data associated to prediction of TTP,
FAA and SS at powder level using mean centre transformed spectra

4.4. Determination of important wavelengths in PLSR models

The calibration equation coefficients (B-coefficients) were used to determine the importance of
spectral bands in PLS calibrations (Wold et al., 2001; Haaland and Thomas, 1988). B coefficients in
the PLSR model represent the contribution of each predictor (waveband) to the model. The signs (plus
or minus) of B coefficients determine the direction of the relationship between independent variables
(spectral reflectance) and dependent variables (biochemical concentrations). The bigger the B
coefficients (absolute value) are, the stronger the relationships are.

In this study, B coefficients were derived from PLSR models using mean centred transformed spectra.
The thresholds for B-coefficients were determined based on their standard deviations (Gomez et al.,
2008). The wavelengths were considered significant if the corresponding B coefficients were bigger
than the threshold. The wavelength selection processing was performed for TTP and FAA at the level
of powder, leaf and canopy. SS was excluded for wavelength selection because of the low R’
achieved. Table 4.3 displays the standard deviations of B coefficients for TTP and FAA at three levels.

Table 4.3 Standard deviations of B coefficients

Level D T c
owaer ca ano
Chemicals Py
TTP 3.61 6.08 047
FAA 0.24 0.28 0.03

4.4.1. Important wavelengths for predicting TTP

Figure 4.3, 4.4 and 4.5 show the graphs of B coefficients associated to the PLSR model for prediction
of TTP at the level of powder, leaf and canopy respectively. The blue lines are the threshold of B
coefficients (3.61). Based on the graphs, the consistent wavelength regions with B coefficients bigger
than the threshold are presented in Table 4.4.
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At powder level, the most consistently influential wavelength channels were from 898nm to 999nm
and from 734nm to 835nm, indicating a positive and negative relationship between the reflectance and
the TTP concentrations respectively. In visible region, a channel of 676 -699 nm was also identified as
significant. Peaks were localized at 691nm, 713nm and 998nm.

At leaf level, the selected positive relationship region in the range 940-1017nm (1003nm and 1004nm

excluded) has a major parts overlapping with the selected region of 898-999nm for powder level. As
for the negative relationship, regions of 676-690nm and736-754nm were identified and they have a
total overlap with the wavelengths selected for powder level. In addition, it showed strong negative
relationship from 1094nm to 1127nm. The most significant wavelength was localized at 744nm and
1011nm.

Compared to powder and leaf level, no consistently influential wavelength channels were identified for
canopy level. Peaks at 1363nm, 1397nm and 1824nm were identified.

In total, 491, 559 and 123 wavebands were selected for TTP for powder, leaf and canopy level
respectively. About 40% of the wavebands (215/559) selected for leaf level coincided with those
selected for powder level while also 40% of the wavebands (49/123) selected for canopy level
coincided with those selected for leaf level. For the same wavebands selected for all three levels, most
of them were within the near infra red range 930-980nm and eight wavebands (1357nm, 1358nm,
1359nm, 1362nm, 1363nm, 1955nm, 2352nm and 2380nm) were in the middle infrared region (1300-
2500nm).

Table 4.4 Wavelengths selected by PLSR model for prediction of TTP Unit: nm

TTP Positive Negative Important wavebands
704-724,898-
P -699,734- 1,,713,
owder 999.1356-1392 676-699,734-835 691,,713,998
703-719,940-1017(
Leaf 1003 and 1004 676-690, 736-754,1094-1127 744,1011
excluded)

Canopy none none 1363,1397, 1824
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Figure 4.3 B coefficients (black curves) associated to the PLSR model for TTP at powder level. The
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Figure 4.4 B coefficients (black curves) associated to the PLSR model for TTP at leaf level. The

threshold (blue line) was based on their standard deviation (6.08)
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Figure 4.5 B coefficients (black points) associated to the PLSR model for TTP at canopy level. The
threshold (blue line) was based on their standard deviation (0.47)

4.4.2. Important wavelengths for predicting FAA

Figure 4.6, 4.7 and 4.8 show the graphs of B coefficients associated to the PLSR model for prediction
of FAA. The blue lines are the threshold of B coefficients. Based on the graphs, the consistent
wavelength regions with B coefficients bigger than the threshold are presented in Table 4.5.

At powder level, the most consistently influential wavelength channels were in the regions of 456-
510nm, 685-710nm, 961-999nm and 1883-1919nm. The peaks at 471nm, 553nm, 701nm, 994nm,
2086nm, 2103nm and 2400nm were localized.

At leaf level, the most consistently influential wavelength channels were within the range 939-1012nm
(1000nm excluded) and 1711-1794nm (1789nm excluded) while only two positive relationship regions
were detected. In the detected negative relationship regions, 696-719nm and 939-1012nm (1000nm
excluded) has a major overlap with the wavelengths selected for powder level. The most significant
wavelengths were localized at 708nm, 996nm, 2387nm and 2398nm.

Compared to powder and leaf level, no consistently influential wavelength channels were identified for
canopy level. Peaks at 1362nm, 1394nm, 1409nm, 1939nm and 1824nm were identified.

In total, 635, 682 and 117 wavebands were selected for FAA for powder, leaf and canopy level
respectively. 33% of the wavebands (226/682) selected for leaf level coincided with those selected for
powder level while about 53% of the wavebands (62/117) selected for canopy level coincided with
those selected for leaf level. Only 20 same wavebands were selected for all three levels.
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Table 4.5 Wavelengths selected by PLSR model for prediction of FAA Unit: nm

FAA

Positive Negative Peaks
456-510,685-710, 961- 471,553,701,994,
Powder | 544-573,1653-1684,1883-1919 ’ d
el 999,1486-1591 2086, 2103, 2400
731-758, 799-852 (806 and LU0
Leaf excluded), 1711-1794(1789 | 708,996,2387, 2398
817 excluded)
excluded)
Cano none none R I Tl
Py 1939, 1824
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Figure 4.6 B coefficients (black line) associated to the PLSR model for FAA at powder level. The
threshold (blue line) was based on their standard deviation (0.24)
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Figure 4.7 B coefficients (black line) associated to the PLSR model for FAA at leaf level. The
threshold (blue line) was based on their standard deviation (0.28)
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Figure 4.8 B coefficients (black points) associated to the PLSR model for FAA at canopy level. The
threshold (blue line) was based on their standard deviation (0.03)
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5. Conclusions

Overall, the study suggests that reflectance spectroscopy is a useful tool to predict concentrations of
total tea polyphenols and free amino acids in plant material, which are major indicators of tea quality.
Especially, the canopy level also offers acceptably good results and this can be a step towards the use
of airborne and spaceborne sensors. If we achieve to predict tea quality using remote sensing images,
the technique developed on reflectance spectroscopy at the powder, leaf, and canopy levels can be
transferred to Hyperspectral Remote Sensing to predict the quality of tea in large areas and help
monitor tea health condition which is important information for tea farmers and the tea industry.

Research questions and corresponding answers

>

Which level will achieve the best performance for prediction of total tea polyphenols, free amino
acids and soluble sugar across different varieties of tea —ground powder, fresh leaf or canopy?
For TTP, powder level achieved the best performance using calibration data set while the
prediction accuracy decreased for independent validation, but still remained in an acceptable
range (RMSEP lower than 15 percent of the mean measured TTP concentration). Compared to
canopy level, leaf level performed slightly better.

As for free amino acids, powder level worked the best for both calibration and validation while
leaf and canopy level gave similar performance.

As for soluble sugar, the performance of each level was not consistent. Powder level achieved the
best performance using calibration data set while canopy level achieved the best performance
using validation data.

What are the wavebands selected by PLSR models to be included into latent variables?
Wavebands were selected for TTP and FAA at the level of powder, leaf and canopy. SS was
excluded because of the low R? achieved.

For prediction of TTP, the most consistently influential wavebands selected at powder level were
within the range 898-999nm and 734-835nm while the channels were 940-1017nm (1003nm and
1004nm excluded) and 1094-1127nm for leaf level. There were no consistently influential
wavelength channels detected for canopy level.

For prediction of FAA, the most consistently influential wavelength channels were in the regions
of 456-510nm, 685-710nm, 961-999nm and 1883-1919nm while the channels were 939-1012nm
(1000nm excluded) and 1711-1794nm (1789nm excluded) for leaf level. As same to TTP, there
were no consistently influential wavelength channels detected for canopy level.

Will the wavebands selected by PLSR models using ground powder spectra coincide with the
wavebands selected using fresh leaf spectra?

About 40% and 33% of the wavebands selected by PLSR models using leaf spectra coincided
with those selected using ground powder spectra for prediction of TTP and FAA respectively.

Will the wavebands selected by PLSR models using fresh leaf spectra coincide with the
wavebands selected using canopy spectra?
About 40% and 53% of the wavebands selected by PLSR models using canopy spectra coincided
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with those selected using fresh leaf spectra for prediction of TTP and FAA respectively.

Which spectra will give better results, absolute reflectance spectra or mean centre transformed
spectra?

Mean centre transformed spectra delivered better results than absolute reflectance spectra. It has
increased the predictive power of PLSR models.
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6. Recommendations

6.1. Transfer to airborne and satellite level

In the future, we can focus more on the transfer of this method to airborne and satellite levels. Only
when remote sensing images are incorporated in tea quality prediction, we are able to acquire tea
quality information spatially.

6.2. Sample size

Due to the restriction of time, this research was performed over a limited data set and samples were
collected from one tea garden. The small sample size and the same environmental conditions lead to
the small range of the biochemical concentrations. Despite a limited range of concentrations, robust
predictive models were established. We suggest that for further model improvement future studies
look on a larger tea sample selected from locations with different environmental conditions.
Alternatively, tea plants can be fertilized differently to allow a larger range of the biochemical
distribution.

6.3. Soil background effect

Soil background effect in this study was little because of the high density of tea leaves. More research
needs to be done in the future when soil background effect is added. The soil background effect will
confound the reflectance and make the situation more complicated.

6.4. Transformation techniques

Mean centre has improved the performance of PLSR models, more transformation techniques can be
explored in future study, such as derivatives, continuum removal, band depth among others.
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Appendix ] Softwares

Softwares used in this study
Table 0.1 Softwares used in the study

Software Function
Parles 3.1 Spectral processing & PLS regression analysis
Matlab 7.1 Data processing
Microsoft word Document processing
Microsoft excel Table preparation

Brief guide of using Parles 3.1
1. Import calibration data into Parles
The imported data has to be in the format of tab delimited ASCII text.

ParieS  Import Dete Modelling ]mmj PCA | PLSRCrose Velldation | PLSRModel | import Dieta Prediction | u.svmm{i

DATA FOR MODELLING [mapon nATA FoR MoDELLMG |
Oet fde for modeding
SE vong FIE IR B¥ indated ansiy=ts resuts_2 22Updated final detaupdated_powder\Updated_powder_caif ixt e
Heeder information - dete for modeling
10.000000 0.000000 D.000000 0.000000 400.000000 401000000 402 000000 403 00000C 404 LOOOOO A08.000000 408.000000 407000000 408.000000 400000000 410 600000
Total Numnber of y varisbier Selact y varisble for modeiing osizey size X
N i1 = 20
y variables Labeis Selactedy X variebles X-label
19.1908 23782 914088 © [ [ [ [ 400K 181800 003304 0039551 005344 0034208 00
174218 234588 7782 O ] o [} a 0.000000 17 4210 002574 002050 02376 0026158 | 401
2048862 240838 770328 O a 0 [ o 1.900000 20 4052 0.024424 0029401 0024280 002404 402
213771 247118 787688 O (] 0 o o 20000 213771 0024978 0.024837 0025292 0025183 403
WA 244301 7B O a o [} [ .000000 20 4338 0.028026 0.0Z70S 0.027087 002098 | 409
204008 247508 740018 O 0 ] ] o | 6.000000 20 4908 0.025600 0.027015 0.027087 0027123 405

2. Data manipulation
In the tab of Data Manipulations, it provides different spectra processing options. The figure below
shows an example of the mean centre transformation.
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ESTIMATION OF FOLIAR CHEMICALS AS INDICATORS OF TEA (CAMELLIA SINENSIS L) QUALITY USING REFLECTANCE
SPECTROSCOPY

[ e caamsienr -
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3. PLSR Cross Validation

The tab is the function for Cross Validation. You can determine the number of factors for cross
validation by inputting a number. After clicking on “Run X-VAL”, the figures and statistical results
will come out. You can select the optimum number of PLS factors according the RMSE for cross
validation.

darl 1% version 3.1

__ EEE

Cross Vekdation Resits ]
! red
I Eom) % No. fectors for X-Vebdation
32 L 9 9 (
o
3 o4 fo ug'q‘ JI'I'I'I'I'I'I
. ol o o5 = 0 5 10 15 20 25 20
28-
- . + l 12
222- a"“ 5 Loave '’ out X-Veldation
L]
2- L]
18- .
1: 1 T T k] T T
d B89 aay g
No. Factors
Akaike formetion Criterion (AC)
e 8 Statistics for selected
28-] cross velidated model
42| . 3 ; pretsiine
. J Reg | 0780
. 24 -]
0 22; n-quio.m
S;”_' ) n RMSE | 1.020
a 2 e oo
3| ]
. 10+ B aen =8
0 48 g My RN S E a 8 o ¥y: 0706 x+ 500 SDESNN 1%
34 Ny Sy LA 1 S S A [2ar
1 2 3 4 s 6 7 8 8 10 1 12 % 198 22 2 4 /B B P bin
No. Factors Observed SAVE X-VAL RESILTS []

4. PLSR modelling
By determining the number of PLS factors, the PLSR model can be run.
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5 STES

ParleS | import Data Modeting | Dsta Menipulstions | | PCA | PLSRCross velidstion  PLSR Mode!: | import fieta Prediction | PLSRPredict | Begging-PLSR |
Selact No. factors for PLSR
- “‘ 1 ‘ 1 T T .l é 10 )
0 § 10 15 20 25 0 X5 4 45 0 Spectal tactor toadings P[]
tox ty tx
Factors Scores Plot S 82 | Paottvay 1| Bcoetfcents Loading waights W I~
056 v 30~ 20 02
. o E o ] 7]
04 o 2] 8 103 ]
o N = : .8 o e
] 24 = ]
% 07 5 ° -] & g 3 g 0
-4 3 o oo o = o -104 S
027 2. L 203 ° 3 2 3 E
E L E oby e 203 01
'a-‘_E 5, 18; o % ° LA :- 3 E
B e e 18 e B T e .- —
SR R i i 2 L2 FEE AR 0 AT T AR 2 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
tx tx X-label K-label
SAVE SCORES; b, b8, p, w; snd VIP [ ]
Sorted VP by A Explained Variation X (%) Explsined Veriation ¥ (%)
A VP s 1
42100 000 . """"‘.__1_(?_3,|
466.00 001 A lEos Jf
5835 501 Y |
40700 001 |47 iF
1031.00 0.01 |[rs a4
1511.00 0.02 |p2.1%0
531.00 002 0 2 4 8 68 10 |pasz|
140400 002 No_ factors =
1516.00 002 Total expiained varistion Y | 89.36

5. Import validatibn AAta into Parles
If you need to run an independent validation for the built PLSR model, you can import an independent
data set.

_ AEE
Wlmmm]mm]mlmmvmlmm import Dsta Prediction mw]wi
DATA FOR PREIICTION | naPoAT DATA FOR PREMCTION(
Get file for preciictions
%E vong TSR S\Upcated anaiysis results_2 22Updeted final detelupdeted_powderUpdated_powder_prel bt | o |
Header information - deta for prediction
10.000000 0.000000 0.000000 0.000000 400.000000 4G4 000000 402.000600 403.000000 404600000 405.000000 408.000000 4G7.000000 408.00G00 408.000000 410.000000
Totsl Number of y varisbles Seiact y varisbie for testing szey szeX
S
] e a0
yyaabios B . = L S - mecoed ¥ X barkbies foc pradiciion Lol -
| 173287 230707 7.98206 0 o (i C 100000 | 173287 0026828 0027015 0026204.0.028407 | 400
| 191062 23820  7.00000 0 a 3 | 2.000000 1092 | 0025014 0025272 O.0ZB004 0028158 | 401
| 178378 241732 ©.14010 o o o [ 3000000 178328 003378 0033067 0033774 0034020 02
| 187405 241734 600811 0 0 a ] S000008 | 187486 0020050 002058 0.026008 0.020084 o3
17.7387 240837 797613 ] o o o o 7.600000 177387 | 0028237 0.020144 0020252 0020483 | 404
| 1780% 236208 79180 0 [ a 0 (0500000 | {70000 0025407 0025700 002934 0020245 | 405
Histogram y yStatistics  Sample specira for prediction
2 s 08
mem | 1001 4
stdev | 330 o83
25 — gmi
med | 18.19 E
r—— 02
2 max [ 2701 3
0 At . 0
min | 1076 L R R e O O e TR TR e
S 400 800  BO0 1000 1200 1400 1600 1800
shes [ 45490 X-inbel

6. PLSR prediction
By clicking on “Run predictions”, you can obtain the results of the independent model validation.
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SPECTROSCOPY
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Appendix IIPrimary data

Wet chemistry results

Table 0.2 Concentrations of TTP, FAA and SS

The concentrations are the percentage of the dry matter

Sample code

Total tea polyphenols

Free amino acids

Soluble sugar

% % %
FD-1 17.33 240 7.98
FD-2 18.10 2.36 7.89
FD-3 17.63 242 8.15
FD-4 18.18 2.38 8.14
FD-5 16.75 242 8.10
FD-6 17.42 2.35 7.78
FD-7 17.74 241 7.98
FD-8 17.81 2.36 7.92
TC-1 2047 2.50 17.79
TC-2 21.38 247 7.88
TC-3 2043 2.44 7.53
TC-4 21.31 2.51 7.32
TC-5 20.49 248 747
TC-6 21.26 245 7.31
TC-7 20.39 2.50 7.55
TC-8 21.24 244 7.30
FY-1 17.22 2.64 8.13
FY-2 17.63 2.60 8.32
FY-3 18.31 2.66 8.41
FY-4 19.53 2.62 8.57
FY-5 18.06 2.68 8.77
FY-6 18.27 2.62 8.52
FY-7 17.29 2.67 8.63
FY-8 18.21 2.64 853
EC-1 19.25 2.97 747
EC-2 18.30 2.90 7.74
EC-3 18.48 291 7.49
EC-4 17.93 2.82 775
EC-5 18.03 3.19 748
EC-6 17.35 3.26 7.69
EC-7 19.77 2.71 7.51
EC-8 19.94 2.71 7.517
HD-1 26.10 2.15 724
HD-2 26.60 2.14 7.14
HD-3 28.90 2.09 7.29
HD-4 27.81 2.19 7.08
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SPECTROSCOPY

HD-5 26.06 2.07 6.92
HD-6 26.73 2.12 7.19
HD-7 2745 2.07 7.06
HD-8 27.07 2.06 7.16
MZ-1 23.59 221 7.87
MZ-2 22.51 2.19 8.00
MZ-3 23.15 2.26 7.81
MZ-4 22.85 221 7.63
MZ-5 21.27 243 7.62
MZ-6 20.12 2.34 7.52
MZ-7 21.20 234 7.74
MZ-8 2040 241 7.60
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