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ABSTRACT 

Cloud contamination in satellite images are a major obstacle for using these for glacial studies. A number 

of cloud masking algorithms using rule based or machine learning techniques are developed and still an 

active field of research. However, one common challenge in cloud making algorithms is the detection of 

clouds over bright surfaces like snow. The recent study on intercomparison exercise (CMIX) on cloud 

masking algorithms found that the popular cloud products of Sentinel-2, scene classification layer (SCL) 

and S2cloudless suffers from accurate detection of clouds over snow cover. These cloud masks are 

frequently used by the remote sensing community for cloud screening before image analysis. 

 

This study evaluates the three cloud masking methods available for Sentinel-2 images: level-1C cloud 

masks, SCL and S2cloudless for their cloud masking capabilities over the snow cover in high mountain 

glaciers of the Indian Western Himalayas. The results show that these cloud masking methods fail to 

distinguish snow from clouds in winter images. Level-1C performed the worst compared to SCL and 

S2cloudless. These cloud products also show wide overlap in their spectral signals in the Green and SWIR 

wavelengths which might explain the poor cloud masking by these products. 

 

The study also attempted to develop a cloud mask using the spectral properties of landcover features in 

the study area. The convex and non-convex clustering methods were used to find spectral classes 

belonging to cloud and landcover features in the Green and SWIR wavelength feature space. These cluster 

labels were then used to classify the images using nearest-neighbouring classifier. The resulting classified 

images were assessed for their accuracy over manually labelled cloud pixels. The non-convex cluster labels 

of Spectral clustering showed >85% cloud detection in both a summer and winter image. 
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1. INTRODUCTION 

1.1. Background 

1.1.1. Glaciers 

Glacial snow and ice act as freshwater reserves on the Earth surface. The High Mountain Asia (HMA), 

also known as the third pole or water tower of Asia, is the origin of major river systems like Indus, Ganga 

and Brahmaputra (Immerzeel et al., 2010). Apart from rainfall, these rivers are also fed from glacial snow 

and ice meltwater (Lutz et al., 2014). Snowmelt contributes nearly 50% to the annual freshwater 

requirements for nearly 700 million people in the plains of HMA across South Asia (Sarangi et al., 2020). 

Glacial snow and ice melt modulate the seasonal river flow patterns and provide water for irrigation in the 

absence of rainfall (Biemans et al., 2019). A stable glacier provides sustainable and long term discharge to 

river flow (Cuffey and Paterson, 2010).  

Global glacier changes are widely accepted as a climate change indicator (Scherler et al., 2011). Satellite 

remote sensing is crucial for monitoring and mapping glacier changes (Winsvold et al., 2016). The earth 

observation satellites now provide large volume of data for many applications that allows for consistent 

monitoring of the terrestrial systems. The terrestrial monitoring studies are mainly based on the optical 

remote sensing wavelengths (0.443 - 2.190 μm). It, however, suffers from the presence of cloud cover 

(Coluzzi et al., 2018). Satellite images have shown that clouds occupy nearly two-thirds of the global 

surface area (Boucher et al., 2013). Cloud presence is more frequently observed on mountains than in flat 

terrains (Winsvold et al., 2016). The occurrence of clouds in satellite images restrict the utilization of 

measured sensor parameters (López-Puigdollers et al., 2021). Clouds are thus, considered noise in the 

input satellite images and require to be removed for glacier studies (Mahajan and Fataniya, 2020). 

1.1.2. Clouds 

Clouds are a visible collection of suspended particles in the atmosphere made up of minute water droplets, 

ice crystals or a combination of both (Lutgens et al., 2010). They are formed when the water vapour in an 

air parcel attains saturation and condenses (Lutgens et al., 2010). The air parcel can saturate by various 

combination of pressure, temperature and humidity conditions. However, the most common process of 

cloud formation is the adiabatic expansion and cooling in a rising air parcel (Boucher et al., 2013; Lutgens 

et al., 2010). Clouds appear in many shapes and forms in the sky and can be broadly classified on the basis 

of form and height (Lutgens et al., 2010) as shown in Figure 1.1.  

The clouds show three distinct forms of cirrus, cumulus and stratus (Lutgens et al., 2010). Cirrus clouds 

are white in colour and form thin, wispy patches in the sky. Cumulus clouds appear as mixture of lumpy 

or spherical clouds. Stratus clouds, as the name suggest, appear as strata (layers) in the sky. Based on 

height of formation above the Earth surface, clouds can be described as low (< 2,000m), middle (2,000-

6,000 m) and high (> 6,000 m) level clouds (Lutgens et al., 2010). The altitudinal values used for the 

classification are not rigid and vary based on latitudes and seasons (Lutgens et al., 2010). Besides these 

clouds, there are also special clouds like cumulonimbus, mammatus etc. that cannot be put in these 

categories. 



CLOUD MASKING OVER GLACIAL SNOW COVER USING SENTINEL-2 CLOUD PRODUCTS AND SEMI-SUPERVISED IMAGE CLASSIFICATION IN THE INDIAN WESTERN 

HIMALAYAS. 

2 

 
Figure 1.1 Cloud types classification based on form and height. Source: (Lutgens et al., 2010) 

1.1.3. Spectral properties of clouds and snow 

Clouds can occur in various shades of white and grey in the sky for human eyes (Figure 1.1). Cirrus clouds 

are always white while rain bearing cumulonimbus clouds are darker. Clouds usually appear white due to 

the high reflectance in the visible wavelength but also possess high reflectance values in other wavelength 

ranges of the electromagnetic spectrum (Figure 1.2). In the optical remote sensing, clouds are classified 

either as dense (also can be called opaque) clouds or cirrus (also can be called translucent) clouds (Coluzzi 

et al., 2018). These clouds differ from each other on the basis of constituent particles. Dense clouds are 

made of water droplets and cirrus clouds are made up of ice crystals (Lutgens et al., 2010). Dense clouds 

are also found at low-medium altitudes and have high reflectance in the visible wavelength range. Cirrus 

clouds are high level clouds and are translucent in the visible wavelength. However, both of them have 

relatively high reflectance in the shortwave infrared wavelength (hereafter, SWIR) wavelength  (Warren, 

1982). Snow, on the other hand, only shows high reflectance in the visible wavelength (Figure 1.2). 

Coarser grained snow has much lower reflectance than fine-grained snow (Figure 1.2) in the near-infrared 

and reaches very low values in the SWIR wavelength (Warren, 1982).  

 

 
Figure 1.2 Spectral reflectance curve of snow, soil, clouds and vegetation in the visible, near-infrared and short-wave 

infrared wavelength. Source: (Dong, 2018). 
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The spectral behaviour of clouds in the SWIR wavelengths (1.4-3.0 μm) is governed by their composition 

– water droplets, ice crystals or a mixture of both. Clouds have higher reflectance in SWIR wavelengths 

compared to snow (Figure 1.2 & 1.3). Reflectance values are highest for cumulus clouds (subset of dense 

clouds) followed by cirrus clouds and snow (Figure 1.3). Cirrus clouds have smaller ice crystals than snow 

and hence higher albedo. Cumulus clouds have the highest reflectance among the three due to thicker 

cloud structure, relatively low absorption by water molecules and even smaller size of droplets than ice 

crystals of snow and cirrus clouds (Warren, 1982). 

 
Figure 1.3 Spectral reflectance curve of snow and cloud (cirrus & cumulus) in the SWIR wavelength. Source: 
(Warren, 1982). 

1.1.4. Satellite detection of clouds 

The literature suggest multiple algorithms for detecting clouds in satellite images. The cloud detection 

algorithms can be divided into single-date algorithms or multi-temporal algorithms based on the number 

of images used (Zhu and Helmer, 2018). Single-date algorithms uses one image and can be further 

categorized as rule-based or machine learning based methods (López-Puigdollers et al., 2021; Qiu et al., 

2019; Skakun et al., 2022). Rule-based methods are also known as threshold methods. These methods 

utilize the reflectance measurement in different spectral bands to identify the physical properties of clouds, 

such as ‘white’, ‘bright’, ‘cold’ and ‘high’ (López-Puigdollers et al., 2021; Qiu et al., 2019). The different 

spectral bands are integrated together to create spectral indices. Then, clouds are detected based on 

applying appropriate thresholds, either constant or dynamic, on these spectral indices (Qiu et al., 2019; 

Zhu and Helmer, 2018). For example, Luo et al. (2008) detected clouds in MODIS image using fixed 

reflectance threshold values. Some examples of rule-based adaptive threshold algorithms includes 

Function of mask (Fmask) and Sen2Cor (Zhu et al., 2015). On the other hand, the machine learning 

algorithms are simpler compared to the rule-based methods (Qiu et al., 2019). The algorithm requires 

manually annotated training data to build a statistical model for cloud detection (Hollstein et al., 2016; 

López-Puigdollers et al., 2021). The model classifies image pixels with possible cloud presence as ‘cloud 

class’ using a specific classifier. Examples of classifiers are ‘decision trees’, ‘neural networks’, ‘support 

vector machines’ etc. (Qiu et al., 2019).  

Multi-temporal cloud detection algorithms focuses on finding clouds as anomaly to the otherwise gradual 

landcover reflectance change (Zhu and Woodcock, 2014). By comparing the satellite image to a cloud-free 

reference image, the cloud pixels can be identified. Each multi-temporal algorithm has its own way of 

detecting cloud anomalies between target and reference image. For example, Wang et al. (1999) used 

brightness changes, Lyapustin (2008) used low covariance values, Hagolle et al. (2010) used differences in 
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blue band and Goodwin et al. (2013) used reflectance change from the smoothed time series values for 

detecting clouds.  

1.1.5. Sentinel-2 cloud products 

There are three ready to use cloud products with Sentinel-2 images (hereafter, standard cloud products). 

These are Level-1C cloud mask (hereafter, QA60 band), Scene Classification Layer (hereafter, SCL) cloud 

classes and S2cloudless map (Coluzzi et al., 2018; Main-Knorn et al., 2017; Zupanc, 2017). These standard 

cloud products are widely used for cloud screening in terrestrial monitoring studies. A detailed description 

of the data is given in Section 2.2.2. 

(Coluzzi et al., 2018) performed the first assessment on the Level-1C cloud masks and discussed the 

systematic underestimation of cloud detection in conditions of high atmospheric water vapour content 

(specifically over rain-forest areas) and over-detects in low atmospheric water vapour content over 

mountainous terrain. Specifically, snow and other bright surfaces (sand, buildings) were identified as 

clouds.  

The SCL map was evaluated over a test site in Antarctica with flat and mountainous topographic 

conditions, using images from both the satellite missions of Sentinel-2 (Sentinel 2-A and 2-B). The results 

obtained from this showed that the classes of water, snow and high cloud probability pixels were perfectly 

identified by Sen2Cor processor with both user’s and producer’s accuracy higher than 96% (Main-Knorn 

et al., 2017).  

The validation performance of S2cloudless with Sen2Cor is shown in Table 1.1 retrieved from the work 

by (Zupanc (2017). It can be observed that S2cloudless classifier (Sentinel Hub) performs better than 

Sen2Cor in classifying clouds and snow. Moreover, the misclassification rates are lower for S2cloudless 

across all labels except for shadow areas. 

Table 1.1 Cloud detection performance (in percent) of Sen2Cor and S2cloudless for 108 manually labelled reference 
datasets by (Hollstein et al., 2016). Source: (Zupanc, 2017) 

T
ru

e
 L

a
b

e
l 

 
Fraction of classifications as clouds 

Sen2Cor S2cloudless 

Cloud 97.5% 99.4% 

Cirrus 87.7% 83.8% 

Land 5.7% 2.2% 

Water 0.0% 0.1% 

Snow 30.7% 13.5% 

Shadow 3.9% 5.8% 

1.1.6. Image classification for cloud detection 

The image classification process mainly consist of two steps. The first step is the identification of spectral 

classes in the feature space followed by assigning spectral class labels to pixels using a classifier. Based on 

the priori information available for identifying spectral classes, the classification process can be 

categorized as supervised learning (Koutroumbas and Theodoridis, 2008). The prior knowledge refers to 

the availability of ‘training data’ which are also known as labelled data. The training data is the ground-

truth generated through field-work or manual image processing (Richards and Jia, 2005).  

https://docs.sentinel-hub.com/api/latest/user-guides/cloud-masks/
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In the absence of prior knowledge about the spectral classes, statistical methods is used to cluster similar 

but unlabelled pixel points in the feature space. This is known as un-supervised learning (Koutroumbas 

and Theodoridis, 2008). Semi-supervised classification is a mixed approach that progresses in a similar way 

to the supervised learning except that there are unknown classes along with training data (Koutroumbas 

and Theodoridis, 2008). In the absence or limited access to labelled data, semi-supervised pattern 

recognitions in images can be of great importance (Koutroumbas and Theodoridis, 2008). Labels are 

generated for the unlabelled data by clustering algorithms that respect certain constraints. The constraints 

are set to cluster similar pixels and keep dis-similar pixels separated. In this regard, the classification 

process imparts a priori information in the semi-supervised learning (Koutroumbas and Theodoridis, 

2008).  

Moving towards clustering methods, they can be broadly divided into convex and non-convex approaches. 

The convex methods like K-Means and Mean-Shift generate compact and spherical clusters due to the 

nature of distance algorithm used (Arthur and Vassilvitskii, 2007; Comaniciu and Meer, 2002). All data 

points within a distance ‘d’ in the feature space are grouped together, leading to spherical shape of clusters. 

On the other hand, the Spectral clustering method is a non-convex method (Yu and Shi, 2003). It reduces 

the dimensionality of the data by finding new eigen vectors. These eigen vectors are then clustered using 

K-means or Mean-Shift. This reduction of data dimension leads to non-spherical nature of clusters.  

1.1.7. Problem statement 

The standard cloud products are widely used for cloud screening in terrestrial monitoring studies (Coluzzi 

et al., 2018; Main-Knorn et al., 2017; Zupanc, 2017). In glacier studies, the removal of clouds is a 

necessary pre-processing step. However, the existing standard cloud products are not efficient in 

distinguishing clouds and bright surfaces like snow (Skakun et al., 2022). Snow, on the glacier surface, 

shows a range of reflectance values due to changes in grain size, presence of impurities, thickness of snow 

etc. It makes cloud and snow separation difficult using multi-spectral wavelength bands due to the varying 

reflectance of snow (Zhu and Helmer, 2018). Moreover, ice clouds also have very similar spectral 

signatures as snow (Zhu and Woodcock, 2014), which adds to the problem of distinguishability. 

The existing cloud products, such as the output of the QA60 band, has been explained to suffer from a 

large number of undetected clouds (Coluzzi et al., 2018). Sen2Cor is considered to be a powerful 

algorithm that reduces affects by meteorological conditions and the sun angle but showed inability to 

detect cloud boundaries (Skakun et al., 2022). Moreover, S2cloudless provides a computationally fast 

classification where the processing is done per pixel of input image (Skakun et al., 2022). However, it 

produced errors when discriminating bright objects like snow.  

Automatic accurate cloud detection is also difficult due to complexities in cloud types and inadequate 

spectral bands to decipher cloud physical properties (Zhu and Woodcock, 2014). The earlier Landsat 

missions struggled to detect clouds due to their limited bands (Zhu and Helmer, 2018).  

Properties of clouds make it difficult to be detected for instance thicker clouds block solar radiation while 

thinner clouds retrieve a mixed spectral behaviour with the underlying landcover (Zhu and Woodcock, 

2014). The single image cloud detection requires benchmarks, for both rule-based and machine learning 

based methods, in order to evaluate and refine the algorithms and boost its performance (Hollstein et al., 

2016; López-Puigdollers et al., 2021). However, synchronous ground truth measurements of clouds, 

aligning with the satellite revisit time, can be difficult due to large areas covered instantly by satellite 

sensors and other complexities regarding sensor conditions and time constraints (Hollstein et al., 2016). 

Therefore, the manual visual-interpretation and labelling of cloud pixels is considered an accurate cloud 

detection method (Hollstein et al., 2016; López-Puigdollers et al., 2021; Qiu et al., 2019; Skakun et al., 
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2022). The manual cloud classification is however, time consuming and not feasible for large image 

collections. In such cases, multi-temporal cloud algorithms would be preferred. However, a serious 

drawback of such an algorithm is the assumption that the landcover remain stable in its reflectance values 

and does not change appreciably (Zhu and Woodcock, 2014), which may not be the case in reality.  

The description of cloud detection obstacles mentioned above is the motivation behind defining the 

objectives of this study. The main aim of this study is twofold. First, the focus is on inspecting the cloud 

masking capability of standard products in different seasons over a glacierized catchment of Indian 

Western Himalayas, where clouds and snow (or ice) are expected to coexist. The capabilities will be 

explored in a spatial, temporal and spectral context. Secondly, the study aims to develop a cloud mask 

based on semi-supervised image classification techniques as a possible improvement to the currently 

available cloud masks.   
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1.2. Research objective 

The main objective of this thesis is “To evaluate the cloud masking capability of Level-1C cloud mask, 

Scene Classification Layer, S2cloudless map and develop a cloud mask using semi-supervised image 

classification techniques for the glacial snow cover in the Indian Western Himalayas”. 

1.2.1. Sub-objective 1 

To assess the cloud masking capability of Level-1C cloud mask, Scene Classification Layer and S2cloudless 

map in discriminating clouds over a glacierized catchment of Indian Western Himalayas. 

Research questions 

1.1. How does the visual interpretation differ for cloud masking by standard cloud products in a 

cloudy summer and winter image? 

1.2. How does the visual interpretation differ for cloud masking by standard cloud products in a 

cloud-free summer and winter image? 

1.3. What is the time-series behaviour of standard cloud products for glacial and non-glacial 

regions in the study area?  

1.4. How does the standard cloud products discriminate spectral signals of permanent snow cover 

and bare rock areas in the reflectance values of Green and SWIR wavelengths?   

The first research question evaluates the mono-temporal (fixed-date) images for cloud masking 

capabilities. The second and third research question evaluates the temporal and spectral characteristics of 

the standard cloud products. 

1.2.2. Sub-objective 2 

To develop a cloud mask over glacial snow cover by applying semi-supervised image classification 

techniques using Green and SWIR wavelength bands of Sentinel-2. 

Research questions 

2.1. What is the spectral behaviour of glacial and non-glacial areas in the Green and SWIR 

wavelengths? 

2.2. How does clouds exhibit their spectral signals in the Green and SWIR wavelength reflectance of 

glacial and non-glacial areas?  

2.3. How does the standardization of reflectance data affect the clustering process? 

2.4. How does the optimum number of clusters vary for different clustering methods? 

2.5. What are the cloud classes identified using different clustering methods in nearest-neighbour 

image classification? 

2.6. Which clustering method performs better at cloud masking over glacial snow cover? 

The first five research questions relate to the development of cloud masks using semi-supervised image 

classification while the last research question assesses the accuracy of cloud masks generated through 

different clustering methods. 
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1.3. Thesis structure  

This MSc thesis consist of five chapters including this Introduction chapter. The fulfilment of thesis 

objectives required separate methods, results and discussion sections for cloud masking by existing 

standard cloud products and development of a new cloud mask using semi-supervised image processing.  

This lead to defining chapters for sub-objectives and hence, this format is used.  

 

Chapter 1 is this introduction itself. It provides the context of the study, the state-of-the-art on cloud 

masking techniques before introducing the problem statement and research objectives. 

 

Chapter 2 introduces the study area, data and software used in this study. The climatology, geographical 

location and  surface characteristics are provided for the study area. The data section details the sensor 

characteristics of Sentinel-2 and its spatial and temporal resolution. The standard cloud products are also 

introduced. The software used for data processing is also mentioned.  

 

Chapter 3 evaluates the cloud masking by the standard cloud products of Sentinel-2 on various 

parameters. The chapter looks at the problems and potential associated with the use of standard cloud 

products. It builds on the need for cloud free images for terrestrial studies. The work looks at the 

capability of these cloud products to detect clouds and especially discriminate clouds from bright snow 

surfaces. 

 

Chapter 4 looks at manual cloud identification by semi-supervised image classification using Green and 

SWIR wavelength bands of Sentinel-2. It involves unsupervised statistical separation of clouds and 

landcover signals using different clustering methods. The clustering labels are then used for supervised 

nearest-neighbour image classification. The results are evaluated for best clustering labels for cloud class 

detection. This class is used to mask clouds from images. 

 

Chapter 5 synthesizes the  results and observations made in the Chapter 3 and 4 to provide the overall 

summary of the work done in this thesis along with  the  limitation s posed  and recommendations made  

for  future work. 

 
 
. 
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2. STUDY AREA, DATASET AND SOFTWARE 

2.1. Study area 

The Indian Western Himalayas (IWHs) are home to one of the largest river systems of the world - the 

Indus and the Ganges rivers (Frey et al., 2012). This region contains Ladakh, Zanskar and Pir Panjal 

ranges of the Himalayan mountain system. The southern slopes of Pir Panjal ranges are heavily forested 

due to the orographic precipitation by moisture laden monsoonal winds (Frey et al., 2012). In contrast, the 

northern regions of these mountain ranges are arid and non-vegetated. The Chandra basin lies north of 

the Pir Panjal ranges. The basin is heavily glacierized and the glacial discharge is the source of Chandra 

river, which is a tributary of the Indus river (Azam et al., 2014). Chhota Shigri Glacier (hereafter, CSG) lies 

within the Chandra basin on the northern slopes of Pir Panjal ranges (Figure 2.1(a)).  

 

The glacier lies on the transition between monsoon-arid climatic zone (Azam et al., 2014). The 

precipitation regime is characterized by two dominant and independent atmospheric circulations. The 

glacier receives precipitation by the Indian Summer Monsoon (hereafter, ISM) during summer months 

(July-September) and by Mid Latitude Westerlies (hereafter, MLW) during winter months (January-April) 

(Azam et al., 2014; Bookhagen and Burbank, 2010). Precipitation measurements in the year 2012-13 

showed that the contribution by the MLW and ISM was 80% and 20%, respectively on CSG, making it a 

winter accumulation type glacier (Azam et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 CSG in the Chandra basin of Lahaul and Spiti valley in the Indian state of Himachal Pradesh, Western 
Himalayas. Figure (a) shows the glaciers (light blue) of Chandra basin (black outline) in the Indian subcontinent (in 
inset), including the CSG (dark blue). The Pir Panjal ranges and the general direction of dominant precipitation 
systems ISM and MLW are also shown. Figure (b) shows the enhanced glacierized catchment of CSG (blue outline). 
The true colour image is dated 21-09-2022. The glacier outline is taken from the Randolph Glacier Inventory. 
Source: RGI Consortium (2017) https://www.glims.org/RGI/). 

(a) (b) 

https://www.glims.org/RGI/
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The CSG (32.280 N, 77.580 E) is a valley glacier mainly oriented along the north-south direction (Figure 

2.1(b)). The mass accumulation zone at the higher elevation containing permanent snow cover lies to the 

south with mass ablation/melting zone in the north. The glacier occupies a surface area of 15.7 km2 and 

the main glacier body in the north-south direction is approximately 9 km long (Wagnon et al., 2007). The 

glacier is fed by many tributaries of varying orientation (Figure 2.1(b)). The northward flow of tributaries 

creates medial moraines (catchment debris) after joining the main glacier body. These medial moraines can 

be seen as long stretches of catchment rocks within the glacier body (Figure 2.1(b)). The lower reaches of 

the glacier (in the north) are also partially covered by catchment debris accounting for 3.4% of the total 

surface area (Vincent et al., 2013). 

2.2. Dataset 

2.2.1. Sentinel-2 surface reflectance product 

Sentinel-2 is a constellation of two polar-orbiting sun-synchronous satellite mission launched by the 

European Space Agency (ESA) (Drusch et al., 2012). The first satellite Sentinel-2A was launched on 23rd 

June, 2015 followed by the second satellite Sentinel-2B on 7th March, 2017 (Main-Knorn et al., 2017). The 

twin-satellites host a Multi-Spectral Instrument (MSI). The MSI measures the reflected radiance from the 

Earth surface in 13 spectral bands. It has 4 bands in visible, 6 in near-infrared and 3 in short-wave infrared 

wavelengths (SWIR) (Table 2.1). The reflectance values, theoretically between 0-1, are scaled by 10,000 in 

all the 13 spectral bands of Sentinel-2 images. 

 
Table 2.1 Spatial and spectral resolution of Sentinel-2 satellite missions. Source: 
(https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument, last access 01-08-
2022). 

Band 

Number 
Band Name 

S2A S2B 
Spatial 

resolution 

(m) 

Central 

wavelength 

(nm) 

Bandwidth 

(nm) 

Central 

wavelength 

(nm) 

Bandwidth 

(nm) 

1 Coastal aerosols 442.7 20 442.3 20 60 

2 Blue 492.7 65 492.3 65 10 

3 Green 559.8 35 558.9 35 10 

4 Red 664.6 30 664.9 31 10 

5 Vegetation Red Edge 704.1 14 703.8 15 20 

6 Vegetation Red Edge 740.5 14 739.1 13 20 

7 Vegetation Red Edge 782.8 19 779.7 19 20 

8 Near-infrared (NIR) 832.8 105 832.9 104 10 

8a Vegetation Red Edge 864.7 21 864 21 20 

9 Water vapour 945.1 19 943.2 20 60 

10 SWIR -Cirrus 1373.5 29 1376.9 29 60 

11 SWIR 1613.7 90 1610.4 94 20 

12 SWIR 2202.4 174 2185.7 184 20 

 

Sentinel-2 provides open access data in moderate spatial (10,20 and 60 m) and spectral resolution (Table 

2.1). The satellite revisit time is 10 days at the equator and with two satellites, every 5 days an image is 

available. Sentinel-2 also provides two levels of data. Level-1C is top-of-atmosphere data whereas Level-

https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument
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2A is bottom-of-atmosphere (or surface reflectance) data. Level-2A is atmospheric corrected product of 

Level-1C using Sen2Cor algorithm (Main-Knorn et al., 2017). The Level-2A images comes with additional 

maps of Aerosol Optical Thickness (AOT), Water Vapour (WP) and Scene Classification Layer (SCL). It 

also provide probability maps for snow and cloud classes at 60 m spatial resolution. Sentinel-2A bottom-

of-atmosphere data is used in this study. The broad properties of the image collection is shown in Table 

2.2. The at sensor radiance values are converted to reflectance values. One of the image in the image 

collection partially cover the study area. This image is unusable for any analysis and hence dropped from 

the image collection. The image is dated 25-11-2021 (Image ID: 

20211125T053141_20211125T053958_T43SGR). 

 

Table 2.2 Overview of Sentinel-2 image collection used in this study 

Total number of images used in the study 257 

First image date 16-12-2018 

Last image date 23-06-2022 

Data type Reflectance 

Band value range 0-10,000 (scaled by 10,000) 

2.2.2. Sentinel-2 cloud products (standard cloud products) 

The three open-source cloud products for Sentinel-2 are discussed in detail in the following sections: 

2.2.2.1. The Level-1C cloud mask (QA60 band) 

The Level-1C cloud mask is a vector layer in Geography Markup Language (GML) (Coluzzi et al., 2018). 

The vector band is associated with each raster image as a band named ‘QA60’. The cloud masks gives 

dense and cirrus cloud classes calculated using Sentinel-2 Level-1C (top-of-the-atmosphere) reflectance 

products  (https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks, 

last access 01/08/2022). The bands used for cloud masking are resampled at 60m spatial resolution. For 

dense clouds, a threshold on the blue wavelength band B2 (0.490 μm) of Sentinel-2 is applied. The 

thresholds are variable in nature due to scene-dependence of reflectance values. Snow and clouds are 

separated using SWIR wavelength bands B11 (1.610 μm) and B12 (2.190 μm). For cirrus clouds, additional 

Sentinel-2 Band 10 (1.375 μm) is used. It is the water vapour band of Sentinel-2 and only high altitude icy 

clouds reflect solar radiation while the rest of radiation is absorbed by the atmosphere (Drusch et al., 

2012). In the QA60 band, the value 0, 1024 and 2048 represent cloud-free, dense cloud and cirrus cloud 

respectively. 

2.2.2.2. The SCL cloud map 

The SCL algorithm generates an 11 class classification layer that include three cloud classes (Main-Knorn 

et al., 2017). SCL classes are not landcover classification in the conventional sense, since the classes are 

derived after applying thresholds to values of different wavelength bands, band ratios and normalized 

indices (Main-Knorn et al., 2017). This SCL map is a product of Sen2Cor processor which corrects 

atmospheric effects on the Level-1C (top-of-the-atmosphere) images to produce Level-2A (bottom-of-

the-atmosphere) images (Main-Knorn et al., 2017). The processor first detects cloud and generates SCL 

map followed by Aerosol Optical Thickness (AOT) and water vapour retrieval. The resulting SCL classes 

and their labels are shown in Figure 2.2. In the final SCL map, there are three cloud classes ‘8’, ‘9’ and ‘10’ 

of medium, high and cirrus clouds, respectively. Cloud shadows also have their own class ‘3’. The Sen2Cor 

processor is robust and takes less than 5 mins for processing a full image tile (Skakun et al., 2022). It also 

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks
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provides cloud mask at a moderate spatial resolution of 20m, sufficient for cloud screening in terrestrial 

monitoring applications (Main-Knorn et al., 2017). 

 
Figure 2.2 SCL map values for each label. Source (https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-
msi/level-1c/cloud-masks, last access 01/08/2022). 

2.2.2.3. The S2cloudless map 

The S2cloudless is a single scene algorithm for pixel based cloud detection in Sentinel-2 images using 

machine learning techniques (Zupanc, 2017). The research team at Sinergise (https://www.sinergise.com/, 

last access 01/08/2022) is credited with the development of S2cloudless algorithm. S2cloudless algorithm 

gives a per pixel (10, 20 or 60m) cloud cover probability (in %) based on the spectral response of the pixel 

(Zupanc, 2017). The ten wavelength bands of Level-1C products are used in the algorithm. These are B1, 

B2, B4, B5, B8, B8A, B9, B10, B11 and B12. The application of the algorithm is independent of the image 

resolution (Skakun et al., 2022). A cloud mask can be made by converting the cloud probability map to a 

binary map by thresholding. The default value is set at 0.4 (40%) to minimize omission errors (Skakun et 

al., 2022). The algorithm also allows additional processes for e.g. morphological operations to improve 

cloud detection capabilities. 

2.3. Software 

The software are used for data downloading, processing and creating visual outputs. Owing to the large 

size of image collection, a system with high computational power is required. The cloud computing facility 

of Google Earth Engine (hereafter, GEE) is used to solve this issue. On the other hand, the clustering 

methods were applied on a small dataset and hence were performed on the local system. The geographic 

maps were created using QGIS, an open source geographic information system (QGIS.org, 2022). 

 

The web version of GEE is limited in the availability of image processing algorithms. However, it 

provides customization through different Application Programming Interface (hereafter, API). 

Introduction to GEE, along-with the Python API (‘geemap’) used to access the platform is given in 

Section 2.3.1. Its application is shown in Chapter 3 and 4 (Section 3.2 and 4.2, respectively). The clustering 

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks
https://www.sinergise.com/
http://www.qgis.org/
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algorithms were accessed from an open-source Python module ‘Scikit-learn’. The clustering algorithms are 

used in Chapter 4 (Section 4.2). 

2.3.1. Google Earth Engine  

GEE is a cloud computing platform by Google which is capable of “planetary-scale geospatial analysis” 

(Gorelick et al., 2017). GEE provides a wide collection of geo-spatial and satellite data in its multi-

petabyte repository. It can be accessed on a web-based interactive environment or through Application 

Programming Interface (API) services. The ‘geemap’ is an interactive Python package that utilizes the API 

services of GEE (Wu, 2020). The ‘geemap’ python package allows access to GEE using pre-defined codes 

and algorithms which can be modified based on requirements.  

 

The interactive mapping environment of ‘geemap’ relies on the ‘Jupyter’ notebook (Wu, 2020). The 

‘Jupyter’ notebook is an interactive web based computational notebook for programming languages 

(https://jupyter.org/, last access 01-08-2022), in the Python distribution ‘Anaconda’. The ‘Anaconda’ 

distribution manages the packages of Python and R programming languages for scientific processes 

(https://www.anaconda.com/products/distribution, last access 01-08-2022). It contains 250 installed 

packages and over 7,500 additional open-source packages. 

2.3.2. Scikit-learn  

Scikit-learn provides a broad range of popular supervised and un-supervised machine learning algorithms 

(Pedregosa et al., 2011). It is an open-source, straight-forward interface built on Python programming 

language. It is designed to provide easy-to-use statistical analysis of data by non-computer science 

background people (Pedregosa et al., 2011). It is used to perform unsupervised classification methods of 

K-Means, Mean-Shift and Spectral clustering for image analysis in this study. 

 

 

 
  

https://jupyter.org/
https://www.anaconda.com/products/distribution
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3. CLOUD MASKING OVER SNOW COVER USING 
SENTINEL-2 CLOUD PRODUCTS 

3.1. Background 

This chapter aims to evaluate the cloud masking capabilities of standard cloud products over glacial snow 

cover in a glacierized catchment of the Indian Western Himalayas. Sentinel-2 is equipped to address the 

clouds contamination issue in the optical satellite imagery for land surface studies. The Sentinel-2 missions 

are devoid of spectral bands in the thermal infrared wavelength unlike Landsat and ASTER missions, its 

13 multi-spectral bands are useful enough for cloud screening in optical images (Coluzzi et al., 2018).  

The Level-1C cloud masks suffer from a large number of undetected clouds especially for cirrus clouds. 

The cloud masks under-detects in conditions of high atmospheric water vapour content over rain-forests 

and over-detects in low atmospheric water vapour content over mountainous terrain (Coluzzi et al., 2018). 

Sen2Cor under-detects clouds on cloud edges and water bodies (Skakun et al., 2022). It also faces 

difficulty in distinguishing clouds and bright surfaces like buildings or snow areas. S2cloudless is also 

prone to misclassification of bright surfaces as clouds (Skakun et al., 2022). It cannot provide cloud 

shadow masks and does not take spatial information around pixels into account for cloud detection. 

The evaluation of these cloud detection algorithms is also limited due to scarce availability of  ‘ground 

truths’ dataset (Main-Knorn et al., 2017; Qiu et al., 2019). The cloud masks are validated against reference 

cloud and cloud-free scenes. These reference images are made by either expert interpretation of satellite 

images or generated through models (Qiu et al., 2019). In case of a large image collection like Sentinel-2, 

the validation procedure becomes even more difficult due to sparse geographical distribution of global 

reference dataset (Skakun et al., 2022). 

The standard cloud products for Sentinel-2 are widely used for cloud screening in terrestrial monitoring 

studies. However, the limitations posed by standard cloud products makes them unsuitable for surface 

change studies over bright surfaces in mountainous terrain. Therefore, this study aims to evaluate the 

capability of standard cloud products in successful discrimination of clouds over glacial snow and ice in 

the Indian Western Himalaya. 

3.2. Methods 

This chapter focuses on the first sub-objective of this study “to assess the cloud masking capability of 

Level-1C cloud mask, Scene Classification Layer and S2cloudless map in discriminating clouds over a 

glacierized catchment of Indian Western Himalayas.” There are three main steps followed in this 

methodology: 

1. Cloud masking in mono-temporal images – to address Research Questions 1.1 and 1.2 

2. Time-series behaviour of standard cloud products – to address Research Question 1.3 

3. Spectral behaviour of standard cloud products – to address Research Questions 1.4 

3.2.1. Cloud masking in mono-temporal images  

1. Selection of cloud-covered and cloud-free images from the image collection. 
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• Required number of images – images are selected for months of September and December. 

September is the end-of-summer month when the snow cover is expected to be at minimum 

and all landcover features are usually exposed (Azam et al., 2014). The glacier starts receiving 

precipitation by December and becomes completely snow covered (Azam et al., 2019). 

Another reason for the selected months is to account for the variability in cloud types, 

associated with two independent and dominant summer and winter precipitation mechanisms 

(ISM and MLW, respectively) over the study area (see, Section 2.1). Spring and autumn 

months will likely have landcover transitioning between complete snow cover and exposed 

glacier hence, they are not preferred to be used for this study.   

• Band combinations for cloud detection – the Sentinel-2 band combination used to identify 

clouds in the image collection are 11,8,3 and 4,3,2 corresponding to the SWIR, Near-infrared, 

Green and Red, Green, Blue wavelengths, respectively. The band combinations are chosen as 

they theoretically distinguish clouds and snow (Figure 1.2). Similar band combinations were 

used for manual cloud detection in Sentinel-2 images by (Hollstein et al., 2016). (Hollstein et 

al., 2016) used the Sentinel-2 band combination of 2,8,10 (among other band combinations) 

to detect and digitize the cloud cover in an example scene. These bands correspond to the 

Blue, Near-infrared and Cirrus wavelength bands of Sentinel-2 Level1-C data. However, the 

Sentinel-2 band 10 (Cirrus band) is a water vapour band and is not available for Level-2A 

products used in this study.  

• Selection of cloud-covered and cloud-free images for summer and winter months – the cloud 

cover and cloud-free images are selected by looking at the image composites for the month of 

September and December in the image collections. Partial cloud covered images are selected 

to ensures that the performance of cloud masks in demarcating cloudy and non-cloudy areas 

can be better compared.  

The image identification of partly cloud covered Sentinel-2 images selected are 

‘20211001T052649_20211001T052746_T43SGR’ (dated ‘01-10-2021’) for the end-of-summer 

month and ‘20201205T053209_20201205T053212_T43SGR’ (date ‘05-12-2020’) for the winter 

month. The Sentinel-2 image identification of cloud-free summer and winter month images are 

‘20200921T052651_20200921T053331_T43SGR’ (dated ‘21-09-2020’) and 

‘20210109T053211_20210109T053213_T43SGR’ (dated ‘09-01-2021’) respectively. 

2. Visual interpretation of images with the standard cloud products. 

• Digitization of cloud cover – The spectral band combinations mentioned above highlights the 

visual differences between clouds and landcover classes. The manual labelling of pixels was 

done using false colour composites of 11,8,3 and 4,3,2 bands and taking into account the 

‘spatial context’ of clouds in the image scene. The spatial context is deemed crucial for 

accurate digitization of image features (Hollstein et al., 2016). It includes the location of image 

features and their relationship with neighbouring pixel features. For example, the cloud 

shadows lie adjacent to the cloud in the image and depends on the sun angle. It may also 

completely cover the landcover or in the case of cirrus clouds make the landcover signals 

attenuated (Zhu and Helmer, 2018). Cloud shadows may also come from neighbouring image 

scenes (Hollstein et al., 2016). The manual interpretation of clouds unfortunately imparts 

some subjectivity to the study. The results of digitization is shown in Appendix A. 

• Visual interpretation of cloud-covered and cloud-free images of summer and winter – the 

manually digitized cloud covered areas in false colour composite (11,8,3 band combination) 
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are compared with the cloud detected areas in standard cloud products. The cloud-free 

images are also used to inspect for any cloud detection in standard cloud products.   

3.2.2. Time-series behaviour of standard cloud products 

1. Creating glacial and non-glacial polygons – the time series of standard cloud product are studied 

for some representative areas within the study area. These representative areas are selected on the 

glacier (for snow and ice features) and around the glacier on seasonal bare rocks. The details are 

given in Appendix B. 4 glacial and 4 non-glacial polygons are made.   

2. Extracting QA60 band, SCL band and S2cloudless map values for the glacial and non-glacial 

polygons from the image collection – this is done in Google Earth Engine. 

3. Visual interpretation of time-series behaviour of standard cloud products taking the glacial and 

non-glacial polygons as focused areas. The trends observed by standard cloud products are then 

plotted and key observations are made. 

3.2.3. Spectral behaviour of standard cloud products 

1. Selecting glacial and non-glacial areas for examining the spectral behaviour in standard cloud 

products. In this case, glacial_1 is representing an area that is permanent snow cover, thus the 

corresponding attribute can either be snow or cloud for this polygon. Similarly, non_glacial_1 can 

be bare rock in summer, snow in winter and clouds whenever cloud are present over the polygon.  

2. Extracting reflectance values from Green and SWIR wavelength bands for the reference polygons 

– Google Earth Engine is used to extract the reflectance values of Green and SWIR wavelengths 

for glacial_1 and non_glacial_1 polygons. 

3. Time-series and scatterplot of reflectance values of Green and SWIR wavelength, colour coded 

with standard cloud product band values of cloud classes. The reflectance values are graphically 

presented and visually interpreted for the relationship between cloud occurrence with the 

reflectance values. 

3.3. Results 

Sub-objective 1: To assess the cloud masking capability of Level-1C cloud mask, Scene Classification 

Layer and S2cloudless map in discriminating clouds over a glacierized catchment of Indian Western 

Himalayas. 

3.3.1. Standard cloud products in cloudy and non-cloudy images during summer and winter 

Figure 3.1. shows the visual comparison between the three standard cloud products and a cloudy summer 

image in false colour composite. The false colour composite highlights the differences between cloud and 

landcover. The manually digitised cloud polygons (hereafter, true cloud cover) are also overlayed in all the 

images (Figure 3.1 a,b,c,d). As per visual inspection, it can be seen that S2cloudless and SCL band cover a 

similar cloud extent as the true cloud cover. However, QA60 band identifies cloud to some extent but the 

smaller cloud areas were not detected. 
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Figure 3.1 Cloud detection by standard cloud products in a summer cloudy scene. True cloud cover is shown by a 
polygon. Figure (a) shows the false-colour-composite. Figure (b), (c) and (d) shows the image in QA60 band, SCL 

and S2cloudless, respectively. 

Similarly, Figure 3.2 exhibits the visuals for comparing standard cloud products and the true cloud cover 

for a winter cloudy image. Here, QA60 band (Figure 3.2 (b)) seems to fail in identifying cloud areas by 

classifying the entire image scene as cloud covered. SCL (Figure 3.2 (c)) does classify the bigger cloud 

polygon as high cloud probability but simultaneously assigns majority of the image with medium cloud 

probability. S2cloudless (Figure 3.2(d)) displays high probability value for area covered by clouds as well as 

other areas in the image scene. Though, SCL and S2cloudless are identifying the polygon in Figure 3.2 (a) 

as cloud, they also misclassify a large area of the scene as possible cloud cover.  
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Figure 3.2 Cloud detection by standard cloud products in a winter cloudy scene. True cloud cover is shown by a 

polygon. Figure (a) shows the false-colour-composite. Figure (b), (c) and (d) shows the image in QA60 band, SCL 
and S2cloudless, respectively. 

Figure 3.3 shows standard cloud products compared with the image in false colour composite for a 

summer cloud-free image. In Figure 3.3 (b), QA60 band labels significant area as cloud in the scene 

exhibiting a randomised pattern. SCL (Figure 3.3 (c)) classifies areas with high reflectance in SWIR as 

clouds. Figure 3.2 (d) referring to S2cloudless also assigns high cloud probability along thinly-defined 

patterns in some parts of the scene. 
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Figure 3.3 Cloud detection by standard cloud products in a summer cloud-free scene. True cloud cover is shown by a 

polygon. Figure (a) shows the false-colour-composite. Figure (b), (c) and (d) shows the image in QA60 band, SCL 
and S2cloudless, respectively. 

Figure 3.4 displays standard cloud products comparing to the winter cloud-free image in false colour 

composite. The visual comparison suggests an overall poor performance by standard cloud products. 

QA60 band classifies the entire scene as cloud in a cloud-free image. SCL along with S2cloudless also 

classify large portions of the scene as high probability for cloud presence. 
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Figure 3.4 Cloud detection by standard cloud products in a winter cloud-free scene. True cloud cover is shown by a 
polygon. Figure (a) shows the false-colour-composite. Figure (b), (c) and (d) shows the image in QA60 band, SCL 

and S2cloudless, respectively. 

 

3.3.2. Time-series behaviour of standard cloud products 

Each polygon, glacial and non-glacial, covers 100 pixels of 10m spatial resolution each. Therefore, one  

image contains 8 polygons. Each of the 8 polygons will retrieve a mean value from an image band (the 

image band refers to the standard cloud product). Thus, for one image, there are 8 mean image band 

values. For the entire image collection, with 253 images, there are 8x253 mean image band values. These 
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values, along with their standard deviation, are plotted as time-series for the three standard cloud products 

(Figure 3.5, 3.6 and 3.7). 

Since the QA60 band can only have no-clouds (0 band value), opaque clouds (1024 band value) and cirrus 

clouds (2048 band value), the presence of intermediate band values indicate the presence of non-

homogenous polygons. Polygons containing both clouds and no-clouds pixels in different proportions 

lead to this non-homogenous nature.  

The time-series, of QA60 band, shows peculiar behaviour of no-clouds (0 band value), opaque clouds 

(1024 band value) and cirrus clouds (2024 band value). The majority of representative polygon values are 

classified as opaque clouds followed by no-clouds and cirrus clouds (Figure 3.5). Almost all the no-clouds 

values lie in the summer months of June to October. Interestingly, after April 2021, the proportions of 

no-cloud values increase relative to opaque cloud values. However, no polygon values are classified as 

either opaque or cirrus clouds after February 2022.  

 
Figure 3.5 Time-series of QA60 band value for all the representative polygons in the study area. 

The time series of mean SCL band classes for all representative polygons is shown in Figure 3.6. The 

figure shows that most of the representative polygons are classified as the class 

‘CLOUD_MEDIUM_PROBABILITY’. The majority of ‘SNOW’ class is present in the summer months 

and dominated by glacial polygons. The summer months also show the presence of the class 

‘CLOUD_HIGH_PROBABILITY’ and only one polygon has a mean band value belonging to the class 

of ‘CLOUD_SHADOWS’. Notably, some of the polygon have mean band values which are interpreted as 

the class ‘WATER’ during the summer months.  
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Figure 3.6 Time-series of SCL for all the representative polygons in the study area. 

The time series of mean S2cloudless band value for all representative polygons along with their standard 

deviation is shown in Figure 3.7. The series show a recognisable pattern between winter and summer 

months. The winter months have above 90% cloud probability and the values are almost mutually 

exclusive with summer months. All intermediate values between 0-100% have high standard deviation, 

representing non-homogenous polygon values. 

 
Figure 3.7 Time-series of S2cloudless for all the representative polygons in the study area. 

The true-colour-composites of a cloud-free image for every month of 2019 is shown in Figure 3.8. This 

implies that there is at-least one image in each month where the standard cloud products should not show 
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any cloud presence for the year 2019. Figure 3.8 also shows the colour change of bright snow cover to 

displaying a brownish tinge during summer months (Figure 3.8 (f, g, h and i)). 

 
Figure 3.8 Cloud-free true-colour composites of Sentinel-2 images during each month (Figure (a–l)) of the year 2019. 
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3.3.3. Spectral behaviour of standard cloud products 

Two polygons were selected from the 8 representative polygons namely, glacial_1 and non_glacial_1. The 

glacial_1 polygon was drawn over an area of permanent snow cover. On the other hand, non_glacial_1 

was drawn over seasonal bare rock. The reflectance values in the Green and SWIR wavelengths were 

extracted from the image collection for these two polygons and graphically represented as a scatterplot in 

Figure 3.9. The reflectance values are colour coded according to the classification by standard cloud 

products.  

The glacial_1 polygon is expected to have either snow or cloud spectral signals in the scatterplot (Figure 

3.9(a, c, e)), whereas the non-glacial_1 polygon is expected to transition between rocks and snow with 

possible occurrence of clouds Figure 3.9(b, d, f). Snow has low reflectance in SWIR wavelength where 

clouds have high reflectance (Figure 1.2). Therefore, this distinction should be reflected in the standard 

cloud products. For instance, the QA60 band should distinguish cloud values (1024 and 2048) from no-

cloud value (0) in the SWIR wavelength. However, the cloud label 1024 (black colour in Figure 3.9 (a)) 

covers the entire range of reflectance values in the SWIR wavelength.  The no-cloud label 0 (blue colour in 

Figure 3.9 (a)) also has a widespread in the reflectance values of SWIR wavelength. This behaviour is also 

observed in the SCL and S2cloudless cloud classes (Figure 3.9 (c, e)).  

 

Figure 3.9 Scatterplot between reflectance values of Green and SWIR wavelengths for glacial_1 (a, c, e) and 
non_glacial_1 (b, d, f) polygon.  The reflectance values are colour coded by the standard cloud products. QA60 band 
(a, b); SCL (c, d); S2cloudless (e, f).  
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3.4. Discussion 

Research Question: 1.1: How does the visual interpretation differ for cloud masking by standard cloud 

products in a cloudy summer and winter image? 

The QA60 band visually interprets major cloud cover correctly for the summer image. However, it is not 

able to delineate a clear boundary for the cloud shape as compared to the SCL and S2cloudless which 

match very well with the true cloud cover (manually digitised clouds) as seen in Figure 3.1. 

The SCL and S2cloudless are able to detect true cloud covered areas, both in summer and winter images 

(Figure 3.1, 3.2). However, they overestimate cloud cover for majority of the study area in the winter 

image (Figure 3.2). The false colour composite shows the true cloud areas as reddish (of high SWIR 

reflectance) and the non-cloudy areas in hues of green and blue (of high Green and NIR but low SWIR), 

indicative of snow cover (Dong, 2018). Therefore, the SCL and S2cloudless estimate both clouds and 

snow as cloud cover in the winter image. This implies that the SCL and S2cloudless fail to spectrally 

separate cloud and snow signals in winter. Since the study area receives maximum precipitation as snowfall 

in winter (Azam et al., 2014), the freshly fallen snow in winter may have higher reflectance than summer. 

This is also visible in Figure 3.8 where summer snow appears brownish (may be contaminated) and winter 

snow is bright white. This can be explained by the errors of nearly all popular cloud masking algorithms 

including SCL and S2cloudless over bright objects like snow (Skakun et al., 2022).  

Research Question: 1.2: How does the visual interpretation differ for cloud masking by standard cloud 

products in a cloud-free summer and winter image? 

The cloud-free winter and summer images are classified with significant cloud presence across all three 

standard cloud products. The SCL shows cloud presence in areas of high reflectance in SWIR wavelength 

(Figure 3.3(a, c)) in summer cloud-free image. The similarity between bare rocks and clouds in the SWIR 

wavelength (high reflectance) (Dong, 2018) might explain the inability of SCL in correctly discriminating 

the two.  

The QA60 band classifies the entire winter scene as cloud, independent of the actual presence of cloud. 

The S2cloudless identifies majority of the snow covered area as cloud for the winter image as discussed in 

previous research question 1.1.   

Research Question 1.3. What is the time-series behaviour of standard cloud products for glacial and non-

glacial regions in the study area?  

The observations made in mono-temporal cloudy and cloud-free images during winter (research question 

1.1., 1.2) showed that the standard cloud products detect snow as cloud. These observations are in-line 

with the time series behaviour of glacial and non-glacial polygons in winter. Therefore, during winter the 

standard cloud products identify snow as cloud with varying proportions. The visual inspection revealed 

that every month has at-least one cloud-free image for the year 2019 (Figure 3.8). The presence of cloud-

free images solidifies the support for the empirical evidence that snow and bare rock areas are clearly 

misclassified as clouds.  

Research Question 1.4. How does the standard cloud products discriminate spectral signals of permanent 

snow cover and bare rock areas in the reflectance values of Green and SWIR wavelengths?   
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The standard cloud products are based on the multi-spectral band values of Sentinel-2. Therefore, they 

should be able to show clear demarcation in the scatterplot of spectral band values. However, such results 

are not seen in this study. The standard cloud products fail to separate cloudy and non-cloudy values along 

the Green and SWIR wavelengths. The primary division is loosely along the SWIR wavelength. However, 

the boundaries are fuzzy and show a large overlap of cloudy and non-cloudy values. The distinction is 

poorest in the QA60 band, intermediate in SCL and relatively better among the three in S2cloudless. 

Interestingly, the bare rock areas having low Green and high SWIR wavelength reflectance cluster are only 

classified as such in S2cloudless map. SCL and QA60 band show a range of classes and values for these 

clusters. One primary reasons for such poor cloud detection might be the elevated reflectance values of 

the study area. In general, the Green wavelength reflectance ranges till 16,000 (unscaled 1.6) for 

non_glacial_1 and till 12,000 (unscaled 1.2) for glacial_1. Such high reflectance values (above 10,000 

unscaled 1.0) shows the presence of directed radiance towards the satellite sensor (Dozier and Painter, 

2004). The spectral thresholds used in the standard cloud product algorithms might not be tuned for such 

high reflectance surfaces. 

Scientific studies on Sentinel-2 images for terrestrial monitoring services heavily use cloud masks provided 

in the satellite products. However, the current cloud masks available for Sentinel-2 fail to separate cloud, 

snow and bare rock areas in the high mountain regions. Among these cloud masks, S2cloudless performs 

relatively better in detecting and demarcating cloud areas. However none of the cloud masks area suitable 

for winter months. For landcover studies, it is imperative that alternate methods of cloud masking should 

be performed. Otherwise, the omission errors by these cloud masks are too large and a large data would 

be lost for scientific analysis (Kokhanovsky et al., 2019; Main-Knorn et al., 2017; Zupanc, 2017).    
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4. SEMI-SUPERVISED IMAGE CLASSIFICATION FOR 
CLOUD MASKING OVER SNOW COVER 

4.1. Background 

The standard cloud products, although derived from the spectral bands of Sentinel-2, have poor abilities 

to distinguish clouds and landcover features in the study area. The spectral behaviour of standard cloud 

products show no clear-cut distinction between clouds, snow and bare rocks in the reflectance values of 

Green and SWIR wavelengths. However, the manual cloud identification was possible for both summer 

and winter images using spectral band combinations to create false colour composites. The Green and 

SWIR bands showed the most differences in landcover features in the visual interpretation of false colour 

composites in Chapter 3. In this chapter an attempt is made to classify the Sentinel-2 images using spectral 

classes identified in the feature space made by the Green and SWIR wavelength. These wavelengths show 

the maximum distinction for snow and clouds (Figure 1.2) and bare rocks can also be identified using 

these bands (as seen in Chapter 3). 

The identification and grouping of digital image pixels into valid categories in satellite imagery is called 

classification (Arthur and Vassilvitskii, 2007). The classification process assigns labels to each pixel based 

on the multi-spectral behaviour of the image. The multi-spectral information of a pixel can be effectively 

represented in a graph or a pattern space, where the axes (dimensions) are the multi-spectral bands 

(Richards and Jia, 2005). Thus, the multi-spectral values of a pixel can be represented by a vector. The 

graph or pattern space is also known as multi-spectral vector space or ‘feature space’ (Arthur and 

Vassilvitskii, 2007). An example of a feature space is shown in Figure 4.1. The multi-spectral signature of 

all the pixels of an image class/object should ideally show similar spectral behaviour. The groupings of 

such pixels in the feature space is known as ‘information class’. However, there might also exist separate 

classes within the same information class due to intra-variabilities. For example, a bare rock area under 

snow will exhibit different spectral behaviour. Such classes are referred to as a spectral class and 

collectively they make up the information class (Figure 4.1). 

 
Figure 4.1 Example of a feature space with two spectral dimensions (red and infrared wavelength) showing spectral 

and information classes. Source: (Richards and Jia, 2005). 

The spectral classes occur as cluster of pixels in the feature space. The clusters are defined as “continuous 

regions of this space containing a relatively high density of points, separated from other high density 
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regions by regions of relatively low density of points” (Koutroumbas and Theodoridis, 2008). In un-

supervised methods, the clusters in a feature space are quantified by either similar or dissimilar measures. 

For example, the Euclidean distance is a dissimilarity measure and useful for compact clusters. The type of 

clustering method used depends on the distribution of the pixels in the feature space (Koutroumbas and 

Theodoridis, 2008) Figure 4.3 shows the different types of clusters. The most popular clustering methods 

generally use distance between data points in the feature space. However, the dis-similarity criteria 

‘distance’ can also vary, for example, Euclidean or Manhattan (Richards and Jia, 2005), and even the 

number of clusters can be assigned beforehand based on different statistical methods (Arthur and 

Vassilvitskii, 2007). Hence, the final clustering results depend very much on the initial conditions of 

clustering and feature space properties.  

 
Figure 4.2 Types of clusters (a) compact, (b) elongate and, (c) spherical or ellipsoidal clusters. Source: (Koutroumbas 
and Theodoridis, 2008). 

In this study, the spectral signals of the study area are analysed to find the spectral class of clouds in the 

Green and SWIR feature space. The separation of values in the feature space is done using convex 

(spherical) and non-convex (non-spherical) clustering (unsupervised) methods. These clusters are then 

labelled and used as training data for the nearest-neighbour classifier used for image classification. The 

classified images are then analysed to develop a cloud mask using cluster labels and their accuracy is 

assessed to find the best cloud mask in the study area. 

4.2. Methods 

This chapter fulfils the second sub-objective of the thesis to develop a cloud mask over glacial snow cover 

by applying semi-supervised image classification techniques using Green and SWIR wavelength bands of 

Sentinel-2. The broad outline of the steps involved in this methodology are: 

1. Semi-supervised image classification 

a. Classifying unlabelled data in the Green and SWIR wavelength feature space 

i. Theoretical interpretation of spectral classes in the feature space – to address 

Research Questions 2.1 & 2.2. 

ii. Clustering methods to find data groups in the feature space  – to address 

Research Questions 2.3 & 2.4. 

b. Nearest-Neighbour image classification using cluster labels  – to address Research 

Question 2.5 

i. Cloud-free images for summer and winter months 

ii. Cloud-covered images for summer and winter months 
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2. Accuracy assessment of cloud labels for different clustering methods – to address Research 

Question 2.6. 

The detailed description of these steps are give below:  

4.2.1. Semi-supervised image classification 

The method is called semi-supervised because the class labels are generated through unsupervised 

methods and the image classification is done using supervised classification.  

• At first, the representative polygons made for Chapter 3 (Appendix B) are used to extract the 

mean and standard deviation of the spectral values of the Green and SWIR wavelength bands for 

the entire image collection using Google Earth Engine. 

• The Green and SWIR wavelengths show the most distinction between clouds and snow in the 

optical range of wavelengths (Figure 1.2). These can also identifying bare rock areas distinct from 

clouds and snow as they have low and high reflectance in the Green and SWIR wavelengths 

respectively (Figure 1.2).  

• The occurrence of cloud cover over these polygons will register the spectral signature of clouds at 

the sensor, instead of the underlying landcover. The spectral signals of cloud occurrences will 

therefore, register as an anomalous value deviating form the natural spectral behaviour of the 

underlying landcover. 
a. Classifying unlabelled data in the Green and SWIR wavelength feature space. 

i. Theoretical interpretation of spectral classes in the feature space 

The extracted reflectance values of Green and SWIR wavelengths for the glacial and non-glacial 

polygons are plotted as a time-series and scatterplot.  

• The variation of reflectance values will be visually examined for patterns to understand 

the seasonal evolution of the glacial and non-glacial areas.  

• The feature space is the scatterplot between the Green and SWIR wavelength values. The 

combined spectral property of polygon values will be visually examined to find clusters of 

data points in the feature space. 

ii. Clustering methods to find data groups in the feature space  

The clustering methods are based on statistical association and not on physical relationship 

between data points. The following pre-processing steps are done before applying clustering 

methods. 

• Removing non-homogenous representative polygon values 

The wavelength values for glacial and non-glacial polygons are assumed to be representing either 

cloud or landcover classes. However, these polygons might contain mixture of cloud and/or 

different landcover pixels. This might result in misclassification of data points in the feature 

space. To eliminate this error, the band values of representative polygons with high standard 

deviation are removed. The standard deviation values are scaled by taking a standard deviation of 

the standard deviation values. The scaled values between -1 to +1 are used. The results are shown 

in Appendix C. 

• Standardizing the Green and SWIR band values using z-score 

The clustering methods use vector distance between data points in a feature space as a measure of 

similarity (Arthur, 2006). However, the scale of an axes depends on the range of its values. 

Therefore, unit distances will vary along different axes direction in a feature space. This means 

that the band with larger spread of values will be favoured to define clusters. To bring the 

reflectance values of the Green and SWIR wavelength on the same scale, z-score is used to 

standardize the reflectance data. z-score standardises the data based on mean and standard 
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deviation. One unit axis represent values separated by one standard deviation from the mean, 

which is at zero. 

𝑧 =
𝑥 − 𝜇

𝜎
 

( 1 ) 

where, z is the standardized value, x is the reflectance value, μ is the mean and σ is the standard 

deviation of the data. 

• Applying clustering algorithm 

Three different clustering methods are used in this study. K-Means, Mean-Shift and Spectral. All 

these methods require some parameter to estimate the number of cluster in the feature space. 

Therefore, the optimal number of clusters for each method is calculated followed by clustering. 

Three different clustering methods, two convex and one non-convex method is used in this study.  

o K-Means: 

The value of ‘K’ in K-Means is the expected data centers in the feature space. It is provided 

beforehand for clustering. The clustering begins by assigning arbitrary ‘k’ data centers in the 

feature space. The nearest data points are assigned to each of these ‘centers’. The total squared 

distance is calculated between each data point and its assigned center. New arbitrary ‘k’ data 

centers are assigned and the process is repeated until the total squared distances are minimized for 

a particular distribution of ‘k’ data centers (Arthur and Vassilvitskii, 2007). The optimal number of 

clusters is found by plotting the sum of square errors from the cluster center. The cluster number 

where the sum of square errors saturates is selected. 

o Mean-Shift 

Mean-Shift clustering also known as kernel density estimation is a type of density estimation. This 

method does not require prior information about the number of clusters. Instead, clustering is 

dependent on the kernel size. A bandwidth parameter dictates the size of processing window 

(kernel) in the feature space.  

The method begins at each data point by calculating the mean value within a kernel. The centroid 

of this kernel is then shifted to the calculated mean value in the feature space. A new mean value 

is calculated and the kernel centroid is shifted to this value. The process continues until the 

centroids converge (Comaniciu and Meer, 2002). The optimum number of clusters are identified 

by the stabilization of bandwidth values for the number of clusters. 

o Spectral 

Spectral clustering is based on graph theory. In simple terms, the feature space is converted into a 

graph where data points are nodes and the distance between connected nodes are the edge 

weights. The algorithm then cuts this graph along the low weight edges to form clusters (Yu and 

Shi, 2003). The optimum number of clusters are identified by the number of lowest eigenvalues. 

The process consist of 3 steps: 

• Forming an adjacency matrix 

The feature space is converted to a graph by nearest neighbour method. 5 data points close to 

each other are connected to form a graph. Then an adjacency matrix of size NxN is made, where 

‘N’ is the number of nodes (data points). The entries of this matrix represent the presence or 

absence of an edge between the nodes. 

• Finding the eigen vectors and eigen values (Eigenvalue decomposition) 

The adjacency matrix is converted to a graph Laplacian. Graph Laplacian is another matrix where, 

the diagonal elements are the degree (connectedness) of nodes and the off-diagonal values are the 

negative of edges weight. 
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The eigenvalues of this graph Laplacian is calculated. The number of zero eigenvalues 

corresponds to the number of independently connected clusters. However, eigenvalues closer to 

zero means that there is an almost separation of clusters. The eigenvectors associated with these 

small eigenvalues are selected.  

• K-Means clustering on Eigenvectors 

Each eigenvector for these near-zero eigenvalues gives information on how to make cuts to 

cluster the graph. K-Means clustering of the entries in the eigenvector matrix will assign cluster 

labels to the graph. 

b. Nearest-Neighbour image classification using cluster labels  

The kNearest classification algorithm on GEE is used in classification mode 

(https://developers.google.com/earth-engine/apidocs/ee-classifier-minimumdistance, last access 

15-08-2022). It assigns labels to unlabelled pixels based on the distance of the closest class/label 

of the training set to that pixel. The distance metric used is Euclidean.   

i. Cloud-free images for summer and winter months 

The pixel count percent of class labels are calculated for each clustering method in the cloud-free 

images of summer and winter month. The cloud class labels are expected to have 0 or negligible 

pixel count percent in the image. These classes of negligible occurrences are identified for the 

next step. 

ii. Cloud-covered images for summer and winter months 

The pixel count percent of class labels, not present in cloud-free images of the previous step, is 

calculated for each clustering method in the cloud-covered images of summer and winter month. 

If present, the count values are checked (not negligible) and the location is visually checked to 

match the cloud cover. 

4.2.2. Accuracy assessment of cloud labels for different clustering methods 

The manually digitized cloud cover polygon is overlayed over the classification image for each clustering 

method for summer and winter month. The percent of pixels belonging to different classes is evaluated 

for the cloud cover polygon . An accuracy assessment is made to identify the clustering labels with highest 

cloud cover percent.   

https://developers.google.com/earth-engine/apidocs/ee-classifier-minimumdistance
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4.3. Results 

Sub-objective 2: To develop a cloud mask over glacial snow cover by applying semi-supervised image 

classification techniques using Green and SWIR wavelength bands of Sentinel-2. 

4.3.1. Time-series behaviour of glacial and non-glacial areas in Green and SWIR wavelengths 

The time-series of reflectance values in the Green wavelength for the glacial and non-glacial polygons is 

shown in Figure 4.3. The first striking observation made from the time-series plot is the large range of 

reflectance values with a seasonal fluctuation by the non-glacial polygons. The non-glacial polygons 

occupy the peak and troughs of the reflectance values. These polygons reach peak reflectance of 15,000 

(approx.) during January-February every year. Even though the reflectance values are scaled by 10,000, the 

non-glacial polygons show peak reflectance values greater than 1 (approx.. 1.5). The  minimum reflectance 

values are shown in September-October every year. The fall in reflectance values from January-February 

to September-October is continuous and steep. The reflectance values also abruptly rises in the month of 

November-December every year.  

The glacial polygons, on the other hand, show a rather vague seasonal pattern in the reflectance values of 

Green wavelength (Figure 4.3). The peak values are achieved somewhat around April-May every year. The 

maximum reflectance values attained are around 12,000 (unscaled reflectance approx. 1.2) which is still 

higher than 10,000 (unscaled 1). The lowest reflectance values vary among the glacial polygons. The 

glacial_4 (and to a lesser extent glacial_3) shows minimum reflectance values similar to non-glacial 

polygons. On the other hand, the glacial_1 polygon never shows reflectance values below 5,000 (approx.). 

The fall in reflectance values is also continuous and gradual like non-glacial polygons during April-May to 

September-October. In the month of September during 2021, both glacial and non-glacial polygons show 

a sudden rise in reflectance values.  

The time-series of reflectance values in the SWIR wavelength for glacial and non-glacial polygons is 

shown in Figure 4.4. There exists a seasonal fluctuation with a small amplitude (0-2,000) for glacial 

polygons and with a slightly higher amplitude (0-3,000) for non-glacial polygons. The highest SWIR 

wavelength values appear discontinuous to the cycles of glacial and non-glacial polygons.  

The non-glacial polygons show peak values in summer-autumn (July-November). Interestingly, the glacial 

and non-glacial polygons show similar reflectance during winter and the reflectance values continue to 

drop for all polygons. However, ever year starting from August (approx.), the glacial polygons reflectance 

values stoops down to near zero values while the non-glacial ones reach their maximum (Figure 4.3).  
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Figure 4.3 Time series of mean reflectance value of Green wavelength for representative polygons. The error bars are 

standard deviation of mean polygon reflectance values. 

Figure 4.4 Time series of mean reflectance value of SWIR wavelength for representative polygons. The error bars are 
standard deviation of mean polygon reflectance values. 
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4.3.2. Spectral signals of cloud and landcover in the feature space 

The scatterplot between reflectance values of Green and SWIR wavelength for glacial and non-glacial 

polygons is shown in Figure 4.5. This scatterplot is also termed as a feature space, where the combined 

spectral signals of clouds and landcover is interpretated. Shapes are drawn on the feature space to 

highlight the different spectral signals visually observed. Although the boundaries between groups of data 

points is not distinct, the feature space still shows some clusters.  

The non-glacial polygons occupy two ends of the feature space (red circle in Figure 4.5). This high and 

low reflectance value was also observed in the Green wavelength time series (Figure 4.3). However, the 

high values in Green wavelength has low values in SWIR wavelength. Similarly, low values in Green 

wavelength is associated with high values in SWIR wavelengths (red circles in Figure 4.5). Most of the data 

is clustered around the black circle which shows a mixture of glacial and non-glacial polygons showing 

almost 1 reflectance (unscaled) (Figure 4.5). The ellipsoidal blue shape shows the cluster of glacial 

polygons (mostly glacial_4 and glacial_3) showing low Green and SWIR wavelength values (Figure 4.5). 

The most unusual distribution of data points is in the green shape (Figure 4.5). The data points are not 

close together to form a cluster yet not too far apart to be called sparse. It has a mixture of glacial and 

non-glacial polygon values and a broad range of Green and SWIR wavelength. The visual clusters 

identified are not spherical in their shape. 

 
Figure 4.5 Scatter plot between mean reflectance values of Green and SWIR wavelengths for glacial and non-glacial 

polygons. The data points and their cluster patterns are highlight with different shapes. 

4.3.3. Standardized reflectance of Green and SWIR wavelengths  

Figure 4.9 shows the scatterplot of standardized reflectance values for Green and SWIR wavelengths after 

removing non-homogenous polygon values (Appendix C). In this scaled feature space, the Green 

wavelength reflectance lies approximately between two standard deviations from the zero mean. The data 

points also show a pronounced separation from the zero mean in SWIR wavelength reflectance. The range 

of values in this new feature space lies approximately between -2 to +2 and -1 to +5 for Green and SWIR 

wavelength reflectance respectively. This implies that a unit change in SWIR is equal to 1.5 times the unit 
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change in Green wavelengths. Therefore, the new units have higher weights in the SWIR than in Green 

wavelength and are opposite to the non-standardized feature space (Figure 4.6).  

 
Figure 4.6 Scatter plot between standardized mean reflectance values of Green and SWIR wavelength for 

representative polygons. 

4.3.4. Optimum clusters 

1. K-Means clustering 

The variation of inertia with the number of clusters for the scaled feature space (Figure 4.6) is shown in 

Figure 4.7(a). Inertia is a measure of goodness of K-Means clustering (Arthur and Vassilvitskii, 2007). It is 

defined as the squared sum of distances of samples to the nearest cluster center. Minimization of inertia is 

a criteria for choosing the optimal number of clusters in K-Means and it is also know as elbow method 

(Arthur and Vassilvitskii, 2007). Figure 4.7(a) shows that the lower inertia values are associated with higher 

number of clusters (>10). However, after six number of clusters, the inertia values saturate and the 

decrease become linear. Six clusters, relatively minimizes the inertia and does not produce too many 

clusters. Therefore, the optimal number of clusters for K-Means clustering is chosen to be six for this 

study. The K-Means clustering of scaled feature space using 6 number of clusters is shown in Figure 

4.7(b). 
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Figure 4.7 The clustering of scaled feature space using optimum number of K-Means clusters. Figure (a) shows the 
variation of inertia and number of clusters used in K-Means clustering. The rounded inertia values (in purple) are 
also plotted at each data point in the graph. Figure (b) shows the partitioning of scaled feature space into clusters. 
The cluster centers are shown in black dots in (b). 

2. Mean-Shift clustering 

(a) 

(b) 
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The number of clusters in the Mean-Shift clustering is dependent on the bandwidth (kernel size) 

parameter. Figure 4.8(a) shows the relationship between the number of clusters in the scaled feature space 

(Figure 4.6) for the estimated bandwidth values. The whole feature space is classified as a single cluster for 

bandwidth values greater than 1.36 (Figure 4.6 (a)). The Mean-Shift algorithm separates the feature space 

into 2, 3, 4 and 10 number of clusters over a broad range of bandwidth values (Figure 4.6(a)). The cluster 

centers for these bandwidth values are thus considered stable in the sense that a small change in 

bandwidth  does not have a significant effect on the partitioning of the feature space. Also, the minimum 

number of clusters visually observed in the feature space is 5 (Figure 4.5). The only value fulfilling this 

criteria among the number of clusters is 10. 

The optimum number of clusters can also be evaluated by looking at the kernel density estimation (KDE) 

plots for the bandwidth values. KDE smoothens (sharpens) as the bandwidth values increases (decreases) 

in Figure 4.9(a-f). For relatively low bandwidth values (Figure 4.9(f)), it is able to highlight small dense 

regions within the feature space, which are otherwise smoothened out for relatively high bandwidth values 

(Figure 4.9(a)). However, all the plots show 1 central and 4 surrounding regions of high density (blue 

coloured regions in Figure 4.9).  

The Mean-Shift algorithm is run for the 6 bandwidth values used to make these 6 KDE plots in Figure 

4.9. The cluster centers are calculated for each of the six bandwidth values. These cluster center are 

plotted on top of the KDE plot in Figure 4.9. and indicated as red dots. The bandwidth value where the 

cluster centers can identify all the dense regions are noted (Figure c, d, e, f). The number of clusters for 

these bandwidth values are 8, 10, 14 and 20. Among these, the feature space is over-classified by 

bandwidths associated with 14 and 20 number of clusters (Figure 4.9(e-f)). 

Together with the results of Figure 4.8, the 4.9, the 10 number of clusters seems appropriate for clustering 

the feature space. The result of Mean-Shift clustering using the bandwidth value 0.66 for clustering the 

feature space into 10 classes is shown in Figure 4.9(b). 
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Figure 4.8 The clustering of scaled feature space using optimum number of Mean-Shift clusters. Figure (a) shows the 
number of clusters in the feature space for different Mean-Shift bandwidth values. Figure (b) shows the partitioning 
of scaled feature space into clusters. The cluster centers are shown in black dots in (b).  

(a) 

(b) 



CLOUD MASKING OVER GLACIAL SNOW COVER USING SENTINEL-2 CLOUD PRODUCTS AND SEMI-SUPERVISED IMAGE CLASSIFICATION IN THE INDIAN WESTERN 

HIMALAYAS. 

39 

 
Figure 4.9 Bi-variate kernel density estimation plot between standardized Green and SWIR wavelength reflectance 
values for different bandwidth values (a-f). The bandwidth values for estimating the kernel density and calculating 
the Mean-Shift clusters is shown in each figure along with number of clusters. The location of cluster centers in the 
feature space is shown by red circles. The contour lines are iso-proportion to the kernel density values and the colour 
bar shows the range of kernel density values. 
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3. Spectral clustering 
 
The eigenvalues (of the eigenvectors) of the graph Laplacian for the feature space (Figure 4.6) are sorted 

in the increasing order and plotted against their respective index (Figure 4.10(a)). The figure only show the 

30 lowest eigenvalues (among the 1402 eigenvalues) for their respective eigenvectors. 

Figure 4.10(a) depicts that from index 11 to 12, the eigenvalues show sudden rise. Before index 11, there is 

no significant difference among the eigenvalues. Therefore, these 11 eigenvectors are assumed to separate 

the data into the optimal number of graphs (clusters). The K-Means algorithm is used to cluster the data 

points in this reduced dimensional data whose axes are the 11 eigenvectors corresponding to the first 11 

eigenvalues (Figure 4.10 (a)). Therefore, there is no presence of cluster center in the resulting clustered 

feature space in Figure 4.10(b). 
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Figure 4.10 The clustering of scaled feature space using optimum number of Spectral clusters. Figure (a) shows the 
variation of eigenvalues of the graph Laplacian in increasing order of magnitude. Figure only show eigen values up to 
the index 30. The red line indicates the low eigenvalues used for clustering as explained in Section 4.3.4 on Spectral 
clustering. Figure (b) shows the partitioning of scaled feature space into clusters. 

(b) 

(a) 
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4.3.5. Nearest-Neighbour image classification using cluster labels  

Cloud-free images: For K-Means, the cluster labels with the lowest pixel percent in both summer and 

winter image are 4 and 5 (Table 4.1). For Mean-Shift, the cluster labels with the lowest pixel percent in 

both summer and winter image are 3, 4, 7 and 8 (Table 4.1). For Spectral, the cluster labels with the lowest 

pixel percent in both summer and winter image are 2, 3 and 4 (Table 4.1). These cluster labels are assumed 

to be representing clouds.  

Table 4.1 The percentage of pixels in the classified images of 4.12 (cloud-free images) belonging to the label classes 
of different clustering methods. The values (colour coded in green) show less than 5% values only if found in both 
summer and winter images.  

K-Means  Mean-Shift  Spectral 
 

Summer Winter 
 

Summer Winter 
 

Summer Winter 

Cluster 
labels 

Pixel 
count 
(%) 

Pixel 
count 
(%) 

Cluster 
labels 

Pixel 
count 
(%) 

Pixel 
count 
(%) 

Cluster 
labels 

Pixel 
count 
(%) 

Pixel 
count 
(%) 

0 1.0 25.8 0 8.9 29.1 0 2.1 12.1 

1 61.1 19.6 1 0.7 26.6 1 38.1 2.4 

2 5.0 24.9 2 33.2 1.5 2 0.0 2.7 

3 32.2 24.3 3 0.3 0.3 3 0.5 0.6 

4 0.5 0.9 4 0.0 2.0 4 0.5 3.1 

5 0.2 4.6 5 10.1 10.1 5 22.3 15.7 
   

6 26.7 18.1 6 0.3 7.5 
   

7 0.3 0.0 7 2.1 6.2 
   

8 0.0 0.1 8 33.1 24.9 
   

9 19.7 12.2 9 0.7 11.6 
      

10 0.3 13.2 

 

Cloud-cover images: The cluster labels assumed to be clouds (in cloud free images above) are checked for 

their combined pixel percent of cluster labels for cloudy images. For K-Means, the combined pixel 

percent of cluster label 4 and 5 in summer is 15.8% and in winter is 16.2%. For Mean-Shift, the combined 

pixel percent of cluster label 3, 4, 7 and 8 in summer is 11.4% and in winter is 8.5%. For Spectral, the 

combined pixel percent of cluster label 2, 3 and 4 in summer is 19.3% and in winter is 24.5%. 

Table 4.2 The percentage of pixels in the classified images of 4.13 (cloud-covered images) belonging to the label 
classes of different clustering methods. The  values (colour coded in blue) shows values for the classes (<5%) 
identified in Table 4.1. 

K-Means  Mean-Shift  Spectral 
 

Summer  Winter 
 

Summer Winter 
 

Summer Winter 

Cluster 
labels 

Pixel 
count 
(%) 

Pixel 
count 
(%) 

Cluster 
labels 

Pixel 
count 
(%) 

Pixel 
count 
(%) 

Cluster 
labels 

Pixel 
count 
(%) 

Pixel 
count 
(%) 

0 3.3 28.7 0 19.8 26.2 0 3.0 13.2 

1 45.6 13.0 1 4.1 28.3 1 26.2 0.7 

2 18.3 18.9 2 21.2 0.4 2 0.5 15.4 

3 16.9 23.1 3 7.3 1.0 3 9.0 2.8 

4 10.9 3.7 4 2.5 5.2 4 9.8 6.3 

5 4.9 12.5 5 13.4 12.1 5 8.6 14.4 
   

6 13.0 17.2 6 1.3 4.3 
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 7 1.1 0.3  7 7.9 1.3 

   
 8 0.5 2.0  8 24.1 19.4 

   
 9 17.1 7.4  9 9.3 4.0 

   
 

   
 10 0.2 18.0 

 

K-Means: The cluster label 4 and 5 cannot be seen in the classified cloud-free images of summer and 

winter (Figure 4.11 (a, b)). The cluster label 4 and 5 can be seen in the true cloud cover in summer and 

winter (Figure 4.12(a, b)). The cluster 5, in the cloud cover winter classified image (Figure 4.12(b), appears 

over glacial snow (Figure 3.2(a)).  

Mean-Shift: The cluster label 3, 4, 7 and 8 cannot be seen in the classified cloud-free images of summer 

and winter (Figure 4.11 (c, d)). The cluster label 3, and 4 can be seen in the true cloud cover in summer 

and winter (Figure 4.12(c, d)).  

Spectral: The cluster label 2, 3 and 4 cannot be seen in the classified cloud-free images of summer and 

winter (Figure 4.11 (e, f)). The cluster label 2, 3 and 4 can be seen in the true cloud cover in summer and 

winter (Figure 4.12(e, f)). The cluster 2, in the cloud cover winter classified image (Figure 4.12(f), appears 

over glacial snow (Figure 3.2(a)).  
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Figure 4.11 The Nearest-Neighbour image classification result of cloud free images using different clustering labels. 

Figure (a), (c) and (e) shows summer classified images using K-Means, Mean-Shift and Spectral cluster labels, 
respectively for the summer image (dated: 01-10-2021). Similarly, Figure (b), (d) and (f) shows classified images using 

K-Means, Mean-Shift and Spectral cluster labels, respectively for the winter image (dated: 05-12-2020). 
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Figure 4.12 The Nearest-Neighbour image classification result of cloud covered images using different clustering 

labels. Figure (a), (c) and (e) shows summer classified images using K-Means, Mean-Shift and Spectral cluster labels, 
respectively for the summer image(dated: 21-09-2020). Similarly, Figure (b), (d) and (f) shows classified images using 

K-Means, Mean-Shift and Spectral cluster labels, respectively for the winter image (dated: 09-01-2021). 
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Research Question 2.6: Which clustering method performs better at cloud masking over snow cover in the 

study area? 

The percentage of labelled pixels within the manually digitized cloud polygon for different clustering 

methods is shown in Table 4.1. The labels identified as non-occurring in cloud-free images and appearing 

in appreciable amount in cloud-covered images are highlighted. The results show that the Spectral cluster 

labels detect the most ‘true positives’, approx.. 85% in summer and approx.. 89% in winter cloudy images, 

followed by K-Means cluster labels (approx.. 75% in summer and winter cloudy images). Mean-Shift 

cluster labels perform the worst cloud detection among the three clustering methods.  

Table 4.3 The percentage of pixels belonging to different cluster labels, lying within the manually digitized cloud 
polygon for summer and winter images for different clustering methods.. The rows (colour coded in green) show 
values in either summer and winter images for the <5% classes identified in table 4.1. The total percent covered by 
these identified classes within the manually digitized polygon ‘true positive’ is also shown along with ‘false negative’. 

K-Means  Mean-Shift  Spectral  
Summer Winter 

 
Summer Winter 

 
Summer  Winter 

Cluster 
labels 

Pixel 
count 
(%) 

Pixel 
count 
(%) 

Cluster 
labels 

Pixel 
count 
(%) 

Pixel 
count 
(%) 

Cluster 
labels 

Pixel 
count 
(%) 

Pixel 
count 
(%) 

0 0 14.5 0 0.1 1.5 0 0.1 1.5 

1 17 0 1 0 6.6 1 12.2 0 

2 0.1 0.5 2 4.7 0 2 0.2 24.1 

3 7.3 8.8 3 44 12.1 3 51.1 32.1 

4 62.2 40.7 4 8.9 38.8 4 34.8 33.3 

5 13.4 35.6 5 33.1 19.4 5 0.1 2    
6 2.1 0.7 6 0 0.1    
7 5.5 4.2 7 0 0    
8 1.1 16.8 8 1.4 0.3    
9 0.5 0 9 0 0       

10 0 6.6 
True 

positives 
75.6 75.13 True 

positives 
58.15 70.19 True 

positives 
85.11 89.5 

False 
negatives 

24.4 14.87 False 
negatives 

41.85 29.81 False 
negatives 

14.89 10.5 

 

The cluster labels identified in previous steps for each clustering method, is checked for its pixel count in 
the classified cloud-covered images. The pixel count of manual cloud covered polygon is also checked for 
these cluster labels in the classified cloud-covered images. The percent of pixels occupied by these labels 
in manual cloud covered polygon to the classified cloud covered images is calculated and shown in Table 
4.2. The low percent value are identified and shows the ‘percent of true positives within each label’. The 
K-Means label ‘5’ for winter shows only 19% pixels are actually in manual cloud covered polygon. The 
Spectral label ‘2’ for both summer and winter shows very low coverage of cloud cover in this label. Mean-
shift, however, have >50% coverage for all the identified labels.  

Table 4.4 Percent of manual cloud covered pixel count to the total pixel count by the label in the image. The low 
percent values are highlighted. 

K-Means  Mean-Shift  Spectral 

Cluster 
labels 

Summe
r 

(%) 

Winter 
(%) 

Cluster 
labels 

Summer 
(%) 

Winter 
(%) 

Cluster 
labels 

Summer 
(%) 

Winter 
(%) 

4 90.9 75.4 3 95.2 82.7 2 7.5 10.7 

5 42.9 19.6 4 56.5 51.6 3 90.1 78.5    
7 80.2 92 4 56.2 36.4    

 8 36.5 58.2  
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4.4. Discussion 

Research Question 2.1: What is the spectral behaviour of glacial and non-glacial areas in the Green and 

SWIR wavelengths? 

The non-glacial polygons show seasonal snow cover during winter and bare rock during summer. The 

winter snow cover on bare rocks show unusually high peak reflectance (approx. 1.5). This is due to the 

approximate measurement of bi-directional reflectance value by the sensors of passive satellite missions 

(Schaepman-Strub et al., 2006). The approximate measurement is due to the large solid angle used by 

satellite sensors, in their instantaneous field of view, for integrating the radiance/reflectance values 

(Schaepman-Strub et al., 2006). This is not in agreement with the infinitesimal requirement (theoretical) of 

solid angle to measure bi-directional reflectance (Schaepman-Strub et al., 2006). The natural reflected 

radiance from surface features also contain diffuse (scattered) component, in addition to the direct 

component. This diffuse component is affected by the atmosphere, topography and nature of topographic 

surface (Schaepman-Strub et al., 2006). Therefore, bright surfaces like snow, which also possess forward 

reflecting surfaces, may show reflectance values greater than 1 (Dozier and Painter, 2004).  

Sentinel-2 surface reflectance images is able to capture the seasonal transitioning of snow cover associated 

with summer and winter months in the study area. The winter images are clearly snow covered due to 

general high reflectance in the Green wavelength. The glacial areas have a very low range of reflectance 

values compared with non-glacial areas. The lowest spread in reflectance values is shown by the high 

elevation areas (accumulation zone) having permanent snow cover throughout the year. The transition 

from bare rocks to snow in the annual cycle leads to the large spread of reflectance values observed in the 

non-glacial areas. The non-glacial areas show unusually high reflectance in the Green wavelength during 

winter months. This could be attributed to either the snow is more pure (uncontaminated) on the non-

glacial mountain regions than glacial snow or, the reflectance values measured at the satellite sensor are 

affected by some other factor. Some of the non-glacial areas lie on the mountain slopes. Hence, geometric 

factors cannot be ruled out for such high reflectance values.  

Research Question 2.2: How does clouds exhibit their spectral signals in the Green and SWIR wavelength 

reflectance of glacial and non-glacial areas?  

The presence of clouds definitely impart anomalous reflectance values to the otherwise cyclic time-series 

of Green wavelength reflectance. However, they cannot be separated using spectral thresholds. On the 

other hand, the time-series of SWIR wavelength reflectance clearly show elevated cloud signals. The time-

series is filled with unusually high reflectance values. However, bare rocks can also show seasonal high 

reflectance in SWIR wavelength and makes it difficult to use a threshold to separate clouds from 

landcover.  

Except the cloud signals, the snow and bare rocks show a clear seasonal cycles of low and high reflectance 

in both Green and SWIR wavelengths. The snow and bare rocks reflectance in both Green and SWIR 

wavelength is always at odds with each other. They show clear spectral separation in summer months. 

Although the distinction is more pronounced in the SWIR wavelength. The maximum separation is 

observed in May-June of each year, especially in the year 2020. This might be explained by the melting of 

winter snow cover and exposure of rocks in non-glacial areas. 
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The combined Green and SWIR wavelength behaviour of clouds and landcover classes creates unique 

clusters in the feature space. The snow pixels have the densest cluster. The non-glacial areas show two end 

members along the Green wavelength associated with snow covered bare rocks and snow-free bare rocks. 

Only the low elevation glacial areas show large spread in Green wavelength due to transition from snow to 

glacial ice (Vincent et al., 2013). 

Research Question 2.3: How does the standardization of reflectance data affect the clustering process? 

The vector distance between data points in the standardized feature space (Figure 4.6) assigns more 

weights along the SWIR wavelength compared to the SWIR wavelength in the unscaled feature space 

(4.5). The presence of cloud over a pixel raises the SWIR wavelength reflectance relative to the underlying 

landcover. However, the amount of rise in this reflectance is dependent on the cloud physical and optical 

properties. The aim of this study to successfully detect such anomalous rise in SWIR wavelength 

reflectance and classify it as clouds. Therefore it was important to change the original scale of reflectance 

values. z-score brings the Green and SWIR wavelength reflectance on the same scale and in doing so 

assigns more weight to the SWIR axis compared to the SWIR axis in unscaled feature space. This change 

in axis weights meant that the clusters are much more separated along the SWIR axis than the Green axis 

in the scaled feature space compared to the unscaled feature space.  

Research Question 2.4: How does the optimum number of clusters vary for different clustering methods? 

The optimum clusters calculated for K-Means, Mean-Shift and Spectral clustering are 6, 10 and 11 

respectively. The Spectral clustering gives non-spherical clusters in the feature space (Figure 4.10(b)). For 

example, the cluster label 3 and 10 shows very different cluster shapes. Cluster label 10 is compact while 3 

has sparsely populated data points. Although the cluster number of Mean-Shift and Spectral clustering 

show near similar values, the clustering of feature space by Mean-Shift algorithm shows more similarity to 

the K-Means clustering (Figure 4.7(b) and Figure 4.8(b)). Some of the cluster centers in K-Means and 

Mean-Shift clustering have near identical values. For example, the clusters of non-glacial polygon 

representing bare rock and snow covered bare rock (Figure 4.7(b), 4.8(b)). The number of clusters in K-

Means clustering is easily calculated by minimizing the inertia value. However, the cluster formed are 

spherical in nature irrespective of the cluster type.  

Some of the clusters formed by Mean-Shift algorithm have very few data point and are part of nearby 

clusters in other clustering results (Figure 4.7(b), 4.8(b) and 4.10(b)). For example, in the Mean-Shift 

clustering the cluster label 9 has only one data point. These isolated clusters are formed due to the nature 

of Mean-Shift algorithm (Comaniciu and Meer, 2002). The algorithm tries to find the mode of values 

within a region defined by the bandwidth parameter. The sparsely located points will act as local maxima 

and for specific bandwidth parameter, these will be assigned a cluster. This is also seen in the KDE plot of 

the feature space (Figure 4.9). These small sized sparse clusters (7, 8 and 9) and their cluster centers 

calculated by the Mean-Shift algorithm have too low densities to be represented on the KDE plot. 

However, trying to remove these clusters by choosing higher bandwidth values ends up removing 

important clusters too (Figure 4.9).  

Research Question 2.5: What are the cloud classes identified using different cluster labels in nearest-

neighbour image classification?  
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The K-Means clustering shows high likelihood of two clusters, labelled 4 and 5 to be the cloud classes. 

These cloud classes account for <1% of total pixels in the cloud-free images, except class 5 which shows 

slightly higher pixel count (approx. 5%) in the winter cloud-free image (Figure 4.11). As expected, the 

pixel count increases for both cloud classes in the cloud-covered images but still remain less than 13% of 

the total pixels (Figure 4.11). The combined pixel count of these cloud classes for summer and winter 

cloud covered images are 15.8% and 16.2% respectively (Figure 4.11). The true pixel count for the 

summer and winter cloud covered images are 16% and & 7%, respectively (Appendix A). The winter 

cloud cover is over estimated by twice as much by these cloud classes 4 and 5. The probable source of this 

over estimation is the classification of snow pixels as clouds by cloud class 5. The classified winter image 

(Figure 4.13(b)) shows the cloud class 5 is assigned to both true cloud pixels and glacial snow pixels. 

However, the cluster label 2 is assigned to snow cover pixels in the classified images of the study area 

(Figure 4.12(a, b), Figure 2.13(a, b)). In the K-Means clustered feature space, the cluster label 2 and 5 lie 

adjacent to each other (Figure 4.7(b)). Therefore, the data points in cluster 5 are not correctly partitioned 

by the K-Means clustering algorithm and contain spectral signals of snow cover. 

The Mean-Shift clustering shows high likelihood of four clusters, labelled 3, 4, 7 and 8 to be the cloud 

classes. These cloud classes account for not more than 2% of pixels in cloud-free images. The cloud 

classes 7 and 8 account even less (<0.3%) to the total pixels in the cloud-free images and only increased 

slightly to not more than 2% of pixel in the cloud-covered images. The cloud classes 3 and 4 show higher 

pixel count in cloud covered image approx. 7% to the total pixels in the image. The Spectral clustering 

shows high likelihood of three clusters, labelled 2, 3, and 4 to be the cloud classes.  

Research Question 2.6: Which clustering method performs better at cloud masking over glacial snow 

cover? 

The cloud classes identified among the labels of Spectral clustering are ‘2’, ‘3’ and ‘4’. These cloud classes 

together detect more cloud pixels (>85% for both summer and winter images) than all cloud classes in K-

Means and Mean-Shift clustering. However, in Spectral clustering a cloud class (‘2’ – green colour) shows 

very high error in cloud pixel classification (Table 4.2). In the winter image, it also classifies glacial snow in 

the aforementioned label (Figure 4.13(f)). This cloud class could thus be a mix of snow and cloud spectral 

properties. In the clustered feature space (Figure 4.10), this cloud class is located at high Green and 

intermediate SWIR wavelength reflectance. Notably, corresponding cluster of cloud class 2 is surrounded 

by cloud or snow classes. This may explain why that specific cloud class contains mixed spectral properties 

(belonging to clouds and snow). However, the removal of cloud class 2 would not significantly affect the 

cloud detection capability of summer image (with 0.2% contribution as shown in Table 4.2). This might be 

due to few snow pixels of such high reflectance in Green wavelength.  

This mix of snow and cloud classification by cloud class ‘2’ (green) might also be due to the nature of 

classifying algorithm used. The Nearest-Neighbour algorithm assigns labels to image pixels based on the 

distance to the nearest available class label in the feature space and therefore, does not depend on the 

shape or density of the cluster (Boiman et al., 2008). This implies that data points in a cluster located far 

from the cluster centers can assign class labels to the nearest unlabelled image pixel. This image pixel 

might have no similarity to the cluster itself.  Looking closely at the spread of data values in cloud class ‘2’ 

(green), it appears that more data points are clustered at lower SWIR wavelength values and few data 

points extend along the SWIR axis. At higher SWIR wavelength the data points are labelled ‘3’ (red) and 

‘4’ (purple) belonging to the cloud classes. Therefore, snow pixels and cloud pixels of similar reflectance 

values in the Green wavelength but different in SWIR wavelength is assigned the same class ‘2’ (green). 
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5. CONCLUSION AND RECOMMENDATIONS 

To conclude this study, there are some main takeaways to be briefly discussed. The standard cloud masks 

did not prove to be very useful for cloud masking in the glaciers terrain as they are not able to discriminate 

spectral signals of snow and clouds. Though, S2cloudless performs better in the summer month when the 

overall reflectance values are lower for all landcover types, but fails in winter. All the standard clouds 

failed to discriminate spectral signals of snow and cloud in the Green and SWIR wavelength feature space. 

Notably, the Sentinel-2 spectral bands are capable of identifying spectral properties of snow, bare rocks 

and cloud. The clouds are visible in the SWIR wavelength and its band combinations with visible bands. 

In this case, the standardization of data is important for applying clustering methods. However, it also 

depends on the data type and purpose of clustering. The statistical clustering methods were able to detect 

>50% clouds for all the methods used in this study. Spectral clustering performed the best detecting (over 

85%) of clouds in summer and winter. 

The lack of reference images limited the validation of classification results. Moreover, the study is based 

on spectral signals from 4 glacial and 4 non-glacial areas. This was not able to capture the topographic and 

cloud shadows. The high reflectance values for non-glacial polygons is probably due to slope effects which 

makes it difficult to compare them to snow cover on relatively flat surfaces  

The cloud masking over glacial snow cover is a real issue. Without cloud masks the glacier studies cannot 

be conducted. The current cloud masking methods are too complicated to implement in a small study 

area. To modify this method used in this study, a bigger study can be used. The feature space can be made 

from all the pixel values to account for intra-class variabilities. More spectral bands could be used, 

especially Cirrus (Band 10) of Sentinel-2 which detects high altitude clouds. Sentinel-2 lacks a thermal 

band which can easily identify cloud tops as they are colder compared to the surrounding landcover pixels 

in a satellite image. In the absence of referenced images, cloud cover detected from Landsat missions can 

be used for validation in further studies.  
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APPENDIX A: CLOUD COVER DIGITIZATION 

 
Figure 5.1 Band combinations used for digitizing cloud cover in summer and winter image. 

The cloud cover area in summer is ~16% and ~7% in winter image. 
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APPENDIX B: REPRESENTATIVE POLYGONS 

The time period of the image collection (Section 2.2) covers three periods for the month of September. 

The true-colour-composites of the cloud-free images closest to the end of September in shown in Figure 

5.1. In the year 2021, the September month has only one cloud-free image. It shows complete snow cover 

over the glacial area (with no glacial ice) and more snow coverage for the month of September than in 

2019 and 2020 (Figure 5.1(a, b)).  

The permanent snow cover region (accumulation zone) of high elevation can be seen in the lower middle 

of the image. The glacial snow has a brownish tinge and becomes progressively white/bright moving up 

the accumulation zone for the year 2019 and 2020 (Figure 5.1(a, b)). It is completely white/bright for the 

year 2021 (Figure 5.1(c)).   

The September image of 2020 shows the least snow cover and maximum exposure of the catchment rocks 

(Figure 5.1(b)). The image shows no presence of water bodies or any vegetated areas. The only landcover 

classes seen are bare rock/soil from catchment rocks and glacial moraines, glacial ice, and glacial and non-

glacial snow. These inferences are presented in Table 3.2. 

Table 5.1 The observed landcover classes in the study area. 

Landcover Surface type Landcover extent 

Snow Glacial Non-glacial All year, maximum during winter 

Ice Glacial - Maximum during end of summer 

Rocks Glacial (Moraines) Non-glacial Maximum during end of summer 

 

 

Figure 5.2 Cloud free true-colour-composite images of the end-of-summer (September) month of the study area for 
the year (a) 2019, (b) 2020 and, (c) 2021. 
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Figure 5.3 Cloud free true-colour-composite image of the end-of-summer (September) month for the year 2020. The 
figure shows the location and distribution of representative polygons in the study area. 

The September 2020 image is used to select representative polygons for the above mentioned landcover 

classes in the study area. The four glacial and four non-glacial representative polygons cover the spatial 

extent of the study area (Figure 5.2). The non-glacial polygons are underlain by catchment rocks and 

surround the glacier. The glacial polygons follow the glacial central flow from South to North 

(accumulation to ablation zone). The glacial_1 polygon is underlain by permanent snow cover and 

‘glacial_4’ is underlain by seasonal exposure of glacial ice. Polygons ‘glacial_2’ and ‘glacial_3’ show 

intermediate surface behaviour between ‘glacial_1’ and ‘glacial_4’.  
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APPENDIX C: HOMOGENOUS AND NON-HOMOGENOUS 
REPRESENTATIVE POLYGONS 

The mean values of Green and SWIR wavelength reflectance for representative polygons also contain 

values with large standard deviation. The polygons cover 100 pixels of approximately 10,000 sq. meters 

area. A large standard deviation in the mean reflectance value is indicative of the presence of different 

cloud and/or landcover classes within the polygon. This can be seen in the scatterplot of the standard 

deviation values in Figure 5.3, where the data points show a large spread in both axes and are densely 

clustered around low standard deviation values. The threshold of the standard deviation value for defining 

homogenous and non-homogenous polygons is difficult to make from the absolute standard deviation 

values. 

 

Figure 5.4 Scatter plot between the standard deviation in mean reflectance values of Green and SWIR wavelengths 
for the representative polygons. 

Figure 5.4 shows the scatterplot of the normalized standard deviation (standard deviation of the standard 

deviation values) and mean reflectance values of Green and SWIR wavelengths for all the representative 

polygons, respectively. The red dashed lines indicate all the data points between -1 to +1 normalized 

standard deviation values.  High normalized standard deviation values indicate the non-homogenous 

polygon values. These values are eliminated and the data points within the red dashed lines (-1 to +1) 

indicative of homogenous polygons are used for further clustering analysis.  
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Figure 5.5 Scatter plot between the standard deviation of standard deviation values in the Green wavelength and the 
standard deviation of standard deviation values in the SWIR wavelength for respective representative polygons. The 
red dashed lines denote standard deviation values between -1 to +1. 

 

 

 


