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Abstract

Healthcare abbreviations pose problems to people reading healthcare reports and
to text mining, due to being unknown or ambiguous. Word sense disambiguation
(WSD) has been used to tackle the ambiguity of abbreviations, but WSD is bound
by the exhaustiveness of abbreviation sense inventories. Unsupervised WSD, more
often referred to as word sense induction (WSI), has been proposed to overcome the
inhibiting dependency on sense inventories.

A sense inventory can be constructed by annotating randomly sampled abbrevi-
ation occurrences, but this is a cumbersome approach. This thesis explores whether
WSI can be used to reduce the annotation cost for finding abbreviation senses, while
maintaining high sense coverage. In this thesis, WSI entails clustering vectorized
abbreviation occurrences, with the aim of grouping together the occurrences of the
same sense. Each cluster centroid is then annotated with a sense, which related work
has shown to reduce the number of annotations needed to retrieve an abbreviation’s
senses. WSI is conducted using three different vectorization methods to represent
an abbreviation occurrence’s context: pointwise-mutual-information-weighted bag-
of-words, maximum surrounding-based embedding, and substitution lemmas using
a RoBERTa model pretrained on Dutch hospital notes (MedRoBERTa.nl). The vec-
torized abbreviation occurrences are clustered using two clustering methods: Tight
Clustering for Rare Senses (TCRS) [45], and k-means. Clustering substitution lem-
mas with TCRS results in the greatest reduction in annotation cost (34.5%) with re-
spect to a random annotation baseline, while obtaining high sense coverage (87.0%).

Aside from clustering, abbreviation occurrences and occurrences of candidate
senses are compared through two sentence similarity measures: Word Mover’s Dis-
tance, and cosine similarity of summed word embeddings. I use these measures to
rank the candidate senses from most likely to least likely being the sense of a group
of abbreviation occurrences. The rank of the exact sense is quite bad, but the highest-
ranking candidate senses are often inflections are synonyms of the exact sense. This
indicates that semantic similarity ranking can be used for building a sense inventory,
but adaptations and additions to my method are necessary.

Keywords: healthcare abbreviations, word sense induction, word sense disambigua-
tion, clustering, word embeddings, MedRoBERTa.nl, semantic similarity, word mover’s
distance.
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1 Introduction
Healthcare information, such as the content of an electronic health record, is often recorded
as unstructured free text. This free text can be difficult to process for natural language pro-
cessing (NLP; an index of abbreviations is given on p. 55) systems and human readers due
to spelling errors, incorrect punctuation, domain-specific vocabulary, and abbreviations
[17, 13].

An abbreviation can be considered as a homonym, since it is spelled and pronounced
the same for each meaning, but it can have multiple unrelated meanings [39]. These mean-
ings are referred to as senses in NLP literature. Senses can be defined in various ways,
such as glosses or complete definitions. In this thesis, the long forms (sometimes referred
to in literature as written-out or full form) of an abbreviation are considered its senses,
e.g. the long forms of “ab” can be “antibiotica (antibiotics)” and “activiteitenbegeleider
(activity counselor)”. In contrast to homonyms, a polyseme has multiple, related yet dif-
ferentiable, senses. For each sense, the word is spelled the same, but it can be pronounced
differently. For instance, a “dish” can be both a “plate from which you can eat”, a “meal
that you can eat” or even an “attractive woman”.1 These senses can be differentiated, but
are related in their linguistic history, namely in their etymology.

Abbreviations cause problems due to 1) occasionally having multiple senses (i.e. be-
ing ambiguous), and 2) not being covered by a sense inventory (i.e. the sense being
unknown) [42, 25, 45, 44]. The former problem, abbreviation ambiguity, showed to cause
8.4% of medication errors in Australian hospital notes [10]. The misinterpretation of these
abbreviations mainly led to wrong medication dosages, of which 29.6% were considered
high risk for causing significant harm. The latter problem, abbreviation senses not being
known, inhibits communication among healthcare professionals. It has been reported that
domain-specific abbreviations are known to domain experts for pediatric notes [22], but
a more extensive audit showed that abbreviation understanding decreased when a health-
care professional was less associated with the abbreviation domain [33]. A quiz showed
that four types of professionals outside pediatrics recognized 41.25% of abbreviations
used in pediatric reports (handover sheets and medical notes) on average, and this was
67% on average for four types of pediatric professionals. Here, the pediatric consultant
recognized most, and had 90% correct. This was remarkable, as the pediatric consultant
handled pediatric reports on a daily basis, and still was not able to recognize 10% of the
abbreviations in their field.

A comprehensive sense inventory for Dutch healthcare abbreviations allows for mit-
igating the problems caused by abbreviations to NLP and human readers [25]. Such a
sense inventory is unfortunately not available, but can be constructed from a corpus con-
taining occurrences of healthcare abbreviations. A cumbersome approach would be to
build a sense inventory by annotating many randomly sampled abbreviation occurrences
with their sense [25, 45]. Each uniquely identified abbreviation sense is then incorporated
in the sense inventory. The downside of this approach is that this requires a substantial
manual workload by experts [28]. For example, Moon et al. [25] had two experts annotate
500 randomly selected occurrences per abbreviation for 440 abbreviations. The abbrevi-
ations in their sense inventory had 2.16 senses on average, where 62.7% of abbreviations
only had a single sense and 21.7% of abbreviations had a majority sense with a frequency

1Etymology of “dish”
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over 95%.
Xu et al. [45] formulated an approach to reduce the number of annotations required for

extracting abbreviation senses from a corpus. They clustered the occurrences of English
clinical abbreviations based on their contexts. The idea was that, since abbreviations are
considered homonyms rather than polysemes, each cluster of contextually similar abbrevi-
ation occurrences should only contain occurrences of the same sense. Therefore, a single
occurrence per cluster could be annotated to retrieve the various senses of an abbreviation,
instead of annotating a larger number of random occurrences. The clustering approach
for retrieving abbreviation senses by Xu et al. is the main inspiration for this thesis. This
thesis mainly differs from the work done by Xu et al. in its focus on Dutch healthcare
abbreviations, rather than English clinical abbreviations, and by exploring state-of-the-art
methods for clustering the abbreviation occurrences.

Word sense disambiguation is “the computational identification of meaning for words
in context” [28, p. 2]. The clustering approach by Xu et al. [45] is referred to in literature
as word sense induction (WSI), which is the subset of word sense disambiguation (WSD)
that does not rely on annotated datapoints, i.e. WSI is unsupervised WSD. WSI and WSD
will be addressed in further detail in Section 2. This thesis explores to what extent WSI
can aid in reducing annotation cost, which is the number of annotations used for extract-
ing Dutch healthcare abbreviation senses. This is expressed as annotation cost reduction,
which is the reduction in the number of annotations needed when using a WSI approach
compared to random annotation for retrieving the same number of senses. Similarly, the
improvement in sense coverage will be measured as sense coverage gain. Sense coverage
is the fraction of senses a WSI approach can obtain compared to a gold standard. Sense
coverage gain is the gain in sense coverage when using a WSI approach compared to
random annotation while annotating the same number of occurrences. These metrics are
more elaborately described in Section 5.1.1.

Some studies showed that the semantic similarity between an abbreviation occurrence
and occurrences of its candidate senses can be used to disambiguate the abbreviation [19,
6]. Candidate senses are n-grams that might be the sense of an abbreviation. The premise
here is that the context of an abbreviation is more similar to the context in which its long
form occurs, than to the contexts in which the other candidate senses of the abbreviation
occur. This thesis will explore to what extent semantic similarity can be used to rank
candidate senses of an abbreviation, and whether that shows improvement compared to
randomly ranking these candidate senses.

1.1 Research Question
This thesis sets out to build a sense inventory for Dutch healthcare abbreviations. There-
fore, I pose the following research question and sub-questions:

RQ How can a sense inventory be build for abbreviations from Dutch healthcare reports?

sub-RQ1 To what extent can WSI reduce annotation cost for extracting senses compared
to annotating random abbreviation occurrences?

sub-RQ2 How much gain in sense coverage can be achieved by annotating WSI clusters
compared to annotating random abbreviation occurrences?
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sub-RQ3 To what extent can semantic similarity measures accurately rank candidate
senses of an abbreviation?

The main research question is tackled using WSI and semantic similarity approaches.
The first two sub-questions regard the performance of the WSI approach, whereas the
third sub-question regards the viability of semantic similarity measures in ranking candi-
date senses. Firstly, annotating randomly selected abbreviation occurrences is inefficient,
and exploring the extent to which WSI can reduce the annotation cost is relevant with
respect to the main research question. Secondly, it is possible that not every sense of an
abbreviation is captured by a WSI cluster, thus sense coverage achieved through WSI is
relevant with respect to the main research question. Thirdly and lastly, the capabilities of
semantic similarity in ranking candidate senses to abbreviation occurrences is explored,
since semantic similarity might have the potential to aid in retrieving an abbreviation’s
senses without the need for any annotation.

1.2 Remainder of this Thesis
This thesis continues by presenting Background literature and Related Work, and the role
it has in this thesis (Section 2). The Method (Section 3) consists of two parts: 1) vec-
torization and clustering methods for WSI, 2) semantic similarity methods for ranking
candidate senses. Vectorization entails the transformation of the context of an abbrevi-
ation occurrence into numerical vectors, e.g. by using a weighted bag-of-words for the
context words, or by using domain-specific word embeddings. These vectorized abbrevi-
ation occurrences are then clustered with the aim of clustering together occurrences of the
same sense. The semantic similarity methods are used to calculate the similarity between
two sentences based on the word embeddings of each sentence.

I created a Dataset (Section 4) containing the senses of 17 Dutch healthcare abbrevia-
tions with the help of domain experts. The experts annotated a sample of 60 occurrences
of each abbreviation in deidentified healthcare reports from Nedap Healthcare. 5 of the
abbreviations originate from healthcare reports of the elderly care sector, 6 from the men-
tal healthcare sector, and 6 from the disabled care sector. The frequency of each sense
relative to its abbreviation is also included. The Experiments (Section 5) go into the tech-
nical details of preprocessing the healthcare reports, and how the methods from Section 3
are applied to the dataset. The Evaluation (Section 6) shows that not all WSI methods are
successful, and candidate sense ranking does not yet appear viable for retrieving senses
of Dutch healthcare abbreviations. The best performing WSI method entailed using a
domain-specific language model, called MedRoBERTa.nl, to predict substitutes of abbre-
viations and clustering those substitutes. An extensive error analysis addresses the pitfalls
of the best WSI method, and the inconsistent performance of candidate sense ranking.
The Discussion (Section 7) addresses practical implications of this thesis, limitations, and
suggestions for future work. The Conclusion (Section 8) summarizes the main findings
and relates those back to the research question and sub-questions.
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2 Background and Related Work
This section contains a mix of background literature and related work to aid the reader in
better understanding the topic of this thesis, and to provide a foundation for the Method
in Section 3. Firstly, Sections 2.1 and 2.2 provide theoretical background on language
models & embeddings and word mover’s distance respectively. If these topics are fa-
miliar to the reader, these sections can be skipped. However, it is recommended to read
Section 2.1.1, since it contains information on the Dutch medical language transformer
model (MedRoBERTa.nl) that is used in this thesis. Secondly, more background is given
on WSI in Section 2.3, and its subsections provide a background on the various types
of WSI. Sections 2.3.1 and 2.3.4 discuss related work of two types of WSI that are used
in this thesis. Thirdly and lastly, Section 2.4 contains related work that used semantic
similarity to normalize abbreviations.

2.1 Language Models & Embeddings
Embeddings are a numerical representation of words, parts of words, word groups, sen-
tences, or even paragraphs. These embeddings aim to capture the semantic representation
of a piece of text, such that the embedding can be used as a starting point for a wide
variety of NLP tasks. Embeddings substitute the need for extensive feature engineering,
such as performed in feature-based WSI (Section 2.3.1). The skip-gram model for gener-
ating word embeddings has the objective to maximize the average log probability that a
word occurs in the context of other words [24]. This objective is maximized by a neural
network, where the input is a one-hot-encoding of the word at the center of a sequence
of words, and the output consists of one-hot-encodings of the surrounding words. The
hidden layer of this network has a dimensionality of V × D, where V is the size of the
vocabulary and D the dimensionality of each word embedding. In other words, the skip-
gram model is used to create D-dimensional numerical representations of words based on
the context that those words occur in.

BERT, a deep bidirectional transformer neural network, greatly improved results of
NLP tasks by creating embeddings through a different approach [8]. Contrary to skip-
gram, BERT is better at taking into account the direction of context words, and it uses
WordPiece tokenization rather than considering each word a token. WordPiece tokeniza-
tion entails that the vocabulary includes tokens for parts of a word, and for whole words.
This results in better embeddings of rare words and words that are not included in the vo-
cabulary. One of the tasks used to pre-train BERT is the fill-mask task. This task entails
that a sentence is used as input to BERT where a token is replaced with <mask>, and the
correct output is the masked token. This task requires no training data, yet allows BERT
to capture the semantics of a sentence and the tokens in it.

Liu et al. [20] introduced RoBERTa (Robustly optimized BERT approach), which en-
tails an improved pre-training procedure of BERT that results in better performance when
used for various NLP tasks. The design decisions for pre-training included: training the
model longer; using larger batch sizes; removing the next sentence prediction objective;
training on longer text segments; and dynamically changing the pattern for the fill-mask
task during training.
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2.1.1 MedRoBERTa.nl

Verkijk and Vossen [38] set out to create the first transformer-based language model for
Dutch medical language. They argued for the need of a domain-specific language model,
since such models had shown to obtain a better semantic understanding of text for tasks
within the domain they were trained on. Verkijk and Vossen pointed out that hospital notes
displayed distinctive characteristics from other Dutch texts. The notes were characterized
by simplified sentences, a lack of attention to grammar, mixing general and specialized
language, and repurposing words to create new lingo. Due to those characteristics, Dutch
hospital notes could benefit from a domain-specific language model, rather than a general
Dutch language model.

Verkijk and Vossen stipulated a method in which they compared general Dutch (Ro)-
BERT models, a RoBERT model pre-trained from scratch on Dutch hospital notes (Med-
RoBERTa.nl), and a RoBERT model extended by training it on hospital notes. They for-
mulated three evaluation tasks: an intrinsic in-domain sentence similarity task, an extrin-
sic in-domain sentence classification task, and an extrinsic out-domain NER task. Firstly,
the sentence similarity task entailed identifying the odd-one-out sentence from a set of
three sentences. MedRoBERTa.nl outperformed the other transformers in terms of accu-
racy on the sentence similarity task (0.65 versus 0.52-0.58 respectively). Secondly, the
sentence classification task entailed predicting a sentence’s class among 4 domain-specific
classes and an ‘other’-class. All transformers performed with insignificant difference
from one another, but MedRoBERTa.nl obtained a significantly higher F1-score for one
of the classes. Lastly, the NER task entailed tagging entities in a Dutch newspaper texts.
Here, the general transformers obtained much better F1-scores than MedRoBERTa.nl
(0.84-0.91 and 0.66 respectively). This was to be expected, since MedRoBERTa.nl was
designed for medical NLP tasks, which made it less applicable to general Dutch NLP
tasks.

The results of these evaluation tasks show that MedRoBERTa.nl is the best model to
use on Dutch medical text. Since the healthcare and medical domain are closely related,
and MedRoBERTa.nl was also trained on patient reports, MedRoBERTa.nl is a suitable
model for embedding-based WSI for Dutch healthcare abbreviations. Related work on
embedding-based WSI is discussed in Section 2.3.4.

2.2 Word Mover’s Distance
Kusner et al. [18] introduced a novel metric for measuring the dissimilarity between two
text documents. They denoted that word embeddings for similar words are often close to
each other within an embedding space, while dissimilar words are more distant. Based on
that observation, they argued that the dissimilarity of two documents could be measured
as the minimum cumulative distance of non-stopwords from one document to another
document. They coined this metric as Word Mover’s Distance (WMD), since it could
be solved similar to the Earth Mover’s Distance, a transportation optimization problem.
WMD is shown visually in Figure 1 for one document containing an abbreviation, and
another document containing the sense of that abbreviation. When there are more words
in one document than the other, the mapping of words is represented as flow. In that case,
each word from one document containing N non-stopword words requires 1/N outgoing
flow, and each word of another document containing M non-stopword words requires
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1/M incoming flow.

Document 1

The

patient

received

ab

for

their

infection

The

client’s

inflammation

was

battled

by

antibiotics

Document 2

word embedding

‘patient’

‘client’

‘infection’

‘inflammation’

‘received’

‘battled’

‘ab’

‘antibiotics’

FIGURE 1: Visualization of an optimal solution for WMD given two documents.
The middle shows a plot containing the non-stopwords of two documents in a word
embeddings space. An optimal mapping is given via arrows, which results in the
minimum cumulative distance between the words in document 1 with respect to
document 2.

WMD is computationally relatively expensive, namely time complexity O(p3 log p),
where p is the number of unique words in each document. Therefore, two faster variants
of WMD were formulated: Word Centroid Distance (WCD), and relaxed WMD [18].
WCD entails representing the distance between two documents as the euclidean distance
between the averaged word embeddings of each document. WCD can be computed very
fast (O(p)), but does not have tight bounds with respect to WMD. Relaxed WMD entailed
relaxing the constraints for optimizing WMD. Rather than mapping the words in each
document using flow, each word from one document could be mapped to any word of the
other document. Relaxed WMD thus became the cumulative distance between each word
in one document and the closest word in another document (see Equation 1). Relaxed
WMD has time complexity O(p2).

relaxedWMD(D1, D2) =
∑

wi∈D1

min
wj∈D2

dist(e(wi), e(wj)) (1)

WMD and its faster variants were evaluated on document classification using the k-
nearest-neighbour decision rule for 8 different corpora, and compared to 7 baselines in-
cluding TF-IDF, LSI, BM25 Okapi, and LDA. WMD outperformed all other baselines for
6 corpora, and performed worse and on par with LSI for two corpora. WCD showed better
performance than 6 baselines, while relaxed WMD almost performed equally to WMD.

2.3 Word Sense Induction
Abbreviations have not only been problematic within the healthcare sector. Abbreviation
extraction and normalization has also been studied for biomedical papers. Abbreviation
normalization in biomedical papers relied on the co-occurrence of the first appearance of
an abbreviation with its long form [3, 47, 37, 46, 31]. Pattern-matching approaches looked
for where an abbreviation occurred between parentheses to locate its sense. Instead of
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pattern-matching algorithms, studies on clinical abbreviation disambiguation employed
supervised WSD [27, 40, 41, 34]. Supervised WSD is regarded as a text classification
problem with a finite set of classes, similar to part-of-speech tagging or named-entity
recognition [28, 39]. It is dependent on the comprehensiveness of a sense inventory and
on sufficient labelled data. Unfortunately, those resources are not readily available for the
disambiguation of Dutch healthcare abbreviations.

WSI aims to overcome the limitations of supervised WSD [28, 21]. WSI entails con-
text clustering, and it is grounded in the assumption that the sense of a word should be
derivable by the semantics of its context. By clustering together occurrences of a word
with a (semantically) similar context, WSI discriminates between senses. In this thesis,
the goal of using WSI is to derive a sense inventory for abbreviations, but WSI has also
been used for disambiguation. Manandhar et al. [21] formulated a WSI task for the Se-
mEval2010 conference that evaluated WSI. Unfortunately, problems arose due to it being
difficult to map induced senses to human-defined senses. This caused evaluation metrics
that automatically linked context clusters to appropriate senses to favor WSI methods that
mapped all instances of a word to a single cluster, or WSI methods that mapped each
instance to its own cluster.

Jurgens and Klapaftis [15] formulated another WSI task for SemEval2013 that took
into account graded senses, where the instance of a word could have multiple senses at
once, such as in double entendres. For example, in the phrase “you look really hot!”,
the writer/speaker hides a flirtatious insinuation (the receiver being attractive) behind an
innocent remark (the receiver being overheated). Though abbreviations could be ambigu-
ous due to a lack of context to disambiguate them, a writer of healthcare reports does not
intend an abbreviation to be ambiguous. Therefore, it is not necessary to consider graded
senses for healthcare abbreviation WSI. This means that WSI for abbreviations does not
require fuzzy clustering, nor fuzzy evaluation metrics.

WSI often consists of two components: 1) a transformation of a word’s context to
input data, 2) and a clustering algorithm. The remainder of this subsection outlines four
approaches found in literature on WSI, which are split up based on what input data is
used: vectorized features based on a word’s context (Section 2.3.1), a graph capturing the
co-occurrence of context words (Section 2.3.2), topics found by supplying context words
to a topic-model (Section 2.3.3), and vectorized context words through word embeddings
(Section 2.3.4).

Before continuing with elaborating on WSI approaches, it is important to know how
WSI can be used to derive abbreviation senses. Xu et al. [45] specified how sense clus-
ters, which are the clusters obtained through WSI, are assigned a sense. In the best case
scenario, when all occurrences of a sense are contained in a single cluster, a single oc-
currence of the cluster can be annotated to label said cluster with a sense. However, an
imperfect clustering results in impure clusters, where some occurrences have one sense,
and some have another sense. In this case, the occurrence that lies closest to the cluster’s
center, i.e. the centroid, would be best to annotate, since it should be most representative
of the sense cluster. This method of sense assignment is depicted in Figure 2, and shows
how WSI can aid in building a sense inventory for Dutch healthcare abbreviations.

All WSI approaches use the words in the context of a target word. Moon et al. [25]
explored what window size for context words works best for WSD. A window size of
10-60 words on both sides of an abbreviation resulted in a support vector machine (SVM)
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“The patient received an ab 

treatment to fight their infection.”
sense: antibiotics

1

2

“Ab appears to be bruised due to 

an incident at the nursing home.”
sense: abdomen

FIGURE 2: Visualization of how sense clusters can be assigned a sense for the
abbreviation “ab”. Each cluster consists of occurrences that are all the same sense.
The centroid occurrence (red) of cluster 1 is annotated as “antibiotics”, which
means that cluster 1 is assigned the sense “antibiotics”. Similarly, cluster 2 is
assigned the sense “abdomen”.

that was about 92% accurate in disambiguating abbreviations. Meanwhile, using only a
window size of 5 reduced the accuracy to 90.8%, a window size of 3 to 89.5%, and using
more than 60 words for the context window reduced the accuracy back to 90.0%. They
also showed that it was important to use both sides of an abbreviation’s context, since
using only the right side reduced accuracy by 6 percentage points, and using only the left
side by 2.5 percentage points.

2.3.1 Feature-based Approaches

Feature-based WSI and WSD represent the context of a target word as a bag-of-words [21,
30, 45]. Different weightings are used, such as point-wise mutual information (pmi) [45]
(see Equation 2) or TF-IDF weighting [30]. Furthermore, some studies took into account
the distance of a context word with respect to the abbreviation. Finley et al. [11] used a
sigmoid function to decrease the weight of context words when they were more distant
from an abbreviation. Similarly, Xu et al. [45] captured the positional information of
context words by adding ‘L’ or ‘R’, together with a number, to the string of a context word,
and included those strings into their bag-of-words vocabulary. For example, “received”
would be represented with positional information as “L2_received” for the occurrence
shown in Figure 2.

Xu et al. [45] is a particularly interesting case of feature-based WSI, since they eval-
uated their clustering models in the context of building a sense inventory. Their WSI
method is used in this thesis with slight adaptations, because they showed that it leads to
annotation cost reduction and sense coverage gain. Their method is therefore extensively
discussed in the following paragraphs.

Xu et al. [45] applied feature-based WSI to extract English clinical abbreviation senses.
The features used for clustering were the stemmed words within a window of 5 words
from the abbreviation occurrence, both with and without positional information, and the
section title of the admission note. The stemmed words were weighted using point-wise
mutual information (see Equation 2). Here, w was a context word and a an abbreviation.
The pmi was known to be biased towards infrequent words, so it was multiplied by a
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discounting factor (see Equation 4).

pmi(w, a) = log2
p(w, a)

p(w) · p(a)
= log2

c(w,a)
N

c(w)
N

· c(a)
N

(2)

= log2
N · c(w, a)
c(w) · c(a)

(3)

df(w, a) =
c(w, a)

c(w, a) + 1
· min[c(w), c(a)]

min[c(w), c(a)] + 1
(4)

To cluster these features, Xu et al. [45] developed a clustering method for capturing
rare senses (frequency < 2%) of abbreviations, called Tight Clustering for Rare Senses
(TCRS). Previously, they used the expectation maximization (EM) algorithm for sense
clustering [43], but found through error analysis that EM clustering failed to recognize
rare senses. The TCRS algorithm consisted of two phases: 1) finding tight clusters where
all datapoints had a cosine similarity greater than a threshold θ1, and 2) merging clusters
using complete linkage based on a threshold θ2. Complete linkage entailed that two clus-
ters were merged when the minimum similarity between every point among the clusters
was greater than a threshold θ2. The clusters were merged iteratively, starting with the
most similar clusters. This was done until either the number of clusters was less than a
predefined number N , or the remaining clusters were not eligible for complete linkage
due to their similarity being below θ2. The thresholds (θ1 and θ2) were optimized using a
set of 12 abbreviations, which resulted in θ1 = 0.65 and θ2 = 0.1.

A comparison was made between EM clustering and TCRS using a gold standard con-
sisting of another 12 abbreviations (similar to the gold standard that is shown in Table 6).
The gold standard was constructed from 200 randomly selected annotated abbreviation
occurrences, which provided information on the relative frequency for each sense of an
abbreviation. To evaluate the clustering methods, clusters were assigned a sense based on
the gold standard, instead of assigning a sense to each cluster by annotating its centroid.
This prevented the annotation effort from becoming too large. When the gold standard
occurrences within a cluster were more than 60% of the same sense, this sense would be
assigned to the cluster. For example, in Table 1, cluster-1 would be assigned the sense
“bowel movement”, cluster-2 would be assigned the sense “bone marrow”, and cluster-3
would have no sense.

Sense/cluster cluster-1 cluster-2 cluster-3
bowel movement 150 5 5
bone marrow 5 30 5

TABLE 1: A fictional example for clustering 200 occurrences of the abbreviation
“bm”, which has the possible senses “bowel movement” and “bone marrow”.

EM clustering and TCRS were compared based on annotation cost and sense cover-
age. The annotation cost was defined relative to the gold standard of 200 annotations,
which meant that a clustering algorithm that yielded 10 sense clusters would have an an-
notation cost of 200/10 = 0.05. Sense coverage was also defined relative to the gold
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standard, which meant that the sense coverage was the number of senses retrieved by a
clustering method over the number of senses in the gold standard. For example, the ab-
breviation “ss” had 7 senses in the gold standard, and TCRS managed to retrieve 6 senses.
The sense coverage then became 6/7 = 0.86.

On average, TCRS had an annotation cost of 0.069, and EM had an annotation cost of
0.050. This resulted in a sense coverage of 0.71 for TCRS and 0.56 for EM clustering av-
eraged over 10 repetitions of clustering the 12 abbreviations. Furthermore, the clustering
methods were compared to annotating a random sample of 10 occurrences (equivalent to
an annotation cost of 0.050), which merely obtained 0.61 sense completeness.

It should be noted that the definition of annotation cost was actually flawed, but did
not impede the results of Xu et al. [45], because each abbreviation had the same number
of annotations in the gold standard. However, it is illogical to bind annotation cost to
the gold standard, since changing the number of annotations in the gold standard should
not affect the extent to which WSI can reduce the number of annotations to find an ab-
breviation’s senses. For example, if only 50 occurrences of the abbreviation “ss” were
included in the gold standard, the annotation cost for all methods would increase with
over 100%. However, the absolute number of annotations required by each method would
not change. It would have been better to measure the reduction in annotation cost of the
clustering methods relative to the random annotation baseline, i.e. reduction in annotation
cost through WSI. Therefore, this thesis emphasizes annotation cost reduction rather than
absolute annotation cost.

As was the goal behind the design of TCRS, it managed to identify rare senses. From
the 15 senses with a frequency of <2%, TCRS identified 7, while EM and random sam-
pling were only able to identify 1. Meanwhile, all three of the methods were able to
identify 26/26 abbreviations that had a frequency of >10%. To summarize, feature-based
vectorization and TCRS achieved better sense coverage for a similar annotation cost as
other methods, which makes it an interesting WSI method for retrieving abbreviation
senses.

2.3.2 Graph-based Approaches

Graph-based WSI entails building a graph from a target word’s occurrences, where the
initial vertices are the words that co-occurred with the target word [32, 9, 5]. An edge
is added for each word that co-occurs, and a vertex for a word is added if it does not
occur in the graph yet. Sometimes, the edges are assigned weights to indicate a stronger
relationship between words [9]. Then, this graph is split up into multiple sub-graphs
by removing the edges, such that each sub-graph represents a sense. The similarities
between the words in each sub-graph and the words in an abbreviation occurrence are
used to disambiguate between the senses of a word, i.e. each abbreviation occurrence is
linked to its most similar sub-graph for disambiguation.

Firstly, a significant limitation of graph-based WSI to building a sense inventory is
that it becomes difficult to assign a sense to each sub-graph. For example, a sub-graph
originating from occurrences of the abbreviation “ab” can be “{disease, cure, infection,
medication, prescription}”. This sub-graph can represent the sense “antibiotics”, but it
can also represent some brand of medication that contains the letters ‘a’ and ‘b’. Es-
pecially when considering that graph-based WSI can have its imperfections, meaning
that sub-graphs could contain words from multiple different senses, it becomes extremely
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complex to normalize a sub-graph to a sense.
Secondly, graph-based methods have been used for disambiguation, but showed poor

results when compared to topic-model WSI [5] and compared to other WSI methods
[21, 16]. Based on these two reasons, it graph-based WSI is not employed for sense
retrieval in this thesis.

2.3.3 Topic-model-based Approaches

Topic-model-based approaches aim to induce senses as topics. A topic model, latent
Dirichlet allocation (LDA) or hierarchical Dirichlet process (HDP), is trained per abbrevi-
ation, resulting in topic probabilities for each occurrence of an abbreviation. Approaches
deviated in how the topic probabilities are used to disambiguate. Chasin et al. [5], Brody
and Lapata [4] and Goyal and Hovy [12] regarded each topic as a sense cluster, which
meant that the occurrences were clustered based on their most probable topic. Chasin
et al. mapped topics to senses by using annotated occurrences, such that they could con-
duct supervised evaluation. During their evaluation, they showed that HDP worked best in
disambiguating abbreviations. LDA also performed better than the baseline of selecting
the most frequent sense, while graph-based methods performed poorer than the baseline.
Brody and Lapata, and Goyal and Hovy argued that topics can be represented as senses
through the words that were most probable for each topic. Unfortunately, this presents the
same problems as assigning senses to sub-graphs (see Section 2.3.2): a sense is inferred
through a topic’s most prominent words, which comes with uncertain sense labelling.
Therefore, topic-model-based WSI are also not employed in this thesis.

2.3.4 Embedding-based Approaches

Embedding-based approaches utilize pre-trained language models to transform a word’s
context into a vectorized representation. Generally, the n context words are each repre-
sented as a d-dimensional embedding, and an aggregating function is used to reduce the
dimensionality of the context representation from n·d to d. For example, Li et al. [19] pro-
posed the usage of word embedding features over conventional features for disambiguat-
ing acronyms. The first embedding feature that they formulated was the surrounding-
based embedding (SBE), which is the sum of word embeddings for words surrounding an
acronym occurrence (see Equation 5). Here, SBE(wk) is the SBE for the kth word in a
document, which is an acronym. e(wj) is the embedding of a word in the context of wk,
where the window size of the context is i.

SBE(wk) =
k+i∑

j=k−i

e(wj), j ̸= k (5)

The second embedding feature is the TF-IDF-based embedding (TBE). Where SBE
uses the sum to aggregate over word embeddings, TBE first weighs each word embedding
by the TF-IDF value of the context word relative to the documents that the acronym occurs
in (see Equation 6). In TF-IDF(wj, D), D only includes documents that contain the
acronym wk.
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TBE(wk) =
k+i∑

j=k−i

TF-IDF(wj, D) · e(wj), j ̸= k (6)

In their small scale experiment, Li et al. [19] used cosine similarity to disambiguate
acronyms based on the surrounding-based embeddings for 5 words surrounding an acronym.
SBE resulted in greater accuracy than TBE on two acronym datasets. SBE achieved lower
accuracy than a conventional feature baseline on one dataset (93.10% and 95.29% respec-
tively), but higher accuracy on the another dataset (94.86% and 74.29% respectively).
Other baselines, including a majority sense baseline, performed far worse. It was argued
that the conventional feature baseline performed well on the former dataset due to its low
quality background ontology, compared to that of the latter dataset.

Wu et al. [41] were intrigued by the usage of word embeddings for WSD by Li et al.
[19], so they trained their own word embeddings from a corpus containing 403,871 clin-
ical notes. The word embeddings were generated using the neural network architecture
by Collobert et al. [7], which used ranking lost criteria with negative sampling. They
formulated three types of word embedding features: SBE as defined by Li et al., left-right
SBE (LR_SBE) where the embeddings are aggregated separately for the right and left
side of the abbreviation, and MAX_SBE where the maximum score for each embedding
dimension of the surrounding words is taken. As a baseline, conventional features were
TF-IDF weighted, which included: word features, word features with direction, posi-
tional word features, and word formation features for the abbreviation. The window size
of surrounding words was 3 for both sides of the abbreviation, which was found to be op-
timal through 10-fold cross validation. Two clinical notes corpora containing annotated
abbreviations, Vanderbilt University Hospital’s (VUH) admission notes and University
of Minnesota-affiliated (UMN) clinical notes, were used for training support vector ma-
chines for each type of features. The highest macro average accuracies were achieved
using MAX_SBE (93.01% VUH, 95.79% UMN), while the baseline achieved the lowest
accuracies (92.19% VUH, 94.97% UMN).

Jaber and Martínez [14] explored whether embeddings trained on a domain-specific
vocabulary would be more suitable for clinical abbreviation disambiguation than embed-
dings trained on general English text in addition to domain-specific texts. They used
an embedding pre-trained on biomedical articles, and another embedding that was pre-
trained on Wikipedia articles and biomedical abstracts in addition to the biomedical arti-
cles. Their results showed that using the latter embedding increased WSD accuracy from
96.3% to 96.6% on average for two corpora and two different supervised classifiers. They
concluded, similar to Wu et al. [41], that MAX_SBE result in better performance than
averaging, taking the minimum or summing over surrounding word embeddings.

Similarly to Jaber and Martínez [14], Pakhomov et al. [29] experimented with using
embeddings trained on: only clinical reports, only biomedical articles, and only Wikipedia
articles. They tested the corpus domain effects of these embeddings on a semantic sim-
ilarity and relatedness task for clinical terms. The embeddings trained on solely clinical
reports and solely biomedical articles resulted in similar performance, while the embed-
dings trained on Wikipedia articles produced significantly worse results. Both Jaber and
Martínez and Pakhomov et al. used word2vec with the skip-gram representations to gen-
erate word embeddings [24].
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Based on the related work described in the previous paragraphs, it appears that embedding-
based WSI results in better performance than feature-based WSI. The MAX_SBE vector-
ization method was empirically shown to be the best choice, so that will be employed
in this thesis. Jaber and Martínez [14] and Pakhomov et al. [29] showed that the corpus
domain of an embedding is important to NLP tasks. Therefore, MedRoBERTa.nl is used
for generating embeddings in this thesis, since its corpus of Dutch medical reports is most
similar to the healthcare reports considered in this thesis, compared to other currently
available open-source models.

Substitution-based Approaches

Due to the rise of transformer models, often trained on a fill-mask objective, a new WSI
method arose: substitution-based WSI. Substitution-based WSI entails predicting substi-
tutes for the abbreviation in an occurrence. These substitutes are then clustered, just like
any other WSI method, which allows for sense clustering.

Alagić et al. [1] utilized context2vec, a bidirectional LSTM based on word2vec’s
CBOW architecture, to extract lexical substitutes for words they wanted to disambiguate.
They argued that lexical substitutes should be semantically very similar to the word they
substitute, and allow for discriminating between a word’s senses. Consider the example
sentences containing the word “play” in Table 2. Their substitution-based WSI method
entailed averaging over the embeddings of the 15 most suitable lexical substitutes for a
word occurrence, and clustering the vectorized occurrences through affinity propagation.
This method improved performance on several metrics with respect to approaches that use
SBE, feature-based, graph-based, or topic-model-based approaches for the SemEval-2010
task [21].

Occurrence Sense Substitutes
The actor performed a dramatic work theater, performance,
well in the play. for the stage drama, musical

The dog plays engage in activity performance, drama,
with a ball. for enjoyment musical, comedy

The play at the local a dramatic work performance, drama,
theater was amazing. for the stage musical, stand-up

TABLE 2: A fictional example depicting commonalities between senses and sub-
stitutes of the word “play”.

Amrami and Goldberg [2] also utilized lexical substitutes for WSI, but they obtained
these substitutes through an adapted fill-mask task. They split up the sentences for ob-
taining lexical substitutes at the position of the masked word. For example, the second
sentence from Table 2 would be split up into: “The dog <mask>” and “<mask> with a
ball.”, where 10 substitutes would be used for each partial fill-mask task. Furthermore,
they also experimented with adding the masked word together with “and” to each sen-
tence part. In the example, this would look like: “The dog plays and <mask>” and
“<mask> and plays with a ball.”. They argued that including the masked word would
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result in better substitutes, especially when the other words in the sentence parts presented
little information. Lastly, the substitutes would be TF-IDF weighted before being clus-
tered. Agglomerative clustering was used, and the hard-clustering was transformed to
soft-clustering such that the approach could be evaluated on the graded WSI task from
SemEval-2013 [15]. On this task, their method significantly outperformed other methods
for graded WSI.

Due to the state-of-the-art performance of substitution-based WSI (a subset of embedding-
based WSI), it is employed in this thesis. Furthermore, MedRoBERTa.nl is also trained
on the fill-mask objective, so it is suitable for substitution-based WSI.

2.4 Semantic Similarity for Abbreviation Normalization
Chopard and Spasić [6] were intrigued by WMD and its potential for disambiguating
abbreviations. Since Kusner et al. [18] showed that relaxed WMD is almost as performant
as WMD, while being far less computationally expensive, they used relaxed WMD for
disambiguation. Their approach was to score candidate senses of an abbreviation based
on the mean relaxed WMD of each sentence containing the candidate sense with respect
to a sentence containing the abbreviation (see Equation 7). They referred to this score
as the disambiguation score σ(sabbr, ϕ). For a sentence containing an abbreviation, the
surrounding words are represented in an embedding space: sabbr. The same representation
is used for every sentence containing a candidate long form: sϕ ∈ S(ϕ), where ϕ is a
candidate sense from the set of all candidate senses for this abbreviation, Φabbr. The
candidate sense with the lowest disambiguation score is considered to be the best one,
i.e. ϕ∗

sabbr
= minϕ∈Φabbr

σ(sabbr, ϕ). This approach resulted in an accuracy of 96.36% in
disambiguating abbreviations from the MSH WSD dataset, which contains abbreviations
from biomedical abstracts. The next best approach on this dataset was from Li et al. [19],
which disambiguated the abbreviations using a context vector representation and cosine
similarity, and only obtained 95.29% accuracy.

σ(sabbr, ϕ) =
∑

sϕ∈S(ϕ)

WMD(sabbr, sϕ)

|S(ϕ)|
(7)

Before disambiguating, it was necessary to extract candidate long forms for each
abbreviation. For long form candidate extraction, a siamese RNN was trained using
abbreviation-sense pairs from the CARD dataset [42]. One of the two RNNs that made up
the siamese RNN was fed the encoding of an abbreviation, while the other RNN was fed
the encoding of a n-gram that might be the sense of that abbreviation. The output of this
siamese RNN was trained to be 1 if the abbreviation and sense were indeed a pair, and
0 if the sense was not a sense of the abbreviation. Negative samples were generated by
taking an abbreviation and the sense of another abbreviation. This siamese RNN obtained
a recall of 84.04% in recognizing correct abbreviation-sense pairs, compared to a simple
pattern-matching-based baseline that had only 64.53% recall. Though the baseline had a
precision of 90.12%, and the RNN 75.21%, it was argued that recall was more important
than precision, since long forms that were not included in the candidate senses of a short
form, would result in disambiguation errors.

Fascinated by this creative use of WMD, I explore the viability of candidate sense
ranking using semantic similarity for sense retrieval in this thesis. If this works well,
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it can be employed to automatically retrieve abbreviation senses, or aid experts in their
annotation effort.
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3 Method
The method can be considered as two-fold: 1) comparing various WSI approaches to re-
duce the number of manual annotations needed to build a sense inventory, and 2) ranking
candidate senses based on the semantic similarity of their occurrences with respect to the
occurrences of abbreviations. The WSI approaches consist of transforming abbreviation
occurrences to numerical vector representations (Section 3.1), and then clustering these
vectors (Section 3.2). Figure 2 shows how these WSI clusters can be assigned senses by
annotating their centroids. However, manual annotation could be reduced even more if
it could be substituted by automatic annotation, which is where ranking candidate senses
based on semantic similarity comes into play. The candidate senses should include any
sense that an abbreviation might have, and can include irrelevant senses, but the number
of candidate senses should be as small as possible. The occurrences of each abbrevia-
tion WSI cluster and the occurrences of each candidate sense are then compared using a
semantic similarity metric. This allows for ranking the candidate senses with respect to
each abbreviation WSI cluster, such that the highest ranking candidate sense should be
the sense of the occurrences in the cluster.

The complete method is depicted in Figure 3. The candidate sense that is most similar
to the cluster is likely the sense of that cluster. In the Figure, this was the candidate sense
with the lowest mean WMD distance: “antibiotics”. Note that the example only shows
what happens for perfect WSI and perfect similarity ranking. In practice, the correct sense
should rarely rank highest due to the large number of candidate senses.

3.1 Occurrence Vectorization
Three methods were used to transform abbreviation occurrences into vector representa-
tions: 1) pmi-weighted conventional features (similar to Xu et al. [45]), 2) MAX_SBE
using the MedRoBERTa embeddings from words in the context of an abbreviation, and
3) pmi-weighted substitution words using MedRoBERTa. Topic models and graph-based
methods were excluded, since they had shown to perform more poorly than other WSI
approaches [21, 15, 5, 2], and would be difficult to retrieve senses for. For the conven-
tional features and MAX_SBE vectorization, the size of the context window was set to
10, since that was the smallest context size that showed peak performance on WSD by
Moon et al. [25]. The number of substitutes was set to 20, which was the same as Amrami
and Goldberg [2].

Firstly, the conventional features consist of three types of features, which were pmi-
weighted, similar to Xu et al. [45]. Rather than being stemmed, the context words were
lemmatized. They are shown below together with examples based on the example report
shown in Table 3.

Feature 1 The lemmatized context words surrounding an abbreviation without posi-
tional information: [hb, de, client, was, incontinent, vanwege, infectie, ab, toedi-
enen, daarnaast, nog, navragen, over, weekend, plan, hij, zeggen]

Feature 2 The lemmatized context words surrounding an abbreviation with positional in-
formation: [L7_hb, L6_de, L5_client, L4_was, L3_incontinent, L2_vanwege, L1_in-
fectie, R1_ab, R2_toedienen, R3_daarnaast, R4_nog, R5_navragen, R6_over, R7_
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“antibiotics”  

occurrences 

 

“about”  

occurrences 

 

“abdomen”  

occurrences 

 

  

(a) 

“[…] The patient received ab for their infection. […]” 

“[…] The ab assisted the patient during the day. […]” 

⋮ 
“[…] The infection was battled effectively by the ab. […]” 

(b) 

{the, patient, receive, for, their, infection} 

{the, assist, the, patient, during, the, day} 

⋮ 
{the, infection, was, battle, effective, by, the} 

0.153 1.532 1.210 0.235 ⋯ 0.000
0.459 1.532 0.000 0.000 ⋯ 0.000

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0.306 0.000 0.000 0.000 ⋯ 0.646

 

(c) 

1 

2 

(d) 

“ab” clustered occurrences: 

“[…] The patient received ab for their infection. […]” 

“[…] Bacterial infection; ab given. […]” 

⋮ 
“[…] The infection was battled effectively by the ab. […]” 

⋯ 

17.623 

mean WMD 
23.264 

mean WMD 

19.317 

mean WMD 

FIGURE 3: The method for extracting abbreviation senses automatically using
WSI and semantic similarity ranking of candidate senses. In step (a), the occur-
rences of an abbreviation were extracted from healthcare reports. In step (b), the
context of an abbreviation was transformed into a vector for each occurrence (the
vectorization methods are described in Section 3.1). In step (c), the occurrence
vectors were clustered together, such that a WSI cluster would only contain occur-
rences of the same sense. In step (d), the occurrences in each abbreviation WSI
cluster were compared to occurrences of candidate senses in terms of semantic
similarity.
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weekend, R8_plan, R9_hij, R10_zeggen] - ‘L’ and ‘R’ indicate whether the context
word occurs to the left or right of the abbreviation, and the number indicates how
far to the right or left.

Feature 3 The report type, such as fluid intake, medicine, et cetera: [REPORT_TYPE_
rapportage]

Secondly, MAX_SBE was used as aggregation over context word embeddings, since it
showed better results than other surrounding-based embeddings [41, 14]. The embeddings
for context words were found by passing an abbreviation occurrence to MedRoBERTa
where the abbreviation would be masked. The embedding of the masked abbreviation
was removed from the matrix of word embeddings. Then, the word embeddings were
aggregated over each embedding dimension by taking the maximum (see Equation 8).
Here, wk was the abbreviation in the occurrence for which the MAX_SBE needs to be
calculated. wj is a word in the context of wk within a context window of size c.

MAX_SBE(wk) =
k+c∑

j=k−c

e(wj) j ̸= k, wj /∈ {‘<mask>’, ‘.’, ...} (8)

The example shown in Table 3 would first be tokenized by MedRoBERTa.nl’s Word-
Piece tokenizer. The tokens that would be used for calculating the MAX_SBE would
be: [hb, De, cliënt, was, incontinent, vanwege, infectie, ab, toegediend, Daarnaast, nog,
nagevraagd, over, weekend, plannen, Hij, zei]. The result per abbreviation occurrence
would be a vector that has the same number of dimensions as the embeddings from
MedRoBERTa.nl.

Lastly, Amrami and Goldberg [2], Alagić et al. [1] showed that lexical substitutes work
well for WSI. Furthermore, this occurrence vectorization method suited MedRoBERTa,
since RoBERTa models were trained on the fill-mask task. Rather than using a context
window surrounding an abbreviation, only the sentence that the abbreviation occurred
in would be tokenized and used to predict substitutes for the masked abbreviation. The
top-20 predicted substitutes for “wv” in the example shown in Table 3 would be: [en,
waarvoor, wv, dus, met, heeft, geen, daarom, is, kreeg, zonder, na, voor, waarop, van,
waardoor, werd, +, toen]. The substitutes for all occurrences of an abbreviation were
lemmatized and then pmi-weighted.

3.2 Sense Clustering
Two methods for clustering were used: 1) Tight Clustering for Rare Senses (TCRS) [45],
and 2) k-means clustering. The motivation behind selecting TCRS was that it was de-
signed with the purpose of discovering rare senses. The reason for using k-means +
Gap was that it was used by several approaches during SemEval-2010 [21], an evaluation
task for WSI, and showed good results. Furthermore, k-means was a relatively intuitive
centroid-based clustering algorithm, while TCRS was computationally more intensive and
a density-based clustering algorithm.

TCRS required values for its similarity threshold parameters, which were optimized
for high sense coverage versus low annotation cost by Xu et al. [45]. The number of an-
notations for creating the dataset (see Section 4) was already limited, so this optimization
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Report text Abbreviation senses

Report
(Dutch)

hb. De cliënt was incontinent vanwege
infectie wv ab toegediend. Daarnaast nog
nagevraagd over weekend plannen. Hij zei
van plan te zijn de bingo op vrijdag bij te
wonen. Verder gb

hb = huisbezoek;
wv = waarvoor;
ab = antibiotica;
gb = geen

bijzonderheden.

Report
(translated)

hv. The client has lost bladder control due
to an infection fw ab was prescribed. Also
asked about weekend plans. He responded
to plan on joining the Friday afternoon bingo.
Besides that nr

hv = house visitation;
fw = for which;
ab = antibiotics;
nr = no remarks.

TABLE 3: A fictional Dutch healthcare report that captures the usage of abbrevi-
ations.

step was not adopted. Instead, two configurations of TCRS were used for sense clustering.
The first configuration used the values for the similarity thresholds as they were found to
be optimal by Xu et al. The second configuration defined the similarity thresholds based
on the distribution of similarities between occurrences, such that the similarity threshold
for tight clustering was the 99th percentile from occurrence similarities, and the similarity
threshold for merging clusters using complete linkage was the 25th percentile from oc-
currence similarities. These heuristically determined thresholds were based on that tight
clusters should only contain the occurrences that were most similar, and complete linkage
should be allowed for reasonably dissimilar occurrences.

The number of clusters for k-means was decided through the Gap-statistic [35]. The
Gap statistic is the difference between the within-cluster dispersion of a clustering to that
of a null reference distribution based on the data. As suggested by Tibshirani et al. [35],
the number of clusters k was chosen to be the smallest k such that Gap(k) ≥ Gap(k +
1) − sk+1. Here, Gap(k) was the average Gap value when using k number of clusters,
and sk+1 was the standard deviation of Gap(k + 1). Furthermore, two fixed values for k
were selected: a small k = 10 and a larger k = 20.

3.3 Semantic Similarity Ranking
Aside from assigning a sense to a cluster based on its centroid, two methods were con-
structed for ranking candidate senses based on the semantic similarity of their occurrences
to occurrences contained within an abbreviation cluster: 1) ranking based on the lowest
relaxed WMD, and 2) ranking based on the highest cosine similarity of MedRoBERTa.nl
sentence embeddings. The candidate senses of an abbreviation were:

• each n-gram that occurred 10 or more times in the corpus, where n is between 1
and the number of characters in the abbreviation;

• which contained the letters of an abbreviation in consecutive order;

• and was not the abbreviation itself (with or without additional punctuation or capi-
talization).
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For example, candidate senses for the abbreviation “ab” include: “antibiotica (an-
tibiotics)”, “aardbei (strawberry)” and “aan begeleider (to counselor)”. However, the
candidate senses do not include: “a.b.”, “AB” or any other syntactical variants of the
abbreviation itself.

The first ranking method was based on relaxed WMD (see Section 2.4). Candidate
senses were ranked based on their semantic distance score, σ(α, ϕ), i.e. the average re-
laxed WMD (see Equation 9). For each sentence in a cluster containing an abbreviation
sα, the relaxed WMD was calculated with respect to each sentence containing a candidate
sense sϕ. These distances were summed and normalized over the number of sentences in
a cluster |S(α)| and the number of sentences containing a candidate sense |S(ϕ)|. There
would thus be a candidate sense ranking per cluster of size |S(ϕ)|, where the top ranking
candidate sense had the lowest semantic distance score.

σ(α, ϕ) =
∑

sα∈S(α)

∑
sϕ∈S(ϕ)

relaxedWMD(sα, sϕ)

|S(α)| × |S(ϕ)|
(9)

The second ranking method was based on the cosine similarity between sentence em-
beddings obtained through MedRoBERTa.nl. A sentence embedding was obtained by
taking the sum over the wordpiece embeddings of that sentence (see Equation 10). Since
cosine similarity was used to compare sentence embeddings, the similarity values would
remain the same as when the mean over the wordpiece embeddings was taken instead
of the sum.2 Equation 12 shows how the similarity score for an abbreviation cluster and
candidate sense was computed. The candidate sense with the highest similarity score was
ranked highest.

e(s) =
∑
w∈s

e(w) (10)

cosSim(s1, s2) =
e(s1) · e(s1)

||e(s1)||2 × ||e(s2)||2
(11)

simscore(α, ϕ) =
∑

sα∈S(α)

∑
sϕ∈S(ϕ)

cosSim(sα, sϕ)

|S(α)| × |S(ϕ)|
(12)

In this thesis, the candidate sense ranking was not used to build a sense inventory,
since it was first necessary to see whether it works. If the sense of an abbreviation is
often included in the candidates and ranks high, then candidate sense ranking can be used
to build a sense inventory. For instance, the top-20 candidate senses can be supplied to
experts during annotation, if the sense of an abbreviation is often listed in this top-20.

2This holds in theory, but due to rounding errors in floating-point arithmetic, slight differences could
occur. It is better to use the sum, since this refrains from making an unnecessary additional computation.
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4 Dataset
Similar to Xu et al. [45], a dataset was created by annotating occurrences of abbreviations
in healthcare reports. This dataset functions as a gold standard for the various senses that
an abbreviation can have, and an estimation of the sense frequencies. The size of the
dataset was limited by the availability of expert annotators. Therefore, the abbreviations
for this dataset were selected based on the following criteria:

1. They should consist of two letters, since those abbreviations are statistically more
likely to have multiple senses than longer abbreviations, based on the sense in-
ventory containing English clinical abbreviations by Moon et al. [26]. 22.5% of
that sense inventory consists of two-letter abbreviations, which have 53.9% of the
senses.

2. They should occur at least 1000 times within 1,000,000 reports of their domain,
since their more frequent usage makes them more interesting than less frequently
used abbreviations.

3. They should be used by at least eight out of ten healthcare providers within the do-
main. This indicates the abbreviations were domain-specific, rather than provider-,
employee-, or client-specific.

4. They should be indicative of having multiple domain-specific senses, since abbrevi-
ations that could be ambiguous in a clinical context were shown to be problematic
in Section 1.

Healthcare reports from Nedap Healthcare were used to identify abbreviations that
meet the criteria stipulated above. The reports originate from the three healthcare do-
mains where Nedap Healthcare provides administrative healthcare solutions: elderly care,
mental healthcare, and disability care.

100,000 reports were tokenized for ten providers of each healthcare domain, totaling
1,000,000 reports per domain. The reports were deidentified, i.e. stripped from pro-
tected health information, using a tool developed in a previous thesis at Nedap [36]. The
providers were those with the largest number of clients and more than 100,000 available
reports. They opted in for making their reports available to Nedap for product improve-
ment. A heuristic was used to identify two-letter tokens that occur in the syntax of an
abbreviation (see Appendix A). This heuristic allows for finding abbreviations that fit cri-
teria 1-3. The occurrences of each remaining abbreviation were clustered using the WSI
method from Xu et al. [45], which is described in Section 3, since that method showed
to work well on WSI for English clinical abbreviations. Then, I identified which abbrevi-
ations certainly had multiple domain-specific senses by inspecting cluster centroids as a
non-expert. As a result, the abbreviations in Table 4 fit the criteria stipulated above. From
criterion 1 to criterion 4, the diminishing number of abbreviations is shown in Table 5 per
healthcare domain.

Though the number of abbreviations is small, other studies also used few words or
abbreviations for WSI: 14 English clinical abbreviations [45]; 75 English clinical abbrevi-
ations; 50 English nouns and 50 verbs [21]; 20 English nouns, 20 verbs, and 10 adjectives
[15]. For my thesis, the resources were simply not available to increase the size of the

24



Elderly care Mental healthcare Disabled care
AB BW AB
DD CM DD
HB GG GB
HH GV HB
WV GZ HH

SU IB

TABLE 4: The abbreviations that fit the four criteria specified in Section 4 for the
elderly care, mental healthcare, and disabled care sectors.

Criterion Elderly care Mental healthcare Disabled care Total
None 1003 1947 1255 4205
1 307 430 315 1052
2 46 77 31 154
3 33 67 29 129
4 5 6 6 17

TABLE 5: This table displays the number of abbreviations that meet the criteria
to the left cumulatively. For example, the number ‘77’ at the center of the table
indicates that 77 unique tokens are abbreviations that fit criteria 1 and 2. None
indicates no criteria are used to filter the tokens, so this denotes the number of
unique tokens that appear in an abbreviation syntax.
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dataset. I mitigate this resource issue by using a creative experimental set-up (Section 5)
and performing an extensive error analysis (Section 6.2).

4.1 Data Sampling
For each of the abbreviations, 60 occurrences were sampled. This sample size ensures
that, for an abbreviation that has two senses, a 0.05 frequent minority sense has a prob-
ability of more than 0.95 to be included within the sample. In other words, it would be
improbable that all 60 occurrences of a homonymous abbreviation would have the same
sense. Furthermore, the sample size ensured a reasonable workload for each domain ex-
pert: roughly 2 hours of annotation.

To sample from the abbreviation occurrences, the occurrences were deduplicated and
binned based on context overlap. The context of an occurrence consisted of the five tokens
preceding and five tokens succeeding an abbreviation. Occurrences for which the con-
text overlapped completely were considered duplicates, and occurrences that had three or
more overlapping tokens were binned together. The bins were sampled with a probability
relative to the size of the bin, which ensures that the frequency of contextually similar
occurrences are the same in the sample as in the whole dataset. Since an abbreviation’s
context and its sense are hypothesized to be closely related (Section 2.3), the bin sampling
ensures that the frequency of senses in the sample is similar to the frequency of senses in
the whole dataset.

4.2 Annotation Process
An expert per healthcare domain annotated the 60 sampled occurrences per abbreviation
of that domain. The elderly care expert was a general practitioner. The mental healthcare
expert was a healthcare psychologist (the exact job title is ‘gezondheidszorgpsycholoog’
in Dutch), who was in full-time practice up to a year ago. Lastly, the disability care expert
was a healthcare nurse with several years of experience.

Four distinct scenarios were identified for annotating an abbreviation occurrence:

1. The abbreviation in the occurrence was annotated with a single sense (long form).

2. The abbreviation in the occurrence was annotated with multiple senses, meaning
that the annotator believes that the abbreviation has one of those senses.

3. The token is not an abbreviation in this occurrence, such as postal codes. I excluded
most of these occurrences from the sample of 60 occurrences by inspecting them
beforehand.

4. The abbreviation cannot be annotated with a sense in this occurrence, either due to
a lack of context or a lack of knowledge by the expert.

Table 6 and Table 7 show the abbreviations, their senses, their senses translated to En-
glish, and sense frequencies relative to the abbreviation. Unexpectedly, the abbreviations
“gv” and “su” from the mental healthcare sector only showed to have a single sense. Fur-
thermore, the abbreviation “ab” showed to have a completely different sense frequency
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Domain Abbr- Sense Translated Relative
eviation sense frequency

elderly care ab antibiotica antibiotics 0.966
activiteitenbegeleider activity counselor 0.034

dd de die per day 0.442
de dato dated (of) 0.212
dagdienst day shift 0.192
dienstdoende on duty 0.077
differentiaaldiagnose differential diagnosis 0.077

hb hemoglobine hemoglobin 0.929
huisbezoek house visitation 0.071

hh huishoudelijke hulp domestic assistance 0.673
herhalingen repetitions 0.309
hoofd hals head neck 0.018

wv waarvoor for which 0.839
wijkverpleegkundige district nurse 0.161

mental bw beschermd wonen protected living 0.983
healthcare bewindvoerder curator 0.017

cm contactmoment contact moment 0.924
casemanager casemanager 0.057
centimeter centimeter 0.019

gg groepsgenoot group mate 0.846
geen gehoor no answer 0.091
gegevens information 0.036
gegeven given 0.027

gv gezonde volwassene healthy adult 1.000
gz gezondheidszorg(psycholoog) healthcare (psychologist) 0.846

gezonde volwassene healthy adult 0.128
gezins family 0.026

su suicide suicidal 1.000

TABLE 6: List of abbreviations per healthcare domain and their senses (part 1/2).
The abbreviations are sorted in alphabetical order, and their senses are sorted on
relative sense frequency.
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Domain Abbr- Sense Translated Relative
eviation sense frequency

disability care ab activiteitenbegeleiding activity counseling 0.710
ambulant begeleider ambulatory assistant 0.161
antibiotica antibiotics 0.129

dd de die per day 0.463
de dato dated (of) 0.296
differentiaaldiagnose differential diagnosis 0.167
Donald Duck Donald Duck 0.037
dienstdoende on duty 0.037

gb geen bijzonderheden no remarks 0.583
gezinsbegeleider family counselor 0.292
gigabyte gigabyte 0.125

hb huisbezoek house visitation 0.927
hemoglobine hemoglobin 0.073

hh huishoudelijke hulp domestic assistance 0.659
herhalingen repetitions 0.341

ib individuele begeleider individual counselor 0.962
intern begeleider internal counselor 0.038

TABLE 7: List of abbreviations per healthcare domain and their senses (part 2/2).

distribution for elderly care compared to disabled care, which exemplifies the need for
retrieving senses per domain.

Contrary to Moon et al. [26], who did not report any occurrences that the annotators
were unable to annotate, Table 8 shows that annotators were unable to annotate about
16.4% of abbreviation occurrences. When an abbreviation was not annotated by a sense,
it was 53.4% due to a lack of knowledge by the annotator, 39.5% due to a lack of context,
and 7.1% due to the occurrence not containing an abbreviation.

The expert on elderly care also annotated 10 occurrences for each of the disability
care abbreviations, such that inter-annotator agreement could be measured. As a gen-
eral practitioner, this expert has some expertise on disability care. From the total of 60
occurrences for inter-annotator agreement, only 26 occurrences were annotated by both
annotators. However, the annotators completely agreed on the senses of these 26 occur-
rences.

Domain Annotated Lacking context Non-abbreviation Unfamiliar
Elderly care 55.6± 2.2 2.2± 2.9 0.4± 0.5 1.8± 1.6
Mental healthcare 53.7± 6.9 1.0± 1.2 1.5± 1.0 3.8± 6.4
Disability care 41.2± 10.9 8.5± 8.1 0.2± 0.4 10.2± 11.0

TABLE 8: Frequency of annotation scenarios for each healthcare domain.
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5 Experiments
Two experiments were conducted to evaluate the methods pictured in Figure 3: 1) each
combination of vectorization and clustering, which forms a WSI approach, was used to
cluster abbreviation occurrences; and 2) a ranking of candidate senses was made for each
abbreviation based on annotated occurrences and clusters from the most suitable WSI
approach. The former experiment used the methods described in Section 3.1 and Sec-
tion 3.2, while the latter experiment used the methods described in Section 3.3.

5.1 Experiment 1: Word-Sense Induction
The objective of the first experiment was to answer subRQ-1 and subRQ-2. SubRQ-1
regards reducing annotation cost through WSI compared to annotating a random sample
of abbreviation occurrences. SubRQ-2 regards improving sense coverage through WSI
compared to annotating a random sample of abbreviation occurrences. The experiment
was conducted for the abbreviations listed in Section 4 except for the abbreviations with
only a single sense, which were the mental healthcare abbreviations “gv” and “su”. In-
cluding those abbreviations would have made it appear as if the WSI methods had a higher
sense coverage than that they can actually obtain for homogeneous abbreviations, since
the sense coverage for these single-sense abbreviation would be 1, regardless of cluster-
ing. Of course, there would be many healthcare abbreviations in the real world that only
have a single sense, but it would be left to whomever wants to build a sense inventory
whether they want to use WSI for retrieving an abbreviations senses. If they wanted to
know the sense of an 8 letter abbreviation, it would be likely that this abbreviation would
only have a single sense across all its occurrences.

The same 100,000 reports per healthcare provider per healthcare sector that were used
for the ground truth dataset were used for WSI. First, any protected health information was
replaced with a surrogate through deidentification [36]. For example, the name “Walter
White” would be replaced with “PERSON”. Secondly, the reports were processed by a
SpaCy v3.4 NLP pipeline trained on Dutch news articles and web page texts. This pipeline
included tokenization, lemmatization and sentence segmentation. Thirdly, each token that
consisted of the letters that make up an abbreviation, regardless of casing and optionally
including periods, was considered an occurrence of that abbreviation. So, “AB”, “a.b.”
and “ab” would all be considered occurrences of the abbreviation “ab”. Fourthly, the
abbreviation occurrences were deduplicated. An occurrence was a duplicate, if it had
the exact same context for a window of 20 words as another abbreviation occurrence.
Lastly, to conclude step (a) from Figure 3, a sample of 1000 occurrences was taken per
abbreviation, which included the labelled occurrences. This sample size was also used by
Xu et al. [45], and allowed them to cluster occurrences of rare (< 2% frequent) senses.

An abbreviation’s occurrences were vectorized in the three different ways described in
Section 3.1: as pmi-weighted conventional features, as MAX_SBE, and as pmi-weighted
substitution lemmas. After that, they were clustered in the 5 different ways described in
Section 3.2: TCRS with percentile-based similarity thresholds, TCRS with fixed similar-
ity thresholds, k-means with the Gap statistic, k-means with k = 10, and k-means with
k = 20. It would have required too many annotations to manually annotate each cluster
centroid (depicted in Figure 2), since this would have to be done for each WSI method
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and for each repetition of the experiment. Therefore, clusters were assigned a sense based
on the few annotated occurrences (40-60 out of 1000, depending on how many the ex-
perts could annotate). For clusters that contained annotated occurrences, a cluster was
assigned the sense of the annotated occurrence in the cluster that lied closest to the clus-
ter center. There were also clusters without any annotated occurrences in them, which
were assigned a sense based on the sense frequencies listed in Section 4. This cluster
sense assignment based on the limited number of annotated occurrences is depicted in
Figure 4. The whole experiment from sampling onwards was repeated 10 times for each
vectorization-clustering combination to reduce the effect of randomness.

“Sir had hb 12.2”→

Ground Truth

hb haemoglobin 0.929

house visitation 0.071

haemoglobin

1

2

Sample 𝑃𝑔𝑟𝑜𝑢𝑛𝑑−𝑡𝑟𝑢𝑡ℎ hb → haemoglobin 

FIGURE 4: This picture shows a clustering of vectorized abbreviation occurrences
on the left side. The red dots are annotated occurrences, while the gray dots are not
annotated. The points within an ellipse from a cluster, and the datapoints outside
the ellipses are considered noise. Note that only TCRS can regard datapoints
as noise, while k-means clustering cannot. Two scenarios for assigning a sense
to a cluster are displayed. Cluster-1 is assigned a sense based on the annotated
occurrence closest to its center. Cluster-2 contains no annotated occurrences, and
is therefore assigned a sense based on the sense frequency distribution from the
ground truth.

5.1.1 WSI Evaluation Measures

Sense coverage and annotation cost are the relevant metrics for WSI with respect to
subRQ-1 and subRQ-2. Sense coverage (see Equation 13) is measured as the fraction
of senses identified through WSI (|ΦWSI|) from the senses in the gold standard (|Φgs|),
exactly as done by Xu et al. [45]. Here, Φ represents a set of senses. The annotation cost
(see Equation 14) is measured differently from Xu et al.. Annotation cost is measured
as the number of clusters found through WSI (|CWSI|), and not relative to the number of
annotations used to create the gold standard. Here, C is a set of abbreviation clusters,
since one annotation is necessary to find the sense of each cluster.

sense coverage(WSI) =
|ΦWSI|
|Φgs|

(13)
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annotation cost(WSI) = |CWSI| (14)

The sense coverage and annotation cost are also calculated for annotating randomly
sampled abbreviation occurrences, which will be referred to as the baseline. For the
baseline, the sense coverage is still the fraction of identified senses over gold standard
senses, and the annotation cost is the sample size of the baseline. Since the sense coverage
can be calculated for both a WSI method and the baseline, the sense coverage gain can be
calculated (see Equation 15). Similarly, the annotation cost reduction can be calculated
(see Equation 16).

sense coverage gain =
sense coverage(WSI)− sense coverage(baseline)

sense coverage(baseline)
(15)

annotation cost reduction =
annotation cost(baseline)− annotation cost(WSI)

annotation cost(baseline)
(16)

Rather than showing sense coverage, annotation cost in a large table, these metrics
are plotted as exemplified in Figure 5. The baseline is depicted as a line plot, where each
point on the line plot shows the sense coverage that is obtained by annotating a number
of randomly sampled occurrences. A WSI method’s sense coverage and annotation cost
are depicted similar to a 2-dimensional box plot. The dot inside the ellipse is the mean
annotation cost and sense coverage for a WSI method (annotated with text in the figure
for clarity). The ellipse shows the first and third quartiles of the annotation cost and sense
coverage in the shape of an ellipse rather than a box.

This visualization (Figure 5) allows the reader to easily observe the performance,
variance and skewness of a WSI method in terms of annotation cost and sense coverage.
Furthermore, the sense coverage gain can be observed by projecting the mean sense cov-
erage of a WSI method on the baseline (in this example visualized by a vertical orange
line), and the annotation cost reduction can be observed similarly (in this example visual-
ized by a horizontal orange line). Therefore, any WSI method that has a mean to the top
left of the baseline reduces annotation cost and improves sense coverages with respect to
the baseline. Equivalently, any WSI method that has a mean to the bottom right of the
baseline is worse than the baseline. The results will also include a table containing the
annotation cost reduction and sense coverage gain in addition to the plots.

5.2 Experiment 2: Ranking Candidate Senses
The objective of the second experiment was to answer subRQ-3, which regards ranking
candidate senses using semantic similarity measures. This experiment was conducted in
two parts: 1) ranking candidate senses based on their similarity to annotated occurrences
of a single sense, and 2) ranking candidate senses based on WSI clusters. The former
allowed for evaluating the effectiveness of semantic similarity ranking without influence
from how well-formed the WSI clusters were. The latter allowed for evaluating the effec-
tiveness of the entire method, as depicted in Figure 3.

The ranking using annotated occurrences was executed for every sense in the ground
truth that also occurred more than 10 times within the reports. This was not the case
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FIGURE 5: Plot that visualizes how a WSI method performs with respect to a
baseline in terms of sense coverage and annotation cost. The baseline, which en-
tails annotating randomly sampled abbreviation occurrences, is depicted as a blue
line plot. The sense coverage and annotation cost of a WSI method is depicted as a
blue dot and ellipse. The dot depicts the mean annotation cost and sense coverage
of the WSI method, which is annotated with ‘mean: (20, 0.92)’ for clarification in
this example. The ellipse is the box of a 2-dimensional box plot, where the left end
of the ellipse is the first quartile of annotation cost, which is annotated with ‘q1:
12’. Similarly, the right end is the third quartile of annotation cost (‘q3: 22’), the
bottom end is the first quartile of sense coverage (‘q1: 0.88’), and the top end is
the third quartile of sense coverage (‘q3: 0.88’). To exemplify how a WSI method
can be compared to the baseline, a horizontal dashed orange line is shown for an-
notation cost reduction (‘28.6% reduction’), and a vertical dashed orange line for
sense coverage gain (‘4.4% gain’).
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for several senses, so these were excluded from the ranking evaluation. The ranking was
based on sentence similarity and relaxed WMD, as described in Section 3.3.

The ranking using WSI clusters was only conducted for the WSI approach with the
highest V-measure, which is the harmonic mean of homogeneity and completeness. Ho-
mogeneity and completeness were calculated based on the annotated occurrences resid-
ing in each cluster. As mentioned before, TCRS regards some occurrences as noise,
which requires adapted definitions for homogeneity and completeness for TCRS. The ho-
mogeneity of a TCRS clustering is calculated only for the clusters without noise. The
completeness of a TCRS clustering is calculated for all non-noise cluster, as well as one-
cluster-per-occurrence clusters for each annotated occurrence that is considered noise. If
the completeness would only be calculated for the non-noise clusters instead, a TCRS
clustering of only a single non-noise cluster containing a single annotated occurrence
would result in a homogeneity of 1 and a completeness of 1. The adapted completeness
would be 0 for this clustering.

High homogeneity means that occurrences within a cluster are largely of the same
sense, which is necessary for the semantic similarity ranking to work. An inhomogeneous
cluster would not have one correct candidate sense that is relevant to most occurrences of
the cluster, which means that candidate sense ranking would not work. High completeness
means that occurrences of the same sense are located among a few clusters, rather than
being spread out over many clusters. Clusters with too few or a single occurrence would
have a greater chance of coincidentally being similar to an irrelevant candidate sense.
For example, the sense of “ab” in the sentence “The urologist recommended ab for the
bladder infection.” is “antibiotics”, but due to the urology-related context, the highest
ranking candidate sense for the sentence could be “abdominal bladder”. If the sentence is
clustered together with many more sentences of the sense “antibiotics” that did not have
the urology-related context, the incorrect candidate sense “abdominal bladder” would
rank lower and the correct candidate sense “antibiotics” would rank higher.

The homogeneity and completeness will be shown in a scatter plot for each WSI
method. This allows for easier observation on how each WSI method relates to another in
terms of homogeneity and completeness, than a table would allow. The V-measures will
still be shown in a table.

5.2.1 Candidate Sense Ranking Evaluation Measures

The candidate senses were ranked using annotated occurrences, and using the clusters of
the most suitable WSI method in terms of V-measure. This ranking is evaluated using the
mean reciprocal rank (MRR) and mean rank, where only a single sense in the ranking is
considered as relevant. For the candidate sense ranking using annotated occurrences of the
same sense, the exact sense (so no inflections) of the occurrences is considered the only
relevant result in ranking. For the candidate sense ranking using a cluster of occurrences
of the same abbreviation, the highest ranking sense of that abbreviation (based on the
senses contained in the ground truth dataset) is only considered relevant.

As a baseline, the candidate senses are ranked arbitrarily. The rank of a sense in an
arbitrary ranking of length n can be modelled as a random variable that has a discrete
uniform distribution: X ∼ Unif(1, n + 1). Therefore, the expected rank of the baseline
is n

2
+1 in context of the ranking using annotated occurrences, since only a single sense in

the ranking is correct. Similarly, the baseline expected rank can be modelled in context of
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the ranking using clustered occurrences, since multiple senses can define the highest rank
in the ranking. The rank of the highest ranking sense out of m senses can be modelled
as shown in Equations 17 through 24. Therefore, the expected rank of the baseline is
n

m+1
+ 1.

X1, X2, . . . , Xm ∼ Unif(1, n+ 1) i.i.d. (17)

Y = min {X1, X2, . . . , Xm} (18)

F (y) = P (min {X1, X2, . . . , Xm} ≥ y) (19)
= P (X1 ≥ y) · P (X2 ≥ y) · · ·P (Xm ≥ y) (20)

=

(
y − 1

n

)m

(21)

E(Y ) =

∫ 1

0

(1− F (y))dy +

∫ n

1

(1− F (y))dy +

∫ inf

n

(1− F (y))dy (22)

= 1dy +

∫ n

1

(
1−

(
y − 1

n

)m)
dy + 0dy (23)

= 1 +
n

m+ 1
(24)
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6 Evaluation
This section includes the results of the two experiments stipulated in Section 5. The
results are supplemented by an extensive error analysis.

6.1 Results
Figure 6, 7, and 8 show a box-plot-like visualization of annotation cost versus sense cov-
erage for each WSI method plotted together with the baseline. Each plot shows 5 WSI
methods that all use the same vectorization: Figure 6 displays WSI methods using the
pmi-weighted conventional features for vectorization (Conv. in the legend), Figure 7 us-
ing MAX_SBE (MAX_SBE in the legend), and Figure 8 using pmi-weighted substitution
words (Subst. in the legend). The clustering methods are also indicated in each legend:
TCRS using percentile-based similarity thresholds (TCRS percentile), TCRS using fixed
similarity thresholds (TCRS fixed), k-means with k decided by the GAP statistic (k-means
gap), k-means with fixed k = 10 (k-means k = 10), k-means with k = 20 (k-means
k = 20).
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FIGURE 6: A box plot of annotation cost plotted versus sense coverage for
the clustering methods that used pmi-weighted conventional features. See Sec-
tion 5.1.1 and Figure 5 for further explanation on this plot.
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FIGURE 7: The annotation cost plotted against sense coverage for the clustering
methods that used MAX_SBE. See Section 5.1.1 and Figure 5 for further expla-
nation on this plot.
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FIGURE 8: The annotation cost plotted against sense coverage for the clustering
methods that used pmi-weighted substitute words. See Section 5.1.1 and Figure 5
for further explanation on this plot.
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Figure 9 shows the completeness versus homogeneity for each WSI method. The
WSI methods often had low completeness due to senses being spread out over many
clusters. The WSI methods with the highest V-measure and homogeneity all use TCRS
to clustering vectorized occurrences. TCRS could consider occurrences as noise while
k-means had to cluster all occurrences, which allowed TCRS to obtain a much higher
homogeneity. Note that there were only few annotated occurrences per abbreviation,
which makes the validity of homogeneity and completeness debatable. Therefore, these
metrics should be regarded by the reader as additional insight into the difference between
WSI methods, rather than indicative of the performance of each WSI method.
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FIGURE 9: The homogeneity plotted against completeness for all WSI ap-
proaches. The three highest V-measures were annotated in the plot to indicate
the most suitable WSI methods for candidate sense ranking: Subst. + TCRS fixed
(0.267), Conv. + TCRS percentile (0.260), Subst. + TCRS fixed (0.245).

It is possible to roughly derive the annotation cost reduction and sense coverage gain
for each WSI method from Figure 6, 7, and 8 (this is shown in Figure 5). To aid the reader,
Table 9 shows the annotation cost reduction, sense coverage gain, mean annotation cost,
mean sense coverage, and V-measure numerically rather than graphically for each WSI
method.

The results show that some WSI methods can reduce annotation cost with respect to
randomly annotating occurrences. In particular, I consider Subst. + TCRS fixed to be the
best performing method. This method obtains a high mean sense coverage of 87.0% for
a mean annotation cost of 17.7, which results in an annotation cost reduction of 34.5%
and a sense coverage of 6.5%. Unexpectedly, conventional features clustered using k-
means results in comparable annotation cost reduction and sense coverage gain, while
TCRS performed poorly using conventional features. This opposes the results of Xu
et al. [45], whose WSI experiment on English clinical abbreviations showed that conven-
tional features clustered using TCRS worked better than clustering those features using
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WSI method Sense coverage Annotation Sense Annotation V-measure
cost coverage gain cost reduction

Conv. + TCRS percentile 85.3% ± 21.6% 32.1 ± 23.2 -4.0% -33.7% 0.260 ± 0.160
Conv. + TCRS fixed 71.7% ± 23.9% 11.2 ± 5.5 -3.9% -11.9% 0.245 ± 0.145
Conv. + k-means Gap 61.1% ± 25.3% 2.9 ± 1.5 11.2% 42.2% 0.156 ± 0.210
Conv. + k-means k=10 80.3% ± 22.2% 10.0 ± 0.0 9.3% 41.2% 0.214 ± 0.183
Conv. + k-means k=20 86.4% ± 20.4% 20.0 ± 0.0 3.8% 23.1% 0.213 ± 0.178
MAX_SBE + TCRS percentile 69.4% ± 22.7% 9.9 ± 4.3 -5.7% -23.3% 0.196 ± 0.144
MAX_SBE + TCRS fixed 38.8% ± 11.3% 1.0 ± 0.0 0.0% 0.0% 0.000 ± 0.000
MAX_SBE + k-means Gap 66.4% ± 21.9% 8.0 ± 2.3 -5.3% -15.0% 0.221 ± 0.167
MAX_SBE + k-means k=10 69.9% ± 22.6% 10.0 ± 0.0 -5.0% -25.0% 0.234 ± 0.162
MAX_SBE + k-means k=20 86.0% ± 19.1% 20.0 ± 0.0 3.3% 20.0% 0.235 ± 0.148
Subst. + TCRS percentile 74.4% ± 23.9% 10.7 ± 7.3 -0.2% 1.9% 0.235 ± 0.153
Subst. + TCRS fixed 87.0% ± 18.9% 17.7 ± 4.7 6.5% 34.5% 0.267 ± 0.172
Subst. + k-means Gap 69.2% ± 23.6% 6.3 ± 2.7 6.6% 21.8% 0.237 ± 0.182
Subst. + k-means k=10 76.0% ± 23.6% 10.0 ± 0.0 3.4% 16.7% 0.245 ± 0.180
Subst. + k-means k=20 83.5% ± 21.4% 20.0 ± 0.0 3.2% 4.8% 0.238 ± 0.168

TABLE 9: The numerically presented results of the WSI experiment. The metrics
are given as mean and standard deviation across all abbreviations for 10 iterations
of the WSI experiment.

expectation-maximization clustering, and both those clustering methods resulted in better
performance than randomly selecting occurrences to annotate. The error analysis of the
method for approximating sense coverage in Section 6.2.3 hints that this result might be
caused by inaccuracies in the sense coverage approximation.

In contrast to the performant WSI methods, the usage of MAX_SBE vectorization
results in insignificant differences from the baseline. This can have various reasons, for
example, taking the maximum per word embedding dimension might not work as well
for WSI as it did for WSD in other studies. It could be better to use a different embed-
ding aggregation (e.g. mean or sum over the word embeddings) or to use the occurrence
sentence instead of a context window for the word embeddings. The WSI methods using
substitution lemmas showed good performance, since the means for sense coverage and
annotation cost of all clustering methods were located above the baseline. Therefore, it
is unlikely that MedRoBERTa.nl was to blame for MAX_SBE vectorization resulting in
bad performance.

Table 10 shows the result of candidate sense ranking the annotated occurrences. Ta-
ble 11 shows the result of candidate sense ranking using the clusters obtained from TCRS
clustering with pmi-weighted conventional features. On average, there are 3752 candidate
senses per abbreviation, and 11 out of the 45 senses are not present among the candidate
senses due to not occurring 10 or more times in the corpus.

The semantic similarity ranking shows improvements in all evaluation metrics relative
to the baseline (random ranking). Relaxed WMD doubles the MRR with respect to sen-
tence similarity ranking, but comes at a much greater computational cost. Relaxed WMD
took 600-1000 milliseconds to calculate for a single candidate-sense-abbreviation pair,
while sentence similarity ranking took 5 milliseconds. Sentence similarity ranking only
required a single distance computation for each pair of sentences, while relaxed WMD
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Ranking Method MRR Rank Accuracy
Random (baseline) 0.00072 2021 ± 1270 0.441
Relaxed WMD 0.02365 1272 ± 1557 0.765
Sentence similarity 0.01091 1320 ± 1533 0.735

TABLE 10: The results for ranking candidate senses based on occurrences from
the ground truth dataset. The Rank displays the average rank and standard devia-
tion. The Accuracy displays whether a sense was correctly ranked above the other
senses of its abbreviation.

Ranking Method MRR Rank
Random (baseline) 0.00119 1165 ± 728
Relaxed WMD 0.02369 1111 ± 1403
Sentence similarity 0.01106 986 ± 1123

TABLE 11: The results for ranking candidate senses based on occurrences from
clusters made with TCRS and pmi-weighted conventional features. The Rank dis-
plays the average rank and standard deviation.

required taking the row-wise minimum of N ×M distance computations, where N was
the number of words in one sentence, and M in the other sentence.

Nevertheless, the mean ranks of semantic similarity ranking are too high to be useful
in a practical setting. Only 3 senses ranked in the top-20, and none at the top of a rank-
ing. This result indicates that candidate sense ranking is not useful for automatic sense
retrieval, or as additional information to expert annotators. However, an analysis of the
candidate senses in the top-20 of semantic similarity rankings showed that these rankings
are not so bad after all. This analysis is included in the error analysis of candidate sense
ranking in Section 6.2.2.

6.2 Error Analysis
Subst. + TCRS fixed obtains high sense coverage, annotation cost reduction and V-measure,
which makes it most suitable to build a sense inventory. Therefore, the error analysis is
focused on this WSI method. The high variance in sense coverage warrants an analysis of
how well each abbreviation and its senses are clustered, which is shown in Section 6.2.1).
Similarly, I analyze the position of each abbreviation’s sense in the candidate sense rank-
ing in Section 6.2.2.

The evaluation metric sense coverage is approximated based on a limited number of
annotations. I analyze in Section 6.2.3 how accurate the approximated sense coverage
is by labelling the centroids of each abbreviation and each WSI method. This is not
an error analysis on the methods used in this experiment, but rather an error analysis
of an evaluation metric, which is not standard procedure. However, the approximated
sense coverage error analysis allows for further contextualization of the results of the
WSI experiment, so it provides valuable insight to this thesis.
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6.2.1 Word-Sense Induction

WSI can make three types of errors: 1) considering all annotated occurrences of a sense as
noise, 2) putting a sense in an inhomogeneous cluster, and 3) spreading a sense over many
clusters. The first error leads to lower sense coverage, since those senses do not occur in
any cluster. The second error also leads to lower sense coverage, since an inhomogeneous
cluster contains occurrences of different senses, and only the centroid represents the clus-
ter. This error is quantified as the precision of the best cluster for a sense. The third error
leads to higher annotation cost, since each cluster representing the same sense leads to an
additional annotation without increasing sense coverage. This error is quantified as the
recall of the best cluster for a sense. The best cluster for a sense is the one resulting in the
highest F1-score. The quantification of these errors per sense is visible in Appendix C.

Firstly, the abbreviation senses are categorized based on their sense frequency, which
is shown in Table 12. The frequency, noise percentage, precision, and recall are averaged
over all senses in a category to quantify the prevalence of each error type per sense cate-
gory. It becomes clear that occurrences of rare senses (0%-5%) are more prone to error
type 1, since there are more senses that only have noise occurrences. This is not only due
to the rare senses having less occurrences, since the average noise percentage should then
still be the similar to that of other frequency categories. The likely reason is that occur-
rences of rare senses have no other occurrences that are similar enough to be clustered
together, causing all of them to be considered noise. This observation indicates that the
best WSI method is not suitable in creating sense clusters for rare senses with too much
variation among its occurrence vectors, i.e. WSI does not work for rare senses that occur
in wildly dissimilar contexts.

Frequency Avg. Only Avg. Avg. Avg.
category frequency noise noise% precision recall
50% - 100% 83.4% 0 / 13 36.8% 94.3% 27.5%
10% - 50% 24.4% 1 / 14 27.7% 91.3% 43.9%

5% - 10% 7.4% 1 / 6 39.4% 62.3% 23.8%
0% - 5% 2.9% 5 / 10 60.0% 27.9% 35.0%
0% - 100% 34.8% 7 / 43 39.6% 73.4% 34.0%

TABLE 12: Quantification of errors for senses categorized by sense frequency.
Avg. Frequency is the average frequency of senses in the category. Only Noise is
the fraction of the senses for which all annotated occurrences are considered as
noise. Avg. Noise% is the percentage of occurrences that are noise averaged over
the senses in the category. Avg. Precision and Avg. Recall are the precision and
recall of the best cluster averaged over the senses in the category.

The average precision is contextualized by the average frequency per frequency cate-
gory. The average precision of very frequent (50% - 100%) senses is 94.3%, but putting
all occurrences in a single cluster would already lead to an average precision of 83.4%,
which is the average frequency. The average precision of infrequent (5% - 10%) and rare
(0% - 5%) senses appears quite low, but is quite high relative to the average frequency.
Sense frequency appears to be correlated with precision, which leads to extremely inho-
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mogeneous clusters for rare senses (error type 2). These impure clusters indicate inade-
quate merging of tight clusters, or inadequate vectorization such that two occurrences of
different senses lie close in vector space. The merging or vectorization are inadequate in
the context of clustering senses.

The average recall is quite low for all frequency categories, even when considering
the percentage of occurrences that are considered noise. WSI also results in 17.7 clusters
on average per abbreviation, which is mostly due to frequent senses, since they simply
have more occurrences. This means that frequent senses are the largest contributor to
error type 3. Again, the problem lies with merging or vectorization. A solution would
be to lower the similarity threshold for merging, but this could come at the cost of low-
ering cluster precision and therefore sense coverage. Another solution would be to only
annotate centroids of the largest clusters, which also could lower sense coverage, but can
greatly reduce annotation cost.

Secondly, the abbreviation senses are categorized by their healthcare domain, which
is shown in Table 13. Though the average frequency does not differ much between do-
mains, Table 14 shows that the distribution of frequency category per healthcare domain
is very different for mental healthcare. It becomes clear that the mental healthcare sector
has many more rare and infrequent senses relative to the elderly care and disability care
sectors. This large difference could be (in part) caused by the small size of the dataset,
rather than being distinctive for mental healthcare. As a result, these senses are clustered
more poorly: the average noise percentage is higher, and average precision and recall are
lower.

Healthcare Avg. Only Avg. Avg. Avg.
domain frequency noise noise% precision recall
Elderly care 35.7% 1 / 14 26.6% 86.5% 41.6%
Mental healthcare 33.3% 4 / 12 52.3% 52.1% 31.8%
Disability care 35.3% 2 / 17 41.3% 77.9% 35.1%
All 34.8% 7 / 43 39.6% 73.4% 34.0%

TABLE 13: Quantification of errors for senses categorized by healthcare domain.
See the caption of Table 12 for an explanation on each column.

Frequency category −→ 0% - 5% 5% - 10% 10% - 50% 50% - 100%
Domain ↓
Elderly care 14.3% 21.4% 35.7% 28.6%
Mental healthcare 41.7% 16.7% 8.3% 33.3%
Disability care 17.6% 5.9% 47.1% 29.4%

TABLE 14: The overlap between sense frequency and healthcare domain. The
percentages are relative to the healthcare domain. For example, 14.3% of the
elderly care abbreviation senses have a frequency between 0% and 5%.

Despite the overlap in sense frequency and healthcare domain, the elderly care sector
appears to be clustered better than the other domains. A reason could that the healthcare
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reports from this sector are more often related to the medical domain than the reports
from the other two sectors. MedRoBERTa.nl, which is used in the best WSI method, is
trained specifically on clinical reports. Therefore, the WSI method performs less well
on texts outside the medical domain. Elderly care reports are largely made for nursing
visits, while mental healthcare reports are made for therapy and counseling sessions, and
disability care reports are made for counseling sessions. This is even visible in the dataset,
since the abbreviations “ab” and “hb” are used in both elderly and disability care. The
medical senses of each abbreviation have a frequency greater than 90% in elderly care
reports, while they have a frequency less than 15% in disability care reports. Similarly,
the mental healthcare domain has no medical senses.

A summary of the error analysis of the best WSI method:

• Occurrences of rare senses are more often considered noise due to absence of oc-
currences of the same sense with similar context;

• Infrequent and rare senses are often put in inhomogeneous clusters (i.e. clusters
with low precision);

• Very frequent senses are the main cause of unnecessary annotation cost;

• The elderly care senses are clustered better, likely because the reports from that do-
main are more closely related to medical reports than reports from mental healthcare
and disability care. Medical reports were used to train the MedRoBERTa.nl model,
which is used in the best WSI method.

6.2.2 Candidate Sense Ranking

Candidate sense ranking using semantic similarity measures resulted in varying perfor-
mance compared to the baseline. 3 out of the 34 senses ranked in the top 20 using WMD,
which has a probability of roughly 0.9% of occurring through random ranking. Mean-
while, 15 out of the 34 senses had a rank over 1000, occasionally worse than the baseline
rank. The exact ranks per sense can be seen in Appendix C. I concluded that candidate
sense ranking is not useful for automatic sense retrieval or annotation assistance, since
there are so few senses that rank well. Therefore, I reflect only briefly on the relation
between ranking performance and sense frequency or healthcare domain.

Table 15 shows the performance of each ranking method per frequency category. I
hypothesized that comparing more abbreviation occurrences to more occurrences of can-
didate senses would lead to a more accurate ranking, since many occurrences are more
representative of the semantics of a sense than a few. This hypothesis is not confirmed in
Table 15, because the semantic similarity ranking for rare and infrequent senses rank is
similar to that of frequent and very frequent senses relative to the baseline ranking.

Table 15 shows the performance of each ranking method per healthcare domain. Rela-
tive to the baseline, the semantic similarity ranking for elderly care and mental healthcare
performs similar, but it performs worse for disability care.

Additionally, I looked into the top-20 ranked candidate senses per abbreviation sense.
I encountered completely irrelevant candidate senses near the top of the ranking, such
as “houtwerkplaats bang (wood workshop scared)” at rank 4 for the sense “hb = hema-
globine (haemoglobin)”. On the other hand, I also encountered candidate senses related
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Frequency Present as Relaxed Sentence Baseline
category candidate sense WMD rank similarity rank rank
50% - 100% 13 / 13 1045 ± 1142 1117 ± 1088 1612 ± 985
10% - 50% 10 / 14 1734 ± 2133 1641 ± 2080 1969 ± 1064

5% - 10% 4 / 6 874 ± 893 854 ± 762 2282 ± 1347
0% - 5% 7 / 10 1259 ± 1377 1503 ± 1524 2702 ± 1602
0% - 100% 34 / 43 1272 ± 1557 1320 ± 1533 2021 ± 1270

TABLE 15: Results of candidate sense ranking categorized by sense frequency
ranges.

Healthcare Present as Relaxed Sentence Baseline
domain candidate sense WMD rank similarity rank rank
Elderly care 10 / 14 846 ± 1320 811 ± 1177 1462 ± 726
Mental healthcare 12 / 12 1384 ± 1077 1465 ± 1215 2530 ± 1357
Disability care 12 / 17 1514 ± 2007 1598 ± 1928 1977 ± 1330
All 34 / 43 1272 ± 1557 1320 ± 1533 2021 ± 1270

TABLE 16: Results of candidate sense ranking categorized by healthcare domain.

to the abbreviation senses, such as “huisbezoek voor (house visitation for)” at rank 8 for
the sense “hb = huisbezoek (house visitation)”, while the exact sense had rank 2237. This
type of false negative could indicate that candidate sense ranking has more potential than
appears from Table 10 and 11.

The presence of candidate senses related to an abbreviation sense is hard to quantify,
since my judgement of n-gram similarity is subjective. Therefore, I denote a top-20 as
informative, if it contains a completely unabbreviated synonym of the abbreviation sense.
For example, the candidate sense “antibiotica kuur (antibiotics treatment)” is informa-
tive enough to derive the sense “antibiotica (antibiotics)”, but the candidate sense “huisb
(house v)” is not informative enough to derive “huisbezoek (house visitation)”. Similarly,
the candidate sense “haar bloedsuiker (her blood sugar)” is similar, but not informative
enough to derive “hemaglobine (haemoglobin)”.

The quantified inspection of top-20 candidate sense ranking inspection is shown in
Table 17. It becomes clear that candidate sense ranking is much better if the objective is
not to find the exact sense. This could mean that showing the top-20 ranked candidate
senses to an annotator allows them to annotate abbreviations that they are stuck on. Fur-
thermore, the highest ranking sense is informative of the abbreviation sense 30% of the
time, so showing that to the annotator could also help.

I commonly observed high-ranking candidate senses that contained the exact sense
or synonym together with a preposition, conjunction or verb. For example, the sense
“huisbezoek (house visitation)” has rank 2237 and 2001 using relaxed WMD and sen-
tence similarity respectively, but the top-20s of these two rankings contain the exact sense
followed by “te (to [verb] / too)”, “om (at [time])”, ‘voor (before / for)’, and ‘kan (can
= verb)’. Finding the exact reason for why this happens requires an entire new study,
which is outside the scope of this thesis. Nevertheless, this error analysis shows that se-
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Ranking method Top-20 contains Rank Ranked
informative candidate at top

Relaxed WMD 25 / 34 6 ± 6 9 / 34
Sentence similarity 21 / 34 3 ± 3 10 / 34

TABLE 17: Results of inspecting the top-20 ranked candidate senses. Top-20
contains informative candidate shows how many of the senses had a candidate in
the top-20 that is an inflection or synonym of the sense. Rank indicates the average
rank of the informative candidate sense and the standard deviation in rank. Ranked
at top indicates how many times the informative candidate sense had the top rank.

mantic similarity ranking has great potential for further automating abbreviation sense
retrieval or lexical substitute retrieval. This potential for future work is further addressed
in Section 7.2.

6.2.3 Sense Coverage Approximation

The sense coverage was approximated for each abbreviation clustering using the limited
number of annotated occurrences provided in the ground truth dataset (as shown in Fig-
ure 4). To validate how accurate this approximation was, I (a non-expert) have annotated
the centroids of each WSI method’s abbreviation clustering for a single experiment run,
allowing me to calculate the exact sense coverage for that experiment. There are 15 WSI
methods, 15 abbreviations, and 13.5 centroids per clustering on average, so I annotated
a little over 3,000 centroids in total. This was a closed-label annotation task, while the
annotation task for the ground truth was open-label, which allowed for the larger number
of annotations.

The approximated and exact sense coverages are shown per WSI method in Table 18.
The goal of this error analysis was to discover whether the approximated sense coverage
inflates or deflates the exact sense coverage for any of the WSI methods. For example, if
Subst. + TCRS fixed had a much lower exact sense coverage than the approximated sense
coverage, it could indicate that this is actually not the best WSI method to use for building
a sense inventory for Dutch healthcare abbreviations. In contrast, if the approximated
sense coverage is close to the exact sense coverage, it strengthens the results discussed
in Section 6.1. Table 18 shows that the exact sense coverage is on average 0.5% lower
than the approximated sense coverage for the same experiment, and is 1% lower than the
approximated sense coverage over 10 experiments. Most notably, Conv. + k-means k=20
has an exact sense coverage that is 12.2% lower than the approximated sense coverage
for the same experiment, and 11.0% lower than the approximated sense coverage over 10
experiments. Subst. + TCRS fixed, which I consider to be the best WSI method among
those tested, has an exact sense coverage that is 1.3% higher than the approximated sense
coverage for the same experiment, and the same as the approximated sense coverage over
10 experiments.

From the sense coverages shown in Table 18, it does not appear that the approximated
sense coverage systematically inflates or deflates the exact sense coverage over all WSI
methods.
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WSI method Sense Sense Sense
coverage (1) coverage (2) coverage (3)

Conv. + TCRS percentile 85.4% 87.6% 85.3%
Conv. + TCRS fixed 75.8% 70.2% 71.7%
Conv. + k-means Gap 58.1% 58.6% 61.1%
Conv. + k-means k=10 75.6% 82.9% 80.3%
Conv. + k-means k=20 76.9% 87.6% 86.4%
MAX_SBE + TCRS percentile 72.1% 68.8% 69.4%
MAX_SBE + k-means Gap 71.3% 68.2% 66.4%
MAX_SBE + k-means k=10 69.7% 66.9% 69.9%
MAX_SBE + k-means k=20 79.6% 81.4% 86.0%
Subst. + TCRS percentile 78.0% 72.4% 74.4%
Subst. + TCRS fixed 87.0% 85.9% 87.0%
Subst. + k-means Gap 68.6% 74.1% 69.2%
Subst. + k-means k=10 75.2% 74.3% 76.0%
Subst. + k-means k=20 83.1% 83.3% 83.5%
All 75.5% 75.8% 76.2%

TABLE 18: The average sense coverage per abbreviation for each WSI method
(except Subst + TCRS fixed) calculated in three different ways: 1) the exact sense
coverage as per my centroid annotations, 2) the approximated sense coverage for
a single experiment (same experiment as (1)), and 3) the approximated sense cov-
erage averaged over 10 experiments (also shown in Table 9). At the bottom, the
average sense coverage over all methods is shown.
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The annotation of centroids allowed for additional interesting discoveries. These dis-
coveries are summarized in the list below:

• Centroids contained non-abbreviations, such as postal codes (fictional example:
“[ID] AB Amsterdam”) where the digits of the postal code were deidentified as
an ID number), names (e.g. “Ab” is a Dutch name), and initials (fictional exam-
ple: “G.G. Modaal”) that were missed by the deidentification tool. These non-
abbreviation centroids don’t impede the sense coverage, but increase annotation
cost, since additional centroids are annotated that do not contain an abbreviation
sense. Their prevalence was roughly 1 in every 15 centroids across all WSI meth-
ods.

• The sense “hoofd hals” for the elderly care abbreviation “hh” never occurred among
226 (not necessarily unique) centroids. A possibility is that all WSI methods fail to
cluster this sense adequately. However, it could be that the sense occurred among
the 60 annotated occurrences by chance, and actually has a sense frequency far
lower than 1.8%, since the sense only had a single occurrence. Similarly to “hoofd
hals”, the senses “gezins” and “gegeven” also never occurred among the centroids.
If these sense frequencies are indeed inflated, the baseline can gain an unfair ad-
vantage over the WSI methods, since it samples such senses based on their inflated
frequency.

• New senses were discovered, which are shown in Table 19. Table 19 is similar to
the table in Section 4, but the number of observations (annotated centroids) is given
rather than the sense frequency. Note that roughly 200 centroids were annotated per
abbreviation on average.

Domain Abbr- Sense Translated #Observations
eviation sense

elderly care wv wondverpleegkundige woundcare specialist 1
ab absorberend absorbing 3

mental bw begeleid wonen assisted living unsure1

healthcare gz groepszorg group care >50
disability ib inkomensbelasting2 income tax 1
care ab afstandsbediening remote control 1

TABLE 19: List of senses that I discovered when annotating WSI centroids as a
non-expert.
1The sense “assisted living” was rarely distinguishable from “protected living”
during centroid annotation, since I am a non-expert on mental healthcare.
2 This sense origins from the IB60 form, which is now called the “inkomensverk-
laring” (= “income statement”).
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7 Discussion
The results show that the best WSI method, Subst. + TCRS fixed, obtains a sense cover-
age of 87.0% on average and reduces annotation cost with 34.5% compared to randomly
annotating occurrences to obtain the same sense coverage. Therefore, this WSI method
can be used to build a sense inventory for Dutch healthcare abbreviations efficiently. Such
a sense inventory can then be used by any reader of healthcare reports to look for senses
that they are not familiar with. Furthermore, this sense inventory can be used for future
NLP applications and research using Dutch healthcare reports, such as query abbreviation
expansion for information retrieval, or disambiguating abbreviations. If all clusters are as-
signed a sense through the proposed WSI method, these clusters could even be used for
abbreviation disambiguation, for example through nearest neighbor classification. This
has been done for English clinical abbreviations by Wu et al. [42], who developed a
pipeline called Clinical Acronym Recognition and Disambiguation, or CARD for short.

WSI for building a sense inventory mainly reduces annotation cost for abbreviations
with multiple senses. It might be that Dutch healthcare abbreviations often have a single
sense, similar to 62.7% of English clinical abbreviations in the sense inventory by Moon
et al. [26]. It mainly depends on the use-case whether WSI should be used for abbrevia-
tion sense retrieval. If the goal is to capture is many abbreviation senses as possible for
the smallest number of annotations, a single annotation per abbreviation is most efficient,
but the sense inventory would likely be far from complete. For precise abbreviation dis-
ambiguation or query abbreviation expansion, a more complete sense inventory should
be built, which is when WSI is useful. Additionally, the sense inventory by Moon et al.
showed that the longer an abbreviation is, the fewer senses it likely has. Perhaps WSI
can be used for retrieving senses of abbreviations shorter than 5 letters, since a longer
abbreviation is likely to be an acronym with a single sense.

The WSI error analysis in Section 6.2.1 ends in a summary of four observations. The
first and second observation indicate that clustering rare senses (frequency below 5%) is
most prone to errors. This can be mitigated by increasing the amount of data used for
WSI and making the similarity bounds for TCRS more strict. There is far more data
available to Nedap, and the main challenge would be to not let the number of clusters
increase too much. This relates to the third observation: frequent senses are spread over
many clusters. A solution to this problem would be to devise an annotation strategy for
the clusters resulting from WSI. Instead of annotating all cluster centroids, experts could
only annotate the centroids of the largest clusters, or the centroids of clusters that are most
distant from each other. The fourth and last observation entails that elderly care abbrevi-
ations clustered better than those from mental healthcare or disability care. A solution to
this problem would be to further pre-train MedRoBERTa.nl on each healthcare domain.
Another option would be to train a RoBERTa model from scratch for each healthcare
domain, but this would be more computationally intensive.

Candidate sense ranking using semantic similarity measures showed some valuable
results during error analysis, but the method is not viable for immediate practical applica-
tion. Future work should focus on post-processing the highest ranking candidate senses,
since those often contain the exact sense or a synonym. Furthermore, semantic similarity
measures can be incorporated in TCRS clustering for WSI instead of cosine similarity.
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7.1 Limitations
The main limitation of this thesis lies with the ground truth dataset. A problem that
this thesis tackles is that healthcare professionals do not have the time to annotate many
occurrences of the same abbreviation for creating a sense inventory. Ironically, annotating
many occurrences is required for making a large ground truth dataset, such that WSI
methods to reduce the number of annotations can be evaluated accurately. The dataset
in this thesis only contained 15 abbreviations. Additionally, only a few annotations were
made per abbreviation, which was further reduced by annotators being unable to annotate
10 out of 60 occurrences on average. Therefore, I had to be cautious with making strong
conclusions based on the results and conduct an extensive error analysis.

I mitigated the smallness of the dataset by running the WSI experiment 10 times,
and by using the ground truth sense frequencies to estimate the sense of clusters without
annotated occurrences. An error analysis on the approximated sense coverage showed
that, on average, it is close to the exact sense coverage, which shows that my mitigation
strategy was somewhat effective.

Another limitation resides with the configuration of the TCRS similarity thresholds.
These thresholds were either estimated based on occurrence similarity percentiles, or
adopted from Xu et al. [45], who optimized them for their dataset. These were not op-
timized in this thesis due to it further reducing the already limited ground truth dataset.
Now that TCRS clustering resulted in the best WSI method, it would be interesting to
explore how annotation cost and sense coverage can be improved by optimizing the simi-
larity thresholds on these measures.

7.2 Future Work
Plenty of future work is possible based on the outcome of this thesis. The WSI error
analysis and my discussion above shows various suggestions to improve WSI, but these
are relatively minor improvements. I mainly suggest that future studies focus on making
candidate sense ranking practically useful for abbreviation sense retrieval. The challenge
will entail identifying candidate senses that contain inflections of a word or group of
words, and grouping those together. Such an approach should be accommodated with a
practical evaluation measure. Not only the rank of a group of candidate senses should be
measured, but also the time spend on an annotation by an expert. A research question
could be: “to what extent can abbreviation occurrence annotation be sped up by showing
the top-5 ranked candidate senses?”

Furthermore, future work could investigate whether a strategic order can be devised
for annotating cluster centroids obtained through WSI. This could be beneficial to ab-
breviation sense retrieval tooling, since end-users can define how many annotations they
want to make per abbreviation. The strategy should mainly take advantage of the WSI er-
ror that very frequent senses are spread across many clusters. For example, the centroids
could be annotated in order of their cluster size, or on how far the centroid is positioned
from other centroids.
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8 Conclusion
In Section 1.1, I formulate a research question and split it up into three sub-questions: sub-
RQ1 regards using WSI to reduce annotation cost, sub-RQ2 regards using WSI to gain
sense coverage, and sub-RQ3 regards using semantic similarity measures to accurately
rank candidate senses of an abbreviation.

I address sub-RQ1 and sub-RQ2 through experimenting with various WSI methods
and evaluating them with respect to a baseline of random annotation. Various WSI meth-
ods showed to outperform the baseline, and the best WSI method resulted in an annotation
cost reduction of 34.5% with an average sense coverage of 87.0%, equivalent to a gain
in sense coverage of 6.5% with an average annotation cost of 17.7. The method entailed
using MedRoBERTa.nl to predict substitutes in place of an abbreviation, which were then
lemmatized, pmi-weighted and clustered using TCRS clustering. This result shows that
WSI can aid in reducing the annotation effort and increasing sense coverage for building
a sense inventory, thus showing positive results for sub-RQ1 and sub-RQ2. If this method
were to be further optimized and more extensively evaluated, perhaps even better results
could be obtained.

I address sub-RQ3 by comparing two different semantic similarity measures for rank-
ing candidate senses with respect to a random ranking baseline. The rankings of exact
senses are poor, but high ranking candidate senses often include the exact sense, a syn-
onym, or inflection. Future work is necessary to further evaluate the usefulness of se-
mantic similarity measures and candidate sense ranking in building a sense inventory.
Relaxed WMD for candidate sense ranking shows better results than sentence similarity,
but is drastically more computationally expensive.

To conclude, the main research question is addressed adequately through the con-
clusions on the three formulated sub-questions. The best WSI method can be applied
directly for building a sense inventory for abbreviations from Dutch healthcare reports
more efficiently. Meanwhile, the candidate sense ranking was not adequate to directly be
integrated in building a sense inventory, yet it holds the potential that it might be used to
automatically retrieve senses or aid annotators in the future.
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Index of Abbreviations
Abbreviation Definition First appearance
Conv. conventional features p. 35

EM expectation maximization p. 12

MAX_SBE maximum of each SBE dimension p. 15
MRR mean reciprocal rank p. 33

NLP natural language processing p. 4

pmi point-wise mutual information p. 11

SBE surrounding-based embedding p. 14
Subst. pmi-weighted substitution lemmas p. 35

TCRS Tight Clustering for Rare Senses p. 12

WMD word mover’s distance p. 8
WSD word sense disambiguation p. 5
WSI word-sense induction p. 5
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A Heuristic Abbreviation Identification
Disclaimer to not self-plagiarize: the heuristic was formulated during my research topics,
so the text in this Appendix originates from my research topic report.

The heuristic aimed to capture abbreviations based on word formation that is unique to
Dutch abbreviations. Unfortunately, writers of healthcare reports were not bound to gram-
mar, and could use grammatically incorrect punctuation and capitalization. This meant
that the heuristic produced false positives. These were filtered out by only considering
abbreviations that occur frequently, as described in Section 4.

The heuristic recognized the following word formations of a token as unique to ab-
breviations:

• a word without vowels (e.g. ghz, VVT);

• a span of single letters separated by periods (e.g. i.v.m.);

• a word followed by a period that is not at the end of a sentence;

• a word that is fully capitalized.

These word formations were based on heuristics formulated for English abbreviations
[23, 26], and characteristics of Dutch abbreviations stipulated by Taalunie3, a renowned
organization focussed on policy and development of the Dutch language.

3https://woordenlijst.org/leidraad/17
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B Inner-Outer-Sense Retrieval Healthcare Abbreviations
It was argued that abbreviation sense retrieval via pattern-matching would not work for
healthcare reports, contrary to biomedical papers. Since this statement was dependent on
the corpus, this hypothesis was tested through a small empirical analysis. The analysis
entailed pattern-matching for inner-outer pairs that contained abbreviations. The inner-
outer pairs were pieces of text where parentheses were used. The inner was the text
between parentheses, and the outer consisted of the 5 tokens before the parentheses, for
example: outer-“focus has been FF”, and inner-“family first”. These pairs were then
manually inspected to identify abbreviation-sense pairs, such as “FF: family first” in the
example inner-outer pair.

The inner-outer-sense retrieval was conducted for 60 abbreviations of 2 or 3 letters
per healthcare sector, totaling roughly 4,250 inner-outer pairs for analysis. For the elderly
care sector, a sense was found for 7 abbreviations, of which 6 could be pattern-matched
with the abbreviation. For the disabled care sector, a sense was found for 10 abbreviations,
of which 9 could be pattern-matched. For the mental healthcare sector, a sense was found
for 25 abbreviations, and multiple for 4 abbreviations, of which 29/32 could be pattern-
matched.

As expected, many of the inner-outer pairs did not include senses, namely 98.6%.
Mostly, the text between parentheses after an abbreviation was just a sidenote that had
nothing to do with the sense of the abbreviation. To automate the extraction, the ex-
tracted pairs could be filtered by applying the validity checks presented by [3]. How-
ever, considering that few abbreviation senses were found using inner-outer extraction, it
seemed best to discard this method in favor of word-sense induction. A big concern was
that Dutch words contained far more compound words than English words, which would
make pattern-matching more tricky. Inner-outer-sense retrieval would thus be very prone
to false positives, aside from already being unable to retrieve senses for most abbrevia-
tions.

57



C Error Analysis Supplement
This error analysis supplement contains large tables that show the results at a low level.
They show how well the best WSI method, Subst. + TCRS fixed, and candidate sense
ranking worked for each abbreviation sense. In Section 6.2, the senses are categorized to
show the reader which type of senses are most troublesome and what kind of errors they
bring about to WSI and candidate sense ranking.

Table 21 and 21 show additional metrics for WSI per sense. Table 22 and 22 show the
rank of each sense using the two semantic similarity measures for ranking and random
ranking.

Abbr- Sense / Domain #Anno- Spread #Noise Precision Recall F1-score
eviation tations

Elderly care
hb hemoglobine 52 4 11 1.000 0.692 0.818

huisbezoek 4 1 2 0.500 0.500 0.500
ab activiteitenbegeleider 2 2 0 1.000 0.500 0.667

antibiotica 57 7 23 1.000 0.228 0.371
dd dagdienst 10 2 0 1.000 0.900 0.947

de dato 11 3 0 0.778 0.636 0.700
de die 23 7 1 1.000 0.435 0.606
dienstdoende 4 3 0 1.000 0.500 0.667
differentiaaldiagnose 4 3 0 1.000 0.250 0.400

hh herhalingen 17 4 4 1.000 0.529 0.692
hoofd hals 1 0 1 0.000 0.000 0.000
huishoudelijke hulp 37 9 22 0.833 0.135 0.233

wv waarvoor 47 10 14 1.000 0.298 0.459
wijkverpleegkundige 9 4 4 1.000 0.222 0.364
Mental health care

cm casemanager 3 0 3 0.000 0.000 0.000
centimeter 1 1 0 1.000 1.000 1.000
contactmoment 49 12 25 1.000 0.082 0.151

gg geen gehoor 5 1 1 0.235 0.800 0.364
gegeven 1 0 1 0.000 0.000 0.000
gegevens 2 0 2 0.000 0.000 0.000
groepsgenoot 46 9 15 0.765 0.283 0.413

gz gezins 1 0 1 0.000 0.000 0.000
gezonde volwassene 5 2 3 1.000 0.200 0.333
gezondheidszorg 33 6 8 0.917 0.333 0.489

bw beschermd wonen 58 13 23 1.000 0.121 0.215
bewindvoerder 1 1 0 0.333 1.000 0.500

TABLE 20: Low-level results for WSI using Subst. + TCRS fixed (part 1/2). The
#annotations is the number of annotated occurrences of this sense in the ground
truth. The spread is the number of clusters that had any occurrences of this sense.
The #noise is the number of annotated occurrences that are considered noise by
TCRS. The precision, recall and F1-score are denoted for the cluster with the
highest F1-score for this sense.
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Abbr- Sense / Domain #Anno- Spread #Noise Precision Recall F1-score
eviation tations

Disability care
hb hemoglobine 3 1 2 1.000 0.333 0.500

huisbezoek 38 9 12 1.000 0.184 0.311
gb Gigabyte 3 0 3 0.000 0.000 0.000

geen bijzonderheden 14 4 2 1.000 0.500 0.667
gezinsbegeleider 7 2 1 1.000 0.571 0.727

ab activiteitenbegeleiding 22 6 8 1.000 0.227 0.370
ambulant begeleider 5 2 3 1.000 0.200 0.333
antibiotica 4 3 1 1.000 0.250 0.400

dd Donald Duck 2 0 2 0.000 0.000 0.000
de dato 16 4 5 1.000 0.438 0.609
de die 25 4 3 1.000 0.720 0.837
dienstdoende 2 1 1 0.333 0.500 0.400
differentiaaldiagnose 9 3 0 1.000 0.778 0.875

ib individueel begeleider 51 8 13 1.000 0.392 0.563
intern begeleider 2 1 1 0.167 0.500 0.250

hh herhalingen 15 6 2 1.000 0.267 0.421
huishoudelijke hulp 29 4 21 0.750 0.103 0.182

TABLE 21: Low-level results for WSI using Subst. + TCRS fixed (part 2/2).
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Abbre- Sense / Domain Relaxed Sentence Baseline
eviation WMD rank similarity rank rank

Elderly care
hb hemoglobine 1646 2122 1168

huisbezoek 2237 2001 1168
ab antibiotica 45 61 558

activiteitenbegeleider - - -
dd dienstdoende 14 39 2534

de die 4099 3441 2534
de dato - - -
differentiaaldiagnose - - -
dagdienst 7 9 2534

hh huishoudelijke hulp 296 263 1184
hoofd hals - - -
herhalingen 12 27 1184

wv waarvoor 37 66 878
wijkverpleegkundige 73 89 878
Mental healthcare

cm contactmoment 845 797 1049
centimeter 31 119 1049
casemanager 1105 1065 1049

gg groepsgenoot 440 195 4384
geen gehoor 138 310 4384
gegevens 2812 2363 4384
gegeven 2178 3784 4384

gz gezondheidszorg 1171 1414 1896
gezonde volwassene 2318 2501 1896
gezins 3414 3445 1896

bw beschermd wonen 1909 1154 1997
bewindvoerder 242 431 1997

TABLE 22: Low-level results for candidate sense ranking annotated occurrences
(part 1/2). The senses without ranks are those that do not occur among candidate
senses.
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Abbre- Sense / Domain Relaxed Sentence Baseline
eviation WMD rank similarity rank rank

Disability care
hb hemoglobine - - -

huisbezoek 4494 4207 2408
gb geen bijzonderheden 209 483 1578

Gigabyte - - -
gezinsbegeleider 1862 1709 1578

ab ambulant begeleider 1777 1243 1114
antibiotica 362 493 1114
activiteitenbegeleiding 560 960 1114

dd de die 6829 6884 4654
de dato - - -
Donald Duck - - -
differentiaaldiagnose - - -
dienstdoende 31 44 4654

ib individueel begeleider 1044 1038 551
intern begeleider 105 337 551

hh huishoudelijke hulp 889 1764 2202
herhalingen 3 11 2202

TABLE 23: Low-level results for candidate sense ranking annotated occurrences
(part 2/2).
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