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Abstract— Due to the limitation of network resource
capacity, maintaining high-quality communication for large-
scale teleoperation applications, in terms of ultra-low la-
tency and ultra-reliability requirements, is challenging.
Most network infrastructures are not designed for such
extreme demands compared to other applications. How-
ever, if the future behavior of the teleoperation application
is captured, we can allocate network resources more ef-
ficiently. Using the intent-based inference mechanism to
predict future behaviors, the goal of this research is to
deliver a low latency environment while guaranteeing high-
reliability requirements. Considering a group of remote-
controlled robots working in an industrial environment,
the intent is interpreted as the target destination to which
the robot is heading. This research proposes a Recurrent
Neural Network (RNN) solution for network systems, which
predicts the target destination and allocates network re-
sources based on the predicted result. The objective is
to minimize the unproductive time of robots, which is the
duration robots stay idle. To quantify the performance, the
proposed solution is tested under a comprehensive simu-
lator that allows multiple actors and data streams to work
simultaneously. Results show that the RNN integration for
robotic applications can significantly improve network per-
formance under different scenarios. However, care should
be taken when applying since not all network systems
benefit positively and equally from proposed solutions.

Index Terms— Robot Destination Prediction, Recurrent
Neural Network, Scheduling and Matching, Network Simu-
lation

I. INTRODUCTION

THE use of remote-controlled robots, also known as tele-
operation [1], has been applied widely across multiple

fields, both in the research and industrial environment. From
massive space discovery expeditions [2] to complex micro-
surgery operations [3], teleoperation has been a significant
assistance in many hazardous or inaccessible circumstances.
Moreover, with the recent advancements in sensor technolo-
gies, computer technologies, artificial intelligence, and net-
work architecture systems, the scale of applicable teleoperation
has reached a level that could not be achieved in the past.
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Although applicable in multiple areas, large-scale teleoper-
ation still faces many challenges. The most demanding one
is maintaining the high-quality communication connection
between the control station and multiple working machines [4].
Without guaranteeing a high-quality connection, the remote
operation is likely to be inaccurate and ineffective. Here, the
term high-quality communication can be interpreted as low
latency and high reliability. Latency is the required waiting
time to transfer an information packet from a source endpoint
device to a destination endpoint device [5]. With teleoperation,
the challenge is even more complicated since the requirements
for high-quality communication are demanding. The waiting
time of receiving incoming request signals, processing and
sending responses is sometimes unacceptable for certain appli-
cations. With reliability, it is defined as the percentage of infor-
mation packets that are successfully delivered from a source
device to a target device given a time frame [5]. For most
teleoperation applications, the latency requirement should be
lower than 5 to 10 milliseconds [5]. In some extreme cases,
for example, the robotic motion control application, the latency
must not exceed 1 millisecond [5]. With reliability, the usual
requirement falls from 99.9999% to 99.999999% [5]. Fulfilling
these ultra-low latency and/or ultra-reliability requirements for
all devices in a network system where multiple devices sending
and receiving information packets in multiple datatypes is
extremely challenging. Therefore, a viable solution can be
sending the response to destination devices before it is even
requested by predicting the future behavior of the device.
However, developing this solution is application-dependent.
Since the behavior of the local application is unknown to the
network, the network can hardly infer the needed response
based on the behavior of the application by itself. Moreover,
the difference in technical design of network systems and
local applications, for example, the architecture or coding
languages, makes local application predictions undesirable
to be handled by the network. Therefore, for each local
application, an intent-based inference solution that can infer
future behavior should be developed to minimize the burden
of processing information for the network.

Despite being unsuitable, the term intent-based has been
mentioned at the network layer before. An intent is defined
as the future operational objectives of an application. The
intent-based network system is a technology that aims to
automatically formulate and orchestrate the network based on
the intent of local applications or services [6]. To achieve that,
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the local application requires certain resources that the network
is expected to provide, without indicating how to achieve them
[7]. Integrating intent-interpretation solutions at the network
layer allows for a higher level of abstract objectives, thus
handling a wider range of local applications. However, the
interpretation of intent, both for humans and applications,
depends not only on behaviors but also on the environment
and shared knowledge in the surrounding community. As
such, no network system can analyze the meaning of intent
without the ability to comprehend the context, knowing the
possible options to interact with the scenario, and being aware
of the potential consequence for each option [8]. To fully
understand intent meanings, the network should leave the
interpretation process to local applications since applications
contain the needed context information. By doing so, intents
can be realized more efficiently by inferring in advance, for
example, predicting the future behaviors of an application.
For teleoperation, there are thousands of different applica-
tions, each with separated operational behaviors and pur-
poses. Interpreting the application behavior meaning depends
heavily on the context of the situation. Therefore, instead of
understanding teleoperation intents in general, this research
topic will focus on interpreting a specific teleoperation intent
and introducing a comprehensive simulator to measure the
effectiveness of applying intent-based inference mechanisms
in network resources allocation.

For the specific teleoperation intents, this research topic
chooses moving robots as the study case. By predicting robot’s
next destination using robot trajectories in different scenarios,
this research aims to fulfill the reliability and ensure the
latency requirement in data transmission for the mentioned
application. Using Recurrent Neural Network (RNN) as the
backbone of the machine learning model, an accuracy of
99.8% for destination prediction problem is achieved. More-
over, this research emphasizes the practicality of intent-based
prediction model by designing and simulating an intent-based
wireless teleoperation system to optimize content delivery rate
and minimize latency. The designed system can ideally self-
configure the wireless connection between base stations and
moving robots to maintain reliability and latency requirements.
In conclusion, the main research question that we focus on
is whether the network benefits from the predictive machine
learning model by knowing the meaning of future behavior
from local applications.

Concisely, the main contribution of this research can be
summarized as follow:

• Utilizing a machine learning architecture that handles
spatial and temporal data of a moving robot to predict
its future destination to minimize the operational waiting
time.

• Implementing a real-time matching and scheduling algo-
rithm between different devices and control stations to
maintain latency and reliability requirements.

• A comprehensive simulation for multiple devices and
multiple data streams is designed to analyze the perfor-
mance of the proposed solution.

This research is made under the supervision of University of

Twente in Netherlands; Nokia Bell Labs and Aalto University
in Finland.

II. RELATED WORKS

Recently, the topic of network resource allocation for
teleoperation applications has been the focus area of many
research. In this work, we explore generally the network
resource allocation topic for robotic devices in Section II-A.
Then, following few interesting research, we want to further
improve the network performance by introducing intent-based
inference mechanism in Section II-B. Section II-C is dedicated
to describe a use case of intent-based inference, the future
destination prediction which this research focuses on, with
several related works.

A. Resource allocation for robotic devices
In recent years, robot control has become an exciting term

in smart industrial environments. To control a robot, signals
have to be sent, wired or wireless, via a network system.
In a network system where multiple robots are controlled,
optimizing resource allocation for all robots becomes ex-
tremely challenging [9]. This includes limitations in robots
and communication resources [9], the demanding data stream
processing requirements, the trade-off between computation
and communications, security and safety qualification, etc.
[10]. Addressing these problems require multiple processes,
which the work [10] gathers into three categories: resource
pooling, task offloading and task scheduling. Resource pooling
indicates the reservation and distribution of resources for mul-
tiple applications in the network [10], which is highlighted as
on-demand arrangement [11]–[13] and reserved arrangement
[14], [15]. Task offloading refers to the action of moving
computation tasks from local computers to cloud processors
[16]. Noticeable works that can be mentioned are [17]–[19].
Task scheduling refers to the order task requests should be
handled, as presented in [14], [15], [17], [20].

Over the wide area of resource allocation topics, this re-
search focuses on task scheduling by further studying some
above-mentioned works. The first one [17] focuses on op-
timizing latency and reliability constraints by designing a
caching system that can reduce computational time. The
work indicates that, by proactively choosing popular tasks
and arranging connected devices based on task preference,
the computational latency can be reduced significantly. The
other work [20] demonstrates a network system design that
is applicable specifically for the virtual reality application.
In that work, they design a three-layer architecture, with
the virtual reality application acting as the edge device, the
mmWave small base station as the middle layer transmitting
data to the edge devices and remote cloud, with the cloud
server acting as the computation and optimization process
handle. Although these works illustrate a great foundation for
the mentioned problem, several limitations are needed to be
addressed. First, compared to static devices, remote control
robots continuously move from one place to another, thus
requiring other intent interpretations to be created. Second,
addressing optimization problems with multiple requirements
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from numerous application types can raise issues with the
methods mentioned in these papers since they are designed
to function with only one type of application. In this research,
we aim to activate an intent-based inference mechanism as a
dynamic component which is integrated in an update version
of the task scheduling methods from [20] and [17].

B. Intent Utilization
The term intent is not a new definition. In real life, intent is

referred to as an objective that is being described by a person,
capturing the final goal or state that needs to be achieved
without identifying how to achieve it [8]. Although being
understood effortlessly by humans, intent was hardly adopted
in technology fields due to its abstraction in interpreting the
intended meaning. The human brain can process information
abstractly and ambiguously. A machine, however, understands
a context or an event by logical input, thus limiting its ability to
generalize abstract concepts, like an idea or a term. However,
with the advancement of artificial intelligence, we can now
express abstract terms by logical input. As such, an open door
is made to interpret intents of machines.

For teleoperation applications, multiple works have been
done to capture future behaviors and their meaning, each with
different context information. The works from [21], [22], and
[23] develop different types of task-parameterized generative
models that support controlling a robot device remotely. The
work introduces a hidden semi-Markov model to capture the
intent of the user, thus assisting the user by independently
executing tasks by a shared control mechanism. Another work
from Yoojin Oh et al. predicts the intent of a robot arm
user by identifying the targeted object that the user wants to
graph [24]. Using a perception module, the model specifies the
objective from sequential tasks, then the robot autonomously
conducts a retrieving motion using trajectory optimization.

Although applicable in many scenarios, not many works
focus on quantifying the impact of intent analysis in a large-
scale network system. Obviously, intent interpretation can ben-
efit the operation individually. However, further study needs
to be conducted to evaluate the improved performance at the
multi-agent level. This research focuses on the above study by
employing destination prediction as an intent-based inference
use case and evaluate the overall performance at the network
system level.

C. Future Destination Prediction
The topic of future destination prediction has received sig-

nificant attention recently, due to its impactful contribution to
many location-based services, such as traffic-flow prediction,
weather forecast and network resources optimization. With the
current popularity of mobile devices and wireless networks,
an enormous amount of human movement data is produced
every day. Using this big location-based data, researchers are
putting much effort into predicting the human next location
prediction. As a result, many works have been accomplished to
demonstrate the robustness of next location prediction systems.

There have been several attempts to apply machine learning-
based methods to predict the future destination of human

behaviors [25]. A noticeable approach from Yujie W. et al.
combines multiple machine learning techniques – support
vector machines (SVM), decision tree (DT) and logical re-
gression (LR) to detect unlicensed taxi services based on
large-scale vehicle mobility data [26]. The pattern embedding
model proposed by M. Chen et al. integrates traffic trajectory
data with other types of information (object, location, and
time), outputting a low-dimensional latent space, which can
be applied with other future location predictions [27]. In the
field of deep learning-based methods, much more research
has been produced using different techniques. Various types
of deep learning models have been applied, for example,
Convolutional Neural Network (CNN) [28], [29], Graph-based
Neural Network (GNN) [30], [31], etc. However, most of the
works focus on employing RNN to extract the time-dependent
characteristics of positional data [32]–[38]. The main idea
of these studies is to obtain meaningful information from
human dynamic spatial and temporal moving data in different
scenarios, combining with different context features, such as
social media interaction, to predict the next destination of
a decision-making agent. Even though these studies achieve
appreciable results in destination prediction, they all focus
on investigating the dynamic of human behaviors. However,
one major difference between human and robot behavior is
the dynamicity of the movement. Human behavior is less
predictable since the ability to change the current action and
intent of a person is more versatile. On the other hand, mobile
teleoperation devices are usually set up in specific industrial
environments, where the intent is pre-determined and the mov-
ing pattern is more noticeable. Applying the above-mentioned
models may overfit the scenario, thus reducing the overall
performance of the system.

To the best of my knowledge, no prior work studied the
topic of robot future intent prediction based on trajectories
data. Although there are several works studying the robot
movement prediction problem [39], [40], their main goal is to
predict the future path of a robot agent in a certain time frame.
Therefore, the applicable abilities of these works for future
destination prediction are needed to be revised, especially in
a high obstacle-density environment. For these reasons, this
research will focus on developing a predictive machine learn-
ing model that can leverage the future destination prediction
ability using positional robot data.

III. PROBLEM

In this session, we design a use case where remote-
controlled robots and machines request data transmission
simultaneously. A moving robot is demanded to carry an
item from one machine to another. While traveling, the robot
continuously receives controlling data packets from the edge
server. On the other hand, machines require data packet
only after the robot delivers the item at the correct position.
When machine data packet transmission is completed, the
machine starts executing tasks with the delivered item. After
the machine finishes its job, the moving robot carries the item
to the next machine.

The above scenario establishes multiple network require-
ments to maintain a stable workflow. Under these require-
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ments, the goal of this use case is to minimize the total
robot idle duration, denoted as robot waiting time, from the
moment the robot arrives targeted machine to the point when
machine data packet transmission is completed. To address
this problem, this research proposes a centralized predictive
solution, which aims to predict targeted machines in advance,
thus sending machine packet requests before robots arrive
at the machine. With this approach, we divide the problem
into two parts, predicting robot destinations and minimizing
robot waiting time under certain network constraints. While
the predictive problem is handled locally by each robot, the
optimization problem is managed by the cloud server globally.
Section III-A describes the working scenario as a whole.
Section III-B and III-C respectively explain the robot desti-
nation prediction and optimizing robot waiting time problem
mathematically.

A. Scenario explanation

To deliver the research objective, a wireless system that
focuses on interpreting the intent of a specific teleoperation
application needs to be designed comprehensibly. Since intent
inference requires context information, which can only be
inferred ambiguously, it is critical that the designed scenario
contains visible and understandable contexts. This section will
describe the working scenario that requires the wireless system
as a viable solution.

Fig. 1: Network Layers and Packet Transmissions

In an smart factory domain, a component based machinary
process with multiple machines are deployed at fixed positions
[41]. Each machine is designed to complete a specific work
piece of an item, which is represent as a task. A item is
completed when all required tasks is finished. A task can be
finished using a pre-determined machine but the item has to
be carried from one machine to another. To carry the item,
the worker must control a remote-controlled robot and drive
it to the machine. Each item needs a list of tasks that is
unknown to the network system. After finishing a task, the
worker immediately controls the robot heading to the next
machine to execute the next task.

Consider a set of robots R and a set of machines M initially
distributed over the working area. The network system consists

of an edge cloud server multiple base stations b ∈ B at fixed
locations distributed in the same area. These base stations
are connected to the edge cloud server that processes the
controlling data between robots and workers. Additionally,
base stations also serve as a communication device between
fixed machines and the edge cloud server, thus transmitting
the processing data to the fixed machine before the machine
executes tasks (as described in Figure 1). The network system
applies the time-slotted system approach with fixed time slots
to handle data transmission.

Fig. 2: Working Process of a Robot
This image illustrates the working process of a robots. How-
ever, in the simulation, multiple robots are operated at the
same time, which the duration is different in each phase.

In this scenario, the network system needs to handle two
distinctive applications, each with a different datatype. The
first application is the remote-controlled robot, which transmits
controlling data. To handle the robot remotely, the controlling
data need to be received continuously. This datatype includes
visual data, represented by a video stream, so that workers are
aware of the surrounding environment. The second datatype
is fixed machine processing data. Machines are designed to
execute certain tasks, thus limited in storage and processing
power. As such, we utilize the edge cloud processing power to
handle processing data by transmitting required data packets
from the server to dedicated machines. When a robot arrives
at the targeted machine, the machine needs to load the in-
formation about the task that is going to be executed from
the cloud server. After finishing loading processing data, the
machine can start handling the assigned task. When the task is
finished, the robot carries the item to the next machine. Figure
2 describes this process.

Handling multiple data streams in a wireless network re-
quires complex algorithms. At a certain time instant, the
network system needs to decide which request it needs to
serve and how to handle it. Moreover, each data stream has
its own requirements. Guaranteeing those requirements is a
prerequisite for a stable operation. Under these requirements,
we aim to minimize total robot idle duration, denoted as
robot waiting time, from the moment the robot arrives targeted
machine to the point when machine data packet transmission
is completed.

To address this optimization problem, this research intro-
duces a multi-stage scheme incorporated with a predictive
model. Notice that the machine can only send requests when
moving robots arrive. If the machine can send requests be-
fore that moment, then request can be registered sooner,
thus give network system more time to arrange and serve
its waiting request list. However, inaccurate predictions can
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lead to unwanted packet registration, hence slowing down
the system. To formulate this idea, a predictive problem is
defined in Section III-B as finding which machine is the next
destination of the current moving robot. The later stage of the
scheme addresses robot waiting time optimization problem by
handling registered request list. Section III-C defines the cost
function and related constraints for all data streams in the
environment.

Although the data to be transferred includes downstream and
upstream datalink, in this research, we want to focus solely
on measuring the optimization performance of downstream
data transfer when applying intent-based prediction. Designing
and measuring system performance for both downstream and
upstream data is desirable but the complexity of the simu-
lator will increase substantially. Therefore, the scope of this
research only includes downstream datalink. However, the
upstream datalink can be added in the future using the same
research method.

Fig. 3: Working Space of a Robot
This image illustrates the working space and a robots. How-
ever, in the simulation, multiple robots are operated in this
working space.

B. Destination Prediction

Let the set of fixed machines be denoted as:

M = [m1,m2, ...mn] .

Each machine is positioned at a separated location, with
[xmi , ymi ] denoted as latitude and longitude of machine mi,
in the indoor working environment. The past trajectory of a
controllable robot at run i is described as:

ri =
[
ri1 , ri2 , ...riT−1

, riT
]

where T is the moving time from the starting point to the
destination of a run. The run indicates the moving direction
of the robot, which contains the information of the destination
machine. The positional input of the robot at each time frame
is a 2-dimensional sequence, indicating the positional latitude
and the longitude rit = [xit , yit ] .

This research goal is to emphasize the network efficiency
optimization aspect. Therefore, to simplify the intent predic-
tion problem, we assume each robot operates independently
from the others. As such, by building one prediction model,
we can apply to multiple robots with linear scaling in compu-
tational time complexity. However, care should be taken that,
in a real industrial environment, multiple robots may cooperate
in executing a task, or a machine can only handle a certain
amount of robot tasks at a time, thus introducing potential
dependencies between robot operations. For such cases, more
sophisticate collations between robots have to be defined.

C. Waiting Time Mitigation Problem
Remote-controlled robots require control data packet con-

tinuously while moving. Thus, at a certain time instant, robots
request to receive the controlling packet from the server. Under
this request time-to-live, the nearby base station needs to
send the corresponding controlling packet to the robot. If this
transmission does not finish within the request time-to-live,
the packet is marked as dropped.

For the processing machine, we design the restriction to
be less stringent. When the moving robot finishes its run and
approaches the targeted machine, the machine starts sending a
request to the nearby base station. The base station then sends
request to the edge server for processing. The edge server
queues the request until the network has available resources
to execute the request. This request type does not have time-
to-live constraints. In other words, the robot must wait at the
targeted machine until the data packet is fully transmitted.
After that, the machine can execute its task, then robot can
move to the next targeted machine.

Since there are two different data stream running simulta-
neously, the teleoperation data stream for remote robot control
and the task processing data stream for the fixed machine, the
optimization problem is divided into two smaller sections.

1) Mitigate Machine Data Transmission: At the time in-
stant t, for each machine mi ∈ M connected to a base station
bj ∈ B, the transmission data rate when operating in time-
division duplex is computed as:

Dmb(t) = W log2(1 +
Pmhmb

Im +N0
) (1)

where Dmb(t) is the data rate from machine m to base station
b (bps), W is the channel bandwidth, Pm is the transmit power
of machine m, hmb is the channel gain between machine m
and base station b, Ir is the interfering power from other base
stations at the machine m, and N0 is the total noise power
over the channel with bandwidth W .

The packet delivery time that a base station bj ∈ B can
provide to a machine mi ∈ M is:

Lmb(t) = xmb(t) ·
SM

Dmb(t)

with SM is a machine packet data size and xmb(t) is the binary
variable that takes the value 1 or 0 whether the base station
bj is serving the machine mi at the current time instant.

Although all base stations can provide services to machine
mi at an instant, at most one connection between machine
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mi and all base stations is established. In other words, at a
moment, only one base station serves the request from machine
mi, which is denoted mathematically as:∑

b∈B

xmb(t) = 1.

Consequently, the delivery time of transmission packet from
a machine mi ∈ M connected all base stations in B is:

Lm(t) =
∑
b∈B

Lmb(t). (2)

Each machine needs to connect with at most one base
station to send and receive processing data. The machine also
prefers to be connected with the station which can provide the
lowest delivery time. As such, the main goal is to minimize
the robot waiting time as much as possible. To achieve this
goal, we incorporate a predictive model to predict the next
targeted machine before the robot reach the machine and send
processing data request packet. A correct prediction can reduce
the waiting time by sending the processing data ahead of
time. However, a wrong prediction forces the system to send
mismatch data, thus increasing the overall waiting time of the
system. Therefore, for each task, the robot waiting time is
computed by:

Tm(t) = Lm(t)−Z ·H ·Am+Z ·H ·(1−Am),∀m ∈ M (3)

with Tm(t) is the total waiting time of a run, Z is a binary
variable indicates if a predictive model is used or not, H is
the amount of time the system decides to run the prediction
before the robot arrives at the destination, and Am takes the
value of 1 or 0 indicating the rightfulness in prediction. For
each task, the minimum waiting time can only be reduced to
0, thus a lower constraint of Tmb ≥ 0 needs to be applied.

Overall, this optimization problem is defined as minimizing
the total waiting time of the system, which can be formulated
as:

min
∑
m∈M

Tm(t). (4)

2) Maintain Robot Packet Reliability: At the time instant
t, for each robot rk ∈ R and a base station bj ∈ B, the
transmission data rate is similarly computed by:

Drb(t) = W log2(1 +
Prhrb

Ib +N0
). (5)

The packet delivery time that a base station bj ∈ B can
provide to a machine rk ∈ R is:

Lrb(t) = xrb(t) ·
SR

Drb(t)

with SR is a robot packet data size and xrb(t) is the binary
variable that takes the value 1 or 0 whether the base station
bj is serving the robot rk at the current time instant.

Similarly, we can denote the packet delivery time for robot
rk at instant t as:

Lr(t) =
∑
b∈B

Lrb(t) (6)

with ∑
b∈B

xrb(t) = 1.

Operating a robot remotely requires the robot to maintain
connection with at most one base station. Intuitively, the robot
prefers to be connected with the station which can provide
the lowest delivery time. Moreover, the connection delivery
time has to be below certain threshold for the robot control
application to be executed correctly [5]. Thus, the reliability of
the system is defined as the percentage of time the connection
delivery time goes above the requirement threshold [5]. Based
on the delivery time and reliability requirement that needed to
operate the remote robot control application successfully, the
constraint for robot reliability is defined as:

Pr(Lr(t) ≥ α) ≤ ϵ,∀r ∈ R (7)

where α is the maximum packet time-to-live requirement and
1− ϵ is the minimum reliability requirement.

3) Problem Combination: At a time instant, each base
station can handle a request separately. Therefore, the number
of connected devices (including remote-controlled robots and
machines) are equal or smaller than the number of base station.
As such: ∑

r∈R

∑
b∈B

xrb +
∑
m∈M

∑
b∈B

xmb ≤ |S|. (8)

Overall, the optimization problem is (4) is:

min
∑
m∈M

Tm(t)

under the constraints of the inequality (2), (3), (6), (7), (8),

Tm(t) = Lm(t)− (Z ·H · (2Am − 1)) ≥ 0,∀m ∈ M

Pr(Lr(t) ≥ α) ≤ ϵ,∀r ∈ R∑
r∈R

∑
b∈B

xrb +
∑
m∈M

∑
b∈B

xmb ≤ |S|

Lr(t) =
∑
b∈B

xrb(t) ·
SR

Drb(t)

Lm(t) =
∑
b∈B

xmb(t) ·
SM

Dmb(t)

IV. APPROACH

This section presents a multi-stage machine learning inte-
gration scheme to address the above problem. Section IV-A
describes characteristics of the dataset that we use throughout
this research. Section IV-B presents the machine learning
model architecture for the destination prediction problem. The
waiting time mitigation problem is handled in Section IV-C
using a matching and scheduling scheme.

A. Dataset
This research aims to design an applicable teleoperation

network system that delivers machine learning as the so-
lution to improve operational performance. To achieve this
goal, acquiring relevant datasets with context information
is critical. However, such dataset is hardly obtainable from
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the industry for several reasons. First, the dataset has to
contain interpretable context information to recognize patterns
and make predictions using machine learning. Most available
public teleoperation datasets are either non-pattern or contain
incomprehensive context information. Second, highly relevant
industrial datasets are confidential. Most private organizations
do not public their dataset, especially one related to the
manufacturing environment. For these reasons, this research
develops the solution based on several simulated datasets
containing self-explanatory context information designed to be
as dynamic and realistic as possible.

The dataset for the machine learning solution is simulated
using the model predictive control (MPC) solution. In the
robotic area, MPC is an optimization-based control method,
which depends on a process model to predict the future behav-
ior of a controlled agent in a finite time horizon [42]. By solv-
ing an optimization problem that reflects the control goals and
specifications under certain constraints, MPC is guaranteed
to deliver close-to-optimal actions. An essential characteristic
of MPC is that the solution is optimized repeatedly at each
time step. This makes MPC a viable solution to handle the
dynamic environment, thus mimicking human behaviors better
than other global planners, which can only deal with a non-
changing environment. To utilize these qualities of MPC in
the path planning method, we gather the dataset from the
implementation of the work [42], in which the teleoperation
agents are the drones with Parrot Bebop 2 quadrotor, and
Forces Pro [43] as the problem solver.

Fig. 4: Time sequence to Categorical Neural Network archi-
tecture. Input is a 2× n list represent trajectory data. Output
is a scalar represents the Machine ID.

B. Prediction Model

Although the dataset contains full paths from the starting
point to the destination for each robot run, we use a subset
of the full path in the training phase, indicating the prediction
should be made before the remote-controlled robot reaches a
machine. The incomplete positional data:

ri =
[
ri1 , ri2 , ...riTH

]
is extracted from the complete run, with TH = T − H as
the prediction moment. The H value is the prediction horizon
counting backward from when robots arrive at machines. The

larger H value is, the sooner the prediction is made. Newly
acquired data is fed into the prediction model as the input
data.

Given this problem as predicting a deterministic machine
m from a set of machine M , it can be referred to as a
multiclass machine learning problem. Since the input data
is a time-dependent positional sequence, it is appropriate to
consider RNN as the predictive model. RNN has proven its
effectiveness in handling sequential data. In this work, we
consider Gated Recurrent Unit (GRU), a variant of RNN, as
the primary layer since GRU has shown to be suitable for
small datasets [44].

This work utilizes the model architecture idea from [20],
by combining 2 GRU layers. The input data: X ∈ RN×TH×d

(where N is the number of runs, TH is the time length of each
run, d is the input data dimensions) is fed into a layer GRU
layer with 128 hidden nodes, followed by another same-sized
GRU layer. The final output of the sequence is then fed to a
fully connected linear layer (as described in Figure 4).

Model output: y ∈ RN indicates the predicted target
machine m′. The model is trained under cross-entropy loss
which compares the difference between the predicted machine
m′ with the target machine m.

We train and validate the predictive model with two different
input datasets. The first set contains positional vectors from
the starting point to the prediction point, which is referred as
full input sequence. The second set only includes the later
positional vectors of the run, which are the most critical
information:

ri =
[
riTH−k

, riTH−k+1
, ...riT−H

]
where k is the extracted number of time instants, denoted.
We denote it as partial input sequence. By training only
partial data, we want to quantify the impact of early positional
input on the prediction, thus choosing the best process for the
predictive model.

C. Scheduling and Matching Scheme
The delivery time mitigation introduced in the last session

is a combinational problem. The cost function of the prob-
lem is non-convex and the constraints contain probabilistic
inequations. The reason behind non-convexity is due to the
data rate term in Equation (1) and (5) being the function
of the interference from other connected devices. Since the
number of constraints grows linearly with the number of
devices (including robots and machines), finding the optimal
solution is computationally complex [45].

We apply Markov’s inequation to transform the probabilistic
constraints (7) into tractable linear constraints [45]. Markov’s
inequation states that:

Pr({.} ≥ α) ≤ E{.}
α

.

If the upper bounds of Markov inequation satisfy the reliability
threshold, then the probability constraints should follow the
same pattern:

E{.}
α

≤ ϵ ⇒ E{.} ≤ ϵ · α.
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Hence, the constraints can be expressed as:

E{Lr(t)} ≤ ϵ · α,∀r ∈ R

⇒
∑
b∈B

xrb(t)
SR

E{Drb(t)}
≤ ϵ · α,∀r ∈ R (9)

The newly acquired constraints indicate that to reach the de-
sired reliability, a maximum value of delivery time E{Lr(t)}
is allowed to be queued from the admitted request moments.
Since being affected by interference from other connected
devices, which is unknown to the network system before
choosing the served devices at the current time instant, the
estimated data rate Drb has to be computed empirically by past
obtained data rate. The estimated value at each base station
b for each robot r and machine m is measured using a time-
average estimation method [17]

E{Drb(t)} = v(t) ·Drb(t− 1)+ (1− v(t)) ·Drb(t− 1) (10)

where v(t) is the learning rate at the time r, and Drb(t− 1)
is the time-average estimation for data rate from the last time
instant.

Following the above analysis, this research proposes a joint
scheduling and matching scheme to solve the optimization
problem. The first stage is registering newly arrived requests
based on predictive model. Then, the system decides which
request types should be prioritized at that moment. Finally,
a matching algorithm is introduced between serverd devices
(robots and machines) and base stations in the final stage.

1) Register Device Request: Our system handles robot
requests and machine requests separately. For robot requests,
when a new request arrives, network system registers the
request in the robot request queue. For machine requests,
we apply Machine Learning prediction model to handle new
requests in advance. When a robot arrives at prediction horizon
(denoted by H), we predict which machine is the targeted
one. A new request with the robot and the predicted machine
is registered in the network system. When the current robot
arrives at the targeted machine, we can confirm whether our
prediction is correct. If the prediction is accurate, no action
is taken. However, if the prediction is wrong, the prediction
request is de-registered and replaced by the correct one. The
frequency of wrong predictions depends on the accuracy of
the machine learning model. Algorithm 1 depicts the process
in detail.

2) Scheduling Served Devices: The primary purpose of
the scheduling process is to decide when the network sys-
tem should prioritize the robot’s packet and vice versa. To
determine what packet type should be prioritized, the network
system needs to compute the estimated delivery time of the
following instant and adjust its decision based on the acquired
information. Our primary assumption concerns whether the
system can guarantee reliability if it reserves all the resources
from the next instant until the end of the robot packet time-
to-live. From the Equation (9), if the estimated delivered
time exceeds a certain threshold, there is a high chance that
the reliability is not guaranteed. From that point of view, we

Algorithm 1 Register Request Packets

Require: List of robots, List of machines
Ensure: Robot request queue R, Machine request queue M

for Each time instant do
if New request from robot r then

Add robot to queue R

if Prediction for machine m is made for robot r then
Add machine request for robot r to queue M

if Robot r arrives at machine m then
if Request in M is not for robot r then

Remove wrong predicted machine request for
robot r′ from M

Add new machine request for robot r to M

Register robot arriving time

compute all robots’ total estimated delivery time.
R∑
r

Lr(t+ 1) =

R∑
r

Lr(t)− |B|,∀r ∈ R. (11)

If the robot reliability is not maintained in the next instant,
R∑
r

Lr(t+ 1) ≥ ϵ · α, (12)

the network should prioritize processing the robot packet in
the current one. After deciding, selected request packets are
put in the scheduled device list, represented by Algorithm 2.

Algorithm 2 Scheduling served devices

Require: Robot request queue R, Machine request queue M
Ensure: Scheduled Device List D

for r ∈ R do
Compute estimated data rate DrB(t) from Eq. (10)
Compute estimated delivery time LrB(t) from Eq. (9)

Compute total estimated delivery time for all robots LR(t+
1) from Eq. (11)
if LR(t+ 1) ≥ ϵ · α from Eq. (12) then

Put unfinished all robot requests to D
if |D| ≤ |B| then

Put unfinished machine requests to S one by one
until |D| = |B|
else

Put all unfinished machine request to D
if |D| ≤ |B| then

Put unfinished robot requests to D one by one until
|D| = |B|

3) Matching Served Device with Base Station: The next
step is to distribute devices to nearby base stations that solve
the optimization constraints in problem (4). This problem
can be referred to as a matching game between base stations
b ∈ B and served devices d ∈ D. At each instant, a device
in the scheduled list is matched to a base station that aims to
minimize the packet delivery time. The matching theory has
been introduced in the wireless network system, where each
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player in one set tries to match with players from the opposite
set [46]. The newly formed matching pair is based on the
preference from the base station set B and device set D. The
preference list of each member in D and B rank members of
the opposite set. For example, a device d prefers b over b if d
ranks b higher than b in u preference list.

Given the two disjoint sets of base station B and scheduled
devices D, we define a matching pair as a one-to-one mapping
Γ from base station set B to devices set D. The result of
matching pairs is the set of Γ, which is a member of all
possible combinations from setting B and D such that for
each b ∈ B and each d ∈ D:

• For each d ∈ D, Γ(d) ∈ B∪{d}, where Γ(d) = ∅ means
device is waiting to be matched, and Γ(d) = d means that
all base stations have been connected and there is not a
match reserve to the current device.

• For each b ∈ B, Γ(b) ∈ D∪{b}, where Γ(b) = ∅ means
base station is waiting to be matched, and Γ(b) = b means
there are no devices left that needs to be serve in the
scheduled list.

• |Γ(d)| = 1, |Γ(b)| = 1
• Γ(d) = b ⇔ Γ(b) = d

From the point of a matching game, the inequality (8)
satisfies the one-to-one mapping condition. Moreover, by
applying the matching theory, we can propose the preference
utility function that matches the requirement of our problem.
Reflecting on two constraints, one is to guarantee the reliability
threshold and one is to minimize the delivery rate, we propose
two different utility functions.

1. Data Rate Utility Function. This approach
follows the Greedy Method, which prioritizes the connection
that provides the highest possible data rate. In other words, this
utility function seeks the matching that minimizes the delivery
time of remote-controlled robots and machines without con-
cerning the deadline of request packets. The preference utility
function follows Equation (10):

Prefbd = Prefdb = E{Ddb(t)},∀d ∈ D,∀b ∈ B. (13)

2. Delivery Time Utility Function. This ap-
proach tries to meet the reliability requirements by prioritizing
the packet that has the most urgent deadline. Unlike the first
utility function, this one considers the deadline of request
packets, thus emphasizing system reliability. However, since
the data rate is not considered, this approach is noticeably
slower than the first. The preference utility function follows
Equation (9):

Prefbd = Prefdb =
1

α− E{Ldb(t)}
,∀d ∈ D,∀b ∈ B. (14)

The work [46] shows that, with the one-to-one matching
game, at least one two-sided stable matching exists that
satisfies the matching game requirements. Considering a match
|Γ(d)| = b. If existing d′ and b′ that b prefers d′ than d, and
d prefer b′ than b, then Γ(d) = b′ and Γ(d′) = b are blocking
pairs of match Γ(d) = b . A two-sided stable matching exists
if and only if there is no blocking pair between (b, d).

To guarantee all matches are stable matches, the work [46]
refers deferred acceptance (DA) algorithm with polynomial

time complexity for the one-to-one matching problem. Algo-
rithm 3 describes DA algorithm in detail.

Algorithm 3 Matching devices with base stations

Require: Scheduled Device List D, Base station list B
Ensure: A stable match Γ

Initialize unmatch base stations and devices.
∀b ∈ B, d ∈ D,Γ(b) = ∅,Γ(d) = ∅
Initialize preference list for devices from Eq. (13) or (14).
Initialize preference list for base station from Eq. (13)
or (14).
while ∃d, Prefdb > Prefdb′ ,Γ(d) = b′ ∨ Γ(d) = ∅ do

d proposes to its most preferred b
if Γ(b) = ∅ then

Device d is accepted. Γ(d) = b,Γ(b) = d
else if Γ(b) = d′ then

if Prefbd′ > Prefbd then
Rejected device d.
Remove base station b from device d preference

list.
else if Prefbd > Prefbd′ then

Accept device. d Γ(d) = b,Γ(b) = d.
Unmatch device d′. Γ(d′) = ∅.
Remove base station b from device d′ preference

list.
for d ∈ D,Γ(d) = ∅ do Γ(d) = d

V. PERFORMANCE EVALUATION

This part illustrates results for our multi-stage scheme.
We first introduce dataset parameters in Section V-A, then
continue presenting and explaining collected results. Section
V-B shows the machine learning model performance individ-
ually, while Section V-C describes the results from network
simulation in multiple cases, including non-machine learning
and machine learning approaches.

Fig. 5: Robot’s Runs Duration

A. Data Analysis
The MPC model generates a dataset that contains 8 fixed

machines at different positions in an environment size of
15 × 15m2 (as depicted in Figure 3). 20 remote-controlled
robots are working simultaneously in this environment. Robots
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have size 0.5×0.5m2. A robot run starting point is randomized
from 1 of 8 possible machine positions. Each robot’s target
is 1 of the other 7 machines. A robot is considered to have
reached its goal when the Euclidian distance between the robot
and the targeted machine is equal to or lower than 1 m.
When a robot arrives, the robot run is marked as finish. Since
machines do not require network resources while performing
tasks (the required data is pre-loaded), we exclude this phase
when running network resource allocation simulation. The
next run is initiated randomly the moment after the previous
one. The robot’s average speed is 1.5m/s with a sampling
rate of 0.05s. Several moving obstacles are introduced into the
environment to make the path more dynamic. The MPC model
handles the collision-avoiding algorithm, thus changing the
deterministic path from one machine to another. 5 obstacles,
with size 0.8× 0.8m2, move at a speed uniformly distributed
between 0.4m/s and 0.8m/s heading to random directions
throughout the dataset generation process.

With the above configuration, robot’s run duration is de-
scribed in Figure 5. We notice that the lower end of run
duration is about 7.5 seconds, thus choosing the H value to be
7 seconds to 0 seconds to measure the performance of machine
learning models.

Fig. 6: Destination Prediction Result based on Prediction
Horizon (H values)

B. Machine Learning Model
Figure 6 shows results from the destination prediction model

with different H values and two pre-processing methods. We
can notice that the prediction accuracy drops according to
the H value. As described, H value represents the prediction
horizon counting backward from when robots arrive at targeted
machines. The larger H value is, the earlier the prediction is
made. Earlier predictions mean the robot is further from the
targeted machine, thus making predictions less accurate. The
drop in accuracy is not linear due to the appearance of moving
obstacles in the environment, making robots avoid them, thus
enlarging robot paths dynamically and uniquely. Between the
two data pre-process methods, we see a significant decline
between H values 2 and 3, thus indicating the less critical
data points still contribute to accurate predictions, especially
when the prediction is made early.

C. Network Simulation

In this section, we compare different utility functions de-
scribed in Algorithm 3 against each other as baseline in Sec-
tion V-C.1. In Section V-C.2 and V-C.3 respectively, the most
prominent baseline is improved further with the reliability
control scheme introduced in Algorithm 2 and applied machine
learning model in Algorithm 1. We gradually increase the
workload the network system has to process by changing the
machine packet size from 10MB to 100MB to demonstrate
the proposed scheme performance in a different scenario. The
default parameters are listed in the footnote unless stated
otherwise. 1

1) Utility Function Comparison: This experiment com-
pares results between the data rate utility function and de-
livery time utility function following the matching procedure
described in Algorithm 3. Simulation results in Figure 7 show
that the delivery time utility function performs significantly
worse than the data rate utility function (Figure 7b). Even
though the delivery time utility function prioritizes more
urgent requests, it still cannot meet the reliability requirements
(Figure 7a). This can be explained, since matching based on
the request urgency does not utilize the full power of the
network system, thus making the network system perform
much worse than its capability.

The data rate utility function allows the fastest packet
transmission across the system without concerning packet
deadlines. Therefore, robot waiting time is substantially lower
(Figure 7b). However, Figure 7a shows that, with the increase
in machine packet size, the system reliability decreases ac-
cordingly. Using the same parameter, we can safely assume the
network serving capability is approximately the same in every
case. Our assumption is, on average, for each time instant, the
workload that the network system has to handle starts growing
larger than its capability, thus resulting in a reliability decrease.
This indicates that the system has to handle more workload
than it can provide using the baseline method. Notice that
this baseline method focuses solely on maximizing the data
transmission rate, thus minimizing the robot waiting time.
Therefore, this is the lowest robot waiting time we can achieve
using the DA algorithm.

2) Reliability Control: Based on the result of the first
experiment, we choose the data rate utility function to apply
from here onwards. This experiment addresses the reliability
issue that the Algorithm 3 cannot meet without significantly
increasing the robot waiting time. The reliability control
method is introduced in Algorithm 2 to achieve that. Due to the
limited capacity, we demonstrate the result with the reliability
threshold of 99% (ϵ = 0.99) instead of 99.99%. Nevertheless,
the result in Figure 8a shows a significant improvement
in reliability compared to the data rate baseline. With the
new reliability control method described in Algorithm 2, we
identify a ”secured boundary”, preventing the reliability drops
under the 99% threshold in all cases. Therefore, the network
system can meet the reliability requirement. Regarding robot

1R = 20, M = 8, S = 4, Time instant length (t) = 0.0005s, Network
bandwidth (W ) = 10MHz, Robot packet size (SR) = 200KB, Robot packet
time-to-live (α) = 100ms, Learning Rate (v(t)) = 0.7
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(a) Reliability Comparison (b) Robot Waiting Time Comparison

Fig. 7: Comparison between Data Rate and Latency Utility Function

(a) Reliability Comparison (b) Robot Waiting Time Comparison

Fig. 8: Comparison with and without Reliability Control using Data Rate Utility Function

waiting time, Figure 8b shows that the highest additional time
compared to the baseline is under 10% (when machine packet
size is 80MB), indicating the excellent performance of the
proposed scheme. 2

3) Reliability Control and Machine Learning Prediction:
This section shows the result of applying the machine learning
model to the proposed scheme as described in Algorithm 1. In
addition to the variation of machine packet sizes, we measure
the network system performance with different H values to
identify the suitable prediction horizon in each circumstance.
In all scenarios, the reliability is controlled perfectly according
to the requirement (Figure 9).

Figure 10 shows machine learning integration results with
fixed machine packet size (Figure 10a - 10MB, Figure 10b
- 50MB, Figure 10c - 100MB) and increased H values. We
can notice significant improvements when the packet size is
small with fixed sizes. Compared to the non-machine-learning
approach (depicted as the dot line), with the 10MB machine
packet size (SM = 10MB) (Figure 10a), the robot waiting time
is reduced by nearly 100% in the best performance. Even with
the highest H following with the worst accuracy, the network
system still benefits from the predictive model. However, with
the increase in machine packet sizes, the predictive model’s
performance decreases significantly. Only 20% of improve-
ment is recorded when SM = 50MB and 2% is reported with
SM = 100MB. Witnessing this circumstance, we assume that

2The simulation parameter is designed specifically for the reliability thresh-
old of 99% (ϵ = 0.99) . The threshold above needs more fined parameters
(i.e., smaller instant length) and longer simulation time to guarantee correct-
ness.

when machine packet size is small, the network system can
serve requests in a short time, thus improving the performance
overall. However, with the increment in machine packet sizes,
less available power remains for additional requests. Therefore,
the machine learning approach only raises the improvement
slightly.

Figure 11 presents simulation outcomes in another view-
point, where H values is fixed (H = 1, 3, 5 seconds corre-
sponding to Figure 11a, 11b, 11c respectively) and changing
machine packet sizes. With different H values, we notice
significant improvements when the packet is small. However,
when the packet size grows, machine learning becomes less
impactful, until a certain point, the performance becomes
worse than the non-machine learning approach. This point
is vastly different depending on the H value. This indicates
that machine learning is viable for scenarios where the net-
work system has unused resources. When applying machine
learning, models result in correct or incorrect predictions.
With correct prediction, data requests are registered in ad-
vance, providing the network system more time to handle
them. However, with wrong predictions, redundant requests
are registered, slowing the transmission process overall. A
powerful network system can utilize the additional time that
accurate predictions provide while still having available re-
sources to handle redundant requests. However, for a less
powerful system, not much transmit power remains to take
advantage of extra time from correct prediction. Moreover,
the system becomes more crowded as unnecessary requests
appear, making the prediction model unproductive.
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(a) Fixed Machine Learning Packet Sizes and different H values (b) Different Machine Packet Sizes and fixed H values

Fig. 9: Reliability Comparison with Machine Learning Packet Sizes and H values

(a) Machine Packet Size = 10MB (b) Machine Packet Size = 50MB (c) Machine Packet Size = 100MB

Fig. 10: Robot Waiting Time Comparison with fixed Machine Packet Size and different H values

(a) H value = 1s (b) H value = 3s (c) H value = 5s

Fig. 11: Robot Waiting Time Comparison with different Machine Packet Sizes and fixed H value

VI. LIMITATIONS

With simulations in different scenarios, we notice a sys-
tem workload boundary, of which applying machine learning
results in worse performance. Depending on the stand-alone
performance of machine learning (i.e., accuracy, prediction
horizon), this boundary changes accordingly. We assume that
machine learning approaches produce additional redundant
requests by raising wrong predictions. With an overloaded
system, these requests can increase the burden that the system
is taking, thus slowing down other request processes. How-
ever, more research needs to be conducted to address this
assumption. Moreover, since this boundary change is dynamic,
future experiments can be designed methodically to study the
behaviors and impact of particular workloads on the network
system.

Another issue we notice while designing this experiment
is deciding the prediction moment. This research focuses on
measuring the impact of different prediction horizons and
accuracy on a robotic use case. In this case, performances
with various prediction horizons are recorded after the moving
robot finishes its run. With the pre-defined prediction horizons,
we can correctly quantify the impact of the machine learning
model for resource allocation purposes. However, in reality, we
cannot decide the prediction horizon value deterministically
since we do not know when the moving robot arrives at its
targeted machine. Even by converting prediction horizons from
time-wise to distance-wise measured from the targeted ma-
chine, the problem remains since the machine learning model
cannot guarantee to raise correct targeted machine predictions.
Addressing this problem requires additional resources and
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depends on particular cases, thus making it a worthwhile issue
for further studies.

VII. CONCLUSION

This research proposes an intent-based inference approach
for managing teleoperation applications in a network sys-
tem. The proposed scheme can proactively allocate network
resources throughout multiple base stations to optimize the
overall performance of local applications under reliability
constraints of teleoperation applications. To achieve that,
a reliable matching and scheduling scheme is introduced.
Moreover, a machine learning model that utilizes Recurrent
Neural Network structures is used to further enhance the
proposed scheme’s efficiency. Simulation results show that
our proposed scheme can function well under multiple scenar-
ios with different network capabilities and local applications
workload. Our method significantly improves reliability and
overall performance compared to other described methods.
Although the intent-based inference, reflected by the machine
learning model, depends on local applications, the improved
matching and scheduling algorithm can generally be applied
to other applications.
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