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Abstract
Background: Brain tumors are among the deadliest cancers, are difficult to
treat and often cause disease or treatment-related side effects. Therefore,
evaluating tumor response to treatment plays an important role in treatment
decision-making. Magnetic Resonance Imaging (MRI) is the most sensitive
modality for the evaluation of brain tumors. Response Assessment in Neuro-
Oncology (RANO) criteria are currently the most used to quantify treatment
response. Important limitations of the RANO criteria are user-dependency,
limited reproducibility and limited use of all information present in the scan.
Prognostic artificial intelligence monitoring shows high potential in overcoming
these limitations.
Methods: As a first step in the conversion to MRI 571 patients were included
to make a prognosis based on the fluid-attenuated inversion recovery sequence.
The algorithm was adjusted to multiple sequences (n = 576) and externally
validated (n = 119). All patients with a primary malignancy of the brain (n =
54) were used to compare to the RANO criteria and volumetric assessments and
externally validated (n = 62). Primary outcome measures were the concordance
index and Kaplan Meier survival curves. Cox time-varying regression was used
for associative analysis.
Results: For the fluid-attenuated inversion recovery sequence the logrank test
on all three risk groups in the Kaplan Meier survival curves showed a significant
difference (p < 0.005) with a concordance index of 0.61. Multisequence analysis
of the complete dataset revealed a concordance index of 0.62 with a significant
difference between the medium and high-risk patient groups (p < 0.005).
The external validation showed a concordance index of 0.55 with a significant
difference between medium and high-risk patient groups (p = 0.01). In both
datasets the difference between low and medium-risk patients was insignificant.
Comparison with other methods showed volumetric assessment had the best
prognostic performance with a concordance index of 0.77.
Conclusion: This thesis has provided evidence for an alternative method
of longitudinal monitoring of cancer patients from brain MRI. Unlike current
response evaluation methods, this method works fully automatically and uses
all information in the scan including disease or treatment-related side effects.
Further improvements are needed to reach equal performance across datasets.



iii

Graduation Committee

Chair
Prof.dr.ir. C.H. Slump
Robotics and Mechatronics, University of Twente, Enschede, The Netherlands

Clinical supervisor
Dr. A.L.T. Imholz
Internal Medicine, Deventer Ziekenhuis, Deventer, The Netherlands

Technical supervisor
Dr. C.O. Tan
Robotics and Mechatronics, University of Twente, Enschede, The Netherlands

Process supervisor
Drs. P.A. van Katwijk
Technical Medicine, University of Twente, Enschede, The Netherlands

Additional member and technical supervisor
Dr. S. Trebeschi
Postdoc researcher, The Netherlands Cancer Institute, Amsterdam, The
Netherlands

External member
Dr. J.M. Wolterink
Mathematics of Imaging & AI, University of Twente, Enschede, The Netherlands





iv

Acknowledgements
In the past year, I have learned to apply artificial intelligence to solve actual
clinical problems at the department of radiology at the Netherlands Cancer
Institute and the department of internal medicine at Deventer Ziekenhuis. I
would like to thank prof. dr. Regina Beets-Tan and dr. Alex Imholz for this
opportunity. I have further developed my clinical skills and have learned how to
apply artificial intelligence in this clinical context. I am grateful to have had
this opportunity and excited to continue the research in the future.

I would like to thank dr. Can Tan for your supervision and meaningful insights
into the technical aspect of the thesis. Your supervision has kept me sharp
throughout the thesis.

The guidance of dr. Alex Imholz has helped me develop and increase my
confidence in my clinical work. Your enthusiasm and interest in the topic have
been very helpful. Throughout the past year, you have reminded me to always
keep an eye out for the clinician’s perspective.

I would also like to express my gratitude to drs. Paul van Katwijk. You have
helped me with my personal development and getting to know myself better.
You always know how to ask the right questions which kept me thinking also
after the intervision sessions.

Daily supervision was done by dr. Stefano Trebeschi. Thank you for all your
time and effort. Our weekly meetings always steered me in the right direction
and kept my focus sharp. Whenever I encountered a problem outside of those
meetings you were always there to help me out.

I would also like to thank all of my co-workers at the NKI and Deventer
Ziekenhuis. You were always open to questions and interesting discussions. It
has been a pleasure to work with you.

Finally, I would like to thank my parents, Femke and Peter for always stimulating
me to follow my interests. You have been very supportive and I know you will
always have my back.

I hope you enjoy reading this thesis.



v

Contents

Abstract ii

Graduation Committee iii

Acknowledgements iv

1 General clinical background 2
1.1 Cancer and metastatic disease . . . . . . . . . . . . . . . . . . . 2
1.2 Cancer therapies . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Clinical decision making in oncology . . . . . . . . . . . . . . . 5
1.4 Proposed improvements . . . . . . . . . . . . . . . . . . . . . . 8

2 General technological background 11
2.1 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . 11
2.2 Artificial intelligence . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Convolutional neural networks . . . . . . . . . . . . . . . . . . . 18
2.6 Prognostic AI monitoring . . . . . . . . . . . . . . . . . . . . . 19
2.7 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Extension of PAM to single sequence brain imaging 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Technological background . . . . . . . . . . . . . . . . . . . . . 31
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Extension of PAM to multisequence imaging of the brain 56
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



vi Contents

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Comparison with current methods for response monitoring 80
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 General conclusion and future outlook 92
6.1 General conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Future outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



vii

List of Figures

1.1 Hallmarks of cancer . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Orientation of hydrogen nuclei . . . . . . . . . . . . . . . . . . 12
2.2 Magnetization after an RF pulse . . . . . . . . . . . . . . . . . 13
2.3 Magnetic field gradient . . . . . . . . . . . . . . . . . . . . . . 13
2.4 T1 relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 T2 relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Artificial intelligence . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Schematic overview of a neuron . . . . . . . . . . . . . . . . . . 17
2.8 Deep neural network architecture . . . . . . . . . . . . . . . . . 18
2.9 Convolutional neural network architecture . . . . . . . . . . . . 19
2.10 Convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . 21
2.11 Rectified linear unit function . . . . . . . . . . . . . . . . . . . 22
2.12 Max pooling layer . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.13 Group normalization . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 The blood-brain barrier . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Network architecture for affine transformation . . . . . . . . . . 32
3.3 Network architecture for elastic transformation . . . . . . . . . . 33
3.4 Consort diagram FLAIR scans . . . . . . . . . . . . . . . . . . . 36
3.5 Overview of the prognostic AI monitor . . . . . . . . . . . . . . 41
3.6 Including temporal information . . . . . . . . . . . . . . . . . . 41
3.7 MRI histograms . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 Visual effect of data harmonization . . . . . . . . . . . . . . . . 43
3.9 Effect of data harmonization on validation loss . . . . . . . . . . 43
3.10 Original fixed and moving image . . . . . . . . . . . . . . . . . 44
3.11 Transformed moving image . . . . . . . . . . . . . . . . . . . . 44
3.12 Image overlays after registration . . . . . . . . . . . . . . . . . 45
3.13 Checkerboard image after image registration . . . . . . . . . . . 45
3.14 Associative analysis for computation of the risk score . . . . . . 46
3.15 Associative analysis with confounders . . . . . . . . . . . . . . . 47
3.16 Associative analysis for primary brain cancer . . . . . . . . . . . 48
3.17 Kaplan Meier survival curves for all cancer types . . . . . . . . . 50



viii List of Figures

3.18 Kaplan Meier survival curves for primary brain tumors . . . . . . 51

4.1 T1-weighted image . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 T2-weighted image . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 FLAIR and postcontrast T1 image . . . . . . . . . . . . . . . . 58
4.4 Consort diagram multisequence scans . . . . . . . . . . . . . . . 61
4.5 Dealing with missing sequences . . . . . . . . . . . . . . . . . . 63
4.6 Associative analysis for the risk score in multisequence scans . . 66
4.7 Associative analysis with confounders in multisequence scans . . 67
4.8 Kaplan Meier survival curves for multisequence images . . . . . . 69
4.9 Associative analysis for multisequence scans with primary brain

tumors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.10 Kaplan Meier survival curves for primary brain cancer . . . . . . 71
4.11 Cox regression for the external dataset . . . . . . . . . . . . . . 72
4.12 Kaplan Meier curves for external dataset . . . . . . . . . . . . . 74

5.1 RANO measurements . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Kaplan Meier curves for RANO assessments . . . . . . . . . . . 84
5.3 Kaplan Meier curves for volumetric assessment . . . . . . . . . . 85
5.4 Kaplan Meier curves for PAM risk scores . . . . . . . . . . . . . 86
5.5 Kaplan Meier curves for manual RANO assessments . . . . . . . 87
5.6 Kaplan Meier curves for PAM risk scores . . . . . . . . . . . . . 87



ix

List of Tables

1.1 Current response criteria in brain imaging . . . . . . . . . . . . 7

3.1 Patient demographic FLAIR scans . . . . . . . . . . . . . . . . 37
3.2 Hazard ratios for computation of the risk score . . . . . . . . . . 47
3.3 Hazard ratios of PAM score and confounders . . . . . . . . . . . 48
3.4 Hazard ratios of PAM score and confounders for primary brain

cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 C-indices for five computations of PAM risk score . . . . . . . . 49
3.6 C-indices subanalysis per cancer type . . . . . . . . . . . . . . . 50
3.7 Logrank test for FLAIR pancancer dataset . . . . . . . . . . . . 51
3.8 Logrank test for the FLAIR primary brain cancer dataset . . . . 52

4.1 MRI image characteristics in RANO . . . . . . . . . . . . . . . . 60
4.2 Available scans in TCIA dataset . . . . . . . . . . . . . . . . . . 61
4.3 Patient demographic for NKI multisequence scans . . . . . . . . 62
4.4 Patient demographic for external validation set . . . . . . . . . . 62
4.5 Hazard ratios for the risk score in multisequence scans . . . . . . 66
4.6 Hazard ratios for confounders in multisequence scans . . . . . . 67
4.7 C-indices for the risk score for multisequence scans . . . . . . . 68
4.8 C-indices subanalysis per cancer type . . . . . . . . . . . . . . . 68
4.9 Logrank test for the risk groups in multisequence PAM . . . . . 69
4.10 Hazard ratios for confounder analysis in multisequence scans with

primary brain tumors . . . . . . . . . . . . . . . . . . . . . . . . 70
4.11 Logrank test for the risk groups in primary brain cancer . . . . . 72
4.12 Hazard ratios for confounder analysis in the external dataset . . 73
4.13 C-indices for the external dataset . . . . . . . . . . . . . . . . . 73
4.14 Logrank test for the external dataset . . . . . . . . . . . . . . . 74

5.1 RANO high grade glioma . . . . . . . . . . . . . . . . . . . . . 80
5.2 Logrank test for the response categories as determined by RANO

assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Logrank test for the risk groups in the volumetric assessment . . 85
5.4 Logrank test for the risk groups in PAM . . . . . . . . . . . . . 86



x List of Tables

5.5 C-indices PAM and volumetric asssessment . . . . . . . . . . . . 86
5.6 Logrank test for the risk groups as determined by PAM for the

data from Deventer Ziekenhuis . . . . . . . . . . . . . . . . . . 88



1



2

Chapter 1

General clinical background

1.1 Cancer and metastatic disease

Cancer is a disease caused by genetic mutation in cancer-susceptible genes.
However, one genetic mutation will not immediately cause growth of cancer.
For the progression of a tumor more mutations are required. These mutations,
along with a favorable environment for its growth, are the reason a malignancy
progresses and invades surrounding tissue. Two important classes of genes play
a role in tumor progression: tumor-suppressor genes and oncogenes.1 Further
progression of a cancer may lead to metastatic disease. Hanahan and Weinberg
have published the six hallmarks of cancer.2 These hallmarks are distinctive
and complementary concepts that enable tumor growth and metastatic
dissemination. The six hallmarks are: sustaining proliferative signaling, evading
growth suppressors, activating invasion and metastasis, enabling replicative
immortality, inducing angiogenesis and resisting cell death. These hallmarks
allow cancer cells to survive, proliferate and disseminate. Tumor types acquire
these six functions through distinct mechanisms at various time points in the
tumorgenesis. After the first publication in 2000 Hanahan and Weinberg have
revisited their six hallmarks and added two emerging hallmarks: deregulating
cellular energetics and avoiding immune destruction. They also added two
enabling characteristics: genome instability and mutation and tumor-promoting
inflammation. An overview of these new hallmarks can be found in figure 1.1.

The hallmarks, amongst other things, allow for dissemination of cancer cells to
distant sites. It has long been assumed metastatic dissemination is one of the
last steps in a multistep tumor progression process.3 However, recent research
shows dissemination of cancer cells from the primary tumor to distant sites occurs
early in the progression of the disease.2,4 Often this means before the discovery
of the primary tumor. This is why patients often receive a systemic therapy.
This is aimed to minimize residual disease. These systemic therapies can either
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be provided adjuvant (after local removal of the tumor) or neoadjuvant (before
local removal).4

Figure 1.1: Overview of acquired capabilities necessary for tumor growth and
progression. Adapted from Hanahan and Weinberg.3

1.2 Cancer therapies

There are various treatment options for cancer. The relevant options depend on
the type and stage of a cancer. The most important distinction is the distinction
between local and systemic treatments. Local treatments are used to locally
treat the tumor (and possibly surrounding tissue). Examples of local therapies
are surgery and radiation therapy. On the other hand, systemic treatment affects
the whole body. Most drug therapies such as chemotherapy, immunotherapy or
targeted therapy (including endocrine therapy) are therefore considered systemic
treatments.

1.2.1 Local therapy

Surgical excision of a tumor can be a relatively simple method to treat patients
with early stage solid tumors that are still confined to the anatomic site of
origin.5 However, due to dissemination of cancer cells as described in 1.1 a
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neoadjuvant or adjuvant systemic therapy may be required.

Another option for local therapy is radiotherapy. Radiation may be administered
as photons or particles (protons, neutrons or electrons). The interaction of
photons with the tissue leads to ionizations. These ionizations either interact
directly with subcellular structures (like the DNA) or they interact with water.
After interaction with water free radicals are formed which in turn interact with
the subcellular structures. Both pathways eventually lead to DNA damage.
This DNA damage may have the following consequences: normal cell division,
DNA damage-induced senescence, apoptosis or mitotic-linked cell death. In the
end this leads to destruction of tumor cells.5 In radiotherapy there is a trade-
off between providing a maximal dosage of radiation to the tumor cells while
limiting the radiation dose for surrounding healthy tissue. The two main types
of radiation therapy are external beam radiation and brachytherapy (internal
radiation).6

1.2.2 Systemic therapy

Chemotherapy is a systemic therapy which means it does not only target
the primary tumor, but it is also able to target metastases. The goal of
chemotherapy is to decrease the tumor burden. Traditional chemotherapeutics
act by killing rapidly dividing cells through targetting DNA or processes critical
for cell division. Non-traditional therapies target vulnerabilities specific to cancer
cells.7 The side effects of chemotherapy are toxicity to healthy tissues and the
development of cellular resistance to chemotherapeutic agents. Chemotherapy
may be given as the initial treatment of cancer. In this case it can either be
induction chemotherapy or neoadjuvant chemotherapy. Induction chemotherapy
is given to patients who present with advanced cancer and have no alternative
treatment options in the hope other treatment options become available after
shrinkage of the tumor. If there are no alternative treatment options and the
prognosis is poor than palliative chemotherapy may be started to extend the
life of a patient. Chemotherapy may also be delivered after local treatment
(adjuvant). Adjuvant chemotherapy is used to tackle micrometastases as much
as possible.8

Immunotherapy is capable of targeting tumor cells. Most studies on
immunotherapy thus far have focused on enhancing the antitumor response of
T cells. These T cells are able to recognize cancer antigens and can start an
immune response. Another pathway is using human antibodies that recognize
growth factors on the surface of tumor cells. The antibodies can interact with
these growth factors leading to tumor regression. This is not caused by the
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direct destruction of tumor cells, but by the interference with cell growth.
Generally, immunotherapy either focuses on stimulating the patient’s own
immune system or on passively administering already activated immune cells.5,9

Immune therapy is not without immune-related side effects, but in general these
side effects are better tolerated than the side effects of chemotherapy.9

Targeted therapies may target or block any of the malfunctioning molecules of
pathways that cause the development of cancer. It is a new generation of drugs
that interfere with a specific molecular target which has a role in tumor growth or
progression.10 The first generation of targeted therapies was endocrine therapy.
Endocrine therapy was proved to be effective in breast cancer patients expressing
the oestrogen receptor.11 In general, targeted therapies interfere with one of the
specific hallmarks shown in figure 1.1. Targeted therapies can be divided in
small-molecule inhibitors and monoclonal antibodies.12 An example of small-
molecule inhibitors is targeting mutant kinases. This has shown good response
rates in chronic myeloid leukaemia, gastrointestinal tumors and lung cancer.10

However, not all cancers show a mutant kinase which means this therapy can
only be used for specific cancers. Another example of a targeted therapy is the
targeting of the tumor microenvironment. This method is able to cut off blood
supply to tumors by using antiangiogenic agents. This is potentially applicable
to a lot more cancer types.10

1.3 Clinical decision making in oncology

Medical imaging is an important factor in the evaluation of cancer therapies.
Imaging is necessary to properly evaluate treatment making it one of the
cornerstones of current cancer care. It also plays an important role in screening,
diagnosis and staging.13 Magnetic resonance imaging (MRI) is commonly used
for localized disease in the pelvis, abdomen and brain. It is safer than computed
tomography (CT) as it does not use ionising radiation. This is especially an
advantage for cancer patients who routinely undergo scans. MRI also provides
finer details of the brain, spinal cord and vascular anatomy, because of the good
soft-tissue contrast. That is why MRI is commonly used in diagnostic imaging
of the brain. In brain MRI T1-weighted, T2-weighted and FLAIR images are
often used. Using these sequences allows for distinction between white and gray
matter and differentiation of cerebrospinal fluid (CSF). The FLAIR sequence
specifically is used to distinguish between CSF and brain abnormalities.14

Clinical decision making in oncology is not solely based on medical images.
Instead it is based on a combination of variables. This means it often requires
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collaboration between various medical disciplines. In that case a multidisciplinary
tumor board (MTB) is set up to discuss patients.15 These MTB’s lead to an
improved quality of care for cancer patients.16,17 Soukup et al. demonstrated
the input of radiologists in MTB’s significantly affects clinical decision making.18

Radiologists use tumor response evaluation criteria to quantify a patient’s
response to treatment. Generally, the most important evaluation criteria are
the Response Evaluation Criteria in Solid tumors (RECIST). Specifically for the
brain the Response Assessment in Neuro-Oncology (RANO) criteria have been
developed.

1.3.1 Response Evaluation Criteria in Solid tumors

Evaluation of tumor response plays an important role in treatment decision
making. The World Health Organisation attempted to introduce a standardised
treatment response evaluation. This method uses two dimensional
measurements of target lesions and categorised responses in one of four
categories. It was the basis for the Response Evaluation Criteria in Solid tumors
(RECIST) that were developed in 2000.19 In 2009 RECIST 1.1 was published20,
and in 2017 an adapted version for immunotherapy (iRECIST) was published21.
RECIST is still the standard for response evaluation of solid tumors in the
abdomen.

RECIST describes a standardized method to estimate the total tumor burden.
To do so RECIST makes a distinction between target and non-target lesions.
Target lesions are lesions with a maximal axial diameter of at least 10 mm, should
allow for reproducible and repeated measurements and should be representative
of all organs. A maximum of 5 target lesions can be selected of which there
are maximal 2 target lesions per organ. The total tumor burden is determined
by the sum of diameters of the target lesions and the minimal diameter of
pathological lymph nodes. A pathological lymph node is defined as having a
minimal diameter of at least 15 mm. Depending on the change of the sum of
diameters between the baseline scan and the follow-up scan the response may
be classified as complete response, partial response, progressive disease or stable
disease. A similar workflow exists to use non-target lesions to classify tumor
response as complete response, non-complete response/non-progressive disease
or progressive disease, although no indication exists for these to be measured.20

1.3.2 Response Assessment in Neuro-Oncology Criteria

Historically the response evaluation of brain tumors was performed by either
MacDonald Criteria or RECIST. However, both methods revealed shortcomings
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in the evaluation of tumors in the central nervous system (CNS). That is why the
Response Assessment in Neuro-Oncology (RANO) criteria have been developed.
The main differences between these methods are described in table 1.1.22 Some
therapeutic agents are known to reduce contrast enhancement and therefore
patients seem to be responding well. However, although these patients show a
longer period of progression-free survival it does not change overall survival.23

This is known as pseudoresponse. RANO criteria try to take this into account
by repeating the MRI at least 4 weeks later to prove a durable response.22

The RANO criteria for low grade gliomas are based on the percent change
in T2/FLAIR images, new lesions, corticosteroids and clinical status. There
are also RANO criteria for brain metastases. These criteria use elements of
RECIST and the RANO criteria for high grade glioma. Lesions of 10 mm or
larger are generally considered measurable in these RANO criteria. The criteria
also give guidance for the number of target lesions, use of corticosteroids and
pseudoprogression.22

Table 1.1: Summary of current response criteria in brain imaging22

Criterion RECIST MacDonald RANO

Measurement
1 direction contrast
enhancement

2 directions contrast
enhancement

2 directions contrast
enhancement +
T2/FLAIR

Progression
≥ 20% increase in sum
of lesions

≥ 25% increase in
product of
perpendicular diameter

≥ 25% increase in
product of
perpendicular diameter

Response
≥ 30% decrease in sum
of lesions

≥ 50% decrease in
product of
perpendicular diameter

≥ 50% decrease in
product of
perpendicular diameter

Durability of response Optional Yes (at least 4 weeks) Yes (at least 4 weeks)
Definition of
measurability

Yes No Yes

Number of target
lesions

Up to 5 None specified Up to 5

T2/FLAIR Not evaluated Not evaluated Evaluated
Corticosteroids
considered

No Yes Yes

Clinical status
considered

No Yes Yes

Pseudo-progression
considered

No No Yes

1.3.3 Limitations

An important limitation of RECIST/RANO is the broad response categories.
Tumor response is classified in one of the four earlier described categories. A
more detailed and extensive description of changes in tumor sizes is likely to
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provide additional prognostic information.24 A decrease in the sum of diameters
does not always mean a decrease in viable tumor cells and vice versa. For
example, intratumoral necrosis and hemorrhage could induce a mismatch
between the actual viable tumor cells and the sum of tumor diameters.25 Also
taking into account size-independent tumor morphology is likely to provide
additional information. For hepatic metastases Chun et al. have already
shown that a morphological response evaluation predicted survival better than
a RECIST evaluation. They divided the hepatic metastases in three groups.
Group 1 metastases had a homogeneous low attenuation and sharply defined
tumor-liver interface. Group 3 lesions were heterogeneously attenuated and had
thick and poorly defined tumor-liver interfaces. Group 2 were the lesions that
did not fit in group 1 or 3.26 Additionally, the limited number of target lesions
does not always give an accurate response evaluation. These target lesions may
be selected arbitrarily which has a significant impact on the response evaluation.
Due to arbitrary selection different radiologists might select different target
lesions.27 Another important limitation of RECIST is the high variability (24%)
in the sum of diameters.28 Lesions that have unclear margins and complex
shapes are difficult to measure.27 This may cause the variability to exceed the
20% cut-off margin between SD and PD, resulting in potential misclassification
of the response to treatment.27,29

A specific shortcoming for the RANO criteria is the quantification of
nonenhancing disease progression. Since no quantifiable measure has currently
been provided the usefulness of nonenhancing disease progression is limited. The
nonenhancing disease progression is also difficult to assess in patients receiving
immunotherapy. Immunotherapy often causes peritumoral edema which is
difficult to differentiate from nonenhancing disease progression.22

1.4 Proposed improvements

The limitations associated with current response evaluation ask for a new
method to evaluate treatment response. This method should be reproducible,
user-independent and take into account the complete tumor burden and
possible tumor or treatment related side-effects. A promising tool that suits
all the aforementioned requirements is the prognostic artificial intelligence (AI)
monitor (PAM).30

PAM is a method to assess morphological changes between follow-up scans
of the same patient. It works fully automatic and is independent of user
input. PAM thereby overcomes most limitations of current methods for
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radiological evaluation. On top of that PAM has already been compared
to radiological assessment and blood values (hemoglobine, erythrocytes,
leukocytes, and thrombocytes) in an earlier publication.30 In univariate analysis
PAM performed better than the radiological assessment and blood values.
In multivariate analysis PAM remained statistically significant as well as
radiological progression, leukocyte count and age. This demonstrates PAM is
of additional value over current methods for prognostication.30 Prognostication
plays a key role in personal and clinical decisions in patients with advanced
cancer.31 Therefore, after further development PAM might play a significant
role in clinical decision making in the future.

This research will focus on improving prognostication based on brain MRI.
Important limitations of the current method are user-dependency, limited
reproducibility and limited use of all information present in the scan. PAM
overcomes these limitations and shows promising results. The ultimate goal
is to provide the clinician with better information on an individual patient’s
prognosis, so individualized treatment decisions can be optimized. This research
will therefore address the following question: How can the prognostic AI-monitor
be adapted to MRI to be an accurate predictor of patient survival eventually
leading to optimization of treatment decisions for the individual patient?





2



11

Chapter 2

General technological
background

2.1 Magnetic Resonance Imaging

2.1.1 Signal acquisition

Magnetic Resonance Imaging (MRI) is based on the magnetic properties of the
hydrogen nucleus. This magnetic property is known as spin as the nuclei spin
around their axis.32,33,34 This spin leads to interaction with electromagnetic
fields. Normally, the spins of various hydrogen nuclei cancel each other out
leaving a net magnetic vector of 0. However, when an external magnetic field
(B0) is generated the nuclei align in parallel or perpendicular to the magnetic
field (figure 2.1). Alignment parallel to the magnetic field is a low-energy state
and alignment perpendicular to the magnetic field is a high-energy state. The
low energy state is preferred. Therefore the net magnetization (M0) will be
along the B0 field in the direction of the z-axis.32,35 The hydrogen nucleus is not
statically aligned in the direction of B0 as it has an angular momentum, meaning
it will precess around the axis of the magnetic field.32 The speed of the rotation
is described by the Larmor frequency (ω0) as in equation 2.1. The variable γ
represents the gyromagnetic ratio, which is 42.6 MHz/T for the proton.32,33,34,35

ω0 = γB0 (2.1)
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Figure 2.1: Orientation of hydrogen nuclei with spin. The left image shows a situation
without an external magnetic field. The right image shows the orientation when an

external magnetic field is generated. Adapted from van Geuns et al.35

A second radiofrequency (RF) magnetic field B1 is applied perpendicular to B0 at
the resonance frequency. This excites the nuclei and allows for the absorption of
energy which causes a transition from lower to higher energy levels. The opposite
transition happens upon relaxation. The energy needed to induce transition
depends on B0 as described by equation 2.2.

∆E =
γhB0

2π
(2.2)

The B1 field is typically applied in short pulses. These pulses cause the net
magnetization to move away from its alignment along the B0 field. At this
point in time the magnetization can be split in Mz and Mxy. The component
of magnetization in the xy-plane (Mxy) generates a detectable signal. This
process is visualized in figure 2.2. The signal is largest when a 90◦ pulse flips
the net magnetization in the xy-plane.34 When these pulses stop the system
will return to the original equilibrium through relaxation. This process creates
a voltage that can be detected by a suitable coil. This signal is amplified and
displayed as the free-induction decay (FID). To improve the signal-to-noise
ratio multiple FID’s are obtained by multiple pulses. These various signals are
then averaged. A Fourier transformation can be used to resolve the FID into
an image or a frequency spectrum.32,34
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Figure 2.2: The left image shows the net magnetization at equilibrium. When an RF
pulse is applied the magnetization makes an angle with the z-axis. This causes the
signal to be divided in two components: Mxy and Mz. Adapted from Ridgway.34

A gradient may be used to distinguish from what position a specific signal is
originating. By applying a gradient the magnetic field strength varies which
leads to a different Larmor frequency. The variation in frequency measurements
can then be used to select a slice and create a three-dimensional image
reconstruction. This principle is visualized in figure 2.3.

Figure 2.3: The magnetic field gradient is applied simultaneously to the excitation
pulse. This causes the larmor frequency to vary with the magnetic field gradient which

can be used for slice selection. Adapted from Grover et al.32 and Ridgway.34
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2.1.2 Signal characteristics

MR images are affected by tissue parameters such as T1, T2 and proton density.
T1 and T2 are time constants that describe the longitudinal (z) and transverse
(xy) relaxations, respectively. T1 is a time constant that describes the recovery
of the magnetization vector to the original value at equilibrium (figure 2.4).

Figure 2.4: The process of T1 relaxation is visualised as the increasing magnetization
in the z-axis. The graph allows for a different visualization of the same principle. T1 is
the time constant at which 63% of M0 has been recovered. Adapted from Ridgway.34

T2 relaxation describes the decay of the xy-component as the magnetization
vector returns to its equilibrium. T2 relaxation is a faster process than T1
relaxation. The decay of the transverse signal is related to the phase of the
spins. After an RF pulse the spins initially rotate in phase, but over time there
will be loss of coherence and spins will move out of phase. This causes for
the net magnetisation to decrease over time. The loss of phase coherence
can be explained by interactions with other protons known as T2 relaxation.
Neighbouring protons may slightly alter the magnetic field experience by a
proton. This slightly changes the precession frequency and thus causes the spins
to move out of phase. Another cause for spins moving out of phase is related
to static magnetic field inhomogeneities. T2* describes the T2 relaxation as
well as the magnetic field inhomogeneities (figure 2.5).34
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Figure 2.5: The process of T2 relaxation is visualised as the dephasing of spins in the
xy-plane. The graph allows for a different visualization of the same principle. T2 is the

time constant at which 37% of M0 is left. Adapted from Ridgway.34

Next to T1, T2 and proton density MRI image contrast is affected by repetition
time (TR) and echo time (TE). TR is defined as the time between an RF
excitation pulse and the subsequent RF pulse. TE is the time between the RF
pulse and the maximally detected echo. Varying these parameters will affect
tissue contrast, because they change sensitivity to relaxation times. An example
of this is using a relatively low TR which allows for better contrast between
fat (T1 = 250 ms) and water (T1 = 4000 ms). When T1 is longer both fat
and water have returned to equilibrium and contrast is no longer present. T2
relaxation is a faster process, so image contrast can be manipulated by TE in
T2-weighted images.33

2.2 Artificial intelligence

As explained in chapter 1 PAM is a possibly promising tool to improve patient
prognostication. PAM uses artificial intelligence (AI) for prognostication. AI is
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an overarching term for anything related to devices that are able to perceive the
environment and take adequate action to maximize the chance to reach a certain
goal. AI is a self-explanatory term for the intelligence exhibited by machines.
Within AI there is the field of machine learning (ML). This is defined as the ability
of a computer to learn to complete tasks without being literally programmed
to do so. Within machine learning there is the concept of deep learning. Deep
learning is a particular group of ML algorithms based on artificial neural networks
- resembling the biological counterpart. A specific type of neural network that
can be used within deep learning is the convolutional neural network (CNN).
PAM uses a convolutional neural network for image-to-image registration. The
relationship between all aforementioned terms is explained in figure 2.6. All
concepts will be explained in more detail in this chapter.

Figure 2.6: The relation between artificial intelligence, machine learning, deep learning,
convolutional neural networks and the prognostic AI-monitor.

2.3 Machine learning

Machine learning is a field within AI. It is is defined as the ability of a computer
to learn without being literally programmed to do so. Machine learning can be
divided into supervised and unsupervised learning.36 Supervised learning uses a
labeled dataset for training. Each input is accompanied by the corresponding
target variable or outcome. The algorithm learns from comparing its own
output with the actual output. It then modifies internal parameters (weights)
to reduce the error.37 Unsupervised learning uses an unlabeled dataset. The
algorithm aims to find a structure within the data.36
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2.4 Deep learning

Within machine learning there is the concept of deep learning. Deep learning is
based on artificial neural networks - resembling biological neural networks found
in brains. A neural network consists of various neurons. These neurons are
simple processing units that receive multiple inputs, and produce an activation.
These inputs can either be from the environment or from previous neurons. A
neural network is a network of interconnected neurons that activate each other
through weighted activations. An overview of an artificial neuron is provided in
figure 2.7. A network learns by adjusting the weights to approximate the desired
output.38

Figure 2.7: Schematic overview of a single processing unit (neuron) in a neural
network. The input is shown as xi, the weights as wi, the bias as b and the output

signal as y. Adapted from Sarker.39

Deep learning is essentially a composition of simple but non-linear modules
(neurons) that transform the representation at one level (input) into a
representation at a higher level (output). Depending on the number of these
non-linear modules an increasingly more complex representation can be learned.
In the case of image processing adding layers to the network amplifies those
aspects of the image necessary to differentiate between different outcomes while
suppressing the irrelevant details of the image. A deep neural network consists
of multiple hidden layers. This is schematically depicted in figure 2.8. A typical
feedforward network is composed by different functions eventually leading to
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an output. For example, a network with three layers can be represented by
functions f (1), f (2) and f (3) connected in a chain to form the output of the
network f(x) = f (3)(f (2)(f (1)(x))). The length of this chain is the depth of
the network. In the training set a label y ≈ f∗(x) is provided for a given input
x. While training f(x) must match f∗(x). The network uses the labels in
the training set to learn what the output layer must do. The behavior of the
individual layers in the network is not directly specified. The learning algorithm
must lead to the most optimal use of each hidden layer, so the desired output
is close to the ground truth label.40

Figure 2.8: The general architecture of a deep neural network with more than one
hidden layer.

2.5 Convolutional neural networks

Convolutional neural networks (CNNs) are in many ways similar to standard
artificial neural networks, but are designed to deal with input on a regular
grid. Feeding a neural network with grid-shaped data leads to substantially
less input for neurons in the first layer. The standard artificial neural networks
are not designed to process this kind of data. This would require too much
computational power and may lead to overfitting. The architecture of CNNs is
adjusted to receiving multilayered data as input. In case of 2D imaging, layers
are comprised of neurons organised in the three dimensions (height, width and
depth). There are various motivations for using a CNN. The first one is the
use of sparse interactions. Unlike traditional neural networks CNNs are not
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fully connected. This means that in a CNN not every output neuron interacts
with every input neuron. CNNs achieve this by using a kernel size smaller than
the input size. In the case of images or scans this means instead of using
each individual pixel as input it uses small meaningful features in the images
such as edges. This reduces memory requirements and increases computational
efficiency. Another advantage is that CNNs can use the same parameter for
more functions in the model. This concept is known as parameter sharing.
The value of a weight at one input is tied to a weight applied elsewhere in the
network. This further reduces the storage requirements of the model. In a CNN
the particular form of parameter sharing leads to equivariance to translation
of a given layer. This is mathematically represented as f(g(x)) = g(f(x)).
In the case of an image it would mean shifting all pixels one to the right
and subsequently applying the convolution would yield the same result as
applying the convolution and subsequently shifting all pixels on to the right.40

Amongst others these properties make CNNs very succesful in image detection,
segmentation and object recognition.37 There are various layers that can be
used in a convolutional neural network.37,41 A typical CNN is comprised of
three kinds of layers: convolutional layers, pooling layers and fully-connected
layers. Convolutional and pooling layers implement feature extraction. A fully
connected layer maps the features into a final output.42 An overview of a basic
convolutional neural network is provided in figure 2.9.

Figure 2.9: The general architecture of a convolutional neural networks with
convolutional layers, pooling layers and fully-connected layers.

2.6 Prognostic AI monitoring

Prognostic AI monitoring (PAM) is a technique that uses CNNs to asses
morphological changes by performing a deep-learning based image-to-image
registration.30 Image-to-image registration is essentially the process of
establishing a voxel-wise match between two scans. PAM matches the
anatomical landmarks and shapes of two scan volumes and thereby quantifies
anatomical differences between scans.43 These quantifications are extracted as
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imaging feature vectors from the latent space of the network and fed into a
classifier. This classifier is trained to predict survival.30

The input for PAM consists of a fixed and a moving image. Image registration is
applied to the moving image to match the fixed image. The input is processed
in two subsequent parts. Firstly, a CNN is used to determine the 12 parameters
of affine image transform. The affine image transform corrects for patient
position. The second part of the network is fed with the outcome of the
first part: the fixed image and the affine warped moving image. The network
processes these inputs to regress a displacement field. The displacement
field contains a 3D vector for each voxel. This vector indicates the necessary
displacement of a voxel in the moving image to match the anatomical position
in the fixed image. This part of the network is used to assess the gross
morphological changes between the moving and fixed image.30

One of the advantages of PAM is that it can be trained on unlabeled data.30

Since the process of labeling data is labour intensive, using unlabeled data
generally means using larger datasets.

2.7 Layers

There are various important layers for PAM which will be explained in this
section. These layers are the convolutional layer, activation layer, pooling layer,
fully-connected layer, group normalization layer and the last activation layer.
The way these layers make up the final architecture of PAM as used in this
research will be described in chapter 3.

2.7.1 Convolutional layer

In a convolutional layer a kernel is applied across an input. The input is
an array of numbers called a tensor. The input is element-wise multiplied
with the kernel and then summed. The result of this operation is put at the
corresponding position in the output tensor. This process is visualized in figure
2.10. The output tensor is also called a feature map. In a convolutional layer
the kernel contains the learnable parameters in a training process. There are
three important hyperparameters in a convolutional layer: kernel size, stride,
the number of kernels and zero-padding. Kernel size, stride and zero-padding
determine the size of the output. The kernel size is usually 3 × 3, but can be
different sizes as well. Stride is the number of nodes a kernel moves each time.
In figure 2.10 the stride is 1. A disadvantage of using a convolutional layer may
be loss of information, because information at the edges of a matrix is lost when
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using a kernel. This can be resolved by zero-padding. This puts zeros at the
edge of the matrix and therefore the output does not necessarily shrink anymore,
but this also depends on the stride and kernel size. The influence of input size
(N), stride (S), kernel size (K) and zero-padding (P ) on the output size (O)
is described in equation 2.3.44 The number of kernels is directly correlated with
the depth of the resulting feature maps.42

O = 1 +
N + 2P −K

S
(2.3)

Figure 2.10: Visualization of the convolutional layer. The green matrix on the right is
the input. The kernel in this example is size 3× 3, the stride is 1 and there is no

zero-padding. The kernel and corresponding part of the input image are element-wise
multiplied and subsequently summed. This results in the beige output matrix of size

3× 3.

2.7.2 Activation layer

The outputs of the convolutional layer are passed on to the next layer. Usually
this is a non-linear activation layer. The most common non-linear activation
function is the rectified linear unit (ReLU) which computes the function in
equation 2.4.42 The derivative of the ReLU function equals 1 if x is more than
0, otherwise it equals 0 as expressed in equation 2.5. Thus, the ReLU function
will output the input as long as the input consists of only positive numbers. A
negative number in the input will be converted to 0 in the output. This is also
visualized in figure 2.11.

ReLU(x) = max(0, x) (2.4)

d

dx
(x) = { 1 if x > 0; 0 otherwise} (2.5)
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Figure 2.11: Visualization of the rectified linear unit function (ReLU). Negative values
are converted to 0, positive values are not converted.

2.7.3 Pooling layer

A pooling layer is aimed at downsampling the input. Downsampling introduces
invariance to small changes. There are no learnable parameters in the pooling
layer. The hyperparameters in a pooling layer are stride, padding and filter size.
Unlike in a convolutional layer the kernel in a pooling layer does not contain any
learnable parameters. There are two popular variants of the pooling layer: max
pooling and global average pooling. Max pooling filters sub-regions of the input
feature maps and returns the maximum value (figure 2.12). A common filter
size in max pooling is 2× 2 with a stride of 2. Max pooling changes the height
and width of a feature map, the depth remains unchanged.42,44 Global average
pooling performs downsampling to a 1 × 1 array. It does so by calculating the
average of all elements in the feature map. Its advantages are a reduction of
learnable parameters and it enables the network to process inputs of variable
size.42

Figure 2.12: Visualization of max pooling layer. A filter of size 2x2 with stride 2
computes the maximum of sub-regions of the input. This leads to downsampling of the

input.
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2.7.4 Fully-connected layer

As discussed before in section 2.5 a CNN consists out of multiple convolutional
and pooling layers followed by a fully-connected layer. The output feature map of
the last convolutional and pooling layers is often transformed into a 1 dimensional
array. This array is connected to one or more fully-connected layers which are
also known as dense layers. These layers map the output of the last convolutional
layer to final outputs.42 The term fully-connected is self-explanatory: a neuron
in one layer is connected to all neurons in the previous and next layer. This
design is similar to the design of a standard artificial neural network as in figure
2.8. The fully-connected layer contains a lot of parameters and is therefore
computationally expensive.44

2.7.5 Group normalization layer

The group normalization layer was developed by Wu and He.45 Usually batch
normalization (BN) is used. Features are normalized by mean and variance of
a batch. However, BN only works with larger batch sizes. Group normalization
(GN) on the other hand divides channels into groups and normalizes within
these groups. GN is very stable over a range of batch sizes, while BN shows
an increasing error for smaller batch sizes. Feature normalization in general is
mathematically expressed as:

x̂i =
1

σi
(xi − µi) (2.6)

In equation 2.6 x is the feature computed by a layer, i is the index, µ is the mean
and σ the standard deviation. Generally there are three axes. N is the batch
axis, C is the channel axis and H and W are the spatial dimensions (height
and width for a 2D image). The difference between BN and GN is the set that
is used for normalization. BN normalizes along the batch dimension. However,
GN does not exploit the batch dimension. This is visualized in figure 2.13.

Figure 2.13: Feature map tensors with N the batch axis, C the channel axis and H,W
the spatial dimensions (height and width). The group of pixels in red are normalized

with the given method. Adapted from Wu and He.45
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2.7.6 Last activation layer

Usually, the activation layer after the last fully-connected layer is different
from other activation layers used in the CNN. For example, for multi-class
classification tasks a softmax function is commonly used. The softmax functions
normalizes all values from the last fully connected layers and thereby converts
them to class probabilities which are all between 0 and 1 and sum to 1.

2.8 Loss function

The loss function measures the error between the predicted outcome and ground
truth. It is used to update the weights in PAM through backpropagation.
The loss function needs to be carefully chosen depending on the task at hand.
Examples are using a cross-entropy loss for multi-class classification problems
while mean squared error loss is more common for regression tasks.42 In case of
PAM the loss function must be able to measure the (dis)similarity between two
images. A correlation coefficient loss is suitable for this purpose. In addition
regularization losses are used to prevent overfitting or unrealistic deformations
in the resulting deformation field.46 The exact function used to compute the
loss in PAM in this thesis will be further explored in section 3.2.1.

2.9 Training

The trainable parameters in a CNN are the kernels in the convolutional layer
and the weights in the fully-connected layers. During training PAM uses
the loss function to compute an error to quantify the deviation between the
predicted and expected output. The loss function is used to adjust the internal
parameters of the network, the weights and biases. Gradients are commonly
used for this purpose.42 In multilayer deep learning networks, such as PAM,
gradients can be computed using backpropagation. Backpropagation is based
on the chain rule for derivatives. The derivative can be computed by working
backwards from the output of a module to the input of a module. By
using backpropagation repeatedly derivatives (gradients) for all neurons can
be computed.37 The principle of back propagation can be explained by four
equations.47 Backpropagation goes from the output layer back to the hidden
layers hence the first equation must describe the error (δ) in the output layer
(L).

δLj =
∂C

∂aLj
σ′(zLj ) (2.7)
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Equation 2.8 shows the error for neuron j in the output layer L. The first term
∂C
∂aLj

describes how fast the cost function C would change as a consequence

of the output activation a. The second term σ′(zLj ) provides a measure for
how fast the activation function (σ) changes at weighted input zLj . For back
propagation we use the matrix-based form of equation 2.8 which is:

δL = ∇aC ⊙ σ′(zLj ) (2.8)

The second equation uses the error in the next layer (δl+1) to compute the error
in the previous layer (δl):

δl = ((wl+1)T δl+1)⊙ σ′(zl) (2.9)

In this equation (wl+1)T represents the weight matrix for the l + 1th layer in
transposed form. This equation essentially uses the information from the l+1th

layer to compute the error in the lth layer. It therefore can be used to compute
the error in any layer in the network. After using equations 2.8 and 2.9 all that
is needed is to use the computed errors to quantify the rate of change of the
cost with respect to the weights (w) and the biases (b) in the network. For the
bias this means that for a given neuron the following equation applies:

∂C

∂b
= δ (2.10)

The rate of change of the cost with respect to the weight is slightly more
complicated, but for a given neuron it is:

∂C

∂w
= ainδout (2.11)

To be able to properly train and evaluate the results the available data should
be split into a training, validation and test set. The training set is used to
train the network as described before. For every scan pair in the training set
PAM computes the loss and adjusts the weights and biases accordingly. The
total training time depends on the number of epochs. An epoch is defined
as the moment at which every scan pair in the training set has passed PAM
once. After each epoch PAM processes the scan pairs in the validation set to
evaluate its current performance. It cannot learn from the scans in the validation
set, meaning the internal parameters of the network are not adjusted during
validation. The validation set is used to reduce overfitting of the network to
the training set. After training for the preset number of epochs is completed
the weights and biases with the best performance on the validation set are
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selected. This introduces a bias and therefore the performance on the validation
set cannot be used as a general performance metric. To be able to give a
general performance the test set is used. This is a part of the dataset that
is kept separate until the end of the training process. It can then be used for
the final evaluation of the model and to test if the model is sufficiently able to
generalize.42





3
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Chapter 3

Extension of PAM to single
sequence brain imaging

3.1 Introduction

Brain tumors are among the deadliest cancers. The most aggressive type is
glioblastoma as more than two-third of patients will die within two years after
diagnosis.48 Brain tumors can also be metastases from other primary cancers.
It is estimated at least 20% of cancer patients develop brain metastases at some
point.49 Most commonly the primary cancers are lung cancer, breast cancer or
melanoma. Brain metastases have a poor prognosis with a two year survival
rate of less than 8.1%.50 If treated, therapy is usually multimodal consisting of
a combination of surgery, radiotherapy, chemotherapy, immunotherapy and/or
targeted therapies.

Both primary brain tumors and brain metastases are difficult to treat. This has
multiple reasons. First, tumors infiltrating the brain are not always physically
reachable for surgery.48 On a smaller scale the central nervous system (CNS)
is protected by two main barriers: the blood brain barrier (BBB) and the
blood-cerebrospinal fluid (CSF) barrier. These barriers impede or filter the
transit of molecules from the blood to the brain and may decrease efficacy of
systemic treatment. The BBB is formed by endothelial cells, the endothelial
and parenchymal basement membrane, pericytes and astrocytes. A schematic
overview is provided in figure 3.1. The blood-CSF barrier is formed by choroid
plexus epithelial cells. These cells are connected by tight junctions.49 Another
reason systemic treatment proves to be difficult is due to unique features
of brain tumors, such as genetic features and the tumor micro-environment
(TME). The genetic profile of brain metastases might differ from the primary
tumor due to mutations. This introduces an uncertainty in treatment efficacy
even if the treatment reaches the brain tumor.51 The TME is composed
of the cancer cells, various stromal cells, lymphatic and blood vessels and
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the extracellular matrix. Abnormalities in these components could cause an
unfavourable micro-environment allowing for tumor progression and treatment
resistance.52

Figure 3.1: The blood brain barrier is formed by endothelial cells with low transcytosis
rates and high expression of efflux pumps connected by tight junctions. The endothelial
and parenchymal basement membrane, pericytes and astrocytes also play a role in the

barrier function. Adapted from Achrol et al.49

Treatment of brain tumors with surgery, radiotherapy and/or chemotherapy
often has adverse effects.48 Surgical complications could for example be
pain, infection, bowel or bladder complications, thromboembolisms or
epilepsy. Radiation may cause encephalopathy, ataxia, diplopia, dysarthria,
nystagmus, dementia, incontinence, a decline in cognitive function and cerebral
vasculopathy. Adverse effects of chemotherapy may include fatigue, alopecia,
constipation, headache, peripheral neuropathy and cardiac side effects.53

Treatment status is usually one of the factors included for prognostication in
patients with brain metastases. Other factors include patient characteristics,
extent of primary disease, performance status and the subtype of brain
metastases. Some data driven prognostication tools have been developed based
on these factors. Occasionally, histologic information is included as well in
prognostication models. The clinical value of current prognostication methods
is very limited while neurological disease is the cause of death in 52% of
patients with brain metastases.49 This emphasizes the need for an accurate
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prognostication tool.

An important part of prognostication is monitoring treatment response with
imaging. In the case of brain tumors MRI is the most sensitive modality.
The tumor is monitored by changes in enhancement on specific MRI
sequences. However, there are multiple factors that could lead to enhancement
not caused by tumor progression. Therefore a distinction must be made
between pseudoprogression, radiation necrosis and actual tumor progression or
recurrence. Pseudoprogression is when new contrast enhancement is detected
in MR images, but biopsy shows no progression of the primary brain tumor.
This is often associated with chemotherapy, immunotherapy and radiotherapy.
Pseudoprogression usually occurs within 3-4 months of radiation. Incidences
of pseudoprogression reported in the literature vary widely, from 9 to 30%.54

Radionecrosis on the other hand usually occurs 3-12 months after radiotherapy.
This is a local tissue reaction to the radiation treatment leading to edema and
disruption of the BBB.55 Radiation necrosis is also reported in patients with
brain metastases treated with stereotactic radiosurgery.54 Tumor progression
is quantified by RANO criteria as described in section 1.3.2. However, the
RANO criteria define pseudoprogression as contrast enhancement which
subsides without any intervention.56 This means pseudoprogression can only
be incorporated retrospectively. This is a challenge that will remain with any
newly developed prognostication method.

A more accurate prognostication tool is desirable as it will impact the treatment
decision. Treatment decisions in first instance are mostly influenced by the
spread of the cancer. Depending on the spread of cancer the treatment will
have a curative intent or palliative intent - aiming at curing the disease or
extending/improving quality of life, respectively.57 A more accurate and early
prediction of progressive disease would allow for an early switch to the next line
of treatment. This spares patients unnecessary treatment related toxicity and
psychological burden.58 As mentioned in section 1.4 prognostic AI monitoring
(PAM) is a promising prognostication tool. However, current research with PAM
has focused on anatomical CT imaging.30,43 One of the reasons for this is the
technical challenges associated with MR imaging.



3.2. Technological background 31

3.2 Technological background

3.2.1 Prognostic AI monitoring

As described in section 2.6 PAM is based on the framework of image-to-image
registration that uses a fixed and a moving image as input. The moving image
is warped to match the landmarks of the fixed image. The architecture of PAM
consists of two parts. The first part regresses the 12 parameters of an affine
transform, aimed to correct for different head positions. The second part is
focused at the elastic deformation, aimed to model longitudinal changes. The
same network is used as in the publication by Trebeschi et al.43 The goal of PAM
is not to perform image registration, instead it aims to represent longitudinal
changes with the features in the latent space. These features are used for survival
prediction and the registration itself is not used.

Network architecture

The part focused at the affine transform is a deep convolutional neural network.
Its architecture is a VGG-like CNN. A VGG is a very deep CNN with multiple
subsequent convolutional layers, typically with small 3 × 3 kernels. VGG was
developed and first used by Simonyan and Zisserman for large-scale image
recognition.59 In PAM five consecutive convolutional blocks are used. Each
convolutional block consists of a convolutional layer, a group normalization layer
and a ReLU activation layer. The convolutional layer has a kernel size of 3× 3,
the number of kernels is 8 and the stride is 2. After the last convolutional
block a global average pooling layer is added followed by a fully connected
layer and ReLU activation layer. Ultimately leading to the 12 parameters
necessary for affine transform, which is applied to the moving image via a spatial
transformation layer. The architecture is visualized in figure 3.2.
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Figure 3.2: Network architecture for affine transformation. Both scans are
concatenated and serve as input. There are five consecutive encoding blocks followed

by a global average pooling, fully connected and ReLU layer resulting in the parameters
for affine transformation.

The second part focuses on the elastic transform. It receives the warped
affine image as input, as well as the original fixed image. It follows the U-
Net architecture. U-Net is a CNN architecture originally designed for fast and
accurate image segmentation.60 The U-Net architecture can be described in
two parts: the contracting or encoder path and the expanding or decoder path.
Skip connections are present to connect the feature maps of the encoder with
the decoder. These skip connections concatenate the feature maps resulting
from the encoder to the corresponding decoder layer.60 For PAM there are
six encoding blocks and six decoding blocks with skip connections between
the two. The encoder blocks downsample the image by using a stride of 2.
After the fourth block there is a convolutional latent space with a stride of 1.
This is followed by the decoder blocks which upsamples the images again via
stride. In the encoder layer each convolutional blocks consists of a convolutional
layer, group normalization layer and ReLU activation function. In the decoder
a deconvolutional block consists of a concatenation (via the skip connection),
followed by a deconvolution, group normalization and ReLU layer. A visualization
of the network structure is provided in figure 3.3.
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Figure 3.3: Network architecture for elastic transformation. This diagram shows the U-Net
architecture with encoding blocks and decoding blocks. Each encoding block consists of a

convolution, group normalization and ReLU layer. Each decoding block contains a
concatenation with the encoding block via the skip connections, deconvolution, group

normalization and ReLU layer.

Loss function

The loss function used in PAM is based on the correlation coefficient loss. The
correlation coefficient is calculated by using the covariance between two image
volumes (V1 and V2). The covariance is calculated as:

Cov[V1, V2] =
1

|Ω|
∑
x∈Ω

V1(x)V2(x)−
1

|Ω|2
∑
x∈Ω

V1(x)
∑
y∈Ω

V2(y) (3.1)

In equation 3.1 Ω represents the grid on which the image volumes are defined.
The correlation coefficient is defined as:

CorrCoef [V1, V2] =
Cov[V1, V2]√

Cov[V1, V1]Cov[V2, V2]
(3.2)

The correlation coefficient basically measures the similarity between the two
scans. It ranges between -1 and 1. It results in 1 if there is a direct linear
correlation between the two scans. The correlation coefficient loss is:

LCorr(V1, V2) = 1− CorrCoef [V1, V2] (3.3)
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Next to the correlation loss, a total of three penalties are applied. These are
similar to the penalties used by Zhao et al.46 First, the total variation loss
is incorporated. This is a penalty on the elastic deformation. It discourages
discontinuity of the deformation field by penalizing large differences, resulting in
a smooth deformation:

LTV =
1

3|Ω|
∑
x

3∑
i=1

(f(x+ ei)− f(x))2 (3.4)

The orthogonality loss is added as a penalty on the affine transform of the image.
This penalizes an excessively non-rigid transform. When I is the identity matrix
and A is the affine transform matrix let λ1,2,3 be the singular values of I + A.
The orthogonality loss is:

Lortho = −6 +
3∑

i=1

(λ2
i + λ−2

i ) (3.5)

Lastly, the determinant loss is incorporated as a penalty on the affine transform.
This penalizes an affine transform that involves reflection. It is defined as:

Ldet = (−1 + det(A+ I))2 (3.6)

The penalties were weighted as 1/10 on the affine loss and 1/1000 on the
deformable loss. The lower penalty on deformable loss gave the model more
room to adapt to valid anatomical changes.

3.2.2 MRI data harmonization

There are a couple of technical challenges associated with MRI that need to
be dealt with to ensure data harmonization. First of all, MRI has no standard
image intensity scale like the Hounsfield units in CT. Furthermore, MR imaging
usually shows more artifacts such as field inhomogeneity, motion and scanner-
specific variations. There are three aspects of harmonization of MR imaging
that definitely need to be considered: denoising, bias field correction and
standardisation.

Denoising

Denoising is usually incorporated into modern MR scanners. However, noise or
artifacts due to respiratory or body motion may also have a significant influence
on the appearance of MR images. These issues should be addressed before using
MR data for image analysis.61
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Bias field correction

Bias field is a non-uniformity that is present in MR data caused by inhomogeneity
in the magnetic field of the MRI. Bias field is a low frequency signal that reduces
the high frequency components of the image. Thus it essentially causes a blur
in the MR images.62 It is possible to remove this bias field with various methods.

An option to remove the bias field is the N3 method. This method is known for
its robustness. The N3 method estimates the bias field by sharpening the image
histogram using a Guasssian deconvolution. The resulting bias field estimation
is smoothed by using a B-spline.63 An improvement of N3 called N4ITK has
been proposed. N4ITK replaces the B-spline smoothing that is used in N3 by
a better performing B-spline approximator and it uses a modified optimization
scheme.64 In current practice N4ITK is most commonly used.61 N4ITK was
also used for a deep learning based tumor grading model in soft tissue sarcoma
patients65 and brain tumor patients66.

There is also the possibility of not performing a bias field correction. A deep
learning based algorithm to segment breast MR images shows an U-Net based
method was not as much affected by the bias field.67

Standardisation

As mentioned, there is no standard image intensity scale in MR images. That
means image standardisation must be performed to give the same regions of
similar MR images the same intensity. First, the intensity values should be
shifted so they are all positive numbers. Subsequently the probability distribution
function of the image can be used to truncate the upper and lower narrow tales
of the histogram. After these steps the images can be standardised using a two-
step Nyul pre-processing method. The Nyul method is focused on mapping the
foreground using a certain number of landmarks.61 The advantage of the Nyul
method is the possible application to multimodal data (such as MRI) by using
a multidimensional histogram.63 This method was also used in a deep learning
based brain tumor segmentation in MRI images.66

3.3 Methods

3.3.1 Dataset

The base registration network for brain MR images is trained with a large dataset
from The Cancer Imaging Archive (TCIA). All available datasets that could
contain brain MR scans were extracted from the TCIA, resulting in a dataset
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with 44903 scans. This dataset was contaminated with for example scans from
other organs and diffusion MR images. To clean up the dataset, and ensure
that all the scans were brain scans, a neural network (developed at the NKI)
predicted the probability of a scan being a precontrast T1, postcontrast T1, T2
or FLAIR sequence. Only scans with a probability of at least 0.99 for the FLAIR
sequence were incorporated in this first dataset. To further clean up the dataset
scan names containing one of the following keywords were eliminated: mask,
prostate, breast, sarcoma, dwi, diffusion, dit, cor, sag, memprage and mprage.
Furthermore all scout scans were removed from the dataset by excluding the
scans with only three slices. After the network has been trained with the TCIA
images it will be used on a dataset from the NKI. The TCIA dataset eventually
consisted of 546 FLAIR scans to train the prognostic AI-monitor on. Further
analysis was performed with scans from the NKI which were acquired following
the consort diagram in figure 3.4 resulting in 1942 scan pairs of 571 patients.
The patient demographic is visualized in table 3.1.

Figure 3.4: Consort diagram of patient and scan selection for analysis of the prognostic
AI monitor
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Table 3.1: Patient demographic of patients with a FLAIR scan with the following
patient characteristics: age, gender, survival and diagnosis.

Characteristic N = 571 Percentage (%)
Age
Median 59
Range 17 - 96
Gender
Female 277 49
Male 294 51
1 year survival
Alive 325 57
Deceased 246 43
Diagnosis
Bronchus and lung 168 29
Melanoma 151 26
Brain 106 19
Other 146 26

3.3.2 Data harmonization

Data harmonization is essential to ensure inter-scanner and inter-site reliability
of the network. The TCIA dataset is a very diverse dataset with MR images
acquired at different institutions and with different scanners. To ensure the
network is able to generalize over these scans a few pre-processing steps are
incorporated: resample and reorient the images, transform images to a uniform
scan size, bias field correction, intensity normalization and normalization between
0 and 1.

Resample and reorient scans

The first step is to resample all images to voxels of 1× 1× 1 mm3. Resampling
is achieved by linear interpolation between voxels. Reorientation is specifically
useful for MRI’s, as it is common to do image acquisition and reconstruction in
the axial, coronal and sagittal planes. This code reorients all scans to the axial
plane.

Uniform scan size

All MR scans are padded and/or cropped to a uniform size. In this research
that is 256× 256× 256 voxels. This choice was made because this size fits the
average brain scan well and 256 allows for easy computing. If the initial scan is
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larger than the desired size the scan will be cropped to the desired size. If the
initial scan is smaller than the desired size is the scan will be padded with 0’s
until the desired size is reached.

Bias field correction

The bias field can be removed by applying the N4ITK method. N4ITK assumes
an image model similar to N3 in which v is the acquired image, u the uncorrupted
image, f the bias field and n the noise. This model is often used and assumes
the noise can be approximated by a Gaussian probability function. It is therefore
independent of the bias field.68

v(x) = u(x)f(x) + n(x) (3.7)

When assuming a noise-free scenario and using û = log(u) the new image model
is:

v̂(x) = û(x) + f̂(x) (3.8)

To be able to estimate the bias field an iterative solution for the image model
is derived for the corrected image at the nth iteration.64

ûn = ûn−1 − f̂n
r = ûn−1 − S

{
ûn−1 − E[û|ûn−1]

}
(3.9)

The initial bias field estimate is usually set to 0. When the bias field estimate
is 0 the estimate for the uncorrupted image equals the given image, so û0 =
v̂. The estimate of the residual bias field at the nth iteration is f̂n

r . The
smoothing of the bias field is described by smoothing operator S which is a
B-spline approximator. In this smoothing operation ûn−1 resembles the image
resulting from the previous iteration. E[û|ûn−1] is the expected value of the
true image. The iteratieve scheme as described in equation 3.9 is designed to
converge so that f̂n

r → 0. In other words it converges to having no residual bias
field. The total bias field (f̂n

e ) is the sum of the residual bias fields64:

f̂n
e =

n∑
i=1

f̂ i
r (3.10)

Equation 3.10 can therefore be used to compute the total bias field after
following the iterative scheme as described in equation 3.9.64 The Python
implementation was achieved by using the SimpleITK package.69
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Intensity Normalization

As the Nyul method is one of the few that can be applied to multimodal data
it was chosen for the intensity normalization method in this research. The
method consists of three steps: choice of histogram landmarks, training and
transformation.

Choice of histogram landmarks
In our application of Nyul normalization the histograms are pruned. In this case
pruning takes places between the 1st (plow) and 99th (phigh) percentile of the
intensity range. MR histograms are usually bimodal, meaning that there are two
peaks in the histogram. The first peak usually corresponds to the background,
while the second peak, or mode, corresponds to the foreground. The foreground
is identified using a thresholding approach. The used thresholding maps all
voxels with an intensity higher than the mean intensity of the image to the
foreground. The histogram landmarks include plow and phigh as well as each
decile in the intensity distribution of the foreground image.70

Training
The choice of landmarks results in an intensity landmark configuration CL:

CL = [plow,m10,m20,m30,m40,m50,m60,m70,m80,m90, phigh]

During training images are loaded and their histograms computed. The intensity
values corresponding to the elements in CL are determined. The intensity
values belonging to plow and phigh are mapped linearly into the minimum and
maximum intensity in the standard scale. The outcome is used to find the new
mapped locations of m10, ...,m90. The rounded means for m10, ...,m90 are
calculated over all training images. This creates the standard scale.70

Transformation
The standard scale landmarks are used to transform a new MR image. The
histogram of this new MR image is computed. Subsequently, the intensity
values corresponding to plow and phigh are determined. The same is done
to for each decile. This results in an intensity landmark for the new image.
Each element in the intensity landmark is linearly mapped to the corresponding
element in the standard scale. This operation results in the transformation of
the input image to the standardized image.70

The python implementation is based on the code by S. Valverde71 and the
publication of Shah et al.70
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Scale between 0 and 1

The resulting intensities of the scan are normalized between 0 and 1. The pixel
values will be small, which allows for less complicated and faster training of the
network. The scans are normalized as described in equation 3.11 in which I
represents the MRI scan.

Inorm =
I −min(I)

max(I)−min(I)
(3.11)

3.3.3 Training of PAM

PAM is trained with the images from the TCIA dataset. 10% of the images
from the TCIA dataset were used as a validation set to prevent overfitting of
the network. Furthermore, the Adam optimizer with an initial learning rate
of 8 × 10−5 was used during training. As described by Trebeschi et al.43

a curriculum learning scheme was used where the loss was computed on an
increasingly smoother version of the image. Kernel sizes for smoothing were
10, 5, 3 and 1 and each were trained for 20 epochs. That means the network
was trained for a total number of 80 epochs. The batch size was set to 2.

3.3.4 Prediction

The trained network is used to extract quantitative features from the scan pair
that served as input for prognostication. These features are based on the feature
maps in the deepest layer of the PAM architecture as visible in figure 3.5. Global
average pooling is applied to these features. The dataset is split patient-wise in
a train and test set. Both the training and test set contain 50% of the patients.
The features of the scan pairs of the patients in the training set are fed to a
random forest classifier (RFC) which is used to predict probabilities for the one-
year survival after the follow-up scan of a patient. The RFC outputs a score
between 0 and 1 serving as a probability of the one-year survival after the later
scan in the scan pair. A random search for hyperparameters with grouped 5
fold cross validation is used to tune the hyperparameters within the training set.
Feature selection was performed by removing features with a Pearson correlation
> 0.6 and subsequently dropping features with a variance inflation factor > 5.
The same procedure will be repeated while training the RFC exclusively with the
scan pairs of primary brain tumors since this is the only cancer type in which
survival is not affected by changes elsewhere in the body.
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Figure 3.5: Overview of the prognostic AI monitor. Two MRI scans serve as input. The
first step is affine transformation which aligns the two scans. The second step is the

quantification of the elastic deformation field. The deepest layer in the PAM
architecture is used for prognostication using a random forest classifier.

Due to the S-shape of the resulting ROC-AUC curve after training the RFC in
some cases median centering of features was also tried.72 Experiments will also
be conducted to include temporal information in training the classifier. Adding
the time between scans as well as relative timing of scans in the follow-up of a
patient will be investigated. This is illustrated in figure 3.6.

Figure 3.6: Illustration demonstrating the two ways of incorporating temporal
information as a feature.
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3.3.5 Statistical analysis

The risk score resulting from PAM will be analysed in two ways. Associative
analysis will be performed using Cox time-varying regression analysis. This will
analyse the relation between the PAM risk score and patient survival as well
as the relation between possible confounders and patient survival. A predictive
analysis will be based on the concordance index (C-index) and Kaplan-Meier
survival curves. The C-index is similar to the normally used area under the curve
(AUC) of the receiver operating characteristic (ROC) curve. However, the C-
index is capable of taking into account censored data, making it the method
of choice for survival analysis. Kaplan-Meier survival curves for different values
of the PAM risk score will also be provided. The three risk categories will be
created using a quantile-based discretization function. To compare the three risk
categories a logrank test will be performed in which the null hypothesis is no
difference in survival between both groups. Subanalyses will be done for various
cancer types and methods.

3.4 Results

3.4.1 Data harmonization

A random subset of 10 FLAIR images was taken from the TCIA dataset to show
the effect of data harmonization on the image histograms. The histograms
before and after data harmonization are visible in figure 3.7.

(a) (b)

Figure 3.7: Histogram plots showing the effect of data harmonization. The second
peaks in the histograms before data harmonization (a) are shifted towards one another

after data harmonization (b).

The general effect of all data harmonization steps for a sample of three random
images from the TCIA database is visualized in figure 3.8.



3.4. Results 43

Figure 3.8: The effect of all described data harmonization steps on a random sample of
three MRI scans from the TCIA dataset.

The effect of data harmonization on training of PAM has also been investigated.
This is shown in figure 3.9.

Figure 3.9: Effect of data harmonization on validation loss of PAM.
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3.4.2 Visual representation of image registration

An example of image registration using PAM is provided for two randomly
selected images. Figure 3.10 shows the original fixed and moving image. Figure
3.11 shows the transformed image.

(a) (b)

Figure 3.10: Original fixed (a) and moving image (b) before image registration by PAM.

Figure 3.11: Transformed moving image after image registration by the prognostic AI
monitor algorithm

Figure 3.12 shows the overlays of the fixed and (transformed) moving image.
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(a) (b) (c)

Figure 3.12: Overlay of (a) fixed and original moving image, (b) fixed image and affine
transform of the moving image and (c) fixed image and deformable transform of the

moving image

Lastly, a checkerboard combining the fixed and transformed moving image is
provided in figure 3.13 to show the effect of the transformation.

Figure 3.13: Checkerboard image of the fixed image and the final transform of the
moving image.

3.4.3 Statistical analysis

The statistical analysis is divided in two parts: the associative and predictive
analysis.
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Associative analysis

The associative analysis was further subdivided in two parts. In the first part
data from the complete dataset is used which includes various cancer types. In
the second part only the subset of patients with a primary malignancy of the
brain is used.

All cancer types

First the association of the plain PAM score with survival was assessed.
Our findings show that this results in a high hazard ratio of 13.05, but the
confidence interval is rather broad. This results in the high hazard ratio
not being significant. It was observed that for some cancer types the AUC
curve had an S-shaped distribution. To correct for this median centering was
applied. This resulted in no improvement in the predictive performance as
can be observed in table 3.2. The next step was to add the time between
scans in the classifier. This increased the predictive performance of the model
to a hazard ratio of 35.77 with a p-value of 0.01. In an attempt to further
improve the performance the relative timing of each scan was incorporated.
This decreased the performance in the associative analysis to a hazard ratio of
9.7 with a p-value of <0.005. To minimize overfitting feature selection was
performed which resulted in a hazard ratio of 34.54 with a p-value of <0.005.
The resulting logarithms of the hazard ratios are visualised in figure 3.14 and
the corresponding hazard ratios with 95% confidence interval and p-value are
shown in table 3.2.

Figure 3.14: Cox time-varying regression analysis for the prognostic AI monitor risk
score for various methods of computing the risk score.
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Table 3.2: Hazard ratios for the prognostic AI monitor risk score computed in various
ways.

Method Hazard
ratio 95% CI p-value

Only PAM features 13.05 [0.93 - 183.46] 0.06
Center PAM score
around median

13.05 [0.93 - 183.46] 0.06

PAM features and
time between scans

35.77 [2.54 - 503.63] 0.01

PAM features and
relative time stamps

9.7 [3.41 - 27.58] <0.005

Feature selection 34.54 [15.52 - 76.87] <0.005

Further subanalyses and analysis of confounders were done for the risk score as
predicted in the last method. The RFC in this method was trained on a total
1037 scan pairs of 285 patients in the and the test set consisted of 937 scan
pairs from 286 patients. The outcome of the Cox time-varying regression model
on the test set is presented in figure 3.15. The corresponding hazard ratios with
95% confidence and p-value are visible in table 3.3. Only the PAM risk score
and whole brain radiation therapy show a significant association with survival (p
< 0.05).

Figure 3.15: Cox time-varying regression analysis for the prognostic AI monitor risk
score. Different treatment options were used as confounders in this analysis.
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Table 3.3: Overview of the hazard ratios, 95% confidence interval and p-value resulting
from Cox time varying analysis for the risk score as predicted by the prognostic AI

monitor and various treatment options as possible confounders.

Variable Hazard ratio 95% CI p-value
PAM risk score 34.54 [15.52 - 76.87] <0.005
Surgery 1.21 [0.55 - 2.64] 0.63
1 fraction of radiotherapy 0.87 [0.35 - 2.17] 0.76
GammaKnife 0.78 [0.47 - 1.27] 0.32
Whole brain radiation therapy 1.86 [1.13 - 3.06] 0.01
Multiple fractions of radiotherapy 0.79 [0.39 - 1.63] 0.53
Multiple types of radiotherapy 0.95 [0.32 - 2.86] 0.93
Cytotoxic therapy 0.20 [0.85 - 1.76] 0.28
Other therapies 1.10 [0.73 - 1.65] 0.65
Targeted therapies 1.00 [0.77 - 1.30] 1.00

Primary malignancy of the brain

When training the RFC solely on patients with primary brain tumors the
results differ from above. The training set consists of 194 scan pairs from 53
patients and the test set contains 238 scan pairs of 54 patients. The Cox-time
varying regression analysis for these patients can be found in figure 3.16 with
the corresponding hazard ratios in table 3.4. Only the PAM risk score shows a
significant association with survival.

Figure 3.16: Cox time-varying regression analysis for the prognostic AI monitor risk
score and confounders for patients with a primary brain tumor. The confounders are

the various treatment options of the patient.
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Table 3.4: Overview of the hazard ratios, 95% confidence interval and p-value resulting
from Cox time varying analysis for patients with a primary malignancy of the brain.

The risk score as predicted by the prognostic AI monitor and various treatment options
as possible confounders are used in this analysis.

Variable Hazard ratio 95% CI p-value
PAM risk score 254.95 [39.51 - 1645.15] <0.005
Surgery 1.29 [0.43 - 3.88] 0.63
GammaKnife 4.41 [0.39 - 49.70] 0.23
Multiple fractions of radiotherapy 1.81 [0.75 - 4.38] 0.19
Cytotoxic therapy 0.61 [0.32 - 1.16] 0.13
Other therapies 1.05 [0.12 - 9.15 0.96
Targeted therapies 0.65 [0.22 - 1.88] 0.42

Predictive analysis

All cancer types
The five different methods to compute a risk score were also evaluated on their
predictive quality. The train set for the first three methods consists of 1588 scan
pairs of 302 patients, the test set consists of 1531 scan pairs of 303 patients.
The method using relative timing of scans with and without feature selection
has 1037 scan pairs of 285 patients in the training set and 937 scan pairs of
286 patients in the test set. The resulting C-indices can be found in table 3.5.
The C-index for overall survival, so as long as we had data for a given patient, is
provided. Moreover, the C-index for a 1 year follow up of the patient is provided
taking into account the survival time within that year. The C-index for the best
performing RFC trained on the complete dataset with all cancer types is 0.59.
A further sub-analysis on the best performing method for different cancer types
is provided in 3.6.

Table 3.5: C-indices for the prognostic AI monitor risk score computed in various ways.

Method C-index
(overall survival)

C-index
(1 year surival)

Only PAM features 0.54 0.54
Center PAM score
around median

0.54 0.54

PAM features and
time between scans

0.55 0.55

PAM features and
relative time stamps

0.59 0.60

Feature selection 0.59 0.61
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Table 3.6: C-indices for the predicted risk score for the three most common cancer
types in the dataset.

Cancer type C-index
(overall survival)

C-index
(1 year surival)

All cancer types 0.59 0.61
Brain, lung and melanoma 0.61 0.64
Brain 0.64 0.70
Bronchus and lung 0.60 0.61
Melanoma 0.60 0.62

The Kaplan Meier survival scores for the three PAM risk categories are provided
in figure 3.17. High risk is defined as a PAM risk score between 0.394 and 0.648,
medium risk between 0.289 and 0.394 and low risk between 0.145 and 0.289.
Table 3.7 shows all three risk categories significantly differ from each other (p
< 0.05).

Figure 3.17: Kaplan Meier survival curves for three risk categories based on the risk
score provided by the prognostic AI monitor for the complete dataset with all cancer

types.
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Table 3.7: Results of the logrank test for all cancer types based on the predicted risk
scores with the FLAIR sequence.

Groups Test statistic p
Low risk - medium risk 11.40 <0.005
Medium risk - high risk 10.07 <0.005
Low risk - high risk 37.13 <0.005

Primary malignancy of the brain
The C-index corresponding to the PAM risk score when the RFC is trained on
patients with a primary malignancy of the brain is 0.67 when looking at total
survival. When using the cut-off of 1 year survival the C-index equals 0.73 . The
Kaplan Meier survival scores for the three PAM risk categories are provided in
figure 3.18. High risk is defined as a PAM risk score between 0.353 and 0.55,
medium risk between 0.274 and 0.353 and low risk between 0.202 and 0.274.
These cut-offs were determined based on the complete dataset of patients with
primary malignant neoplasms of the brain, so the test set does not necessarily
have an even distribution. This difference in group sizes explains the different
sizes of confidence intervals as visible in figure 3.18. Table 3.8 shows all three
risk categories significantly differ from each other (p < 0.05).

Figure 3.18: Kaplan Meier survival curves for three risk categories based on the risk
score provided by the prognostic AI monitor.
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Table 3.8: Results of the logrank test for patients with primary brain cancer based on
the predicted risk scores with FLAIR sequence.

Groups Test statistic p
Low risk - medium risk 9.30 <0.005
Medium risk - high risk 17.50 <0.005
Low risk - high risk 41.70 <0.005

3.5 Discussion

In this chapter we investigated the conversion of PAM to single sequence MRI
including a preprocessing method and analyzed its performance for survival
prediction.

The data harmonization algorithm showed a better alignment of image
histograms. However, it remains questionable if this affects the performance
of PAM. The effect of data harmonization becomes more apparent in the last
epochs. Due to the curriculum learning scheme these are the epochs with
smaller smoothing kernels hence focusing on the details. Since the algorithm is
easy to implement and fast it could easily be implemented in the downloading
pipeline of MRI scans from the server.

The associative analysis shows the risk score as predicted by PAM has a
significant association with survival in both the model trained on all cancer
types and the model trained specifically for primary malignancies of the brain.
The broad confidence interval of the hazard ratio of the predicted scores shows
there is still an uncertainty in the predictions by PAM. The fact that most
treatments show no significant association with survival can be explained by
the way the dataset was build and missing information. The Cox time-varying
regression model does not allow for categorical variables, which means all
treatment options were set to dummy variables with value 0 or 1. This for
examples lacks information about medication dosages, therapies before the
start of follow-up for this study and the difference between an emergency and
planned surgery.

The hazard ratio for primary brain cancer only is higher than of the pancancer
data suggesting the survival of patients with primary malignancies of the brain
is better predictable than metastatic disease. This is supported by the higher
C-indices of the classifier trained only on patients with primary malignancy of
the brain. This difference can be explained by the fact that for primary brain
malignancy the total tumor burden is visible on the brain MRI, while this is
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often not the case in metastatic disease. Thawani et al. found that for patients
with brain metastases due to lung cancer the brain metastases were the cause
of death in 33% of patients, while 67% of deaths was caused by progression
of systemic disease.73 The Kaplan Meier curves in the predictive analysis show
that when using PAM for all cancer types the algorithm performs particularly
well in isolating the low risk patients. The difficulty in distinguishing between
tumor progression and treatment side effects is a possible explanation for the
results. Low risk patients do not show an increase in hyperintense signal on the
FLAIR images. The high and medium risks are more difficult to differentiate
as an increase in signal intensity may be due to progression or side effects. A
combination of sequences should provide more information and will be discussed
in chapter 4. When PAM is trained only on patients with a primary malignancy
of the brain PAM is able to isolate the low, medium and high risk patients.
These could clinically be translated to patients with response to treatment,
stable disease or progressive disease, respectively.

Although these results show a promising new application of the prognostic
AI-monitor there is also still room for improvement. First of all, the RFC does
not take into account the fact that multiple scan pairs are from the same
patient. Of course the training and testing set were split patient-wise to avoid
bias by training and testing on the same patient. However, it looks at each
scan pair as an isolate entity. To correct for this as much as possible in the
RFC the scans were ordered chronologically with relative time stamps. The
first scan pair started at time 0 and so on for each following scan pair. These
time stamps were also fed to the RFC as extra features as well as the duration
between the scans. This gives some indication of time to the RFC, but is not
the same as seeing one patient as an isolate entity with various scores predicted
through the course of time. The same holds for the 1 year survival cut-off
that was used. The RFC needs a given cut off with a binary classification of
survival to make its prediction. In reality it matters of course if a patient died
within 1 or 11 months within that year. One way to overcome this problem
would be to use a random survival forest.74 The random survival forest is able
to deal with censored data. It uses features, the survival time and the possible
death of a patient as input and can be used to predict survival as well as a risk
score. Another option would be to further investigate DeepSurv. DeepSurv is a
Cox proportional hazards deep neural network. It is build to model treatment
effect based on patient variables.75 It was decided it is beyond the scope of
this research to further investigate the random survival forest or DeepSurv as a
substitute of the RFC. Further research could point out the possible advantages
and disadvantages of the random survival forest for PAM and further investigate
other options such as DeepSurv.
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Another option to possibly boost the performance of PAM is to include more
data. Of the original 4703 scan pairs only 1942 could be used in the final
analysis of the FLAIR scans. This is due to the chronological ordering of the
scans. Initially there were scan pairs between the first baseline scan and the third
follow up scan (if these were four months apart). These were excluded from the
dataset. Since the performance is better when using the relative time stamps re-
including these scans would decrease performance. An option worth investigating
is extending the time between scans from four to six months. Especially in
patients with long radiologic and clinical stable disease the interval of follow-up
scans may well be extended beyond four months.76

3.6 Conclusion

The first step of translating PAM to MRI shows PAM is able to extract the
low risk patients in a pancancer dataset of patients with brain tumors. When
trained and evaluated on primary brain tumors where the total patient tumor
burden is visible on the brain scan PAM is even able to categorize low, medium
and high risk patients. In both cases the risk score as computed by PAM shows
a significant association with survival. Further research must be conducted in
incorporating the timing of various scans of the same patient in the computation
of the risk score and to increase the time between scans beyond four months.
Additionally, only using one sequence is limited use of all available data, so the
method should be extend to multisequence imaging of the brain.
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Chapter 4

Extension of PAM to
multisequence imaging of
the brain

4.1 Introduction

The role of MRI in brain tumor evaluation is determining lesion location, extent
of tissue involvement and mass effect upon the brain, ventricular system and/or
vasculature. In general the two most common types of MRI images are the T1
and T2 weighted images. The foundation of MRI evaluation of brain tumors
is provided by the structural sequences: T2, fluid-attenuated inversion recovery
(FLAIR) and T1 pre- and postcontrast.77

4.1.1 MRI sequences

T1-weighted
T1-weighted MR images are acquired by using a short echo time (TE)
and repetition time (TR) and rely on the longitudinal relaxation of the net
magnetization vector. T1 weighted images are used to evaluate the tissue
architecture. The T1 time of fat is shorter than water. That means the fat vector
realigns with B0 faster than the water vector. After a given TR the next 90◦

RF pulse is applied. This flips the longitudinal components into the transverse
plane. That means the transverse magnetization in fat is also larger than in
water. The fast recovery of the longitudinal magnetization and subsequent 90◦

RF pulse make fat appear bright and water dark on T1-weighted images when
the TR is short. When using a long TR both fat and water have returned to
equilibrium and no contrast is present.78 Figure 4.1 shows the T1 relaxation and
corresponding MR image.
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(a) (b)

Figure 4.1: T1-weighted MR imaging. a) shows the faster recovery of the longitudinal
magnetization of fat compared to water. b) shows the effect of these differences in T1

in an image of the brain. Adapted from Usman and Rajpoot.79

T2-weighted
T2-weighted MR images are acquired by using long TE and TR times. In contrast
to T1 images, T2 images rely on the transverse magnetization component of the
net magnetization vector. T2-weighted MR images are structural images and
therefore used to evaluate the tissue architecture. Water appears bright on T2-
weighted images as the transverse magnetization component takes relatively long
to decay. Fat, on the other hand, has a short T2 time meaning the transverse
magnetization decays faster. This leads to fat appearing darker on T2-weighted
images.78 With regards to brain tumors high intensity may be seen if there is
peritumoral edema present, but also in nonenhancing tumor, white matter injury
and gliosis. The peritumoral edema could be vasogenic or infiltrative in nature.
Sometimes this hyperintense area cannot be differentiated from the primary
tumor.77 Figure 4.2 shows the T2 relaxation and corresponding MR image.

(a) (b)

Figure 4.2: T2-weighted MR imaging. a) shows the decay of the transverse
magnetization of both water and fat b) shows the effect of these differences in T2 in an

image of the brain. Adapted from Usman and Rajpoot.79



58 Chapter 4. Extension of PAM to multisequence imaging of the brain

FLAIR
FLAIR is a variation of an inversion recovery sequence. In the FLAIR sequence
the signal from CSF is nulled by selecting an inversion time (TI) corresponding
to the time of recovery of CSF from 180 degrees to the transverse plane. So,
there is no longitudinal magnetisation present in the CSF. This sequence cancels
out the signal from the CSF and can be used to inspect for pathology adjacent
to the CSF.78 FLAIR MR images are acquired by using very long TE and TR
times. High intensity is seen in peritumoral edema (vasogenic and infiltrative),
nonenhancing tumor, white matter injury and gliosis.77 Figure 4.3a shows the
FLAIR image.

Postcontrast T1
The most used contrast agent in MRI is gadolinium. Gadolinium is a non-toxic
paramagnetic contrast agent with a short T1 time. This means gadolinium
appears bright on T1 weighted images. Postcontrast enhancement reflects
nonspecific breakdown of the blood–brain barrier. Gadolinium accentuates
areas in the brain where the BBB is leaking. When the contrast agent
leaks through the BBB it could be a feature of tumors, but it is also seen in
some non-neoplastic conditions.77 Figure 4.3b shows the postcontrast T1 image.

(a) (b)

Figure 4.3: a) Fluid attenuated inversion recovery image of the brain. There is no
signal originating from the cerebral spinal fluid. b) T1 image with gadolinium contrast.

Adapted from Usman and Rajpoot.79
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4.1.2 Clinical significance of various sequences

Multisequence MRI is generally used in the evaluation of brain tumors. The
different sequences provide complementary information. The exact image
characteristics depend on the type of tumor. High grade glioma usually shows
enhancement in the tumor on the T1 contrast enhanced image. The tumor
causes disruptions in the blood brain barrier leading to uptake of contrast in the
tumor. However, breakdown of the BBB is not unique to neoplasms and not all
gliomas cause a disruption in the BBB. Hence there might be non-enhancing
components of the tumor on the T1 contrast enhanced image. Moreover
hyperintense regions on FLAIR and T2 may be caused by peritumoral edema.
Peritumoral edema can be vasogenic which is a reaction of the tissue to the
tumor in which it leaks plasma fluid, but there are no tumor cells present. This
is usually seen in brain metastases or extra axial tumors. On the other hand,
infiltrative edema is a mixture of vasogenic edema and infiltrating tumor cells
more often seen in gliomas.77 It might be difficult to define the exact location
and extent of the tumor. In radiotherapy the Gross Tumor Volume is used.
This is defined as the hyperintense region on FLAIR and T2-weighted images
combined with the region showing contrast enhancement in the T1-weighted
image. Sometimes a small margin is added before radiotherapy to account for
microscopic infiltration of tumor cells (Clinicial Target Volume). Especially in
high grade glioma there can be a lot of heterogeneity within the lesion. It may
consist of enhancing tumor, non-enhancing tumor, (post-radiation) necrosis
and peritumoral edema.80

Having multiple tumor lesions in the brain is often associated with metastases.
In general metastases appear hypointense to isointense to the surrounding
brain tissue on T1-weighted images. Surrounding hypointense edema may be
observed. Metastases predominantly appear hyperintense on T2-weighted and
FLAIR images. The peritumoral edema may even appear more hyperintense.81

Brain metastases of melanoma do not always fit this general concept.
Appearance of these metastases is usually though one of two patterns: the
melanotic pattern or the amelanotic pattern. The melanotic pattern is
characterized by hyperintense signal on T1-weighted images and hypointense
signal on T2-weighted images. The amelanotic pattern matches the before
mentioned general concept.82 Commonly, brain metastases densely enhance in
postcontrast images due to disruption of the BBB and angioneogenesis. The
common enhancement patterns are solid enhancement or ring-like enhacement.
The ring is usually thick and irregular. It is often possible to differentiate from
non-neoplastic lesions based on the enhancement pattern, but a distinction
between metastases and a primary brain tumor is usually not possible.81
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Standardised assessment of brain tumors by a radiologist usually follows the
RANO criteria. The current RANO criteria as described in section 1.3.2
take into account some of the information of different sequences. The MRI
characteristics for each possible response category in the RANO criteria are
provided in table 4.1. This table does not contain all RANO criteria such
as clinical status and use of corticosteroids. The RANO criteria provide a
decent foundation for the assessment of brain tumors, but do not take into
account all possible prognostic features of the brain and brain disease. There
are numerous possible variations in the brain, especially after treatment. For
example, a pseudo-response might exhibit itself on the MRI represented by
a decrease in contrast enhancement in the tumor without the tumor actually
responding to the treatment. This principle can be observed in patients receiving
treatment with bevacizumab. Pseudo-progression might also occur, especially
after chemoradiation with temozolomide. In 20% of the patients the tumor
seems to initially qualify for progressive disease while after some time response
is visible.83

Table 4.1: Overview of MRI image characteristics associated with the various response
categories in the Response Assessment in Neuro-Oncology (RANO) criteria. Adapted

from Chukwueke and Wen.22

Response category MRI characteristics

Complete response

No new lesions

Complete resolution of tumor enhancement on the
T1 contrast enhanced image

Stable or decreased T2/FLAIR signal abnormality

Partial response

No new lesions

≥50% reduction of tumor enhancement on the T1
contrast enhanced image

Stable or decreased T2/FLAIR signal abnormality

Stable disease

No new lesions

<50% decrease but <25 % increase in tumor
enhancement on the T1 contrast enhanced image

Stable or decreased T2/FLAIR signal abnormality

Progressive disease

Any new lesions

>25% increase in tumor enhancement on the T1
contrast enhanced image

Increase in FLAIR/T2 signal abnormality
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4.2 Methods

Scans were selected from the TCIA dataset as described in section 3.3.1. The
resulting distribution among sequences can be found in table 4.2. These scans
are used to train PAM on.

Table 4.2: Available scans per sequences after selecting scans from the TCIA dataset.

Sequence Number of scans
FLAIR 546
Postcontrast 287
Precontrast 387
T2 742

Further analysis and survival prediction was done on the NKI dataset. The
consort diagram in figure 4.4 demonstrates the steps taken to get to the final
dataset. Patient characteristics of the patients included in the final dataset can
be found in 4.3.

Figure 4.4: Consort diagram of patient and scan selection for analysis of the prognostic
AI monitor
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Table 4.3: Patient demographic of patients with multisequence scans showing the
following patient characteristics: age, gender, survival and diagnosis.

Characteristic N = 576 Percentage (%)
Age
Median 60
Range 17 - 96
Gender
Female 278 48
Male 298 52
1 year survival
Alive 327 57
Deceased 249 43
Diagnosis
Bronchus and lung 171 30
Melanoma 152 26
Brain 107 19
Other 146 25

An external validation will be performed on the dataset from Deventer
Ziekenhuis. A total of 119 patients were included The patient demographic
of this subset is shown in figure 4.4.

Table 4.4: Patient demographic of patients from Deventer Ziekenhuis with
multisequence scans showing the following patient characteristics: age, gender, survival

and diagnosis.

Characteristic N = 119 Percentage (%)
Age
Median 61
Range 17 - 85
Gender
Female 63 53
Male 56 47
1 year survival
Alive 45 38
Deceased 74 62
Diagnosis
Brain 67 56
Bronchus and lung 30 25
Breast 15 13
Other 7 6
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4.2.1 Creating multisequence MR data

At first instance all sequences are saved as separate files by the MR scanner.
However, PAM must receive the data as one grid. In order to achieve this
the sequences are first concatenated. Not all four sequences are available for
each patient. This leads to various shapes for the multisequence MR image
data. For example, 256× 256× 256× 2 for scans with two available sequences
and 256 × 256 × 256 × 4 for scans with four available sequences. This makes
computation very difficult as the network is not designed to differentiate between
sequences and therefore cannot identify which sequence is missing. To overcome
this problem all multisequence data is saved in size 256× 256× 256× 4 where
the missing sequences are replaced by zeros. This is illustrated in figure 4.5.
This way the network can compare the two MRI scans and exclude sequences
from its evaluation that are not present in both baseline and follow-up scan. It
remains important to only feed the network scan pairs that have at least one
overlapping sequence.

Figure 4.5: Dealing with missing sequences in multisequence data. Missing sequences
are replaced by zeros to ensure a uniform scan size.

4.2.2 Adaptation of the network to multisequence images

The original PAM is designed for single sequence data. Its design must therefore
be altered to be able to deal with multisequence MR data. Since the same layers
and architecture still apply it suffices to change the input shape to the shape of
the multisequence data. That means the network receives an input with shape
256×256×256×4 instead of 256×256×256×1. The loss function must also
be adapted to deal with multisequence data and possible missing sequences.
Each sequence is saved in one channel of the input grid. The goal is to do
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a channel wise correlation between baseline and follow-up scan. Subsequently,
one loss resulting from these channel wise correlations should be calculated. For
each channel or sequence the loss is calculated as described in section 3.2.1.
Shen et al.84 described a method to use a multiclass loss based on various
individual losses. This method was adapted to PAM to combine the losses of
the individual sequences to one multisequence loss as shown in equation 4.1 in
which L is the multisequence loss, n the number of sequences, ws the weight
for a given sequence and Ls the loss for a given sequence.

L =

∑n
s=1 wsLs∑n
s=1 ws + ϵ

(4.1)

The weight (ws) equals zero when a sequence is not present in either the baseline
or follow-up scan. When a sequence is present in both baseline and follow-up
scans ws = 1. ϵ is set to 1 · 10−6 to avoid division by zero.

4.2.3 Training of PAM

As in the previous chapter PAM is trained with the images from the TCIA
dataset. 10% of the images from the TCIA dataset were used as a validation set
to prevent overfitting of the network. Furthermore, the Adam optimizer with an
initial learning rate of 8× 10−5 was used during training. A curriculum learning
scheme was used with kernel sizes for smoothing 10, 5, 3 and 1 trained for 50
epochs each. That means the network was trained for a total number of 200
epochs. The batch size was set to 2.

4.2.4 Prediction

The trained network is used to extract quantitative features from the scan pair
that served as input in a similar manner as the previous chapter. First, global
average pooling is applied to the features. Then the features are fed to a random
forest classifier (RFC) which is used to predict the one-year survival after the
follow-up scan of a patient. The RFC outputs a score between 0 and 1 serving
as a probability prediction of the one-year survival. As in chapter 3 experiments
will be conducted with incorporating a time component and feature selection.

4.2.5 Statistical analysis

The risk score resulting from PAM will be analysed in a similar way as is described
in section 3.3.5. That means there will be an associative analysis using Cox time
varying regression and a predictive analysis using the C-index and Kaplan-Meier
survival curves. To compare the three risk categories a logrank test will be
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performed in which the null hypothesis is no difference in survival between both
groups. Both analyses will be done for all cancer types in the dataset as well as
for patients with a primary malignancy of the brain. For the external validation
not all treatment confounders have dates, so a Cox time varying analysis cannot
be performed. Instead the normal Cox regression analysis is used. Subanalyses
will again be done for different cancer types and the different methods of training
the classifier.

4.3 Results

4.3.1 Statistical analysis

The results of the statistical analyses will be presented for training the RFC on
all cancer types in the dataset and for training the RFC only on primary brain
tumors.

All cancer types

The statistical analysis is divided in two parts: the associative and predictive
analysis.

Associative analysis

First the association of the plain PAM score with survival was assessed.
Our findings show that this results in a high hazard ratio of 84.34 with a
p-value of <0.005. It was observed that for some cancer types the ROC-AUC
curve had an S-shaped distribution. To correct for this median centering was
applied. This resulted in no improvement in the predictive performance as can
be observed in table 4.5. The next step was to add the time between scans
in the classifier. This increased the predictive performance of the model to
a hazard ratio of 141.45 with a p-value of <0.005. In an attempt to further
improve the performance the relative timing of each scan was incorporated.
This decreased the performance in the associative analysis to a hazard ratio of
32.10 with a p-value of <0.005. Lastly, to reduce overfitting feature selection
was performed. This resulted in a drop op performance with a hazard ratio of
2.49 (p = 0.03). The results are visualised in figure 4.6 and the corresponding
hazard ratios with 95% confidence interval and p-value are shown in table 4.5.
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Figure 4.6: Cox time-varying regression analysis for the prognostic AI monitor risk score
for various methods of computing the risk score in multisequence scans.

Table 4.5: Hazard ratios for the prognostic AI monitor risk score computed in various
ways in multisequence scans.

Method Hazard ratio 95% CI p-value
Only PAM features 84.34 [10.76 - 661.13] <0.005
Center PAM score
around median

84.34 [10.76 - 661.13] <0.005

PAM features and
time between scans

141.45 [17.55 - 1140.18] <0.005

PAM features and
relative time stamps

32.10 [6.82 - 151.16] <0.005

Feature selection 2.49 [1.09 - 5.70] 0.03

Further subanalyses and analysis of confounders were done for the risk score
as predicted with the PAM score and relative time stamps. The RFC in this
method was trained on a total of 1029 scan pairs of 288 patients and the test
set consisted of 940 scan pairs from 289 patients. The outcome of the Cox
time-varying regression model on the test set is presented in figure 4.7. The
corresponding hazard ratios with 95% confidence interval and p-value are visible
in table 4.6. Only the PAM score and whole brain radiation therapy show a
significant association with survival (p < 0.05).
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Figure 4.7: Cox time-varying regression analysis for the prognostic AI monitor risk
score. Different treatment options were used as confounders in this analysis.

Table 4.6: Overview of the hazard ratios, 95% confidence interval and p-value resulting
from Cox time varying analysis for the risk score as predicted by the prognostic AI

monitor and various treatment options as possible confounders.

Method Hazard ratio 95% CI p-value
PAM score 31.27 [6.57 - 148.87] <0.005
Surgery 1.08 [0.51 - 2.28] 0.84
One fraction of
radiotherapy

0.88 [0.5 - 2.21] 0.79

GammaKnife
radiotherapy

0.85 [0.53 - 1.39] 0.53

Whole brain
radiation therapy

1.84 [1.11 - 3.07] 0.02

Multiple fractions
of radiotherapy

0.89 [0.44 - 1.81] 0.75

Multiple types of
radiotherapy

1.17 [0.44 - 3.11] 0.75

Cytotoxic therapy 1.33 [0.93 - 1.91] 0.12
Other therapies 1.26 [0.84 - 1.91] 0.27
Targeted therapies 1.09 [0.84 - 1.41] 0.51
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Predictive analysis

The four different methods to compute a risk score were also evaluated
on their predictive quality. The train set consists of 1478 scan pairs of 304
patients, the test set consists of 1626 scan pairs of 305 patients. When only
using chronological scans with relative time stamps there were 1010 scan pairs
of 288 patients in the training set and 959 scan pairs of 289 patients in the test
set. The resulting C-indices can be found in table 4.7. The C-index for the best
performing RFC trained on the complete dataset with all cancer types is 0.62.
A further sub-analysis on the best performing method for different cancer types
is provided in table 4.8.

Table 4.7: C-indices for trained random forest classifiers with median-centered risk
scores and with and various ways of feeding time information to the random forest

classifier.

Method C-index
(overall survival)

C-index
(1-year survival)

Only PAM features 0.56 0.58
Center PAM score
around median

0.56 0.58

PAM features and
time between scans

0.57 0.58

PAM features and
relative time stamps

0.60 0.62

Feature selection 0.54 0.55

Table 4.8: C-indices for the predicted risk score for the three most common cancer
types in the dataset. These cancer types are brain, bronchus and lung and melanoma.

Cancer type C-index
(overall survival)

C-index
(1 year surival)

All cancer types 0.60 0.62
Brain, lung and melanoma 0.59 0.62
Brain 0.60 0.67
Bronchus and lung 0.60 0.63
Melanoma 0.58 0.61

The Kaplan Meier survival scores for the three PAM risk categories are provided
in figure 4.8. High risk is defined as a PAM risk score between 0.371 and 0.635,
medium risk between 0.291 and 0.371 and low risk between 0.166 and 0.291.
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Table 4.11 shows medium and high risk and low and high risk significantly differ
from each other (p < 0.05).

Figure 4.8: Kaplan Meier survival curves for three risk categories based on the risk score
provided by the prognostic AI monitor for the complete dataset with all cancer types.

Table 4.9: Results of the logrank test for patients with different cancer types based on
the predicted risk scores on multisequence MRI.

Groups Test statistic p
Low risk - medium risk 2.28 0.13
Medium risk - high risk 24.14 <0.005
Low risk - high risk 32.84 <0.005

Primary malignancy of the brain

Associative analysis

When training the RFC with the PAM score and relative timing of scans
solely on patients with primary brain tumors the results differ from above. The
training set consists of 204 scan pairs from 54 patients and the test set contains
218 scan pairs of 54 patients. The Cox-time varying regression analysis for
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these patients can be found in figure 4.9 with the corresponding hazard ratios
in table 4.10. Only the PAM risk score shows a significant association with
survival.

Figure 4.9: Cox time-varying regression analysis for the prognostic AI monitor risk score
and confounders for patients with a primary brain tumor. The confounders are the

various treatment options of the patient.

Table 4.10: Overview of the hazard ratios, 95% confidence interval and p-value
resulting from Cox time varying analysis for the risk score as predicted by the
prognostic AI monitor and various treatment options as possible confounders.

Method Hazard ratio 95% CI p-value
PAM score 9.08 [1.46 - 58.70] 0.02
Surgery 1.19 [0.40 - 3.48] 0.76
GammaKnife
radiotherapy

1.43 [0.16 - 12.44] 0.74

Multiple fractions
of radiotherapy

1.44 [0.68 - 3.07] 0.34

Cytotoxic therapy 0.76 [0.42 - 1.38] 0.37
Other therapies 1.32 [0.27 - 6.43] 0.73
Targeted therapies 0.89 [0.19 - 4.09] 0.88

Predictive analysis

The C-index corresponding to the PAM risk score when the RFC is trained on
multisequence images of patients with a primary malignancy of the brain is
0.62 when looking at total survival. When using the cut-off of 1 year survival
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the C-index equals 0.63. This RFC was trained on 204 scan pairs from 54
patients and the test set consists of 218 scan pairs of 54 patients. The Kaplan
Meier survival scores for the three PAM risk categories are provided in figure
4.10. High risk is defined as a PAM risk score between 0.476 and 0.894,
medium risk between 0.192 and 0.476 and low risk between 0.00621 and 0.192.
These cut-offs were determined based on the complete dataset of patients
with primary malignancy of the brain, so the test set does not have an even
distribution. There are 23 scan pairs in the low risk group, 121 in the medium
risk group and 74 in the low risk group. This difference in group sizes explains
the different sizes of confidence intervals. Table 4.11 shows medium and high
risk and low and high risk groups significantly differ from each other (p < 0.05).

Figure 4.10: Kaplan Meier survival curves for three risk categories based on the risk
score provided by the prognostic AI monitor. The prognostic AI monitor was trained on

multisequence images of patients with primary brain cancer.
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Table 4.11: Results of the logrank test for patients with primary brain cancer based on
the predicted risk scores on multisequence MRI.

Groups Test statistic p
Low risk - medium risk 2.06 0.15
Medium risk - high risk 18.36 <0.005
Low risk - high risk 12.10 <0.005

4.3.2 External validation with data from Deventer Ziekenhuis

An external validation was performed on 248 scan pairs from 114 patients from
Deventer Ziekenhuis. The RFC trained on the PAM score and relative timing
of scans of the NKI data was applied to the external dataset from Deventer
Ziekenhuis.

Associative analysis

Cox regression was used to explore the association between the PAM score
and possible treatments and patient survival. The outcome of this model on the
external validation set from Deventer Ziekenhuis is presented in figure 4.11. The
corresponding hazard ratios, 95% confidence interval (CI) and p-values can be
found in table 4.12. Both the PAM score and chemotherapy show a significant
association with survival.

Figure 4.11: Cox regression analysis for the prognostic AI monitor risk score. Different
treatments were used as confounders in this analysis.
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Table 4.12: Overview of the hazard ratios, 95% confidence interval and p-value
resulting from Cox regression analysis for the risk score as predicted by the prognostic

AI monitor and various treatment options as possible confounders.

Method Hazard ratio 95% CI p-value
PAM score 55.54 [5.61 - 549.54] <0.005
Radiotherapy 1.15 [0.67 - 1.98] 0.61
Surgery 0.45 [0.33 - 12.44] <0.005
Chemotherapy 1.84 [1.29 - 2.65] <0.005
Other therapies 0.78 [0.53 - 1.14] 0.20

Predictive analysis

Predictive analysis was done for the same dataset as the associative analysis.
C-indices were computed for the complete dataset and various subsets of cancer
types. The results can be found in 4.13. The C-index is highest (0.58) in brain
cancer patients when looking at the end-point of 1 year survival.

Table 4.13: C-indices for the predicted risk score for the three most common cancer
types in the dataset. These cancer types are brain, bronchus and lung and breast.

Cancer type C-index
(overall survival)

C-index
(1 year surival)

All cancer types 0.55 0.55
Brain, lung and breast 0.55 0.54
Brain 0.57 0.58
Bronchus and lung 0.48 0.48
Breast 0.51 0.48

The Kaplan Meier survival curves for three PAM risk categories are provided
in figure 4.12. The same cut-offs for high, medium and low risk were used as
for the NKI dataset. This resulted in 163 patients in the high risk group, 79
patients in the medium risk group and only 6 patients in the low risk group.
The small group sizes lead to larger confidence intervals as visible in figure 4.12.
The results of the logrank test in table 4.14 show only the difference between
the medium and high risk group is statistically significant.
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Figure 4.12: Kaplan Meier survival curves for three risk categories based on the risk
score provided by the prognostic AI monitor.

Table 4.14: Results of the logrank test for patients from Deventer Ziekenhuis based on
the predicted risk scores on multisequence MRI.

Groups Test statistic p
Low risk - medium risk 0 0.99
Medium risk - high risk 6.17 0.01
Low risk - high risk 0.85 0.36

4.4 Discussion

In this chapter we investigated the extension of PAM to multisequence MRI and
analyzed its performance for survival prediction. The method is also validated
with an external dataset. We see quite promising first results in both associative
and predictive statistical analysis.

The associative analysis shows the risk score as predicted by PAM has a
significant association with survival in both the model trained on all cancer
types and the model trained specifically for primary malignancies of the brain.
The broad confidence interval of the hazard ratio of the predicted scores shows
there is still an uncertainty in the predictions by PAM. The hazard ratio of
the classifier trained on patients with primary malignancy of the brain is lower
than the classifier trained on all cancer types. This could possibly be caused by
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different overlapping sequences and a smaller dataset. The only requirement
for PAM is that a scan pair has at least 1 overlapping sequence, but not what
sequence this is. Additionally, all sequences share the same weight in computing
the loss. However, the T1 postcontrast and the FLAIR sequence might be most
clinically relevant and are also used in the RANO criteria.22 Building upon
this theory it might also be worth considering including functional rather than
only structural imaging of the brain. Research has shown diffusion weighted
imaging, magnetic resonance spectroscopy and perfusion MR imaging can aid
in predicting the differential diagnosis of space-occupying lesions within the
brain.85 These sequences will be technically more difficult to incorporate, but
should definitely be considered in future improvement of PAM.

The predictive analysis shows the highest C-index for training the random
forest classifier with the PAM features and relative time stamps of the scans.
When looking at the various cancer types the C-index is highest for patients
with primary malignancy of the brain when looking at the 1 year survival. This
can be explained by the total patient tumor burden being present in the brain
MRI. The performance is worst for melanoma patients. The Kaplan Meier
curves in the predictive analysis show that for all cancer types PAM performs
particularly well in extracting the high risk patients. In the previous chapter
using only the FLAIR sequence showed better performance in differentiation
between medium and low risk patients. This finding suggest the different
sequences provide complementary information. If a change is visible across
all sequences this is usually a worse prognosis. For example an increase in
contrast enhancement and increased cerebral edema with a mass effect on
the brain.86 When a tumor is responding to treatment these changes are
often more controlled in the sense they are limited to the tumor itself. The
ability of the network to distinguish between medium and low risk patients still
needs improvement. When looking at PAM trained and evaluated on primary
brain cancer only it is visible that it is mainly able to isolate the high risk
patients as well. It can be argued that extracting the high risk patients is the
most clinically relevant group. When there is disease progression it means
the tumor is not responding to the current line of treatment. This would
be a reason for a switch of treatment. However, when a patient is stable or
responding the clinical consequence would be the same. In both cases the
current line of treatment will be continued following the initially planned scheme.

The results of the statistical analysis of the external dataset are quite promising.
Given there was no time varying information about the treatment confounders
only a normal Cox regression could be used. The normal Cox regression analysis
has less power than the time-varying analysis used for the data from AvL/NKI.
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However, it does show a significant association between the PAM risk score and
patient survival. The C-indices are lower than they were for the NKI dataset.
There could be various reasons for this including a shift in MRI intensities, an
overfitting of the RFC for the AvL/NKI data or a difference in patient outcomes
between the AvL/NKI and Deventer Ziekenhuis. Structural MRI is known for
its challenges in inter-site comparability. Scanner characteristics such as the
magnetic field strength, design of sequences and the RF-receiving coil may all
introduce variability in the resulting MR images.87 However, the preprocessing
algorithm as designed in chapter 3 was built to ensure inter-scanner and
inter-site reproducability. The features extracted directly from the MR images
are comparable for both the AvL/NKI data and the data from Deventer
Ziekenhuis. This supports the assumption that the preprocessing algorithm
substantially boosts the inter-site comparability. A more likely reason for the
lower C-index is the differences in patient characteristics between Deventer
Hospital and the AvL/NKI. In the AvL/NKI dataset the three most common
cancer types were primary brain, melanoma and bronchus and lung while in
the dataset from Deventer Ziekenhuis the three most common cancer types
were primary brain, bronchus and lung and breast. This difference in cancer
type is also reflected in patient outcome. The percentage of patients alive after
one-year is 57% for the AvL/NKI data while it is only 38% for the Deventer
Ziekenhuis data. The Kaplan Meier curves further supports this as there are
only six scan pairs classified in the low risk category based on the PAM score.
This evidence suggest larger and more heterogeneous dataset could further
boost the performance of PAM. Including cancer type, either as an extra feature
or by training specific random forest classifiers per cancer type is also worth
investigating in future research.

One of the potential pitfalls of the prognostic AI monitor is the fact that it
only looks at change between scans. Based on the input dataset it should learn
what changes are positive and what changes are negative for the prognosis of
the patient. This concept works well when a patient shows progressive disease
in a scan pair. However, when the scan remains more or less stable afterwards
the risk score computed by PAM will be low, because there are no major
changes on the scan. This same concept applies to the RANO criteria where
such scan would be classified as stable disease. The radiologist would be able
to deduce the scan may be stable, but the prognosis of the patient is still very
poor. However, if progression stops and the next scan remains stable this does
generally mean a better prognosis than with continued progression. It may
be the first indicator of a new line of treatment working. This is also why a
radiologist always compares a scan to the previous scan. The before mentioned
considerations are all nuances a radiologist is able to notice, but PAM cannot
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at this point in time.

Another point worth considering is if a prognostication tool is the most optimal
application of PAM. Another option is to use PAM to build a staging tool.
Prognostication is more difficult as it is influenced by many more factors
than what can be seen on imaging. Staging is usually done according to the
tumor-node-metastasis (TNM) classification. However, for the brain this is
not the case. Reasons for using a different staging system are: size does not
matter as much as location and tumor type (T), there are no lymphatics in
the brain (N) and brain cancer patients do not usually develop metastases
(M).88 Instead the classification by the world health organisation (WHO) is
used. In the WHO grading system a grade between 1 and 4 is assigned based
on tumor histology and molecular information.89 Due to the nature of this
classification it is difficult to model this stage using PAM. Deep learning can
be used to classify brain tumors to one of the histologic subtypes.90 However,
since PAM is specifically aimed at modelling longitudinal changes in scan pairs
it is more suitable to predict progression, stable disease or response to treatment.

Additionally, PAM lacks explainability. It is a black-box concept which outputs a
risk score for 1-year survival based on features. These features are not traceable
to specific changes in the scan. Therefore it is difficult to validate and explain
PAM to clinicians. This is caused by the entangled feature representation that
is inherent to PAM as it is build now. Feature disentanglement was tried
to make the model more explainable. For this a Hessian penalty was used.
It succeeded at making PAM more explainable as deformations were better
traceable to a specific anatomic location. However, this coincided with a drop
in prognostic performance of PAM.91 It is worth considering to further improve
the explainability of the model, especially before application in the clinics. A
more detailed overview of the clinical implementation of PAM in the future will
be discussed in chapter 6.

4.5 Conclusion

This work provides the first proof-of-concept of translating the prognostic AI
monitor to multisequence images. The risk scores as computed by PAM
show a significant association with survival. PAM performs particularly well
at extracting the high risk patients in a pancancer dataset as well as PAM
trained on primary brain cancer. There are also still opportunities for further
enhancing the performance of PAM. These mainly lie in adjusting the weights of
the various sequences and making the model more explainable. More research
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should be conducted to explore further possibilities of PAM in multisequence
imaging.
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Chapter 5

Comparison with current
methods for response
monitoring

5.1 Introduction

To be able to frame the potential use of PAM in the clinics, we compare it to the
current gold standard. Currently the Response Assessment in Neuro-Oncology
criteria (RANO) are most commonly used in research and clinical trials. The
RANO criteria aim to objectify response assessment based on patient imaging,
but also include some other factors. These include patient performance and
treatment. The RANO criteria for high grade glioma are most often used in
the clinical research setting and are based on the postcontrast T1 scan, the
T2/FLAIR scan, patient status and use of corticosteroids.22 Table 5.1 shows
the requirements for the different response categories in high grade glioma.
Noteworthy is the fact that an increase in corticosteroids alone while the patient
remains clinically stable is not a reason to classify as progressive disease. This
is described as NA in the table.

Table 5.1: Response Assessment in Neuro-Oncology criteria for high grade glioma.
Based on image characteristics on T1 postcontrast MRI, T2/FLAIR MRI a patient can

be classified to one of the four response categories. Adapted from Wen et al.

Criterion Complete
Response

Partial
Response

Stable
Disease

Progressive
Disease

T1 postcontrast MRI None ≥ 50% ↓ <50% ↓ to
<25% ↑ ≥ 25% ↑

T2/FLAIR MRI Stable or ↓ Stable or ↓ Stable or ↓ ↑
New lesion None None None Present
Corticosteroids None Stable or ↓ Stable or ↓ NA
Clinical status Stable or ↑ Stable or ↑ Stable or ↑ ↓
Required criteria
for response category

All All All Any
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The RANO criteria, just like RECIST, make a distinction between measurable
and non-measurable disease. Measurable disease is defined as contrast-
enhancing lesions in two dimensions having clear margins. The two perpendicular
diameters should be at least 10 mm each. It must be visible on two or more axial
slices with a slice thickness of maximal 5 mm and no interslice gaps. Tumors
around a cyst or surgical cavity present a challenge for accurate measurement,
so these should be classified as non-measurable disease unless there is a node of
more than 10 mm in diameter. Non-measurable lesions are the lesions that do
not qualify for measurable disease, because they can only be measured in one
direction, have no clear margins or have perpendicular diameters of less than 10
mm. In case there are multiple lesions a minimum of two and a maximum of
five lesions should be selected for measurement. Generally the largest lesions are
chosen for this given that they allow for reproducible repeated measurements.92

The increase or decrease as mentioned in the criterion T1 postcontrast MRI
corresponds to the sum of the products of perpendicular diameters of measurable
contrast enhancing lesions in the brain. An example of the RANO measurement
for a patient is provided in figure 5.1. In this example there is a 38% decrease
in enhancing disease. Assuming all other factors mentioned in table 5.1 remain
stable this patient would be assigned to the stable disease response category.

Figure 5.1: Examples of measurements as defined by the Response Criteria in
Neuro-Oncology

Worth mentioning is how the RANO criteria try to incorporate
pseudoprogression. The proposed criteria from the RANO working group
give a few recommendations considering pseudoprogression in patients with
chemoradiotherapy. The most import one being that within 12 weeks after
completion of chemoradiotherapy a patient can only show progression if there
is new or expansion of contrast enhancing lesion beyond the 80% isodose line
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used in radiotherapy.56,92

Next to the RANO criteria, segmentations and thereby 3D volumetric
assessments are an upcoming topic for response monitoring. The RANO criteria
are also based on tumor volume, but only measured in 2D. Three dimensional
measurements provide a more accurate metric for actual tumor volume. It
has been shown that tumor volume in glioblastoma patients is a significant
prognostic factor.93 However, 3D brain tumor segmentation is a very labour and
time consuming task. Several methods have been developed for automatic brain
tumor segmentation of which nnU-Net is the most promising. This is a deep
learning-based segmentation method.94 There is a version of nnU-Net trained
on primary brain tumors in the Brain Tumor Segmentation (BraTS) challenge.
This took first place in the competition with dice scores (a measure of overlap)
of 88.95, 85.06 and 82.03 for whole tumor, tumor core and enhancing tumor,
respectively.95 This is not applied in a clinical setting yet, but given its promising
results and rather user friendly implementation nnU-Net will be included in this
research.

5.2 Method

5.2.1 Dataset

It was decided to only include patients with primary brain malignancy in this
sub-analysis as these are the most common patients to perform a RANO
assessment on and a pretrained nnU-Net exists for this patient group. The
RANO assessements and volumetric assessments will eventually be compared
with the PAM network trained and evaluated on primary brain images only.
The scans in the test set of PAM were manually evaluated and assigned RANO
scores by the researcher with support of an experienced radiologist at the NKI.
A total of 218 scan pairs of 54 patients were included for RANO and volumetric
assessments of the NKI scans. RANO assessments were also performed on 139
scan pairs of 62 patients from Deventer Ziekenhuis.

5.2.2 RANO assessments

RANO assessments were performed using the MRI scans and reports of the scans
by radiologists. All scans were systemically approached following these steps:

1. Scrolling trough the FLAIR and T1 postcontrast sequence of the scan and
reading the radiologist’s report to get a general overview of the scan

2. Check for any new lesions that were not present on the previous scan
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3. Define each lesion as measurable or non-measurable

4. Pick the target lesions by choosing the ones that allow for repeated
reproducible measurements on the T1 postcontrast scan with a maximum
of 5

5. Measure the largest diameter and the largest perpendicular diameter for
each target lesion

6. Calculate the sum of the products of the perpendicular diameters

7. Check if there is any significant increase in hyperintensity on the FLAIR
scan with help of the radiologist’s report

8. Assign scan pair to complete response, partial response, stable disease or
progressive disease

Since this dataset was created manually solely based on the MRI scan pairs there
is no information about steroid use and clinical status of the patient. The RANO
assessment as made in this research therefore only incorporates information that
can be directly extracted from the scan. The same applies for the 12-week
window of pseudoprogression as discussed before. This is not incorporated in
the RANO assessment in this study. The criteria are therefore a simplified version
of table 5.1 where only the first three rows are taken into account.

5.2.3 Volumetric assessments

Volumetric assessments will be acquired by using nnU-Net. The MR images
were skull stripped using an automated brain extraction tool (BET).96 In this
research inference was ran using the pretrained nnU-Net which placed first in
BraTS.95 No modifications were made to the existing nnU-Net. A segmentation
of enhancing tumor, necrosis and peritumoral edema was acquired. The size of
these three segmented volumes for baseline and follow-up scan were fed to a
random forest classifier to compute a risk score for one year survival between 0
and 1.

5.2.4 Training PAM

The risk scores were computed by the prognostic AI monitor as described earlier.
The exact training process, feature extraction and prediction of the risk score
can be found in chapter 4.
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5.2.5 Statistical analysis

For the dataset from NKI, Kaplan Meier survival curves were plotted for each
RANO response category and volumetric based risk score and compared to those
resulting from the PAM risk score. C-indices were computed for the volumetric
assessments and the PAM risk score. For the external validation set from
Deventer Ziekenhuis the PAM score will be compared with the RANO category
based on Kaplan Meier survival curves. A logrank test is used to compare the
different response categories and risk groups.

5.3 Results

The Kaplan Meier curves for RANO assessments on the dataset from NKI are
visible in figure 5.2. The corresponding logrank test is presented in table 5.2.
There were 7 scan pairs labeled as partial response, 142 as stable disease and
68 as progressive disease.

Figure 5.2: Kaplan Meier curves for manual RANO assessments on scan pairs from
NKI.

Table 5.2: Results of the logrank test for the response categories as determined by
RANO assessments.

Groups Test statistic p
Progressive disease - stable disease 61.11 <0.005
Stable disease - Partial response 0.07 0.80
Partial response - Progressive disease 3.92 0.05
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The volumetric assessments could only be performed for patients with all four
sequences present. This resulted in a training set of 79 scan pairs (26 patients)
and a test set of 110 scan pairs (27 patients). 22 scan pairs were categorized
as low risk, 49 as medium risk and 39 as high risk. Cut-offs are between 0 and
0.0969 for low risk, between 0.0969 and 0.386 for medium risk and between
0.386 and 1.0 for high risk.

Figure 5.3: Kaplan Meier curves for volumetric assessments on scan pairs from the NKI
dataset.

Table 5.3: Results of the logrank test for the risk groups as determined by volumetric
assessment.

Groups Test statistic p
Low risk - medium risk 3.50 0.06
Medium risk - high risk 18.90 <0.005
Low risk - high risk 19.83 <0.005

The cut-offs used for the risk groups based on the PAM scores are between 0.476
and 0.894 for high risk, between 0.192 and 0.476 for medium risk and between
0.00621 and 0.192 for low risk. There are 23 scan pairs in the low risk group,
121 in the medium risk group and 74 in the low risk group.
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Figure 5.4: Kaplan Meier curves for PAM risk scores on scan pairs from NKI.

Table 5.4: Results of the logrank test for the risk groups as determined by
multisequence PAM

Groups Test statistic p
Low risk - medium risk 2.06 0.15
Medium risk - high risk 18.36 <0.005
Low risk - high risk 12.10 <0.005

Table 5.5 shows the C-indices resulting from the risk scores based on PAM
and on the volumetric assessments. The Pearson correlation between the scores
predicted by the volumetric assessments and the scores predicted by PAM equals
0.15.

Table 5.5: C-indices resulting from predictions based on the prognostic AI monitor and
on volumetric asssessments

Method Overall survival 1 year survival
Volumetric assessment 0.77 0.87
Prognostic AI monitoring 0.62 0.63
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The Kaplan Meier curves for the RANO assessment on the external validation
dataset from Deventer Ziekenhuis are visible in figure 5.5. There is only 1 scan
pair classified in the partial response category, so this was left out of the figure.
The logrank test returned a test statistic of 37.91 (p <0.005). There are 95
scan pairs labeled stable disease and 45 progressive disease.

Figure 5.5: Kaplan Meier curves for manual RANO assessments on scan pairs from the
Deventer Ziekenhuis.

The PAM scores use cut-offs between 0.248 and 0.483 for low risk, between
0.483 and 0.539 for medium risk and between 0.539 and 0.664 for high risk.
This resulted in 48 patients in the high risk group, 47 patients in the medium
risk group and 48 patients in the low risk group. Figure 5.6 shows the Kaplan
Meier curves. The results of the logrank test can be found in table 5.6

Figure 5.6: Kaplan Meier curves for PAM risk scores on scan pairs from the Deventer
Ziekenhuis.
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Table 5.6: Results of the logrank test for the risk groups as determined by PAM for the
data from Deventer Ziekenhuis.

Groups Test statistic p
Low risk - medium risk 2.59 0.11
Medium risk - high risk 2.01 0.16
Low risk - high risk 9.11 <0.005

5.4 Discussion

In this chapter the prognostic AI monitor risk score was compared to the RANO
criteria and automated volumetric assessments based on segmentations by
nnU-Net. The results demonstrated the volumetric assesment has the best
prognostic performance. In the external dataset from Deventer ziekenhuis
RANO performed better than PAM. On the dataset from NKI performance
of RANO, volumetric assessments and PAM score are all showing significant
differences between high and medium risk (for RANO progressive disease and
stable disease). Relatively simple improvements of PAM could be incorporated
to further improve prognostic performance.

For both datasets the RANO progressive disease groups show a worse prognosis
than the PAM high risk group. This finding favours the prognostic performance
of RANO over PAM. In the dataset from NKI the stable disease and partial
response overlap in the RANO assessments as well as the medium and low risk
groups in the PAM risk scores. PAM does have a better performance when
looking at the low risk patients which have a better survival than the partial
response group in the RANO criteria. In the dataset from Deventer Ziekenhuis
there was only one scan pair of one patient showing partial response making it
difficult to compare RANO and PAM.

PAM scores are classified into low, medium and high risk groups using the
33rd and 67th percentile. This does not take into account the actual uneven
distribution of these risk groups in the dataset. The RANO measurements
showed the vast majority of patients is within the stable disease or progressive
disease category. Rarely, a patient shows partial response on the brain MRIs in
the dataset. Finding other cut off values for the PAM risk scores will therefore
further boost prognostic performance.

PAM could also be further improved by incorporating diagnosis or at least by
separating high grade from low grade glioma as is done in the RANO criteria.
High and low grade glioma have very different prognoses. The median survival
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of high grade glioma is 18 months97 while the median surival of low grade
glioma is 13 years98. Imaging characteristics also differ between high and low
grade glioma. The RANO criteria for low grade glioma are solely based on
the T2/FLAIR sequence while the RANO criteria for high grade glioma mainly
use the postcontrast T1 sequence. Distinguishing between these two types of
primary brain cancer will likely further boost prognostic performance.

The RANO criteria as used in this chapter are a simplified version of the actual
RANO criteria. The corticosteroid use and clinical status of the patient are not
always available in the dataset. The way the RANO criteria try to incorporate
pseudoprogression was not a workable situation so this was not applied in this
research. Both the exact dates of chemotherapy cycles and the 80% isodose
line were not available for all patients. This missing data has influenced the
RANO assessments, but most likely would not have caused any major differences.

During this research all RANO assessments were done by a single non-expert
reader. RANO criteria are known to have a large inter-user variability28

which is not present in the current research. This might lead to the RANO
measurements as presented in this chapter to give an overestimation of
prognostic performance. Furthermore, RANO assessments are labour intensive
and time consuming. RANO criteria are the current research standard to
quantify longitudinal changes in the scans. However, reading through the
radiologist’s reports rarely showed RANO measurements. This illustrates the
limited clinical use of the RANO criteria. In comparison to the RANO criteria
PAM is easier to implement clinically and can therefore be used on more patients.

The volumetric assessments, like the RANO assessments, show a good cut-off
between medium and high risk scan pairs. Since nnU-Net only works when
a FLAIR, T2, T1 precontrast and T1 postcontrast sequence are present there
are less patients included in this study. The group size is roughly twice as
small as with the other methods. This inevitably leads to broader confidence
intervals which makes it more difficult to draw conclusions from this data.
This method shows to be very promising. The need for all four sequences
is a disadvantage when comparing the volumetric assessments to PAM, but
its prognostic performance is promising reaching an higher C-index than PAM.
The correlation between the scores predicted by the volumetric assessments and
by PAM is low, meaning they are likely complementary to each other. The
prognostic value of the volumetric assessments should definitely be considered
and might even be combined with PAM in future research.
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5.5 Conclusion

The overall prognostic performance of PAM, volumetric assessments and the
RANO criteria is similar in this research as they all show significant separation
of high and medium risk patients. The external validation set showed a superior
performance of RANO when compared to PAM. Further improvements of PAM
are needed to reach an equal prognostic performance across datasets. This
would lead the way for a more effortless and less time consuming clinical
implementation of longitudinal response monitoring.
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Chapter 6

General conclusion and
future outlook

6.1 General conclusion

This thesis has provided the evidence for an alternative method of longitudinal
monitoring of cancer patients based on brain MRI. The prognostic AI monitor,
a deep learning based image registration algorithm, is able to extract prognostic
features from MRI.

Chapter 3 showed the necessary preprocessing steps to reduce inter-site and
inter-scanner variability. It showed a successful conversion of PAM from CT
to single sequence MRI while maintaining its prognostic value. Especially in
patients with primary brain tumours PAM is able to adequately categorize
patients in low, medium and high risk groups. Future research should focus at
improving the implementation of a patient’s timeline in the algorithm instead
of using each scan pair as a separate entity. Chapter 4 extended the research
to multisequence imaging of the brain. This provided the first proof of concept
of translating PAM to multisequence MRI. The risk scores as computed by
the prognostic AI monitor show a significant association with patient survival.
These scores showed to be particularly useful in extracting high risk patients.
Further opportunities for improvement lie in optimizing the weights of the
various sequences, improving prognostic performance by experimenting with
other methods to predict survival based on features and making the model more
explainable. Chapter 5 compared PAM to the currently used RANO criteria
and automated volumetric assessment using nnU-Net. All three methods show
significant differences between patients with progressive and stable disease.
Adequate extractions of patients with response remains a challenge. On the
external validation set the RANO criteria performed superior to PAM. The
mentioned improvements throughout this thesis should be researched to further
boost performance and pave the way for a new clinical implementation of
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response monitoring.

6.2 Future outlook

There are various technical improvements already elaborately discussed in this
thesis, but this future outlook will focus on what happens after prognostic
performance reaches a similar or higher level than RECIST/RANO.

The first steps are to expand MRI PAM to other organs. This is a relatively
simple step, but will increase involvement and support from other specialties.
When developing the preprocessing method for brain MRI this was already kept
in mind. It was designed as a generic algorithm that is able to preprocess all
structural MRI sequences. The advantage of the brain is that it is generally
very static. A change in the scan is often caused by pathology. This does not
necessarily apply to other organs as well. The conversion to MRI of other organs
with more complex anatomy will therefore be done in steps. The first step will
be to extend PAM to MRI of the liver. The next step will be to extend PAM to
MRI of the lower pelvis. These steps show increasingly more non-pathological
changes in scans over time, for example slight displacements of the small
intestine between scans. It will require extra attention to adjust PAM to make
a distinction between physiological and pathological changes in a follow-up scan.

One of the advantages of PAM is the fact that it is a personalized approach
to response monitoring. It makes a survival prediction based on the imaging
characteristics of an individual patient. Currently survival is used as a substitute
for treatment response, because it can be easily obtained and allows for
comparison with other methods. However, this is not the most optimal
metric for clinical use as it does not account for deaths unrelated to cancer
or treatment. The outcome of PAM should be converted to a more clinically
relevant metric. In a clinical setting a patient diagnosed with cancer follows a
treatment plan consisting of chemotherapy, immunotherapy, targeted therapy,
radiation therapy and/or surgery. Imaging is used to determine the response
to treatment and to find possible treatment related side effects. Based on the
imaging and the condition of the patient the treating physician can decide to
follow initial treatment plan, adjust the treatment plan (e.g. lower dosage due
to adverse effects) or stop treatment. There would be increased clinical value if
PAM is able to aid in this decision instead of predicting one year survival. This
will require a different study set-up with close cooperation of clinicians.
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When PAM reaches adequate prognostic performance, meaning equal or
better than the current RANO/RECIST criteria, a clinical study could provide
meaningful insights into PAM’s place in the clinic. The care of a cancer patient
is already multidisciplinary with various specialists involved. PAM could be one
of the tools they use to gain adequate insights in the treatment response of
a patient. To be able for clinicians to use PAM it should be more illustrative
and explainable. It should provide information about how a change in the
scan contributes to the final output. Additionally, the usability of PAM should
be increased. At this point in time PAM is still only available in a research
setting, meaning it can only be used by people with programming knowledge.
A graphical user interface should be developed to allow users to interact with
PAM in a more simple manner. Ideally, the outcome of PAM could then be
illustrated next to the scan on tumor board meetings. That way all clinicians
involved in the treatment of the patients can take into account the additional
information provided by PAM. Its additional value in such setting should be
determined in a clinical prospective multi-center study.

All in all, this thesis has shown that AI based image registration can be used
to extract prognostic features from brain MRI. It described the first steps in
possibly improving care of individual cancer patients and provides a foundation
for further studies.
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