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ABSTRACT 

Landslides, driven by seismic activities, have caused numerous fatalities and huge socio-economic losses 

globally. Many studies have suggested that intense seismic shaking not only triggers landslides co-seismically 

but also amplifies the post-seismic landslide activity, which is likely due to the decrease in shear strength of 

slope materials and/or disturbed hillslope geometry/hydrology. As a consequence, an elevated landslide 

susceptibility is observed in post-seismic periods. This practically means that a rainfall event with a given 

intensity and duration that does not trigger any landslides in pre-seismic periods becomes more effective 

after an earthquake and triggers landslides, which could be expressed as an increase in overall landslide 

susceptibility level of a given landscape. This concept is defined as earthquake legacy effect, which has been 

largely investigated merely by mapping inventories of rapidly failed slopes during the post-seismic phase. 

However, the increased post-seismic landslide activity has not been investigated in terms of deformation 

rates of slow-moving hillslopes, which exhibit for instance, millimeter-level deformation rate over time. In 

addition, understanding the evolution of hillslopes affected by intense seismic shaking helps to better 

evaluate post-seismic hazards and risks, as well as plan management and mitigation measures. 

This study aims to develop a novel systematic approach for detecting extremely slow-moving and very slow-

moving hillslopes before and after the 2016 Mw 7.8 Kaikōura earthquake and monitoring their sub-meter 

evolution. In this research, I used freely available C-band Sentinel-1 Single Look Complex (SLC) 

Interferometric Wide (IW) mode dataset having a spatial resolution 5 × 20 m and polarisation of VV for 

Synthetic Aperture Radar Interferometry (InSAR) processing and deformation measurements extraction. 

Specifically, I examined 27 Sentinel-1 SAR scenes sensed before the earthquake and 63 images sensed 

following the event separately for extracting the deformation measurements in an area of about 2300 km2 

using Persistent Scatterer Interferometry (PSI) approach. The analysis period of pre-Kaikōura phase is 

between 28 October 2014 and 10 November 2016, while the time window of post-earthquake phase is right 

after the earthquake mainshock from 16 November 2016 till 24 December 2018. A critical stability threshold 

value of ±10 mm/yr is defined on the extracted line-of-sight deformation velocity (VLOS)  to detect active 

PS, which is further categorised into extremely slow-moving ( ±10 mm/yr ≥ VLOS < ±16 mm/yr) and 

very slow-moving (VLOS ≥ ± 16 mm/yr) hillslopes. Also,  for the first time, I used Slope Units (SUs), 

which are terrain partitions associated with similar hydrological and geomorphological conditions, for the 

aggregation of active PS to identify extremely slow-moving and very slow-moving hillslopes. I then explored 

the dataset further and proposed a hillslope activity matrix for understanding the hillslope evolution after 

the impact of 2016 Kaikōura earthquake. Ultimately, I examined each category I defined in the proposed 

matrix via corresponding deformation time series  in relation to daily precipitation. 

The results shows that in general there is an 130% absolute increase in the mean LOS deformation velocity 

during the post-Kaikōura phase compared to its pre-seismic counterpart. The regions that experienced 

higher ground shaking during the 2016 Kaikōura earthquake are observed to have larger deformations 

during the post-seismic period. In addition, most of the large negative deformations are observed to be 

associated with hillslope processes while high positive deformations are largely linked to the fluvial processes 

happening the study area. Comparing the pre-Kaikōura phase, there is a significant increase in the very slow-

moving hillslopes, which chiefly concentrate around the rupture zone.  

Overall, I captured nine and 141 extremely slow-moving hillslopes during pre- and post- seismic phases, 

respectively. During the post- seismic phase I also identified 102 hillslopes showing very slow-movement. 

Based on these observations, this study proposed a hillslope activity matrix pointing out four hillslope 

evolution types: (i) inactive hillslope becoming active (Type I: SA), (ii) active hillslope remaining unaffected 

with changes in dynamics (Type II: AA), (iii) active hillslope that have become inactive (Type III: AS) and 

(iv) those hillslopes that are stable prior and following the earthquake (Type IV: SS). The hillslope activity 
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matrix could be applied to other earthquake-affected areas to systematically and consistently examine 

hillslope evolution processes in post-seismic periods. 

Keywords: Earthquake legacy effect, hillslope evolution, InSAR, actively deforming hillslopes, Sentinel-1, 

Persistent Scatterer Interferometry, hillslope activity matrix. 
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1. INTRODUCTION 

The overall research notion of this study, associated with the general background and justification that 

inspires addressing the prevailing research gaps in the literature, are communicated in this chapter. This 

chapter incorporates (1) background and justification, (2) research gap and scientific contribution, (4) research 

objectives/questions, and (5) research design and thesis structure. 

1.1. Background and justification  

 

In general, landslides are natural processes that involve downslope displacement of different slope materials 

(Cruden and Varnes, 1996). Landslides are considered one of the disastrous natural hazards that cause 

numerous fatalities and huge socio-economic losses globally, especially in mountainous regions where the 

development of infrastructure and population are increasing (Dowling and Santi, 2014; Badoux et al., 2016; 

Froude and Petley, 2018; Herrera et al., 2018; Haque et al., 2019). Apart from affecting the people and 

economy, landslides severely impact the environment in different ways, including destroying forests 

(Geertsema et al., 2009), deposition of sediment in streams (Booth et al., 2013), decreasing agriculture yield, 

and degrading water quality (Geertsema and Pojar, 2007). Various factors, such as rainfall, seismic shaking, 

snow melting, changes in temperature, groundwater level, volcanic activity, and anthropogenic activities, 

individually or combinedly control the stability of a hillslope (Gariano and Guzzetti, 2016). The landslides 

are the geomorphic response to these causative factors. Indication from recent studies suggests that the 

occurrence of landslides in mountainous terrain can increase multifold in the near future owing to the 

changing intensity of precipitation, temperature, and snowmelt (Huggel et al., 2012; Patton et al., 2019). 

 

As per records, earthquake and rainfall-triggered landslides have caused large casualties and huge economic 

damages. Specifically, most catastrophic disasters that happened due to landslides after the 20th century had 

a seismic cause, even though rainfall-induced landslides are more frequent (Froude and Petley, 2018). 

Approximately 200,000 casualties were recorded between 1811 and 2016 due to earthquake-triggered 

landslides (Nowicki Jessee et al., 2020). In addition to the huge death toll, the world repairs damages worth 

billions of USD caused by earthquake-triggered landslides each year (Haque et al., 2019). Unlike rainfall-

triggered landslides, which have the antecedent effect of rainfall, earthquake-triggered landslides occur all of 

a sudden on top of any active slope mechanism (Fan et al., 2019). Furthermore, damage triggered by strong 

ground shaking during an earthquake can produce cascading geohazards during the post-seismic phase and 

even years after the event (Fan et al., 2019). Identifying and monitoring the evolution of earthquake-triggered 

geohazards in post-seismic phase is essential for disaster prevention, loss mitigation, and for understanding 

how seismic activity impacts the regional geological situation (Cai et al., 2022). 

 

Failure of hillslopes is one of the most common secondary geohazards associated with strong and moderate 

earthquakes (Mw1 > 4) (Keefer, 1984). Slope failures that are immediately generated within minutes due to 

the intense seismic shaking are known as co-seismic landslides, whereas those slopes that fail subsequently 

are described as post-seismic landslides (Fan et al., 2019). In spite of increasing research related to co- and 

post- seismic catastrophic landsliding, our knowledge of sub-meter evolution of active hillslopes during 

post-seismic phase is considerably lesser. The geoscientific literature shows that severe ground shaking 

during an earthquake decreases the shear resistance of hillslope materials and leads to an elevated landslide 

susceptibility in post-seismic periods across hillslopes (Brain et al., 2017; Parker et al., 2015), which could 

 
1 Earthquake moment magnitude 
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be manifested by new or reactivated landslides (Figure 1). Specifically, ground shaking during earthquakes 

could create widespread fissures/tension cracks on the hillslope surface (see Figure 1), which decreases the 

hillslope strength and influences slow movement that displays no indication of rapid slope failure (Petley et 

al., 2010). A number of studies confirm this observation and show that strong seismic shaking not only 

triggers co-seismic landslides but also exacerbates hillslope stability in the post-seismic periods, which 

corresponds to the concept of earthquake legacy effect (Fan et al., 2019; Tang et al., 2016; Tanyaş et al., 

2021a). However, no studies have focused on such incipient slow-moving landslides triggered by the 

earthquake shaking so far, except for some interpretations. For instance, Rosser et al. (2021) observed such 

cracks after the 2015 Gorkha earthquake and hinted about the possible development of slow-moving 

landslides triggered by the earthquake.  

 

 

 
Figure 1. Graphic diagram of pre-, co-, and post-seismic landslide activity (adapted and modified from 

Tanyaş et al., 2021b). 

 

So far, our understanding of earthquake legacy effect on post-seismic landsliding and their recovery time is 

mainly based on the examination of rapidly failed slope inventory, while the same has not been yet 

elaboratively analysed by identifying, mapping, and monitoring dynamics of slow-moving hillslopes. In fact, 

variations in surface deformation movements during pre- and post-seismic phases provide a more 

comprehensive picture of the earthquake legacy effect and its evolution over time than multi-temporal 

landslide inventories because surface deformation could exist regardless of landslide occurrences. Moreover, 

understanding how landslides originate/evolve after a common triggering event such as an earthquake can 

help us assess the post-seismic landslide hazard in a more robust way to plan preventive measures and 

reduce the risk from rapid catastrophic failure. This is an essential research question, in particular, for slow-

moving hillslopes, which could lead to catastrophic failures (Palmer, 2017; Intrieri et al., 2018). 

 

Any hillslope that exhibits millimeters to meters of downslope movement per annum is regarded as active 

or slow-moving landslide (Hungr et al., 2014). Generally, slow-moving landslides are widely present in 

seismically active parts of the world having weak soil and are mostly driven by seasonal rainfall (Handwerger 

et al., 2015). They have a significant influence on the evolution of landforms in such mountainous terrain 

(Booth et al., 2013). Deformation rate of an active hillslope displays different deformation episodes that are 

disconnected by a brief or extended period of dormancy (Lacroix et al., 2020). Many creeping, active 

hillslopes that display a millimeter to centimeter range of velocity per annum are considered as a major 

natural hazard as they go unnoticed and are only observed after the progressive rapid failure (Palmer, 2017). 
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Although the deformation rate in landslides having slow movement seldom accelerates, episodic or seasonal 

triggering events such as ground shaking (Lacroix et al., 2015), snowmelt, and rainfall (Handwerger et al., 

2019; Bontemps et al., 2020) can increase the deformation rates. Specifically, earthquakes could influence 

the dynamics of active landslides in three different ways: (i) genesis/development of an active hillslope, (ii) 

reactivation of a dormant body constituting a new slow-moving hillslope (Martino et al., 2022), and (iii) 

acceleration or deacceleration of an actively deforming hillslope (Bontemps et al., 2020; Cheaib et al., 2022; 

Lacroix et al., 2022, 2015; Bekaert et al., 2020). However, there has been very limited research carried out 

particularly on the first two points mentioned above.  

Monitoring of slope deformation in the range of millimeters was traditionally implemented by installing 

devices, such as GPS (Moss, 2000; Li et al., 2017), tiltmeter (García et al., 2010), extensometer (Corominas 

et al., 2000), crack meters (Tofani et al., 2014), total station (Artese and Perrelli, 2018), and inclinometer 

(Simeoni and Mongiovì, 2007) at certain places on the slope. Such instruments can provide precise point 

measurements of deformation, yet they lack high spatial density and are costly, time-consuming, and 

sometimes not viable to install the devices on steep slopes and over large regions (Royán et al., 2013). Hence, 

other alternative aerial and terrestrial remote sensors such as Light Detection and Ranging (LiDAR) were 

utilized to monitor the slope deformation. Even though LiDAR measurements deliver spatially high-density 

deformation information, it is rarely available for large areas. It also lacks temporal resolution due to the 

high cost of acquiring and handling the instrument (Stumpf et al., 2015). All the above-mentioned 

instruments lacked high spatial distribution or temporal resolution, which is essential for long-term 

monitoring of landslide deformation. Thus, researchers started employing satellite-based optical, multi-

spectral, and microwave data for acquiring continuous deformation measurements with high temporal 

resolution over a wide spatial area. Both freely available multi-spectral and commercial optical datasets 

(Pléiades) have been used for identifying the deformation of landslides based on cross image correlation 

technique (Debella-Gilo and Kääb, 2012; Stumpf et al., 2017, 2014; Lacroix et al., 2018, 2015; Desrues et 

al., 2019; Xiong et al., 2020; Ding et al., 2021). However, the use of optical and multi-spectral data becomes 

limited in mountainous regions with a predominant cloud presence (Lacroix et al., 2018). 

 

Surface deformation measurements can also be extracted using both amplitude and phase information of 

active coherent microwave data i.e., Synthetic Aperture Radar (SAR) data, which can retrieve deformation 

measurements in all weather conditions (Li et al., 2019). The amplitude information of SAR data can be 

used only for measuring rapid and large deformations ranging more than one meter in slant range and 

azimuth direction by employing Pixel/Feature Offset Tracking (Strozzi et al., 2002; Li et al., 2019). The 

phase measurement-based SAR interferometry (InSAR) derived from complex-valued SAR data can be 

utilized for retrieving deformations up to millimeters over large areas in the satellite line-of-sight (LOS) 

direction, which offers a vast opportunity for monitoring earth surface deformation due to human-induced 

(Chang et al., 2017) and natural processes such as an earthquake (Wright et al., 2004), land subsidence 

(Chaussard et al., 2014), landslide (Schlögel et al., 2015), volcano (Hooper et al., 2004) and sinkhole (Chang 

and Hanssen, 2014; Malinowska et al., 2019). Lately, there has been a rise in the number of studies that 

monitor the surface deformation from different processes due to the increase in the availability of SAR data 

compared to the past. It is also important to mention that ground-based InSAR (GB-InSAR) techniques are 

also utilized for surface deformation monitoring, providing spatially and temporally high-resolution 

deformation measurements for local slope regions but lacking applicability over large regions due to its high 

cost for installation and handling (Bardi et al., 2017; Ferrigno et al., 2017). 

 

The use of spaceborne SAR data for landslide observation and modelling began way back in the middle of 

the 1990s (Fruneau et al., 1996), but only at the beginning of the 21st century did InSAR become famous 

for monitoring landslide deformations (Ferretti et al., 2001; Berardino et al., 2002; Hooper et al., 2004; 

Hooper, 2008; Meisina et al., 2006). Initially, Differential InSAR (DInSAR) was utilised for analysing 
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landslide deformation. However, because of the limitations of DInSAR in geometrical and temporal 

decorrelation and atmospheric effects, multi-temporal InSAR (MT-InSAR) techniques, such as Persistent 

Scatterer Interferometry (PSI, Ferretti et al., 2001), SqueeSAR (Ferretti et al., 2011), Coherent Pixel 

Technique (CPT,  Blanco-Sànchez et al., 2008), Interferometric Point Target Analysis (IPTA, Werner et al., 

2003),  and Small BAseline Subset (SBAS, Berardino et al., 2002) were employed for better monitoring of 

landslide deformation. There have been multiple studies ever since the development of the MT-InSAR 

technique that applied the method for detecting and monitoring slow-moving landslides and also 

understanding the process of slope deformation in remote areas of the globe (Bayer et al., 2017; Colesanti 

et al., 2003; Colesanti and Wasowski, 2006; Handwerger et al., 2015; Hilley et al., 2004; Wasowski and 

Bovenga, 2014). Among all MT-InSAR approaches, PSI and SBAS are the most frequently applied 

techniques for landslide deformation analysis (Bayer et al., 2017; Tantianuparp et al., 2013; Zhao et al., 2018). 

The MT-InSAR applications largely transformed the process of landslide monitoring and hugely aided 

researchers in understanding the evolution of slowly deforming hillslopes. It can be used to unveil the 

smallest of displacements that are happening within a slope. However, owing to the high computational 

requirement of MT-InSAR techniques, most of the research is performed in monitoring individual slopes 

rather than carrying out a region scale analysis. 

 

Monitoring of hillslope deformation is extremely challenging in highly vegetated and mountainous terrain 

due to the growth of flora, which results in surged noise levels and decorrelation (Bekaert et al., 2020). In 

addition, geometric distortions in hilly terrain because of SAR sensors' side-looking imaging geometry 

increase the difficulty in quantifying and monitoring the deformation in slopes. In such circumstances, 

permanent scatterers are limited to manmade features and bare rocks in hilly terrain owing to low temporal 

decoherence. Furthermore, atmospheric phase delay that occurs especially in mountainous regions owing 

to elevation variations and clouds, rainfall, and snowfall in different seasons introduces noise in the acquired 

signal and affects the quality of extracted deformation measurements. Thus, temporal decorrelation and 

atmospheric effects are yet a critical challenge that has to be addressed in highly vegetated hilly terrain with 

low or no urban features, which mainly impedes the monitoring of deformation in slopes across the globe. 

Moreover, rapid progressive deformation that exceeds the deformation monitoring level of SAR products 

can also make deformation monitoring challenging. In such cases, SAR products having a minimal temporal 

baseline are appropriate for decreasing the temporal decorrelation by generating a perfect interferogram 

(Squarzoni et al., 2020). Currently, Sentinel-1A and 1B satellite sensors operating in C-band wavelength of 

5.6 cm from 2014 and 2016, respectively, provide single or dual polarized SAR images with minimal 

temporal baseline (6-12 days). Therefore, this research attempts to use freely available and frequently 

acquired C-band SAR data from Sentinel-1A and 1B sensors with a short spatio-temporal baseline to 

monitor the hillslope deformations using the MT-InSAR technique, which confirms the extraction of 

spatiotemporally continuous deformation time-series. 

1.2. Research gap and scientific contribution 

 

First-ever time-series documentation of landslide reactivation owing to strong ground motion from an 

earthquake was accomplished by Lacroix et al. (2014). Based on the GPS time-series measurements, post-

seismic displacement was measured to be larger than that of the co-seismic response of landslides to ground 

shaking. This research was significant as it marked the starting point for studies that investigate post-seismic 

landslide activity with a special focus on identifying slow-moving hillslopes that were activated and/or 

reactivated based on deformation time series. In support of this argument, Lacroix et al. (2015) identified 

nine active slow-moving hillslopes that were accelerated by an earthquake of magnitude six and the level of 

groundwater using high-resolution optical remote sensing images. Bekaert et al. (2020) identified six slow-

moving hillslopes in a region affected by the 2015 Gorkha earthquake (Mw =7.8), using the MT-InSAR 
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technique, that was displaying analogous slow deformation rates before (2014-2015) and following (2016-

2017) the event. The authors examined the pre-and post-Gorkha deformations time series separately but 

did not explore the dynamics of active or reactivated hillslopes in post-seismic periods.  

 

The most recent developments in analysing slow-moving hillslopes using InSAR time series in relation to 

earthquakes were published during the course of this work and are discussed as follows. Lacroix et al. (2022) 

addressed this gap and revealed the lagged initiations and post-seismic relaxations of slow-moving landslides 

in the area hit by the 2015 Gorkha earthquake using Sentinel-1 data. During this post-seismic relaxation 

phase, slow-moving hillslopes were found to have accelerating deformation mainly because of the 

groundwater transmission. Also, Martino et al. (2022) showed slow activations and reactivations of 

landslides following a small magnitude (Mw = 5.1) earthquake in Italy with the help of the D-InSAR 

technique. Lately, Cheaib et al. (2022) uncovered three distinct post-seismic deformation pattern hillslopes 

affected by ground motion from the 2017 Sarpol Zahab earthquake (Mw = 7.3): a) post-seismic motion 

identical to pre-seismic level, b) steady increase in the post-seismic deformation velocity, and c) temporary 

increase in post-seismic velocity, which recovers to pre-seismic level in some time after the earthquake. Very 

recently, Cai et al. (2022) identified 16 slowly moving landslides that were developed after an earthquake of 

magnitude 7, which occurred on 8 August 2017 in Sichuan Province of China, with the help of SBAS and 

LiDAR techniques. The latest preprint from Cao et al. (2022) identified multiple slow-moving landslides 

that were generated from the intense ground shaking during the 2016 Kaikōura earthquake. The authors of 

this research used a phase gradient-based InSAR approach that is different from that of MT-InSAR 

techniques.  

 This growing number of recent publications in the course of this research affirms that there is a growing 

interest in the geoscientific community for unveiling the dynamics of incipient slow-moving hillslopes that 

are triggered by large magnitude earthquakes. This study will contribute to this notion and lead to inspiring 

many new findings in this prospective research direction. 

 

To our knowledge, by going through the published literature so far, a) there has not been much work 

performed on identifying, mapping, and studying the sub-meter evolution of hillslopes that are primarily 

caused by the intense seismic shaking and driven by its legacy effect. It is also important to note that all the 

above mentioned studies except the last one use the computational intensive SBAS approach in regions 

(smaller than 1500 km2) affected by the earthquake for identifying and studying the evolution of slow-

moving hillslopes. There are quite a few studies that employ the PSI approach for detecting active 

movements of slopes in mountainous areas, but to my knowledge, no study has yet utilised the approach 

for investigating hillslopes affected by intense seismic shaking (Aslan et al., 2020; Lu et al., 2019, 2011). 

Thus, in this research, a new systematic PSI-based approach is designed by integrating various pre- and post-

processing steps to detect and study the sub-meter evolution of active hillslopes that existed before and 

those that are generated after a large magnitude earthquake using the freely available Sentinel-1 dataset.    

 

This research is among the first to use slope units (SUs) for identifying those hillslopes that are slowly 

moving instead of commonly used pixel clustering methods (Bekaert et al., 2020). Most of the MT-InSAR 

works focus on single slope failures and rarely address the dynamics of hillslopes affected by a single large 

triggering event like an earthquake. Examining the sub-meter level post-seismic evolution of hillslopes gives 

much information for us to assess post-seismic landslide hazards and risks. This research will focus on the 

hillslopes affected by a single triggering event and reveal new insights on their dynamics and evolution with 

the help of surface deformation extracted using the PSI approach.  

 

In addition, a modest post-seismic hillslope deformation scheme is proposed in this work based on the 

findings of this study which can be applied in mountainous regions affected by the earthquake to classify a 
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different kind of sub-meter hillslope deformation activity before and following the earthquake. Unlike the 

complex landslide activity matrix suggested by Cigna et al. (2013), which requires pre-existing inventory, the 

one proposed in this study doesn’t require a pre-existing inventory and is less intricate to understand and 

for applying in an earthquake-impacted hillslopes.     

1.3. Research objectives  

1.3.1. General objective  

The main objective of this research is to reveal the impact of intense seismic shaking from a large magnitude 

earthquake on the sub-meter dynamics of hillslopes using Sentinel-1 SAR (Synthetic Aperture Radar) 

images.  

1.3.2. Sub-objectives and research questions 

Based on the overall objectives, four sub-objectives and associated research questions are described as 

follows: 

 

1. To extract the pre- and post-seismic LOS deformation of hillslopes using Sentinel-1 SLC 

IW mode images employing the PSI approach. 

2. To analyse the distribution of deformation measurements over different landscape 

characteristics. 

3. To develop a systematic approach to identify and map the actively deforming hillslopes 

during pre- and post-seismic phases. 

4. To develop a post-seismic hillslope deformation scheme for describing different hillslope 

evolution. 

 

The following are the research questions associated with the sub-objectives defined above: 

 

i. What optimum configuring parameters for the PSI approach to retrieve the LOS deformation 

measurements of (constantly) coherent radar scatterers? (sub-objective 1) 

ii. What are the differences between pre- and post-seismic mean annual LOS deformation velocity? 

(sub-objective 1) 

iii. How does deformation measurement change across basic morphometric variables such as elevation 

and slope steepness during the pre- and post-seismic phases? (sub-objective 2) 

iv. How does deformation measurement change across places experiencing different PGA during the 

post-seismic phase? (sub-objective 2) 

v. What are the different landforms and lithologies that control the active deformations? (sub-

objective 2) 

vi. What is the best critical stability threshold that can be defined to detect and characterise the active 

PS? (sub-objective 3) 

vii. What are the different types of post-seismic sub-meter hillslope evolution captured in this study? 

(sub-objective 4) 

1.4. Research design and thesis structure 

Figure 2 displays all the steps followed in this work order to address the research objectives and questions, 

including the qualitative part of the literature review. Extraction of LOS deformation measurements from 

Sentinel-1 images using the PSI approach helps in answering sub-objective 1, while analysing the distribution 

of PS over different landscape characteristics aids in addressing sub-objective 2. The identification of actively 

deforming hillslopes during pre- and post- seismic phases addresses sub-objective 3, and the detection of 
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different types of sub-meter hillslope evolution after the impact of the earthquake with the help of the 

proposed post-seismic hillslope deformation scheme aids in resolving sub-objective 4. 

 

Figure 2. Design of this research work. 

This work is structured in a traditional way with six chapters. Chapter 1 discusses the general motivation, 

research gap, and problem in the study that is undertaken, while Chapter 2 provides a detailed overview of 

fundamental concepts and a comprehensive review of articles related to the research carried out in this work. 

Chapter 3 describes the study area's locational, tectonic, geologic and climatic setting and the datasets used. 

Chapter 4 provides information on the methodology. Chapter 5 presents the results of this work which will 

be discussed in Chapter 6. The conclusion and recommendation of this work will be given in Chapter 7. 
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2. LITERATURE REVIEW  

This chapter provides information on the fundamental concepts essential for understanding this research 

work. Theoretical overview of imaging radar (SAR) and radar interferometry (InSAR) is presented in Section 

2.1 and Section 2.2, respectively; the basics of PSI technique is discussed in Section 2.3, and a comprehensive 

literature review of PSI applications related to slope deformation is examined in Section 2.4. 

2.1. Imaging radar (SAR, Synthetic Aperture Radar) 

Radio detection and ranging, abbreviated as Radar, signifies both an approach and device which is utilised 

to identify, locate, and track an object by emitting and recording the reflected microwave and radio 

electromagnetic waves in its line-of-sight (LOS) either using the same antenna (monostatic) or with different 

antennas (Bistatic) (Skolnik, 1962). Detection of an object was ascertained by calculating the two-way travel 

period of the pulses. Physical properties of the detected object, such as size, orientation, and surface 

roughness, can be inferred from the reflected pulses. Radar can be used in all weather conditions and during 

any time of the day and night as it doesn’t require any natural light sources (Hanssen, 2001).  

 

Initially, Real Aperture Radar (RAR), a particular group of side-looking incoherent imaging radars having 

long antennas that are mounted to an airborne or space-borne vehicle, were used to acquire images of the 

Earth's surface. Owing to the issues in having a long antenna both in space and air resulted in images with 

very coarse resolution. This difficulty was overcome by using a coherent imaging radar system called SAR, 

which uses an artificially large antenna. This advancement helped in increasing the azimuth resolution 

drastically. In addition, both amplitude and fractional phase information from the sensed objects are 

retained. Side looking geometry of a SAR system is represented in Figure 3. 

 

The amplitude A measured by the SAR sensor signifies the strength of reflection coming back from an 

object, while the phase is the tiny proportion of the entire wave cycle reflected to the sensor. Any difference 

in two consecutive signals results in a phase change which is represented as follows (Hanssen, 2001); 

 

𝜙𝑠 =
2𝜋

𝜆
2𝑟 =

4𝜋

𝜆
𝑟     (1) 

 

Where, refers to phase change, 2r is the two-way travel distance of the radiation, which is inversely 

proportional to the transmitted wavelength . The difference in phase can only be quantified between [-π, 

π), or (-π, π]. 

 

Both amplitude and fractional phase  measurement reflected from the objects on the Earth's surface is 

stored combinedly as a complex phasor P for every individual pixel in the two-dimensional image. 

 

𝑃 = 𝐴𝑒𝑥𝑝(𝑖𝜓)      (2) 

Here 𝑖 is the imaginary unit. 

 

Thus, every pixel shows distinct scattering characteristics based on the reflections from different objects 

having various scattering properties. There can be two furthermost cases, where the presence of a strong 

scatterer within a pixel can result in a high signal-to-noise ratio, and in another case, a pixel can be a 

distributed scatterer where scattering from all the objects within the pixel contribute. 
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Figure 3. Right-facing geometry of SAR system, where 𝜓
𝐿𝐴

 is the look angle and 𝜃𝑖 is local incidence 

angle. 

 

It is not feasible for the imaging radar to distinguish two distinct objects that lie in the same range to the 

radar system owing to its major drawback in determining angles. This problem led to the formation of 

interferograms by merging to complex SAR images, which aided in acquiring phase variance that helped in 

overcoming the above limitation. This procedure is popularly known as the InSAR technique, in which the 

complex phase of the reference image (R) is multiplied with the complex conjugate (S*) of the secondary 

image2 (Hanssen, 2001). 

 

I = R × S*     (3) 

 

The Single Look Complex (SLC) images are used for generating interferograms, where the complex phase 

of the SLC product can be given as follows (Hanssen, 2001): 

 

𝜓𝑆𝐿𝐶
𝑢𝑤 = −2𝜋𝑘 + 𝜓𝑟𝑎𝑛𝑔𝑒 + 𝜓𝑎𝑡𝑚𝑜𝑠 + 𝜓𝑠𝑐𝑎𝑡 + 𝜓𝑛𝑜𝑖𝑠𝑒  (4) 

 

Where, k is the uncertainty of phase, which is introduced because of complete phase cycles that varies 

between , whereas other components of the equation signify the phase component introduced by 

range dependency 𝜓𝑟𝑎𝑛𝑔𝑒 , atmosphere 𝜓𝑎𝑡𝑚𝑜𝑠 , scattering 𝜓𝑠𝑐𝑎𝑡 , and noise 𝜓𝑛𝑜𝑖𝑠𝑒 . The superscript uw 

indicated the unwrapped phase. More on the InSAR technique is elaborated in the following Section 2.2. 

2.2. Radar interferometry (InSAR, Interferometric SAR) 

InSAR is one of the most robust and widely accepted remote sensing-based techniques for acquiring 

millimeter-level deformation signals of Earth’s surface. Deformation is retrieved using interferograms 

generated with phase differences from complex-valued SAR images, acquired over the same geographical 

 
2 The term “master” and “slave” images have been replaced as “reference” and “secondary” images in this 
work. This change of terms was initiated by WInSAR and COMET committee, which is supported by 
InSAR scientific community around the world. 
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location at a different time with identical sensor characteristics (Bamler and Hartl, 1998). The images are co-

registered on a coordinate system in which the introduction of phase owing to topographic inaccuracy, and 

orbit error is adjusted (Bamler and Hartl, 1998; Gabriel et al., 1989; Rosen, 2000). The targeted deformation 

phase 𝜑𝐷𝑒𝑓𝑜  is among the components of the unwrapped differential interferogram phase 

𝜑𝐷−𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑜𝑔𝑟𝑎𝑚  which comprises a flat-earth phase 𝜑𝑓𝑙𝑎𝑡 , atmospheric phase 𝜑𝐴𝑡𝑚 , topographic 

variance error 𝜑𝑇𝑜𝑝𝑜 , orbital inaccuracy 𝜑𝑂𝑟𝑏𝑖𝑡 , phase noise 𝜑𝑁𝑜𝑖𝑠𝑒 , scattering phase 𝜑𝑠𝑐𝑎𝑡  and phase 

ambiguity (k) due to wrapped characteristics (π) of differential interferogram phase  (Hanssen, 2001). The 

unwrapped differential interferogram phase can be represented as follows (Hanssen, 2001): 

 

𝜑𝐷−𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑜𝑔𝑟𝑎𝑚 = 𝑊{𝜑𝐷−𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑜𝑔𝑟𝑎𝑚} + 2𝑘π =  𝜑𝑓𝑙𝑎𝑡 + 𝜑𝑇𝑜𝑝𝑜 + 𝜑𝐷𝑒𝑓𝑜 + 𝜑𝐴𝑡𝑚 + 𝜑𝑁𝑜𝑖𝑠𝑒 +

𝜑𝑠𝑐𝑎𝑡 + 𝜑𝑂𝑟𝑏𝑖𝑡.                    (5) 

 

The important aim of the D-InSAR technique, as aforementioned, is to extract 𝜑𝐷𝑒𝑓𝑜  from 

𝜑𝐷−𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑜𝑔𝑟𝑎𝑚 excluding other phase elements of Equation 5. 𝑊{. } is the wrapping operator. Each 

term of the interferometric phase will be detailed in the following paragraphs. 

 

Flat Earth phase (𝜑𝑓𝑙𝑎𝑡) implies the phase contributed because of a reference surface, which is ellipsoid in 

the instance of Earth. By presuming that both reference and secondary antennas are parallel, the flat Earth 

phase at a location can be represented as follows: 

 

𝜑𝑓𝑙𝑎𝑡 =
4𝜋

𝜆
𝐵∥        (6) 

 

BII signifies the parallel baseline. 

 

Topographic phase 𝜑𝑇𝑜𝑝𝑜 represents the phase contribution of the elevation, while the deformation phase 

𝜑𝐷𝑒𝑓𝑜 consists of phase contribution due to changes in earth surface between reference and secondary 

image. The deformation phase 𝜑𝐷𝑒𝑓𝑜 can be formulated as follows: 
 

𝜑𝐷𝑒𝑓𝑜 = −
4𝜋

𝜆
𝑑𝑒𝑓𝑜𝐿𝑂𝑆                 (7) 

 

Where refers to the line of sight deformation, and it comprises deformation in both horizontal and 

vertical directions. 

 

The difference in atmospheric contents between reference and secondary images could create atmospheric 

delay (𝜑𝐴𝑡𝑚), which mainly comprises tropospheric and ionospheric delay. The orbital issues of a SAR 

system can give rise to orbit errors (𝜑𝑂𝑟𝑏𝑖𝑡). Variation in the surface conditions between reference and 

secondary acquisitions introduces the scattering phase (𝜑𝑠𝑐𝑎𝑡), which is the main reason behind decoherence. 

Finally, the noise from all sources, including the thermal noise of the SAR system, creates noise in 

interferograms. 

 

The conventional D-InSAR technique is not suitable for handling the geometrical and temporal 

decorrelation and atmospheric effects, which inhibit the technique from analyzing the deformation of the 

Earth's surface over a long time. Such limitation of the D-InSAR technique gave rise to the development 

and deployment of different MT-InSAR techniques, which uses a stack of multiple interferograms to extract 

deformation along the LOS direction by analyzing a subset of pixels rather than examining the whole 

interferogram, that is less affected by temporal decorrelation. Permanent/Persistent Scatterer (PS) and 

Distributed Scatterer (DS) targets affirm this condition of having low temporal decorrelation and 𝜑𝑁𝑜𝑖𝑠𝑒. 
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As the name suggests, PS are those objects that have a stable dominant reflection to radar signal over time, 

whereas the reflection to radar signal in the case of DS is from various spatially-homogenous scattering 

objects within a resolution cell that are (temporally) stable (Crosetto et al., 2016). In this way, the MT-InSAR 

techniques can be categorized into three types: a) techniques that analyse PS targets (Ferretti et al., 2001, 

2000; Hooper et al., 2004), b) techniques that analyse DS targets (Berardino et al., 2002; Lanari et al., 2004), 

and c) the last type is a hybrid technique that uses a combination of both PS and DS (PSDS) (Ferretti et al., 

2011; Hooper, 2008) for extracting long term time-series deformation measurements. Interferogram 

network, conditions for choosing coherent pixels (either PS or DS), the model utilised for deformation, and 

other unwrapping techniques are some of the different properties that differentiate one MT-InSAR 

approach from another (Minh et al., 2020). The techniques that use PS targets for deformation extraction 

are generally known as PSI (Persistent Scatterer Interferometry), whereas those that utilise DS targets are 

called SBAS (Hooper, 2008). The terminology of these techniques is inconsistent as PSI refers to the pixels 

chosen for the analysis while SBAS (Small Baseline Subset) implies the interferogram generation process. 

The following section elaborates on the PSI technique. 

2.3. Persistent Scatterer Interferometry (PSI) 

 
The approach was primarily known as the permanent scatterers approach (Ferretti et al., 2001), but now it’s 

been called PSI. Unlike D-InSAR, which utilizes two complex-valued SAR images to generate interferogram 

pairs, PSI uses a huge quantity of complex-valued SAR images along with appropriate parameter 

configuration, data administering, and analysis to retrieve the deformation time series of the Earth’s surface. 

This method makes use of the stable PS pixels, which were chosen initially based on only the amplitude 

stability (also known as Amplitude Dispersion Index, ADI) (Ferretti et al., 2001). In urban regions, PS targets 

were high compared to the natural terrains. However, there were some limitations to the amplitude stability-

based selection of PS targets in the non-urban regions, so Hooper et al. (2007) introduced the phase stability-

based PS candidate selection, which produced dense PS points in non-urban terrains. There are numerous 

approaches currently available that utilize the usefulness of PS targets for overcoming the issue of 

decorrelation owing to atmospheric phase, geometric and temporal incoherence with a slightly different 

approach in selecting PS targets and deformation modelling (Minh et al., 2020). All these approaches 

perform PSI based on the single prime interferogram stack. 

 

The Stanford Method for Persistent Scatterers (StaMPS, Hooper et al., 2012; Hooper, 2008) is a widely used 

tool for MT-InSAR processing. During the PSI processing with the help of StaMPS, filtering and multi-

looking are ignored to preserve the quality of deformation estimation (Hooper et al., 2012). Co-registered 

reference and secondary images and the stack of single reference 3  time-series topography corrected 

interferogram along with elevation and orthorectified latitude and longitude bands are required to process 

PSI in StaMPS. Some of the important characteristics of StaMPS include the selection of PS targets 

considering both amplitude stability and estimated phase stability. Initially, a certain ADI threshold is fixed 

during amplitude stability analysis for selecting a subset of PS targets. The ADI can be written as follows 

(Ferretti et al., 2001): 

 

𝐴𝐷𝐼 =
𝜎𝐴

𝜇𝐴
     (8) 

 

Where,  𝜎𝐴 represent the standard variance of amplitude and 𝜇𝐴 refers to the average amplitude of SAR 

images. Hooper et al. (2007) used a high value of ADI, resulting in a low number of PS pixel selections 

 
3 Single-master interferogram is replaced as single-prime interferogram 
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during the initial amplitude stability analysis. Subsequently, phase stability analysis is carried out with the 

help of estimated phase stability, which ignores the non-PS targets and only selects those dominant PS pixels 

in all interferograms over time. After the PS selection, further procedures such as unwrapping of phase and 

removal of atmospheric phase are performed for extracting the deformation values. 

2.4. Application of PSI technique in the context of slope deformation 

In recent years, the PSI technique has been applied in many slope deformation studies (Solari et al., 2020b), 

including pre- and post-failure analysis (Xia et al., 2022), detection, characterization, and monitoring of 

extremely slow and very slow deformation of slopes (Aslan et al., 2020), and its inventory mapping (Rosi et 

al., 2018). The following paragraphs discuss in detail the above-mentioned individual applications of the PSI 

technique related to slope deformation. 

 A literature review carried out based on the keywords of landslides and PSI in the Scopus database showed 

that 100 peer-reviewed articles were published from 2006 till the present (Figure 4). In order to draw a 

comparison between the number of articles published each year with the keywords landslides and InSAR is 

displayed in Figure 4, which sums to 516 articles from 2000 till now. In parallel to the increasing number of 

papers published on landslides, InSAR-based landslide analyses have also been gaining popularity in the 

geoscientific community. However, InSAR-based analyses still constitute only a small portion of landslide-

related scientific contributions. This is to say that InSAR-based analyses can still be implemented in various 

research questions evolving around the landslide topic.     

 

Figure 4. Peer-reviewed articles in Scopus database4. Brown bars represent the temporal distribution of 
articles that use PSI for the application of landslides and blue bars represent the list of published articles 

that employed InSAR for landslide studies. 

Intrieri et al. (2018) studied the pre-failure deformation of the Maoxian landslide, situated in the Sichuan 

province of China, which failed on 24 June 2017, using the PSI technique (CPT) by analysing 45 Sentinel-1 

SAR images that were acquired before the slope failure. The deformation time series of this popular study 

revealed precursory signs of failure on the scarp region of the slope. The authors of this study speculate that 

 
4 It should be noted that there can be other published articles which are not included in the Scopus database 
but uses PSI or InSAR for landslide studies. This list is taken only from Scopus database. 
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strong seismic ground motion could have led to slope instability. Xia et al. (2022) studied precursory 

deformation of a landslide (Aniangzhaire activated in 2020) located in the same province of China as the 

previous study, by employing the PSI and SBAS technique separately. In this study, Sentinel-1 descending 

data was only utilised, and time series analysis was split into two periods, one from 2014 to 2017 and another 

between 2018 and 2020, to overcome the temporal decorrelation limitation. The deformation results show 

precursory signs of reactivation starting from 2018. Shankar et al. (2022) investigated the precursory 

deformation of rainfall-triggered slope failure, which occurred on 30 July 2021, sited in the Sirmaur region 

of Himachal Pradesh by analysing ascending and descending Sentinel-1 images between July 2019 and July 

2021. Examining the time series of Sentinel-1images revealed accelerating deformation of slope, which was 

unnoticed before the failure. Most of these studies analysing pre-failure deformation time series used the 

inverse velocity method to predict the time to slope failure (Carlà et al., 2019; Roy et al., 2022; Shankar et 

al., 2022). However, it is not applicable in all studies, and the limitation to forecast slope failure has been 

elaborately discussed in Moretto et al. (2021). Moreover, back analysis is widely performed for single slope 

failures and rarely for significant large events. 

The post-failure deformation monitoring of slopes is necessary as studies suggest that reactivation and new 

activation of slopes can be possible following the failure event (Martino et al., 2022; Wang et al., 2022). Greif 

and Vlcko (2012) studied the post-failure deformation of a rainfall-triggered landslide (Lubietova) in 

Slovakia using ERS 1,2 and ENVISAT satellite images. The results indicated that the Lubietova landslide 

followed creeping movements in its post-failure phase. A limited number of studies have examined the 

earthquake-driven acceleration of slopes in the post-seismic phase (Lacroix et al., 2015), but the PSI 

technique hasn’t been employed in such works.  

2.4.1. Data availability 

For performing a pre- and post-failure deformation analysis with the InSAR technique, it is really important 

to have enough SAR data before and following the event. The freely available SAR dataset examples are 

ERS5-1 and 2, ENVISAT6, ALOS-PALSAR7-1, and Sentinel-1 (Table 1). In addition, some Radarsat8-1 data 

is also freely available.   

 
Table 1. SAR dataset examples that are available for deformation analysis. Availability of ascending and 

descending images can be different. 

SAR Dataset Band Availability Repeat time 

(days) 

ERS-1 C 1991 - 1997 35 

ERS-2 C 1995 - 2011 35 

ENVISAT C 2002 - 2012 35 

ALOS PALSAR-1 L 2006 - 2011 46 

Sentinel-1 C 2014 - Ongoing 6 - 12 

 

Over the years, the MT-InSAR technique has become popular for identification, monitoring, and inventory 

mapping of slowly deforming hillslopes, and a few case studies have been presented in Table 2. 

 
5 European Remote Sensing (ERS) 
6 Environment Satellite (ENVISAT) 
7 Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) 
8 Radar Satellite (RADARSAT) 
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Table 2. Literatures published on the PSI application of landslide studies. ENV, SNT, CSK, and ALOS 
refers to ENVISAT, Sentinel-1, COSMO-SkyMed, ALOS PALSAR. 

Application Case of study Data source Findings References 

Dynamics 

monitoring 

Berkeley vicinity, 

Eastern San 

Franisco Bay area 

ERS-1/2 (1992 – 

2001) 

Discovery of non-linear   

relationship between 

rainfall and slope 

kinematics. 

(Hilley et al., 

2004) 

Updating 

landslide 

inventory 

Bologna province, 

Italy 

ERS-1/2 (1992 – 

2001), ENV A & 

D (2003 – 2008) 

Updating already 

available landslide 

inventory was carried 

out. 

(Sara et al., 

2014) 

Detection, 

characterisation 

& inventory 

mapping 

Palos Verdes 

Peninsula, 

California 

ENV D (2005 - 

2010), CSK D 

(2012 - 2014) 

263 slow-moving 

landslides have been 

mapped and classified 

into 4 categories. 

(Fiaschi et 

al., 2017) 

Detection & 

monitoring 

Veneto Region, 

Italy 

SNT-1A A (2014 - 

2016), D (2015 - 

2016) 

Assessing the potential 

of SNT in detecting and 

monitoring reactivation 

of past landslides. 

(Bouali et al., 

2018) 

Inventory 

mapping 
French Alps 

SNT A (2016 - 

2019) and D (2015 

- 2019) 

Over 100 actively 

deforming slopes were 

mapped 

(Aslan et al., 

2020) 

Active 

deforming 

areas detection 

Valle d’Aosta area 

in Alpine region 
SNT (2015 – 2018) 

Potential risk map was 

generated using active 

deforming slopes for the 

region. 

(Solari et al., 

2020a) 

Activity 

mapping 
Polish Carpathians 

ALOS A (2008 - 

2010), SNT A 

(2014 - 2017) & D 

(2014 – 2017) 

43 actively moving 

slopes which could 

potentially affect 

infrastructures were 

mapped.  

(Pawluszek-

Filipiak et al., 

2021) 
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3. STUDY AREA AND DATASET 

This chapter focuses on the locational setting of the study area along with its tectonic and geologic 

characteristics in Section 3.1 and 3.2, respectively. Information regarding the climatic setting of the region 

under examination is provided in Section 3.3, while details on the dataset utilised for this research are 

provided in Section 3.4. 

3.1. Geographic setting 

In order to address the research objectives and questions, we chose to focus on hillslopes in a region affected 

by the 7.8 Mw Kaikōura earthquake, which hit the north-eastern region of New Zealand’s Southern Island 

on 14 November 2016 at local time 12:03 am (as per UTC, the earthquake occurred on 13 November 2016). 

Earthquake hypocentre was located at 15.1 km depth, and rupture originated from 173.02° longitude and -

42.69° latitude (Duputel and Rivera, 2017). Even though, an earthquake was not surprising given the historic 

seismicity of the region, still, the 2016 Kaikōura Earthquake displayed a more complex rupturing mechanism 

involving more than 11 fault planes. Earthquakes are commonly assumed to occur owing to the rupture of 

single fault, which makes the 2016 Kaikōura earthquake to be the most complex earthquake ever recorded 

(Hamling et al., 2017). There has been no such large magnitude earthquake documented in the history of 

New Zealand for over 100 years (Ulrich et al., 2019). Entire New Zealand felt the powerful ground shaking 

while widespread destruction was recorded to the north of Southern Island. The losses attributed to the 

event was around 3 to 8 billion New Zealand Dollars, which is around 1.8 to 4.9 billion Euros based on the 

exchange rate in 2022. The study area chosen for this project extends from the southern latitude of 41° 45’ 

20.57” to 42° 22’ 42.50”, and between eastern longitudes of 173° 23’ 4.86” and 174° 10’ 43.94”, covering an 

area of about 2300 km2 (Figure 5). The elevation of the study area ranges between 0 and 2855 m above 

mean sea level. 

 

Figure 5. Study area. (a) Insert map shows the geographical situation of New Zealand in the world map, 

(b) The location of study area  in New Zealand along with the Sentinel-1 frames covering the study area, 
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and (c) physiographical setting and co-seismic landslide distribution of the study area affected by the 2016 

Kaikōura earthquake (Mw = 7.8). A in the legend of insert map (b) signifies ascending images. Co-seismic 

landslide polygons that occurred during the 2016 event mapped by Tanyaş et al. (2022a) are displayed (d-

e). 

Displacements over 8 meters are observed in some Southern Island regions(Hamling et al., 2017). The event 

generated more than 14,000 co-seismic landslides, according to the recent open dataset published by Tanyaş 

et al. (2022a).  

 

Among the wide area affected by the 2016 Kaikōura earthquake, the particular region investigated in this 

work is chosen mainly i) to exploit available Sentinel 1 image and ii) to examine the area hosting a large 

number of co-seismic landslides as a result of strong ground shaking induced by the Kaikōura earthquake.  

 

During the 2016 Kaikōura earthquake, the area under consideration was exposed to high Peak Ground 

Acceleration (PGA) ranging between 0.06g and 1.02g (Figure 6). Based on the scales followed by USGS, 

four different classes of PGA occurred within the study area, namely Very Strong (18 – 34 %g), Severe (34 

– 65 %g), and Violent (65 -  124 %g). The Kekerengu fault, Jordan fault, and a part of Fidget fault 

experienced violent PGA. Most of the co-seismic landslides that occurred during the event happened in 

regions affected by severe and violent PGA.  

 
Figure 6. PGA of the study area given in gravity. Co-seismic landslides (grey polygons) and active fault 

(white lines) are overlaid upon PGA to understand their distribution. Panel (b) shows PGA overlaid with 
co-seismic landslides. 
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3.2. Tectonic and earthquake characteristics 

The tectonics of New Zealand is controlled by the 

converging and transforming of Australian and Pacific 

plates. The Australian plate is located to the north and 

Pacific plate to the south of New Zealand (Ristau, 2008). 

Subduction of Pacific plate below Australian plate 

happens along the northern island of New Zealand while 

vice versa happens along the southern part of southern 

island of New Zealand. The first subduction zone 

mentioned above is called as Hikurangi Subduction 

Zone, while the latter one is known as Puysegur 

Subduction Zone (see Figure 7). The motion of the 

Puysegur Subduction Zone is about 35 mm/yr, and that 

of Hikurangi Subduction Zone is about 45 mm/yr 

(Howell et al., 2020). Alpine transform fault zone is 

located in the middle western coastline of New 

Zealand’s southern island, which splays into 

Marlborough Fault Zone (MFZ) in the north-eastern 

part of southern island (see Figure 7). Important splay 

faults near the epicentre of the 2016 Kaikōura 

earthquake include Waihopai, Awatere, Clarence, Fidget, 

Kekerengu, Jordan, Uwerau, Kowhai, and Hope fault 

from north to south. The slip rate is high at Hope fault, 

which decreases with the splay faults situated towards the 

north of it (Vermeer et al., 2021).  

 

The 2016 Kaikoura earthquake happened in the complex MFZ fault system which connects Hikurangi 

Subduction Zone and Alphine fault (Wang et al., 2018). The initiation of earthquake was from Humps fault 

rather than from Hope fault which has the largest slip rate among the splay faults near the epicentre (Kaiser 

et al., 2017). Strating from Humps fault, the fault rupture propagated to Papatea fault and Kekerengu fault 

rather than to Hope fault. First shock of earthquake lasted for about 2 minutes which was followed more 

intense one (Guo et al., 2019). Multiple aftershocks were also recorded in the region hit by the earthquake 

in 2016. Unforeseen motion of various faults cannot be explained based on normal fault mechanism. In the 

case of Jordan fault, both walls of the fault raised wherein hanging wall got uplifted above foot wall (Wang 

et al., 2018). Along with other cascading geohazards, the earthquake also triggered a tsunami of 5m even 

though the depth of occurrence is approximately about 15 km subsurface (Lane et al., 2017). 

3.3. Geological setting 

The examined area mainly consists of four geological units (Figure 8). Among which Lower Cretaceous 

Torlesse (basement rocks) are the predominant and oldest rock in the region, and Quaternary silt, lime and 

sandstones are the youngest rock. Greywacke is the predominant basement rock type found in Kaikōura 

and the whole of New Zealand. 

Figure 7. General tectonic setting of New 
Zealand. Significant faults are represented 

with red line and the movement of Australian 
plate proportional to Pacific plate is marked 

with black arrows. 
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Greywacke has its origin from sediment present in underwater trench of Gondwana continent, which dates 

back to hundred million years. Transformation from sediment to sandstone occurred because of the tension 

from tectonic activities. Even though Greywacke is a hard rock, it can be weak and unsteady, especially 

along the fault systems. Other than the above-mentioned geological units, the region comprises of Late 

Cretaceous to Paleogene sedimentary rocks and Neogene sedimentary rocks (Massey et al., 2018a).  

Figure 8. Simplified geology of the region investigated. Co-seismic landslide polygons are overlayed above 
the geological units. 

3.4. Climatic setting 

As per Koppen-Geiger classification, the region of study comes under the Marine West Coast climate with 

moderate winter and summer accompanied by copious yearly rainfall (Beck et al., 2018). The climate of this 

region is largely influenced by the Southern Alps mountain range. The average rainfall of the study area is 

about 838 mm/yr based on an analysis of 41 years of CHIRPS9 Pentad data (Figure 9).  

 

 

 

 
9 Climate Hazards Group InfraRed Precipitation With Station Data (Version 2.0 Final) 
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Figure 9. Total annual rainfall data between 1981 and 2021. From this graph, it can be observed that 2018 had the 

maximum amount of annual rainfall in last 30 years. 

January is the warmest month of a year, while June, July and September are the coldest month owing to the 

snowfall. Figure 10 present the monthly average precipitation of the study area from 2014 to 2018 calculated 

using GPM10 product.     

 
Figure 10. Average monthly precipitation (mm) of the study area between 2014 and 2019. The selection 
of this four years, in particular, is in line with the occurrence of the 2016 Kaikōura earthquake. From this 

bar graph, it is understood that the month of April received a relatively higher monthly average 
precipitation between 2014 and 2019. 

3.5. Soil setting 

The north-eastern part of New Zealand’s southern island comprises six major soil types, including Brown 

soils, Melanic soils, Gley soils, Pallic soils, Recent soils, and Raw soils (Figure 11). Nearly half of New 

Zealand is covered by Brown soils, and they are mostly seen in mountainous regions. This type of soil 

remains wet and moist throughout the year. Unlike other soil types, Brown soils are highly weathered. Both 

Pallic soils and Brown soils are poor in iron oxide, which is an important material that makes the soil stable. 

Pallic soils are wet during the winter season and dry during summer. Next in the list of soils that cover the 

study area is Raw soils which are commonly present in region highly susceptible to erosion and dynamic 

sedimentation. 
 
 
 

 
10 Global Precipitation Measurement v6 
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Figure 11. Soil orders of the study area.  

3.6. Sentinel-1 SLC data 

Considering the availability of data (see Table 2), freely accessible C-band Terrain Observation with 

Progressive Scans SAR (TOPS) based Sentinel-1 Interferometric Wide (IW) beam mode SLC SAR product 

having a swath width of 250 km is suitable for performing pre- and post-seismic deformation dynamics 

analysis of hillslopes present in the study area. The mission is run by European Space Agency, and the 

dataset can be freely downloaded from the ASF data search vertex (link). 

 

Since the Kaikōura earthquake happened on 14 November 2016, 90 Sentinel-1 SLC datasets available 

between October 2014 and December 2018 in descending direction (path 154) are acquired (Figure 13). 

Since the count of persistent scatterers decreased over time owing to different decorrelations (Braun et al., 

2020), the analysis period was split into two intervals of about two years interval as shown in Figure 12. This 

selection of periods also represents the pre-Kaikōura and post-Kaikōura phase, which is separated by the 

2016 Kaikōura earthquake.  

https://search.asf.alaska.edu/#/
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Figure 12. Distribution of examined Sentinel-1 images over time for pre-Kaikōura (x-marks in blue) and 

post-Kaikōura periods (Plus signs in orange) in ascending direction. 

There are two satellites Sentinel-1 A and B, active from 2014 and 2016, which have 12-day repeat cycle. 

Thus, generally, when both data products are considered, the images can be acquired with 6 day repeat 

interval. However, for the study area considered in this work, the interval between two images majorly varies 

between 24 and 48 days in the case of the pre-seismic period, while the interval becomes shorter with most 

images acquired between an interval of 12 and 6 days in the post-seismic period. The number of Sentinel-1 

images, along with their path and frame, are presented in Table 4.    

 

In a standard setting, deformation acquired in LOS direction from both ascending and descending directions 

are integrated to calculate the north-south and east-west motion (Balbi et al., 2021; Blasco et al., 2019; Cigna 

et al., 2021; Mancini et al., 2021; Shankar et al., 2022). Unfortunately, only very few descending images are 

present during the pre-Kaikōura and post-Kaikōura period. During the pre-Kaikōura phase, there are only 

12 descending image available and in the post-Kaikōura phase no images are available between December 

2016 right after the event till June 2018. Then, the 3D decomposition by combining ascending and 

descending SAR data is not practically feasible. 

 

 

 

 

 

Figure 13. The frame and path of Sentinel-1 
images used in this study. 
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Table 3. Details of Sentinel-1 data utilised in this study. 

Period Sensor Direction Pol. Path 
Frame & 

Image count 

Start 

date/End 

date 

Total number 

of images 

Pre- 

Kaikōura 
S-1A Ascending VV 154 

1040 (14) 28-10-2014 

to 10-11-

2016 

27 1041 (13) 

Post- 

Kaikōura 

S-1A  

Ascending VV 154 

1041 (4) 16-11-2016 

to 24-12-

2018 

63 S-1B  1040 (3) & 

1041 (56) 

 

3.7. Generic Atmospheric Correction Online Service for InSAR (GACOS) data 

This research uses GACOS dataset provided by Newcastle University for eliminating the atmospheric delays 

caused due to water vapours. This dataset is generated using existing high resolution numerical weather 

model such as ECMWF11 and Digital Elevation Model (DEM). The Zenith Tropospheric Delay (ZTD) 

products are downloaded as a binary grid by providing region of interest and the Sentinel-1 acquisition date 

and time (UTC). 

3.8. Co-seismic landslide inventory 

In this study, polygon-based co-seismic landslide inventory generated by Tanyaş et al. (2022a) is used to 

identify the slope units that failed during the earthquake. The landslide mapping was carried out using the 

pre- and post-Kaikōura Sentinel-2 images having a spatial resolution of 10 m. More than 14,000 landslides 

were mapped over the earthquake-affected region of about 14,000 km2. Nearly 7,159 landslides fall into the 

study area considered in this research. Out of 101 landslide dams12 triggered by the earthquake, 49 lies within 

the study area. Thus, the region considered in this study, which extent around 2300 km2, nearly covers half 

of the co-seismic landslides that occurred during the 2016 earthquake. 

3.9. Digital Elevation Model (DEM) 

DEM helps in extracting some of the important topographic features, such as slope, aspect which can be 

used for deriving slope units and performing sensitivity and visibility analysis (López-Vinielles et al., 2021; 

van Natijne et al., 2022). In this study, void-filled Shuttle Radar Topography Mission (SRTM) DEM of  1-

arc second global, resolution equal to ~30m, acquired from USGS Earth Explorer (link) is used.  

3.10. Rainfall 

For this study, daily rainfall data is acquired from the Climate Hazards Group InfraRed Precipitation with 

Station (CHIRPS) version 2.0 final dataset, which has a spatial resolution of 0.05 degrees and covers latitudes 

between 50 degrees (Funk et al., 2015). CHIRPS dataset is chosen for this study owing to its high spatial 

resolution of ~5km than that of GPM and TRMM which have a resolution of ~10km. 

  

 
11 European Centre for Medium-Range Weather Forecasts 
12 Landslide Dam is a type of slope failure which interrupts the flow of a river or drainage network and 
forms a natural temporary dam like barrier which gets eroded over the time.    

https://earthexplorer.usgs.gov/
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4. METHODOLOGY 

 

The complete research workflow of this study is presented in Figure 14. Overall, the methodology consists 

of six steps: a) pre-processing of PSI (single prime interferogram formation), b) PSI processing, c) 

decomposition of LOS deformation to downslope deformation, d) detection of actively deforming PS 

points, e) analysing the spatial distribution of PS across different landscape characteristics, e) identifying 

active hillslopes during pre- and post-seismic phase, f) examining the sub-meter hillslope evolution based 

on proposed post-seismic hillslope deformation scheme, and g) investigating the evolution types using 

deformation time series along with visual examination of daily precipitation. 

 

 
Figure 14. General synopsis of the methods.  

4.1. Surface deformation extraction 

 

The detailed workflow carried out to extract surface deformation from the Sentinel-1 SLC dataset with VV 

polarization, including pre-processing and processing stages of PSI, is presented in Figure 15. 
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Figure 15. Comprehensive flowchart for retrieval of surface deformation. 

4.1.1. Pre-processing (Single-prime interferogram formation) 

 

In this research, for the automated generation of Sentinel-1 single-prime interferograms, the open-source 

SNAP2StaMPS python tool developed by Blasco et al. (2018) is used, which repeatedly calls the graphs 

created from the graph processing tool (GPT) of SentiNel Application Platform (SNAP version 8.0.0). This 

python-based SNAP2StaMPS tool is implemented in the Jupyter Notebook IDE13 on a 32 vCPU Intel ×86-

64, 768 GB RAM, NVIDIA RTX A4000 GPU computing unit.   

 

Initially, an ideal complex-valued reference image is chosen for pre-Kaikōura and post-Kaikōura from the 

mid-point of the time-series analysis in a way that the perpendicular baseline distance between reference and 
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secondary images is minimum as feasible, and coherence of the single-prime interferograms remain high.  

In addition, it is made sure that the selected reference image is not much affected by the atmospheric 

interference from rainfall and snowing as it might reduce the coherence of the generated interferograms 

(Zebker and Villasenor, 1992). Hence, two reference images, one for pre-Kaikōura acquired on 29 

September 2015 and another sensed on 18 October 2017 for post-Kaikōura, are selected (Figure 16). 

 

Figure 16. Baseline graph of two phases (pre-Kaikōura and post-Kaikōura) described in this research. 
Location of the Sentinel-1 TOPSAR sensor and sensed dates are presented in relation to the reference 

image. 

Normally, Sentinel-1 images have three separate sub-swaths, containing nine or ten burst files per sub-swath. 

Each sub-swath has to be processed separately for co-registration since even a minimal problem in co-

registration would result in an unrealistic phase surge in neighboring burst interferograms (Duan et al., 2020). 

In this study, sub-swath 1 (IW1) and burst 1 to 3 covering the study region are selected for splitting using 

the Sentinel-1 TOPS split tool in SNAP. Following this precise orbit (AUX_POEORB) files are 

automatically downloaded and applied to eliminate orbit errors related to the position of the satellite while 

acquiring the images. Both the steps are applied to all the images, including reference and secondary ones. 

This process of image splitting and applying orbit files is carried out with the help of graph presented in 

Figure 17.   

Figure 17. Splitting sub-swath and applying orbit file. 

After which, co-registration (Coreg) of stored single burst reference and the secondary image is performed, 

resulting in interferograms (Ifg). The co-registration step requires the implementation of back geocoding 

and Enhanced Spectral Diversity (ESD) enhancement to attain maximum coherence. The back geocoding 

is known as initial co-registration, and ESD is called fine co-registration. Complex-valued SAR pixels are 

converted to a cartesian reference system during initial co-registration. Applying orbit files aids in proper 

initial co-registration between reference and secondary images. Subsequently, the ESD approach is utilized 

to eliminate further errors in the co-registration of reference and secondary burst images (Fattahi et al., 2017; 

Prats-Iraola et al., 2012). In this way, all the secondary images are co-registered to a single-reference image, 

forming a stack of co-registered single prime interferogram stacks. Totally, 26 single-prime interferograms 

for pre-Kaikōura and 62 for post-Kaikōura are generated using the graph created from the GPT of SNAP 

(Figure 18). Once the co-registration is performed, the Sentinel-1 TOPS Deburst method combines the 

neighboring bursts in generated interferograms. In order to maintain the highest resolution and, more 

significantly, not to average the coherent scatterers, no multi-look has been applied while creating 

interferograms. 
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Figure 18. Co-registration (Coreg) of reference and secondary images and interferogram (Ifg) formation.   

 

Then, the flat earth and topographic phase elimination are performed with the help of automatically 

downloaded Shuttle Radar Topography Mission (SRTM) 1 arc-sec HG DEM. The output from this step 

includes a topographic phase eliminated stack of single prime interferograms along with ortho-rectified 

latitude and longitude coordinates and altitude band utilised for further processing of PSI (Blasco et al., 

2019). 

 

Further processing of PSI is accomplished by exporting the co-registered stacks of single prime 

interferograms and topographic phase removed interferogram stacks using the StaMPS export tool in SNAP 

(Foumelis et al., 2018, Figure 19). 

 
Figure 19. Export of single prime interferogram stack for StaMPS based PSI processing.  

4.1.2. PSI processing 

In this research, the Stanford Method for Persistent Scatterers (StaMPS) version 4.1b scripts for Matlab 

created by Hooper et al. (2018) were used to extract surface deformation time series from the exported 

single prime interferogram stack from SNAP. The default parameter configuration of StaMPS 

implementation doesn’t always generate good quality results owing to the different natural settings of the 

study area. In order to achieve convincing deformation outputs, parameters for PSI StaMPS processing have 

to be configured (Balbi et al., 2021). StaMPS consists of 7 steps, from data preparation and loading for PSI 

processing to estimating spatially-correlated look angle error (SCLA, see Figure 15).  

 

In this study, the different parameter configuration is tested to acquire the best deformation results. 

Experiments are carried out on a Ubuntu 20.04.4 LTS14 based virtual computing unit (32 vCPU Intel ×86-

64, 768 GB RAM, NVIDIA RTX A4000 GPU). The most significant PSI processing parameters that are 

used in this study after multiple iterative experiments for extracting deformation time series are presented 

in Table 4. 
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Table 4. Appropriate parameters employed in this research. 

Parameter 
Associated StaMPS 

Script 

Step in 

StaMPS 

Standard 

values 

Period 

Pre-

Kaikōura 

(asc) 

Post-

Kaikōura 

(asc) 

Total Sentinel-1 scenes   - - 23 67 

Amplitude dispersion index 

(ADI) 
mt_prep_snap 1 0.4 – 0.42 0.42 0.42 

Maximum accepted 

uncorrelated DEM error 

(max_topo_err) 

max_topo_err 
2 

5 m 20 m 20 m 

CLAP15 filter window size  clap_win 32 32 32 

Maximum acceptable random 

phase density 
density_rand 3 20 km-2 20 km-2 20 km-2 

Acceptable threshold standard 

deviation for weeding pixel 
weed_standard_dev 

4 

1 – 1.2 1.2 1.2 

Weeding neighbouring pixel weed_neighbours No Yes Yes 

Weeding pixel lying in areas 

having zero elevation 
weed_zero_elevation No Yes Yes 

The size of unwrapping grid  unwrap_grid_size 

6 

200 50 50 

Size of the Goldstein filter's 

window 

unwrap_gold_n_win 32 16 16 

Smoothing window (in days) unwrap_time_win 730 365 365 

Estimation of phase ramp  scla_deramp 7 No Yes Yes 

Filter that is applied spatially scn_wavelength 

8 

100 50 50 

Filter that is applied temporally scn_time_win 365 50 50 

For eliminating tropospheric 

errors 

subtr_tropo 
No Yes Yes 

The technique used for 

atmospheric delay correction 

tropo_method 
‘a_l’ ‘a_gacos’ ‘a_gacos’ 

Reference longitude and latitude 
ref_centre_lonlat 

- - 
173.69, -

42.039 

173.69, -

42.039 

Reference radius ref_radius  - 100 m 100 m 

final density of PS per km2 - - - 109.65 58 

 

Initially, phase stability is determined with the help of amplitude dispersion index (ADI) for recognising 

candidate PS pixels having a constant phase signal over noisy random phase across the analysed period 

(Hooper, 2008). Since Kaikōura is a mountainous terrain with vegetation and bare rocks, the maximum 

acceptable threshold of ADI was increased from standard 0.4 to 0.42 in order to have more candidate PS 

pixels. Subsequently, random phase noise for every candidate pixel presenting in the single prime 

interferogram stack is estimated in the second step (Hooper et al., 2007). Scattering from different objects 

on the Earth surface lying within the same pixel generates phase noise which is sorted by employing iterative 

CLAP filter. By doing so, coherence of the candidate PS pixel is determined through time, which aids in 

determining PS pixel. In addition, DEM error is estimated and eliminated in this step by setting a maximum 

threshold for DEM error. In this study, the standard acceptable 5 m DEM error is increased to 20 m as the 

study area is a hilly terrain. 

 
15 Combined low-pass and adaptive phase filter 
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Following this, the maximum acceptable random phase density is fixed to 20 km-2 for having at least 20 

random phase pixels per km2. Consequently, the pixels with high random phase are eliminated by setting a 

threshold of standard deviation for random phase and neighbouring pixels arising from a similar DS having 

identical phase noise are weeded. In this study, the maximum acceptable standard deviation for weeding 

random phase was set to 1.2. In addition, the random phase in regions with zero altitude is eliminated since 

this study focuses on hillslopes. 

This step is followed by phase correction, wherein the SCLA DEM errors are fixed. Consequently, 

unwrapping of the wrapped phase between -π and +π is carried out in three dimensions (i.e., spatially two 

dimensions and temporally one) to extract a unique phase. Following this, SCLA errors arising from DEM, 

the orbit of satellite, and phase ramps are estimated and removed.  

 

Finally, the influence of the elevation-dependent atmospheric phase is eliminated by carrying out 

atmospheric correction using Toolbox for Reducing Atmospheric InSAR Noise (TRAIN). Since the 

considered study area is large (2300 km2), the phase-based linear atmospheric correction doesn’t control the 

influence of atmospheric phase that too especially in the complex hilly terrain such as Kaikōura (Bekaert et 

al., 2015). Hence, the GACOS dataset is employed in this study for eliminating the atmospheric delay. The 

phase delay caused by atmospheric errors is computed for each interferogram using the wavelength and 

look angle of the Sentinel-1 images (Karanam et al., 2021). This phase delay is then subtracted from each 

interferogram.  

4.2. Projection from VLOS to VSlope 

The deformation result extracted from PSI processing is available in sensor geometry as the LOS 

deformation vector, which is a one-dimensional representation of Earth surface deformation occurring in 

three-dimension (Hanssen, 2001). By combining the LOS deformation vectors of PS pixel observed in both 

ascending and descending images, horizontal and vertical deformation vectors can be obtained by 

decomposition (Blasco et al., 2019). The velocity in the LOS direction can be rewritten as a summation of 

vertical, east, and north velocity as follows (Hanssen, 2001): 

 

VLOS = VEast +VNorth +VVertical    (9) 

 

Since no descending images are available for the same period as ascending scenes, projecting one-

dimensional LOS deformation to horizontal and vertical deformation is not possible in this study. Otherwise 

a harsh assumption must be made. For instance, by projecting LOS deformation onto the steepest direction 

along the slope (Aslan et al., 2020; Notti et al., 2014; Teshebaeva et al., 2019; Yi et al., 2022). As such, the 

movement in non-slip direction is assumed to be marginal. Naturally, due to gravity, materials on the 

hillslope tend to move downslope and especially this is widely assumed for translational landslides wherein 

the displacement occurs parallel to the slope (Bianchini et al., 2013). Therefore, in this study, we make an 

assumption that materials on the hillslope displace downslope in the steepest direction (Figure 20), and the 

projection from LOS to the downslope direction is carried out using the following equation (Notti et al., 

2014): 

𝑉𝑆𝑙𝑜𝑝𝑒 =
𝑉𝐿𝑂𝑆

𝐶
       (10) 

Where VSlope is downslope velocity and C is the factor that provides info on the amount of downslope 

displacement (Notti et al., 2014). Factor C is estimated as follows (Aslan et al., 2020): 

𝐶 = 𝑁 × (cos(𝑆) × sin(𝐴 − 90𝜊)) + 𝐸 × (−1 × (cos(𝑆) × cos(𝐴 − 90𝜊))) + 𝐻 × (𝑆𝑖𝑛(𝑆))       (11) 



 

41 

Where S is the slope and A is the aspect derived from SRTM 1 arcsec DEM (~30 m) while the other 

parameters including N, E and H are estimated as follows: 

 N = cos(90° - α)×cos(180° - γ)      (12) 

E = cos(90° - α)×cos(270° - γ)    (13) 

H = cos(α)      (14) 

where α is the satellite’s heading azimuth and γ is the incidence angle. 

In certain regions, the factor C can be zero, which will make downslope velocity infinity. To avoid such 

scenario, the value of C is set to 0.3 when the range of C is between 0 and 0.3 and to -0.3 while the value 

vary between -0.3 and 0 (Kalia, 2018).  

Figure 20. Deformation velocity projection. (a) LOS deformation velocity, and (b) Vslope deformation 
velocity  

In this study, the conversion of VLOS to VSlope is performed using R and the workflow is presented in Figure 

21.  

 

Figure 21. Projection of VLOS to VSlope. (asc: ascending) 
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4.3. Detection of actively deforming PS pixels 

Following the generation of surface deformation time series with the help of the PS-InSAR technique, every 

single time series is methodically evaluated for discovering actively deforming points (Raspini et al., 2018). 

But analysing each time series manually would be a laborious task both in terms of time and computational 

effort, especially when the region under investigation is large. In order to overcome this problem, defining 

a critical stability threshold to the deformation velocity can aid in identifying those points that may be 

actively deforming. Also, by following such a procedure, stable points can be eliminated for further analysis, 

which reduces the burden on analysing deformation time series (Aslan et al., 2020).  

For identifying actively deforming points, there are two commonly used method in literature: a) setting a 

critical stability threshold of either one or two standard deviation for PS velocity  and b) using the hillslope 

velocity classification of Cruden and Varnes (1996). In the case of former method, those PS points whose 

absolute velocities are more than 1 or 2 standard deviations (σ) are considered ‘active’, and the rest are 

considered ‘stable’ (Aslan et al., 2020; Bekaert et al., 2020). In the latter method, for instance, Cigna et al., 

(2013) characterised those hillslopes having active deformation to be extremely slow-moving (-13 mm/yr ≤ 

VLOS < 16 mm/yr) and very slow-moving hillslopes (VLOS ≥ 16 mm/yr) based on Cruden and Varnes (1996) 

classification. Even though there is no lower threshold coined for extremely slow-moving hillslopes in 

Cruden and Varnes (1996) classification, the authors made an assumption in setting -13 mm/yr as the 

minimum threshold. Since the range of deformations is different in the case of pre-Kaikōura and post-

Kaikōura phases, using σ as a critical stability threshold will result in points having different ranges of 

velocity being classified as active and stable. To avoid such confusions, in this study, I coupled both 

approaches summarized above to differentiate active PS from stable ones. As a result, I set the common 

critical stability threshold as 10 mm/yr. This assumption well align with the literature (e.g., 13 mm/yr in 

Cigna et al., 2013) and the dataset I examined in which the one standard deviation of mean LOS velocities 

from post-Kaikōura phase is 8.44 mm/yr. Therefore in this study, those PS having mean LOS velocity equal 

or greater than ±10 mm/yr are classified as active points, while the rest are excluded as they are stable. 

Moreover, this procedure can aid us in removing pixels that are affected by shadow effects (Bekaert et al., 

2020). In addition, identified active PS are also sub-categorized as extremely slow-moving ( ±10 mm/yr ≥ 

VLOS < ±16 mm/yr) and very slow-moving (VLOS ≥ ± 16 mm/yr) PS (Cruden and Varnes, 1996) to 

characterise actively deforming slopes into extremely slow and very slow-moving hillslopes. This 

characterisation is elaborated in the Section 4.4.  

4.4. Spatial distribution of PS over different landscape characteristics 

A large number of earlier studies aim at revealing the relationship between rainfall and deformation in an 

area to understand the evolution of active deformations which are driven by rainfall (Bayer et al., 2018; Liu 

et al., 2022; Sun et al., 2015; Tong and Schmidt, 2016; Wang et al., 2022). In this research, the spatial 

distribution of PS across various landscape characteristics such as morphometric variables, seismic variable, 

and lithology are examined for understanding their association.  

Detected active PS are only used for the analysis in the case of morphometric variable and lithology whereas 

the entire PS pixels are employed for the rest. Even though such analyses are common while examining 

spatial distribution of co- and post-seismic landslides but they are rarely available in the case of analysing 

sub-meter deformation measurements of hillslopes extracted from PSI approach. Thus, in this study, I 

would like to provide insights on this matter via simple bivariate analyses between our PS data and a number 

of environmental factors governing hillslope deformation.  
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4.4.1. Morphometric variables 

The morphometric variables such as elevation and hillslope steepness are examined in relation to the entire 

PS that are obtained in this research during pre- and post-Kaikōura phases. These variables provide insights 

about the hillslope geometry and serve as an indicator in addressing the balance of stability factors acting 

on a hillslope (McColl, 2022). The void filled Shuttle Radar Topography Mission (SRTM) DEM of  1-arc 

second global having a spatial resolution of ~30m is used for extracting the elevation and slope steepness. 

In order to examine the entire PS with the altitude and slope steepness, multiple bins with equal space of 10 

mm are generated using the mean annual LOS deformation velocity. 

In addition, this research uses ‘r.geomorphons’ tool in the GRASS GIS (Jasiewicz and Stepinski, 2013) to 

generate various landform types to investigate if there is a prevalent occurrence of actively deforming PS 

across any landform elements (GRASS Development Team, 2021). This tool uses an automatic pattern-

based categorisation technique that uses DEM as an input for generating different landform types. Given 

the large areal extent of the study area, various landforms are observed. 

For classifying different landforms, local ternary patterns along with line of sight approach is employed 

(Ngunjiri et al., 2020). This approach helps to identify ten basic forms, including flat, peak, ridge, shoulder, 

spur, slope, hollow, footslope, valley and pit (Figure 22, Kramm et al., 2017). 

Figure 22. Representation of ten common landforms (Gruber et al., 2019). 

4.4.2. Seismic variable 

In this research, the PGA experienced during the co-seismic phase of the 2016 Kaikōura phase is examined 

with the PS showing the mean annual deformation velocity obtained during the post-Kaikōura phase. Such 

analysis is performed to understand the effect of PGA on post-seismic deformation. The entire PS is 

categorised into multiple bins having an equal space of 10 mm. 

4.4.3. Lithology 

The association between lithological control of actively deforming regions is rarely investigated in the 

literature. Such examination can help us understand and discover any geological formations that contribute 

to the active deformation. Xu et al. (2021) examined the lithological control of hillslopes in the entire western 

coastal region of the United States that are identified to have slow movement for understanding the 

influence of geology on them. Similarly, Bayer et al. (2018) investigated the influence of weak lithology on 

the slow-moving hillslopes in the Apennines. In this research, lithology of the study area obtained from the 
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LRIS16 portal ((https://lris.scinfo.org.nz/) is utilized in examining the relationship between lithology and 

detected actively deforming PS in the entire region of interest.         

4.5. Identifying and characterisation of slow-moving hillslopes 

Once the active pixels are detected by setting a common critical stability threshold, the pixel clustering 

approach is commonly used for selecting those regions having a group of active pixels which aids in 

excluding single noisy pixels (Aslan et al., 2020; Bekaert et al., 2020). The drawback of this approach is that 

clustering techniques don't consider the discrete process of slopes. In addition, this approach is only useful 

while generating deformation time series with SBAS as it produces a large number of deformation pixels.  

Therefore,  this study offers an alternative procedure wherein a topographic-driven approach is employed 

to identify slow-moving hillslopes using deformation velocity from PS pixels. This approach recognises the 

discrete movements of slopes, which includes the generation of slope units and further spatial analysis such 

as spatial join and boolean process for distinguishing slow-moving hillslopes. 

4.5.1. Generation of slope units 

Slope units are geomorphological topographic units which represent those regions 

that have similar slope and aspect (Alvioli et al., 2018). In other words, portions of 

terrain displaying homogeneity in terms of slope and aspect are preserved as a slope 

unit (Alvioli et al., 2016). These units represent what geomorphologist widely accept 

as a natural hillslope, and it is highly suitable for landslide related studies, including 

landslide mapping and landslide susceptibility modelling (Guzzetti et al., 2005). 

Earlier studies had aggregated a cluster of significant coherent scatterers lying on a 

hillslope that display active deformation to be slow-moving hillslopes rather than 

considering any terrain unit since processes that occur within a slope is mostly 

discrete (Bekaert et al., 2020). Even though slope units have been in use for 

landslide studies from 1988, it has been rarely used for identifying slowly moving 

hillslopes in combination with InSAR techniques (López-Vinielles et al., 2021). 

Thus, in this study, slope units are used to aggregate those coherent scatterers within a hillslope that are 

displaying active deformation. For delineating slope units, r.slopeunits developed by Alvioli et al. (2016) is 

used.  

4.5.2. Spatial join and boolean process 

After generating the slope units, the spatial join tool in Arcmap 10.8.1 is utilised to count the number of 

active PS pixels within a slope unit, which is a polygon. During the process, the target and join features are 

set to be the slope units and active PS pixel layers, respectively. Those active PS pixels which are entirely 

contained within a slope unit are counted, and one to one join operation is used. This creates a spatial join 

attribute for each slope unit, which contains the total number of active PS pixels contained within them. At 

this point, a PS threshold is defined to identify if a slope unit is slowly moving or not. Such an approach 

increases the reliability that the active deformation of PS is associated with hillslope processes and is not 

because of any individual unstable structures (Notti et al., 2014). In literature, atleast three to five actively 

deforming PS is utilised for identifying a slow-moving hillslope (Cigna et al., 2013; López-Vinielles et al., 

2021; Pawluszek-Filipiak et al., 2021). However, in this study, we safely assume that those slope units which 

contains ≥ 20 active PS are classified as slow-moving hillslopes rather than using 3 or 5 PS as a threshold. 

This ensures high reliability on capturing the slope processes, and those slope units having lower PS are 

marked as stable. In addition, the slow-moving hillslopes are further classified into extremely slow-moving 

( ±10 mm/yr ≥ VLOS < ±16 mm/yr)  and very slow-moving hillslopes (VLOS ≥ ± 16 mm/yr). If a slope unit 

 
16 Land Resource Information System (LRIS) 

Figure 23. 
Workflow for 

generation of slope 
units. 

https://lris.scinfo.org.nz/
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consists PS of both the classes, the mean of the average annual LOS deformation velocity for the entire 

hillslope is considered. 

4.6. Proposal of post-seismic hillslope deformation matrix 

In order to define the different state of sub-meter hillslope deformation activity before and after the 
Kaikōura earthquake, following two-dimensional post-seismic hillslope deformation matrix is implemented 
in this study (Table 5). The mean annual LOS deformation velocity of the entire hillslopes is used to define 
the state of activity of a hillslope. More complicated version of the PSI deformation-based activity matrix 
has been implemented in earlier studies such as Bianchini et al. (2012), Cigna et al. (2013), and Righini et al. 
(2011). However, these activity matrix proposed in earlier studies requires the multi-temporal landslide 
inventory to understand the long-term activity of the hillslopes in order to properly classify them. But, in 
this study, we used a rather simple approach for defining four types of sub-meter hillslope deformation 
activity during pre- and post-earthquake periods. 

It is assumed that four different types of hillslope activities can be captured with the help of the proposed 
activity matrix. The first type of activity is those hillslopes that are seen stable in the pre-seismic phase, 
which become active in the post-seismic period (Lacroix et al., 2014). The second type of activity can be 
actively deforming hillslopes that continues to deform actively after the large ground shaking experienced 
from the earthquake (Bekaert et al., 2020). Those actively deforming hillslopes that become stable during 
the post-seismic period are the third type of hillslope deformation activity. The ultimate type of hillslope 
deformation activity can be those hillslopes that remain stable during the pre- and post-seismic phases. 

Table 5. Activity matrix of hillslopes during pre- and post-Kaikōura phase. 

4.7. Analysing deformation time-series along with the visualisation of rainfall measurements 

 Once hillslopes having slow active deformations are identified, the deformation time series of such active 

slope units are analysed along with precipitation measurement in order to understand the impact of change 

in pore pressure and water table level on deformation evolution (Kang et al., 2021). In this study, the Google 

Earth Engine (GEE) is used to extract the daily precipitation from CHIPRS data (0.05 degrees spatial 

resolution) between the period of analysis (i.e., 2014 to 2018). Reducer function (ee.Reducer) from GEE is 

applied for obtaining the mean precipitation of interested slope units. The mean deformation of slope units, 

along with their standard deviation and daily mean rainfall measurement from CHIPRS data, is examined 

with the help of R, while some interesting individual active PS pixels are also visualised. 
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5. RESULTS  

This chapter describes the outcomes that are obtained as a result of following the methodology stated above 

in chapter 4.  

5.1. Mean annual LOS deformation velocity before the Kaikōura earthquake 

The average annual LOS deformation velocity of the study area before the Kaikōura earthquake as a result 

of processing 26 Single prime interferogram stacks of Sentinel-1 between 28 October 2014 and 10 

November 2016 ranges from -20.27 mm to 20.08 mm (Figure 24). It can be observed that the majority of 

the study area has a deformation between -5 mm/yr and 5 mm/yr in the pre-seismic phase, which is denoted 

by light green colour (Figure 24). These LOS velocities were calculated among 252,231 coherent PS pixels 

all over the study area. The positive values signify those regions of the study area moving toward the sensor, 

while those parts moving away from the sensor have a negative value. All the PS pixels are referenced to a 

stable region within the study area, denoted with a triangle symbol (see Figure 24). 

 
Figure 24. Mean annual LOS deformation rate expressed in mm is presented with the hillshade extracted 

from SRTM 1 arcsec DEM. 

The mean and standard deviation of the average annual LOS deformation velocities calculated during the 

pre-seismic phase are 0.98 mm and 3.86 mm, respectively (Figure 25). 
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Figure 25. Normal distribution of mean annual LOS deformation velocity during the pre-Kaikōura phase. 

The green line represents the mean value while the red lines correspond to the one standard deviation 
from the mean on both negative and positive sides. 

In order to understand the distribution of PS pixels during the pre-Kaikōura phase, different bins of mean 

annual  LOS deformation velocity are generated and examined with the altitude and slope steepness. The 

PS pixels moving towards the sensor (20 to 30 mm/yr) and away from the sensor (-20 to -30 mm/yr) are 

noted to be present below 500 m of elevation and 20 degrees of slope (Figures 26a and b). Nearly 75% of 

PS having velocity of -10 to -20 mm/yr lies between 500 and 2000 m elevation with a slope steepness of 20 

to 40 degrees (see Figures 26a and b). However, more than three quartiles of PS having a mean annual LOS 

deformation velocity of 10 and 20 mm/yr is observed in regions lower than 1000 m in altitude and within a 

slope steepness of 20 degrees (see Figures 26a and b).  



 

48 

 

 

 

Figure 26. Violin plots depicting the variation of (a) elevation and (b) slope steepness in relation to 
different bins of mean annual LOS deformation velocity extracted for the period before the Kaikōura 

earthquake. 

Figures 26 (a) and (b) show that pixels having active deformation (>|10|mm/yr or relatively high 

deformations) range in a relatively small interval compared to stable pixels (i.e., <|10|mm/yr). This implies 

that conditions governing the existing of actively deformed hillslopes are bounded by environmental 

variables, whereas stable hillslopes are spread all over the study area.   

 

5.2. Mean annual deformation velocity after Kaikōura earthquake 

The average annual deformation velocity of the study area after the 14 November 2016 Kaikōura earthquake 

until December 2018 ranges between -54.1 mm and 39.1 mm (Figure 27). Deformation from nearly 134,810 

PS pixels is used in calculating this mean annual LOS deformation velocity after the earthquake. Two 

extreme deformations indicated with blue (Figure 27a) and red (Figure 27b) colour variations relating to 

movements away from the sensor and towards the sensor are noted in hillslopes north of the Kekerengu 

fault, and Jordan thrust fault, respectively.       
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Figure 27. Mean annual  LOS deformation velocity during the post-Kaikōura period (November 2016 – 

December 2018). The regions in darker blue (a) and red (b) denote the parts of the study area experiencing 
movement towards the sensor and away from the sensor, respectively. 

The stable area chosen for reference in the Post-Kaikōura deformation analysis is the same as the pre-

Kaikōura deformation analysis, which is denoted by a triangle symbol. The average annual LOS deformation 

velocity of the entire study area post-earthquake is around -1.41 mm, and the standard deviation is about 

8.44 mm (Figure 28).  

To understand the variability of PS pixels having different deformation rates, ten bins of mean annual LOS 

deformation velocity, each having a 10 mm interval, are created and investigated with elevation, slope 

steepness, PGA, and distance to fault rupture of the study area (Figure 29a, b, and c). Interestingly, PS 

experiencing an uplift of 20 to 40 mm/yr are observed in regions with elevations lower than 1000 m, yet 

the slope steepness differs between 0 and 60 degrees (see Figure 29a and b). Contrarily, the PS pixels 

experiencing subsidence higher than -40 mm/yr are noted in places with an altitude more prominent than 

1000 m, and 75% of data lies in terrain having a slope of 20 to 40 degrees (see Figures 29a and b). 

Furthermore, the pixels having deformation between -10 and 10 mm/yr are seen all over the study area.   
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Figure 28. Normal distribution of mean annual LOS deformation velocity during the post-Kaikōura phase. The 

green dash line represents the mean, while the red line corresponds to the one standard deviation. 

The PGA is not included in analysing the variability of pre-Kaikōura LOS deformation because ground 

shaking is experienced during and after the co-seismic period and not earlier than that. From the 

investigation, it is observed that PS having higher deformation either moving away from the satellite (-40 to 

-60 mm/yr) or towards the satellite (20 to 40 mm/yr) are primarily found in regions that experienced PGA 

larger than 0.6 g during the earthquake (see Figure 29c). Overall, the larger the ground shaking, the higher 

the post-seismic deformation. 
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Figure 29. Violin plots showing how (a) elevation, (b) slope steepness, and (c) PGA vary in response to 
various bins of mean annual LOS deformation velocity retrieved following the Kaikōura earthquake. The 

red dot in the middle represents the mean values in the respective bins. 

5.3. Comparison of deformation rate before and after the Kaikōura earthquake 

The deformation rate in the study area before and after the earthquake is quantitatively compared to 

understand the change in deformation velocity in the entirety (Figure 30). In general, the mean annual LOS 

deformation velocity shows an approximately 130% absolute increase in the post-Kaikōura phase compared 

to its pre-seismic counterpart. The PS having velocity between -10 and +10 mm/yr decreased from 248,300 

in the count during the pre-Kaikōura phase to 112,287 in the post-Kaikōura period, nearly 55% reduction 

in the number of PS pixels (See Figure 30). Similarly, 705 PS exhibiting a deformation velocity of -10 to -20 

mm/yr before the earthquake increased to 11,924 PS after the event (See Figure 30). There is a 38% increase 

in the PS pixels that displayed a deformation rate of 10 to 20 mm/yr during the post-Kaikōura phase.  

Figure 30. Comparison of PS point counts during pre- and post-Kaikōura by generating mean LOS 

deformation velocity bins. 
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5.4. Downslope velocity before the earthquake 

After extracting the deformation of the study area in the LOS direction, it is projected to downslope velocity. 

Since there is no availability of descending images in the same period of analysis, we used the formulation 

from Aslan et al. (2020) for projecting deformation in the LOS direction to the downslope direction. During 

the pre-Kaikōura phase, the downslope velocity ranges between a minimum of -63.88 mm/yr and a 

maximum of 67.58 mm/yr (Figure 31). 

Figure 31. Mean annual Vslope velocity (mm/yr) during the pre-Kaikōura period. 

The mean annual downslope velocity is around 1.31 mm/yr, and the standard deviation is about 11.14 

mm/yr (Figure 32). 

Figure 32. Histogram of mean annual downslope deformation velocity before the Kaikōura earthquake. 
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5.5. Downslope velocity after the earthquake 

During the post-Kaikōura phase, the mean annual downslope deformation velocity is observed to range 

between -170.23 mm/yr and 159.01 mm/yr (Figure 33). The mean and standard deviation of downslope 

velocity after the Kaikōura earthquake between 16 November 2016 and 24 December 2018 is about -3.57 

mm/yr and 22.48 mm/yr (Figure 34). 

 
Figure 33. Mean annual downslope velocity during the post-Kaikōura phase. 

 

 
Figure 34. Histogram of mean annual downslope velocity after Kaikōura earthquake. 
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Notably, in both phases, downslope velocity is higher than that of the LOS velocity, which is in line with all 

other studies in the literature that used similar formulations other than ascending and descending LOS 

deformation for the decomposition of deformation into different directions. It also implies that actual 

deformation is in the downslope direction. In this study, the mean annual LOS deformation velocity is 

further used for identifying the pixels that have abnormal deformation over time.        

5.6. Active PS pixels detection 

The detection of actively deforming PS is carried out by setting a critical stability threshold of 10 mm/yr to 

the LOS deformation. The same critical stability threshold is applied for mean annual pre- and post-

Kaikōura LOS deformation velocity (Figures 35a and b). Despite low PS pixels during the post-Kaikōura 

phase, it is quite observable that the number of PS having a mean annual deformation velocity equal or 

larger than the defined critical stability threshold is higher in the post-Kaikōura phase than its counterpart 

(see Figures 35a and b). This is mainly due to the increase in the deformation velocity of the study area after 

the Kaikōura earthquake.  

 
Figure 35. Histogram highlighting the active PS pixels as blue bars from the stable PS pixels displayed as 

grey bars. 

 

Out of 252,231 PS that were detected in the pre-Kaikōura period, nearly 2,599 PS pixels are classified as 

active, which is 1.03 % of the entire PS. About 19,446 PS pixels are identified as active in the post-Kaikōura 

period, which amounts to 14.42 % of total PS found. 
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After classifying and detecting the active PS, they are further classified into two types of slow-moving PS, 

namely, extremely slow-moving and very slow-moving PS. In the pre-Kaikōura phase, about 98.73% (2566) 

of active PS comes under extremely slow-moving while the rest (33) is very slow-moving PS (Figure 36). 

During the post-Kaikōura phase, 10,641 and 8,805 PS out of 19,446 is identified as extremely slow-moving 

and very slow-moving PS, respectively (see Figure 36). A large number of very slow-moving PS denoted by 

red colour (Figure 37) are observed in hillslopes north of the Jordan thrust fault and south of the Uwerau 

fault. It is also noted in the coastal region of the study area, especially near Hapuku (see Figure 37). The 

hillslopes located in the northwest region above the Awatere fault of the study area also consist of a higher 

density of very slow-moving PS pixels (see Figure 37).  

 

Figure 36. Extremely slow-moving (ESM) and very slow-moving (VSM) PS pixels during pre- and post-
Kaikōura phases. 
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Figure 37. Spatial distribution of extremely slow-moving and very slow-moving PS pixels during pre- and 
post-Kaikōura periods. 
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5.7. Spatial distribution of active PS in different landforms 

Before analysing the distribution of active PS across diverse landforms, aerial coverage of landform elements 

in the study area is presented in Figure 38 and Figure 39, respectively. All the ten typical landforms are 

present in the area of interest, with slope and spur covering more than half of the entire region (see Figure 

39). On the other hand, flat and footslope are the landforms with the least aerial coverage. In contrast,  

hollow (18.79%), valley (11.25%), and ridge (10.29%) cover  40.85% of the study area in total (see Figure 

39). The spatial resolution of SRTM-1 arcsec DEM could be a reason for the least area being classified as 

footslopes and flat landform (Ngunjiri et al., 2020).  

Figure 38. Spatial distribution of ten common landforms identified in the study area.  

Figure 39. Aerial coverage of different landforms in the study area with their percentage. 
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Actively deforming PS pixels (extremely slow-moving and very slow-moving) are largely observed in 

landforms such as slope, spur, ridge, hollow, valley, and summit during the pre- and post-Kaikōura phase 

(Figures 40a and b). It is also visible that there is a significant increase in the number of PS moving very 

slowly in the post-Kaikōura compared to its counterpart (see Figure 40). 

Figure 40. Distribution of extremely slow-moving and very slow-moving PS pixels over different geomorphons 

present in the study area during (a) pre-Kaikōura and (b) post-Kaikōura period. 

5.8. Lithological control of actively deforming PS 

Lithology of the study area is relatively identical and is largely covered by greywacke. Therefore, most of the 

actively deforming PS in both pre- and post-Kaikōura phases is observed in greywacke. Weakly consolidated 

conglomerate and mudstone consist of more active PS, especially extremely slow-moving, after greywacke 

in the pre-Kaikōura period. But in the case of the post-seismic phase, limestone had the most very slow-

moving PS pixels, while the alluvium flood plain consisted of the most extremely slow-moving PS after the 

greywacke.   

 
Figure 41. Distribution of extremely slow-moving and very slow-moving PS across different lithological 
units before (a) and after (b) the earthquake. Al – undifferentiated flood plain alluvium, Gw – greywacke, 
Vo - lavas and welded ignimbrites, Lo – loess, Ms – mudstone, Cw - weakly consolidated conglomerate, 
Hs – sandstone (strong), Ss- sandstone (weak), Wb – windblown, In – ancient volcanoes, Ls – limestone, 

Pt – peat, Tb – pyroclastics. 
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5.9. Slope units 

In total, the region of interest of this study consists of 5104 slope units with an average area of about 450,804 

m2 and a standard deviation of 390935 m2 (Figure 42). The maximum size of the slope unit was around 

3,806,250 m2. 

Figure 42. Delineated slope units of the study area overlaid on aspect and hillshade. 

5.10. Identification of actively deforming hillslopes 

Actively deforming PS are spatially joined with delineated slope units for identifying actively deforming 

hillslopes in the study area. Slope units with equal or more than 20 actively deforming PS are classified as 

actively deforming hillslopes. Such actively deforming hillslopes are further classified into extremely slow-

moving and very slow-moving hillslopes based on the average LOS velocity of the hillslopes. By doing so, 

it is identified that nine actively deforming hillslopes were present in the study area before the Kaikōura 

earthquake between October 2014 and November 2016 (Figure 43), which comes under the category of 

extremely slow-moving hillslopes. After the Kaikōura earthquake, between November 2016 and December 

2018, nearly 243 hillslopes are actively deforming (Figure 44). Out of 243 actively deforming hillslopes, 141 

are found to be extremely slow-moving, and 102 are observed as very slow-moving.  

 

The hillslopes which are detected to be active before the 2016 Kaikōura earthquake have an area of 1.32 

km2 on average (Figure 45a), while their average slope is 20.74° (Figure 45b). The actively deforming 

hillslopes that are identified during the post-seismic phase have an average area of about 0.83 km2 (Figure 

46 a), with hillslopes having minimum and maximum areas of about 0.12 km2 and 3.8 km2, respectively. 

Their average slope is around 29.3°, while the minimum and maximum slope of hillslopes range between 

8.77 and 39.29° (Figure 46 b).    

The density of active PS within actively deforming hillslopes during the pre-Kaikōura phase ranges between 

13.14 km2 and 57.5 km2 (Figure 47a), while PS density in active hillslopes during the post-Kaikōura phase 

varies between 5.52 km2 and 450.9 km2 (Figure 47b). Higher the PS density, the reliability of the active 

deformation finding is more considerable (Cigna et al., 2013).   
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Figure 43. Actively deforming hillslopes identified during the pre-Kaikōura phase superimposed on 
World Imagery basemap. The active PS pixels are overlaid upon hillslopes in the insert maps (a, b, c and d) 

(ESMH: Extremely slow-moving hillslope). 

 

Figure 44. Actively deforming hillslopes during the post-Kaikōura phase till December 2018 overlaid 
upon World Imagery basemap (ESMH: Extremely slow-moving hillslope, VSMH: Very slow-moving 

hillslope). 
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Figure 45. Distribution of surface area (a) and average slope (b) in degrees of actively deforming 

hillslopes (ADH) before the Kaikōura earthquake. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 46. Distribution of surface area (a) and mean slope in degrees of actively deforming hillslopes 

(ADH) after the Kaikōura earthquake. 

Figure 47. PS density per hillslope during (a) pre- Kaikōura and (b) post- Kaikōura phase is created with 

the detected active PS. 

(a) (b) 

(a) (b) 
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5.11. Post-seismic hillslope deformation matrix 

Four types of sub-meter hillslope deformation activity have been observed in the study area (Figure 48), as 

described in Section 4.6, Table 5. According to the post-seismic hillslope deformation matrix presented in 

Table 5, 239 new actively deforming hillslopes were identified during the post-Kaikōura period, which was 

stable before the 2016 Kaikōura earthquake (Type I: SA). There are four hillslopes that are observed to be 

active during both pre- and post-Kaikōura phases (Type II: AA). Nearly five of actively deforming hillslopes 

are noticed to have become stable after the earthquake, which is classified as the third type of hillslope 

deformation activity (Type III: AS). Finally, 4856 hillslopes are observed to have stable kinematics before 

and after the Kaikōura earthquake (Type IV: SS).   

 

Figure 48. Different types of sub-meter hillslope deformation activity classes observed in the study area. 

 

Also, I checked the spatial distribution of hillslopes associated with both presence of co-seismic landslides 

and active hillslope deformations (Figure 49). Results show that nearly 127 hillslopes that are found to be 

actively deforming in the post-Kaikōura phase is affected by the co-seismic landslides that occurred during 

the mainshock of 2016 Kaikōura earthquake (see Figure 49). About 116 hillslopes that are not affected by 

the co-seismic landslides are discovered to be having active sub-meter deformations (see Figure 49). 
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Figure 49. Different types of actively deforming hillslopes associated with presence of co-seismic 
landslides. 

5.12. Evolution of hillslopes affected by the 2016 Kaikōura earthquake 

It is evident from the previous sections that hillslopes present in the study area were significantly impacted 

by the 2016 Kaikōura earthquake, which had a magnitude of 7.8. Now, I will examine the first three types 

of post-seismic hillslope deformation classes in detail below with the deformation time series and visual 

examination of daily precipitation from CHIRPS data using one representative hillslope in each class.  

5.13. Type-I (SA) 

Apart from triggering a large number of co-seismic landslides, the 2016 Kaikōura earthquake is found to 

have initiated active deformation in 239 hillslopes across the study area, which were seen to be inactive 

before the large seismic event. Out of 239 hillslopes, 129 belong to the extremely slow-moving hillslope 

category, while the rest are very slow-moving hillslopes. This way doing a pre-seismic deformation analysis 

even for a shorter period helps us to know if a hillslope is already active before the earthquake.  

 

Since there are more than 200 hillslopes in this evolution type, here, only a few six of those hillslopes are 

exemplified with their deformation time series and daily precipitation.  
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The first representative hillslope depicts the evolutionary history of how a stable hillslope is metamorphosed 

into a very slow-moving landslide with an absolute mean annual LOS deformation velocity of greater than 

16 mm/yr owing to the impact of a high magnitude earthquake (Figure 50). It is located 89 km northeast 

from the epicenter of the Kaikōura earthquake and just above the Jordan thrust fault, which experienced a 

significant slip during the 2016 event (Diederichs et al., 2019). The slope gradient of the hillslope ranges 

between 3.03° and 60°, with an average elevation of 1,053 m. The hillslope has an area of about 1.4 km2, 

and the scarp region, which is identified to be active with the help of PSI in the post-Kaikōura phase, is 

around ~0.45 km2. There is a lack of PS coverage over the densely vegetated body and toe of the hillslope 

owing to the temporal decorrelation. Yet, a small region devoid of vegetation in the body of the hillslope is 

observed to contain a few PS, which are also actively deforming in the post-seismic phase (see Figures 50a 

and b). However, the PS located in the toe of the hillslope is inactive during the post-seismic period (see 

Figure 50b).  The annual average LOS and downslope deformation velocity of the entire hillslope vary wildly 

in the periods before and after the 2016 Kaikōura earthquake (Figures 50c and d). The mean LOS 

deformation velocity of the hillslope is 2.5 mm/yr during the pre-seismic phase and -31.51 mm/yr after the 

earthquake (see Figures 50c and d).  

Figure 50. PS pixels identified during (a) pre-Kaikōura and (b) post-Kaikōura phase exhibiting mean LOS 
deformation velocity (c-d). 

Similarly, the hillslope experienced  6.5 mm/yr and -78.76 mm/yr of mean downslope deformation velocity 

before and after the seismic incident, respectively. The maximum and minimum average LOS deformation 

velocity experienced by the hillslope during the pre-seismic phase is 12.21 mm/yr and -3.6 mm/yr. In 

contrast, it is observed to be -2.64 mm/yr and -45.18 mm/yr during the post-seismic phase, respectively. 

The pre-Kaikōura deformation results show that the hillslope is stable between 2014 and 2016, right before 

the earthquake.  

To understand how the deformation of the hillslope varies in different time steps before and after the 2016 

Kaikōura earthquake, the deformation time series of the entire hillslope along with two selected PS points, 

one on the scarp and another located on the body of the hillslope is visualised along with the daily 

precipitation from CHIRPS data, which has a spatial resolution of about 5 km (Figure 51a, b, c, and d). It 

can be noted from the linear trend of deformation that the hillslope was inactive during the pre-Kaikōura 

phase (see Figure 51a) and began to show a sudden increase in the deformation rate after the earthquake 
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(see Figure 51b). In addition, the deformation time series exhibit seasonal deformation during the post-

Kaikōura phase (Figure 51b, d, and f). Nearly a cumulative LOS displacement of about 100 mm is witnessed 

in the entire hillslope between November 2016 and December 2018 (Figure 51b). There is a gradual decay 

in the deformation velocity during the post-Kaikōura period, which can be observed from the average 

deformation time series of the hillslope (see Figure 51b). 

 
Figure 51. Example of Type-I (SA) hillslope represented by mean LOS deformation time series (a-b) and 

LOS deformation of two PS points located inside the hillslope (c-f) during pre-Kaikōura and post-
Kaikōura phases.  

5.14. Type-II (AA) 

The second important evolution type noticed in this study is the active deformation of hillslopes before and 

after the earthquake. Four hillslopes were found to be having such evolution after the 2016 Kaikōura 

earthquake, among which one hillslope is presented with active PS and their respective deformation time 

series for each phase before and after the earthquake (Figure 52). Among the four hillslopes, two were 

affected by co-seismic landslides during the mainshock of the earthquake in 2016 and still continue to 

deform actively in the post-seismic phase. The representative hillslope which is discussed for this 

deformation evolution type is not affected by the co-seismic landslide. The hillslope is located 94.5 km away 

from the earthquake epicenter and has an area of about 1.01 km2. This hillslope is found to be extremely 

slow-moving before the 2016 earthquake (see Figures 52c and d), which continues to be the same after the 

event but with a change in the deformation velocity. The mean LOS deformation velocity of hillslope slightly 

increased from -11.64 mm/yr during the pre-Kaikōura phase to -12.12 mm/yr in the post-Kaikōura phase 

(see Figures 52c and d)). The region below the source area is identified to be actively deforming before and 
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after the seismic event (see Figures 52a and b). The deformation time series also confirms the active 

movement of hillslope during both pre- and post-Kaikōura phase (Figure 52e and f). 

 

Figure 52. Example of hillslope evolution Type-II (AA) represented with active PS of a representative 

hillslope (a and b) along with the histogram of its mean LOS velocity (c and d) and its respective 

deformation time series (e and f) during pre- and post-Kaikōura phase. 

5.15. Type-III (AS) 

The third evolution type that is observed in the study area is the stabilisation of hillslopes in the post-

Kaikōura phase that are found to be extremely slow-moving in the pre-Kaikōura phase. There are five 

hillslopes in this category, among which only one is affected by co-seismic landslides during the mainshock 

while the rest of the hillslopes are not. In this type, a representative hillslope is presented, for example, which 

is not affected by the co-seismic landsliding.  

The representative hillslope is about 98.01 km northeast of the earthquake’s epicenter and has an area of 

about 0.81 km2 (Figure 53). The hillslope has a positive mean LOS deformation velocity before and after 

the earthquake (see Figure 53a-d). However, the hillslope is observed to have extremely slow movement 

before the earthquake, with mean LOS deformation of about 11.66 mm/yr (see Figure 53c). In the post-

seismic phase, there is a decrease in the deformation velocity to 6.43 mm/yr, which is below the active 
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deformation threshold (see Figure 53d). The deformation time series can be seen supporting this type of 

hillslope deformation evolution (see Figure 53e and f). 

 

 

 

Figure 53. Example of hillslope evolution Type-III (AS) represented with active PS of a representative 
hillslope (a and b) along with the histogram of its mean LOS velocity (c and d) and its respective 

deformation time series (e and f) during pre- and post-Kaikōura phase. 
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6. DISCUSSION 

Understanding the evolution of hillslopes affected by intense seismic shaking helps to better evaluate post-

seismic hazards and risks, as well as plan management and mitigation measures. So far, there has been a 

large body of literature available on studying the impact of earthquake legacy effect on the post-seismic 

evolution of rapidly collapsing hillslopes (Chen et al., 2020; Fan et al., 2018; Kincey et al., 2021; Shafique, 

2020; Tang et al., 2016; Tanyaş et al., 2021a, 2021b; Wang and Mao, 2022), while there are only a few studies 

(Cai et al., 2022; Cheaib et al., 2022; Lacroix et al., 2022) carried out on examining the same on the evolution 

of extremely slow and very slow-moving hillslopes in an earthquake-affected region. To the best of our 

knowledge, such documentation on the impact of the earthquake legacy effect has not been carried out for 

the hillslopes that become active with a sharp surge in the velocity during the post-seismic period yet. This 

research focuses on addressing such prevailing knowledge gap in the existing literature by attempting to 

capture the varying deformation dynamics exhibited by the active hillslopes in the range of millimeters to 

centimeters before and after the mainshock of the 2016 Kaikōura earthquake in order to understand their 

evolution triggered by the earthquake. The findings of this study offer the first comprehensive illustration 

of how a large magnitude earthquake alters the dynamics of the stable hillslopes owing to its impact. The 

area affected by the 2016 Kaikoura earthquake, which had one of the most intricate rupturing mechanisms 

ever documented in history (Hamling et al., 2017), is covered by greywackes that are widely observed for 

deep-seated active hillslopes (Korup, 2008; Jelének and Kopačková-Strnadová, 2021; Massey et al., 2018b, 

2020; Singeisen et al., 2022; Tanyaş et al., 2022; Cruden and Varnes, 1996; WP/WLI, 1995). 

Although intense ground shaking from large seismic events frequently causes landslides, hillslopes activated 

by the earthquake with sub-meter displacement are difficult to detect in active mountainous terrains. 

Employing the MT-InSAR technique can help in finding such hillslopes triggered by the earthquake having 

sub-meter deformation and understanding their evolution over time after the event. In this context, this 

research has two main novelties. First, this research developed and showcased a novel systematic approach 

for identifying active hillslopes which are already existed before and those that were generated after the 

impact of the 2016 Kaikōura earthquake. The proposed technique could be transferable to other earthquake-

affected areas to unveil the evolution of the hillslopes in post-seismic periods. Ultimately, by analysing and 

comparing the changes in the deformation time series of those detected active hillslopes during immediate 

pre- and post- Kaikōura phases, this study has found four types of hillslope evolution, among which three 

are the most significant. The results of this study for the first time, documented an abrupt increase in the 

number of active deforming hillslopes which are identified immediately during the coseismic. By identifying 

and monitoring such active hillslopes triggered by the earthquake for a long term can help in making well-

informed management decisions to prevent those active slopes from failing catastrophically owing to 

acceleration from further external triggers, which can save people’s life and property (Lacroix et al., 2020). 

Second, for the first time, SUs are used in this study to aggregate actively deforming PS contained within 

them to identify active hillslopes rather than using the standard pixel density clustering approach as 

employed by Bekaert et al. (2020) and Aslan et al. (2020). Below, I will discuss the findings of this research 

further as well as the methodological preferences I made during the analyses. 

6.1. Classification of hillslopes based on surface deformations 

In this research, the landslide velocity classification from Cruden and Varnes (1996) is used to define the 

critical stability threshold and also the velocity limit between extremely slow-moving and very slow-moving 

PS. Such an approach was also used by Cigna et al. (2013). However, a large number of studies combine 

these both velocity classes into a single category and term them collectively as the slow-moving hillslopes 
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(Handwerger et al., 2013; Lacroix et al., 2020). In this research, there is a sudden increase of PS having very 

slow movement in the post-Kaikōura phase compared to its counterpart (see Figure 37).  

Overall, this study found 243 hillslopes actively deforming after the impact of the 2016 Kaikōura earthquake, 

among which nine hillslopes were already found to be active before the event, however, their deformation 

velocity was extremely slow (see Figure 43 and 44).  Cai et al. (2022) reported such activation of new actively 

deforming hillslopes affected by 2017 Jiuzhaigou earthquake. The findings suggest that the average slope 

angle of actively deforming hillslopes identified during the post-Kaikōura phase is gentle (29.3°). However, 

there are slopes which are seen in more steeper slopes above 35° in the study area. Bekaert et al. (2020) 

documented that slow-moving hillslopes identified in the region affected by the 2015 Gorkha earthquake 

have an average slope of 22°. Xu et al. (2021) reported that nearly more than 500 active hillslopes detected 

in the western coast of the United States have slope angles from 5° till 30°. In addition, most of the co-

seismic landslides, excluding Wenchuan landslide inventories, have an average slope angle of 27°, and 80% 

of all landslides have a slope angle between 10° and 45° (Tanyaş et al., 2017).       

Most importantly, this study found four types of hillslope evolution by proposing a generic PSI matrix (See 

Figure 48). The first type is those hillslopes which were stable before the earthquake that became active after 

its impact. This research also confirms the same with the help of deformation time series (see Figure 50). 

Such evolution is mainly attributed to the intense seismic shaking, which reduces the strength of the hillslope 

(Brain et al., 2017). However, it is not known if these hillslopes were historically active before 2014. Similar 

evolution of hillslopes was also reported in the very recent research of Cai et al. (2022) and Cheaib et al. 

(2022). Both studies also verified the same with deformation time series information. The second type of 

evolution observed is those hillslopes that are active before and after the earthquake. It is also found that 

there are both acceleration and deacceleration in the mean deformation velocity during the post-Kaikōura 

phase compared to the pre-Kaikōura phase. Bekaert et al. (2020) reported a similar evolution of active 

hillslopes before and after the 2015 Gorkha earthquake. However, Cai et al. (2022) found that there was a 

acceleration in the deformation velocity of active hillslopes after the 2017 Jiuzhaigou earthquake impact. 

Based on analysing the deformation time series Cheaib et al. (2022) document that active hillslope being 

accelerated during the immediate phase close to the mainshock which decreases later. This research also 

found that four hillslopes that were active before the earthquake became stable after its impact. Such 

evolution can be owing to the intense seismic shaking. Lastly, a large number of hillslopes are found to 

behave stable before and after the 2016 Kaikōura earthquake.   

6.2. Similarities between abrupt co-seismic and slow-moving post-seismic deformations  

 

My analyses on the spatial distribution of surface deformations over the study area with respect to various 

environmental variables provided some new insight helping us to better understand factors governing 

hillslope deformation in post-seismic periods. In fact, some of those observations, which are discussed 

below, also showed similarities with variables controlling the spatial distribution of co-seismic landslides.   

For instance, analysing the mean annual LOS deformation velocity of pre- and post-Kaikōura with elevation 

and slope angle in the former case, and with elevation, slope angle and PGA in the latter case reveals some 

interesting results which haven’t been explored in other studies concerning evolution of hillslopes having 

active movements. Firstly, the PS having deformation between -10 mm/yr and +10 mm/yr is observed all 

over the study area during both the pre- and post-Kaikōura phase. However, most of the PS that is moving 

away from the sensor having deformation velocity less than -10 mm/yr are seen in regions with higher 

altitude and large slope angle, while PS that are moving towards the sensor with a deformation velocity 

greater than +10 mm/yr are observed in lower elevations and slope angle (see Figure 26 and Figure 29). 

This observation is true in the case of both pre- and post-Kaikōura phases. It is contemplated that the PS 
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experiencing negative deformation velocity (movement away from the sensor) are mostly related to the 

hillslope activities, while those experiencing positive deformation velocity (movement towards sensor) are 

chiefly associated with the fluvial processes that take place in the foothills of the study area. 

Another important revelation that has been found in this research is the relationship between post-seismic 

deformation velocity and PGA recorded during the main shock of the 2016 Kaikōura earthquake. From 

examining the spatial distribution of active PS over the study area, it is found that most of the VSM PS 

detected in the post-Kaikōura phase are concentrated around rupturing zone where the landscape was 

exposed to higher ground shaking during the 2016 mainshock. Such an observation is also valid for the co-

seismic landslides triggered by the 2016 Kaikōura earthquake, as majority of the landslides occurred close 

to the fault rupture zone (Massey et al., 2020).  

More specifically, nearly most of the larger negative (-40 to -60 mm/yr) and positive (20 to 40 mm/yr) 

deformation velocities are associated with PGA greater than 0.6 g. Such a trend is also witnessed in the case 

of distribution of co-seismic landslides triggered by the 2016 Kaikōura earthquake, where three quartiles of 

co-seismic landslide distribution are observed in places that experienced PGA between 0.5 g and 0.7 g 

(Tanyaş et al., 2022). Similarly, by analysing more than 30 earthquake events and co-seismic deformation, it 

is found by Petricca et al. (2021) that higher deformation is often associated with the region experiencing 

elevated PGA.  Huang et al. (2017) reported similar findings wherein the deep-seated landslides triggered 

by the 2016 Amatrice earthquake (Mw=6.2) in Italy had PGA larger than 0.5 g. In the same line with the 

co-seismic landslide literature, I also found out that the earthquake legacy effect is also more persistent on 

hillslopes exposed to strong ground shaking. 

Also, VSM PS detected after the 2016 Kaikōura earthquake impact mostly appears in the higher elevated 

landforms such as slope, spur, ridge, and summit than in the landforms that are found in the lower altitudes 

such as footslope and depression landforms (see Figure 40). Such observation is also consistent with that of 

co-seismic landslides triggered during the mainshock of the 2016 Kaikōura earthquake (Tanyaş et al., 2022). 

This finding provides evidence that the occurrence of active PS in the higher section of the topographic 

profile is associated with topographic amplification, which is so far reported only in the case of co-seismic 

landslides (Rizzitano et al., 2014). In addition, such a distribution can also be slightly attributed to the fact 

that the higher topographic region of the study area is mostly devoid of vegetation, while the lower terrain 

other than the drainage system is covered with dense vegetation. Thus, higher PS density can be observed 

in the higher topographic profile than the other except for the valley region (see Figure 40).         

Overall, the results of this study suggest that the impact of the 2016 Kaikōura earthquake has massively 

increased the mean annual LOS deformation velocity by 130% in the study area during the post-Kaikōura 

phase till 2018. Given the fact that the region is affected by a large magnitude earthquake that involves 

surface rupture of more than 11 fault planes (Hamling et al., 2017), itself is enough to support the surge in 

the post-seismic deformation velocity. In fact, the increase in the average annual deformation velocity in the 

LOS direction is largely observed near the fault rupture plane, as one can expect. Such an abrupt increase in 

the LOS deformation velocity is also observed in the case of the 2015 Gorkha earthquake, even two years 

after the event, which had the same magnitude as the 2016 Kaikōura earthquake (Bekaert et al., 2020). 

The study area is mostly covered by greywacke formation and as a natural consequence of this a large 

quantity of the detected active PS is observed in greywacke, which is a sedimentary rock type (see Figure 

41). Before the earthquake, most of the active PS were observed weakly consolidated conglomerate and 

mudstone next to greywacke (see Figure 41a). After the earthquake, limestone had the most very slow-

moving PS pixels, while the alluvium flood plain consisted of the most very slow-moving PS after the 

greywacke (see Figure 41b). Xu et al. (2021) documented that sedimentary rocks are largely associated with 
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shallow and modest active hillslopes owing to their higher shear strength than compared to metaphoric 

rocks. However, I observed a tremendous surge in the VSM PS in regions covered by greywacke during the 

post-Kaikōura phase than in the pre-Kaikōura phase. This can also be due to the reduction in the shear 

strength of the greywacke caused by the intense ground shaking during the mainshock of the Kaikōura 

earthquake (Brain et al., 2017). In addition, the distribution of active PS over different lithology type is in 

line with that of co-seismic landslides that occurred during the 2016 Kaikōura earthquake (Tanyaş et al., 

2022). 

6.3. Justification of choices made during InSAR processing 

 

In this research, freely available C-band Sentinel-1 SLC IW mode dataset having a spatial resolution of 5 × 

20 m and polarisation of VV is used for InSAR processing and deformation measurements extraction. The 

processing of interferograms is separated for the pre- and post- Kaikōura phases rather than processing 

them in a single stack. The analysis period of the pre-Kaikōura phase is between 28 October 2014 and 10 

November 2016, while the time window of the post-Kaikōura phase is right after the mainshock of the 

Kaikōura earthquake from 16 November 2016 till 24 December 2018. Till the start of the Sentinel-1 B 

sensor from 2016, images are available for each 24 days rather than 12 days. Owing to which during the pre-

Kaikōura phase, there are only 27 images within a gap of 745 days, while there are 67 images within a similar 

gap of 769 days during the post-Kaikōura phase (See Figure 12 and Table 3). This study satisfies the 

minimum requirement for at least 25 images spanning more than a year to extract reliable deformation 

measurements using the PSI technique (Colesanti et al., 2003; Hooper et al., 2007). In addition, both during 

pre- and post-Kaikōura phases, data covering slightly more than two years (730 days) are used for PSI 

processing. If the data only covered less than two years, it would have been challenging to explain the mean 

annual deformation velocity as the actual mean velocity. The geometric decorrelation was not a problem in 

this research as the perpendicular baselines of images are lesser than 200 m.  

In this study, split of the pre- and post- seismic phases is carried out to eliminate the potential phase aliasing 

effect that is associated with the co-seismic deformation owing to the sudden acceleration in the deformation 

(Manconi, 2021). Such analysing strategy is also followed because of the limitation of the PSI technique in 

identifying coherent radar signals (PS) over a long time period because of temporal decorrelation arising 

from growth of vegetation, intense precipitation, and snowing seasons, which can greatly affect the PS 

selection (Bekaert et al., 2020; Hanssen, 2001). Such separation of the interferometric stack processing 

before and after the seismic shaking is already been carried out in previous studies analysing active landslides 

before and after the 2015 Gorkha earthquake  (Mw = 7.8, Bekaert et al., 2020) and 2017 Jiuzhaigou 

earthquake  (Mw =7, Cai et al., 2022). Even though the previously mentioned studies have used SBAS 

technique for the extraction of spatio-temporal deformation measurements, they have separated the analysis 

period before and after the intense seismic shaking in order to neglect the co-seismic displacements similar 

to the case in this research. In this regard, this research is also the first to use the PSI technique for 

monitoring the evolution of hillslopes before and after the impact of an earthquake instead of using the 

more computationally intensive SBAS approach for such a large area of about 2300 km2. This is also the 

main reason for this study to consider the PSI technique for extracting spatio-temporal measurements, 

which is relatively less computationally demanding than SBAS (Aslan et al., 2020). The previous studies that 

examined active hillslopes before and after an earthquake performed their analysis in a comparatively smaller 

region than this research (Bekaert et al., 2020; Cai et al., 2022; Cheaib et al., 2022; Lacroix et al., 2022). 

However, there are certain limitations of using PSI that can be overcome by employing the SBAS approach, 

which is further elaborated in the limitation section.  
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Assigning an appropriate ADI value is challenging in order to select high-density PS owing to the low 

coherence as the study area is mostly covered by dense vegetation and hardly has any major artificial 

structures. Even though the higher elevated regions are less covered by vegetation, setting a lower ADI 

threshold value similar to Aslan et al. (2022) and (2020) will result in lower PS density. Therefore, in this 

research, an ADI threshold of 0.42 is set for both pre- and post-Kaikōura phases of PSI processing. Multiple 

studies have employed such high ADI value, especially in mountain regions covered by high vegetation and 

having less impervious structures (Dong et al., 2018; Liu et al., 2022). However, even after defining a higher 

ADI value, it can be observed from Table 4 that PS density per km2 nearly diminishes to half during the 

post-Kaikōura period, which can be attributed to temporal decorrelation arising from various factors such 

as regrowth of vegetation in hillslopes affected by coseismic displacement. In addition, the precipitation 

measurement from CHIRPS shows that 2018 received the highest maximum amount of rainfall experienced 

in the last 30 years (see Figure 9). These difficulties of applying the InSAR technique to the area under 

examination could also be counted as reasons for the lack of similar studies on this site so far.  

6.4. Limitations 

 

Even though PSInSAR-based sub-meter evolution monitoring and mapping of hillslopes have a good 

effectiveness, but it also has certain limitations. The first and foremost challenge in using the PSI approach 

is the loss of temporal correlation, which can arise from many factors, including high precipitation, snowfall 

and growth of vegetation (Bekaert et al., 2020; Hanssen, 2001). These reasons inhibited in acquiring PS 

pixels over highly vegetated regions of the hillslopes, while only those scarp regions devoid of vegetation 

cover and dense snowfall were observed to contain PS pixels (see Figure 49). Such a disadvantage of 

temporal decorrelation can be reduced by utilising a longer wavelength such as L-band images, which can 

penetrate through the dense vegetation cover (Xu et al., 2021). However, it should be also noted that shorter 

wavelength data such as C-band images is extremely responsive in capturing deformation signals (van 

Natijne et al., 2022). In addition, employing other MT-InSAR technique such as SBAS can help in increasing 

the density of captured deformation measurements over space as its characteristics allows selecting DS along 

with PS (Chen et al., 2021).  

The second constraint of this research is the unavailability of descending flight direction images of Sentinel-

1, which inhibited the decomposition of LOS deformation into horizontal and vertical components. This 

drawback is overcome in this research by making assumptions to project the mean annual LOS deformation 

velocity into downslope deformation velocity using relevant literature as support (Aslan et al., 2020; Notti 

et al., 2014). Therefore, this research utilised LOS deformation further to detect active PS in accordance 

with the hillslope velocity classification of Cruden and Varnes (1996). Such an approach is not uncommon, 

as previous studies have also utilised the LOS deformation velocity for identifying active hillslopes (Bayer 

et al., 2018; Bekaert et al., 2020; Cheaib et al., 2022; Lacroix et al., 2022). 

The next challenge is that InSAR is highly effective to detect the deformation that occurs parallel direction 

of LOS than those that happen perpendicular to the flight direction (Xu et al., 2021) owing to its right-

looking nature. In this study, a large number of hillslopes face south-east direction while there is also 

considerable amount of hillslopes that are seen facing north and south direction.  In addition, even though 

InSAR based deformation measurements are reported to be in line with those recorded in GNSS stations 

(Cigna et al., 2021), the unavailability of GNSS station data from the study site to evaluate the reliability of 

the extracted surface deformation measurement is also a major limitation in this study. 

It should also be noted that hillslopes with sub-meter deformations are only identified and monitored in 

this study. Therefore, those hillslope that are reported to be stable in this research could also experience 

rapid movements or failures in the post-seismic phase. This is because PS-InSAR based approach can only 
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detect and capture deformation measurements less than a meter. In addition, there are no studies available 

to my knowledge documenting the post-seismic rapid landsliding in the study area, thus, it is difficult to say 

if the stable slopes reported in this study are actually stable. In addition, in the post-seismic phase, there are 

active movements that are a mix of tectonic and landsliding-related movements, which are not explored. In 

addition, this study doesn’t correlate the precipitation measurements with the deformation measurement 

mainly because of the coarse spatial resolution (about 5 km) of the CHIRPS dataset. 
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7. CONCLUSION AND RECOMMENDATION 

7.1. Conclusion 

This research developed a new systematic approach for identifying extremely slow- and very slow-moving 

hillslopes in post-seismic periods. Specifically, I examined pre- and post- seismic hillslope deformations in 

the area affected by the 2016 Kaikōura earthquake and monitored their sub-meter evolution using freely 

available Sentinel-1 images through the PSI approach.  The extracted surface deformation using PSI 

approach showed that an abrupt increase in the post-seismic deformations occurred following the intense 

ground shaking. The results of this study also showed that the regions affected by higher ground shaking 

exhibited also higher deformation in the post-seismic phase compared to hillslopes affected by lower seismic 

shaking. I captured relatively high negative deformations mostly associated with a high elevation and slope 

steepness, while larger positive deformation is mainly observed in the lower elevation and slope steepness. 

However, there are a number of outliers that behave differently from this observation, which is likely due 

to different scattering types in PS registry. 

Also, for the first time, this study integrated the use of slope units in the post-processing of surface 

deformation measurements which proved to be very useful in the detection of actively deforming hillslopes. 

The sharp increase in the number of stable hillslopes that started moving extremely slowly and very slowly 

after the impact of the 2016 Kaikōura earthquake and their deformation dynamics there after confirms the 

firm role of earthquake legacy effect on their evolution. Analysing the number of detected actively deforming 

hillslopes in the post-Kaikōura phase that are affected by co-seismic landslides confirms the control of co-

seismic landslides on the post-seismic sub-meter hillslope evolution. Furthermore, this study revealed four 

hillslope evolution types, such as (i) inactive hillslope becoming active (Type I: SA), (ii) active hillslope 

remaining unaffected with changes in dynamics (Type II: AA), (iii) active hillslope that have become inactive 

(Type III: AS) and (iv) those hillslopes that are stable prior and following the earthquake (Type IV: SS), by 

generating a transferable and generic hillslope activity matrix for the slopes that are affected by an earthquake 

event.    

The following section will provide answers to the research questions that are put forth in the introduction 

section. 

i. What are the optimum configuring parameters for the PSI approach to retrieve the LOS 

deformation measurements of (constantly) coherent radar scatterers?  

In this study, multiple parameters are configured differently from the standard values for a better extraction 

of surface deformation (see Table 4). Initially, the ADI is set to 0.42 for both pre- and post- Kaikōura phase 

analysis in order to capture have higher PS density over the highly vegetated study area. The maximum 

accepted uncorrelated DEM error is reduced from standard 5 m to 20 m in the second step of PSI 

processing. During the PS weeding stage, the threshold standard deviation for weeding pixel is fixed as 1.2, 

and the neighbour pixels are weeded in addition to the weeding of PS in areas having zero elevation. The 

3D unwrapping method is used for unwrapping with better accuracy. The unwrapping grid size is set to 50 

from the standard value of 200, and the size of the Goldstein filter's window is fixed to be 16, whereas the 

smoothing window is set to 365 days. In this study, GACOS dataset is used to do atmospheric phase 

correction. 

ii. What are the differences between pre- and post-seismic mean annual LOS deformation velocity? 
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The mean LOS deformation velocity in the pre-Kaikōura phase ranges between -20.27 mm/yr and 20.08 

mm/yr, while the same in the post-Kaikōura phase ranges from -54.10 mm/yr and 39.10 mm/yr.  By 

comparing the mean LOS deformation velocity of pre- and post-Kaikōura phase, it is found that there is a 

nearly 130% absolute surge in the deformation velocity during the post-Kaikōura phase. However, the total 

number of PS captured during the pre-Kaikōura phase decreases by 46.5% in the post-Kaikōura phase.  

iii. How does deformation measurement change across basic morphometric variables such as elevation 

and slope steepness during the pre- and post-seismic phase?  

It is found that in this study area, during both pre- and post-seismic phases, PS having comparatively larger 

negative deformation velocity of more than -10 mm/yr are observed in higher altitudes associated with 

steeper slopes while the PS having larger negative deformation than 10mm/yr are observed in lower 

elevations having lesser slope gradient. This is an important finding as larger negative deformations are 

associated with hillslope deformation processes while greater positive deformations are linked to the fluvial 

processes. 

 iv. How does deformation measurement change across places experiencing different PGA during the 

post-seismic phase?   

The PS having larger deformation velocity, either positive (20 to 40 mm/yr) or negative (-30 to -60 mm/yr) 

has been affected by PGA higher than 0.6 g. This shows that regions affected by higher ground shaking 

during the 2016 Kaikōura earthquake have higher deformation in the post-seismic phase. 

 v. What are the different landforms and lithologies that control the active deformations?   

In this study, a large number of PS exhibiting active deformations are observed in landforms associated with  

higher topographic profile such as slope, spur, ridge, hollow, and summit during both pre- and post-

Kaikōura phase.  

Most of the actively deforming PS in both pre- and post-Kaikōura phases is observed in greywacke. During 

pre-Kaikōura period, more actively deforming PS, especially the extremely slow-moving ( ±10 mm/yr ≥ 

VLOS < ±16 mm/yr) ones, are observed across weakly consolidated conglomerate and mudstone. But 

during the post-seismic phase, limestone had the most very slow-moving PS pixels (VLOS ≥ ± 16 mm/yr), 

while the alluvium flood plain consisted of the most extremely slow-moving PS after the greywacke.   

vi. What is the best critical stability threshold that can be defined to detect and characterise the active 

PS? 

In this study, those PS having mean LOS deformation velocity equal or greater than ±10 mm/yr are 

classified as active points, while the rest are excluded as stable. Such a critical stability threshold is defined 

to avoid confusion in using either one or two standard deviations for PS velocity and b) using the hillslope 

velocity classification of Cruden and Varnes (1996). In this study, both the approaches summarized above 

are coupled to differentiate active PS from stable ones. In addition, identified active PS are also sub-

categorized as extremely slow-moving ( ±10 mm/yr ≥ VLOS < ±16 mm/yr) and very slow-moving 

(VLOS ≥ ± 16 mm/yr) PS. 

vii. What are the different types of post-seismic sub-meter hillslope evolution captured in this study? 

By proposing a post-seismic hillslope deformation matrix, this study captured four hillslope deformation 

evolution types. They are (i) inactive hillslope becoming active (Type I: SA), (ii) active hillslope remaining 
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unaffected with changes in dynamics (Type II: AA), (iii) active hillslope that have become inactive (Type 

III: AS) and (iv) those hillslopes that are stable prior and following the earthquake (Type IV: SS). The 

hillslope activity matrix could be applied to other earthquake-affected areas to systematically and consistently 

examine hillslope evolution processes in post-seismic periods. This study found 239 hillslopes in type I, four 

hillslopes in type II, five hillslopes in type III, and 4856 hillslopes in the last type IV. 

7.2. Recommendations 

For the future scope of this research, the following recommendation are provided: 

▪ Using GNSS station or other geodetic data for evaluating and improving the accuracy of the surface 

deformation measurements extracted in this research. 

▪ Exploring the factors controlling the hillslope deformation in a multivariate scheme could help us 

to improve our understanding on the impact of earthquake legacy effect on the entire region. In 

this context, the relationship between the deformation measurements with rainfall, soil moisture, 

land surface temperature and areal fraction of snow cover as well as various morphometric and 

geologic variables should be studied further.  

▪ To improve the detection of active PS, artificial intelligence such as recurrent neural network can 

be used to identify those PS that behave different from stable ones. 

▪ The analysis can be further extended to the available Sentinel-1 images between 2019 and 2022 to 

understand the evolution of hillslopes in those time period which is not performed in this research. 

Such analysis could reveal the recovery time of active hillslopes to return to its stable state. So far, 

no study have used deformation measurement to study the recovery time of active hillslopes. 

▪ Use of higher resolution DEM than SRTM 1-arc sec DEM, (e.g. TanDEM) could improve the 

obtained deformation measurements. 

▪ The results of this study can be further used in the assessment of hazard and risk in the region.  

▪ The seasonal deformation pattern of active hillslopes can be further studied with the help of higher 

spatial resolution precipitation data such as rain gauge data. 

▪ The investigation of scattering types of PS, including surface, volume and double bounce scattering, 

using multi-polarization SAR data (e.g. Sentinel-1 SAR with VV and VH) may contribute to better 

data interpretation.  
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