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Abstract

Attention maps from transformer-based models using the self-attention mechanism are highly
interpretable. Works in the vision-and-language domain train general models on large data sets
using self-supervised methods, leveraging such attention values between modalities for multiple
different learning tasks. Within the audio-visual domain, we see similar approaches, but these are
often specialized towards one type of data set, like human speech, and require supervised data sets.
This work introduces a general and more versatile audio-visual training framework, based on the
approaches of the vision-and-language works. This framework can be applied to many different
audio-visual learning scenarios. We apply this framework for the task of audio-source localization.
Our implementation uses an audio-visual model based on two separate convolutional-based audio
and visual embedding stages, and a single transformer-based encoder stage. This model is trained
with the self-supervised proxy task of multi-modal alignment. Our new MUSIC-200k data set
of 192 007 videos of musical performances (https://github.com/HesselBosma/MUSIC200k) was
used for training and validation. Visual inspection of the source-localization results shows that
the framework is valid for this particular learning task. These results suggest broader applicability
of the framework, e.g. different learning tasks. The framework has some promising benefits like
more general applicability, zero-shot learning capability, and requiring only non-supervised training
data. However, the audio-source localization performance seems to be limited. Opportunities have
been identified to increase performance on audio-visual learning tasks. But, these performance-
increasing measures were not empirically tested in this work. Furthermore, due to time constraints,
only a limited visual evaluation was performed instead of a more informative numerical evaluation.
Thus, no direct accurate comparison can be made with the performance of other methods.

https://github.com/HesselBosma/MUSIC200k


1 Introduction

The introduction of the self-attention mechanism and
the transformer architecture mark a major shift in deep
learning architecture. In the application of natural lan-
guage processing, transformer-based networks [1–3] are
outperforming the now almost obsolete recurrent neu-
ral network variants like LSTM [4] and GRU [5]. In
computer vision tasks, transformers are starting to out-
perform the deep convolutional neural networks [6–8],
which have been used and optimized extensively over
the last decades [9–13]. Similar transformer-based ar-
chitectures now compete with- or outperform the state-
of-the-art in many tasks from almost all modes of deep
learning. However, arguably one of the strongest prop-
erties of transformer-based architectures is their inter-
pretability. Depending on the learning task, the atten-
tion maps in transformer layers can show how different
parts of the input relate to each other and to the output
of the model [3, 6].

This property of interpretability extends to multi-
modal transformer-based models as well. Such models
use the self-attention mechanism to combine informa-
tion from multiple data modalities, allowing for atten-
tion between both modalities, i.e. cross-modal atten-
tion. Analyzing these attention values can be extremely
powerful. This is done extensively in the vision and
language domain [14–21], where the cross-modal atten-
tions are interpreted as correlations between the differ-
ent parts of the image and text inputs. These models
can often be trained in a self-supervised manner and
work for all kinds of visual-textual data, and thus can
be trained on massive general-purpose vision-and-text
data sets. Similarly in the audio-visual domain [22–24],
we see that cross-modal attention is starting to be used
for audio-visual learning tasks like audio-source localiza-
tion. However, within the audio-visual domain, we see
mostly models specialized for different subsets of audio-
visual data (like human speech [22]) and a heavy reliance
on data supervision [23].

This works aims to generalize this audio-visual learn-
ing approach, drawing heavy inspiration from the vision-
and-language domain. Such a general audio-visual learn-
ing approach would allow audio-visual models to be trained
on much easier to obtain, and often larger, non-supervised
audio-visual data sets. And these models could then
be used for multiple and different audio-visual learning
tasks without the need for fine-tuning. To determine
the possibility of such a solution, we aim to answer the
following research questions:

• RQ1 - Can the cross-modal attention values from
an audio-visual model trained using self-supervised
methods be interpreted as audio-visual correlation?

– Sub RQ1.1 - If so, can audio-visual correla-
tions be used directly for audio-visual learning
tasks like audio-source localization?

• RQ2 - How can such a self-supervised audio-visual

learning framework that leverages cross-modal at-
tention maps be implemented for a task like audio-
source localization?

To answer these questions a transformer-based audio-
visual model is trained in a self-supervised way simi-
lar to the methods in the vision-and-language domain.
From this model, the cross-modal attention maps are
extracted and processed in different ways to perform
audio-source localization. These audio-source localiza-
tion results are visually inspected to determine the source
localization performance and the existence of audio-visual
correlation, though we do not strive to maximize this
performance in this work. Furthermore, for the vali-
dation of this learning approach and the evaluation of
such audio-visual models, a new large-scale audio-visual
data set was created. Publicly available data sets are
most useful for specific learning tasks like only contain-
ing human conversations or they are limited in size. Our
new data set contains 192.007 videos of musical perfor-
mances. Such videos are useful for the visual evaluation
of more general audio-visual models on different learn-
ing tasks like source localization or audio separation,
the first of which we do in this work. My work has the
following contributions:

• A self-supervised audio-visual learning framework,
that exploits the interpretability of attention maps
in cross-modal transformer models.

• An implementation of this audio-visual learning
framework on the task of audio-source localization
as well as visual evaluation of this implementation.

• The MUSIC-200k data set. A large set of videos
of musical performances for evaluating large-scale
architectures on audio-visual learning tasks.

This thesis is structured as follows. In Section 2,
the related works and the state-of-the-art are discussed.
The scientific approach is described in Section 3. In this
section, the learning framework is described in detail,
as well as its components. Section 4 lays out the details
of the experimental setup as well as the implementation
details. Furthermore, this section introduces our new
MUSIC-200k data set, as well as others used in this
project. The results of the experiments are described
in Section 5. These results and their implications are
discussed in Section 6 as well as directions for future
works. Finally, Section 7] will conclude this thesis.

2 Related Works

This work can be placed in between of two bodies of
work. First, there are works exploring interpretability
of attention maps in cross-modal applications of trans-
former based architectures. These are part of the more
general research in transformers. And second, works
that focus on audio-visual learning tasks with various
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methods and architectures. This section will describe
these bodies of work and how my work can be placed
within those.

2.1 Audio-visual Learning

As the term would suggest, audio-visual learning en-
compasses learning tasks in which sound and visual in-
formation is used or required to solve a learning task.
One such task is sound localization, where the goal is to
find from which image region a certain sound is likely
to originate. In this scenario, we can ask the question:
What part of the image is producing sound? An exam-
ple of this task is active speaker recognition, in which
we want to identify the person speaking within a visual
frame. Such problems can be solved with different levels
of detail. Some works do localization based on regions
of interest or object detection [22, 25], while others lo-
calize on the pixel level [26, 27]. The second common
audio-visual learning task is audio separation, which is
either visually aided [28] conditioned on a certain image
region [27,29]. In this scenario, we want to filter out the
audio likely produced by an image region. The separa-
tion and localization scenarios are sometimes combined.
In that case, we are looking for some general audio-
visual correlation [26, 27], i.e. what parts of the sound
are related to what parts of the image.

To learn this audio-visual correlation, cross-modal
learning architectures can be trained in a self-supervised
manner using the mix-and-separate [27] paradigm. The
original audio signal is added to some randomly selected
audio signal from the data set. The model is then tasked
with predicting an audio mask for that signal so that it
filters out the original signal based on the mixed sig-
nal and the original visual input. This way the model
learns the relation between these two inputs of different
modalities. This technique and others discussed later,
can be used within the audio-visual framework proposed
in this work.

2.2 Transformers

Transformer-based architectures have been used exten-
sively in the field of Natural Language Processing. These
models outperform recurrent and convolutional models
in many language tasks while being parallelizable and
faster to train [3]. A transformer processes a set of one-
dimensional vectors of equal size. A transformer layer
is a mapping of this set to a new one with the same
size and dimension. For processing an item within this
set, a transformer layer can draw information from ev-
ery other item, weighed by some measure of relevance.
This measure of relevance is the self-attention mech-
anism. A query, key, and value vector (Q,K,V) are
computed from every item vector via a learned linear
projection. The attention for an item is computed by
measuring the similarity between its query and the keys
of all other items. The output mapping of an item is
an aggregate of the values of all other items within the

set, weighted by this attention. This attention mecha-
nism makes transformer-based architectures very inter-
pretable [3, 6]. We can extract these attention values,
which tell us how the model relates every part of the set
to each other.

Since it is a necessary component of my proposed
audio-visual learning framework, only encoder trans-
formers will be considered. An encoder transformer con-
sists of one or multiple stacked transformer encoder lay-
ers. These encoder layers make use of the self-attention
mechanism to learn to embed contextual information
about the members of the input set of vectors. In the
field of natural language processing, these vectors repre-
sent words that as a set form a sentence. Transformer-
based language models like BERT [1], learn the meaning
of sentences at increasing levels of abstraction for every
transformer layer. BERT adds a learnable “class” vec-
tor to the input set, tasked with learning global mean-
ing for the whole sentence. BERT demonstrates how
transformer encoders can be pre-trained effectively using
two self-supervised training methods. In next-sentence
prediction, the model is asked to predict if two input
sentences follow one another and hereby learning the
meaning of entire sentences globally. While in masked
language modeling the model learns the local structures
within sentences by predicting masked out parts of the
input sentence.

For computer vision applications, transformer en-
coders can be used in a similar way. Images have to be
converted to a set of fixed-length tokens first. The vision
transformer (ViT) [6] slices an image in non-overlapping
patches. These patches are each linearly projected into
one-dimensional vectors with a fixed length. This set of
tokens is then encoded in the same way as BERT would
encode a sentence, however, the class token is tasked
with learning a representation of the image. From this
representation, a prediction head can learn to perform
computer vision tasks like classification, object detec-
tion, or image segmentation. Compared to models based
on convolutions (CNN’s) [9,10,12,13], vision transform-
ers perform well. Vision transformers struggle with dense
prediction tasks like object detection and image seg-
mentation because they are limited by the patch size of
the patch embedding stage. Furthermore, transformer-
based architectures require much larger data sets to train.
To some extent, the Data-Efficient Image Transformer
(DeiT) [7] and the Shifted Windows transformer (Swin)
[8] have improved upon the vision transformer in these
aspects. Transformer-based architectures now can com-
pete, or even outperform state-of-the-art CNN-based ar-
chitectures in almost all computer vision tasks. And just
like in NLP, vision transformers can be pre-trained [30]
well and the attention maps are highly interpretable
[6, 30].
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2.3 Multi-modal Transformers

The success of transformer-based architectures in NLP,
as well as computer vision, shows that with only small
adaptations, the same general architecture can be used
across modes of data, with state-of-the-art performance
in each. This is promising, as seems to be more cross-
over between the research in different fields. Further-
more, this would suggest that transformer-based archi-
tectures would be well-suited to learning tasks that re-
quire multiple modes of data, i.e. multi-modal learning.
The largest body of work researching these cross-modal
applications, combine textual and visual information.
Transformer-based architectures are used to co-process
these types of data, to perform a wide range of vision-
and-language tasks. In general, these architectures are
based on two “stream” of data, one for each modal-
ity. Lu et. al. [18] describe how the language and vi-
sual streams of data are processed separately, allowing
these streams to communicate through co-attention in
a common transformer-like layer. The design of such
co-attention layers can vary as well as how early in the
network the two streams are allowed to communicate
(early vs late fusion). The attention maps produced in
these layers are highly interpretable, and can be used
for various visual-linguistic reasoning/grounding tasks
[17,18,31].

Some models [14, 15] are rather complex or special-
ized for a certain learning task. However, many architec-
tures [16–21] are variations on a common design. They
share a Bert-like transformer stage, where the streams of
both modalities are embedded into tokens with a shared
dimensionality. These tokens are simply concatenated
and processed by a transformer layer as if they were a
sentence as with BERT [1]. Extra embeddings or spe-
cialized tokens can be added to allow the transformer to
distinguish between the modalities. With masked multi-
modal learning, like Bert’s masked token prediction, we
can randomly mask input tokens and ask the model to
predict what these should be. And in multi-modal align-
ment, similar to Bert’s next sentence prediction, we can
randomly switch the tokens from one of the modalities
for tokens corresponding to some other sample. Then
we ask the output class token to predict if these tokens
are from the same data sample or not. These “proxy-
tasks” [18,19] can be used to (pre-)train the multi-modal
transformer stage of the architecture in a self-supervised
way. However, depending on the length of the streams
and learning tasks, both streams can be pre-trained on
uni-modal tasks and the entire model can be trained
end-to-end on the learning task at hand if needed.

This general architecture of Bert-like cross-modal
transformers extends to the audio-visual domain as well.
Instead of the textual stream we have an audio stream.
Again we see state-of-the-art performance, as well as
highly interpretable attention maps. These attention
maps in some cases are directly used for some audio-
visual tasks like audio-visual source localization [22, 23]
or finding regions of interest [24]. However, these works

are often limited to a specific learning task or require
supervised data sets. My work explores how the more
general approach from the vision-and-language domain
can be translated to the audio-visual domain to be used
with video data sets.

3 Approach

This section describes my proposed framework for self-
supervised audio-visual learning, inspired by works from
the vision-and-language domain [17–19]. This frame-
work is general purpose. It applies to many different
audio-visual data set types and it can be used for vari-
ous learning tasks. The framework contains the follow-
ing components

1. A transformer-based audio-visual model that al-
lows for cross-modal attention at some point and
can distinguish between the inputs of both modal-
ities.

2. A self-supervised, proxy learning task that encour-
ages, or ideally forces, the model to learn audio-
visual correlation.

3. An extraction and interpretation method to ex-
tract this learned audio-visual correlation from the
cross-modal attention maps, for solving learning
tasks directly.

These components can be implemented in different
ways to fit different audio-visual learning environments.
This section will discuss how they can be implemented
and how they work together. Within this project, this
framework is implemented to perform audio-source lo-
calization. The implementation within this aims to demon-
strate the purpose of the framework and its components
and not how to best implement it for performance.

3.1 The Audio-visual Model

The purpose of the model within the framework is to
model the audio-visual relations within videos. From a
video, we separate the visual component v and the au-
dio component a. Such a model f then learns to jointly
represent the audio and visual components in some em-
bedding êv,a. The model is parameterized by θ such
that:

fθ(V,A) → êV,A. (1)

The audio-visual relations are internally represented within
the model by means of attention values from the self-
attention mechanism in transformer layers. Such a model
can be implemented in different ways within the frame-
work.

The General Audio Visual Transformer - The
G-AVT (see Figure 1) is the implementation I propose
within this work. It is an audio-visual encoder that is
based on BERT [1] and ViT [6]. It draws inspiration
from many works in the vision-and-language field [17–
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Figure 1: Diagram of the architecture of the General Audio Visual Transformer. Components like the proxy head,
transformer encoder, image embedder, and audio embedder can all be implemented in different ways. This diagram
shows how each component works together. See Figure 2 for the implementation of the embedders within the
experiments of this project.

Figure 2: Diagram of ResNet18 [12] based implementation of the image/audio embedder used within the experiments
of this work. The last residual block in blue* is skipped for the audio embedder. Note that the G-AVT in Figure 1 can
be implemented with different embedder architectures than this, and this is by no means the best implementation.

21]. Similar to these vision-and-language architectures,
the G-AVT can be split up into two streams of different
modalities, and has three main components:

1. An embedding stage for the visual stream.

2. A separate embedding stage for the audio stream.

3. A transformer-based encoding stage that fuses the
two streams.

From a video, we first extract a single frame and a
fixed-length audio segment conditioned at the same mo-
ment in time. The video frame is reshaped to a pre-
determined size. The audio segment is converted us-
ing Short Time Fourier Transform [32], to an image-
like representation with also a pre-determined fixed size.
The embedding stages of each stream separately con-
vert both inputs into an ordered set of fixed-length vec-
tors. The vectors in each set share the same dimension-
ality and thus can be fused into a single set. Similar to
BERT [1] we add learned positional embeddings. The
encoder should also be able to distinguish between both

inputs. Other works add an extra “mode” embedding
to this positional embedding [17]. However, in this case,
such an extra embedding is unnecessary because the in-
puts are of a fixed length. As a result, the tokens of each
modality will always have the same positions within the
fused ordered set, and thus the position contains infor-
mation about the mode of the token. This means that
we also don’t need a special separation token like in
BERT. However, a class token is added to the sentence,
which is tasked with learning the context of the entire
input.

3.2 Proxy Task Training

The purpose of the proxy task within the framework
is to force the model to learn audio-visual correlation
in a self-supervised way. In general, it takes the audio
and visual inputs, as well as the output from the audio-
visual model, and calculates the gradient to optimize
the model:

Lproxy(V,A, fθ) → ∇θ, (2)
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with ∇θ being the gradient with which to optimize the
parameters of the self-attention layers, and optionally
any additional parameterized architectural features such
as the embedding stages. To implement this, we can
use one or multiple self-supervised audio-visual learning
tasks. The G-AVT is extended with a proxy prediction
head, see Figure 1. This proxy head is used during train-
ing and can be discarded at inference time. There can
be many different such proxy tasks, each with its own
proxy head.

Multi-modal alignment - This is the simplest proxy
task and the easiest to implement. We randomly sample
two videos from the data set {V0, A0} and {V1, A1}. We
randomly input either visual component V0 or V1 with
p = 0.5 and the audio component a0 as normal. We
then ask the model to determine which visual compo-
nent it sees, the one corresponding to the audio input
or a different one:

proxymma(fθ(Vmatch, A0) → match,

with :

match ∼ U({0, 1}).
(3)

We extend the class token output of the G-AVT
with a proxy head with output dimension two and soft-
max activation, like in a two-class classification problem.
During training, we randomly (p=0.5) switch one of the
inputs with one randomly selected from the data set.
We ask the model to predict if the two inputs match or
not. In this way we force the G-AVT to compare the
inputs globally and thus form cross-modal connections.

Mix-and-separate - This method is thorough and
forces the model to look in more detail to the audio in-
put. We mix audio input A0 with N audio signals ran-
domly selected from the data set An with n = (1, .., N),
taking advantage of the additive nature of audio signals,
where:

Amix = A0 +

N∑
n=1

An. (4)

We then ask the model to recover the original audio
signal A0 by looking at the mixed signal Amix and the
visual input V , as such:

proxym&s(fθ(V,Amix)) → A0. (5)

In practice we use N = 1, thus mixing the original audio
signal with one randomly sampled one. The proxy head
takes as input the class token or the audio tokens and
outputs a two-dimensional audio mask. This audio mask
m has the same dimensions as the input audio signal
Amix, and when multiplied together recovers the original
audio signal A0:

A0 = m ∗Amix. (6)

This way the model is forced to pay attention to the
audio signal with high resolution and compare it with
the visual input globally. It is then expected that the

model forms cross-modal connections with high acoustic
resolution and precision.

Some other Proxy tasks that can potentially also be
implemented successfully, include masked multi-modal
learning [18] / masked language modeling [1] as well as
self-distillation with no labels (DINO) [30]. These tasks
don’t force the model to form audio-visual connections
but do encourage it to some extent.

3.3 Attention Maps Extraction

Given an unseen sample, we extract the attention maps
from the audio-visual model. These attention maps can
be processed in different ways. The choice of process-
ing method depends on the audio-visual learning task at
hand. Here I provide a general picture of different pos-
sible implementations. In this work, I experiment with
different variations, which will be discussed in Section 4
and 5

First, we can take these attentions from a single
attention head, or average over all heads. The latter
should give a more complete picture. Similarly, we can
look at a single transformer layer, or at the average at-
tention over all layers. Here we expect to see a difference
in abstraction level, depending on what layer we select.
Furthermore, we can look at the attention in different
directions or in both, i.e. the directions to or from a
token.

The attentions from and to the class token tell us
in general what the model is looking at, since this to-
ken is tasked with learning the global meaning of all
inputs. This depends on the proxy task and how the
proxy head is implemented. But to get an idea of cor-
relations between the two inputs of different modalities,
we can also look at the attentions in between the tokens
from those streams, i.e. the audio-to-visual attentions
or the visual-to-audio attentions.

Different from the attention direction, we can look at
these attentions from different “perspectives”. Group-
ing the incoming and outgoing attention values per vi-
sual token tell us something about how visual objects
relate to all the different parts of the sound. This vi-
sual perspective can be used for vision tasks like source
localization. Similarly, we can group the attention per
audio token to view the audio-visual attentions from the
perspective of the audio stream. This is useful to deter-
mine how different audio parts relate to all different vi-
sual parts. This audio perspective is useful for tasks like
audio segmentation. Note that the perspective is about
grouping and ultimately reducing the dimensionality of
the attention matrix per group, which has nothing to do
with the attention direction.

3.4 Audio-source Localization

We assume the cross-modal attentions to be analog for
audio-visual correlation. These correlations can be lever-
aged for solving different audio-visual learning tasks.
This project implements the framework for the task of
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audio-source localization. We take the audio-visual at-
tention maps from the visual perspective, i.e. grouped
per visual token. For each visual token, we measure the
average cross-modal attention to all audio tokens. This
tells something about how related this visual token is to
sound in general. We cannot be sure that these atten-
tion maps are correlating the audio and visual inputs.
Rather we could interpret them as the prior audio-visual
attention learned from the training data set. Normaliza-
tion is needed if we are after the direct relation between
the audio and visual inputs, i.e. the audio source loca-
tion conditioned on the audio input. We can use Bayes’
rule to calculate the conditional audio-source probabil-
ity:

psource(θ, V,A) =
attn(θ, V,A)

attn(θ, V, 0)
. (7)

Where the numerator is the evidence for the audio-
source probability and the denominator is the prior audio-
source probability. This normalization method draws
inspiration from condition guidance [33] in generative
learning.

4 Experimental Setup

This section will discuss the experimental setup used
within this work. First, the new MUSIC-200k will be
introduced. Then the evaluation method and experi-
mentation methods are discussed, followed by the details
of the implementations within those experiments.

4.1 The MUSIC-200k Data Set

The MUSIC data set by Zhao et. al. [27] contains a
total of 1313 videos of musical performances that have
been hand-selected and labeled. However, because these
videos have to be downloaded from YouTube, the us-
able size depends on their availability. As used in this
project, the data set contained 1.121 total samples of
which 20% was used for testing. For training the G-
AVT, the size of MUSIC was found to be insufficient
and no larger data set of musical performances existed.

For the purpose of training data-hungry audio-visual
models like the G-AVT, I present the larger brother
of the MUSIC data set: MUSIC-200k. As the name
would suggest, this data set is much larger than the
original, containing 192 007 individual videos of musical
performances by artists. This data set is a subset of the
Youtube8m [34] data set, which is a massive set of hand-
labeled YouTube videos of various categories. Samples
containing the label “musician” were extracted, while
videos containing labels like “music video”, “dance”,
or “trailer” were removed for a cleaner data set. The
Youtube8m data set provides pre-extracted video and
audio features and does not reference the Youtube video
IDs directly. The MUSIC-200k does reference these
video IDs so that the raw videos can be used for a
broader range of audio-visual learning cases. The sam-
ples are labeled identically to the YouTube8m samples,

using the same labeling dictionary. See Figures 3 and
4 for the distribution of labels and video lengths within
the data set. The videos can be downloaded from YouTube
directly, and stored in any desired format. This means
that the usable size of MUSIC-200k also depends on the
availability of these Youtube videos. At the time of this
project, the available size of the train set was 149.067.
14.908 of these were used for validation. Random sam-
ples from the dataset set were taken to evaluate the
quality of the videos. It was found that at least 95% of
the videos contained music, as well as some of the corre-
sponding musical instruments in the video frame for the
majority of video duration. The quality of the samples
in MUSIC-200k is a little less than the original MU-
SIC data set, since they are not each manually checked.
There thus is a trade off between quality and quantity.
MUSIC-200k has been made available on GitHub un-
der the Apache 2.0 license (same as for Youtube8m):
https://github.com/HesselBosma/MUSIC200k).

Figure 3: Distribution of the most common labels in the
MUSIC-200K data set.

Figure 4: Box plot of the lengths of the videos in the
MUSIC-200k data set.
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4.2 Visual Evaluation

In the experiments, we aim to validate the proposed
audio-visual learning framework for audio source local-
ization. This validation is based on visual inspection
of audio-source maps. For a video frame and audio seg-
ment, we use the framework to construct an audio source
map. This audio source map is a heat map of how likely
the sound heard in the audio segment is to originate
from different image regions. We then view this map
side by side with the visual frame, allowing us to de-
termine what objects within the visual frame the model
thinks are the audio source. Because we are using videos
of performances with musical instruments, we would like
to see regions with instruments to be highlighted. Sim-
ilarly, in videos where people are singing, we want to
see their faces or mouths being highlighted. The results
in Section 5 will contain such side-by-side maps for the
reader to inspect.

We also want to learn how to implement the new
framework. The proposed framework has many vari-
ables to adjust, such as architectures, training meth-
ods, and attention map processing methods. We are
not looking to maximize performance here, we looking
for some configuration that produces satisfactory results
based on the visual evaluation of the localization heat
maps. In this project, different experiments were done
to build up to this configuration. First, different audio-
visual models were trained on the proxy tasks of mix-
and-separate and mainly multi-modal alignment. This
allows us to determine an architecture for the audio-
visual model component of the framework together with
a proxy task. We then use this trained model to experi-
ment with different processing and normalization meth-
ods for extracting the source-localization maps.

4.3 Implementation Details

Data storage - The data sets used in this work in-
clude large amounts of videos. Some of these videos
have a long duration and contain high-quality audio and
video. Storing all this data in maximum quality was un-
feasible given the available resources, so some compro-
mises were made to reduce the storage size. First, the
videos are limited in duration between 15 and 90 sec-
onds. These video sections are extracted from the mid-
dle of the video, to reduce the chances of sampling video
introductions, ending scenes, etc. The audio part of
these sections was stored as a full-length, multi-channel
raw time series in a .wav file, with a reduced sampling
rate of 11025Hz and a bit rate of 176kbps. From the
video part, the individual frames are stored with a re-
duced frame rate of 0.2 frames per second and a margin
of half the frame rate. Meaning, that for a 90-second
video, 17 images are stored. The image resolution was
reduced to 480 pixels vertically, conserving the aspect
ratio. The images were stored were compressed and
stored in a .jpg format. In total, the training set of
MUSIC-200k takes up around 497Gb on disk.

Pre-processing and augmentation - From a sam-
ple, a random image frame is selected as well as the cor-
responding audio segment. From the stored image we
extract a 128x128 image tensor. At training time we
apply image augmentation components:

• Rotation with a randomly selected angle of max-
imum of 20 degrees in each direction and a prob-
ability of 0.4. The rotated image is cropped to fit
a rectangular frame.

• Random image resize of between 0.7 and 1 times
the original image size.

• Randomly stretching the aspect ratio with a max-
imum of 25%.

• Cropping the image randomly to a 128x128 for-
mat.

• Random adjustment to the brightness of 30% max-
imum.

• Random adjustment to the contrast of 30% max-
imum.

• Random adjustment to the saturation of 20% max-
imum.

• Random adjustment to the hue of 10% maximum.

At inference time, only a center crop is used. This
image augmentation was originally implemented to re-
duce overfitting on the small MUSIC data set, but might
be unnecessary for the much larger MUSIC-200k data
set.

For the audio, we select the corresponding section to
the image frame with an approximate length of 6 seconds
(65535 audio samples). We randomly adjust the volume
to a maximum of 50% during training time. On this
time series signal, we apply Short Time Fourier Trans-
form (STFT). With a frame length of 1022 and a hop
length of 256, obtaining a 512 x 256 time-frequency rep-
resentation. This image is re-sampled in log-frequency
scale resulting in a 256 x256 image-like representation of
the audio. Re-sampling the image in log-frequency scale
is done to place more emphasis on the lower frequencies,
which contain most of the fundamental frequencies and
overtones of musical instruments. This is similar to the
common practice of applying Mel-Frequency scale [35],
to make the representation more similar to the frequency
composition of human hearing.

Architectures - To implement the G-AVT from Fig-
ure 1, the four modular components have to be imple-
mented. We need to define:

1. An audio embedding stage

2. A visual embedding stage

3. An encoder stage that merges the two streams

4. A proxy head during training
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Experiment 1 2 3 4

G-AVT version G-AVTa G-AVTa G-AVTb G-AVTc
Data set MUSIC MUSIC-200k MUSIC-200k MUSIC-200k

Proxy task MMA/M&S MMA/M&S MMA MMA
Loss function Cross entropy/MSE Cross entropy/MSE Cross entropy Cross entropy

Batch size 6 6 32 64
Optimiser ADAM ADAM ADAMW ADAMW

Learning rate 10−6 10−6 10−5 10−5
Weight decay 0.01 0.01 0.01 0.01

Dropout 0.1 0.1 0.1 0.1

Table 1: Optimisation configurations of the main experiments. Each experiment marks a key development within
this work, and the results of each experiment are discussed in Section 5. See Table 2 for the details of the G-AVT
implementations for every particular version.

The audio and visual embedding stages can be com-
pletely different architectures. This allows for selecting
an architecture that fits each modality best. However,
in this work, we use similar architectures for both of
these embedding stages, for convenience. In theory, be-
cause we represent the audio as an STFT, we can treat
it just like an image. The first experiments used VIT-
like [6] patch embedding stages. These divide the im-
age into non-overlapping patches of equal size and use
a single learned linear projection matrix to project the
patches to the one-dimensional vectors. However, the
best performing model used a patch-embedded archi-
tecture based on ResNet18 [12] instead. The features
extracted by the ResNet18 are converted to the embed-
ding dimension of the encoder stage using a 1x1 con-
volution. We then reshape and flatten this output to
retrieve the embeddings. A diagram of the visual patch
embedder can be found in Figure 2.

The encoder stage is based on BERT’s transformer
encoder [1]. The encoder takes as input a set of one-
dimensional, fixed-length embeddings, to which a class
embedding is concatenated with the same dimension. To
these, we add learned positional embeddings to encode
positional and modality information. The encoder con-
sists of an adjustable number of multi-head self-attention
layers with an adjustable number of heads. The G-AVT
uses an MLP with two linear layers with adjustable hid-
den dimensions to calculate the query, key, and value.
And dot product similarity is used to calculate the at-
tention values. See Table 2 for the full model configura-
tions.

Depending on the proxy task we extend the class
token output of the encoder stage with different proxy
heads, see Figure 1. In the experiments in this project,
we focus on multi-modal alignment and use a simple
linear projection as proxy head. This is a linear layer
with an input size equal to the embedding dimension
of the embedding stage and output size of 2. After a
softmax layer, we have a two-class classification head
with classes ”match” and ”no match” to represent the
classes generated by the multi-modal alignment learning
task.

G-AVTa G-AVTb G-AVTc

Embed type Patch ResNet ResNet

Emded dim 128 256 512
Hidden dim 256 512 1024

Layers 8 8 2
Heads 8 8 16

Activation GeLu GeLu GeLu
Norm type Layer Layer Layer

Table 2: G-AVT architecture implementation hyper-
parameters used per version.

Optimisation - The optimization process depends
on the version of the G-AVT that is trained, as well
as the proxy task. All variations were trained on a
Linux machine using various GPU’s depending on their
availability. Most training was done with a single GPU.
However, when available, data parallelism was used to
split the workload over two GPU’s and increase the
batch size. Gradient clipping was used to prevent ex-
ploding gradients. All training was done in 32-bit pre-
cision so no mixed-precision training and no gradient
check-pointing was used. These techniques could have
sped up the training process or allowed the use of big-
ger models. The optimization of the models required
much time training on the computing cluster, which
contributed to the time constraints experienced in this
project. For further details on the optimization process,
see Table 1. These values are by no means the optimal
hyper-parameters, as there was no time to do parame-
ter sweeps. Furthermore, optimal performance on the
proxy tasks was never the goal.

5 Results

This section describes the results of the experiments.
First, we look at the proxy task performance of different
architectures for the audio-visual model. Then we take
the best performing model and try different techniques
for processing the attention maps.
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(a) Experiment 2 (see Table 1) - G-AVTa with patch em-
bedder

(b) Experiment 3 (see Table 1) - G-AVTb with ResNet
feature extractor

(c) Experiment 4 (see Table 1) - G-AVT with ResNet fea-
ture extractor and increased embedding dimension (best
result)

Figure 5: The performance on the multi-modal align-
ment proxy task from different experiments, see Table
1. NOTE: I artificially applied smoothing to the train-
ing loss curve, since I mistakenly only saved this loss on
an interval, instead of averaging over the entire epoch.
Making the original loss curve unreadable. This explains
some of the noise within this curve, compared to the val-
idation loss.

5.1 Audio-visual model

One of the biggest challenges in this project was find-
ing a well-performing audio-visual model, constrained
by computing resources, and limited time. Many exper-
iments were done to find a model that could be used for
audio-source localization.

Experiment 1 - First, version a of the G-AVT (see
Table 2) was trained with multi-modal alignment as well
as mix-and-separate on the smaller MUSIC [27] data set,
as described in Table 1. The model was found to overfit
immediately. This result showed that a larger data set
is required and led to the creation of the MUSIC-200k
data set.

Experiment 2 - The same experiment was repeated,
but this time on the much larger MUSIC-200k data set.
This solved the overfitting issue, although the perfor-
mance of the G-AVTa on the proxy task is still poor,
as can be seen in Figure 5a. We can see that valida-
tion accuracy on the multi-modal seems not to be able
to reach even 70%. This means that the model is only
barely able to predict if a sound matches its visual input.
This poor performance is also reflected in the quality of
the attention maps, which to the human eye look close
to random noise. Furthermore, the mix-and-separate
proxy task was found to be much more difficult to train
on. Finding the right architecture for the M&S head
was also difficult. So it was decided that the following
experiments would use multi-modal alignment only.

Experiment 3 - Instead of the patch embedding
stage from ViT, a convolutional feature extractor was
implemented, creating the G-AVTb (see Table 2). This
was found to significantly increase the performance of
the G-AVT on the multi-modal alignment task, see Fig-
ure 5b. We now see that the validation accuracy of
the multi-modal alignment task approach 80%. This in-
crease in performance was also reflected in the attention
maps. We find that the model attends more to sound-
producing objects in general. However, the results are
very inconsistent and not yet satisfactory, as the final
results will be.

Experiment 4 - The G-AVTb uses a rather small
embedding dimension of only 256, compared to VIT.
The smallest version of ViT has an embedding dimen-
sion of 768 [6]. Hypothetically, a larger embedding di-
mension is needed to capture the audio-visual informa-
tion at the abstraction level required for performing the
multi-modal alignment. Therefore for the last exper-
iment, the depth of the encoder was decreased to al-
low for this increased embedding dimension under GPU
memory constraints. This resulted in version c of the
G-AVT, see Table 2. As can be seen in Figure 5c, this
model performed the best yet. We now see that the val-
idation accuracy on the multi-modal alignment task has
well surpassed 80%. Although this is likely due to the
increased training time, since the accuracy at epoch 100
is similar to that in experiment 3 at epoch 100 (see Fig-
ure 5b). The attention maps resulting from this model
are also improved. We thus use this model to exper-
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Figure 6: Audio-source localization maps produced by the G-AVTc (see Table 2) in the final experiment (see Table
1 and Figure 5c). Every row contains represents a different set of processing parameters, to reduce the values to a
single 8x8 map. These parameters are: the direction of the cross-modal attention values, the attention heads over
which we average the attention values, and similarly the encoder layer over which we average the attention values.
The columns represent a single unseen data sample. The localization maps were created using the normalization
using the normalization method from Equation 7.
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iment with the different processing methods for these
attention maps, see Figure 6.

5.2 Attention maps

From G-AVTc (Table 2) trained on multi-modal align-
ment as can be seen in Table 1 and Figure 5c, we take
the raw attention maps for some unseen samples. We
use the normalization technique from Equation 7 to con-
vert the attention maps to sound localization maps. If
we look at the first row of audio-source maps in Figure
6, we can see that the maps highlight the musical in-
struments and the mouths of singing people similar to
what we would expect. Furthermore, we see that also
the marching band is highlighted in the second sample.
However, the maps do still contain some noise and are
still inconsistent. See Appendix B for a larger set of
randomly selected samples.

Within Figure 6 we can also inspect the results of
some variations in the attention map processing method.
We can see how the attention maps look in different di-
rections. We see that taking the audio-to-visual atten-
tion in row 3 seems to produce more consistent results
than taking the visual-to-audio attention values as can
be seen in row 2. Taking an average of both values, as
in row 1, results in localization maps that are similar to
the audio-to-visual attention in row 3, which suggests
that the audio-to-visual attentions are relatively larger
in magnitude than visual-to-audio attentions. Thus the
audio-visual model seems to have a preference for deter-
mining audio-visual relations in this direction.

We can also look at how different attention heads
learn to pay attention to different image regions. If we
take the localization maps resulting from just a single
attention head, as in rows 4 and 5 of Figure 6, we can see
that the results are much more random than combining
the attention values from all heads as in row 1. This
suggests that the attention maps from the individual
attention heads are not very interpretable, and looking
at all attention heads simultaneously is the better analog
for audio-visual correlation here.

Finally, we could also look at the attention values
from different layers. If we take a look at row 6 from
Figure 6, we see that the localization maps from the
last layer are bad. They do not highlight musical in-
struments or singing people as we would expect. This is
because, for the last layer, a gradient is only determined
for the class token with how the proxy head was imple-
mented. Thus the attention values from the audio and
visual tokens are ignored for the optimization with the
proxy task. This means that the before the last layer
is the last layer with meaningful cross-modal attention
values. If a model contains more than two transformer
layers we expect to see attention maps at a lower level
of abstraction if we take earlier layers. However, this
could not be tested since the G-AVTc only contains two
layers (see Table 2).

6 Discussion

This section discusses the validity of the proposed learn-
ing framework. This validity depends on the answers to
the main research questions within this work. These
questions are discussed in the subsections, as well as
how my new data set could be useful in future projects.

6.1 RQ1 - Solving learning tasks with
correlation from attention maps

We have seen promising results for our application of the
framework on audio-source localization. Visual inspec-
tion of the source-localization results on performances
with musical instruments shows that in many cases, the
audible instruments are highlighted. This means that
we can indeed use the cross-modal attention maps from
an audio-visual model, trained in a self-supervised way,
for at least one audio-visual learning task directly. Al-
though this is just one example of one such learning task,
this suggests that we can indeed process such attention
maps in ways to interpret them as audio-visual correla-
tion. This opens the door for different implementations
of these attention maps for different audio-visual learn-
ing tasks like audio separation. However, this was not
empirically tested within this work. If this is the case, it
would make this audio-visual learning framework very
versatile. A trained audio-visual model could then be
used for multiple different audio-visual learning tasks,
and training the model does not require supervised data
sets. Furthermore, the framework is not restricted to
tasks related to only musical instruments, but should
also be able to be used for tasks regarding different types
of audio-visual data such as human speech.

There are some major limitations of my work I should
discuss. First, the evaluation method is extremely lim-
ited. Visual inspection of the audio source localization
results is prone to human errors and biases. Due to
a time shortage, this option was chosen. Ideally, this
work would have included a numerical evaluation on a
secondary supervised data set allowing for comparison
with other works. Or at least human inspection using
focus groups. These methods would have more accu-
rately quantified the performance on the task of audio-
source localization. This performance is the second lim-
itation of this work. Although we cannot accurately
quantify the performance, visual inspection is enough
to determine that the quality of the source localization
maps is poor compared to that achieved by some other
works [24, 26–29]. However, these works have different
limitations such as a reliance on training supervision or
being limited to a certain type of audio-visual data such
as human speech. Furthermore, the performance of our
framework heavily depends on the implementation of its
components and the chosen audio-visual learning task.
This brings us to the second main research question of
this work.
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6.2 RQ2 - Framework implementation

We have seen that the implementation of the compo-
nents within the framework greatly influences the proxy
task performance and the performance of the audio-
source localization task. Because of limited compute
availability and time shortage, the implementation of
these components within this work is far from optimal.
Thus there should be much room for improvement by
more carefully considering the choice of these compo-
nents.

The selection of audio and visual embedding stages
has been found to be important in determining the per-
formance of the model on the proxy tasks, and thus
the quality of the attention maps. ViT-like patch em-
bedding stages make the model too difficult to optimize
and likely need much larger data sets. Convolutional
embedding stage in contrary work well. A features ex-
tractor based on ResNet18 [12] was used in my works, so
there is an opportunity for the use of deeper versions of
ResNet, or newer architectures like ResNext [36]. How-
ever, using deeper feature extractors means that the au-
dio and visual streams are fused later. We thus miss the
opportunity to analyze the cross-modal attention with a
lower lever of abstraction. But this could be a necessary
trade-off for achieving good proxy-task performance and
attention maps of satisfactory quality.

Similarly, we see that we do not sacrifice much proxy-
task performance if we reduce the depth of the final
encoder stage, suggesting that much of the heavy lift-
ing is done by these deep feature extractors. Analyzing
the attention maps from this shorter encoder stage is
simpler since we have fewer layers to process. Tough
similar, the attention maps from this shorter encoder
stage seem to be of slightly higher quality. This could
mean that in a deeper encoder stage the correlations are
much more hidden within cascades of attention instead
of direct first-degree attention values. However, this is
purely speculation, since the independent variables were
not controlled between the two runs with different en-
coder depths. Furthermore, the evaluation method used
is not reliable.

Within my work, I was able to show the validity of
my framework for one simple implementation using just
one of the proxy tasks. Multi-modal alignment train-
ing was found to be an effective training method. It
would however also be interesting to look at the mix-
and-separate learning task since hypothetically it would
force the audio-visual model to look at the audio sig-
nal with more detail. This could increase the quality
of the attention maps from the audio perspective such
that they could potentially be used for visually based au-
dio segmentation as well. This would be an interesting
topic for future work. Similarly, for future research, it
would be interesting if using deeper and more advanced
architectures can increase the performance of the frame-
work such that it is competitive within the state of the
art. Using high-performance deep convolutional feature
extractors for both embedding stages seems like a clear

direction for improvement, given the availability of com-
puting resources.

6.3 MUSIC-200k in context

In this project, the new MUSIC-200k data set has been
key for the development of our newly presented audio-
visual learning framework. This data set can be placed
in between other large audio-visual data sets like AVSPeech
[37] and YouTube8m [34] in terms of data variance.
MUSIC-200k is suitable for a broader set of audio-visual
learning tasks than AVSPeech which is only useful in
the context of human speech. At the same time, it is
more restricted in such audio-visual learning tasks than
YouTube8m. This well-defined variation within the data
makes the data set well suited for developing and testing
general-purpose audio-visual learning algorithms, that
require large amounts of video data, such as the frame-
work presented within this work.

There are some limitations to consider. First, the
availability of the samples is tied to the availability of
the YouTube links, and thus it can change. Similarly,
the quality of the audio and video signals is limited by
those YouTube uploads. Furthermore, not every sam-
ple within the MUSIC-200k data set has been manu-
ally checked for quality, unlike the original MUSIC [27]
data set. Inspecting a random sample showed that the
data set contains some bad samples. These bad sam-
ples could be videos where the acoustic and visual parts
don’t correlate much, like videos with background mu-
sic, image overlays, or any video where the sound source
is not directly filmed. However, the random sample con-
tained fewer than 5% of such bad samples. Although
there also exists some variation in quality within those
samples, throughout their duration, which has not been
checked manually. There appears to be a slight trade-off
between quality and quantity here, compared with the
MUSIC [27] data set. Despite these limitations, MUSIC-
200k will be a good choice for testing and developing
many general-purpose audio-visual learning tasks.

7 Conclusion

This work presents a new audio-visual learning frame-
work. We have trained a transformer-based audio-visual
model on self-supervised proxy learning tasks. The at-
tention maps from the self-attention layers of this model
are processed and normalized to solve downstream audio-
visual learning tasks. The primary goal of this work
has been to validate this learning approach. In particu-
lar for the downstream task of audio-source localization.
Through visual inspection, we have seen that the audio-
source maps produced by the implementation of our new
framework can be used for source localization. This thus
validates our learning framework for the task of source
localization in particular and suggests that the cross-
modal attention maps can be interpreted as audio-visual
correlation. This in turn suggests that these attention
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maps can also be used for multiple different audio-visual
learning tasks. Although only visual inspection and no
numerical evaluation were done within this work, the
audio-source localization results appear to be of poorer
quality than many other approaches.

It was found that the architecture used for the audio-
visual model, greatly influences the performance of the
framework. And because our implementation of the
framework was constrained by computing resources and
a shortage of time, there is likely much room for improv-
ing the performance on the task of audio-source localiza-
tion. If the performance of the framework can improve
such that it is competitive within the state-of-the-art,
then our method would have notable benefits over the
competition. First, it is a general purpose framework,
which is not constrained to any type of audio-visual data
and can thus be implemented in many different scenar-
ios without much tailoring. Second, after training, we
can use the same model and weights for solving multiple
different learning tasks without the need for fine-tuning.
And finally, we do not require data supervision and can
thus use more easily obtainable general-purpose large-
scale audio-visual data sets, like our new MUSIC-200k
data set.

Directions for future work - The new framework
has some promising benefits, but its performance needs
to improve. The implementation of the framework has
much room for improvement. The audio-visual model
in particular. Assuming more available computing re-
sources, future works can try larger models. I would
suggest using more advanced deep convolutional feature
extractors for both the embedding stages and a larger
embedding dimension. These works could explore the
effect of the depth of the transformer encoder stage. Be-
sides increasing performance, accurate quantification of
this performance would be required to place the frame-
work amongst other methods within the state-of-the-art.
Finally, since we have seen that the cross-modal atten-
tion maps can be interpreted as audio-visual correlation,
it would be interesting to see how well these could be
used for solving audio-visual learning tasks other than
source localization. Audio separation based on the im-
age region is among the possibilities. For these tasks,
we would need accurate quantification of the perfor-
mance as well. If good performance can be reached in
one or preferably more audio-visual learning tasks, then
the framework would be an excellent option among the
audio-visual state-of-the-art. Then the framework can
be useful in real-world applications, which would be an-
other possible topic for future works.
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A Random Samples from MUSIC-200k

Figure 7: Samples from the MUSIC-200k data set. On top, a randomly selected video frame, as well as the short-time
Fourier transform representation of the corresponding audio section.
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B Audio-source Localisation Results

Figure 8: Random selection of audio-source localization maps from G-AVTc with the normalization method from
Equation 7. The same processing parameters were used as in row 1 of Figure 6. We take the attentions in the
direction from the audio to the visual tokens. We take the attentions of the last encoder layer. We average the
attentions over all attention heads. And finally, we group the attentions per visual token to retrieve the source
localization maps above.
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