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Management summary 
This research is conducted at Simacan, a Dutch software company that delivers software as a service. 

Simacan is the leading company in real-time monitoring of transport & logistics within the Netherlands. With 

all the data that is received from traffic and customers using the platform, Simacan is able to do more than 

only giving a clear overview of assets and expected arrival times. This research is focused on a problem that 

has developed in companies providing home-delivery services in recent years. 

Over the past 10 years the use of methods for buying groceries online and having it delivered at home, 

experienced tremendous growth. The biggest and unexpected growth, occurred in the last two years due to 

the pandemic. The Covid-19 virus took over the world and people got to experience curfews, stay home 

obligations and quarantines. This has led to more and more people ordering their groceries through online 

methods to comply with regulations and avoid potential contamination risks. For home-delivery companies 

(HDCs) this meant almost a doubling in customers in only a year time. This brought a lot of pressure on their 

delivery plans. Due to the traffic reduction within that time, HDCs managed to keep the deliveries within 

reasonable boundaries. However, as the Covid-19 pandemic comes to an end and people are used to 

delivering online, current plans used by HDCs are in need of improvement. Traffic is rising back to its original 

level and is most likely continuing its growth as before the pandemic. Using the same scheduling methods, 

this results in very high chances of customer deliveries running late. In the daily operation, the HDC already 

asks its delivery drivers to maximise on-time deliveries to prevent unhappy customers. The HDC therefore 

asked Simacan to help them improve their plans before the execution (pre-trip) stage in order to maximise 

an on-time delivery. 

To help Simacan, we performed research on how to improve the plans of HDCs. The goal of this research is 

to develop a method to improve current home delivery plans, making them more robust to withstand traffic 

fluctuations and maximise the likelihood of on-time delivery. We started the research by investigating 

existing problems in routing and scheduling within the home delivery sector. We identified that the 

rescheduling problem we are facing is called the vehicle routing problem with time windows (VRPTW). The 

inclusion of a robustness factor within scheduling, is a topic that has only come up in the last few years within 

the literature and is therefore a valuable research subject. 

The method we have devised is one that, based on historical data, improves the current plan by optimising 

it on robustness through rearranging the stop sequence. We defined Robustness as the degree to which a 

driver is not able to deliver within the time window of the customer. After analysing 4 years of historical 

data, we were able to create probability functions that represent the probability of a late delivery with 

regards to amount of minutes planned before the end of the time window of the customer. Because the 

HDC has hubs spread around the Netherlands and situated in different rural and urban areas, they all have 

their own probability pattern. To overcome this, we created separate functions for each hub. We 
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subsequently used the probability functions to create a robustness function to optimise a trip based on this 

probability. This robustness function consists of four 

elements and is based on the method from the paper of Hsu 

et al.(2007). Figure A gives a visual representation of the 

function. We determined a penalty robustness value of “M" 

for planning before and after the time window, and start 

giving a penalty at a certain point “s” within the time window 

where the probability of a late delivery starts increasing 

before the end of the time window.  

In order to optimise a single trip, we created a method that 

uses a tabu search algorithm with a 2-opt operator. The algorithm continues to search the solution space for 

better solutions in order to optimise a single trip based on the robustness value which follows from our 

function. To calculate the robustness value of an entire trip, we decided to add up all individual robustness 

values of the customer level to a total robustness value that represents the robustness of the trip. This 

means, the lower the outcome of the robustness value, the better robust solution we get for the plan of a 

trip. To get the routing and travel time of the new emerging trips after rescheduling, we used different APIs 

from Simacan to determine optimal routes and travel time. 

To validate our method, we performed multiple experiments and used several different case studies for 

testing our approach. Our experimental data set is part of an original plan and consists of 118 trips with 

different characteristics to be able to cover most of the different scenarios. These experiments showed us 

some relevant information about the plan of the HDC and its potential of improvement. We found out that 

the current plan is primarily based on optimising the distance while delivering within the time window. This 

confirms the outcome from our data analysis and the information we received from Simacan internally. 

Furthermore, we confirmed the large potential for robustness improvement of current plans. From the 

parameter optimising we concluded that robustness could be improved by around 30%, without looking at 

distance increase. 

After performing the parameter optimising experiment, we performed several others extending and testing 

the basic robustness method. These experiments included: a composite penalty function, alternative starting 

solutions for running the algorithm, and lastly combining robustness and distance optimisation within one 

multi-objective function. We concluded that the alternative penalty function did not give significant different 

results for our instance, and need future research to investigate the potential added value. Using alternative 

starting solutions showed us the capability of our algorithm to find good near optimal solutions. Starting to 

optimise with different plans did not give significant better results and needed consistently more time to 

solve. Finally, we found some valuable information about optimising on multiple objectives. Using different 

Figure A: Visualisation of the Robustness function 
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weights that can be set in advance to the distance and robustness objective, the algorithm was able to find 

valuable improvements. By increasing the travel distance by only 4% the algorithm was able to find 

significant robustness improvements of at least 20%. Benefits of these improvements are higher customer 

satisfaction, as they should get less late deliveries, and more grip and insight on the daily operation.  

From our research, we conclude that the robustness increase of home delivery plans based on historical 

traffic data has added value to the attended home delivery problem. When using our created method on a 

home delivery plan of the HDC, a significant potential increase in robustness can be made. However, only to 

a certain extend they are useful within a real life application. From our experiments we determined that 

when improving on robustness alone, this does not outweigh the increase in travel distance. Using a multi-

objective function shows far more potential for this case and should therefore be further investigated. We 

therefore recommend to perform further research on these weights in order to find a good balance. Next to 

that, the current running time of the algorithm is not very fast and will not suffice for the current daily plan. 

Some code optimisation is needed in order to use the method for real-life optimisation cases. Also, we 

scoped out the use of breaks within the rescheduling of trips. When Simacan is able to detect breaks within 

the execution of plans, it is recommended to perform research on how to implement breaks within the 

rescheduling algorithm to further increase the feasibility of the revised plan. Lastly, we believe that the 

improvement based on historical data becomes outdated as traffic evolves over the years. Therefore the 

distribution functions of all hubs need to be updated frequently in order to retain the improvement 

potential. 
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Abbreviations 

AHDP  Attended home delivery problem 

HDC  Home Delivery Company 

API  Application programming interface 

CCP Chance-constrained programming 

CNI Consecutive non-increasing iterations  

DC  Distribution center 

ETA  Expected time of arrival 

KPI  Key performance indicator 

MOO  Multi-objective optimization  

NP-hard Nondeterministic polynomial time - A problem is NP-hard if an algorithm for solving it can 

be translated into one for solving any NP-problem (nondeterministic polynomial time). NP-

hard therefore means “at least as hard as any NP-problem”. 

R-MOEA Robust multi-objective evolutionary algorithm 

SaaS  Software as a service 

SCT  Simacan control tower 

TS Tabu Search 

TSP  Traveling salesman problem 

TSPTW  Traveling salesman problem with time windows 

VNS  Variable neighborhood search 

VRP  Vehicle routing problem 

VRPTW  Vehicle routing problem with time windows 

 

Glossary 

(Customer) Stop  When referring to a (customer) stop, this represents a single customer location 

where a delivery need to take place. 

Route   When referring to a route, this represents the road to be taken between two 

locations. For example between two customers or a depot and customer. 

Time window  A time window is a period of time, consisting of a start and end point, in which a 

delivery should take place.  

Travel time  The time it takes to travel from point A to point B. 

Trip   When referring to a trip, this represents the entire routing sequence between a 

series of customers and the depot.  
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1. Introduction 
The first chapter of this thesis starts with an introduction of the company where the research is taking place 

(Section 1.1). After that follows a research motivation in Section 1.2, whereafter in Section 1.3 the reader 

will be introduced to the problem that will be addressed. After the problem introduction, in Section 1.4 the 

research questions will be elaborated that will help finding a solution to the problem. The chapter concludes 

with the research scope in Section 1.5 and the research design in Section 1.6. 

1.1. Company description 
Simacan is a SaaS (Software as a Service) company that was founded in 2013. It is based in Amersfoort and 

currently employs more than 75 people. Simacan offers an open and vendor-independent cloud platform 

for digital cooperation in transport & logistics. Simacan serves a large portion of the Dutch retail market 

including the leading supermarket chains, e-tailers and postal-parcel companies, processing more than 25 

million deliveries on a yearly basis. Simacan enables fast and secure digital cooperation with – and between 

– transport companies and shippers to tackle industry-wide challenges, such as reducing transportation 

costs, optimizing the transport supply chain and reducing CO2. 

To be able to do this, Simacan developed the Simacan Control Tower (SCT) illustrated in Figure 1. The SCT is 

a cloud-based software platform where customers will get unambiguous, real-time information about their 

shipments.  

The platform consists of multiple elements and interfaces to ensure that all players in the supply chain are 

simultaneously involved and informed in various ways. Simacan calculates the fastest and safest route with 

traffic, last-mile delivery instructions and in-cabin information whilst considering traffic accidents, 

Figure 1: Preview of Simacan Control Tower interface 
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congestion and transport regulations to avoid losing time at the dock or next hub. The platform offers clear 

graphs, overviews, and effective data filters to help customers track and analyse their shipments on a real-

time basis. 

A difficult part of this service is that each company has its process and way of working. Therefore, Simacan 

differentiates between three different kinds of sectors, namely supply chain (transport/retail distribution), 

parcel (transport from e-commerce to hub) and home delivery (from a store, hub or distribution centre). 

Each sector has its way of transportation.  

Each party within the process of supply chain and home delivery has different information needs. Therefore, 

various interfaces have been developed to be able to serve all sectors and create easy to use transportation 

overviews for each stakeholder in the supply chain. The four main applications are listed below: 

1. The Simacan Control Tower (SCT): Within the control tower all the magic happens. It gives the 

overall map as shown in Figure 1, where one can monitor all trips and track vehicles from the begin 

to the end of the supply chain.  

2. Store displays: A screen within stores that show the arrival time and load information of trucks. 

3. Arrival displays: A screen that provides insight into times and peaks of arriving freight traffic at 

unloading addresses (Hubs/DCs). 

4. End customer notification: For customers with home delivery there is a notification service via e-

mail, SMS or a customer-specific environment that informs consumers at home at what time the 

delivery driver will arrive. 

With the help of these four applications, Simacan has earned her place in the Dutch retail market and is 

heading into Europe in order to expand their business and help more and more companies to create a 

sustainable future for logistic transport. 

1.2. Research motivation 
Currently Simacan offers a platform that helps to eliminate the complexity of the execution of 

transportation. With all the data that is gathered from customers using the platform, Simacan is able to do 

more than giving a clear overview. This data can also be used to help customers in other ways.  

On an everyday basis, shipments deviate from created plans within transportation companies. With the help 

of gathered data from Simacan’s platform, it is possible to compare the initial day-to-day plan with what 

really happened in practice. The realised data of different transports from for example distribution centers 

to stores or from hubs to customers can be analysed and compared on different levels, like differences 

between planned and realised trips, planned and realised routes, differences between truck drivers, and 

overviews of loading and unloading times.  
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In this wealth of data, potential is hidden to provide quick insight for (potential) customers on what 

improvements in their logistics operations are feasible. Unlocking these quick insights is yet an unexplored 

territory for Simacan.  

1.3. Problem description 
The data of Simacan is widely used for different innovation projects within the transportation sector to help 

customers with their logistics operation. One of these projects is using traffic history and prediction to 

determine expected arrival times (ETA’s), as traffic is a challenging subject. Namely, in the last 20 years a 

significant change within modern day traffic emerged. The increase in passenger cars only is already 14% 

(CBS 2021) , let alone transport vehicles, whose travelled distance grew the most over the last 5 years (CBS 

2020). Over the last 5 years the growth in transportation vans and heavy goods vehicles was respectively 

14.7% and 12.6%. According to the yearly traffic report of 

Rijkswaterstaat (Rijkswaterstaat 2019), the traffic intensity 

between 2000 and 2018 increased with about 28% (Figure 2).  

This increase in traffic has a large influence on traffic jams. Also 

more maintenance on roads is needed. For many logistics companies this will create a growing challenge as 

it will have a significant effect on timeliness and on-time deliveries. Specifically looking at the home-delivery 

companies who are dealing with customer specific time windows and tight plans. Next to that, as can be 

seen in Figure 3, the influence of the Covid-19 virus nearly doubled the need for home delivery within the 

Dutch retail-grocery market (Simacan 2021). To avoid crowded places and human contact, people are 

choosing home-delivery over going to the supermarket themselves. Therefore, well-designed delivery plans 

are crucial to fulfil customer expectations for the home-delivery sector. Also from the business perspective 

the HDC wants to cope with this increasing demand. Hence delivery plans need to be robust and able to 

Figure 2: Traffic intensity from dec 2000 until April 2018 by Rijkswaterstaat 
(2019) 

Figure 1: Home-delivery growth after the Covid 
virus, based on data from Simacan 
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withstand traffic fluctuations. This can be done beforehand in the pre-trip stage as well as during the 

execution in the on-trip phase.  

The part of improving plans in the on-trip phase has previously been researched by a fellow master student 

in his paper about “Dynamic rerouting for an optimal delivery strategy” (Scholten 2021). Thus, this research 

will be focused on the pre-trip stage. The pre-trip stage is defined as the stage when the delivery plan is 

received, but the execution still needs to take place. The incoming plan of customer deliveries will be 

analysed and modified to increase the robustness and customer satisfaction of the initial plan, where 

robustness is defined as the degree to which the plan can withstand traffic and other delays within a specific 

trip. This can be managed by delivering as little as possible near the end of the customers time window. This 

will increase the probability of a trip being delivered on-time. A more specific meaning of robustness will 

further be specified in the literature research. 

1.4. Research questions 
As mentioned in the previous section, creating delivery plans for home-delivery companies is becoming more 

and more a challenge with modern-day traffic. These plans need to be robust to be able to withstand the 

heavy traffic increase that emerged over the past years. Using realised data from Simacan, it is possible to 

analyse the past and use this to improve current plans. The goal of this research is therefore formulated as 

the following main research question: 

How and to what extent can current plans from home-delivery companies be improved (before execution/pre-

trip) in terms of robustness? 

To find a solution for the main research question, we break it down into smaller subjects, of which each 

contributes to answering a different section of the main question. They also provide guidance for the 

research. The following sub-questions will be addressed: 

1. What do current plans from home-delivery companies within Simacan look like? What is the current 

situation and what KPIs are involved? 

We aim to create a method in order to improve plans of home-delivery customers of Simacan in terms of 

robustness. In order to do so, we first need to know more about the current situation. A context analysis is 

needed to know what current plans look like, what KPI’s are used and how is the current situation.  

After performing a context analysis of the problem to get more insights, we need to conduct a literature 

research to obtain knowledge. The first literature question we will try to answer will be about routing and 

scheduling for home-delivery companies and how this is addressed within the literature.  

2. What does the literature contain about improving delivery plans for home-delivery? 
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The second question in the literature research will be about robustness. To be able to make more robust 

plans, we need to know what the specific definition is of robustness within literature, how this is measured 

and what strategies exists in order to improve this in plans for home-delivery companies. 

3. How is planning robustness defined in literature and what are known strategies to measure and improve 

robustness? 

After the literature phase, we need to consider how the found method can best be used in building the 

solution for improving the robustness of home-delivery plans. This insight consists of assumptions, 

requirements, and other necessary information to build the solution method. This leads to the third research 

question: 

4. What robustness improvement method can best be applied to the Home Delivery Company case study? 

After the implementation phase has been completed and new more robust plans can be created, the 

assessment of the solution approach and its performance need to be validated. Here we need to perform 

experiments on different trip instances in order to conclude the performance of our new plan for different 

scenarios in comparison to the current plan. 

5. How does the solution method perform under different experimental scenarios? 

1.5. Research scope and limitations 
This research takes place at Simacan in Amersfoort. The topic of planning optimisation is complex and can 

be extended in many ways. Therefore, before the research is conducted, some boundaries and size of the 

study need to be defined. The scope of this research and limitations of certain choices are as follows:  

Scope: 

• The focus of this study is to create a solution method to optimise existing plans. The scope for 

this solution method is limited to planning and routing. The method will be limited to three 

steps: a threshold that will be used to determine which orders in a trip need to be replanned, a 

search space where the corresponding order can be replanned to, and the final replanned 

solution.  

• To reduce the complexity of the research and due to a lack of information, we will restrict the 

problem in a couple of ways. First, we do not include any financial consequences of the 

optimised plan. Some examples of these financial consequences are the costs for increasing 

travel distance and extra working hours. Next to that, we will only look at single trip mutations 

because important data like capacity allocation is unknown. This means that we will not swap 
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customer stops between different trips but will only look at optimising a single trip by 

rearranging the order.  

• As customers of Simacan are from different sectors we will focus on one sector in particular. The 

sector that will be addressed in this research is the e-grocery sector. In this sector we will 

specifically focus on the Home Delivery Company (HDC). 

• The data that will be used within this research will mainly come from the databases of Simacan. 

In agreement with customers, it may occur that their data will also be used in order to create a 

combination with data from Simacan. 

• In order to get a good understanding of feasibility and travel times of the newly created routes 

from the methodology, we will use the existing travel time and routing API created by Simacan 

which includes traffic profiles and shortest path routing. 

Limitations:  

• Scheduling for home-delivery companies is not done by Simacan itself. Customers deliver their 

plans to Simacan created by their own planning instance. This research is conducted to adapt 

these given plans to be able to make them more robust. The plan for all customer orders will 

therefore not be recreated to trips with corresponding routes from scratch.  

• The solution method that will be created and tested will be based on the operation of the HDC. 

As not every customer of Simacan works according to the same operation, the methodology 

needs to be adapted when used for other customers.  

• Data used in this research will also include data from the past two years. Due to Covid-19, which 

became a pandemic virus in March 2020, this data is very different from the years before. As 

people where obligated to work from home as much as possible, there was not as much traffic 

as in the previous years. Also, we do not know how this will affect future traffic and if we will get 

back to the old situation before the virus. Therefore, the inclusion of this data will have a 

significant influence on the solution that will be created.  
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1.6. Research design 

Figure 4 shows the relation between the research questions (yellow), what input is needed for each research 

question (green) and what output is generated by each research question (red). It also shows the chapters 

in which the research questions are answered. 

Figure 4: Research design 

 
HDC 



  

23 September 2022  18 
 

2. Problem context 

In this chapter, a detailed description of the problem will be provided. Here we give an answer to the first 

research question. We start in Section 2.1 with an introduction about home delivery plans. Next, we 

elaborate on the traffic development in Section 2.2. Then, the severity of the situation of lateness within the 

plan of the HDC is reviewed in Section 2.3. In Section 2.4 we give insight into mutual differences between 

delivery hubs. Finally, in Section 2.5 and 2.6 we focus on how Covid-19 influenced the situation of the HDC 

and their current solution. 

2.1. Home delivery plans 
As introduced in Chapter 1, Simacan created the SCT to visualise and calculate the ETA of delivery routes for 

their customers. These delivery routes are based on plans created by clients of Simacan and consist of 

multiple customer stops with each their own characteristics. In this section, we explain the process of how 

these home delivery plans are created and how this is visualised by Simacan in the SCT.  

The process of scheduling starts with a customer that needs groceries. The customer then goes to the app 

or webpage of the specific retailer and orders the needed groceries. At the checkout, the customer is offered 

different time slots in which the delivery can take place. We specify the order period for a specific day as [0, 

T], where 0 is the first available moment in time for which the order can be made, and T the so-called “Cut-

off time”, which will be the last moment the customer can place an order for the day. After this time T, the 

plan for a day will be created by the planning department of the retailer. This daily set of customers with 

different destinations, grocery volume and time windows are becoming a difficult problem to solve. They 

need to be combined into different routes matching their time windows and vehicle capacities. This problem 

is part of a so-called Vehicle routing problem (VRP). This problem emerges when one has a fleet of vehicles 

that need to deliver goods to a given set of customers by a set of routes. Many adaptations on the VRP exist 

because most of these problems have their own specific constraints, which includes characteristics such as 

vehicle limitations, cost controls, time windows, resource limitations concerning the loading process at the 

depot, and many more. For this specific problem for home delivery we also have certain characteristics that 

have to be taken into account when creating viable routes and plans. Because we are dealing with food that 

in most cases can perish, the customer needs to be home when the delivery takes place in order to store it 

properly afterwards. Therefore the customer indicates a time window consisting of several hours during 

which they are available for service. These time windows are in general fixed and cannot be changed, we call 

these “hard time-windows”. These hard time-window constraints increase the complexity of determining 

optimal delivery routing. However in most cases we assume that people tend to be home a small period 

before and after their given time window. When a delivery arrives early, or with an acceptable delay, it can 

still take place but with a certain penalty. The process from start to end from a customer perspective is 

shown in Figure 5. The characteristics of this specific home delivery problem point to the Vehicle routing 
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problem with time windows or VRPTW. This VRPTW includes different time-slots, locations and delivery 

service times (the time it takes for the delivery driver to hand over the order at the customer stop) based on 

the volume of the orders. The VRPTW will be further elaborated in the literature research. The VRPTW can 

be solved by various heuristics and metaheuristics to create a feasible plan and routes for the day. 

 
Figure 5: overview of the e-grocery process from a customer perspective 

When the routing and plan is created, Simacan receives the plan a couple of hours before execution. 

Experience of Simacan shows that these plans are optimised 

based on travelling the least amount of distance. The plan is 

provided with all the necessary trip and stop information with 

corresponding arrival and departure times, time windows and 

delivery load. The plan information is converted to a structured 

overview within the SCT. With the use of an Application 

Programming Interface (API) the stops are connected with the 

shortest route and visualised within the SCT. From the overview 

shown in Figure 1 in Section 1.1, we can open a trip to get further 

information.  

 

 

Here, we see a visualisation of the trip with associated routes and corresponding stop sequence as shown in 

Figure 6. In order to give a clear overview of the customer order, delivery times and load, one also get more 

information of the specific stops as shown in Figure 7. When the trip has started, real-time information like 

expected time of arrivals (ETA’s), realised delivery times and vehicle location are shown in this overview.  

2.2. Traffic delays 

After introducing the traffic situation of the past years in Section 1.3, we will give insight into the kind of 

impact this has on the delivery situation of the HDC. As mentioned, the increase and fluctuations in traffic 

are difficult to manage. Especially for the home delivery sector where timeliness is a significant part of their 

operation. Due to the fast growth of this sector since February 2020, when Covid-19 became a pandemic 

Figure 6: Overview of customer trip 

Figure 7: Detailed information of customer trips 
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virus, home delivery companies experienced rapid growth and became more and more dependent on traffic. 

Until now the sector managed to adapt to this growth due to the decrease in traffic that started at the same 

time.  

In order to give some insight, Figure 8 shows, based on Simacan’s data, the amount of traffic delay of the 

past four years. This delay is measured by taking the Free-flow conditions as the starting point. The free-flow 

condition is the travel time when one can drive freely without any traffic delays. As can be observed, traffic 

delay decreased significantly when Covid-19 became a pandemic at the end of February 2020. For home 

delivery companies this has increased on-time deliveries on their tight plans as there are fewer fluctuations 

in travel time caused by delays. However, it is unclear how the current traffic situation will evolve in the 

future and if it will return to the previous level and continue its growth from recent years. Therefore plans 

are in need of improvement and adaptation to the future situation.   

Figure 8: Weekly traffic delay per year in million minutes 

2.3. Severity of the situation 
In order to get more detailed information about the impact of the traffic situation and customer growth on 

the current home delivery operation, we conducted a small research based on customer data of the HDC. 

What has been noticed in earlier research of Scholten (2021), is that plans from the HDC are not very robust 

in their ability to handle any possible delay. A KPI used by the HDC to measure robustness is the percentage 

of stops that are delivered within the time window. As can be seen from Figure 6 in Section 2.1, customer 

deliveries are planned close to the end of the customers time window. Scholten noticed that this is 

happening very often within the plans of the HDC. The downside of this occurrence is that any resulting delay 

within a trip is very difficult to make up for. As opposed to other sectors where you might be able to work 
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twice as hard, it is not possible in the transportation sector to drive twice as fast to make up for any lost 

time. The consequence of this is that even small delays in the delivery process will have effect on all following 

stops and increase the possibility of delivering outside the time window. In Figure 9 we can see an example 

of what is happening a lot at the HDC. Here, stop number 7 is planned not very far from the end of the time 

window of the customer (the black line). By doing so, the risk of not delivering within the time window 

becomes high. As we also see, this happened for this stop. Due to a delay earlier in the trip the driver has 

not managed to deliver in time.  

To get to know the impact of the described situation, we analysed data of the past four years to investigate 

the current way of planning. With available customer data of the HDC, we determined for every month, the 

number of stops that were realised outside the time window. We created two graphs, combined all months 

and selected stops that were planned to be delivered within 10 and within 15 minutes to the end of the time 

window. These graphs can be seen in Figure 10. In these graphs, we see that the probability of not meeting 

the given time window becomes larger when the stop is planned closer to the end of the time window. 

Furthermore, we can see that the number of stops delivered late is decreasing over the past two years. 

Figure 9: Example of delivery outside the time window caused by traffic delay and end of time window planning 

Figure 10: Number of stops and percentage late, based on data of HDC from 2018-2021 
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Multiple reasons can be found from this. However, one of the main reasons we expect to be the decrease in 

traffic caused by Covid-19. Since the traffic reduction caused by Covid-19 is likely to disappear in the coming 

years, we expect these percentages to increase again. In order to prevent this, we need to improve the 

current way of scheduling and create more robust plans that are able to withstand traffic delays better.  

As mentioned before, the HDC is a large company in the home delivery sector. From just data, as shown in 

Figure 10, it is hard to determine the exact size of the problem. Therefore, to provide a better understanding 

of the scale of the HDC, we gathered a year of data (2021) and looked at an average daily planning operation. 

Figure 11 gives some information about the quantities of an average day at the HDC. As shown, every day a 

large amount of customers need to be planned, with each their own time window and location. This results 

in many trips driven by several vehicles divided over multiple hubs. This is a very large logistical problem 

which need to be solved every day.  

Figure 11: Overview of an average daily operation of the HDC. 

2.4. Delivery hubs 

The HDC delivers their groceries all over the Netherlands. This is done from different distribution hubs that 

are spread over the country in order to be able to service every customer. Earlier research within Simacan 

has shown that there are substantial differences between the timeliness of these hubs. The research, based 

on the hubs of the HDC, revealed a time differences between planned and realised of up to 10 min over 

several hubs. A selection of the outcome can be found in Figure 12. Here we see on the y-axis a set of 

different hubs and on the x-axis we see the median percentage error (in minutes) over all trips from that 

specific hub. From the figure we can conclude that the average error for the hubs deviate between 1 and 10 

minutes. One of the main reasons for this difference can be explained by the fact that some regions around 

hubs are more densely populated than others. This leads to more traffic delays for certain hubs located, for 

example, in the Randstad and hubs with less traffic located near rural areas. As the lateness distribution can 

therefore be different for a region, this also needs to be taken into consideration when trying to improve 
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the robustness of plans. Therefore we also took this into consideration when investigating the percentage 

of stops delivered late.  

In Figure 13, we see our findings of the current lateness situation of all hubs combined. This lateness is 

plotted against the amount of time (in minutes) a stop is planned before the end of the time window. The 

figure consists of two graphs. The orange bars are representing the percentage of customer deliveries that 

are delivered outside the given time window, when planned that amount of time before the end of the time 

window. The blue line represents the corresponding amount of customer deliveries on that specific time (on 

time and late). Both graphs are based on the same x-axis, which represents the amount of time (in minutes) 

Figure 12: Insight in timeliness difference of hubs, based on research of Simacan 

Figure 13: Graphical visualisation of lateness percentage based on planned before the end of the given time window (data 2018-2019) 
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the delivery is planned before the end of the given delivery time window. As can be seen from the figure, 

there is a smooth degrading slope on the percentage delivered outside of the time window (late). However 

we see two exceptions on the 15 and 60 minute mark, which are more common time units used in their plan. 

The reason behind these outliers is still unknown. 

When we further investigate the data and divide the data into a hub specific view, where all trips that start 

from a single hub are fit into the same graph, we see the same degrading effect for almost all existing hubs. 

However, when comparing the hubs we see heavy fluctuations in the starting percentages for the top of the 

slope. This confirms earlier research of Simacan that there are indeed significant differences between hubs. 

Figure 14 gives an overview of these differences per hub, specified to first couple minutes planned before 

the end of the given time window. We took the lateness percentages based on the first 4 to 7 minutes 

planned before the end of the time window. The reason behind this is that there was a certain fluctuation 

between the hubs at how many minutes before the end they would start to plan. On the x-axis we have the 

different hubs. The blue bars represent the starting percentage for the top of the slope. The orange dots are 

representing the corresponding total amount of stops (on time and late) at this starting point (based on a 

logarithmic scale).  

Figure 14: Hub specific timeliness based on planned deliveries close to the end of the time window (data 2018-2019) 
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2.5. Influence of Covid-19 on the data 
When we analyse data in order to get information about previous years, we see a large difference emerging 

with regards to traffic. In Section 1.3, we discussed this decrease in traffic. With the arrival of the Covid-19 

virus in February 2020, traffic intensity dropped to the same level as it was back in 2003. Due to the fact that 

people were forced to stay at home during lockdowns or quarantines, more and more people started to 

order their groceries online. For the timeliness as shown in Figure 13 and Figure 14, this had a quite 

significant impact. For the HDC this meant a huge growth for their customer base. When we update Figure 

13 with data of 2020-2021 we get the new graph as shown in Figure 15. Here we see that in the past two 

years some stops are even planned outside their given time window, noted by the minus x-axis values. The 

HDC was not able to plan these orders within the given time due to this customer growth. On the other hand, 

for trips that are planned within their time window, we see almost the same degradational slope starting at 

time 0 as we encountered in the data of 2018-2019 in Figure 13. However, due to the decrease in traffic the 

starting point of this slope starts now at about 20%, which is 10% lower than before. This means deliveries 

are less late than before, while the amount of trips have increased. As expected, when the trip is planned 

outside the time window we see a much higher percentage of stops that are delivered late.  

Figure 15: Graphical visualisation of lateness percentage based on planned before the end of the given time window (data 
2020-2021) 

When we also update data of Figure 14 to 2020-2021 visualised in Figure 16, we see that we have some 

more hubs on the x-axis. Overall, there are quite some noticeable different starting percentages for 

each hub. However, these percentages are overall lower than the 2018-2019 period. As the difference 

between the two periods is quite significant, we need to be careful in how we adapt current plans based 

on this historical 
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data. As it is unclear how the current traffic situation will evolve, we will have three possible scenarios. One 

scenario where we will expect the situation to evolve into how it was in 2018-2019. Secondly a scenario 

where we expect the current Covid-19 situation to continue and build further on the data of 2020-2021. 

Lastly, a hybrid situation where we expect the current situation of 2020-2021 to continue but more and more 

evolve back to the situation of 2018-2019.  

Figure 16: Hub specific timeliness based on planned deliveries close to the end of the time window (data 2020-2021) 

2.6. Current solution by the HDC 

The HDC is also aware of the rising problem that decreases their KPI’s of on-time deliveries. The current 

planning method, which they are using, is primarily focused on driving the least amount of distance, while 

the delivery still needs to be planned within the customers time window as much as possible. As shown in 

Section 2.1, this often leads to deliveries planned close to the end of the time window. Within the execution 

of the plan this leads to many deliveries running late due to any resulting delay within the delivery process. 

Some examples of common delays are: the employee is unable to find the given address, the customer is 

not at home, traffic delay somewhere in the trip and the trip does not start on time due to absence or 

lateness of the driver.  

2.7. Conclusion  

This context analysis describes the case of the Home Delivery Company (HDC). Customer arrivals follow a 

fixed path from determining what groceries to order, to giving up their address and selecting a time window 

in which the customer is home and able to receive the groceries. Until a certain moment customers can place 

their order for the next day, whereafter a plan will be created. Data shows that these delivery plans are 
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resulting in a relative large portion of deliveries not being delivered within the given time window at the 

customer.  

Over the past 20 years, traffic intensity increased about 28%. This had a large influence on the lateness of 

drivers. With the current insecurities around the Covid-19 virus, like the introduction of a lockdown, working 

from home recommendation and curfews, traffic intensity fluctuates to as low as 20 years ago. Therefore it 

is hard to predict what will happen on a normal day. Due to this growth we see more and more stops planned 

to be delivered near the end of customers time windows and some not even planned within. As the 

possibility of not delivering in time increases when stops are planned closer to the end of the time window, 

this has a negative effect on the overall robustness. A KPI used by the HDC to measure robustness is the 

percentage of trips that are delivered within the time window. Due to the decrease in traffic caused by Covid-

19, these plans did not result in a higher percentage of deliveries outside the given time windows. However, 

it is unclear how the traffic situation will evolve. If traffic levels will return to their original level and keep on 

increasing as they did over the past 20 years, this will have large consequences as the sector nearly doubled 

in customers. In order to prevent more lateness, plans are in need of change to become more robust for the 

coming years. As we do not know how the situation will evolve we will need to consider solutions based on 

different traffic situations. There are three possible scenarios: a scenario based on old data from 2018-2019, 

a scenario based on current data of 2020-2021 and a scenario based on a hybrid solution where data from 

2018-2020 will be taken into consideration.  
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3. Literature review

Within this chapter relevant literature about the subject of our research will be reviewed. This review aims 

to provide an overview of the existing methods that are used for similar or related problems. From here we 

determine the research gap that our research needs to fulfil and which of the existing methods can be used 

to help solve the problem. In this chapter, we try to find an answer to the second and third sub-questions of 

our research. 

Section 3.1 starts by explaining the attended home delivery problem and how this problem is addressed in 

literature. Subsequently Section 3.2 gives a brief introduction of the vehicle routing problem (VRP) and some 

variants. In Section 3.3, we will go in-depth into time windows which lead to the vehicle routing problem 

with time windows (VRPTW) and the Traveling salesman problem with time windows (TSPTW). Section 3.4 

will dive deeper into the most used methods to solve a VRP and specifically for the TSPTW. Finally Section 

3.5 describes the definition of robustness within plans and dives deeper into the robustness application for 

the TSPTW and VRPTW.  

3.1. Attended home delivery problem 
The development of the past 20 years allows people to purchase food and other groceries online and utilize 

the convenience of a home delivery service. This new online grocery service, also called e-grocery, has had 

a large impact on the food supply chains (Ogawara et al., 2003; Agatz et al., 2008). Due to its convenience, 

it has grown substantially over the past years into a dominant distribution channel of business-to-consumer 

e-commerce (Campbell and Savelsbergh, 2006). However, a big challenge faced in the e-grocery is the

perishability and the need for proper storage for most food and drink products. As opposed to the standard

package delivery, food and drinks need to be stored properly at the customer. This limits the ability to deliver 

products at the neighbors, or hide it behind objects at the customers property when they are not at home.

Therefore, deliveries require the attendance of the customer at the moment of delivery (Hsu et al., 2007).

In order to prevent absence of the customer at the time of delivery, retailers are allowing their customers

to choose their own preferred time slot. Due to this attendance, the problem addressed is in the literature

is called the attended home delivery problem (AHDP) (Ehmke and Campbell, 2014). Research has shown that

retailers with a home delivery service face a difficult logistical challenge (Fernie et al., 2010). The use of time

windows comes with the challenge of actually meeting the agreed time. Resulting traffic or other delays

form a hard logistical challenge for retail companies. These insecurities can lead to high delivery costs, waste

of waiting time and lower customer satisfaction. At the stage of transportation, the AHDP has mainly been

addressed as a vehicle routing problem, or a vehicle routing problem with time windows if a delivery time

window is imposed (Ehmke and Mattfeld, 2012; Hsu et al., 2007). When only solving single trips without the

need of looking at multiple vehicles, the problem is addressed as a large set of Traveling salesman problems

with time windows (TSPTW).
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3.2. Vehicle routing problem 
The vehicle routing problem (VRP) is a problem within transportation and deals with a set of geographically 

spread delivery and/or pick-up points, restricted to a certain number of constraints (Laporte et al., (2013). 

The idea is to compute an optimal route between these customer nodes by minimising certain 

characteristics, like total distance, amount of costs or traveling time.  

The VRP is an NP-hard problem in combinatorial optimization (Lenstra and Kan, 1981). That means that the 

problem cannot be solved within polynomial time. Therefore heuristics are used to find good, near-optimal 

solutions within a reasonable time. The origin of the problem is not exactly known within the literature. 

Stories of somewhat likewise problems date back to the 1930’s, when Merrill Flood tried to obtain near-

optimal solutions in reference to routing of school buses (Dantzig et al., 1954). 

One of the most famous versions of the VRP is called the traveling salesman problem (TSP). Within this 

version there is only one depot, one vehicle with unlimited capacity and no restrictions present. A simple 

visualisation with six customer locations and a depot (in green) can be found in Figure 17. The increase in 

complexity for the TSP variation of the VRP can be seen from the following equation that shows the distinct 

tours for an Euclidean TSP:  (𝑁𝑁−1)!
2

 where N is the number of customer locations to visit (including the 

begin/end point) (Vos. 2016). The simple version of the problem visualised in Figure 17 with six customers 

and the same start and end depot has a solution space of 360 unique routes. When expanding this to 13 

customers as shown in Figure 18 this results in over 3 billion possible routes. This example shows the 

complexity of a VRP.  

Figure 18: More complex version of TSP Figure 17: Simple version of TSP 
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Over the years many adaptations of the VRP 

emerged. Figure 19 provides an overview of the 

most common variants of the VRP and the relations 

between them as mentioned by Toth & Vigo 

(2002). 

At the top of the overview we start extending the 

VRP with the use of capacity constraints (CVRP). 

This adaptation to the VRP constrain vehicles to 

only have a limited amount of capacity, which limits 

the amount of locations to visit (Sultana et al., 
Figure 19: Variations on the VRP by Toth & Vigo (2013) 

2021). After this, the problem can be extended in three different ways. First off the inclusion of backhauling 

(VRPB). Here the vehicle needs to collect goods after it completes all of its deliveries (Jacobs-Blecha and 

Goetschalckx, 1992). Next up, the inclusion of time windows (VRPTW) where customers can determine 

certain time slots in which the delivery needs to take place (Li et al. 2009). Lastly we have the adaptation of 

mixed service, where the problem will be modelled with the inclusion of pick-ups (VRPPD). This includes next 

to the normal deliveries, customers with goods that need to be transported back to the depot (Yanik et al. 

2014). The problem with backhauling and mixed service can also be extended with the use of time windows 

which will create two extra adaptations of the VRP (VRPBTW and VRPPDTW). Other VRP adaptations relevant 

for this research topic are the Dynamic Vehicle Routing Problem (DVRP) (Hildebrandt et al. 2021) and the 

Vehicle Re-scheduling Problem (VRSP) (Mirchandani and Borenstein, 2007). Many other variations exist, 

however they can in most cases be categorized in one or multiple of the variants mentioned above. 

3.3. Vehicle Routing Problem with Time Windows  

When we are looking at the home delivery sector from an e-grocery perspective, we are dealing with the 

attended home delivery service (AHDS) as customers must be present for the delivery due to the perishability 

of goods. Within the AHDS, it is therefore common for the company to offer the customer a choice of a 

certain delivery time slot. These time slots both help the customer and the company to experience a better 

service level and to avoid delivery failures. However, this makes the process of delivering much more 

challenging as the plan and route all depend on the time slots of customers. This will make the Attended 

home delivery problem (AHDP) part of the VRPTW as we need to deliver goods to customers within certain 

time windows. Confirmed by the literature, we see that the AHDP is indeed mainly addressed as a VRPTW 

(Campbell and Savelsbergh, 2005; Agatz et al., 2008; Ehmke and Mattfeld, 2012; Hsu et al., 2007; Pan et al., 

2017). 
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3.3.1. Application to our problem 
To narrow down our scope of the project, we determined that we are going to adapt the current plan of the 

HDC by only looking at rearranging the stop sequence within a single trip (intra-trip mutation). This means 

the VRPTW problem we address, will basically become a large set of single TSPTW problems that need to be 

solved. This creates a simpler VRP, as we do not have to take vehicles and their capacity into consideration. 

Within problems with time windows, there are two kinds of classes, namely the use of hard and soft time 

windows. The difference between the two is that for hard time windows customer stops may not be 

delivered outside the time window, which often results in the use of extra vehicles. Whilst with soft time 

windows one can exceed the time window limit at certain penalty costs.  

Hsu et al. (2007), give insight in how soft time windows can be used in the AHDP. They revised the common 

used relationship between arrival time, time windows and penalty costs shown in Figure 20. Here, [r,s] 

represents the given time window of the customer. The difference with regards to hard time windows, is 

that there is only a certain amount of time the delivery can be early or late in order to preserve customer 

satisfaction. After that period, shown as [R,S], a large penalty called M is introduced to avoid this occurrence. 

The revised version, shown in Figure 21, assumed the operator would rather wait and serve on time, since 

the increased cost is negligible. Consequently, R is approximated to r, similar to hard time-window 

constraints. The probability, that the order can be delivered within time when it is planned after the time 

window has exceeded, depends on the amount of time it arrives after the end of the time window. This 

probability decreases, at an increasing rate, as the time of delivery nears a certain value S. 

When we look at the current plans, we see that a small part of the stops is planned outside the time window. 

This suggests that there is a possibility of delivering late and that we are able to use soft time windows. Next 

to that, we do not have information about the fleet of the HDC and additional costs. So, we want to optimise 

the plan without adding any additional vehicles or personnel. Therefore, for our algorithm, we will not be 

looking into hard time windows and adding extra vehicles, but further focus on the use of a certain penalty 

cost for exceeding the given time window. Next to that, we also try to focus on the hybrid version as shown 

in Figure 21. 

Figure 20: The relationship between arrival time, 
time-windows and penalty cost. 

Figure 21: The revised relationship between arrival time, 
time-windows and penalty cost. 
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3.4. Algorithms for solving a VRP 
Solving the TSPTW is a time-consuming process as the problem is stated as NP-hard (Jiang et al., 2020). In 

order to solve the TSPTW other approaches have been used, such as heuristics. In order to create a good 

heuristic, Cordeau et al. (2002) determined four main attributes that are crucial: 

I. Speed - The amount of time it takes for the heuristic to find a solution for the given instance.

II. Accuracy - The deviation of the heuristic’s solution with regards to the optimal value.

III. Simplicity - The heuristic should be understandable in order to be implemented.

IV. Flexibility - The amount of flexibility the heuristic has to be implemented for different problem sizes

and environments.

In our case we need to deliver an improved plan within the time of receiving the plan and executing it. 

Therefore we need to keep track on the speed of our heuristic. Accuracy also plays an important role, as the 

heuristic’s solution need to create plans that are significantly more robust. Simplicity and flexibility are 

variables that need to be taken into account but are less important for our heuristic.  

The TSPTW is solvable by using different techniques like exact methods, classic heuristics and metaheuristics. 

To help to get some insights into some techniques of solving a VRP and their application, we are presenting 

some examples in the following subsections. 

3.4.1. Exact methods 
Cordeau et al. (2006) created an overview of some exact algorithms that can be used for solving a VRP. Most 

common methods are Branch-and-cut, lagrangean relaxation and column generation. Branch-and-cut uses 

the branch and bound algorithm while using cutting planes to tighten the linear programming relaxations. 

The lagrangean relaxation creates an approximate solution while simplifying the original problem by 

penalizing inequality constraints using a lagrange multiplier. Furthermore, the column generation method 

only generates variables that look promising to improve the objective function. The method is based on the 

fact that only a small group of variables need to be considered in order to solve the optimization problem.  

Because the TSPTW is a problem considered as an NP-hard combinatorial optimization problem it is difficult 

to solve. Therefore solving the TSPTW with exact methods as mentioned above is very time consuming and 

only work for small problem instances. A single trip, within the plan of the HDC, consists next to the start 

and end on a hub, of dozens different customer stops. Ignoring the possibility of time window constraints, 

the solution space of a single trip is extremely large. As we have a restricted amount of time and near optimal 

solutions will also suffice, we will focus more on heuristic approaches for our problem instance.  

3.4.2. Classic heuristics 
Classic heuristics are used in order to quickly obtain feasible near optimal solutions for different instances. 

Within classic heuristics there are two different types defined, constructive and improvement heuristics. The 
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goal for constructive heuristics is to find a solution from scratch, while improvement heuristics start with an 

initial solution which will be further improved (Laporte et al., 2000). 

For our problem instance we already received an initial solution for the TSPTW by the customer. Thus using 

a constructive heuristic and start over from scratch again would not make much sense. Also this will take 

more time which we could use to improve the initial solution. Therefore we will not go in depth into 

constructive heuristics but only give a short introduction.  

3.4.3. Constructive heuristics 
A constructive heuristic starts with an empty solution and extends the solution piece by piece until a 

complete solution has been formed. Some of the most used constructive heuristic for routing is the Clarke 

and Wright savings heuristic (Clarke and Wright, 1964). Here the heuristic starts with creating for each 

customer a separate route from the depot to the customer and back to the depot.  

Subsequently customers will be inserted into existing routes by determining the corresponding savings. Here 

certain restrictions like time windows or capacity constraints are taken into account. Other frequently used 

heuristics are the sweep algorithm from Gillett and Miller (Gillet and Miller, 1974) and the nearest-neighbor 

heuristic as defined in the paper of Solomon (Solomon, 1987). 

3.4.4. Improvement heuristics 
As mentioned earlier, an improvement heuristic starts with an initial solution and tries to improve this 

solution by modifying routes. This is very relevant for our research as we are improving a plan that already 

exists. This plan from the customer can therefore be seen as our initial solution from which we will start 

improving.  

Frequently used improvement heuristics are local and global search methods. These methods create 

neighboring solutions from the existing solution by using a move-generation mechanism that will change 

one or more attributes of the current solution. The method accepts or rejects the created neighboring 

solution based on certain improvement conditions of the newly found solution (Bräysy and Gendreau, 

2005a). Many different types of neighborhood heuristics exists. El-Sherbeny (2010) created a list of the most 

used neighborhood heuristics. Two commonly used heuristics for the TSPTW are the 2-opt operator and the 

1-shift operator. Different literature with TSPTW problems experiment with using these two operators

(Küçükoğlu et al., 2019; Voccia et al., 2013; Ma et al., 2019; Carlton and Barnes, 1996).

3.4.5. Metaheuristics 
Metaheuristics are often used techniques that are powerful for a large number of problems. Nasser (2010) 

performed research about some metaheuristic methods for the VRP. He gives us the following definition of 

a metaheuristic: “A Metatheuristic refers to an iterative master strategy that guides and modifies the 

operations of subordinate heuristics by combining intelligently different concepts for exploring and exploiting 
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the search space.” A metaheuristic looks for an optimal solution within the search space in an iterative way. 

Some examples of commonly used metaheuristics are genetic algorithms, ant colony optimization, simulated 

annealing and tabu search. The success of these methods is due to their capacity ‘‘to solve in practice’’ some 

hard combinatorial problems. As these methods are promising to be used for our problem, we perform some 

extra research and give some insight into four different metaheuristics.  

Genetic Algorithms (GAs) 

GAs are algorithmic models which are population-based and inspired by the theory of genetic evolution of 

Darwin (Holland 1992). The solution of an optimisation problem using the GA methodology involves a 

stochastic search of the solution space using strings of integers, known as chromosomes, which represent 

the parameters being optimised. GAs have been widely used by researchers to solve single and multi-

objective optimisation problems (Jalili et al., 2021). 

Ant colony optimization (ACO) 

ACO is a metaheuristic that is inspired by the pheromone trail laying and following behaviour of some ant 

species (Dorigo et al., 2006). When searching for food, ants initially explore the area surrounding their nest 

in a random manner. After they found food, they will bring back a portion of it and lay down a chemical 

pheromone trail depending on the quantity and quality of the food. The pheromone trails enables them to 

find shortest paths between their nest and food sources. Ant colony optimization exploits a similar 

mechanism for solving optimization problems. The method aims to concentrate the search in regions of the 

search space containing high quality solutions (Dorigo and Blum, 2005). 

Simulated annealing (SA) 

SA-based algorithms are popular local search metaheuristics used to solve single and multi-objective 

optimization problems, where a desired global minimum or maximum is hidden among many local minima 

or maxima (Suman and Kumar, 2006). The key feature of simulated annealing is that it provides a means to 

escape local optima during its neighbourhood search, by allowing so called “hill-climbing” moves in the hope 

of finding a global optimum. These moves allow the objective function to degrade based on a temperature 

value that determines if the worse solution is accepted. The temperature value decreases along the way 

which decreases the chance of accepting a worse solution. The annealing method with a temperature, 

denotes a physical process where a solid is first heated up and then slowly cooled so that when eventually 

its structure is "frozen," this happens at a minimum energy configuration (Van Laarhoven and Aarts, 1987). 

Tabu Search (TS) 
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TS is an iterative procedure for building an extended neighbourhood with particular emphasis on avoiding 

being caught in a local optimum (Barbarosoglu and Ozgur, 1999). Tabu search applies restrictions to guide 

the search to diverse regions. These restrictions are in relation to memory structures which remembers 

different worse solutions for a certain amount of iterations. Tabu search has obtained optimal and near 

optimal solutions to a wide variety of classical and practical problems in applications ranging from scheduling 

to telecommunications and from character recognition to neural networks (Hertz et al., 1995). 

From literature we find that specifically tabu search is a very powerful technique in solving different VRP 

variants (Liu et al., 2013). Computational results on Solomon’s benchmarks proved that the proposed tabu 

search is comparable in terms of solution quality to the best performing metaheuristic Algorithm for the 

VRPTW published heuristics (Ochelska-Mierzejewska, 2020). The tabu search algorithm in essence, 

repeatedly searches the solution space by going from one solution to another in its neighborhood. Therefore 

it is able to handle the different time windows emerging within the VRPTW quite well. 

3.5. Robustness within planning 
Robustness is used in various contexts and can be interpreted in many different ways. In order to improve 

the robustness for our home-delivery plan, we need to know the definition of robustness. Next to that, we 

need to perform some research about the use of robustness within planning, whereafter we can further 

discuss the implementation of it within the TSPTW. 

As mentioned in the research of Billaut et al. (2008), “scheduling problems can be found in many domains. 

Almost every sector is concerned by scheduling problems in the broad sense: 

• Industrial production systems: problems may need to be solved simultaneously in machine

scheduling and vehicle dispatching (automated guided systems, robotic cells, hoist scheduling

problems), in workshop layout problems or supply chain management problems.

• Computer systems: for example, to make full use of the processing power provided by parallel

machines or when scheduling tasks with resource constraints in real-time environments.

• Administrative systems: appointment scheduling in health care sector, general resource assignment, 

timetabling, etc.

• Transportation systems: vehicle routing problems, traveling salesman problems, etc.”
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According to the dictionary, scheduling is the art of planning activities so that one can achieve your goals 

and priorities in the available time. Nevertheless, often uncertainties happen along the way which can have 

impact on the execution of the plan. Therefore, one would like a plan to be ‘robust’. In the literature, the 

robustness of a plan is often defined as its ability to perform well under dynamic and uncertain operational 

environments (Billau et al., 2008; Dooley and Mahmoodi, 1992). Dooley and Mahmoodi also created a 

graphical representation of how the concept of robustness applies to scheduling problems. The explanation 

of Figure 22 is as follows: “The 'non-robust' system, as noted by the straight line, directly transmits all the 

dispersion in processing times to an equal amount of dispersion in throughput times. The robust system, as 

noted by the non-linear curve, has the ability to compensate for the dispersion in processing times and yields 

both a lower average throughput time and throughput times with less dispersion.” 

3.5.1. Robustness within VRPTW 
For the VRPTW, uncertainties have large consequences for the on-time deliveries. Therefore robust plans 

are required in order to increase the probability of delivering within the given time windows. Uncertainties 

have been made a hot research topic by the duo of Razmjooy and Ramezani in the last years (Razmjooy and 

Ramezani, 2018; 2019a; 2019b; 2021). To the best of our knowledge, there have not been many studies that 

did research on robustness improvement for the VRPTW within the attended home delivery sector 

concerning e-groceries where time windows are (near) fixed. The main uncertainty within this case is the 

influence of traffic delays on the travel time. In 2021, two papers were published within the literature that 

focus on robustness for the VRPTW (Tan et al., 2021; Duan et al., 2021) and one for the TSPTW (Bartolini et 

al., 2021). For the VRPTW both papers used the Robust multi-objective evolutionary algorithm (R-MOEA) 

from He et al. (2019) in order to simultaneously optimize the total travel distance and the number of vehicles 

required for transport. However both papers create routes from scratch and do not take algorithm speed 

into consideration. This makes their use for our problem instance with regards to the TSPTW instead of the 

VRPTW quite difficult. The paper about TSPTW from Bartolini et al. gives us a good head start on how to 

Figure 22: Robustness within scheduling problems by Dooley and Mahmoodi (1992) 
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increase robustness for a TSPTW. However the paper mainly focusses on reducing costs under uncertain 

travel and service times rather than increasing robustness for a trip. 

We find another application of robustness optimisation within the aviation sector. This sector also deals with 

strict time windows in which aircrafts need to depart in order to prevent possible delay. Marla et al. (2018) 

performed this robustness optimization within aircraft routing. Because we want to optimising the 

robustness by changing the customer sequence, this can be very applicable for our problem. They define 

robust plans as those plans that are less likely to be inoperable as planned due to disruptions occurring 

during the course of operations. Due to irregular and unpredictable traffic we also need to create plans based 

on the same criteria. They use a robustness KPI of minimising the probability of a flight being delayed. By 

using chance-constrained programming (CCP) they are re-arranging the slack in the plan to place it where it 

is most needed. This method is very promising for the problem we face. In order to optimise robustness for 

the home delivery problem, we want to maximise the probability of delivering within the given time window, 

or in this case, minimising the probability of delivering late. 

3.5.2. Implementation of robustness 
As mentioned in Section 3.5.1, we see multiple possibilities in order to implement robustness. Various papers 

implement robustness by using a multi-objective algorithm which simultaneously will optimise robustness 

by reducing travel uncertainties and a second variable like travel distance or certain costs. We see this in for 

example the paper of Tan et al. (2021) and Duan et al. (2021). Another method found in the literature is the 

paper of Zhang et. al (2021), who use a data-driven model in order to optimise the robustness using their 

own created Service Fulfillment Risk Index (SRI). Multiple of these self-created methods based on travel time 

uncertainties arise within literature (Nasri et al., 2020; Hu et al., 2018). We also found some applications 

where robustness is used as a constraint within the algorithm, an example is the paper from Wang et al. 

(2019), where one can set their own preferences of robustness.  

3.6. Conclusion 
The VRPTW problem is a widely studied subject over the past 25 years. We found numerous methods that 

have been created in order to solve the problem. We find applications of exact methods, classic heuristics, 

constructive heuristics, improvement heuristics and metaheuristics. We determined that the capabilities of 

metaheuristics apply very well to our problem instance as they proved their ability to solve some hard 

combinatorial problems. Especially the tabu search method is a widely used method for VRPs with time 

windows. Its ability to deal with different time windows will help find solutions within reasonable time. 

When looking at robustness improvement, we can conclude from our literature that robustness within the 

VRPTW for the home delivery sector is a fresh subject within existing research. The robustness of a plan is 

often defined as its ability to perform well under dynamic and uncertain operational environments. Due to 

the extensive growth of the home delivery sector we see a couple of papers on this subject emerging over 
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the past years. These papers are creating good robust VRPTW solutions, however, the used architectures do 

not meet the characteristics of accuracy, speed, simplicity, and flexibility that we need for our specific case. 

As Simacan receives daily plans only a couple of hours before execution, time is limited and starting from 

scratch will not create feasible solutions in time. Our study therefore will focus on creating a new method in 

order to adapt existing plans by using an improvement heuristic. The method used in the paper of Bartolini 

et al. (2021) and the method within the aviation sector (Marla et al. 2018), gives us a good indication of how 

this can be achieved. By re-arranging slack to where it is most needed we can improve our robustness and 

maximise the probability of on-time deliveries.  
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4. Problem description and solution approach

In this section the solution problem and approach is explained. We start by given a problem description in 

Section 4.1. Then, in Section 4.2, we give an introduction in the robustness increase. Section 4.3 provides 

insight into the approach of the solution and the steps we followed. Section 4.4 describes the model 

assumptions we took to be able to create a working model. Section 4.5 starts by introducing the used 

adapted model of the VRPTW. The objective robustness function of the VRPTW is explained in Section 4.6. 

Next, Section 4.7 explains the tabu search algorithm we used to optimise the plan and lastly, Section 4.8 

explains how we solved the routing and travel time calculation for the new routes. 

4.1. Problem definition 
In this section, the notation of all variables, parameters and sets is introduced. We follow the order process 

from a customer’s perspective as described in Figure 5. This consist of mainly three different steps: (i) arrival 

of the customer, (ii) location identification, (iii) time slot selection. On a daily bases customers will arrive at 

the online website of the HDC in order to select their groceries and place an order to be delivered at their 

home on a certain day. A customer i is part of the set of customers N, i.e., i ∈ N. As mentioned in Section 2.1, 

The arrival of customers can happen at any time in the horizon [0,T]. After this time T, the plan for the next 

day will be created by the planning instance of the retailer. Customers will order a certain amount of 

groceries which comes with a certain size and weight indicated by volume, qi. Each customer also has its own 

delivery service duration, i.e., the time it takes for the deliverer to hand over the delivery to the customer 

after it has arrived at the destination. This service duration is denoted by Si. The service time we will use is 

acquired from the original plan received by the retailer. 

After the groceries have been selected, the customer must log in, or if ordering for the first time enter the 

desired delivery address. The address is used in order to assign a customer to a delivery hub. A hub h is part 

of the set of hubs H, i.e., h ∈ H. From each hub all assigned customer orders will be planned into different 

trips starting and ending in that specific hub. Furthermore, the customer has the possibility to select a time 

slot in which the delivery will take place. The time slots vary in lengths and are spread throughout the day. 

After time T when all orders have been received, a plan will be created accordingly by resolving the resulting 

VRPTW. 

4.2. Robustness increase 
The plans created for the HDC mentioned in the previous section are focussed on minimising the travel 

distance within the delivery of the time window. An effect of this is that many customers are delivered near 

the end of their time window as we showed in Section 2.1. As a result, there is a high probability that a stop 

will be delivered late if there is any delay during the trip. Looking at the traffic intensity curve from Figure 2, 

traffic intensity has developed rapidly over the past 20 years. This has had a large impact for the HDC on 

transportation due to the increase of delays. Due to this and the extensive growth of e-grocery customers in 
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recent years during Covid-19 times, the HDC has had a change of direction and wants to focus more towards 

on-time delivery. The HDC has asked Simacan to give insights on how to realise and monitor these changes.  

At present, the plans for a trip of the HDC are not being executed as they are made by the planning instance. 

Delivery drivers receive a trip's schedule and focus on delivering every customer on the list within their time 

window. The drivers will therefore intuitively execute the plan depending on what they think is best. Here, 

we see the differences emerging between the very experienced drivers and all other drivers. Experienced 

drivers oversee the entire trip and sometimes deliberately choose to pass a customer to meet other 

customers’ time windows, even if the customer is on the route. Unlike the less experienced drivers they 

create their own robust planning through using their experience. Unfortunately the amount of experienced 

drivers are small and the bulk of the drivers do not have this insight, which results in more lateness. 

Furthermore, as all delivery drivers are executing plans in their own way it is hard to get insight into execution 

if everyone just does what they think is right.  

To increase the chance of on-time delivery, plans need to become more robust in order to withstand 

occurring delays. To measure the robustness improvement of the plans, we use the probability of a late 

delivery as a KPI. In order to determine the probability, we can use data from Simacan of historical trips from 

the HDC. As illustrated in Section 2.4 there are some significant differences between delivery hubs located 

in different regions over the Netherlands. To be able to overcome these differences, we need to analyse 

every hub and approach the trips of each hub differently through creating their own robustness function. 

4.3. Solution Approach 
As mentioned in Section 1.4, the objective of this research is to increase the robustness of a home delivery 

plan. From the literature, we determined that the problem addressed can be qualified as a VRPTW problem. 

Due to the fact that we already have an existing plan, we further address the problem as a TSPTW, where 

we adapt the plan of a single trip. This means we do not have to take into account the amount of vehicles to 

use and their capacity allocation. In order to increase robustness, our approach is to use an algorithm which 

increases robustness based on historical data from Simacan. From the literature we found out that tabu 

search is a promising algorithm to use for the VRPTW. Therefore, we decided to use this algorithm in order 

to optimise robustness. The goal of the algorithm is to find better robust solutions by rearranging the stop 

sequence of the current plan. The algorithm consists of 4 phases. Figure 23 shows the algorithm outline with 

the use of a flow chart of the four phases. We start in phase 1 by creating a new, or use the original plan as 

a feasible starting solution. Within phase 2, we need to prepare the data. We create new route and distance 

matrices to speed up the algorithm during execution and propose specific robustness functions for each 

individual hub of the HDC, as we have seen in Section 2.4 that they are quite different from each other. After 

we finish all previous steps, we can perform the tabu search method within phase 3. From the literature, we 

determined that a 2-opt neighbourhood search should work well as operator for the tabu search algorithm. 
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The tabu search method creates (near) optimal solutions based on the robustness function, with the use of 

realistic travel times from Simacan’s Traveltime API. Finally, we can visualise the new trip sequence to 

analyse the improvements in phase 4.  

1. In order to reduce the complexity of the problem, preserve algorithm speed and due to a lack of

data, we determined that we will only focus on optimising the sequence by looking at intra-trip and

not inter-trip modifications. This means that exchanging stops between different trips will not be

part of this research.

2. During a trip drivers need to take breaks. These breaks are implemented in the current plan.

However, in practice, breaks are not held at the suggested time within the plan which makes it very

hard to predict the arrival times at customer locations. Therefore we will not be implementing

breaks within our model and exclude them from the original planning.

3. When a driver arrives at a customer it has to look for a suitable parking spot and unload the order

from the truck. After that, he/she has to travel to the door and hand over the order to the customer

before he/she is able to leave for his next customer stop. This time at the customer is called the

Figure 23: Flow chart of the proposed algorithm outline for solving the robustness of the TSPTW 

4.4. Model assumptions 
The objective of the algorithm is to increase the robustness of a trip by changing the stop sequence of 

customers while still using the same resources. In order to simplify the modelling of the problem and scope 

it down, several assumptions are made: 
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service time. Within our research, we assume that the existing fixed service time used within the 

original plan is accurate and therefore can be used within the optimisation model.  

4. In most cases, when optimising the plan on robustness, other routes emerge. These changes can

make a trip longer in terms of distance the truck has to travel. The amount of extra distance travelled

by the vehicle through rearranging the stop sequence is not primarily optimised within the model.

However, we deliver insights in the increase in kilometers and will perform some experiments on it.

5. As mentioned before, within our optimisation routes can become longer and take more time to

complete. On a daily basis a vehicle will execute multiple trips. We assume that any extra travel time

caused by the rearranging of stops, does not affect any subsequent trips, in terms of truck and

personnel availability.

6. The planning of customer stops is based on time windows selected by the customer itself. Within

our optimisation model we assume, when a stop is planned and delivered within the customers time

window, that the customer is always present within that time window to receive the delivery.

7. As mentioned in Section 1.5, we will use the Routing and Traveltme API from Simacan to determine

routes and travel times between stops. We assume these routes and travel times are optimal for a

home delivery vehicle and return accurate predictions of travel times.

8. Within our optimisation model we rearrange stops within a single trip. We assume that this

rearranging does not result in any capacity or storage issues within the delivery truck and does not

involve any extra loading or unloading time.

9. We determined for each hub of the HDC a different formula for our robustness function. This

lateness probability function of a single hub is based on a combination of multiple years of

probability values from historical hub data. We assume this data will be accurate for future trips

starting from a hub.

4.5. Vehicle routing problem 
In order to use the basic VRPTW model for our problem we need to make some adjustments. As mentioned 

in the literature study we are minimising the probability of a late delivery. The main change lies within the 

objective function, this needs to be changed to a robustness function as we want to optimise the solution in 

terms of a probability. When implementing all changes on the standard VRPTW this results in a revised model 

as shown below. A further explanation of the objective function based on probabilities, can be found in the 

next section. The model minimises the robustness value while putting constraints on departing from the 

hub, visiting all customers from the set and vistiting them within their given time window. The model consists 

of the following parameters and variables. 

Parameters 
𝑖𝑖 The customer to depart from 𝑖𝑖 ∈ 𝑁𝑁 
𝑗𝑗 The customer to travel to 𝑗𝑗 ∈ 𝑁𝑁 
𝑠𝑠𝑖𝑖  Service time at customer 𝑖𝑖 
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𝑡𝑡𝑖𝑖𝑖𝑖  Travel time from customer 𝑖𝑖 to customer 𝑗𝑗 (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 

Variables 
𝑥𝑥𝑖𝑖𝑖𝑖  Is equal to 1 if arc (𝑖𝑖, 𝑗𝑗) is used, and 0 otherwise 
𝑤𝑤𝑖𝑖 Specifying the start of service at customer 𝑖𝑖 

Model: 

𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑄𝑄𝑗𝑗�𝑦𝑦𝑗𝑗� 
(𝑗𝑗)∀𝐴𝐴

 (1) 

Subject to: 

� 𝑥𝑥𝑖𝑖𝑖𝑖 = 1,  ∀𝑖𝑖 ∈ 𝑁𝑁
𝑗𝑗∈∆+(𝑖𝑖)

  (2) 

�𝑥𝑥0𝑗𝑗 = 1  (3)
𝑗𝑗∈𝑁𝑁

 

� 𝑥𝑥𝑖𝑖𝑖𝑖 − � 𝑥𝑥𝑖𝑖𝑖𝑖 = 0
𝑖𝑖∈∆+(𝑗𝑗)

,  ∀𝑗𝑗 ∈ 𝑁𝑁  (4)
𝑖𝑖∈∆−(𝑗𝑗)

 

� 𝑥𝑥𝑖𝑖,𝑛𝑛+1 = 1  (5)
𝑖𝑖∈∆−(𝑛𝑛+1)

 

𝑥𝑥𝑖𝑖𝑖𝑖�𝑤𝑤𝑖𝑖 + 𝑠𝑠𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑗𝑗� ≤ 0,  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴  (6) 

𝑎𝑎𝑖𝑖 � � 𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈∆+(𝑖𝑖)

� ≤ 𝑤𝑤𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 � � 𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈∆+(𝑖𝑖)

� ,  ∀𝑖𝑖 ∈ 𝑁𝑁  (7) 

𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0,  ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴  (8) 

𝑥𝑥𝑖𝑖𝑖𝑖  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,    ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴  (9) 

The objective function (1) of this formulation expresses the robustness function. Constraints (2) restrict the 

assignment of each customer to exactly one vehicle route. Next, constraints (3)-(5) characterize the flow on 

the path to be followed. Additionally, constraints (6) & (7) guarantee planning feasibility with respect to time 

window considerations. Finally, (8) and (9) impose all flow variables need to be 0 or positive and all flow 

variables are binary.   

4.6. Robustness function 
Within Section 2.4 and 2.5, we emphasized the significant differences in timelines between the hubs of the 

HDC. In order to create a solution that is realistic for every scenario, we cannot take a single robustness 

function for all replanned trips. We need to create different functions for each hub of the HDC as they differ 

too much. Therefore, we have to analyse all hubs separately to come up with a suitable fit for each one of 
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them. The robustness function we created is based on the time window penalty function. In the following 

subsections we explain how this is created. 

4.6.1. Probability function 
The development of the traffic situation within the Netherlands is very unclear due to past years of Covid-

19 and the rapid growth we had before that. De Ruiter (2021) emphasizes this uncertainty and mentioned 

that it will take a while for this to become clear. This makes it hard to predict how traffic will evolve in the 

coming years. In order to create these distributions for all the hubs of the HDC, we will focus on using 

historical data from multiple years. We created the distributions from four years of historical data, which 

includes two years without Covid-19 and two years with Covid-19. For every single hub, we want to create a 

separate distribution which will show the probability of a late delivery based on the amount of time planned 

before the end of the customers time window. Figure 24 gives an example of a distribution for a hub. The X-

axis represents the amount of time (in minutes) the stop is 

planned before the end of the time window. The Y-axis gives 

the corresponding probability of a customer delivery being late 

if it would be planned that amount of minutes before the end 

of the time window. From this figure we can see that the 

lateness distribution of this hub follows an inverse exponential 

distribution. When the stop is planned more and more towards 

the end of the time window, the probability of a late delivery 

becomes very high. Therefore, to create more robust plans, we 

need to replan stops further from the end of their time window 

to decrease this probability. 

As we need to perform an increase on robustness for the entire 

plan, which consists of multiple delivery hubs, we need to come up with multiple functions in order to give 

each hub its own specific robustness function. As mentioned in Section 2.4, the HDC has multiple hubs. We 

looked at each hub individually in order to create the right probability function. From here we concluded 

that the distribution of all hubs follows an inverse exponential distribution with parameters α and λ. Hence 

the probability density function of a single hub (h) is given by; 

𝑓𝑓(𝑥𝑥) =  𝛼𝛼ℎ ∗  𝑒𝑒�−
1
λℎ
𝑥𝑥�

 

The probability functions of every hub with parameters α and λ can be found in Appendix A. 

4.6.2. Robustness function 
To improve robustness of home delivery plans we will make use of the penalty function based on the paper 

of Hsu et al. (2007) mentioned in Section 3.3. We adapted the function to be applicable for our robustness 

Figure 24: Distribution of lateness of a single 
hub based on historical data 



23 September 2022 45 

case. This function determines a robustness value based on the number of minutes a customer stop is 

planned before the end of the time window. The robustness function follows from the probability functions 

determined in the previous section based on historical data of each hub. Next to the probability function we 

also consider the customers time window. As can be seen from the lateness distribution from Figure 24, the 

chance of a late delivery will become very low when planning it further from the end of the time window. 

From the data we see that after a period of around 65 minutes, the probability will stabilise. This is due to 

the fact that after this time period, only very large delays have an impact on the timeliness of delivery. Traffic 

delays that result in this large amount of delay are very rare and do not occur very often within the home 

delivery sector, as most of the trips take place within a city. Most of the delays that have an impact after this 

time have nothing to do with traffic flow, but are related to accidents or truck breakdowns and malfunctions. 

The final robustness function will therefore consist of four parts. Figure 25 gives a visual example of what 

this looks like with the corresponding formulas.  

 𝑄𝑄𝑗𝑗�𝑦𝑦𝑗𝑗� =

⎩
⎪
⎨

⎪
⎧ 𝑀𝑀,

0,

𝛼𝛼ℎ ∗  𝑒𝑒
�− 1

λℎ
𝑥𝑥�

,
𝑀𝑀,

𝑦𝑦𝑗𝑗 < 𝑅𝑅𝑗𝑗
𝑅𝑅𝑗𝑗 ≤ 𝑦𝑦𝑗𝑗 ≤ 𝑠𝑠𝑗𝑗
𝑠𝑠𝑗𝑗 < 𝑦𝑦𝑗𝑗 ≤ 𝑆𝑆𝑗𝑗
𝑦𝑦𝑗𝑗 > 𝑆𝑆𝑗𝑗 ⎭

⎪
⎬

⎪
⎫

,   𝑗𝑗 = 1, … ,𝑛𝑛, 

Figure 25: Visualisation of the Robustness function with corresponding formula 

The robustness function is structured as follows: the time window of customer j is given by the start time R 

and end time S. Within the time window, there is a certain point s at which the chance of not delivering on 

time starts increasing based on the lateness probability function 𝑓𝑓(𝑥𝑥). As mentioned, this point starts for 

most hubs at around 65 minutes before the end of the time window. This lateness function exponentially 

increases and becomes larger when reaching the end of the time window. Because the main goal is to create 

a plan where all customers are planned within the time window, we prevented the algorithm to be able to 

plan a customer stop outside the time window. This was done by setting the robustness value for planning 

outside the time window to a so called big M, instead of continuing to use the lateness function. This 

robustness value M, is calculated so that the algorithm can never prefer to plan a single customer outside 

its time window. This M value has been used after the end of the time window, but also before the start of 

the time window. Alternative options for the big M value is later on experimented with.  

From the beforementioned four parts, the robustness function has been created. The robustness function 

presented by 𝑄𝑄𝑖𝑖�𝑦𝑦𝑖𝑖�, is based on 𝑦𝑦𝑖𝑖 being the number of minutes planned before the end of the time window 

at customer j.  
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4.6.3. Robustness value 
The robustness function mentioned in the previous section, is used to determine the robustness value. The 

robustness value of an entire trip is calculated by the delivery time of each customer within the trip. 

Customer level 

The value on a customer level is based on when a customer is being delivered with regards to their time 

window. The function returns for a single customer stop in the trip, the probability of a late delivery based 

on historical data. Note that this function is not linear, but increases near the end of the time window. When 

the stop is planned to be delivered outside the time window, it returns a very high penalty value. This is done 

to prevent a preference for the algorithm to have 1 extreme late delivery at a single customer while all other 

customer deliveries within the trip are on time with very low robustness values. The robustness on the 

customer level is used to calculate the robustness on the trip level. The lower the value the better. 

Trip level 

The robustness value on a trip level is used within the optimisation algorithm. As the goal of our research is 

to have a robust plan, we need to have a low robustness value on a trip level. Therefore, we need to combine 

the robustness values of all customers within a single trip. To calculate the robustness value of an entire trip, 

we decided to add up all individual robustness values of the customer level to a total robustness value that 

represents the robustness of the trip. This means, the lower the outcome of the robustness value, the better 

robust solution we get for the plan of a trip. A negative effect is that we are not able to look back on a 

customer level when examining the robustness value of a trip. However, we do know that with a lower 

robustness value at the trip level, we have a more robust solution in the end. 

4.7. Tabu Search 
The vehicle routing problem that we address in this research is stated as a complex problem due to the fact 

that it is an NP-hard problem in combinatorial optimization (Lenstra and Kan, 1981). The solution space is 

very large which makes it hard to solve. The plans are given a few hours before the trip is to be conducted, 

which makes it even more difficult. Therefore, in order to get a solution within reasonable time and near 

optimal, the problem can be solved by using a heuristic. In the literature study we determined that Tabu 

search is a common metaheuristic for solving the VRPTW for the home delivery sector (Liu et al., 2013; Jiang 

et al., 2020; Voccia et al., 2013; Ma et al., 2019). It is a good method to handle the different time windows 

which restrict customer stops to be delivered within a certain period of time. Locations that cannot be visited 

due to their time window become tabu for a certain period which helps the algorithm find better solutions 

quicker and search within a wider solution space.  
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To get started with the tabu search method we need to have an initial solution. Simacan will receive a plan 

from the HDC which hold all trips with needed information. This plan file holds a solution that can be used 

as the initial solution for the algorithm. Within Section 5.4 we will experiment 

with other starting scenarios to determine which starting scenario will 

perform the best for our problem.  

Our tabu search method will be implemented with one operator. Based on 

the literature study we determined that the 2-opt operator provides good 

results for the VRPTW. The 2-opt operator swaps two stops within a trip. In 

Figure 26, we can find a small example of how the 2-opt operator works. With 

a certain selection method, point C and E are getting selected. The 2-opt 

operator will swap these two stops within the trip, which results in a new 

sequence. Hereafter the new sequence will be evaluated. 

From the tabu search method, new routing sequences are created from which we need to determine the 

robustness value. We will evaluate these new sequences by using our constructed robustness function. From 

here we know the new robustness value, which we use to optimise the route to have the lowest value of 

robustness. The robustness function takes only the probability of on time delivery in consideration and not 

the extra distance driven. 

In order to execute the tabu search algorithm, we need to determine a couple of parameters. The algorithm 

is executed in a loop that needs a certain stopping criterion in order to determine when it has optimised 

enough. For our problem we created two different stopping criteria. First, a maximum amount of iterations 

and second, a threshold for non-consecutive improvements. When one of the two stopping criteria has been 

met, the algorithm has finished optimising. Another parameter that needs to be defined is the length of the 

tabu list. The tabu list holds a certain amount of swaps and will forget the first added tabu item when a new 

tabu item needs to be added while the list is full. 

In Figure 27, the pseudo-code is provided for the used tabu search algorithm. In line 1 we start with 

constructing an initial solution S. In our case a starting solution already exists, namely the current plan. This 

is used as the initial solutions for the algorithm. Line 2 and 3 initialises certain parameters to zero, set the 

tenure value, and set the best solution as the starting solution. Line 4 creates a while loop that loops until at 

least one of two criteria are met. These criteria are: the actual consecutive non increasing iterations are 

larger than the maximum amount of consecutive non increasing iterations and, the amount of performed 

iterations is larger than the maximum amount of iterations. Line 6 performs the best possible swap and 

updates the current solution, which result in a new solution S’. If S’ is a feasible solution in line 6, we start 

comparing the robustness value of the best solution to the new solution in line 7. Line 8 and 9 are resetting 

the consecutive non increasing iterations, and update the best solutions and iterations after we find a better 

Figure 26: 2-opt swap example 
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solution. When we find an equal robustness solution in line 10, we check the difference in distance for both 

the solutions in line 11. Next, if we find a better distance we reset the consecutive non increasing iterations, 

and update the best solutions and iterations in line 12 and 13. When we do not find a better distance, we 

only update the consecutive non increasing iterations and iterations in line 15 and 16. When we do not find 

an equal or better robustness solution, we also only update the consecutive non increasing iterations and 

iterations in line 18 and 19. After that in line 20, we update the tabu list. This means we add the performed 

swap to the tabu list and, if the list count has reached the tenure value, delete the first swap on the list in 

line 21. Next, we update the current solution with the new solution in line 22 and repeat the process until 

one of the stopping criteria is met and we return the best solution in line 24. 

As mentioned in the previous section, a couple of parameters like for example, ∈𝑐𝑐𝑐𝑐𝑐𝑐 (threshold of 

consecutive non improving iterations) and ∈𝑖𝑖𝑖𝑖  (maximum amount iterations) need to be determined 

beforehand. As shown in the algorithm outline in Figure 23, before the algorithm can be executed for a single 

trip, some extra steps are involved to pre-process data and improve the speed of the algorithm. 

• Import the plan file of the HDC with all stop data

• Pre-process stop data to right formats where it can be used

• Implement TravelTime- and routing API client

Algorithm TS for P-VRPTW 
1. Construct an initial solution S 
2. 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 = 0,𝐶𝐶𝑖𝑖𝑖𝑖 = 0, 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑆𝑆 
3. Set Tabu Tenure value 
4. While 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 ≤ ∈𝑐𝑐𝑐𝑐𝑐𝑐 or  𝐶𝐶𝑖𝑖𝑖𝑖 ≤ ∈𝑖𝑖𝑖𝑖 
5.     Select and apply the best/random non-tabu swap to S to obtain S’ 
6.     If  S’ is a feasible solution 
7.   If 𝑓𝑓(𝑆𝑆′) < 𝑓𝑓(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 
8.   𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑆𝑆′,𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 = 0 
9.   𝐶𝐶𝑖𝑖𝑖𝑖 =  𝐶𝐶𝑖𝑖𝑖𝑖 + 1 
10.    Elsif  𝑓𝑓(𝑆𝑆′) = 𝑓𝑓(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 
11.    If Total distance 𝑓𝑓(𝑆𝑆′) < Total distance 𝑓𝑓(𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 
12.      𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑆𝑆′,𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 = 0 
13.      𝐶𝐶𝑖𝑖𝑖𝑖 =  𝐶𝐶𝑖𝑖𝑖𝑖 + 1 
14.    Else 
15.      𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 + 1 
16.   𝐶𝐶𝑖𝑖𝑖𝑖 =  𝐶𝐶𝑖𝑖𝑖𝑖 + 1 
17.    Else 
18.    𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 + 1 
19.    𝐶𝐶𝑖𝑖𝑖𝑖 =  𝐶𝐶𝑖𝑖𝑖𝑖 + 1 
20.      End if 
21.      Update tabu list 
22.      𝑆𝑆 = 𝑆𝑆′ 
23.  End while 
24.  Return 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Figure 27: Pseudocode of the tabu search algorithm 
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• Import probability functions of all hubs to be used within the robustness function

• Create routing and distance matrix where all optimal routes between customers will be

determined and their corresponding distance

4.8. Routing and travel time 
The rescheduling algorithm with the tabu search heuristic takes the original plan as an input. However, to 

be able to use the robustness function we need new arrival times. These are calculated with the use extra 

data including new optimal routes between the customer stops and the corresponding travel time on the 

time of day. This section will explain how this is done using two different APIs from Simacan.  

4.8.1. Routing API 
When customer stops get switched around, new optimal routes have to be created. To create these new 

optimal routes between two customers we are using the Routing API of Simacan. This service guarantees to 

return, with a certain vehicle profile, the best route on the map between two locations that can be used to 

calculate accurate travel times. It provides endpoints for requesting routes between latitude and longitude 

locations, returning the optimal route between these points when one is available. The corresponding route 

can be returned in different types, including coordinates, downstream and inward path, OpenLR, Google 

Encoded Polyline and WKT. All of these types can be used to visualise the route in different programs. When 

requesting a route, the Routing API supports three different profiles, Quickest, Truck and Home Delivery. 

The Quickest profile returns an optimal route for regular cars. The Truck profile is optimized for larger trucks 

and tries to avoid narrow and bendy roads, as well as roads where large trucks are not allowed due to their 

dimensions or weight. The Home Delivery profile is similar to Quickest, but has extra restrictions for 

dimensions. The Home Delivery profile include some extra restrictions like tunnels that home delivery vans 

cannot fit through. 

4.8.2. Travel time calculation 
To calculate an accurate travel time of a given route from the Routing API, we are using the TravelTime API 

of Simacan. This service is a collaboration between TomTom and Simacan and is used to predict accurate 

travel times based on historical or current traffic data. The content covers highways, urban and rural 

arterials, and secondary roads in more than 40 countries throughout Europe, North America and beyond. 

The TravelTime API consists of two different profiles that can be used in order to determine accurate travel 

times, namely “current” and “speed profile”. The profile to be chosen, depends on the moment in time the 

accurate travel time is needed. The current profile, also called HD Flow, aggregates real time speed data 

from millions of anonymous consumer GPS devices, providing true average speeds on individual road 
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segments to determine the real travel time at the current moment in time. A visual representation is shown 

in Figure 28.  

Figure 28: Visual representation of HD Flow profile of the TravelTime API 

Next to the current profile, we have the speed profile. The speed profile captures traffic patterns for every 

five minute interval of a road section for each day of the week. This way of calculating the average travel 

time is based on two years of historical data. When using this profile, the travel time is being calculated by 

listing the average travel time from A to B. This is done by calculating for each specific road section the 

expected travel time at the specific time of the day the section will be passed. An example of a calculated 

travel time between A and B over different road sections of the speed profile compared to the traditional 

estimation is shown in Figure 29 and Figure 30. Figure 29 is a basic freeflow travel time calculation when one 

does not specify the time it will be driven. The different road sections from Figure 30 show diffent travel 

times for three different roads during the a certain time within morning peak. This could also be seen as a 

current profile when it was based on live congestion data. The average over small time periods from this is 

used as the speed profile where the expected travel times are based on historical data. 

4.8.3. Implementation 
In order to solve the given problem, we will need to use both the Traveltime API and the Routing API. Our 

problem takes place within the home delivery sector. Therefore, it makes sense to use the home delivery 

Figure 29: Traditional travel time estimation from A to B. (one 
value for the whole day) 

Figure 30: Example of average travel times from A to B during 
a time period in morning peak with the use of speed profiles 
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profile when sending routing requests to the Routing API. Also, in order to visualise the newly created routes 

we will extract the route as an OpenLR. With the OpenLR routing type, we can later on visualise the routes 

within the software of Quantum Gis. For calculating the corresponding travel time, we will use speed profiles. 

As our route is planned for the future, we do not know the exact traffic situation at that time of execution. 

Therefore we will make use of speed profiles which will predict the travel time based on historical data on 

each road section at each moment in time. 

4.9. Conclusion 
In this chapter we explained our proposed solution approach. From the literature we determined that a tabu 

search algorithm with a 2-opt operator is a good method for solving the VRPTW. In order to improve 

robustness for the HDC, we use the method of Hsu et al. (2007). We started by creating different lateness 

probability functions for each hub, which we used within the optimality function. This function consists of a 

probability function specifically determined for each hub between a certain amount of time, a period that 

there is no penalty and two periods where we have a certain big penalty costs ‘M’. We then used this function 

as the objective function for the tabu search method and showed a pseudo-code of the overall algorithm 

with corresponding parameters. As during rescheduling with the tabu search algorithm we need to create 

new routes and travel times, we explained how these new routes will be created and exact travel times are 

calculated with the use of two APIs from Simacan. Finally we gave insight into some implementation 

assumptions we needed to make to be able to solve our problem. 
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5. Experimental design

In this chapter, we explain the design of the experiments. First in Section 5.1, we elaborate on the data set 

used for the experiments. Next, we briefly introduce the different experiments that we will perform in 

Section 5.2. Whereafter Section 5.3 will give insight on how the different starting solutions for an experiment 

are created. Finally, Section 5.4 finishes this chapter with an explanation about the multi-objective function 

used to combine distance and robustness. 

5.1. Data set 
In this section we will elaborate on the data set used for the different experiments mentioned further on. 

The data set is part of an existing plan from the HDC. Table 1 shows some of the main characteristics of the 

experimental data set. 

Table 1: Overview of the characteristics of the experimental data set 

Characteristic Data set 

Amount of trips 118 
Min-max amount of customer stops 
within a single trip 

10 – 33 stops 

Min-max size of time window 1 – 5 hours 
Operating time of trips 10:50 – 22:50 
Day of the week Monday 
Max distance between stops 71 km 
Number of covering Hubs 6 

The characteristics of the data set above show the diversity of this experimental data set. We used this set 

to test the algorithm on both large and small variants of trips from a basic plan from the HDC. The data set 

consists of 118 different trips with a large variation in the amount of stops, time window sizes, total distance 

of trips and operating hours. The trips are chosen from 6 different hubs which are spread over the country 

in both urban and rural places. This way, we try to experiment with the algorithm to make sure it will function 

properly for (almost) all different scenarios that occur within the operation of the HDC. 

5.2. Experimental setup 
We will provide a detailed computational evaluation of the tabu search algorithm based on a set of TSPTW 

problems derived from existing trips from the HDC. We assess the effectiveness of the algorithm with respect 

to the different parameters and penalty functions. Subsequently we will try to obtain insights into the impact 

of distance on the solution and the resulting trade-off between robustness increase and distance. 

All algorithms and API’s mentioned are implemented within Python 3 language and implemented in PyCharm 

64-bit version 2021.2.3. The computational experiments were run on a computer with an Intel core i7-9750H

processor at 2.6 GHz and 16.0 GB of random-access memory. The experiments consist of five parts: we start
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with numerical experiments in order to optimise the different parameters. Secondly, we experiment with a 

composite penalty function, followed by an experiment on the impact of optimising on distance instead of 

robustness. Next, we try and use different starting solutions in order to evaluate the algorithms potential of 

escaping local optima. Lastly, we will perform some experiments with a multi-objective function, where we 

will combine distance and robustness within the objective function, in order to be able to set certain weights 

to both of the objectives. 

Experiment 1: parameter tuning. The aim of the first experiment will be to optimise parameters for the 

created robust VRPTW model. We will try different tabu list lengths and stopping criteria in order to optimise 

speed and the robustness increase of the algorithm. We will experiment with large and small problem 

instances to ensure optimal settings for both instances. Due to the APIs that the model needs to call, we 

expect the model to be quite slow for large amount of iterations. However, we expect it to find better 

solutions in combination with larger tabu lists as it can better escape local optima. The best parameter 

outcomes will then be used in the following experiments. 

Experiment 2: composite penalty function. The second experiment will focus on having a composite penalty 

function for delivering outside the time windows. This composite penalty function will be elaborated in 

Section 5.3. We need to adapt the penalty for being early on the stop to a lower value of that being late. In 

this way, the algorithm prefers being early rather than being late. When a driver would arrive early it can 

take a break or wait for a certain amount of time, whilst being late you do not have that kind of ‘luxury’ as 

you need to deliver as soon as possible. We implement and test a stepwise penalty function for being early 

on a customer stop, to make a difference between being one minute early in comparison to for example 10 

minutes. 

Experiment 3: optimising on distance. For the third experiment, we will adapt the algorithm to not optimise 

on robustness but to minimise the amount of travel distance for a single trip. This experiment will provide 

insights in how the optimisation on distance will affect the solution in terms of robustness. As we got the 

information that the plan of the HDC is primarily based on distance, we do not expect to find much 

improvement. However it will be quite interesting how an improvement on distance will affect the outcome 

of the robustness value. As we do only have to calculate travel times for the final route and already have a 

distance matrix for all stops, we expect this algorithm to be quite fast. 

Experiment 4: alternative starting solution. Within the fourth experiment, we will create a method that 

uses different starting solutions for the algorithm. The current starting solution where we use the existing 

plan of the HDC is already optimised by their planning software. This optimisation can possibly lead to local 

optima when trying to improve robustness with our algorithm approach. The use of different feasible starting 
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solutions helps the algorithm escape these local optima and find better solutions. The largest disadvantage 

of this method is that only finding a feasible starting solutions is already quite a challenge.  

Experiment 5: multi-objective function. In this last experiment we aim to use the robustness algorithm in 

combination with distance reduction. We will implement a multi-objective function where we try to optimise 

on distance as well as on robustness at the same time. In this way our algorithm can be used while giving 

certain weights to the different objectives in order to optimise the plan. This can be used subsequently by 

Simacan to use the algorithm with weights specifically shaped for a customer. We will experiment with 

different weights in order to gain insights on how this will impact the outcomes. 

5.3. Composite penalty function 
As mentioned in experiment 2, we want to create a composite penalty function. We find multiple 

applications of a composite penalty function. For example within the paper of Halvorsen-Weare and 

Fagerholt (2010). They use a composite penalty function where the penalty outside the time window follows 

a stepwise pattern (Figure 31). Another application of different composite penalty functions we find in the 

paper of Slotboom (2019). As we only want to create a one-sided composite penalty function we adapted 

one of the penalty functions mentioned in the paper, which can be seen in Figure 32. For the experiment we 

determined to use this type of exponential penalty function to see how this affects our results. In order to 

penalise using the exponential function, we choose to use the following exponential function:  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑋𝑋 ∗ 1.5𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑇𝑇𝑇𝑇 

The function consists of 2 parts, a parameter X and a constant value of 1.5 to the power of the number of 

minutes the stop is scheduled before the time window. We decided this constant to be 1.5. This means every 

minute earlier has a penalty value that is 1.5 times more than its predecessor. Parameter X is a very difficult 

parameter to quantify. It determines the amount of acceptable minutes early on a customer stop without 

given large penalty values. Determining the right value for this is a business decision and is highly dependable 

on multiple aspects. Being early is a good thing when the customer is home, but results in unwanted costs if 

the driver has to wait. For the upcoming experiments, we will use a value of 0.001 for parameter X as this 

ensures a reasonable penalty until around 10 minutes before the time window. 

Figure 31: Stepwise penalty function by 
Halvorsen-Weare and Fagerholt (2010) 

Figure 32: One-sided exponential penalty 
function based on paper of Slotboom (2019) 
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5.4. Alternative starting solution 
In our proposed solution approach to the problem, we used the standard plan as it is delivered by the HDC. 

However as mentioned in experiment 3, we will also look at the effects of different starting solutions. 

Although, even building a feasible solution to the TSPTW is considered a NP-Hard problem according to 

Salvesbergh (1985). Therefore, in order to create new feasible solutions in reasonable time, we need to find 

a method that is able to do that. From the literature we found a constructive variable neighborhood (VNS) 

procedure created by da Silva and Urrutia (2010). The procedure is able to quickly find random feasible initial 

solutions in a fast way. In order to use the method we made some minor changes to adapt this to our specific 

problem. Figure 33 shows the adapted constructive procedure. The objective function that is used, is the 

sum of all positive differences between the time to reach a specific customer and the given time window, 

which is determined by the formula ∑ max (0,𝛽𝛽𝑖𝑖 − 𝑏𝑏𝑖𝑖)𝑛𝑛
𝑖𝑖=1 . We start the procedure by creating a solution 

through sorting the customers first on the earliest time window starting time and second on the time window 

size. Using this solution the algorithm works iteratively through line 6 to 12 until it finds a feasible solution 

(where the objective is equal to zero) or the max level is reached. In line 6 the solution is perturbed, by 

making level random 1-shift movements, to escape from the current local optimal solution. In line 7 a 1-shift 

local search procedure is applied to the perturbed solution, and in line 8 the solution obtained after the local 

search is set as the new best solution if it is better than the current best solution. At the end of each iteration, 

the level variable is increased by one if the current solution is not improved or reset to 1 otherwise. 

5.5. Multi-objective function 
As mentioned in experiment 4, we want to use an objective function that combines the distance and the 

robustness value in order to optimise on them simultaneously. From literature we find this application is 

called multi-objective optimization (MOO) (Marler and Arora, 2005). We find multiple methods of MOO like 

Figure 33: VNS algorithm to create alternative starting solutions 

Algorithm VNS – Constructive phase 
1. Output: X 
2. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1 
3. 𝑋𝑋 =  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 
4. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑋𝑋 
5. While 𝑋𝑋 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
6.  𝑋𝑋′ = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) 
7.  𝑋𝑋′ = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿1𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑋𝑋′) 
8.      If 𝑋𝑋′ < 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
9.   𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑋𝑋′ 
10.   𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1 
11.       Else 
12.    𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 += 1 
13.  End while 
14.  Return 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
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the weighted global criterion method, weighted sum method, lexicographic method and the goal 

programming method (Marler and Arora, 2004). Most methods use some kind of weighted value in order to 

optimise on multiple objectives. From the paper we find that the most common approach to MOO is the 

weighted sum method. Here one can assign weights to the different objectives in order to give importance 

to each one of the objectives. We decided to set the weights, such that the sum of the weights are equal to 

1 and each weight has a positive value. When implementing this method for our case, the objective of the 

multi-objective function will be the following: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑊𝑊1 � 𝑄𝑄𝑗𝑗�𝑦𝑦𝑗𝑗� 
(𝑗𝑗)∀𝐴𝐴

+ 𝑊𝑊2 � (𝑋𝑋𝑖𝑖,𝑗𝑗 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑗𝑗)
(𝑖𝑖,𝑗𝑗)∀𝐴𝐴

 

Where 𝑋𝑋𝑖𝑖,𝑗𝑗 = 1 if the route between i and j will be used, and 𝑋𝑋𝑖𝑖,𝑗𝑗 = 0 otherwise. 𝑊𝑊1 and 𝑊𝑊2 are the weights 

given to each of the objectives. 

When we want to use the above objective, we first need to perform some transformations on the values of 

distance and robustness. The distance and the robustness value cannot be simply added up. As the distance 

values are not from the same metric as the robustness values, the distance value will have significant more 

impact on the outcome than the robustness. Therefore, to prevent this overly influential variable, some 

transformation is needed in order to give robustness and distance the same impact on the solution. In order 

to do so, we will need to perform some kind of normalisation on the values to make them equally influential. 

From literature we found several methods. The most commonly used for our scenario in literature is called 

the ‘upper-lower-bound approach’ (Koski 1984, Koski and Silvennoinen 1987, Rao and Freiheit 1991, Yang et 

al. 1994). This method adapts the objective to a value between zero and one. This implies that the lowest 

value in the data will have the value 0 and the highest value in the data will have the value 1. All the other 

possible outcome values will be within this range between 0 and 1. To calculate the value we will use the 

following formula:  

𝑍𝑍𝑖𝑖 =
𝑥𝑥𝑖𝑖 − min(𝑥𝑥)

max(𝑥𝑥) − min(𝑥𝑥) 

The normalised value 𝑍𝑍𝑖𝑖  is calculated from 𝑥𝑥𝑖𝑖, the outcome value for the robustness or distance, and the 

minimal and maximal value of 𝑥𝑥 possible.  

For the distance value, the minimum outcome will be 0 and the maximum will be calculated according to 

furthest distance. A common method used in the literature to find this furthest distance is called the farthest 

neighbor (Rahman and Rochan, 2016). This method determines the maximum distance by creating a new 

route by traveling to the farthest neighbor until all neighbors have been visited. In order to get the upper 

bound value we will use this method to find the longest distance for each trip. For the upper and lower 

bound of the robustness value, we will be using 0 as a minimum and for the maximum the worst case 
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scenario where all stops will be delivered late. This value is different for every trip and will be calculated in 

advance.  

5.6. Conclusion  
In this chapter, we explained the setup for the different experiments. The data set we use consists of 118 

trips with different characteristics, including the higher and lower extreme values in order to test the 

proposed algorithm. Further, we gave insight into the five experiments that we will perform, which help 

validate and test our proposed method. We will perform experiments for optimising the used parameters, 

test penalty adaptations on the objective function, test different starting plans in order to escape local 

optima, and finally, two experiments that will adapt the focus from optimising on robustness to solely 

distance and a combination of distance and robustness with a multi-objective function.  

The alternative starting solutions will be created using a VNS procedure found from the literature. Here, we 

start by creating a solution through sorting the customers first on the earliest time window starting time and 

second on the time window size. Whereafter the VNS procedure creates new feasible solutions that we can 

use for our algorithm. For the multi-objective function we will make use of the weighted sum method, where 

weights will be assigned to each of the two objectives. The outcomes of the robustness and distance 

objective first need to be normalised as they do not have the same metrics. In order to do so we make use 

of the ‘upper-lower-bound approach’ where the objective values are normalised between 0 and 1 according 

to their minimum and maximum possible value. The maximum value of distance is consequently calculated 

by using the farthest neighbor. 
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6. Experimental results

This chapter will give insight into the outcomes of the experiments from Chapter 5. We start by showing the 

results from the parameter tuning in Section 6.1. In Section 6.2, we continue with the results from the 

composite penalty function. Section 6.3 points out the results of the distance optimisation, whereafter 

Section 6.4 displays the results of alternative starting solutions. Finally, Section 6.5 ends the chapter with a 

visualisation of experimental results from the multi-objective function. 

6.1. Parameter tuning 
In this section the result of experiment 1, the parameter tuning is presented. The tabu search algorithm that 

we created has different parameters that can be tuned to optimality. We performed 12 different 

experiments where we used different stopping criteria and tabu list lengths. In order to overcome random 

errors, we performed all experiments three times and took the average value. The average results of a single 

trip within the experiments can be found in Table 2 and Table 3. Within the tables, we show the number of 

iterations performed by the algorithm followed by the Consecutive non-increasing iterations (CNI) value. The 

next parts show results from running the algorithm with a certain tabu list length. The outcomes consist of 

the average running time in seconds and the average Δ increase in comparison to the original plan, for the 

length and robustness value of the trips. The robustness function adds up all lateness probability values of 

stops within a trip. Therefore, in order to have a better robustness value we aim to have the lowest possible 

robustness value. That means we are delivering less to the end of time windows for the customer stops 

within the trip. Hence, the robustness increase is shown as a negative percentage within the tables. 

Table 2: Results from running parameter tuning experiments for tabu list lengths 50 and 100 

Tabu list length: 50  Tabu list length: 100  
AVG. Δ  increase(%) AVG. Δ  increase(%) 

Iterations CNI 
Runtime 
(sec) 

Trip 
Length Robustness 

Runtime 
(sec) 

Trip 
Length Robustness 

N = 500 250 100 9.82% -25% 96 9.68% -29%

N = 1000 250 159 8.09% -28% 168 10.63% -31%

N = 1500 250 321 9.62% -29% 201 12.24% -30%

N = 2000 250 474 12.72% -32% 276 15.22% -28%
Average: 250 264 10.06% -28.5% 185 11.94% -29.5%
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Table 3: Results from running parameter tuning experiments for tabu list lengths 150 and 200 

Tabu list length: 150 Tabu list length: 200 
AVG. Δ  increase(%) AVG. Δ  increase(%) 

Iterations CNI 
Runtime 
(sec) 

Trip 
Length Robustness 

Runtime 
(sec) 

Trip 
Length Robustness 

N = 500 250 105 9.21% -32% 101 12.09% -28%

N = 1000 250 157 13.94% -30% 159 8.65% -35%

N = 1500 250 198 11.85% -29% 192 9.81% -35%

N = 2000 250 228 10.93% -29% 281 11.51% -33%
Average: 250 172 11.48% -30% 183 10.52% -32.75%

First of all, one would probably notice that the Consecutive non-increasing (CNI) value is the same for all 

experiments. The reason behind this is that during the experiments, we found out the algorithm will rarely 

reach a value more than 100. When stopping the algorithm at this lower value we experienced that it finds 

very poor solutions which negate the performance of the algorithm. We therefore decided to fix the CNI on 

250, where it terminates the algorithm prematurely but gives it enough room to search the solution space. 

When we observe the outcomes of the experiments we can draw several conclusions. The first observation 

is that it does not have a positive impact to the solution to run more than 1000 iterations. When looking at 

the outcomes of the 2000 iterations experiments, we see that in most cases we find a worse solution with 

regards to the trip length and its robustness. It also takes significantly more time for each trip to be solved. 

Furthermore, we can observe that if we increase the tabu list length we overall get better solutions in terms 

of robustness. This makes sense as the algorithm excludes more undesired swaps. When implementing a 

tabu length of over 200 we found that the algorithm would get stuck very often.  

Overall we can conclude that the best possible parameter setup for the algorithm is to take a tabu list length 

of 200 and let the algorithm run for 1000 iterations. This decreases the robustness value on average with 

35% with an increase in distance of 8.65%. Depending on the available time to run all trips through the 

algorithm, one could also use the setup with a tabu list length of 150 in combination with 500 iterations. This 

yields hardly any worse solutions at a significant lower running time per trip. 

Figure 34 shows the robustness outcomes of the best setup for all the trips within the data set. The orange 

line represents the baseline measurement, which is the expected robustness value when the algorithm 

would not be able to find a better robustness value after running. The start robustness value refers to the 

robustness value of the original plan, and the end robustness to the value after running the tabu search 

algorithm. As can be observed from the figure there is quite some potential for improving the trips in terms 
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of robustness. Most dots are below the baseline, which means the algorithm was able to find a better 

robustness value. 

Figure 34: outcomes of the data set with a tabu list length of 200 in combination with 1000 iterations compared to the start 
robustness value 

Since running the 118 trips of the data set with a tabu list length of 200 in combination with 1000 iterations 

will take over 5.25 hours, we decided to run the rest of the following experiments with the alternative setup 

with a tabu list length of 150 in combination with 500 iterations. This will save almost 2 hours per experiment, 

which we can use to perform more experiments to validate and optimise our method. 

6.2. Results from the second experiment 

In this section, we show the results of the second experiment, where we test an adaptation on our 

robustness function. We implemented a composite penalty function, that increases the penalty of being 

early on a stop by using an exponential function, while keeping a fixed costs for being late. Table 4 shows 

the results of the new penalty function in comparison with the standard function. Here we can conclude that 

the algorithm is only finding minor changes with the composite method. On average this leads to a better 

result for the length and robustness increase, but the median value becomes worse. In order to draw a 

conclusion from using this composite function, we looked further at the individual differences of the 118 

trips within our data set. Showed in Table 5, we analysed the difference with regards to the combination of 

an improvement on the robustness and distance. For 56 out of 118 trips we determined that there was no 

significant difference of more than 0.5%, which comes down to about 47%. The remaining 62 trips in the 

data set, we divided under four different categories. A worse robustness but a better distance solution; a 

worse robustness and a worse distance solution; a better robustness and a better distance solution; a better 

robustness but a worse distance solution.  
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Overall, the remaining trips are almost equally divided over these categories. This makes it quite difficult to 

determine any significant improvement with using a composite penalty function over the standard. We 

therefore conclude, that having this different penalty function is something to look at within further research 

when breaks are also included within the tabu search. But for now, it does not add much to the solution of 

the current research.  

Table 4: Results from using the one-sided composite penalty function on arriving before the time window 

AVG. Δ  increase(%) Median Δ  increase(%) 
Function: Length Robustness Length Robustness 
Standard 9.82% -33% 8.15% -39%

Composite 9.56% -35% 8.82% -38%

Table 5: Detailed overview for the influence of a composite penalty function on the trips within the data set 

6.3. Results from the third experiment 
In this section, we present the results from running the algorithm while optimising on the travel distance 

instead of robustness. In Section 5.2, we explained the standard planning of the HDC, as far as we know, is 

based on minimising the distance while still delivering within the customers time window. Running the 

algorithm on minimising distance, therefore gives us a good understanding if this is also really the case. After 

running the algorithm with the data set, we found out that on average the algorithm finishes improving a 

trip in about 45 seconds. Analysing the results of the new routes, we find on average an improvement of 

3.2% on the distance of a trip. However, this results in 94% of the cases of at least 4 customer stops delivered 

far beyond their time window. Figure 35 and Figure 36 show the distance reduction and the increase of the 

robustness value when optimising on the travel distance. Within our data set, we found only a few minor 

exceptions that led to small improvements and not a huge increase in the robustness value. This experiment 

confirmed our expectation for the plan of the HDC. From within Simacan we have been told, they are 

optimising on reducing the travel distance while still delivering inside the time window. Whether this 

statement was really true is confirmed in the examples of Figure 35 and Figure 36. Figure 35 illustrates the 

outcome of the distance reduction. We see the total length of the trip from the start solution on the x-axis 

plotted against the percentage of the new solution of the trip after optimisation, with regards to the start 

solution. As mentioned before, we see minor optimisations are possible with an average reduction of 3.2%. 

Figure 36 illustrates the robustness value change when optimising on distance. The figure is based on the 

Combination robustness-distance solution 
Worse-Better 13 11% 
Worse-Worse 18 15% 
Better-Better 14 12% 
Better-Worse 17 14% 
No difference 56 47% 
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same principle as Figure 34, but with a logarithmic y-axis scale. From here we see that the decrease in trip 

distance lead to very high robustness values and thus unwanted deliveries outside their time window. 

6.4. Results from the fourth experiment  
Table 6 gives an overview of the outcomes of using alternative starting solutions. As mentioned in Section 

5.4, we created our own starting solutions for the plan of the HDC in order to look for improvements on the 

outcomes. When using alternative starting solutions, the algorithm has a better chance of escaping local 

optima within the solution space. From the table, we see that when giving the algorithm an alternative 

starting solution, we are able to find even better solutions in terms of robustness. Despite the original 

algorithm having anti cycling methods in order to explore more of the solution space, it still is not able to 

find the global optimum in cases. 

When analysing the outcomes, we see that the average robustness value is lower and better with regards to 

using the original plan, but the median on the other hand lies much higher and is worse. We can explain this 

by the fact that around 10% of the trips cannot be solved. Here, the algorithm is not able to find good 

solutions within the given iterations and keeps getting stuck in a local optimum. The influence of the 
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Figure 36: Result of robustness value change after running the algorithm to optimise on distance 



23 September 2022 63 

unresolved solutions has a large impact on the average value. When taking the median value, we can 

conclude that in most cases alternative starting solutions give better robustness improvements. However, it 

is difficult to say whether it is possible to use this option to solve the main problem, as using alternative 

starting solutions take considerably more time to solve each trip. Next to that, the algorithm also struggles 

to create feasible plans for some of the trips. 

We chose not to carry out experiments with more than 1000 iterations, in order to try and get all trips 

resolved. After applying the algorithm with over 1000 iterations to a few trips, we saw that the total 

algorithm running time for a single trip increased significantly to more than 10 minutes per trip. Overall, this 

will not give us any results within reasonable amount of time and is therefore not a usable solution method. 

Table 6: Outcome of alternative starting solutions 

AVG. Δ  increase(%) Median Δ  increase(%) 
Iterations Runtime (s) Length Robustness Length Robustness Unresolved 
N = 500 142 24.17% -22% 20.35% -50% 10% 

N = 1000 328 21.97% -23% 18.96% -53% 9% 

6.5. Results from the fifth experiment 
Table 7 shows the results of three different setup variants for the multi-objective function experiment. As 

mentioned in Section 5.5, the goal of using a multi objective function is to optimise trips based on multiple 

criteria. In this case we determined that distance and robustness are two main important variables. By 

assigning a different weight values to each of these variables, the algorithm optimises the different trips 

according to the weighted objective. The table shows the average distance and robustness values from our 

data set before (on the original plan) and after executing the algorithm with the corresponding weighted 

objective values. The first observation is that, when using weights to optimise on multiple objectives, this 

ensures that the algorithm does not completely neglects the distance. This results in a much lower increase 

in trip length with regards to the solutions from Table 2 and 3, but still gives a very good increase in 

robustness for the trips. Overall, for everyday use this is probably the best method in order to increase the 

robustness. 
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Table 7: Results from the multi-objective function 

6.6. Conclusion 
In this Section, we showed the results of several experiments we performed on our solution method. We 

started with improving the performance by optimising the parameters used within the algorithm. This 

showed us that there is great potential for improving robustness of trips within our data set. However, time 

plays an important role in the ability to run the algorithm. The remaining experiments are based on 

expanding and testing the algorithm. We performed experiments with a composite penalty function, where 

we found out that there is hardly any change when changing the standard objective function. Only small 

changes occurred within the robustness and distance objective, which can be related to randomness errors. 

The distance optimisation experiments showed us that the current plan from the HDC is indeed based on a 

distance optimisation. We were able to find minor improvements but at the costs of more late deliveries.  

To test the performance of our algorithm, we did experiments with alternative starting solutions. This 

showed us that our algorithm is quite good at escaping local optima within restricted amount of time. The 

alternative starting solutions showed some better results, but overall needed too many iterations and 

showed on average less improvement. In our final experiment we changed the objective of the algorithm to 

a multi-objective function. In this way we showed insights in the ability to increase not only the robustness, 

but also do this at a minimal increase in travel distance of the trip. We showed results for three different 

weight distributions which gave promising insights for optimising robustness of trips without increasing the 

distance by much. 

Weights: AVG. before optimisation AVG. after optimisation 

Dist. Rob. 
Trip length 
(m) 

Robustness 
value 

Weighted 
objective 

Trip Length 
(m) 

Robustness 
value 

Weighted 
objective 

0.0 1.0 80324.70 0.276 0.276 90468.01 0.111 0.111 

0.3 0.7 80324.70 0.276 0.322 86280.12 0.134 0.232 

0.5 0.5 80324.70 0.276 0.353 83243.49 0.145 0.295 

0.7 0.3 80324.70 0.276 0.384 81275.19 0.169 0.356 

1.0 0.0 80324.70 0.276 0.215 77651.13 185.86 0.205 
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7. Conclusions

In this chapter, we summarise and discuss the research findings, draw conclusions and summarize both the 

practical and scientific contribution of this thesis in Section 7.1. After that, we give recommendations and 

discuss opportunities for future research on this subject in Section 7.2. 

7.1. Conclusion 
For this research, we explored the possibilities for improving the robustness of home delivery plans. We 

performed this case specifically for the plans of the HDC. In the last 10 years, the use of methods to buy 

groceries online and have them delivered to your home has experienced tremendous growth. Within the 

last two years of Covid-19, the amount of customers for the HDC grew rapidly. This creates a number of 

difficult problems within their plan with regards to on-time deliveries. The goal of this research was to 

develop a method in order to increase the robustness of a plan, where the robustness is measured by the 

probability of an on-time delivery. The model we built to solve the problem of the HDC is based on historical 

data gathered from the platform of Simacan. This data includes planned and realised arrival and departure 

times, traffic data and customer location and time window data. After analysing the data and performing 

research within the literature, we created an algorithm that uses a tabu search method which replans the 

trips based on their robustness value. To determine this value, we have developed distribution functions for 

each of the HDC’s existing hubs based on the probability of on-time delivery given a certain amount of time 

before the end of a customer’s time window.  

To validate our method we used part of an existing plan of the HDC. This data set consists of 118 trips with 

different characteristics to be able to cover lots of different cases. With the use of this data set, we optimised 

the necessary parameters and ran all the experiments. To overcome random errors, we performed all 

experiments three times and took the average values as our result. First we have the parameter tuning. From 

the parameter tuning, we found out that our test data set shows lots of improvement potential with regards 

to the robustness. Using the algorithm, we are able to improve the robustness of a trip by almost 35% at the 

cost of a distance improvement of 8.65%. The algorithm will complete the optimisation with an average time 

of 2 minutes and 40 seconds per trip. After optimising the parameters, we performed four different 

experiments, where the original robustness model was tested and extended. 

The goal of the first experiment was to extend the basic algorithm by implementing a composite penalty 

function within the objective function. We implemented a different penalty function for being early on a 

customer stop. We changed the fixed penalty to an exponential function which results in a small penalty for 

the first couple minutes early and increases exponentially. From the experimental results, we concluded that 

having a different penalty function does not have any significant effect on the solution for distance or 

robustness. We encountered some minor changes which we can relate to random errors.  
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To gain more insight into the current plans, the goal of the second experiment was to check if the plans from 

the experimental data set are indeed optimised on travel distance. The results of this experiment tell us that 

the plans of the HDC are indeed based on traveling the least amount of distance, while still trying to deliver 

within the time window. We were able to find some minor improvements on the current plans. However, 

these improvements led to multiple customer stops being planned to deliver far beyond their time window. 

The goal of experiment 3 was to validate the algorithm in its capability to find good solutions. As we 

previously used the plan from the HDC directly as an input for our algorithm, we restrict it in exploring the 

solution space. Therefore, we wanted to see if the algorithm could perform better and find better solutions 

when giving it other starting solutions. The outcome of the experiments showed some interesting results. 

We can conclude that when we start optimising with alternative initial solutions, we are able to get 

significantly better robustness improvements. However, it is difficult to say whether it is possible to use this 

option in a real-life application. Improving the robustness of a trip by using alternative initial solutions take 

considerably more time. In addition, the algorithm also struggles with around 10% of the trips to create 

feasible solutions within the time limit of 1000 iterations. Performing more iterations in order to create 

feasible solutions for all trips result in run times that are out of proportion.  

Finally we experimented with a new objective function for the tabu search method, that combines both 

distance and robustness into a single objective value. This combined objective will most likely be more 

applicable for the real-life case instead of using a single robustness objective. The HDC wants to improve the 

on-time delivery of their trips, but also want it at a minimal amount of cost increase. The results of the third 

experiment show that we are able to improve the robustness for some trips by 50%. However, this comes at 

the cost of increasing the distance by more than 20% which is very costly. The multi-objective function gives 

the user the opportunity to give weights to the optimisation of both the distance and robustness, in order 

to balance between optimising on robustness and distance. The experimental results from using this method 

with different weights, show us a very large improvement potential in robustness. We also concluded that 

optimising the robustness to the max, is not worth the extra distance increase of the trip. The 50/50 

robustness distance weight optimisation gives us a good example of this viewpoint. Using these weights, we 

still get very good improvements while keeping the increase in distance to a minimum. Changing the weights 

to a 70/30 distribution results in only minor extra robustness improvements with regards to the 50/50 

distribution, but has a much higher distance increase. 

We only studied the effect of our solution approach on a single delivery day. Therefore, we made the 

assumption that the plans are independent of the day. Next to that the robustness function is also calculated 

independent from the day of the week. In practice, the reality of the situation may be questionable and will 

require further investigation. Also, we completely neglected the use of breaks within the current plans. 

Breaks can enable the delivery driver when he/she arrives before the start of the time window, to take a 



23 September 2022 67 

break before a stop in order to get a lower penalty on the robustness function. Next to that, leaving out 

breaks gives more slack within the plan which is in contrast with reality. We further assumed that any extra 

travel time caused by the rearranging of stops, does not affect any subsequent trips within the daily plan in 

terms of truck and personnel availability. Because of these limitations within the research, we cannot be 

certain about the actual effects of increasing the robustness. We only showed the potential effect for a best-

case scenario where traffic flow continues its pattern based on historical data. With the plan of the HDC, we 

showed a real life application in terms of customer and traffic data and hub lateness distributions. 

We can conclude that the robustness increase of home delivery plans based on historical traffic data has 

added value to the attended home delivery problem. When using the method on a home delivery plan of 

the HDC, a significant potential increase in robustness can be made. However, only to a certain extend they 

are useful within a real life application. From our experiments we determined that when improving on 

robustness alone, this does not outweigh the increase in travel distance. Using a multi-objective function 

shows far more potential for this case and should therefore be further investigated.  

Summarizing, the contribution of this thesis to the scientific literature is twofold. Firstly, we developed a 

hybrid method by applying pre-trip robustness improvement with a tabu search method to the attended 

home delivery problem while using historical data. Secondly, we created a multi-objective application to 

optimise on multiple KPIs which makes it more applicable to the real life situation. The combination of these 

subjects is uncommon in existing literature which makes this project of potential added value to Simacan 

and literature. The contribution of this thesis to practice is that the results show the potential of increasing 

the robustness of trips based on historical data with a tabu search method. The implementation of realised 

historical data instead of simulations, shows the feasibility of the solution within a real life environment. This 

result contributes to the objective of the HDC and Simacan to give insight in the potential increase of on-

time delivery of the plans from the HDC. 

7.2. Recommendations and future research 
Based on the conclusion of this research, in this section we suggest several recommendations to Simacan 

and the HDC. Furthermore, we give a couple of ideas for future ideas on the research subject. 

With our experiments, we showed the potential of using the robustness increase method, and therefore 

advice to further investigate the possibilities to implement it on the current plans. We showed that the 

method used within this research has its limitations, but can be used to get an approximation of the potential 

improvements. It is recommended to use the multi-objective improvement option when using the algorithm. 

It gives good robustness improvements at the costs of some added distance which can be chosen by variable 

weights. When using this within a real-life environment, it is recommended to find a good balance between 

these weights. Next to that, with the use of Simacan’s platform it is possible to create multiple simulations 
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of the newly created plans. These simulations can help to confirm and determine the exact improvement 

potential by running the newly created plans on real-time traffic data. On the longer-term, we believe that 

the improvement based on historical data becomes outdated. Therefore the distribution functions of all 

hubs need to be updated frequently in order to retain the improvement potential. Finally, we have some 

recommendations regarding the algorithm we created. Our knowledge goes as far as using Python code to 

create a working algorithm. This coding language does work for this problem, but is quite slow and not 

optimised for these kinds of problems. The recommended multi-objective option takes around 160sec to 

optimise a single trip. With this speed, the algorithm is not able to finish an entire plan which is send around 

10 hours in advance. The current plan is divided into two day-shifts and consists around 850 trips per shift, 

which results in a running time of almost 38 hours. Porting and optimising the method to other programming 

languages is therefore recommended to significantly increase the speed of the algorithm. 

Further research can be done on a couple of subjects. First of all, we neglected to implement the use of 

breaks within the rescheduling of trips. The reason behind this is that Simacan is unable to detect breaks 

within their platform. In addition, the drivers do not take a break at the indicated times which makes it very 

difficult to implement a break. When Simacan is able to detect breaks, it is recommended to perform 

research on how to implement breaks within the rescheduling algorithm to further increase the feasibility 

of the revised plan. After this is implemented, the use of a composite penalty function to be able to take 

brakes when a customer stop is planned early, becomes also more interesting. The second recommendation 

for future research, is to try and expand the current method to perform robustness improvement for an 

entire plan using also inter trip mutations. Currently we only replan customer stops within a single trip and 

do not exchange customers stop between trips. When including inter trip mutations the improvement 

possibilities to increase robustness are most likely at higher computational complexity as well, opening 

opportunities for interesting trade-offs. Furthermore, this research is a stepping stone to perform further 

research into the subject of on-trip robustness optimisation. This research showed that robustness 

improvement has a high potential to optimise a plan. However using this method while the trip is “on-going”, 

is a whole new subject and comes with many more challenges. Using this optimisation in practice can lead 

to massive improvements and is very valuable for both the HDC and Simacan. 
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Appendices 

Appendix A – Hub specific robustness formulas, based on historical data 

Table 8: Robustness function data for all hubs 
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Appendix B – Distribution of all stops in relation to their planned minutes before the end of the corresponding time window 

Figure 37: Distribution of number of customer stops in relation to the planned minutes before the end of the time window  
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Appendix C – Results before and after performing the rescheduling algorithm on two existing 
Trips 

Figure 38: Old route before optimisation of Trip 2 
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Figure 39: New route after optimisation of Trip 2
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Appendix D – Example of the difference on control tower plan between old and new plan 

Figure 40: Example of an original schedule before optimising 
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Figure 41: Example of an optimised schedule after performing robustness improvement (based on Figure 40) 
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