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ABSTRACT

With the increase of frequency and intensity of heavy precipitation in the future, rainfall trig-
gered landslides (RTL) can be one of the major threat to human life and property security. Early
warning systems of natural hazards are one of the most effective measure for reducing disaster
losses and risks. However, the forecast of RTL in near-real-time (NRT) is extremely difficult since
the quality of NRT precipitation data is relatively poor. Quantile regression forest, a state-of-the-
art statistical postprocessing method, has been proved to reduce the difference existing between
NRT satellite precipitation estimates and ground-based rainfall data.

However, this field has still a long way to go before becoming operational. In fact, the level
of bias-reduction sought in this work did not reach what was expected. This implies that the
reliability of these postprocessing practices still requires improvement. This been said, when the
bias-corrected rainfall maps are put side by side with raw satellite product, the pattern of the first
matches much more closely the locations where landslide events have been mapped in a test site
in North-Eastern Turkey. This still leave an optimistic perspective on the application of post-
processing techniques in the field of weather science and in general for natural hazard assessment.
Ideally, by correcting the continuous information in space and time provided by satellite rainfall
estimates, one could create a new operational tool for landslide early warning system, not bound
to the financial and deployment requirement typical of rain gauge and terrestrial radar stations.

Keywords

Statistical Post-Processing, Quantile Regression Forest, Rainfall Triggered Landslides, IMERG-E, Black
Sea Region
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Chapter 1

Introduction

1.1 BACKGROUND

It has been mostly agreed that both frequency and intensity of heavy precipitation have in-
creased significantly during past decades due to the climate change at the global scale (Alexander,
2016; Berg et al., 2013; Fischer and Knutti, 2016; Kharin et al., 2013; Myhre et al., 2019; Sillmann
et al., 2013). Myhre et al. (2019) have shown that the global frequency of extreme precipitation
events, which can occur with an average of twice per decade nowadays, will increase in frequency
by 1-2 events per decade following an increase of just one degree Celsius (C) in the future. The
increased rate of precipitation intensity is similar to the increased rate of vapor pressure, which
is 6-7 percent for each degree increase (Allan et al., 2014; Fischer and Knutti, 2016; Myhre et al.,
2019; O’Gorman, 2015). Worryingly, precipitation pattern is closely related to landslides because
precipitation is a major trigger (Petley, 2012). The increase of frequency and intensity of heavy
precipitation can influence the magnitude, frequency, and temporal-spatial distribution of land-
slides and ultimately raise the disaster risks (Gallina et al., 2016). In this scenario, landslide could
also be an even more severe threat in the coming years (Stoffel et al., 2014), especially in tropical
countries and mountainous regions.

Landslide is a type of mass wasting process that occurs in all continents, and in all terres-
trial environments both with natural and engineered slopes (Froude and Petley, 2018; Gariano
and Guzzetti, 2016). Landslides can be threats to life and property security in inhabited area,
transport facilities including multiple types of roads, and industries (Gariano and Guzzetti, 2016).
When considering disaster risk assessments for a specific event, we usually need to consider haz-
ard, vulnerability, and exposure. The “hazard” is usually expressed as the probability of an event
occurring within a given time frame, so it needs to consider both spatial and temporal probabilities
(van Westen et al., 2006). Since temporal probabilities of landslide hazards are usually difficult to
calculate because of the lack of historical data (van Westen et al., 2006), spatial probability informa-
tion becomes particularly significant for landslides assessment. Landslide susceptibility represents
the relative probability of landsliding on a given hillslope (Guzzetti et al., 2006). Landslide sus-
ceptibility can be modelled both via physical-based and statistical-based methods. Much research
focusing on landslides susceptibility by using physical methods has greatly contributed to under-
standing the mechanisms of landslides (Marin and Mattos, 2020; Medina et al., 2021; Ray et al.,
2018). However, the scale at which physics-based analysis can be applied is generally localized, in-
volving single slopes or catchments (N. Wang et al., 2021). Conversely, statistically-based methods
can be extended over larger areas with more diverse geomorphological situations.

In both cases, information on the rainfall spatio-temporal patterns are of fundamental im-
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portance. However, detail rainfall data is often not available. This research aims to improve the
near-real-time (NRT) predictability of statistical modeling for rainfall triggered landslides (RTL) by
improving the qualities of NRT precipitation products. Geo-environmental variables required to
assess landslide susceptibility can be classified as predisposing (e.g., morphology, geology, land use,
etc.) and triggering factors (precipitation, earthquake and anthropogenic factors)(Reichenbach et
al., 2018). Compared to other variables, rainfall information in the predictive models developed
for RTL is of utmost importance as it controls the landslide temporal onset as well as influencing
the landslide scenario in space (Chaithong and Komori, 2020; Fan et al., 2020). In recent years, the
prediction RTL susceptibility has developed towards space-time models and thus rainfall records
and their forecasts could become part of the modeling procedures (Fathi et al., 2021). With the
application of multiple satellite precipitation products, for instance, based on Tropical Rainfall
Measuring Mission (TRMM) and Global Precipitation Measurement (GPM), the NRT spatiotem-
poral pattern of precipitation has also become available in four hours (Hsu et al., 2021; Qi et al.,
2021), and they have also been adopted to improve the predictability for RTL susceptibility (Hong
et al., 2007; Michaud et al., 2021). However, because of the data source and algorithm, NRT pre-
cipitation products with short latency are (still) biased and include large errors (H. Chen et al.,
2020). Statistical postprocessing methods can be applied to improve the NRT products’ quality
(Y. Zhang et al., 2022).

The common approaches for measuring precipitation are ground stations with rain gauges,
local radar systems and satellite precipitation estimates products (Gilewski and Nawalany, 2018).
Each of them has some advantages and disadvantages. Rain gauges usually can represent “true”
measurements of rainfall at a specific point, but the typical problem is the lack of spatial density
of the rain gauge network, especially in mountainous regions or sparsely populated areas. More-
over, the data quality from rain gauges in large area might be degraded due to limited numbers
of gauges and interpolation errors (Tang et al., 2018). Ground based radars can provide better
spatial-temporal resolution of rainfall information but construction and maintenance of radar sys-
tems can be expensive, so they are not available in many countries, especially in mountainous and
landslide prone regions (Nguyen et al., 2018). In addition, ground based radar systems also need
long time for signal calibration and corrections, and those can take up to months for them to be-
come actively part of operational systems. On the other hand, many paper indicated that satellite
precipitation estimates are promising and demonstrate a noticeable improvement because of the
emergence of Global Precipitation Measurement (GPM) based products (Gilewski and Nawalany,
2018; Nguyen et al., 2018). GPM based products can provide precipitation information for al-
most the whole globe, and cover many areas that couldn’t be measured by rain gauges and local
radar systems. In addition, GPM based NRT products are available in four hours, and this is a big
advantage of operational flooding/landslides monitoring and forecasting systems. However, the
accuracy and resolution of GPM based NRT products still need to be largely improved (Gentilucci
et al., 2021; Gilewski and Nawalany, 2018). Improving the accuracy of satellite based precipitation
products has been a concern in many studies (Dong et al., 2020; Gumindoga et al., 2019; Yu et al.,
2021), and with the development of statistical postprocessing in weather forecast, methods such
as ensemble model output statistics (EMOS) and quantile regression forests (QRF) have also been
applied to correct satellite-based biases (Yang, 2020; T. Zhang et al., 2022; Y. Zhang et al., 2022).

Statistical postprocessing is a key technique for many national meteorological services to ad-
just the current forecast through correction of systematic errors. These errors become evident
when comparing past raw forecasts to observational data (Scheuerer and Hamill, 2015; Vannitsem
et al., 2021), thus opening up to statistical routines aimed at leveling these differences. In other
words, the relationship between forecasts and observations from historical data can be built into

2
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statistical models. The new forecasts can be adjusted based on the joint probability distribution
from those models and output a predictive cumulative distribution function (CDF). The raw fore-
casts can be transferred to a calibrated deterministic or ensemble forecasts with less errors, which
in turn implies a better rainfall information for end users. An example of a common statistical
postprocessing procedure is shown in the Figure 1.1.

Recently, researchers have begun to apply statistical postprocessing (which was mainly used in
weather forecasting) to satellite estimates (Y. Zhang et al., 2022). If such protocols would prove to
be efficient in correcting the errors between observed and estimated rainfall, this would open up a
number or research lines towards compound hazard modeling. For instance, postprocessed NRT
satellite estimates could be used to explain landslides/floods patterns. And, if the postprocessed
results from NRT satellite estimates can be shown to better predict landslides or floods, then sta-
tistical postprocessing methods could be even become part of NRT landslide/flood susceptibility
modeling in the future. Unlike for other weather variables, statistical postprocessing of precipi-
tation is more challenging because of the nature of precipitation, because precipitation values are
non-negative but include many zero values and extreme values. Thus, modeling them together in
one distribution model is relatively difficult (Scheuerer, 2014; van Straaten et al., 2018).

Figure 1.1: Statistical Postprocessing (Li et al., 2017)

1.2 LITERATURE REVIEW

In 2005, Gneiting et al. proposed ensemble model output statistics (EMOS), a variant of mul-
tiple linear regression, where various parametric distributions can be used to find the relationship
between predictors and response variables (Gneiting et al., 2005). Since then, EMOS has been
tried with many different statistical distributions. A generalized extreme value distribution (GEV)
was applied to the COSMO-DE ensemble prediction system operated by the Germany Meteoro-
logical Service (Scheuerer, 2014). A censored and shifted gamma distribution (CSG/CSGD) was
proposed and tested for precipitation postprocessing with two ensemble forecasting systems in
the United States (Baran and Nemoda, 2016; Scheuerer and Hamill, 2015).In 2018, a zero-adjusted
gamma distribution (ZAGA) was applied to KNMI’s high-resolution, non-hydrostatic numerical
weather prediction (NWP) model HARMONIE-AROME (HA) (van Straaten et al., 2018; Whan

3
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and Schmeits, 2018). CSG and ZAGA are both variants of gamma distributions, and they can
model precipitation better because of their heavy tails (Whan and Schmeits, 2018). They have also
shown better performance compared to GEV (Baran and Nemoda, 2016) and lognormal or inverse
Gaussian distributions (Bentzien and Friederichs, 2012).

With the fast development of machine learning in recent years, tree-based nonparametric tech-
niques have also been widely used in precipitation postprocessing. Unlike parametric methods that
need to set a specific distribution in advance, nonparametric methods can be more flexible while
representing nonlinear relationships better (Vannitsem et al., 2021; Whan and Schmeits, 2018). A
quantile regression forest (QRF) was applied to surface temperature and wind speed with Météo-
France 35-member ensemble forecast (PEARP) and it performed better than EMOS (Taillardat
et al., 2016). Based on this work, QRF was also applied to the HA model and Grand Limited Area
Model Ensemble Prediction System (GLAMEPS), and was found to be more skillful than EMOS
with a ZAGA distribution, especially for higher thresholds (van Straaten et al., 2018; Whan and
Schmeits, 2018).

Applying statistical postprocessing techniques on NRT precipitation satellite images is still in
the early stages of research. In 2022, a QRF-based postprocesser (QRF4P-NRT) has been proposed
with a study case at the Yalong River basin in China (Y. Zhang et al., 2022). Researchers found
that the results from QRF4P-NRT has improved the raw NRT GPM images significantly. This
finding can be meaningful for rainfall related natural hazards such as flooding and landslides since
NRT satellite products are quite important for forecasting those hazards (Khan et al., 2021; Soo
et al., 2022).

1.3 RESEARCH PROBLEM

There has been a great number of research focusing on statistical postprocessing over the years
(Vannitsem et al., 2021), and the development of such technology is also rapidly growing (Harris
et al., 2022). More and more promising machine/deep learning based methods have been proposed
and their performances also significantly improved with respect to traditional techniques. In the
meantime, weather forecasting systems of many countries have also improved thanks to the tech-
nological progress. Much of the research in this field has been at the meteorological level only,
but in reality they can also be helpful to many fields such as disaster risk reduction and natural
resource management.

As mentioned in the background, though the emergence of NRT satellite products makes it is
possible to predict RTL both temporally and spatially, there are still large errors in NRT satellite
products (Gentilucci et al., 2021; Gilewski and Nawalany, 2018).This research aims to improve
the accuracy of NRT satellite estimates for explaining the occurrence of landslides in the Black
Sea Region of Turkey. This will be attempted by using statistical postprocessing techniques aimed
at decreasing the error between rain gauge and satellite precipitation measurement. And, any
improvement with respect to the raingauge baseline could mean an extention of the same protocol
in other mountainous regions all over the world. Specifically, if the accuracy of NRT satellite
precipitation estimates can be significantly improved, then NRT flooding/landslides susceptibility
system can also be implemented in the future.

Statistical postprocessing on satellite precipitation estimates are supposed to be more com-
plex and unstable compared to ensemble forecasts with short forecast lead time. Ensemble fore-
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cast systems usually also include multiple weather elements such as wind direction and convective
available potential energy (CAPE) which are related to precipitation information (Mendoza et al.,
2015), and they can be potential predictors in the training procedure. A variable selection pro-
cedure could then even select the most important predictors and remove redundant information
in space and time. On the other hand, NRT satellite estimates only provide precipitation infor-
mation with large errors, and potential predictors should be collected from other sources. In this
research, some potential predictors are collected from NRT satellite estimates and others express
the potential landscape influence onto the spatio-temporal pattern of the precipitation.

1.4 RESEARCH OBJECTIVES AND QUESTIONS

1.4.1 Objective

The main objective of this research is to:

1. explore and implement methods for statistically postprocessing on near-real-time GPM satel-
lite precipitation data in eastern Black Sea Region of Turkey.

2. test whether the improved rainfall estimates can explain the distribution of landslides in the
area.

1.4.2 Sub-Objectives

1. To explore methods for interpolating local rain gauges data.

2. To evaluate the performance of GPM NRT product.

3. To evaluate the performance of different statistical postprocessing techniques on GPM NRT
data.

4. To explore precipitation features in different seasons.

5. To improve the accuracy of landslide prediction by upgrading GPM NRT data.

1.4.3 Research Questions

The following research questions are designed to achieve the above sub-objectives:

1. Which considerations are needed for interpolating rain gauges in mountainous regions?
What covariates can be included in the interpolation procedure? Which method is outper-
formed for precipitation interpolating in this study case?

2. Whether GPM NRT product is reliable for providing precipitation information?

5
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3. Which predictors should be selected on statistical postprocessing models for NRT satellite
estimates? Whether statistical postprocessing techniques can be applied on NRT satellite
products? Which method is outperformed and why?

4. Which predictors are more important in the model for different seasons? How is the model
perform for different precipitation thresholds?

5. Can statistical postprocessing applied on NRT satellite estimates be helpful for landslides
susceptibility analysis? What are further direction for NRT landslides forecasting?

6
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Chapter 2

Study area and datasets

2.1 STUDY AREA

Given that hillslopes make up of a significant portion of the world’s ice-free terrestrial regions
(Huggett, 2016), landslides can be one of the most significant threats to human life (Görüm and
Fidan, 2021). Like other landslide-prone alpine countries, Turkey also suffers from landslides.
Landslides in Turkey are responsible for the second highest number of death caused by natural
hazards, just after earthquakes. Between 1995-2004, Turkey accounts for a quarter of the total
number of landslide deaths in Europe, and it represents the European country with most victims
coused by slope failures (Haque et al., 2016).

In a study of 90 years (1929-2019) of fatal landslide data from Turkey (Görüm and Fidan, 2021),
around 37.8% of fatal landslides occurred in the Black Sea Region, and more than half of the fa-
talities happened in this region (Figure 2.1). The reasons that cause this region to hold such un-
fortunate record might be related to the high precipitation, combined to high slope gradients and
population density. As shown in the Figure 2.2, most fatal landslides happen in the eastern Black
Sea Region, these being triggered by precipitation. Thus, improving the precipitation forecast for
this region can help local authorities to reduce the losses and risks from landslides. If NRT precip-
itation forecasts can be improved or landslides early warning system can be built for this eastern
Black Sea Region in the future, the number of fatalities could be reduced.

Figure 2.3 shows two combined maps of Turkey. Figure 2.3a is a combined map of slope
gradient and annual rainfall. Obviously, eastern Black Sea Region is marked to be much more
prone to RTL as compared to other Turkish sectors. Moreover, Figure 2.3b is the combined map
of slope gradient, annual rainfall and population density, which indicates that Elements at Risks
(EaR) in this region are also particularly high.

Meanwhile, the decision of the study area for this research also depends on the data avail-
ability. Landslide inventories and ground truth of precipitation data collected by local radars or
rain gauges are relatively difficult to get. In north eastern Turkey though, being the situation
particularly appalling, local institutions have deployed a dense network of rain gauges and have
also mapped landslides in space and time. Specifically, precipitation daily data from local ground
stations over five and a half years have been accessed, together with three event-based landslide
inventories spread over the same period.

For all of the above reasons, the eastern Black Sea Region has been selected as the study area
for this research. Since the quality and quantity of the observational data are important for the
performance of statistical models (Caldwell et al., 2013), only the region has available ground sta-
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tions data is analyzed in this study (Figure 2.4). The elevation information is also shown in Figure
2.4, where the largest topographic change appears more to be more prominent in the eastern part
of this region.

Figure 2.1: Distribution of fatal landslide in major geographical provinces of Turkey. a: The
number of fatal landslides and b: fatalities in major geographical regions and their percentages
(Görüm and Fidan, 2021)
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Figure 2.2: Distribution of triggers for 389 fatal landslide events. a: Spatial distribution of events
and b: distribution of fatal landslides, and c: fatalities according to the reported triggers for each
event. “N/A” (not available) indicates 45 events with unknown triggers, and “Others” specifies
some exceptional landslides (n= 3) triggered during archaeological excavations (Görüm and Fidan,
2021)
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Figure 2.3: Combined maps of a: slope gradient and annual rainfall and b: slope gradient, annual
rainfall, and population density. Black dots show the location of fatal landslide events (n = 389)
(Görüm and Fidan, 2021)
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Figure 2.4: Elevation of study area. Black dots represent ground stations

2.2 DATASETS

2.2.1 Ground Observations

Daily precipitation data from ground stations are available from 01 Jan 1960 to 31 May 2020 for
this study. Considering the launch date of GPM, data quality and computation time, only ground
observations from 01 Jan, 2015 to 31 May, 2020 have been used in this study. There are total of 411
ground stations in the eastern Black Sea Region, but some of them have stopped running and some
of them present a relevant part of the record with missing values. On average, each day has around
200 ground stations effectively running. Elevation, latitude and longitude data for those ground
stations are also available. In order to make better correction on the GPM satellite estimates,
observational data has been interpolated to the resolution same as GPM data (More details can be
found in Methodology and Results chapters)

2.2.2 Landslide Inventories

Three landslides inventories are available for this study in the period between 01 Jan 2015 to
31 May 2020. Table 2.1 includes some simple information for those landslide inventories. In the
later sections of this study, the results based on dates of those three landslides events are displayed.
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Table 2.1 Landslide Inventories

Location Date Counts
Rize Kaptanpa̧sa 28-30 Sep 2017 1058
Ordu-Peŗsembe 05 Jul 2016 638
Artvin Hopa 24-25 Aug 2015 1367

2.2.3 NRT Satellite Precipitation Data

The Tropical Rainfall Measuring Mission (TRMM) was a joint space mission initiated in 1997
by National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration
Agency (JAXA), and it has carried the first satellite based precipitation radar. In 2014, Global Pre-
cipitation Measurement (GPM), the successor of TRMM, has been launched by NASA and JAXA.
Compared to TRMM, GPM provides more details on the precipitation, a better spatial resolution
and a larger global coverage. The spatial resolution for TRMM was 0.25 (around 25km) degree,
whereas the spatial resolution of GPM is 0.01 (around 10 km) degree. Two major precipitation
products are based on GPM: Integrated Multi-satellitE Retrievals for GPM (IMERG) developed
by NASA and Global Satellite Mapping of Precipitation (GSMaP) developed by JAXA (H. Wang
and Yong, 2020). Both IMERG and GSMaPprovide NRT and gauge-calibrated precipitation data,
and there are many research have compared them (Aslami et al., 2019; Nepal et al., 2021; H. Wang
and Yong, 2020). In a number of studies, IMERG have been found having closer precipitation data
to the rain gauges than GSMaP, this being the case for Iran (Aslami et al., 2019). And, IMERG has
also been found having better performance for monitoring daily extreme precipitation data (Nepal
et al., 2021). Therefore, IMERG was decided to be used in this study.

When this study started, IMERG V06B was the latest algorithm, so the data based on IMERG
V06B has been used in this study. There are three runs of IMERG data: Early Run, Late Run and
Final Run. The processing time for each runs are 4 hours, 14 hours and 3.5 months separately
(Sakib et al., 2021). Considering the purpose that we want the improve the NRT prediction on
precipitation and landslides, Final Run is not applicable in this study. There are many study have
compared the performance between IMERG Early Run and Late Run, and most of them find that
the difference between them is relatively small (Kawo et al., 2021; Zhou et al., 2021).

The local time in Turkey is UTC+03:00, and the ground observation precipitation is daily
based. So the daily IMERG data has been accumulated by using 30 minute IMERG data plus a
three-hour time gap. For example, the daily precipitation data from IMERG on 01 Jan, 2015 has
been derived by accumulating 30 minute IMERG data from 31 Dec, 2014, 9:00PM to 1 Jan, 2015,
8:59PM. An accuracy assessment for this procedure has been done, and the result is in Figures 4.5d,
4.6d, and 4.7d.

2.2.4 Covariates

Digital Elevation Model (DEM) data (Hastings et al., 1999) and Normalized Difference Veg-
etation Index (NDVI) data (Vermote et al., 2014) can be helpful as reference data since they are
related with precipitation pattern (Ranjbar et al., 2020; Tennant et al., 2017). Moreover, North-
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ness and Eastness have also been calculated based on the DEM data for each grid. The resolution
of reference data have been rescaled to the same resolution of GPM data.
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Chapter 3

Methodology

3.1 INTERPOLATION

Many paper have compared several precipitation interpolation methods (Antal et al., 2021;
Katipoğlu, 2022; Usowicz et al., 2021). However, the aim of this thesis was not to interpolate
rainfall data from one rain gauge to another. For this reason, the two most common spatial inter-
polators have been chosen, compared and only one of the two has later been adopted to regionalize
the discrete precipitation information. Specifically, Ordinary CoKriging (OCK) and Inverse Dis-
tance Weighting (IDW) have been tested in this study.

3.1.1 Ordinary Cokriging

Ordinary Kriging (OK) is one of the commonly used geostatistical approach has been widely
used on climate variables interpolation (D. Chen et al., 2010). A spatial model (called variogram)
contains the spatial structure that has been retrieved from known points, and a unique variance
value is then assigned for each unknown point (Katipoğlu, 2022). Ordinary Cokriging (OCK) is
an extension of OK, and it adopts the information from auxiliary variables for interpolating the
target one. The value of unknown point can be calculated based on a semivariogram that also
exploits the spatial correlation between target variable and auxiliary variables (Antal et al., 2021).

3.1.2 Inverse Distance Weighting

Inverse Distance Weighting (IDW) is a interpolation method for estimating unknown points
entirely based on the distance between observation points. IDW assumes that points next to each
other have more similar values, and unknown points can be calculated as a function of the distance
and values between nearby points (Antal et al., 2021; Katipoğlu, 2022). As a result, values of
observation points have greater weights on nearby region, and this weights are proportional to
the inverse of the distance. The exponent decrease rate of weights is the only parameter needed to
be set for this method, and it has been set to 2 in this study.

On the basis of the literature review, it is still difficult to say which method is more effective.
Some research found that OCK outperformed IDW (Katipoğlu, 2022) since covariates bring ad-
ditional information to the OCK interpolation routine. However, some research also mentioned
that covariates do not often bring meaningful information and can even act as noise, thus leading
to performance of OCK being worse than IDW (Antal et al., 2021).
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3.2 STATISTICAL POSTPROCESSING

3.2.1 Ensemble Model Output Statistics

As mentioned in the literature review section, Ensemble Model Output Statistics (EMOS)
uses various parametric distribution for modeling the relationship between predictors (estimates)
and predictands (observations). And, zero-adjusted gamma distribution (ZAGA) has been proved
successful for modeling precipitation relying on a variant of the gamma distribution. Figure 3.1
shows the probability density function (PDF) and cumulative distribution function (CDF) for the
ZAGA distribution.

Figure 3.1: PDF and CDF for ZAGA distribution (Stasinopoulos et al., 2017)

According to the upper graph of Figure 3.1, the ZAGA distribution can be understood as a
mixture of a gamma distribution and a separate probability at the value 0. There are three pa-
rameters for modeling a ZAGA distribution: µ is the location parameter, and it is usually related
to the “center” of the distribution; σ is the scale parameter, and it represents the “spread” of the
distribution. Larger σ indicates that the distribution is more dispersive. ν is an extra parameter
specific of ZAGA, and it is equal to the probability at the value 0. When the value is larger than
0, the probability can be calculated by a gamma distribution with probability (1-ν) (Rigby et al.,
2019). As figure 3.2.1 shows, the ZAGA distribution matches the precipitation pattern: many
days have no rainfall (value 0), and extreme precipitation is much less likely to happen (with small
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probabilities).

The probability density function for ZAGA is defined as follows:

fY (y|µ, σ, ν) =

 ν,

(1 − ν)
[

1
(σ2µ)1/σ2 · y(1/σ2)−1·e−y/(σ2µ)

Γ (1/σ2)

]
,
if y = 0
if y > 0

 (3.1)

Predictors for parameters µ σ and ν are selected by Generalized Akaike Information Criterion
(GAIC), which has been commonly used in model selection by calculating the information loss
(Wagenmakers and Farrell, 2004). Strategy A of the GAIC has been applied in this research, and it
starts with a forward stepwise approach for calculating the first predictor for the parameter µ. The
predictor with the smallest AIC will be selected, and the number of predictors of each parameter
will be discussed in the validating procedure. After the model for µ has been built, the model
for σ will be built on the basis of the model for µ. The model for ν will be built later. After all
predictors for all three parameters have been decided, a backward elimination procedure will be
applied.

3.2.2 QRF

Random forests (RF) is a non-parametric machine learning method that does not need to as-
sume a specific function to represent the relationship between predictors and response variables
in advance (Carella et al., 2020). RF is a tree-based algorithm that consists of many decision trees
together. The decision tree technique splits the observation data into two homogeneous groups
for each node by some threshold of the predictor variables. The split procedure will stop when
the minimum number of observations for each node has reached, and all observation data will be
distributed to a set of terminal nodes (van Straaten et al., 2018). Modeling with only one decision
tree can induce large variances, so multiple trees are grown together on bootstrapped samples of
the original data. The average of different trees has been calculated (also called bagging). To make
trees more independent, RF was proposed in 2001. In the RF, each split of each tree can be built on
a random subset of the predictors (Breiman, 2001). In conclusion, RF is a relatively flexible model
which can be set with a different number of trees (ntree), minimum number of the observation
for each node (nodesize), and number of variables randomly sampled at each split (mtry). QRF
is an extension of random forest that can be used to perform a quantile regression and generate
a probabilistic forecast (Schulz and Lerch, 2022). Unlike RF, which only estimates the response
variable’s mean at each terminal node, QRF delivers the full CDF. The final forecast using QRF
is calculated by averaging the CDF from all nodes of all trees. More details about how QRF can
be applied to statistical postprocessing can be found in Taillardat’s paper (Taillardat et al., 2016).
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Figure 3.2: An example of random forests (Dimitriadis et al., 2018)

3.3 MODEL JUSTIFICATION

The predictors’ selection in this study is based on a previous study (Y. Zhang et al., 2022),
to which additional covariates have been added to bring further information on the landscape
characteristics, hence on the orographic effect on rainfall patterns. Table 3.1 shows all selected
predictors for training the model. Overall, six covariates have been selected (Lon, Lat, Elevation,
Eastness, Northness, NDVI), and precipitation data on the 20 closest grids of the target grid of the
target day and the previous have also been selected. The reason for taking precipitation data from
such many grids is that the difference between IMERG and interpolated data is large, and more
features can be captured by the model with more predictors.

The reason behind such predictor choice is briefly summarized as follows: elevation can be
responsible to create an orographic barrier to the incoming clouds. In the specific case of this test
site, the clouds come from the north, as a result of evaporated and re-condensed water from the
Black Sea. Therefore, Eastness and Northness can partially explain local rainfall as for instance,
North facing slopes may receive more precipitation than South facing ones at higher altitudes. As
for the inclusion of the NDVI signal 10 days before each examined day, this predictor was selected
in the hope of capturing the evapotranspiration effect of the vegetation, under the assumtion that
denser forests would release more moisture in the air, which can be converted into rain. Finally,
the choice of the 20 closest grids is meant to bring the information of the neighboring areas, adding
more spatial coherence to the model.

Considering there are five and a half years ground stations data are available (2015.1.1-2020.5.31),
four years of data (2015.1.1-2018.12.31) have been used to perform a four-fold cross validation.
After the validation procedure, the final model used four years of data (2015.1.1-2018.12.31) for
training and one and a half year of data (2019.1.1-2020.5.31) for testing (Table 3.2). Since precipita-
tion in different seasons usually show different features, and statistical postprocessing on climate
variables need to consider the seasonal effects (Ratri et al., 2021; van Straaten et al., 2018). All data
have been divided into three groups: November - February (rainfall season), July-October (land-

17



TOWARDS NEAR-REAL-TIME SPATIAL FORECASTING OF RAINFALL TRIGGERED LANDSLIDES

slide prone season) and March-June (others). Models for each season have been trained and tested
independently.

Table 3.1 Predictors Selection

Variable Name Abbreviation Unit
Longitude Lon /
Latitude Lat /
Elevation Elevation m

Aspect (Eastness) Eastness /
Aspect (Northness) Northness /

Normalized Difference Vegetation Index NDVI /
Precipitation of the grid with the minimal distance (target grid) on the target day min1 mm/day

Precipitation of the grid with the minimal distance (target grid) on the previous day minP1 mm/day
Precipitation of the grid with the 2nd minimal distance to the target grid on the target day min2 mm/day

Precipitation of the grid with the 2nd minimal distance to the target grid on the previous day minP2 mm/day
... ... ...

Precipitation of the grid with the 20th minimal distance to the target grid on the target day min20 mm/day
Precipitation of the grid with the 20th minimal distance to the target grid on the previous day minP20 mm/day

Table 3.2 Training, validation and testing groups

2015 2016 2017 2018 2019 2020
Fold1 Train Train Train Validation / /
Fold2 Train Train Validation Train / /
Fold3 Train Validation Train Train / /
Fold4 Validation Train Train Train / /
Final Train Train Train Train Test Test

3.4 VERIFICATION

3.4.1 Model Comparison

Three commonly used model comparison methods have been carried out in this study: mean
error (ME), root mean square error (RMSE) and Pearson correlation coefficient (PCC). (3.2) to
(3.4) are equations for calculating those three indicators. Smaller RMSE and ME indicate the es-
timate/predict values are much closer to the observational data. PCC is for measuring the rela-
tionship between estimate/predict values and observational data. When PCC equals to 0, there
are no relationship between two values. When PCC equals to 1 or -1, two values has a perfectly
positive or negative linear relationship. Value of PCC between 0 to 0.3 (0 to -0.3) represents a weak
linear relationship, between 0.3 to 0.7 (-0.3 to -0.7) represents a moderate linear relationship, and
between 0.7 to 1 (-0.7 to -1) represents a strong linear relationship (Ratner, 2009).

ME = 1
n

∑
(yi − xi) (3.2)
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RMSE =
√

1
n

∑
(yi − xi)2 (3.3)

PCC =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2 ∑

(yi − ȳ)2 (3.4)

3.4.2 Model Assessment

Brier Score (BS) and Reliability Diagram are two widely used methods for assessing accuracy,
reliability and sharpness of statistical postprocessing models. Different from model comparison
methods, BS and reliability diagrams are more focused the performance of the models themselves.

Brier Score

The BS is a strictly proper score that can measure the accuracy of the model, and the formula
of the BS is shown in (3.5). The brier score calculates the mean square error (MSE) of different
forecast probabilities for binary events oi with a threshold (o1 = 1 if the event occurs and o2 = 0 if
the event does not occur. n indicates the verification set size. The brier score is negative-oriented,
and it can be converted to the brier skill score (BSS) for showing the forecast skills according to
the reference climatology (3.6).

BS = 1
n

n∑
i=1

(pi − oi)2 (3.5)

BSS = 1 − BSmod

BSref
(3.6)

Reliability diagram

BS can give a simple initial impression, and a reliability diagram can show the full joint distri-
bution of NRT satellite data and observations. The reliability diagram is a well-designed graphical
device that provides reliability, resolution, and sharpness information for the forecast. More in-
troduction about reliability diagram can be found in (Wilks, 2011), and some typical examples
of reliability diagrams are shown in the Figure 3.3a. The observed relative frequency is plotted
against the forecast estimate probability in the reliability diagram. The center panel in Figure 3.3a
is the most well-calibrated forecast among the five diagrams since the observed relative frequency
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of each data group is relatively matching with the forecast probability from the model. The top
panel in Figure 3.3a is an example of overestimation (or overforecasting), in which the observed
relative frequency is relatively lower than the forecast probability. The bottom panel in the figure
is the opposite of the top one, and it corresponds to underforecasting. The left and right panels
in the Figure 3.3a are related to the panels in the Figure 3.3b. The left one is underconfident with
good resolution, and the observed outcomes change obviously with the forecast change. On the
other hand, the right panel is overconfident with poor resolution, and the observed outcomes will
not change obviously applying a forecast change. The reliability improvement can be achieved by
adjusting the extreme probabilities to be less extreme. The equation (3.5) can be expressed in the
equation (3.7), including reliability, resolution, and uncertainty. Since the sign for the part of the
resolution is negative, the poor resolution can increase the BS and decrease the BSS. The sharpness
diagram is also presented with the reliability diagram simultaneously, indicating the tendency to
forecast the extreme probabilities rather than the mean probabilities.

BS = 1
n

I∑
i=1

Ni(yi − ōi)2 − 1
n

I∑
i=1

Ni(ōi − ō)2 + ō(1 − ō) (3.7)

Figure 3.3: Examples of reliability diagram (Wilks, 2011)

The Brier score and reliability diagram have been widely used in the statistical postprocess-
ing studies for weather forecasting (Whan and Schmeits, 2018). The basic principles of statistical
postprocessing on either weather forecasting or NRT satellite estimates is similar, since the NRT
satellite estimate couldn’t reflect the actual rainfall situation accurately at this stage.

3.4.3 General overview

A summary of the methods described above and how they are interconnected into a single
analytical protocol are shown in figure the Figure 3.4.
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Figure 3.4: Flowchart

21



TOWARDS NEAR-REAL-TIME SPATIAL FORECASTING OF RAINFALL TRIGGERED LANDSLIDES

Chapter 4

Results

4.1 RAIN GAUGE ASSESSMENT

In the study area, 177 ground stations have run since 01 Jan, 2015 and up to 282 ground stations
have run until 31 May, 2020. Figure 4.1 shows the distribution of ground stations on 01 Jan,
2015 and 31 May, 2020, separately. Precipitation interpolation in mountainous region is more
complex than it in plain area (Katipoğlu, 2022) since the intensity of precipitation changes with
the change of altitude (Dimri et al., 2022). After more ground stations have been built in this area,
a better accuracy of the “true” precipitation data is expected, as the investment from the Turkish
administrations deployed new stations also on highly elevated slopes.

Figure 4.1: Ground Stations Distribution. Each blue point represents a ground station

The subsequent section will present an overview of how the discrete information collected at
the rain gauges has been regionalized in a continuous manner over the study area.
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4.2 INTERPOLATION

Two commonly used spatial interpolation methods have been used in this study: Inverse Dis-
tance Weighting (IDW) and Ordinary CoKriging (OCK). Daily rainfall data have been interpo-
lated by both methods to the resolution same as GPM-IMERG data (0.1 degree), and here shows
three sets of comparison results (Figure 4.2-4.4) based on the date of a selected landslide inventory
(24 Aug 2015, 05 July 2016 and 28 September 2017). According to those three figures, both inter-
polation methods are able to show the precipitation pattern from the ground stations. However,
figure 4.3 implies that OCK may miss some extreme precipitation features (the maximum pre-
cipitation from ground stations is larger than 120mm, but the maximum precipitation showed in
the OCK interpolation map is just 27.78mm). Extreme precipitation is vital to explain landslide
occurrences. Therefore, we opted to use the results from IDW interpolation for the later analysis.
Specifically, the interpolated rainfall in space and time will be used as the baseline to which GPM
estimates will be projected to, on the basis of a machine learning based, bias correction procedure.

4.3 IMERG ASSESSMENT

Though IMERG has been applied in several RTL susceptibility analysis (LaJoie et al., 2021;
Titti et al., 2021), there are still large error involved with IMERG NRT data (Gilewski and Nawalany,
2018; Nguyen et al., 2018). Daily data on the dates of three landslides occurred from early run
(IMERG-E) and late run (IMERG-L) have been compared (Figure 4.5a/b, 4.6a/b, 4.7a/b). It can
be seen that the difference between IMERG-E and IMERG-L are relatively small. To buy more
time for landslide prediction, IMERG-E has been selected as the target for our bias-redution at-
tempt. As mentioned in section 2.2.3, there are three hours difference between UTC and and
Turkey Time (TRT). Therefore, the daily IMERG-E data has been recalculated by using 30 min-
utes data on the basis of TRT (see Figure 4.5d, 4.6d, 4.7d). Compared to the observational data
from ground stations (4.5c, 4.6c, 4.7c), errors between ground stations and IMERG-E are relatively
large. Considering the difference between observational data and IMERG-E, the statistical post-
processing routine we implemented was framed on the same resolution of IMERG-E (around 0.1
degree). In other words, the IDW interpolation described in the previous section was constrained
to match the same resolution of IMERG-E and the following bias-reduction will act at this scale.
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Figure 4.2: Interpolation comparison for landslide Artvin Hopa (units: mm/day)
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Figure 4.3: Interpolation comparison for landslide Ordu-Peŗsembe (units:mm/day)
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Figure 4.4: Interpolation comparison for landslide Rize Kaptanpa̧sa (units: mm/day)

26



TOWARDS NEAR-REAL-TIME SPATIAL FORECASTING OF RAINFALL TRIGGERED LANDSLIDES

(a) Daily precipitation from IMERG-E (b) Daily precipitation from IMERG-L

(c) Observational Precipitation (d) Accumulation of 30 min precipitation

Figure 4.5: IMERG comparison for landslide Artvin Hopa (units: mm/day)
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(a) Daily precipitation from IMERG-E (b) Daily precipitation from IMERG-L

(c) Observational Precipitation (d) Accumulation of 30 min precipitation

Figure 4.6: IMERG comparison for landslide Ordu-Peŗsembe (units: mm/day)
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(a) Daily precipitation from IMERG-E (b) Daily precipitation from IMERG-L

(c) Observational Precipitation (d) Accumulation of 30 min precipitation

Figure 4.7: IMERG comparison for landslide Rize Kaptanpa̧sa (units: mm/day)

4.4 MODEL VALIDATION

The comparison between RMSE of observational data and IMERG-E, QRF prediction and
ZAGA prediction have been shown in the table 4.1. For each validation fold, QRF has significantly
improved the results for all folds in all seasons comparing to the raw IMERG-E values. However,
ZAGA couldn’t improve the estimates from IMERG-E and have larger RMSE for all seasons. By
checking the predict precipitation values from the model ZAGA, some output values are extreme
large and they are unrealistic. More discussion about the behaviours difference between QRF and
ZAGA can be found in the discussion chapter. Considering the results in the validation procedure,
only the model QRF has been decided to use in the testing procedure.
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Table 4.1 RMSE comparison for validation folds (mm/day)

IMERG-E QRF ZAGA
Nov-Feb

Fold1 7.942166 4.321199 1351.912
Fold2 6.896297 4.166793 /
Fold3 7.561765 5.323488 /
Fold4 6.018691 4.40065 /

Mar-Jun
Fold1 7.778902 3.566019 22.1255
Fold2 6.529668 4.014457 /
Fold3 7.977819 3.997963 /
Fold4 6.009583 3.541323 /

Jul-Oct
Fold1 7.685115 4.191181 3161.067
Fold2 6.489428 3.551965 /
Fold3 9.053709 4.029116 /
Fold4 7.795569 3.749676 /

4.5 MODEL TESTING

4.5.1 Model Comparison

During the testing procedure, four years of data have been used for training (2015-2018), and
the rest of data have been used for testing (2019-2020). Since the testing groups are kept inde-
pendent from other data in the validation procedure, the results here are of particular relevance
because they can inform on what one can expect when predicting future rainfall patterns. RMSE
and PCC have been calculated for all data on different seasons (table 4.2), and the results here are
similar to the validation procedure. QRF have significantly improved raw IMERG-E for all seasons
according to the RMSE values. As for PCC, the raw IMERG-E for all seasons have relatively poor
performance, and the relationship between the observational data and the IMERG-E estimates are
weak before the postprocessing. After the postprocessing, by using QRF, the relationship between
observational and predict data change to moderate according to the rules of PCC (Ratner, 2009).

The distribution of RMSE, PCC, and ME comparison of observational data and raw IMERG-E
value or the predictions from QRF model have been shown in Figure 4.8-4.10. Figure 4.9 indicates
that the predict values and observational data have stronger relationship in the eastern part of the
study area rather than the western part.
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Table 4.2 RMSE and PCC comparison for the testing group (units of RMSE: mm/day)

Nov-Feb
IMERG QRF

RMSE 7.579431 4.021487
PCC 0.1667672 0.3856719

Mar-Jun
RMSE 9.078529 3.603529
PCC 0.1436403 0.3278707

Jul-Oct
RMSE 8.725887 3.820046
PCC 0.09079039 0.3075987

(a) November-February

(b) March-June

(c) July-October

Figure 4.8: RMSE comparison (units: mm/day)
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(a) Novenber-February

(b) March-June

(c) July-October

Figure 4.9: PCC comparison

(a) November-February

(b) March-June

(c) July-October

Figure 4.10: ME comparison (units: mm/day)
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4.5.2 Model Assessment

After demonstrating that the predicted results have better performance than the raw IMERG-
E data, information about the models themselves have also been checked. Figure 4.11 reports BSS
for three models with different thresholds. All of them drop abruptly before reaching 20mm, and
the BSS calculated for all of them are relatively low. Notably, higher BSS value indicate better
performance. This implies that even though the statistical postprocessing models has improved
the raw IMERG-E estimates, the predicted values are still not close to the observational data.

More information about models can be collected from reliability diagrams (4.12-4.14). These
graphs can be read by assuming that a good performance would align data across a theoretical
45 degree line. Such lines reports on the y-axis the observed frequency of a given rainfall event
discharging a total daily rainfall depending on the plot itself. Then the abscissa reports the forecast
probability, which should ideally follow the observed frequency. At low thresholds (0.3mm &
1mm), models of all seasons show good calibration. However, the performance slightly worsen
reaching a medium threshold (10mm). And, all models even stops issuing higher probabilities
for higher thresholds (50mm), which in turn mean that the prediction is not capable of reflecting
extreme rainfall events. A sharpness diagram has also been showed at the corner of each reliability
diagram. Sharpness diagram represents the relative frequency of forecasts falling into different
probability bin (Liu et al., 2017). From a medium threshold closer to 10mm, most of forecasts are
falling into the low forecast probability, so the forecast systems only have little sharpness.

Figure 4.11: Brier skill score for three models with different thresholds (blue is for Nov-Feb, red
is for Mar-Jun, green is for Jul-Oct, the units of thresholds are mm/day)
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Figure 4.12: Reliability Diagram for multiple daily rainfall thresholds (Nov-Feb)

Figure 4.13: Reliability Diagram for multiple daily rainfall thresholds (Mar-Jun)
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Figure 4.14: Reliability Diagram for multiple daily rainfall thresholds (Jul-Oct)

4.5.3 Predictor Importance

The importance of all predictors is also helpful to understand the model and how certain pre-
dictions are produced. When a predictor has higher importance, it has more weights and plays as
a more important role in the model. Table 4.3 lists the five most important predictors for each
model. NDVI seems to be one of the most important predictor for models in all seasons. Elevation
data are more important than the location information during July to October (landslide prone
season), and this matches the precipitation types in this region (Türkoglu et al., 2003). This is ex-
tremely relevant because it supports the validity of the model itself. In fact, during the summer,
prolonged warm days induce high evaporation from the Black Sea surface and whenever the wind
pushes the humid air toward the study area to the south, a strong orographic effect is expected to
control the rainfall pattern and amounts (Türkoglu et al., 2003).

The precipitation data from the previous days also bring some interesting information. In
fact, it seems more important than the precipitation data from the target day, and this finding is
consistent with others (Y. Zhang et al., 2022). In addition, the grids are closer to the target grid do
not seem more important than farther grids, and this is probably due to the bad performance of
IMERG-E and a residual spatial effect that the model then captures from the neighboring structure.
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Table 4.3 The five most important predictors

1st 2nd 3rd 4th 5th
Nov-Feb

Fold1 NDVI Lon Elevation Lat Northness
Fold2 Lon NDVI Elevation Lat minP18
Fold3 Lon NDVI Elevation Lat minP15
Fold4 NDVI Lon Elevation Lat Eastness

Testing Lon NDVI Elevation Lat Northnessz
Mar-Jun

Fold1 NDVI Lon Elevation Lat Eastness
Fold2 NDVI Lon Elevation Eastness minP15
Fold3 NDVI Lon Elevation minP15 Eastness
Fold4 NDVI Lon Elevation minP10 minP15

Testing NDVI Lon Elevation minP20 minP16
Jul-Oct

Fold1 NDVI Elevation Lon Lat minP13
Fold2 NDVI Elevation Lon minP15 Lat
Fold3 NDVI Elevation Lon minP20 minP16
Fold4 NDVI Elevation Lon minP20 minP8

Testing NDVI Elevation Lon minP20 minP16

4.6 ATTEMPT TO EXPLAIN LANDSLIDE OCCURRENCES THROUGH RAINFALL PATTERNS

The last and the most important step for this study is to map observational precipitation,
IMERG-E estimates and the predicted (bias-corrected) precipitation in map form. In order to
match the size of landslide better, the resolution of precipitation from all maps have been down-
scaled to 1km by a “bilinear” interpolator. Comparative maps of the dates when the three land-
slide events happened have been selected and shown in Figures 4.15-4.17. Black polygons in maps
are landslide inventories. Precipitation information for all maps have been classified into three
groups based on the natural breaks on ArcGIS: red represents high precipitation, orange repre-
sents medium precipitation and yellow represents low precipitation. The three maps show that
QRF models are able to correct most of the precipitation errors from IMERG-E estimates and the
output of the model can offer useful information for landslide susceptibility prediction in near-real-
time. The result in the figure 4.16 is especially exciting. Raw IMERG-E map shows that there is no
precipitation in the landslide region, although this is clearly wrong according to the observational
precipitation. The predicted results from QRF model has the capacity of correcting this error to
a certain extent, which is something promising to extent the use of bias corrected IMERG-E data
in near-real-time.
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Figure 4.15: Prediction for precipitation/landslide: Artvin Hopa
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Figure 4.16: Prediction for precipitation/landslide: Ordu-Peŗsembe
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Figure 4.17: Prediction for precipitation/landslide: Rize Kaptanpa̧sa
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Chapter 5

Discussion

Statistical postprocessing models have been proven to be powerful tools in the weather forecast
field. However, not much has been done applying those methods on NRT satellite estimates and
hardly no applications have been tested in the landslide context. In other words, it is important to
stress that this is a field at its infancy stage.

Looking at results provided in the few articles published on this theme, the expectation was
to largely reduce the difference between observed and satellite based rainfall measurements. For
this reason, a full downscaling experiment was planned in the early stage of this research. How-
ever, the quality of the NRT IMERG product proved to be quite poor, forcing a different direction
more towards bias reduction routines rather than spatio-temporal data resolution enhancement.
Therefore, the sections below will expand the discussion for the bias correction aspects. Neverthe-
less, especially to help defining better landslide prediction strategies, rainfall downscaling in NRT
should still be a field where scientific efforts should be invested.

5.1 OBSERVATIONAL PRECIPITATION INTERPOLATION

Even though OCK did not perform well in this study, other examples in the literature have
pointed out at its good performance. Therefore, a potential explanation for such results can be
potentially due to the local landscape. Even this finding matches with another study (Antal et al.,
2021), OCK had also been proved outperformed than IDW in another study for mountainous
regions in Turkey (Katipoğlu, 2022). The difference between this study and the above one is they
were using monthly data from ground stations rather than daily data. The monthly precipitation
data may have a more uniformly distribution, so the spatial structures are easily to built by using
kriging.

Notably, the use of IDW was also the optimal case because similar landscape covariates have
entered the modeling procedure for the bias removal. Therefore, using them as part of interpolat-
ing the rain gauge data and for the bias-removal would have inflated the performance artificially,
thus being a grave mistake.

5.2 STATISTICAL POSTPROCESSING

Predictors’ selection can also be improved in the future. The selection of predictors in this
study was based on other’s experience (Lombardo et al., 2018; Y. Zhang et al., 2022). However,
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the process of deciding how many grids to choose within a neighborhood as predictors can for in-
stance be improved by adding a sensitivity analysis. In such case, one could examine the inclusion
of smaller or larger neighboroods and improve the prediction as a consequence. In this research,
the main trade off upon which the choice of neighborhood was justified was based on compu-
tational costs. In unreported results tests were made for smaller neighborood and at each grid
number increase, the model performance was recorded. However, at a neighborhood comprising
20 grid the procedure was interrupted because the computational time was increasing to the point
of making the procedure unfeasible in the time frame allocated for this MSc research.

According to the table 4.5, precipitation from raw IMERG-E were not that important in the
model so maybe more reference data should be considered rather than IMERG-E data. In the
future, another NRT precipitation data or forecast data could be explored and bias-reduced using
statistical postprocessing. The finding from this study also tells that IMERG-E may not be a good
choice for modeling NRT RTL in eastern Black Sea Region in Turkey.

The difference between ZAGA and QRF is that ZAGA is a parametric method while QRF
is non-parametric one. ZAGA can only select a certain number predictors for each parameter,
and the distribution of the data also need to follow a specific shape. On the other hand, QRF
is more flexible because it belongs to a class of machine-learning approaches. This makes QRF
more suited to solve prediction tasks and it is most likely the reason behind the large performance
gap with respect to the ZAGA approach. The observational data and satellite estimates in this
study also had a relatively large gap. Traditional parametric methods may be difficult to built in
this case. Currently, more and more deep learning based methods have been proposed in the field
of statistical postprocessing (Harris et al., 2022; Schulz and Lerch, 2022), and those more flexible
methods appear quite promising to boost the use of NRT satellite estimates in the future.

The BSS and reliability diagram in this research showed relatively poor performance com-
pared to traditional statistical postprocessing studies on weather forecast (Whan and Schmeits,
2018). This can be explained by the big difference between observational data and satellite esti-
mates (similar as forecasts). BSS and reliability diagram are more focused on the output values
comparing to continuous metrics (RMSE, PCC and ME). Even though models can correct some
errors in map, but the output values from the model are more difficult to postprocess. In fact,
improving the accuracy of predict values can be a direction for future research. According to the
figure 4.15-4.17, relative high risks area can be discovered by the model, but the output values from
the model still can be improved.

It should be noted that the study site is relatively small compared to other areas where such
postprocessing tools have been reported in the literature. For this reason, it is possible that the
scale at which bias-corrections are applied can also play a large role. For instance, over regional,
national or even contintental extents, the match between observed and remotely-sensed rainfall can
substantially improve whereas for very localized studies, satellite products may still be unsuited.

The predictor importance table (table 4.5) is also an important element for statistcal postpro-
cessing. Predictors were more important should be kept in the future analysis since they had
played a positive role for the modeling. Moreover, according to the table, precipitation between
July to October are more likely to be orographic precipitation while in March to June are more
likely to be convective precipitation. Similar to the result from others (Y. Zhang et al., 2022), the
precipitation data from the previous day is more important than the precipitation from the target
day, and this is probably due to the infrared images are able to reflect signal earlier. Further im-
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provements though can still be envisioned. For instance, temperature and wind data also largely
control the spatio-temporal pattern of rainfall events. Therefore, further research efforts could be
made to find the optimal predictor set to support any bias-reduction procedure in the context of
weather science.
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Chapter 6

Conclusion and recommendation

For predicting RTL in near-real-time, IMERG-E data involved large errors and it could not
been used directly. This study has found that QRF is able to correct some major errors of IMERG
NRT data in eastern Black Sea Region of Turkey. Several evaluation methods have also been car-
ried out in this study for models comparison and model assessment. Two widely used statistical
postprocessing methods for weather forecast have been tested in this study. The results found that
nonparametric methods may perform better than parametric ones for NRT satellite estimates cor-
rections. By comparing RMSE/PCC of observational data and IMERG-E to RMSE/PCC of ob-
servational data and predict values, the raw IMERG-E has been significantly improved by QRF,
and the relationship between predict values and observational data is also stronger than the rela-
tionship between raw IMERG-E data and observational data. This finding is an important step for
near-real-time forecasting rainfall forecast at an operational scale typical of other surface phenom-
ena, to which class landslide belong too. Future work can be focused on finding better predictors
and more advanced (better performance) techniques, but also to test whether other satellite prod-
ucts equipped with a forecast service can be used instead of IMERG.

The initial idea behind this work still stands and it should be mentioned here before closing.
If and only if, rainfall forecasts would be proven to be correctable and downscalable, then a num-
ber of applications of fundamental importance could be enabled. The initial assumption for this
thesis was to build a model capable of correcting differences between observational and remotely-
sensed rainfall, and to downscale it in the end. Such a model could then be used to convert the
rainfall pattern from forecasted estimated thus creating an opening towards landslide forecasting
services. This may be of fundamental relevance for communities living in mountainous landscapes
and could be the base for alternative early-warning systems, as most of the current ones are pre-
dominantly based on rain gauge and terrestrial radar data.
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