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Like how water, snow, and hail all contain the same element, but the same formless water solidifies to create hail 

or a mountain of snow, both of which have a shape, in same way knowledge transforms into an idea, and idea 

transforms into the triumph. ~ Tulsidas  
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ABSTRACT 

Seasonal Snow in Indian Himalayas plays important role for water resources in South Asia which give water 

supply over the hundreds of millions of people living in most of the south Asian countries and hydro-

electricity city to the several states of northern India. The study of SD and SWE can play a major role in 

forecasting yearly water supplies, flood prediction, and general climate research. Seasonal snow is an 

important part of the Himalayan hydrological system which gives water to billions of people and is a major 

source of generation of hydroelectricity in south Asian region. Depending on the availability and variety, 

mathematical model selection, and the hydro-meteorological conditions of the area of interest of the data, 

it is extremely difficult to estimate these two factors accurately. Estimation of SD and SWE using multi-

sensor microwave and optical remote sensing time series data for Indian Himalayas is feasible but 

challenging. This thesis is intended to develop a model which can estimate SD and SWE values at optimal 

temporal and spatial resolution using multi-sensor data like active and passive microwave sensors, optical 

sensors and other climatological and topographical factors which affects snow and its physical properties.  

 

In this research work, two study areas were the focus which are Beas and Sutlej basin in North-western 

Himalayas. Both basins are large water resources supply as well as snowmelt indulge in crucial role in terms 

to provide water supply. Water year October 2016 to September 2017 has been selected for this research 

work as per the optimum availability of the input dataset that has been used in this thesis work. Machine 

Leaning based model has been trained to obtain SD and SWE estimations from extracted input features 

from different dataset and prediction later has been done. Also, downscaling has been done for coarser 

resolution datasets. The quality of developed model (SVR) has been analysed by creating another machine 

learning model (RFR) to check how accuracy metrices are varying in similar circumstances in two different 

developed models. 

 

As SD and SWE values varies a lot with elevation and aspect in the mountainous regions like Himalayas, an 

analysis has been done to observe how aggregated SD and SWE varying with these parameters. Analysis has 

been performed for month of February, which is approximately most snowy month of the years 2017, 2018 

and 2019. Other ideas for improving the model quality, issued that arrived in  research phase and  drawbacks 

of the research work has been discussed in this report. 
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Snow Depth and SWE Estimation Using Multi-Sensor Microwave and Optical Remote Sensing Time Series Data for Indian Himalayas 

1 

1. INTRODUCTION 

1.1. Background 

Snow studies are the study about physical qualities of snow like the bulk properties of snowpack that are 

places in a particular area, changes happening there over time, and snow cover region aggregate properties 

(National Snow and Ice Data Center, 2016). Studies on the snow can be done by combining on-the-ground 

physical measuring techniques with remote sensing techniques to obtain a better knowledge of snow-related 

process over vast areas (National Snow and Ice Data Center, 2016). Several properties of snow play an 

essential role in its study like, the thickness of the snow, grain shape and size, height of snowpack, or Snow 

Depth (SD), the height of fresh snow (like, over a day), Snow Water Equivalent (SWE) and Water Equivalent 

of snowfall (Fierz et al., 2009). Snow’s two most salient features are SD and SWE which broadly used in 

hydrological models like snow avalanche and snowmelt run off predictions (Thakur et al., 2017). While SD 

allude to the height of snowpack from surface base at ground to the top surface of the snow, SWE measures 

the water content present in the given snowpack, also SWE is directly proportional to SD and snow density. 

Depending on the availability and variety, mathematical model selection, and the hydro-meteorological 

conditions of the area of interest of the data, it is extremely difficult to estimate these two factors accurately. 

Estimation of SD and SWE using multi-sensor microwave and optical remote sensing time series data for 

Indian Himalayas is feasible but challenging. In this work, a Machine Learning based approach for SD and 

SWE estimation has been introduced and to get optimum spatial and temporal resolution. 

1.2. Motivation 

After polar regions, accumulation of ice, snow, and glaciers in the globe is found highest in the Himalayas, 

the source of important rivers in Southern part of Asia continent (Immerzeel et al., 2010). These rivers have 

a high potential for water supplies and hydropower generation. But in the start of May 2021, Bhakra Beas 

Management Board (BBMB) officials stated that the water level in the Gobind Sagar Lake (Himachal 

Pradesh, India), which serves as the reservoir for the Bhakra dam was 1,505.39 feet, was 56 feet down from 

the previous year’s equivalent days (Kanchan Vasdev, 2021).The dam could be filled to a maximum height 

of 1,680 feet. The concerns are growing since the reservoir only has 10% of the 9.27 billion cubic meters of 

water it can hold. Any further drop in the level might result in the partner state’s power plants and water 

supplies being shut down (Kanchan Vasdev, 2021). The senior management, on the other hand, thought 

that the monsoon would hit the region by mid-June and restock the dam. Power generation at the dam’s 

powerhouses has been reduced by 20% to deal with the dire situation and restrict outflows (Kanchan 

Vasdev, 2021). The Bhakra dam has a total capacity of 1,415 megawatts of power generating (MWt). To 

keep the reservoir level in check, 14,000 cusecs of water is released from the dam against a 20,000-cusec 

intake (Shukla et al., 2017). Silt makes up at least 23% of the reservoir's filling capacity, causing the dam to 

quickly fill and empty. The reservoir covers an area of 168 square km, and the amount of silt entering the 

reservoir is far more than projected when the dam was built in 1963 (Shukla et al., 2017).The reservoir also 

supplies a source of drinking water for the three northern Indian states, as well as India’s national capital, 

New Delhi (Shukla et al., 2017). Low water storage has been attributed to a lack of snow and rainfall during 

previous winters. Furthermore, in many sections of the Himalayas, unseasonal rain, and snow in May kept 

temperatures low and thereby decreased snowmelt. This is just an example of a dam based on one river of 

the western Himalayas. Similar cases of lack of snowfalls in the Northern Himalayas, leading to water 

shortage can be seen for other rivers like Beas and Indus (Vikas Vasudeva, 2021). 
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Our planet experiences significant cooling due to snow, and it gets affected the most due to solar radiation 

and dissipating energy of the snowmelt in summers (Shi & Dozier, 2000). An essential component of the 

Himalayan hydrological system is seasonal snow which gives water to billions of people and is a major source 

of generation of hydroelectricity south Asian region(Smith & Bookhagen, 2018), but due to lack of high-

altitude measurements makes it difficult to assess and anticipate water supply in this region (Kirkham et al., 

2019). The study of SD and SWE can play a major role in forecasting yearly water supplies, flood prediction, 

and general climate research (USDA Natural Resources Conservation Service, 2021). Studies have shown 

that snowmelt has greater importance in the field of agriculture also, as hydrological runoff models include 

snowmelt as a parameter in different phases like accumulating snowpack, melt water distribution and its 

distribution into ground water (M. Kumar et al., 2013). On top of that, snow studies using Remote Sensing 

techniques brought a revolution in SD and SWE estimation domain (Dietz et al., 2012). In recent times 

when a lot of satellites are capturing images on the different electromagnetic spectrum (like radar and optical) 

with a great temporal resolution, image fusion techniques can be very helpful for getting more information 

about a particular point of view and interpretation of it (S. C. Kulkarni & Rege, 2020). Grain size, impurity, 

and age of the snow can be obtained from visible wavelengths due to the high proportion of radiation 

coming from these wavelengths (Winther et al., 1999).  

 

As there are so many difficulties on irregular terrains to get ground based in-situ measurements for SD and 

SWE, the combination of remote sensing techniques and ground measurement has widely been used to 

enhance the quality of data snow physical parameters in sample space and time domains. Snow parameters 

over extensively on-ground regions (Takala et al., 2011). Sensors which are widely used in studies of snow, 

ice and glacier like cryospheric studies generally are LiDAR (Light Detection and Ranging) and SAR 

followed by Passive Microwave (PMW) remote sensing (Deems et al., 2013; Leinss et al., 2014; Tedesco & 

Jeyaratnam, 2016). However, there is one drawback of LiDAR is that it can only use to determine the SD 

and cannot be used to measure other snow physical parameters like Snow grain size, snow wetness and 

snow density. Adding to that, cost to operate LiDAR is significantly higher as compared to microwave and 

other optical remote sensing sensors and it is dependent on weather conditions unlike microwave sensors 

(Deems et al., 2013). To overcome come this, space borne SAR, PMW and other optical remote sensing 

sensors which are globally available, PMW and SAR sensors have additional edge for cloud insensitivity, 

operability during night-time and that is why these both sensors are widely used in the measurement of snow 

physical parameters at good spatial and temporal resolution (Moreira et al., 2013; Thakur et al., 2012). 

 

First, discussion of snow cover monitoring using SAR was happened in 1977 (Ulaby et al., 1977) where 

backscattering coefficient for snow was measured and frequencies, layers, and polarisations was used for the 

modelling of the same also (Zuniga et al., 1979). It has been seen that Ku-band, which having high frequency 

or frequencies which higher than this show high relation with SD and SWE for complex snow cover like 

standing or dry snow (Yueh et al., 2009) whereas X-band, which is low frequency microwave band or below 

than this can penetrate through this complex snow till the ground surface or soil which is underneath the 

frozen ground and it reflects as the radar backscatter signal. If it is the case of moist snow, which a 

transitional state of dry and wet snow, and wet snow itself, the scattering occurs from snow surface for wet 

snow and snow volume for moist snow because of water presence in snow particle. Water modifies the 

dielectric properties of snow as it has high dielectric constant itself and radar pulses’ capacity of snow 

penetration also decreases (Abe et al., 1990). Typically, a snow-covered area’s backscattering mechanism can 

be conceptualized from Figure 1-1. Different SAR techniques like InSAR and PolSAR which works on 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microwave-remote-sensing
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different principles have developed the methods is to utilize the target echoes which are received from 

snowpack created various applications for cryosphere-based microwave remote sensing. 

The core observation of PMW remote sensing with snow is that microwave radiation emitted from snow 

has strong relation with physical properties of snow, like stratification, grain size and snow density 

(Rosenfeld & Grody, 2000). Temperature Brightness (TB) of PMW data reflects information of scattering 

from snowpack like combined influence of liquid water content, particle size, snow density, and snow 

metamorphism along with dielectric properties of snowpack. Snow density, grain size, snow metamorphism 

and liquid water content along with dielectric properties of snow are the physical parameters of snow also 

their combination information can be obtained from the scattering value of PMW Temperature Brightness  

(TB) values as it is directly proportional to them. Snow physical parameters shows positive correlation with 

microwave radiation scattering but when airborne microwave sensors come into play, it shows a negative 

correlation with snow physical properties (Gan et al., 2013). Additionally, using daily ground-based snow 

depth data, it was discovered that snow density had a positive and negative relationship with latitude and 

elevation, respectively (X. Zhong et al., 2014). 

 

Many studies have shown that topographical factors also play very crucial role in distribution of snow and 

physical properties of snow (Gharaei-Manesh et al., 2016; Q. Li et al., 2019a; Smith & Bookhagen, 2018). 

Several products of snow cover which are derived from PMW remote sensing have been widely used in 

application of global and regional climate change and to validate many climate and hydrological models 

(Brown & Mote, 2009; Brown & Robinson, 2011). Biggest advantage of PMW remote sensing is that its In 

contrast to visible and thermal infrared bands, which are unable to offer dual polarisation data at different 

frequencies, radiation can interact with snowpack via clouds (C. Liu et al., 2020; Majumdar et al., 2019; 

Tedesco & Jeyaratnam, 2016). 

 

High reflectance and albedo of the snow in optical remote sensing range (0.350 to 1 μm) differs the snow 

from other majority of earth surfaces as reflectance from the snow is close to 100% (see Figure 1.2): It can 

also be said like that snow reflects back roughly whole the incident in optical wavelengths  specially those 

which are above 1 μm which also often referred as mid-infrared or ‘MIR’ in which snow’s reflectance from 

snow decreases significantly.  Snow is much less reflective that certain types of vegetation in these 

wavelengths.  Snowpack absorbs most of the radiation in such wavelengths. The difference between snow 

and other type of earth surfaces can be distinguished by such unique spectral characteristics of snow and 

remote sensing.  Snowpack can penetrate in microwave wavelengths ranges which also implied at different 

wavelengths with snow optical properties. Penetration of snowpack in optical rays is till only 50 centimetres 

Figure 1-1: Backscattering structure of snow in mountainous region conceptual diagram (Thakur et al., 2012) 
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in visible spectrum. On other hand, signal quickly absorbs the surface and reflectance in infrared wavelength 

and only top few millimetres of snow cover properties get reflected (Dumont & Gascoin, 2016). 

These methods can show potential for extensive studies in complex snow cover regions like the Himalayas, 

where debris and forest regions are present using advanced computation like ML and DL algorithms(Bair 

et al., 2018; Breiman, 2001; J. Liu et al., 2019; Xiao et al., 2018a; Yang et al., 2020). Machine-learning and 

deep-learning technology power many aspects of remote sensing: from target recognition to semantic 

segmentation to spatial-temporal prediction, and they are increasingly present in snow parameter estimation 

and retrieval for developing a novel by integrating remote sensing data with SD and snow density data, one 

can estimate SD and SWE by use of machine learning with SD and Snow density’s hundreds of field 

measurement. Many studies tell that snow physical parameters vary dramatically with spatial variability on a 

given date while estimating SWE (Avanzi et al., 2014; Broxton et al., 2019). 

1.3. Research Problem 

There are several products available online for SWE estimation in near real-time also, but each has its 

drawbacks. GlobSnow SWE product by the Finnish Meteorological Institute which gives monthly, but 

datasets are available only for the non-mountainous regions (Luojus et al., 2020) which will be not helpful 

for this area mentioned in this research. Similarly, Copernicus’ SWE product which is daily but only from 

35˚N to 85˚N (Takala et al., 2011), does not cover the above-mentioned study area to the full extent. Passive 

microwave observations (M. J. Brodzik, 2016) are generally not considered mountains because of coarse 

(~25km) resolution, and they are not able to do observation in deep snow like more than a meter (Smith & 

Bookhagen, 2018). In optical satellite images, it is difficult to distinguish between cloud and cloud like snwo 

deposits as both have a alike magnitude of spectral reflectance in the visible and near-infrared ranges 

(Kokhanovsky et al., 2018; Winther et al., 1999). Fusion of Radar and optical sensors for snow studies can 

affect spectral (Zhu et al., 2021) and temporal (Snapir et al., 2019) resolution which will be a hindrance to 

obtaining optimal results for SD and SWE estimations. The high-resolution characteristics of the sensor 

provide favourable conditions for the analysis the snow cover area related research. Nevertheless, having 

the similar reflectance spectrum characteristics of snow and cloud, optical remote-sensing monitoring of 

Figure 1-2: Diffuse reflectance properties of snow and soil in several 
wavelengths of Electromagnetic waves (Dumont & Gascoin, 2016) 
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snow cover is greatly limited by weather conditions. Simultaneously, snow depth is hardly detected by optical 

sensors. Passive microwave can penetrate cloud layers for all-weather work and achieve the parameter of 

snow depth through the surface based on the sensitivity of different snow frequency. The model of 

retrieving snow depth from PMW data has created from simple linear regression to non-linear models 

considering complex meteorological and geographical factors. However, the SD 10 to 25km of spatial 

resolution is not suitable in areas like arid and semi-arid alpine region where the vertical drop is extremely 

significant. In practical application, snow depth mapping with higher spatial resolution is more useful for 

regional snow disaster evaluation and hydrological model establishment. Recent studies have demonstrated 

that higher snow depth mapping can be developed based on high-resolution geographic and meteorological 

data, together with downscaling microwave data or using active microwave sensors like SAR data can be 

used (L. Zhu et al., 2021a). But long repeat time along with shadowing and layover makes SAR studies 

difficult as regions remains unobserved. Creating InSAR and PolSAR results for large study is area is also 

difficult (Moreira et al., 2013).                                                   

1.4. Thesis Outline 

 

This report has majorly been divided into 8 chapters and each chapter consists of several sub-chapters. 

Chapter 1 talks about introductory discussion followed by research identification and objectives of the thesis 

in Chapter 2. In Chapter 3, state of the start of different microwave (both passive and SAR) and optical 

remote sensing sensors in application of snow cover, SD and SWE has been discussed along with detailed 

physics behind the snow. Thereafter, study area, data materials and several tools has been discussed in 

Chapter 4. From Chapter 5 onwards the research methods that have been implemented in this thesis has 

been.  Results has been included in Chapter 6 and in detailed discussion with each objective, sub-objectives 

and research questions has been mentioned in Chapter 7. In the last, conclusions and recommendation for 

the thesis work has been covered in Chapter 8.  Appendices has been added for some additional information 

about Sensors and outputs generated in this thesis.   
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2.  RESEARCH IDENTIFICATION 

2.1. General Objective 

 

This research will be focussed on many objectives: 

 

1. Feature Extraction using radar and optical data for SD and SWE applications. 

2. To develop a machine learning-based model which can estimate SD and SWE based on the features 

extracted from multi-sensor data. 

3. To estimate SD and SWE at efficient resolution using features obtained from the fusion of high-

resolution multi-sensor data. 

2.2. Sub Objectives 

 

1. To extract the different types of features using different multi-sensor data for SD and SWE 

estimation 

2. To find an optimal downscaling technique for the fusion of extracted features from multi-sensor 

data.  

3. To create a generalized model based on features extracted from the collection of datasets and 

implement a machine learning model for SD and SWE estimation 

4. To validate the model using ground observation data 

2.3. Research Questions 

 

The following research questions will be addressed- 

 

1. Referring to sub-objectives 1: 

a) What are input optimal features that can be obtained from multi-sensor data? 

b) What are the useful SAR modalities (i.e., SAR, PolSAR, InSAR) for optimal feature extraction? 

2. Referring to sub-objective 2: 

a) Which downscaling technique should implement to get SD and SWE at an efficient resolution? 

b) What optimal resolution can be obtained by the fusion of multi-sensor data? 

3. Referring to sub-objective 3: 

 a) How can input features extracted affect the training of the model from SVR? 

b) What are the optimal parameters of SVR to create a generalized model that gives results with 

minimum error? 

4. Referring to sub-objective 4: 

a) What is the performance of SVR based model, and how precisely can SD and SWE be         

estimated? 

2.4. Innovation 

 
With the successful completion of this research work is to create a model for estimation of SD and SWE in 
near-real time with accuracy nearer to the ground observations which can help in forecasting yearly water 
supplies, flood predictions, and general climate research.  



Snow Depth and SWE Estimation Using Multi-Sensor Microwave and Optical Remote Sensing Time Series Data for Indian Himalayas 

7 

3. LITERATURE REVIEW 

This chapter deals with state-of-the-art of PMW, SAR, and optical sensors and approaches in the context 

of cryosphere research with particular emphasis on SD and SWE. At first, there will be a general overview 

of the electromagnetic (EM) properties of snow is provided in section 3.1 for coherently guiding the reader 

through this chapter, followed by climatological and topographical effects on Snow has been discussed in 

section 3.2. Thereafter, an in-depth discussion is put forward about microwave and optical remote sensing 

specific literatures concerning the estimation of SD and SWE in section 3.3. Fusion of multiple sensors 

datasets for estimation of SD and SWE applications has been discussion in section 3.5. In the last, 

downscaling of coarse resolution data of SD and SWE has been discussion in section 3.6 

3.1. Electromagnetic Properties of Snow 

Most remote sensing-based applications  are built upon the theories of the EM wave effects and matter, 

with the exceptions being those which rely on gravimetric measurements (Tedesco & Jeyaratnam, 2016). 

The characteristics of snow in the microwave and optical(visible/near-infrared) regions are briefly reviewed 

in this section. Noted that since use of multi-sensors datasets is primary topic of concern in this thesis, the 

relevant microwave and multi-sensors datasets are succinctly mentioned along with some other 

climatological and topographical datasets . 

3.1.1. Snow Reflectance in the Visible/Near-Infrared and Thermal-Infrared Regions 

Freshly fallen snow seems  brighter to human’s eye as compared to the metamorphic snow such as firn and 

depth hoar. This is due to because flat spectral reflectance has high values across the entire visible EM 

spectrum (Figure 2.1). Moreover, the spectral reflectance values are indirectly proportional to the grain size 

of ice or snow. In essence, with having the least grain size, fresh snow exhibits the highest albedo (sometimes 

more than 90%) whereas for metamorphosed and dirty snow it is usually in the range of 20- 40%. 

Additionally, the snowpack's water content is liquid indirectly affects the albedo as it results in grain size 

growth and subsequent recrystallisation and metamorphosis (Tedesco & Jeyaratnam, 2016).  

Figure 3-1: Spectral reflectance curve in the high frequency ranges for 
different snow and ice surfaces. Adapted from (Dumont & Gascoin, 

2016) 
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Figure 2.1 shows the reflectance peaks occur between 400 and 600 nm (visible portion) and close to 800 nm 

in the near infrared (NIR). However, in the thermal infrared (3 µm – 100 µm) and higher wavelength regions 

of the EM spectrum, the snow reflectance is quite low. Also, the thermal emissivity of snow lies in the range 

of 0.965 to 0.995 with the maximum being at 10 µm (Tedesco & Jeyaratnam, 2016). 

3.1.2. Microwave Region 

Microwaves play a substantial role in the cryosphere research domain because they can pass through the 

Earth’s atmosphere almost without any obstruction and can significantly interact with the snowpack volume. 

Due to the porous structure of snow, which in effect, is composed of three material phases— air, ice and 

water, the interaction of microwaves occurs with all these constituent phases (Leinss et al., 2014; Petrenko 

& Whitworth, 2002). Essentially, the microscopic structure of snow can be characterised based on the 

microwave wavelength, for which the dielectric properties of air, ice and water need to be considered along 

with other features of the snow medium (Leinss et al., 2014). 

 

Dielectric Properties of Air, Ice and Water 

Due to the significant water vapour content in the atmosphere, the microwave absorption owing to the 

water vapour saturated air in a snowpack of few meters’ depth is negligible. Accordingly, the relative 

permittivity of water vapour saturated air in snow (𝜖𝑎𝑖𝑟) has been calculated to be about 1.00059 (Bryan & 

Sanders, 1928) 

 

In the case of ice, a solid-state body, as indicated in (1), complex permittivity’ is quite small and hence, radio 

waves below less 1 GHz EM wave (which are radiowaves) have large penetration, from several hundred 

metres to even kilometres. However, with higher the frequency, the radio wave's penetration capacity 

declines (about 1 m at 20 GHz) (Warren & Brandt, 2008). It has also been found that with increasing 

temperature, there is a slight increase in both imagery and real portion of the dielectric permittivity (Matzler 

& Wegmuller, 1987). Furthermore, this real part (ℜ(𝜖𝑖𝑐𝑒) = 3.179) between 10 MHz and 100 GHz exhibits 

essentially no frequency dependency, and for measuring seasonal snow properties using microwave remote 

sensing, the imaginary part can be neglected (Bohleber et al., 2012; Leinss et al., 2014; Warren & Brandt, 

2008). 

 

𝜖𝑖𝑐𝑒  =  𝑅(𝜖𝑖𝑐𝑒) −  𝑗ℑ(𝜖𝑖𝑐𝑒)   (1) 

where, 𝜖𝑖𝑐𝑒, 𝑅(𝜖𝑖𝑐𝑒), and ℑ(𝜖𝑖𝑐𝑒) are the complex permittivity, relative permittivity (based on vacuum as 

unity) and the relative loss factor of ice respectively with 𝑗 being the imaginary unit, and the negative sign is 

appearing as snow is a lossy dielectric medium (Evans, 2016). 

 

Liquid water, on the other hand, is responsible for strong microwave absorption in snow and Debye 

relaxation peak calculates its relative permittivity. For water at 0°C, this peak is located at approximately 10 

GHz, i.e., at the centre of the radio window. As a result, the relative permittivity (𝜖𝑤𝑎𝑡𝑒𝑟 ) varies greatly with 

the change in microwave frequencies, from 𝜖𝑤𝑎𝑡𝑒𝑟 < 5 (about 100 GHz) to 𝜖𝑤𝑎𝑡𝑒𝑟 ≈ 87 (below 10 GHz) 

(Buchner et al., 1999; Ellison et al., 1996). 

 

Spatial Distribution and Length Scales of Snow 

The three constituent phases of snow (air, ice, and water) exhibit spatial distribution across many length 

scales, the smallest being the crystal edges of dendritic snow crystals having length scales in the order of 

micrometres or below (Leinss et al., 2014).While single ice grains in the snowpack display length scales in 

the range of a few tens of micrometres to a few millimetres, the depth of an entire snowpack can vary from 

meters to several kilometres and is strongly dependent on the topography (Fassnacht & Deems, 2006; Ma 

& Tzler, 2002; Sturm & Benson, 2004). Such multi-scale variation of the snow properties is primarily 

governed by the snow accumulation, metamorphosis, and ablation processes (Fassnacht & Deems, 
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2006).Hence, to understand and describe the snow and microwave interactions, all the relevant scales need 

to be assessed. In fact, for remote sensing systems, it is actually the resolution of the observing sensor that 

defines these length scales (Leinss et al., 2014). 

 

 

Snow as a Homogeneous and Effective Medium 

AS SD  is much smaller than the incident microwave wavelength (𝜆0), then the snowpack can be modelled 

as a non-scattering homogeneous medium having an effective (or complex) permittivity 𝜖𝑠𝑛𝑜𝑤. In such a 

case, the interference pattern resulting from the whole group of scatterers (each having length 𝑑) present in 

a cube of length 𝜆0 needs to be considered to theoretically understand this non-scattering mechanism. Since 

𝑑 ≪ 𝜆0, the scattering characteristics of all the (𝜆0/𝑑) scatterers is shown as Rayleigh scattering. A more 

detailed description in this regard is provided by (Leinss et al., 2014). 

 

Snow as a Heterogeneous Medium 

Snow can also act as a heterogeneous medium composed of small (𝜆0 ≈ 10𝑑) or large (𝜆0 ≈ 𝑑) ice grains. 

For both these scenarios, the idea that the medium isn't dispersing does not apply, therefore scattering 

effects must be considered (Leinss et al., 2014). 

 

In the first case, the Rayleigh scattering can again be applied to describe the scattering characteristics of the 

medium. The relatively larger ice grains scatter the microwave radiation more strongly owing to the higher 

dependence on the radar cross-section. This eventually leads to volume scattering which takes place because 

of the constructive interference in all directions. Thus, the ice grain size is a significant factor for the 

occurrence of volume scattering within the snowpack (Tsang et al., 2007). 

 

when the wavelength and the size of the ice grain match (for frequencies higher than 100 GHz), Mie 

scattering is used to describe the scattering mechanism instead of Rayleigh scattering. However, the incident 

wave's propagation direction and coherence cannot be determined because of multiple scattering and as 

such are entirely lost (M. Hallikainen et al., 1987; Tsang et al., 2007). 

 

Snow Anisotropy 

After snowfall, fresh snow (after accumulation) exhibits an isotropic random structure containing inclusions 

of ice and snow that are X-band wavelength smaller. In the following steps, the weight of the fresh snow 

settles and compresses it. As a result, the previous randomly oriented microstructure gradually transforms 

into an anisotropic medium consisting of horizontally aligned snow particles. Eventually, these horizontally 

shaped particles undergo further metamorphosis to form isotropic structures, and finally, weeks later height 

hoar ( which come under the snowpac) plus firn (granular form of snow) are formed which display vertically 

aligned structures.  

Figure 3-2: Snow metamorphism steps. (a) Random (b) Horizontal structures (c) 
Isotropic (d) Vertical Structures. Adapted from (Leinss et al., 2014) 
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The entire chain of processes that govern this snow metamorphosis process has been experimentally 

evaluated using X-ray computer tomography (CT) scans (Riche et al., 2013). A simplistic conceptual diagram 

is provided (Figure 3-2) to understand this transformation process clearly. 

 

Snow as a Multilayered Structure 

A snowpack is formed from layers of snow that have accumulated over time. So, when the microwave 

interaction of snow is concerned, the respective measurements need to be conducted for different layers 

displaying varying physical properties of snow and consequently, different refractive indices (Leinss et al., 

2014). In this case, multilayer and multiple-scattering radiative transfer models have been applied for 

obtaining reliable simulation results related to snow microwave emission and backscattering (Mätzler & 

Wiesmann, 1999; Picard, Sandells, & Löwe, 2018; Royer et al., 2017; Tuzet et al., 2017). 

 

Speckle Formation by the Snowpack 

Although plane wavefronts propagating through homogeneous media are not distorted, in the context of 

snow as an effective homogeneous medium, it has been observed that the wavefronts get significantly 

deteriorated due to the snow-ground surface and snow-air surface scatterings (Figure 1). These plane 

wavefronts are also affected by the varying densities and volume scattering within a snowpack. In actuality, 

the interference of these warped wavefronts causes a speckle, which is an intensity pattern with a randomly 

distributed intensity which is a common phenomenon for all scattering surfaces (particularly the rough ones) 

which interact with coherent EM waves such as SAR and LiDAR (Goodman, 2007; Leinss, 2015). Due to 

the inherently spatial nature of speckle, the backscattered signal undergoes heavy spatial modulation, and as 

a result, suitable spatial averaging is an essential factor that needs to be incorporated for obtaining statistically 

significant measurements. Moreover, for snow related studies which rely on the phase information of the 

backscattered signal, large temporal changes in the snow surface (caused by wind drift, snow depth and 

density variations) lead to strong decorrelations in the phase and the speckle patterns, thereby posing 

difficulty in obtaining results with sufficient quality (Leinss, 2015). 

3.2. Climatological and Topographical Effects on Snow 

The three important parameters which describes seasonal snow cover are SD, SWE and snow density, and 

the evaluation of water resources, surface energy balances, various hydrologic processes, and earth's 

ecosystems are all significantly impacted by these variables(X. Zhong et al., 2018).  These parameters pf 

snow cover get effected by topography of the region also. Topographical parameters like elevation, aspect, 

slope and vegetation cover correlates highly with  snow cover spatial resolution. For example, in-situ data  in 

British Columbia, Canada affects snow cover from 80%-90% . Similar study in in Swiss Alps shows that SD 

increases with increase in elevation to certain altitude, after that it decreases at the topmost elevations 

(Grünewald et al., 2014). ( Rees et al., (2014) also mentioned that terrain strongly correlates with SD and 

SWE  in the Daring Lake area (Canada).  

 

Additionally, vegetation has an impact on where snow covers the ground. (Kuusisto, 1984) observed that 

the most snow was accumulated in exposed places, close to forest borders, and in sparse woodlands within 

of forests. Zhong et al. (2014) also found that forests have snow densities 8%–13% lower than open fields. 

A major contributing factor to these lower accumulations in forests is the canopy's ability to intercept snow 

(Faria et al., 2000; Winkler et al., 2005). There is a wide range of variation in the distribution of SD in 

mountains, which is heavily influenced by meteorological and topographic factors (Balk & Elder, 2000; 

Elder & Dozier, 2000; Erickson et al., 2005; Pflug & Lundquist, 2020).  

 



Snow Depth and SWE Estimation Using Multi-Sensor Microwave and Optical Remote Sensing Time Series Data for Indian Himalayas 

11 

3.2.1. Topographical effect on snow property distributions 

Numerous studies discovered that the four topographic factors of height, slope, aspect, and maximum 

upwind slope significantly and consistently affected the  SD distribution across time, which is similar to 

other studies (M. Kumar et al., 2013; Winstral & Marks, 2002). As a proxy for solar radiation (Elder et al., 

n.d.; McClung & Schaerer, 2006) and northness, the slope parameter has been found to account for a 

considerable portion of the snow distribution in steep terrain (Fassnacht & Deems, 2006). The most 

important factor influencing the distribution of snow depth in this investigation was slope. Elevation can 

be very important for large scale of data (Fassnacht et al., 2003) and has been shown high correlation with 

flat and forested terrain (Fassnacht et al., 2018). It has been known that elevation and slope are correlated 

hence, slope also affects SD and SWE a lot due to its high feature importance towards it (L. Zhu et al., 

2021a).  

 

Studies also been shown that SD gets a lot affected by elevation and latitude. There is an increase in SWE 

also has been observed due to latitude and elevation  Hultstrand et al., 2022; X. Y. Zhong et al., 2021) 

 

3.2.2. Land Cover influence on snow property distributions 

The scattering and attenuation degree of microwave emission energy of various land cover are different, 

which is a significant factor for retrieving  SD. A huge difference of polarization between snow cover and 

the bare surface, and the horizontal polarization is much smaller than the radiation BT of vertical 

polarization. AS SD increases, the polarization effect of microwave radiation enhanced, the dual polarization 

BT of different frequencies tends to be consistent and there is free snow cover. In arid and semi-arid regions, 

water, frozen soil and cold desert will be misjudged as snow cover due to the similar microwave radiation 

characteristics. Snow cover should be accurately distinguished from other land covers before retrieving snow 

depth. 

 

The radiation BT of snow cover in the high-frequency channel decrease obviously. Thus, the BTD between 

high and low frequency channels is used as scattering index, its change and threshold value are used as a 

characteristic index in retrieval algorithm. In the actual snow depth microwave radiation modelling, the 

influence of surface roughness (high mountain, hilly, flat, etc.) and land cover parameters (glacier, vegetation, 

forest, desert, desert, etc.) should be considered. Moreover, microwave radiation can penetrate snow and 

detect radiation from the surface beneath, which shows as the detection results are affected by the volume 

scattering caused by the difference of soil physical properties in vertical direction. Therefore, the natural 

environmental differences of snowfields must be considered comprehensively in snow depth retrieval. 

(Deronde et al., 2014; Faria et al., 2000; Salomonson & Appel, 2004; Yu et al., 2012; L. Zhu et al., 2021a) 

3.2.3. Effect of Climatological on snow property distributions 

 

Due to temperature changes or an influx of recently fallen snow, SD and SWE might vary significantly 

between successive days (Hultstrand et al., 2022). Changes in snow cover has seen to be largely governed 

by temperature. Both SWE and SCE was strongly correlated with temperature in Yukon basin. During melt 

season, both SWE and SCE decreased during a period of temperatures around 0 °C and increased in fall 

when temperatures again were around 0 °C (Q. Li et al., 2019b).  

 

Azmat et al. (2017) found a correlation between temperature increase (decrease) and SCA decrease (increase) 

and hence a streamflow increase (decrease). The strongest correlations were found during pre-monsoon or 

snowmelt season. They furthermore saw an inverse correlation between precipitation and SCA during pre-

monsoon and monsoon season, but a positive correlation during the winter season. The correlation was 

stronger for the higher elevation zones. Temperature was also seen to control SCA varies in the basin of 
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Gilgit River in the western part of Himalayas, with snowmelt as well as subsequent increase in streamflow 

because of high temperatures, and low temperatures resulting in delayed snowmelt (Tahir et al., 2016). 

 

3.3. Estimation of Physical Snowpack Parameters using microwave and optical sensors 

3.3.1. SD Measurement 

Snow depth measurement is still a challenging topic in the remote sensing domain due to numerous 

uncertainty sources such as the topography induced snow density and microstructure variations (Leinss et 

al., 2014). However, significant efforts have been made to minimise these uncertainties, thereby achieving 

sufficiently accurate site-specific SD results. In the context of SD retrieval using SAR, the research works 

have mainly emphasised on estimating dry snow depth (DSD) (Esmaeily-Gazkohani, Granberg, & Gwyn, 

2010; Li et al., 2017; Liu et al., 2017), however, there have been recent studies on fresh and wet snow depth 

measurements (Leinss et al., 2018, 2014). Additionally, the well-known PolInSAR based tree height inversion 

algorithms are also applicable for SSD estimation (Leinss et al., 2014). 

 

The regular Sentinel-1 C-band illumination of the earth's surface by the constellation allows scientists to 

quantify backscatter in both vertical-vertical (vv) and vertical-horizontal (vh) or,  co-polarization and cross-

polarization, transmit-receive, respectively. A four-component model can be used to approximate the total 

backscatter (σ𝑝𝑞
𝑡𝑜𝑡) for transfer signal snowfall with no living things in it (Ulaby et al., 1977): 

                                  σ𝑝𝑞
𝑡𝑜𝑡 =   σ𝑝𝑞

𝑝𝑞

𝑎𝑖𝑟−𝑠𝑛𝑜𝑤 +  σ𝑝𝑞
𝑠𝑛𝑜𝑤𝑣𝑜𝑙 + 𝑒(−2𝜏/ cos 𝜃) ∙ σ𝑝𝑞

𝑔𝑟𝑛𝑑
  (2) 

 

with σ𝑝𝑞

𝑝𝑞

𝑎𝑖𝑟−𝑠𝑛𝑜𝑤the backscatter from the air-snow interface σ𝑝𝑞
𝑠𝑛𝑜𝑤𝑣𝑜𝑙, the ground's higher-order interactions 

with the snow volume, as well as the snow volume's backscatter, and backscatter from the ground 

σ𝑝𝑞
𝑠𝑛𝑜𝑤𝑣𝑜𝑙−𝑔𝑟𝑛𝑑

 , all attenuated by the snowpack through e(−2τp/cosθ). The optical snow thickness (τp) and 

radar incident angle (θ) both affect attenuation levels. Frequently, and, σ𝑝𝑞
𝑎𝑖𝑟−𝑠𝑛𝑜𝑤 are disregarded (J. Zhu et 

al., 2018)and thus not further considered.  

Due to dry snow's limited vv-polarization at C-band absorption or scattering, the co-polarized, 𝜎𝑣𝑣
0 . 

observations exhibit little fluctuation during the winter. The snow's depletion and melting over spring, 

however, is shown to cause a dramatic (~5 dB) drop in 𝜎𝑣𝑣
0  . This supports earlier research showing the 

substantial signal attenuation and reflection caused by wet snow as well as dry snow (Nagler et al., 2016; Shi 

& Dozier, 2000). Furthermore, it confirms past findings that snowmelt mapping may be accomplished using 

C-band vv-polarized data (Tsai et al., 2019). Wet SCA reduces surface area, which increases absorption, is 

what causes the increase in, VV polarization. near the end of the snowmelt season in late spring. (Snapir et 

al., 2019). Surface thawing and flora greening up in places without snow can both enhance dispersion 

simultaneously (Snapir et al., 2019). The snowpack only attenuates the fourth part in equation (2), the 

backscatter from the ground surface, when the snow is wet, dominates the evolution of 𝜎𝑣𝑣
0 . during the 

snow season. The second term represents the scattering in vv-polarization that takes place inside a dry snow 

volume., but it is typically too little to make a difference at C-band. 

 

Sentinel-1's cross-polarized 𝜎𝑣ℎ
0  measurements gradually rise as (dry) snow falls over the winter. This 

indicates a rising depolarization of the entering v-polarized signal due to inhomogeneities in the snow 

volume, Ice crystal bonds or clusters, as well as anisotropic or higher sampling on ice crystals, are all 

examples of scattering that is not uniform. The chances of scattering grow as the snowpack's thickness 

increases because it lengthens the radar signal's travel across it (Moreira et al., 2013; Ulaby et al., 1977). It 

should be considered that in theory, the backscatter in co-polarization is likewise impacted by this 

anisotropic and multiple scattering. (𝜎𝑣𝑣
0 ), but with a much smaller impact than the ground surface. We 

postulate that the significant decrease in 𝜎𝑣ℎ
0   snow's ability to absorb and reflect signals during ablation is a 



Snow Depth and SWE Estimation Using Multi-Sensor Microwave and Optical Remote Sensing Time Series Data for Indian Himalayas 

13 

result of the snow's moisture as well as a reduction in snow volume dispersion in a shallowing snowpack 

(Leinss et al., 2014; H. Li et al., 2017; Majumdar et al., 2019; Thakur et al., 2017). The second and fourth 

terms in Eq. (2) are both necessary to explain the changes in 𝜎𝑣ℎ
0  (Snapir et al., 2019). 

 

In general, there is a larger link between the cross-polarization ratio, 𝜎𝑣ℎ
0 /𝜎𝑣𝑣

0 . (in linear scale, converted to 

dB) and snow depth than , 𝜎𝑣ℎ
0 . By using the ratio, one can somewhat offset the impacts of temporal changes 

in the terrain, the vegetation, and the snowpack, which have an impact on both co- and cross-polarization. 

During the fall and winter, 𝜎𝑣ℎ
0 /𝜎𝑣𝑣

0 . rises as a result of the increased volume scattering 𝜎𝑣ℎ
0 . for essentially 

constant surface scattering 𝜎𝑣𝑣
0 . The ratio falls during spring melt as a result of the relative larger drop of , 

𝜎𝑣ℎ
0  in comparison to 𝜎𝑣𝑣

0 . As a result, moist snow's sensitivity to snow depth is significantly less definite. 

Variations in , 𝜎𝑣ℎ
0 /𝜎𝑣𝑣

0  may result from strong melt events with large liquid water volumes. since moist 

snow layers more powerfully reflect and absorb the signal(Snapir et al., 2019). Although it may be less 

noteworthy at C-band than at higher frequencies and every once in a while be remedied by freeze thaw of 

snow prior to actually Sentinel-1's early hours (6 a.m.) and late in the evening (6 p.m.) overpass times, this 

impact is expected to have a puzzling effect on the C-band sensitivity to SD. Similar to how recurrent melt-

refreeze cycles can change the snowpack's microstructure and stratigraphy, they can have an effect on 

backscatter signals. The major objective of this work is to map the SD in dry snow. However, the 

effectiveness of the retrievals over the length of the whole snow season and wet snow conditions have both 

been examined (Thakur et al., 2017). 

 

The cross-polarization ratio ( 𝜎𝑣ℎ
0 /𝜎𝑣𝑣

0 ; in dB) data taken by Sentinel-1 are used as the basis for the SD (m) 

retrieval procedure. Additionally, it incorporates 1 km2 snow cover (SC; 1 if present, 0 if absent) from 

MODIS as well as fractional forest cover (of evergreen species) from the global consensus land cover dataset 

(Dumont & Gascoin, 2016). First, for each location I and time step t, a change detection index (hereinafter 

referred to as snow index, SI; in dB) is calculated (Ulaby et al., 1977). This index connects freezing and 

melting of the snow with changes in time in Sentinel-1 𝜎𝑣ℎ
0 /𝜎𝑣𝑣

0 . 

 

Snow cover's microwave radiation properties resemble those of freezing ground, frigid deserts, and 

precipitation (Grody & Basist, 1996). Using a decision tree, Grody & Basist, (1996) were able to eliminate 

scattering signs from freezing ground, frigid deserts, and precipitation that could interfere with the accurate 

SCA identification (Table 3). We deleted the criteria that contained 85 GHz channels in order to fully utilise 

without an 85 GHz channel, SSMIS brightness temperature data is unavailable. (Che et al., 2008a). 
 

Table 3-1: Steps to differentiate between snow from precipitation, differentiate a cold desert from a frozen ground. 
K stands for Kelvin. 

Steps Conditions for SSM/I Conditions for SSMIS 

1. Scattering 
signature 

(𝑇𝑏19𝑉– 𝑇𝑏37𝑉)  >  0 𝐾 
or 

(𝑇𝑏22𝑉– 𝑇𝑏85𝑉)  >  0 𝐾 

(𝑇𝑏19𝑉– 𝑇𝑏37𝑉)  >  0 𝐾 

2. Precipitation 

𝑇𝑏22𝑉  ≥  259 𝐾 
or 

(254  ≤  𝑇𝑏22𝑉  ≤  258 𝐾 𝑎𝑛𝑑 (𝑇𝑏19𝑉– 𝑇𝑏37𝑉) 
≤  2 𝐾) 

𝑇𝑏22𝑉  ≥  259 𝐾 
or 

(254  ≤  𝑇𝑏22𝑉  ≤  258 𝐾 𝑎𝑛𝑑 (𝑇𝑏19𝑉– 𝑇𝑏37𝑉) 
≤  2 𝐾) 

3. Cold deserts 

(𝑇𝑏19𝑉– 𝑇𝑏19𝐻)  ≥  18 𝐾 
and 

(𝑇𝑏19𝑉– 𝑇𝑏37𝑉)  ≤  10 𝐾 
and 

(𝑇𝑏37𝑉– 𝑇𝑏85𝑉)  ≤  10 𝐾 

(𝑇𝑏19𝑉– 𝑇𝑏19𝐻)  ≥  18 𝐾 
and 

(𝑇𝑏19𝑉– 𝑇𝑏37𝑉)  ≤  10 𝐾 

4. Frozen ground (𝑇𝑏19𝑉– 𝑇𝑏19𝐻)  ≥  8 𝐾 (𝑇𝑏19 𝑉 − 𝑇𝑏19𝐻)  ≥  8 𝐾 
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Steps Conditions for SSM/I Conditions for SSMIS 

and 

(𝑇𝑏19 𝑉 −  𝑇𝑏3 7 𝑉)  ≤  2 𝐾 
and 

(𝑇𝑏22𝑉– 𝑇𝑏85𝑉)  ≤  6 𝐾 

and 

(𝑇𝑏19𝑉– 𝑇𝑏37𝑉)  ≤  2 𝐾 

 

Wet snow makes it difficult to utilizing microwave radiation, for estimation of SD and SWE. As the snow 

medium's liquid water concentration rises, volume scattering will be largely outweighed by microwave 

radiation absorption (M. Hallikainen et al., 1987). We have discovered that it is required to segregate In 

order to more accurately employ a snow-depth retrieval technique, PM data that evaluated how the 

snowpack disturbing wet or dry snow or melting of the snow. The SVR based SD retrieval method used 

several and wet and dry snow classification techniques has been used to remove dry snow from the total 

SCA (P. R. Singh & Gan, 2000; Walker & Goodison, 1993): 

      𝑇𝑏37𝑉 < 250𝐾    (3) 

𝑇𝑏19𝑉 − 𝑇𝑏37𝑉 < 9𝐾    (4) 

           𝑇𝑏37𝑉 − 𝑇𝑏37𝐻 < 250𝐾      (5)  

𝑃𝑓𝑎𝑐𝑡𝑜𝑟 =
 𝑇𝑏37𝑉− 𝑇𝑏37𝐻

𝑇𝑏37𝑉− 𝑇𝑏37𝐻
, 𝑃𝑓𝑎𝑐𝑡𝑜𝑟 > 0.026   (6) 

the variation in horizontal polarisation between the PMW TB values of 18 and 37GHz was used by (Chang 

et al., 1987) to build a method for passive remotely sensed of SD over snowfields that are generally uniform. 

Based on mathematical calculations and research, this algorithm 

𝑆𝐷 = 1.5 [𝑇𝑏18𝐻 − 𝑇𝑏37𝐻]    (7) 

In horizontal polarization, 𝑇𝑏18𝐻 and 𝑇𝑏37𝐻 are TBs at 18 and 37 GHz, respectively, and a method for 

passive remotely sensed of snow height over snowfields that are generally uniform. Info from of the snow 

volume dispersion is picked up at 37 GHz, while data from the surface of the ground the snow is 

incorporated at 18 GHz. Estimation of SD and SWE has been affected with snow volume r square value is 

has indeed been enchanced by field observations of the SD, is thus the fundamental concept of the spectral 

gradient approach.. 

 

The forest area proportion was taken into consideration here based on Reference (Foster et al., 1997a) 

findings regarding forest influence: 

𝑆𝐷 =
 𝑎[𝑇𝑏18𝐻− 𝑇𝑏37𝐻]

1−𝑓
    (8) 

where a is variable coefficient, while f is the tree cover area fraction. 

 

For SMMR data, the coefficient (slope) of the regression between is the the changes happens in regression 

line's standard deviation and the snow depth as determined by weather stations and the TB(18H) and 

TB(37H) values’ spectral gradient is 0.78 cm. For the SSMI TB data, the SMMR 18GHz channel was 

swapped out for the 19GHz channel. The findings indicate that the coefficients is 0.66 and the regression 

line's standard deviation is 5.99 cm. The changed algorithm is as follows: 
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𝑆𝐷 =
0.78[𝑇𝑏18𝐻− 𝑇𝑏37𝐻]

1−𝑓
     (7) 

      (for SMMR data from 1978 to 1987) 

𝑆𝐷 =
0.66[𝑇𝑏19𝐻− 𝑇𝑏37𝐻]

1−𝑓
    (8) 

      (for SMM/I data from 1987 to 2006) 

3.3.2. SWE Measurement 

 

The definition of SWE, which is essentially the how much snow weighs which is lying on the ground, may 

be defined as  product of SD (ΔZ𝑠𝑛𝑜𝑤) and snow density (ρ𝑠𝑛𝑜𝑤), as illustrated below equation: 

𝑆𝑊𝐸 = ⟨ρ𝑠𝑛𝑜𝑤⟩ΔZ𝑠𝑛𝑜𝑤    (9) 

 

Snow Density as a Governing Factor  

The microwave propagation speed depends on the dry snow density which again governs the backscatter 

signal delay particularly in the 10 MHz to 1 THz range (Leinss et al., 2015). As discussed earlier,  ℜ(ϵ𝑠𝑛𝑜𝑤) 

is also dependent on ρ𝑠𝑛𝑜𝑤 given by Eq. (9). Thus, precise estimated values of SD or SWE , the snow 

density have to be properly measured. In case of fresh snow, the snow-density lies in between 0.03 and 0.12 

g/cm3 , which then increases for vertical structures (depth hoar and firn) due to the occurrence of gradual 

snow metamorphosis (Judson & Doesken, 2000; Leinss et al., 2015; Roebber, Bruening, Schultz, & Cortinas, 

2003). As a result, ρ𝑠𝑛𝑜𝑤 = 0.5 g/cm3 is common for dry or standing snow prior to the onset of snow 

melting. However, the seasonal snow density (ρ𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) rarely exceeds 0.55 g/cm3 . Typically, 𝜌𝑠𝑛𝑜𝑤 = 

0.83 g/cm3 is observed for firn located deep underneath glaciers and ice sheets (Leinss et al., 2015). 

Moreover, the density of solid ice (ρ𝑖𝑐𝑒) has been experimentally found to be 0.917 g/cm3 (Spencer, Alley, 

& Creyts, 2001).  

 

Many studies have been shown a linear relationship for SD estimation between SD and TB value differences. 

This algorithm uses spectral polarisation difference (SPD) (Aschbacher & Rott, 1989; Chang et al., 1987; 

Foster et al., 1997b). The difference between TB values at frequencies like 19 GHz and 37 Ghz is used to 

compute the PMW TB difference. A drawback of such a linear method is that it loses a lot of accuracy after 

a certain depth. It should be mentioned that depending on the features of the area, the projected snow 

depth's accuracy varies substantially. A study done by (Davis et al., 1993) has shown linear relationship 

between TB difference values and SD in order to get around these limitations. They found that factors like 

grain size, density, etc. should be considered when estimating SD. According to Goita et al. (2003), the link 

between the two attributes (PMW TB difference and SD) varies according on the kind of flora and cover 

present in the region where the snow is found. By employing SSMI (Special Sensor Microwave/Imager) 

data and an artificial neural network (ANN) technique to predict the SD, (Tedesco et al., 2004a) tested their 

findings against an existing algorithm accuracy metrices like R2, MAE and RMSE. By using a fusion of 

dataset and machine learning model based on SVR for SSMI radar pictures, Zahir and Mahdi (2015) assessed 

the snow depth. As a result, an R-squared of 0.9 and an RMSE of 6.97 cm were obtained. In addition, Liang 

et al. (2015) combined SSMI data with the optical sensor of a MODIS image. Although there has been a lot 

of research employing microwaves, it  is deduced area covered under the sensor is small- and has corase 

temporal resolution. 

 

The issue stated as a restriction in microwave images can be resolved by using optical which can repeat the 

pas in good temporal resolution. The optical remote sensing sensor radiation from sun, however, only pierce 

a few inches of snow, unlike microwaves. As a result, the depth must be inferred. Snow is known to steadily 
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increase a surface's reflectivity up to a particular thickness. Baker et al., (1991) , as a result of the snow's 

ability to reflect light. By analysing the link between SD and fSCA which reflects some part of pixel that is 

covered in snow, Romanov & Tarpley, (2004) estimated the SD values with 30 cm arid, semi-arid regions. 

Some factor which affects SCF like forest cover fraction, was taken into consideration by Romanov & 

Tarpley, (2007) when estimating the SD in both a forest and non-forest regions. The estimated snow depth's 

validation result showed an RMSE of roughly 10 cm when applying the study's deduced empirical equation. 

Therefore, obtaining the SCF for each pixel unit is the most crucial step in the process of measuring snow 

depth using optical pictures. NDSI or NDVI could be used as independent variables in a quadratic equation 

to estimate the SCF, according to Salomonson & Appel, (2004) A technique of calculating the SCF using a 

straightforward equation with the reflectance of snow and land was proposed by Romanov et al. in 2003. 

Using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery, Salomonson & Appel, (2004) 

suggested an NDSI-based first-order equation and validated the outcomes of an empirically obtained 

equation. Lu et al., (2015) suggested utilising an estimating equation based on an exponential function and 

for each variable, SCF has been calculated such as NDSI, Ratio Snow Index (RSI), and Difference Snow 

Index (DSI).  The validation using Landsat 7 ETM+ revealed that the RSI estimation has the highest R-

square value (0.83). 

It has been found logical that the given equation in Kim, (2018) was able to calculate the SCF indirectly 

utilising an index that was connected with the SCF in order to gather information that is difficult to estimate. 

Existing formulae, however, have a drawback in that the SCF tends to be if the independent’s value is 

significant  is more than a predetermined value and underestimated if it is less than a predetermined value. 

Additionally, current formulae only take into account one element to estimate the SCF, despite the fact that 

the SCF changes with changes in other fcators.  

 

NDVI helps for determining the value of SCF which exhibits a value of at least 0.72 if the NDSI is larger 

than 0.68. Additionally, if the NDVI value is lesser than 0.06, the SCF It will at certainly have value 0.28 

based on the NDSI value as follows: 

 

Above list of equations are the outcomes of estimating the SCF using the deduced equations. As can be 

observed, the graph shapes of the equations based on linear and exponential functions are comparable, and 

the RMSE that was determined by confirming the two equations' estimates of SCF are also comparable.. 

Gaussian function-based equation was useful to determine SCF are superior to those obtained using the 

other equation. The two equations used in the prior investigation yielded an RMSE of 0.26, but the proposed 

equation used in this study yielded an RMSE of 0.24. This was considered to mean that while the proposed 

formula provides the best explanation for the general trend, the NDSI and NDVI's respective standard 

deviation (Kim, 2018). 

An exponential function has been devloped from the SD calculation equation because it is generally known 

that the SD increases as the SCF rises, an exponential function has the form of. As a result, employing the 

SCF, the SD may be calculated using the following equation. Because so much of the country is hilly, wherein 

snowfall of 10 cm or even more occurs, the Republic of Korea normally experiences less than 10 cm of 

snowfall, and visibility of snow is difficult because of fog, clouds, etc. Maximum permitted SD using below 

formulae is 6.97 metres: 

SD = 6.95 ∗ e0.67∗𝑆𝐶𝐹 − 1  (10) 
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SWE Estimation using Multiple Differential Interferograms 

 

Recently, a temporal integration-based approach incorporating a stack of differential interferograms have 

been developed by Leinss et al. (2015). Although limited to dry snow, it avoids the phase unwrapping 

problem (Chen & Zebker, 2002), reduces decorrelation and is insensitive to orbit and atmospheric 

disturbances. However, the prerequisites for applying this method include sufficiently high radar wavelength 

(results in negligible volume decorrelation) and a high temporal resolution (Leinss et al., 2015). Essentially, 

by summing up the absolute dry snow phase differences (𝜙𝑠𝑛𝑜𝑤
𝑢 ) obtained from a dense differential 

interferogram time-series, it is possible to isolate the phase fluctuations attributing to the temporal 

decorrelations, thereby improving the signal-to-noise ratio (SNR) (Leinss et al., 2015). Accordingly, the 

relation between this integrated or summed up phase (𝜙𝑠𝑛𝑜𝑤
𝑢 ) and the change in SWE (ΔSWE) from time 

𝑡𝑚 to 𝑡𝑠 (𝑚 and 𝑠 representing the master and slave images respectively) can be well approximated by Eq. 

(30). Moreover, the optimal value of the free parameter 𝜗 ≈ 1 maximum anticipated depends on snow 

density and the incidence angle (Leinss et al., 2015). 

 

ΔSWE = SWE(𝑡𝑠) − 𝑆𝑊𝐸(𝑡𝑚) =
λ0 Δ𝜙𝑠𝑛𝑜𝑤 

𝑢

2𝜋𝜃(1.59+𝜃
5
2)

    (11) 

Radar waves propagate differently with and without snow, as seen in Figure 3.3(a). The radar wave range 

for a stationary pixel is represented as ∆𝑅𝑠. without snow cover and ∆𝑅𝑎+∆𝑅𝑟 with snow-air contact’s 

refraction by radar beam causes snow to fall. The range discrepancy is depicted as 

∆𝑅 = ∆𝑅𝑠 − (∆𝑅𝑎 + ∆𝑅𝑟)    (12) 

The equation for the relationship is 𝜀𝑠 = 1 + 1.6𝜌 + 1.86𝜌3 , and the formula for the refraction index, 𝑛 , 

is 𝜀𝑠 =  𝑛2 (Mätzler, 1996) 

According to (12), the snow phase  𝜙𝑠𝑛𝑜𝑤, which can be derived as (Guneriussen et al., 2001; Rott et al., 

2004) 

Figure 3-3: (a) Geometry of radar wave in snow and (b) scattering mechanism in snowpack (surface scattering in air-
snow and snow-ground interface; volume scattering at snow grains within snowpack); (1) surface scattering at air-
snow interface; (2) surface scattering at the ground-snow interface; (3) volume scattering at snow grains within the 

snowpack 
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 𝜙𝑠𝑛𝑜𝑤 =  −
4𝜋

λ
𝑑𝑠 (𝑐𝑜𝑠𝜃𝑖 − √𝜀𝑠 − 𝑠𝑖𝑛𝑖

2)                                                                              

                           =  −
4𝜋

λ
𝑑𝑠(𝑐𝑜𝑠𝜃𝑖 − √1 + 1.6𝜌 + 1.86𝜌3 − 𝑠𝑖𝑛2𝜃𝑖)                      (13) 

Where, λ is the radar wavelength, 𝜃𝑖 is the incidence angle, 𝑑𝑠 is the snowpack depth, and 𝜀𝑠 is the snow's 

dielectric constant. 

And SWE, the mass of snow on the ground, is the volume of water that results from the total melting of a 

snowpack. It can be pictured as 

𝑆𝑊𝐸 =  ⟨ρ⟩d𝑠     (14) 

where, ⟨ρ⟩ is the average value of the snowpack's snow density. 

For snow densities between 0 and 0.5 g/cm3, the interferometric phase difference and SWE can be 

approximated linearly using the nominal Envisat ASAR incidence angle. (Guneriussen et al., 2001; Rott et 

al., 2004).  

𝜙𝑠𝑛𝑜𝑤 =  −
4𝜋

λ
0.87∆𝑆𝑊𝐸            (15) 

Equation (14) shows that there is a linear approximation between variations in SWE and the InSAR phase 

difference of dry snow, 𝜙𝑠𝑛𝑜𝑤 . Incidence angle 𝜃𝑖 and snow density ρ according to equations (13) and (15). 

In order to determine how these two variables, incident angle, I and snow density, would affect the phase 

difference acquired from InSAR measurement in the dry snow, a preliminary sensitivity analysis was created. 

The sensitivity of incident angle 𝜃𝑖 and snow density ρ  on the snow phase term 𝜙𝑠𝑛𝑜𝑤  can be determined 

from (13) using the law of error propagation by considering the partial derivatives:  

𝜕𝜙𝑠𝑛𝑜𝑤

𝜕𝜃𝑖
= −

4𝜋

λ
𝑑𝑠 (−𝑠𝑖𝑛𝜃𝑖 −

𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠𝜃𝑖

√1+1.6+1.86𝜌3−𝑠𝑖𝑛2𝜃𝑖
)                   (16) 

𝜕𝜙𝑠𝑛𝑜𝑤

𝜕𝜌  
=

4𝜋

λ
𝑑𝑠

0.8+2.79 𝜌2

√1+1.6+1.86𝜌3−𝑠𝑖𝑛2𝜃𝑖
              (17) 

  

Several combinations of these values were confirmed in equations (16) and (17) during the early sensitivity 

analysis. The mean snow density in the central Tianshan Mountains during a winter season (December to 

April of the following year) varied between 0.14 g/cm3 and 0.25 g/cm3, according to field measurement 

data. Additionally, the incident angle varies for each spaceborne sensor platform. Envisat ASAR IMS data 

with a nominal incident angle range of 19.2°-26.7° were used in this application. Additionally, RADARSAT-

1 and RADARSAT-2 are satellite data sources that are often utilised in InSAR measurement. They have 

pixel sizes that range from 3 to 100 m and incident angles that range from 20 to 49°. As seen from equation 

(13), the incidence angle is crucial to understanding the relationship (Esmaeily-Gazkohani et al., 2014). 

The following components make up the entire repeat-pass interferometric phase, assuming that there is 

coherence between the two SAR scans and synchronisation of snowfall or redistribution: 

𝜙 = 𝜙𝑓𝑙𝑎𝑡 + 𝜙𝑡𝑜𝑝𝑜 + 𝜙𝑠𝑛𝑜𝑤 + 𝜙𝑎𝑡𝑚 + 𝜙𝑛𝑜𝑖𝑠𝑒   (18) 
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where the phase discrepancies for flat earth and terrain, respectively, are caused by variations in the target's 

and satellite's distances. Phase noise is referred to 𝜙𝑛𝑜𝑖𝑠𝑒 . heterogeneous atmospheric (ionosphere and/or 

troposphere) disparities in air propagation. There is a discrepancy in the two-way propagation between both 

the snowpack as well as the surrounding air, or 𝜙𝑠𝑛𝑜𝑤 is caused by the radar wave's refraction in the dry 

snowpack (see 13). When these elements are dissociated from one another, the phase acquires significance 

and value. Therefore, once 𝜙𝑓𝑙𝑎𝑡 , 𝜙𝑡𝑜𝑝𝑜 , and 𝜙𝑎𝑡𝑚   have been eliminated, 𝜙𝑠𝑛𝑜𝑤   would be the only 

variable left to retrieval of the SD and SWE. 

As was mentioned in the preceding section, Dry snow's backscattering is governed by subsurface scattering 

just at snow-ground contact. The main factors that influence backscattering include the dielectric constant, 

the scattering surface's roughness, and other physical features. Temperature has little impact on the relative 

dielectric constant, which ranges from 2 to 4 (Ulaby et al., 1977). Since liquid water is present dielectric 

constant, even a small amount of it causes the soil's dielectric constant to rise significantly. Dielectric 

constant of soil could be greater than those of ice and dry materials in colder regions (M. T. Hallikainen et 

al., 1985; Liou, 1996) which suggests that some liquid water in the soil is still liquid and has not yet frozen. 

The soil temperature, total water content, and soil texture are the main factors that affect how much liquid 

water is present in frozen soil. The temperature is typically the most crucial element (X. Y. Zhong et al., 

2021).As a result, whenever the soil temperature is below zero degrees Celsius, given the high liquid water 

content of the soil, temperature changes have a disproportionately large impact on the dielectric constant. 

(Liou, 1996) 

According to research by Baghdadi et al., (1997), Bernier, (1999) and  Gauthier et al., (2001) the soil's 

dielectric constant fluctuates with soil temperature when it is below 0 °C, as well as the scattering just at 

snow-ground interface is sensitive to a soil's dielectric constant. The thermal resistance of snow influences 

the temperature of the underlying soil. These researchers created a method for calculating the SWE using 

only a few field snow observations and SAR data based on their findings. Instead of using just one snow 

image, a ratio image has been employed to reduce the effects of topography and speckle on the SAR images. 

The main loss mechanism for incident microwave radiation is volumetric scattering, and it is possible to 

empirically connect the TB of a certain frequencies or polarisation (H or V) to the SWE of a snowpacks. 

greater than 15 GHz [(Fierz et al., 2009; Gan et al., 2013). The National Snow and Ice Data Center (NSIDC)  

offers these passive microwave TB data in EASE Grid format at the University of Colorado Boulder. 

Equation was used to get the NSIDC's 1979–1987 SMMR SWE data (19), 

𝑆𝑊𝐸(𝑚𝑚) = 4.77 [𝑇𝑏18𝐻 −  𝑇𝑏37𝐻]     (19) 

Where TB18H and TB37H, which stand for the horizontally polarised TB at 18 and 37 GHz, respectively. 

From equation, the NSIDC’s SSMI SWE data for the years 1987 to 2007 were obtained (20) (Armstrong & 

Brodzik, 2002), 

𝑆𝑊𝐸(𝑚𝑚) = 4.77 [𝑇𝑏18𝐻 −  𝑇𝑏37𝐻 − 5]   (20) 

This differs only marginally from equation's formulation (19). Using land cover data, the SWE is adjusted 

for the quantity of surface forest cover per day (National Snow and Ice Data Center, 2016) 

𝑆𝑊𝐸(𝑚𝑚) =
𝑆𝑊𝐸

(1−𝐹𝑜𝑟𝑒𝑠𝑡%)
   (21) 
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3.4. Fusion of Optical and Microwave Remote Sensing Data 

The ability to integrate images from same sensor or from several sensors, as well as the availability of a 

variety of imaging systems, have improved the capacity for interpretation compared to the use of a single 

image, image fusion is finding more and more uses in remote sensing. The method is frequently used to 

merge optical images with various spatial resolutions (Carper et al., 1990; Chavez et al., 1991) as well as 

images containing a range of information contents from microwave as well as and optical sensors (Baronti 

et al., 2004; Gungor & Shan, 2012; Lee et al., 2005). In many applications, including such land cover 

mapping, aiming to increase's methodological and object visualisation (Haack et al., 2014) , urban area 

detection (Garzelli, 2004), and forest categorization (Pugh et al., 2004) mineral mapping (Ramadan et al., 

2006) optical-microwave image fusion work has been done previously . 

 

Because optical and microwave results have ability to complement one other, the combining of radar with 

optical data further improves the results' interpretability and dependability. While the shape, orientation, 

roughness, and water particles of bright objects on the surface of the earth are all highly sensitive to radar, 

optical data only captures the reflectance for ground cover inside the visible and near-infrared range (Pugh 

et al., 2004).  

3.5. Downscaling of Snow propertiers 

For hydrological and climatological forecasts, precise, current estimates of SD and SWE are essential due to 

the spatiotemporal implications of seasonal snow variations on environmental and socioeconomic 

processes. PMW remote sensing has been efficiently utilized , consistently, and affordably monitor SWE 

just at global to regional scale. However, because passive microwave observations have a limited spatial 

resolution, local scale estimations are vulnerable to significant inaccuracies (25 x 25 km). By using related 

auxiliary datasets with a finer spatial resolution, Grid datasets' spatial resolution can be increased by using 

regression downscaling methods (Margot Flemming, 2020; Walters et al., 2014; L. Zhu et al., 2021a). These 

methods have been effectively used in  multi-sensor datasets, such as estimations of soil moisture, but little 

research has been done on their use with datasets linked to snow (L. Zhu et al., 2021). 

3.6. Machine Learning for Snow properties 

 

Machine-learning and deep-learning technology power many aspects of remote sensing: from target 

recognition (Guo et al., 2019; Wu et al., 2019; F. Xu et al., 2019; Zhang et al., 2019) to semantic segmentation 

(Senthilnath et al., 2020; Y. Xu et al., 2018)] to spatial-temporal prediction (X. Chen et al., 2020), and they 

are increasingly present in snow parameter estimation and retrieval (Ahmad et al., 2019; de Gregorio et al., 

2019; Xue & Forman, 2015). Tedesco et al., (2004) constructed a neural network to estimate the SD and 

SWE, which showed the highest accuracy compared with the other four retrieval algorithms. By employing 

a neural network to calculate snow depth and SWE in the Samsami Basin, Iran, Tabari et al., (2010) came 

to a similar conclusion. Theoretically speaking, microwave BTD enhances with the increases of SD, while 

SD exceeds a defined limit (50 cm) there will be a large error in the estimation results. By learning and 

summing up a huge quantity of data, the neural network can solve a variety of complicated problems that 

arise in large-scale retrievals, such as non-linear modelling, classification, and association, and it does so 

without depending on knowledge of physical processes. In the geosciences, the support vector machines 

(SVM) are frequently employed to address nonlinear issues. Xue & Forman, (2015) reveals that SVM is more 

sensitive than the neural network in estimating snow parameters. It has been found that the results based 

on the SVM algorithm have better accuracy no matter in deep or shallow snow cover, forest coverage area, 

snow accumulation and melting period. Xiao et al., (2018b) used the support vector regression (SVR) 

algorithm to establish a snow depth retrieval model based on different vegetation types and different snow 

periods, showing better accuracy, and reducing "snow saturation effect". Machine learning and deep learning 
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technology can describe that the BTD and snow parameter correlation are nonlinear and overcome the 

limitations of a linear algorithm in different areas (Liang et al., 2015; Wu et al., 2019). Although the machine 

learning technologiy has shown a lot of usefulness in remote sensing field and high accuracy, there is no 

detailed snow physical model involved in the retrieval process (SUN et al., 2015) , thus the interpretability 

of the results is poor. 

 

The model of retrieving snow depth from microwave data has developed from simple linear regression to 

non-linear models considering complex meteorological and geographical factors. However, the snow depth 

with spatial resolution from 10 km to 25 km is not suitable for arid and semi-arid alpine region where the 

vertical drop is extremely significant. In practical application, snow depth mapping with higher spatial 

resolution is more useful for regional snow disaster evaluation and hydrological model establishment. Recent 

studies have demonstrated that higher snow depth mapping can be developed based on high-resolution 

geographic and meteorological data, together with downscaling microwave data. Snow depth retrieval 

accuracy was considerably increased by Wang when he created a multifactor power snow depth downscaling 

model. MOD10A1 fSCA data (500 m) were downscaled for better resolution (30 m) spatially distributed 

binary SCA detection, Walters et al., (2014) explains and analysis a linear machine  model. Downscaled 

AMSRE SWE dataset were created using MODIS Terra-Aqua data (Mhawej et al., 2014). For the least 

vegetated areas like Northern Xinjiang (NX) with complex topography and violent vertical variation, high-

resolution snow depth mapping can more accurately describe the formation up and ablation of snow in the 

region and provide precise input parameters for hydrological process and snow disaster early warning.   

 

Support Vector Regression (SVR) 

The generalisation classification relation issues, the regression problem has the model returning a 

continuous-valued output rather than an output from a limited collection. In other words, a multivariate 

continuous-valued function is estimated via a regression model. 

 

In order to tackle dual class classification issues, SVMs define those issues by convex optimization 

challenges. Finding the largest margin between the hyperplane and accurately classifying the most training 

points is the goal of the optimization issue. This ideal hyperplane is represented by SVMs using support 

vectors. The SVM's sparse solution and strong generalisation make it amenable to adjustment to regression 

issues. By inserting the "tube," a -insensitive zone surrounding the function, SVM generalisation to SVR is 

made possible. By first creating a convex-insensitive loss function to be lowered and identifying the flattest 

tube that conveys the necessary quantity of information, SVR is explicitly described as an optimization 

problem (Jap et al., 2015; Xiao et al., 2018b). Consequently, utilising the loss function and the tube's 

geometrical propertie, a multi-objective function is created. The convex optimization is then done using the 

proper numerical optimization procedures, It has a special remedy. The hyperplane is represented by 

support vectors, which are training samples that are beyond the tube's boundaries. The training and test data 

are thought to be independent and identically distributed (iid) in a supervised learning context since they 

come from the same fixed but unknowable probability distribution function. Similar to SVM, the most 

significant feature that affect the tube's form in SVR are the support vectors (Xiao et al., 2018b). 

 

The usage of SVM methodology has the following benefits: it can be used for both classification and 

regression; It translates the given parameters to a high-dimensional feature space and has a model parameters 

that makes it easier to prevent overfitting that allows for the engineering of the kernel function to create 

expert knowledge about a problem; and, The algorithm is most significantly described as a problem of 

optimization with no local minima (unlike neural); Below, we present a brief description of our decision 

about the type of the SVR framework's kind of regression and kernel(Jap et al., 2015; Vapnik, 1998; Xiao et 

al., 2018b). 
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The goal is to discover a function f(x) = ⟨w, x⟩ + b,  w ∈ χ,  b ∈ R that has a maximum deviation 

from the real measured objectives yi for all the training data while also being as flat as feasible given a set of 

training data {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}  ⊂ χ ∈ R (Jap et al., 2015). 

 

We can formulate the issue of optimization of convex for a linear function as the Euclidean norm's 

minimization, but, in order to ensure that infeasible constraints are taken into account, we must also 

introduce slack variables ξ𝑖, ξ𝑖
∗: 

 

    𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 
1

2
||𝑤||

2
∑ (ξ𝑖 + ξ𝑖

∗)𝑛
𝑖=1     (22) 

 

subject to: y𝑖 − (ω, x𝑖) − b ≤ ε +ξ𝑖
∗ 

   (ω, x𝑖) + b − y𝑖 ≤ ε +ξ𝑖
∗ 

ξ𝑖, ξ𝑖
∗ ≥ 0 

where the value of the constant C>0 controls the trade-off between f's flatness and the tolerance limit for 

deviations greater than. ν -SVR developed by Xiao et al., (2018b) replaced Vapnik's -SVRwhere is a variable 

which value is balanced versus complexity and high and slack variables rather than being defined a priority 

using the constant ν∈[0,1]. 

When SVMs extends, one must first formulate the objective function and constraints using Lagrange 

functions. After optimising the equation and satisfying every constraint, we arrive at the so-called SV 

expansion, which is as follows: 

𝑓(𝑥) =  ∑ (𝑎𝑖 − 𝑎𝑖
∗)(x𝑖 , x)𝑛

𝑖=1 + 𝑏         (23) 

 

where cases with i>0 are support vectors and is fully specified as a linear mixture of the training patterns. 

 

The third stage of the SVR modification process deals with the modelled nonlinear processes. Using a 

nonlinear mapping, the input vectors can be translated into a high-dimensional feature space, and the 

optimization issue can then be solved, and it can then be solved in that feature space for a minimal 

computing cost. We generate the nonlinear regression functions of the following kind using an appropriate, 

nonlinear function (referred to as the kernel): 

𝑓(𝑥) =  ∑ (𝑎𝑖 − 𝑎𝑖
∗). κ(x𝑖, x)𝑛

𝑖=1 + 𝑏     (24) 

 

There are two basic types of kernels: one that samples from close regions influence kernel values, and other  

which assume that samples from any region are capable of affecting kernel values. spread widely apart still 

have an impact on the kernel value. 

 

Random Forest Regressor (RFR) 
The proportion of unique variables in spectral datasets is usually much higher than that in the physical 

measurements they are compared to. This is necessary since general linear models can't accurately describe 

response variables due to the large number of interrelated explanatory factors (thin spectral bands and VIs) 

(Mei et al., 2019) . Machine learning techniques such as RF use several decision trees as their primary 

classifiers (Belgiu & Drăgu, 2016; Breiman, 2001; Houborg & McCabe, 2018).  

The RF approach has shown to deliver a fair level of accuracy as compared to other machine learning 

algorithms, despite the fact that there are several machine learning algorithms that could be applied (Abdel-

Rahman et al., 2014; Houborg & McCabe, 2018; Sonobe et al., 2018). The bootstrapping technique reduces 

the prediction error by simulating the random select the sample from the entire dataset needed to create 

decision trees (Belgiu & Drăgu, 2016) . The approach is quite quick when numerous deep decision trees are 

grown simultaneously using parallel computing. The RF machine learning method also offers a simple 
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mechanism for choosing features and cascading variable priority. Since there aren't many assumptions 

associated with RF, setting up data and parameterizing models isn't as difficult. 

It is very important to comprehend decision trees to comprehend how the RF operates. Statistics models 

that use decision trees to predict a response or target variable are used in supervised prediction problems. 

They are determined by a given number of variables which are self-explanatory (also referred to as  input 

predictors or features). The tree-like organizational presentation of the prediction model is where decision 

trees get their name. The tree is analysed top to bottom, beginning at the beginning at the root (root node), 

continuing via hidden layers, then coming to an end when a terminal node (also known as a leaf) is reached. 

Each regression tree grows from the roots to the leaves when a particular set of requirements and limitations 

are met (Breiman, 2001) . Decision points are the internal nodes. From the bigger training dataset, a set of 

resamples (randomly chosen subset of data) are taken as the initial starting point for the construction of a 

single decision tree. Because of the increased diversity in the forest, the overall prediction is stronger as a 

result. Each bootstrap sample is fitted using a regression tree in such a way that part of randomly taken 

input feature is taken into account for binary partitioning every node (At each node, diividing rule is used 

for splitting). When splitting data using decision trees, the Gini Index is frequently utilised (It is decided to 

use the input prediction with the least Gini Index) (Mei et al., 2019): 

𝐼𝐺(𝑡𝑋𝑥𝑖
) =   1 −  ∑ 𝑓(𝑡𝑋𝑥𝑖

, 𝑗)
2𝑚

𝑗−1     (25) 

𝑓(𝑡𝑋𝑥𝑖
, 𝑗). is the percentage of samples that are part of leaf j at node t and have the value xi, where xi is a 

measurement of the sample proportion (Houborg & McCabe, 2018) .The root node of each decision tree 

sprouts branches (intermediate nodes), which split off, and finally terminal nodes (leaves). For all of the 

observations, only one predictor variable is examined at a time by each node in the tree. If the condition is 

satisfied, a binary decision is made, and another regression model is chosen for the next node. As a result, 

the decision tree develops to its terminal nodes (leaves), each of which is composed of a response. At the 

start of the RF implementation, two inputs must be optimised. One has to be the RF implementation; two 

inputs must be optimised. The first is the minimal quantity of regression trees (ntree) necessary for deep 

network. The second is "number of leaves," which is equivalent to the tree's terminal nodes. A tree with an 

excessive amount of leaves will grow shallowly, halting after only a few splits, which could lead to subpar 

prediction accuracy. On the other side, fewer leaves (deep trees) may lead to overfitting(Díaz-Uriarte & 

Alvarez de Andrés, 2006). A total of all the trees is used to calculate predictive power. 

 

A separate model is used to build each tree in the random forest. The samples utilised for bootstrapping are 

known as "in bag" samples, whereas the samples that were not used to build the model are known as "out 

of bag" (OOB) samples. In other words, An OOB error method is used in the RF to quantify the prediction 

error, and independent cross-validation also isn't necessarily required. This theory gives random forest the 

ability to evaluate models without using a distinct set of data. Usually, two thirds of the samples are utilised 

for training the models, while the remaining one third is used as oob samples (Breiman, 2001) Since oob 

samples are not used to construct the trees, oob estimations give RF reliable measures of model accuracy. 

Thus, the overall model accuracy is obtained by averaging oob-based predictions across all trees. In this 

investigation, the RMSE was used to test the model results (Breiman, 2001). 
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3.7. Chapter Summary 

In this chapter, the physical and electromagnetic properties of snow have been discussed with in detail with 

visible and microwave remote sensing of snow. The state-of-the-art models concerning SD and SWE 

estimation have been succinctly described along with their advantages and drawbacks along with other 

sections like climatological and topographical effects on snow properties, fusion of optical and microwave 

remote sensing data, downscaling and machine learning for snow properties. Moreover, several relevant 

literatures are cited for referring the reader to more advanced in-depth concepts that have been summarised 

in this chapter. Additionally, the symbolises or notations used in the equations and figures have been 

adopted from the existing literatures and in some cases, have been modified accordingly to remove any 

ambiguity. Starting from the next chapter, the thesis specific discussions are provided. 
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4. MATERIALS 

4.1. Study Area 

The North-Western Himalayas (NWH), which are comprised of the river basins of the Jhelum, Sutlej, 

Chenab, Ravi, and Beas in the states of Jammu & Kashmir and Himachal Pradesh, are bounded by 

longitudes 72°E to 80°E and latitudes 30°N to 37°N.  The northern Karakoram Himalaya is roughly 8000 

metres high, whereas the Siwalik Himalaya in the south is only a few hundred metres high. Westerly 

disturbances affect precipitation in the NWH between October and May, whereas the southwest monsoon 

is in charge between July and September. The region's climates vary significantly from one area to another 

(M. R. Bhutiyani et al., 2010) . The region's far east, which is thinly forested and near to Tibet, experiences 

little to no rainfall in the form of rain or snow and has a cold, dry environment. The west has a lot of rivers 

and valleys, a forest cover that ranges from evergreen to semi-evergreen, and very moist weather with a lot 

of precipitation (snow and rain) (M. R. Bhutiyani et al., 2010) The quantity of snowfall experienced by 

various ranges in the NWH varies depending on altitude and ranges from roughly 100 to >1600 cm. The 

Pir Panjal Range receives the most annual winter snowfall, and as one moves farther north toward the Great 

Himalaya, Zanskar, Ladakh, and Karakoram mountains, less snow is received. In higher altitudes, the 

majority of the year is spent with temperatures below zero, and the majority of the wintertime precipitation 

takes the form of snow (M. Bhutiyani, 1992) The Siwalik and Pir Panjal Ranges experience the highest 

monsoon precipitation, and the Great Himalaya, Zanskar, Ladakh, and Karakoram Ranges experience the 

lowest (Rakhecha et al., 1983). 

 

 The Tibetan Plateau, Himalaya, Hindu Kush, and Karakoram are mountain ranges that are home to the 

upper Indus basin (UIB). Seven separate Indus tributaries, totalling over 425.000 km2, flow from the UIB 

(Fig 4.1) (Lutz et al., 2016). The UIB has a mean elevation of 3750 metres above sea level and an altitudinal 

range of about 8500 metres. The UIB is a transboundary river basin in a geopolitically complicated area, 

encompassing portions of Afghanistan, Pakistan, India, and China. With about 22.000 km2 of glacier surface 

area, it is among the planet's most glaciated regions (Lund et al., 2020).  

 

The UIB's complicated climate is the consequence of a complex interaction between the terrain, westerlies, 

and monsoon circulation (Bajracharya & Shrestha, 2011; Maussion et al., 2014; Williams, 2013). At several 

Figure 4-1: Upper Indus Basin (Lutz, 2016) 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165630#pone-0165630-g001


Snow Depth and SWE Estimation Using Multi-Sensor Microwave and Optical Remote Sensing Time Series Data for Indian Himalayas 

 

26 

sizes, ranging from a synoptic scale of several hundred kilometres to an orographic meso-scale of fewer than 

thirty kilometres, the interaction between topography and precipitation can be seen (Lutz et al., 2016). The 

Himalayan region is where the monsoon has the most impact arc, but it diminishes in the north-western 

direction where mid-latitude westerlies become more significant, such as around the intersection of the 

Karakoram, Pamir, and Hindu-Kush mountain ranges (Fig 4.1) (Lund et al., 2020; Lutz et al., 2016). When 

low-pressure systems approach the western edge of the larger Himalaya in winter, precipitation from the 

westerlies is at its maximum. The increased tropospheric extent of the westerly wind may be the reason why 

this source of moisture reaches higher elevations than the summer monsoon (Bajracharya & Shrestha, 2011; 

Maussion et al., 2014; Williams, 2013). Indus River basin further consists of two major regions like Upper 

Beas basin and the upper Sutlej basin can be taken for our study.  

4.1.1. Upper Beas Basin 

 In addition to being a tributary of the Indus River system, the Beas River feeds the River Sutlej. At a height 

of 3900 metres (m.a.s.l.), Beas Kund, a little ice body on the eastern side of the Rohtang Pass in the 

Himalayas, is where the Beas River begins It flows almost north-south till Larji, In order to reach Pandoh 

in Himachal Pradesh, turn west and continue in the same route. A diversion dam has been constructed at 

Pandoh (Rani & Sreekesh, 2019). The main river's flow and the flow of its tributaries are unaffected by 

human-made activity above the Pandoh Dam. Upstream of Pandoh Dam, the Beas basin's catchment area 

is 5278 km2, of which 780 km2 are permanently covered in snow and ice. The research area's elevation ranges 

from roughly 900 m to more than 5000 m above mean sea level (Rani & Sreekesh, 2019). Permanent 

snowfields and glaciers are present in the basin's upper portion. A few of the main tributaries that reach the 

Beas River upstream of Pandoh Dam are the Parvati River at Bhuntar, the Tirthan and Sainj rivers close to 

Larji, the Sabari Nala close to Kulu, and the Bakhli Khad close to Pandoh Dam. (Fig. 4.1)  displays the river 

system's drainage map together with rain gauge stations(Rani & Sreekesh, 2019). All of these rivers have a 

constant flow; however, it fluctuates greatly from month to month. Power generation, irrigation, tourism, 

and other industries have very good potential along the Beas River and its tributaries. 

The Beas River originates in Rohtang Pass, which is located 51 kilometres north of Manali at a height of 

4350 metres. The Beas Kund glacier serves as the primary water supply for the Beas up to Manali. A wide 

network of hydro - meteorological stations in the study region provided support for the project and ground 

truth data gathering (Thakur et al., 2013). A cool, dry climate characterizes the study area's three major 

seasons: cold from October through February, hot from March through June, and rainy from July through 

September. Since most of the mountain roads are blocked, the region is mostly cut off from the lowest part 

Figure 4-2: Part of Indus River basin regions focussed with ground observation data, in the right: Upper Beas Basin 
(Rani, 2019); and, in left: Sutlej Basin (Chauhan Rohit, 2016) 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165630#pone-0165630-g001
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in December to February, when snowfall typically accumulates at elevations above 2000 metres. The region's 

wettest months are August and September (Thakur et al., 2017). The rainiest months are July and August, 

and the driest months are October and January. The average daily temperature varies from between 5 and 

0 degrees Celsius in January to 20 °C to 30 °C in June (Thakur et al., 2012) The watershed's major snowmelt 

season lasts from the end of April to the second week Of September, with the most critical melting period 

being from April to June and the peak season from July to September. (M. Kumar et al., 2013; V. Kumar et 

al., 2007) 

4.1.2. Upper Sutlej Basin 

This study focused on the Sutlej River basin, located in the western Himalayan region upstream of the 

Bhakra Reservoir (Figure 4.3) (Chauhan et al., 2016). The Mansarover and Rakastal lakes on the Tibetan 

plateau, which are over 4500 metres above sea level, are the source of the Sutlej River, which is a branch of 

the Indus River system. Only rain is experienced in the basin's lowest portion (P. Singh & Bengtsson, 2004). 

The topographical situation and accessibility of plentiful water offer this river a significant hydropower 

generating potential. There are numerous hydropower projects in place, and more are planned for this river 

(Chauhan et al., 2016).  

 
Figure 4-3: Sutlej Basin (Chauhan et al., 2016) 

At the foot of the Himalayas, on this river, the Bhakra Dam sits, the oldest dam in India. This dam is 

regarded as a blessing for irrigation and electricity generation in north India. The study basin covers around 

22, 275 km2 of land (P. Singh & Bengtsson, 2004). The basin's altitude ranges greatly from 500 to 7000 

metres. Figure 4.3 illustrates the area-elevation curve for the study basin. It reveals that only a very minor 

portion of the basin is above 6000 m, with the majority of the basin's area falling between 3600 and 5400 

m. As a result of significant seasonal temperature fluctuations and the basin's wide range of elevations, the 

snowline dips to about 2000 meters in winter and recedes to about 5000 meters in summer. Wintertime 

snowfall covers the basin region to a degree of about 65% (P. Singh & Jain, 2002)  Chauhan et al., (2016) 

reported that about11% area of the basin is covered by glaciers. Using remote sensing data, A. Kulkarni, 

(1999) conducted a glacier inventory of the Sutlej Basin and discovered that 2700 km2, or around 12 percent 

of the basin, is covered with glaciers and permanent snowfields. Diverse climate trends can be seen in this 

river basin. During the winter, much of the precipitation turns to snow, and the western weather disturbance 

primarily dump it in the upper and central parts of the basin. The bigger Himalayas, which are mostly where 

the basin is located, frequently experience snowfall. The rainstorms have little effect in the wider Himalayan 
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range, which receives 200 mm of rain annually on average (P. Singh & Bengtsson, 2004). The middle and 

outer Himalayan ranges, where a portion of the Sutlej River basin is located, receive 700 and 1300 mm of 

rainfall annually, respectively (P. Singh & Bengtsson, 2004). This demonstrates that the lower portion of the 

basin receives much of the rainfall. For the whole basin, accurate data on snowfall and its distribution is not 

available. This seasonal snowpack, which was created during the winter, begins to melt around March and 

depending on the climatic conditions over the basin, either completely or partially disappears throughout 

the upcoming summer. In the upper portion of the basin, snowmelt is the main factor causing runoff, but 

rainfall is the main factor in the bottom section of the basin. Snowmelt and rain both contribute to the 

basin's middle and upper regions. While snowmelt contributes more to streamflow as altitude rises within 

the basin, rain's contribution decreases. Above 3000 m, snowmelt-induced runoff dominates runoff, but 

above (P. Singh & Jain, 2002). 

4.1.3. Field Visit 

The extensive work on the field has been done in February 19-28, 2022, in the Kothi and Solang Valley 

areas where a snow fork (fork-shaped) radio wave sensor has been created in order to assess the density and 

moisture profiles of a snowfall simultaneously. The snow fork's foundation is the measuring of snow's real 

and imaginary dielectric characteristics at frequencies about 1 GHz. The measurement is non-destructive 

because of the open construction of the resonator. Automatic measurement findings are guaranteed by 

automatic measuring equipment and can be noted on the field (Sihvola & Tiuri, 1986). Nevertheless, in a 

few of the more practical locations, including the Dhundi base station and the Automatic Weather Station 

(AWS) of Sainj, Marhi and Kothi, the data has been collected.  

 

 

 

 

 

 

 

 

 

Figure 4-4: Beas watershed with high (left) and low (right) snow cover 
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4.2. Spatial data products and description 

For this research work, varieties of dataset have been used. Passive microwave data, SAR data and different 

Optical data products have been used along with topographical and climatological datasets.  All datasets 

have been processed for year 2016-2017 on availability of pixel values on each particular date. These datasets 

have been pre-processed stacked together to work on it as a time series data 

4.2.1. High Mountain Asia UCLA Daily Snow Reanalysis, Version 1  

Asia's High Mountains Incorporating fractional snow-covered area (fSCA) measurements from the Landsat 

and Moderate Resolution Imaging Spectroradiometer (MODIS) platforms over the combined Landsat-

MODIS record between Water Year (WY) 2000 and 2017, the UCLA Daily Snow Reanalysis, Version 1 

(HMASR) is a snow reanalysis over High Mountain Asia (HMASR) (Margulis et al., 2019). The data 

collection contains posterior forcings and daily estimations of the snowpack (SD, snow albedo, SWE, and 

fSCA). Key posterior snow estimations (SWE, fSCA, and SD) are provided ensemble statistics (e.g. mean, 

median, and spread), whereas other states and flow variables are given ensemble median values. As metrics 

of the data integrity and to provide some usage advice for this dataset, classification masks as well as a quasi 

snow/ice mask are used.  

SWE, fSCA, and SD have the same dimensions (225 x 225 x 5 x 366) as latitude by longitude by quantity, 

ensemble statistics, or water year day. Ensemble mean, ensemble standard deviation, ensemble median, 25th 

percentile, and 75th percentile information is presented in that order. The snow albedo and posterior forcing 

variables' dimensions (225 x 225 x 366) match to latitude, longitude, and day. Either latitude by longitude 

(non-seasonal snow/ice mask) or latitude by longitude by water year (classification mask) match to the 

masks' size (225 x 225 x 18). 

4.2.2. Sentinel-1 SAR 

Sentinel-1 offers exceptionally precise pointing information and accurate orbit determination, which 

greatly improves the SAR outputs' geolocation accuracy. At a height of 693 km, Sentinel-1 is currently in a 

relatively close sun-synchronous orbit. (Miranda & Meadows, 2015; Torres et al., 2012). A 180-degree shift 

in orbital phasing would make Sentinel-1B's baseline orbit the same as Sentinel-1A's. Six-day exact repeat 

Figure 4-5:Taking snow fork reading near Kothi area (top left), AWS site, Sainj (Top right), Snow 
fork reading in Solang valley region, Manali (Bottom left), AWS data download (Bottom right) 
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pass observations will be possible with the two-satellite constellation. Two to three days will pass between 

repeat coverage in the mid-latitudes using adjacent swaths. (Nagler et al., 2016). 

 

The S1 SAR works at a 5.4 GHz centre frequency. This study's IW mode data across North India were 

collected in dual polarisation (VV and VH). In comparison to the standard ScanSAR mode, with a swath 

width of 250 km and a nominal ground resolution of 5 m 20 m for single look data, the IW mode functions 

like TOPS (Terrain Observation with Progressive Scans in azimuth) (Torres et al., 2012)In IW mode, each 

image swath is divided into three smaller swaths. Along the railway, individual swaths are separated into 

slices that are each around 350 km long. When corner reflector and transponder signals are evaluated, they 

produce spatial resolutions of 22 m in azimuth and 2.84 m, 3.10 m, and 3.50 m in LOS for sub-swath IW1, 

IW2, and IW3, respectively, for IW mode SLC data (Miranda & Meadows, 2015). 

 

The SSMI radiometer, which would be deployed on top of the Defense Meteorological Satellite Program 

(DMSP) class spacecraft, would monitor snow globally. The device does not depend on clouds for its 

operation, and daily observations are accessible. The SSM/I is a microwave radiometric system with seven 

channels and four frequencies (19, 22, 37, and 85 GHz) (Tedesco & Jeyaratnam, 2016). Except for the 22 

GHz channel, which is fixed at V polarisation, all channels operate in dual vertical (V) and horizontal (H) 

directions. According to (Armstrong & Brodzik, 2002; C. te Chen et al., 2001; Foster et al., 2005), the 

footprint varies from 6943 km2 at 19 GHz to 12.512.5 km2 at 85 GHz. 

 

4.2.3. Moderate Resolution Imaging Spectroradiometer 

The Terra and Aqua satellites' Moderate Resolution Imaging Spectroradiometer (MODIS), formerly known 

as EOS AM-1 and EOS PM-1, is an essential instrument on board. Aqua crosses the equator from The 

Terra and Aqua satellites' Moderate Resolution Imaging Spectroradiometer (MODIS), formerly known as 

EOS AM-1 and EOS PM-1, is an essential instrument on board Terra MODIS and Aqua MODIS observe 

the whole surface of the Earth every one to two days, recording data in 36 wavelength bands (MODIS 

Technical Specifications). Land, ocean, and lower atmosphere dynamics and processes will be better 

understood with these data. A crucial part of MODIS is being played in the creation of validated, global, 

interactive 

4.2.3.1. MODIS Snow Cover Area 

SCA, fSCA snow albedo, and quality assessment (QA) data are all included in the MODIS Snow Cover 

Daily Global 500m Terra and Aqua package. Based on a snow mapping technique that uses NDSI and other 

criteria tests, snow cover data are generated. 

4.2.3.2. MODIS Normalized Difference of Snow Index 

Based on snow's generally increased reflectance in the visible section of the spectrum compared to the mid-

IR, the Normalized Difference Snow Index is used to identify snow. NDSI has a range of -1.0 to 1.0 and is 

calculated using the Green and Mid-IR bands. The surface reflectance composites from MODIS Terra and 

Aqua were used to create this product. 

4.2.3.3. MODIS Normalized Difference of Vegetation Index 

The NDVI has a value between -1.0 and 1.0 and is calculated using the Near-IR and Red bands of each 

scene. The surface reflectance composites from MODIS Terra and Aqua were used to create this product. 
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4.2.3.4. MODIS Land Surface Temperature 

In a grid of 1200 x 1220 kilometres, the MODIS delivers emissivity and land surface temperature (LST) 

readings every day. The MOD11 L2 swath product yields the temperature value. Some pixels may have 

several observations above 30 degrees latitude where the requirements for a clear sky are met. The pixel 

value is the average of all qualifying observations when this happens. The daytime and nighttime surface 

temp bands and related quality indicator layers are also given, along with the MODIS band 31 and 32 and 

six observations layers. 

4.2.4. Shuttle Radar Topography Mission – Digital Elevation Model 

A worldwide research project called the Shuttle Radar Topography Mission produced digital elevation 

models on a nearly global scale (Farr et al., 2007). This study made use of the SRTM V3 product (SRTM 

Plus), which is offered by NASA JPL and has a resolution of 1 arc-second (about 30m). 

4.2.5. Climate Hazards Group InfraRed Precipitation with Station Daily 

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), a dataset of quasi-global rainfall 

spanning more than 30 years, is accessible. in order to track seasonal droughts and analyse trends, CHIRPS 

creates gridded rainfall time series using in-situ station data and 0.05° resolution satellite images. 

4.3. Softwares and Tools 

In this research, GIS tools like Google Earth Engine, SNAP and QGIS has been used for data collection, 

data extraction, data pre-processing and data visualization. Python and programming language has been 

used to write code for Machine Learning and Deep Learning algorithms along with GEE API has been used 

a library in python for data management for model development.  CRIB- ITC Geospatial Computing 

Platform played vital role in model development for our use case as dataset  was very large before pre-

processing. It provided large space to download and store datasets of different sensors along with high 

computational power for model developments. 

4.4. Chapter Summary 

This chapter consists of the discussion about Study area and field visits than happened during research 

phase. Followed by all the datasets than have been used in this thesis research work. In the end, all software 

and tools has been mentioned which have been used in this research work at different stages like, data 

extraction, data pre-processing, data management, model training and testing and data visualization 
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5. RESEARCH METHODOLOGY 

5.1. Research Design 

 
 The methodological framework used to produce the SD and SWE results using machine learning algorithms 

is covered in this chapter. A flowchart that highlights the key process steps is displayed in Figure 5-1 in 

order to quickly summarise the whole workflow -- 

Figure 5-2: Methodological Flowchart 

Figure 5-1: Methodological Flowchart 
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5.2. Data pre-processing    

 

For two different sub basins, all dataset has been clipped to upper Beas basin and upper Sutlej basin with a 

projection of (EPSG:4326). Each dataset consists multiple feature which existed already as a band or derived 

from the different band combination or some different processing. Water year October 2016 to September 

has been taken for the research according to availability of all data dataset with respect to our reference data 

which is HMASR. Different sensors have been pre-processing like active microwave (SAR), passive 

microwave (SSMI) and  Optical sensor (MODIS) along with some topographical and climatological data 

like Land Cover, DEM, temperature, and precipitation. Both direct and indirect features have been collected 

from these datasets. Reference data of this research work, HMASR has been processed separately as our 

aim was to spatio-temporal match all other dataset with our reference dataset. 

Figure 5-2: Data Pre-processing Block Diagram 
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5.2.1. Sentinel-1 SAR 

Sentinel-1 SAR GRD (log scaled) data has been collected for all dates that were available in water year 

October 20176 to September 2017. All features that can be collected from Sentinel-1 GRD was  VV band, 

VH band, ratio of VH and VV and, angle values (X. Zhong et al., 2018). Different SAR modalities like 

InSAR and PolSAR using Sentinel-1 SLC level 1 data has not been used to long processing data for a whole 

water year. It was less feasible to generate so many products from different modalities and later incorporate 

in model. All the dataset has been stacked to create a data cube later to put it into model. 

 

A dry and wet snow classification has also been done for each SAR images to put into model (Baghdadi et 

al., 1997; Snapir et al., 2019). All the calculations and data collections has been done on GEE and later 

incorporated with python for model development.  

5.2.2. MODIS  

Both MODIS Aqua and Terra product has been to get optical data like snow cover area (SCA), Normalized 

Difference of Snow Index (NDSI) and  Normalized Difference of Vegetation Index (NDVI). For SCA, 

maximum value of the pixel has been taken for each day from composite of Aqua and Terra products to 

get maximum snow cover extent and to fill cloud gapped values (Kim, 2018). For NDSI and NDVI, mean 

of Aqua and Terra product has been taken for each day in water year to create composites. All the dataset 

has been stacked to create a data cube later to put it into model. All the calculations and data collections has 

been done on GEE and later incorporated with python for model development.  

5.2.3. Passive Microwave  (SSMI) 

PMW sensor SSMI consists of four temperature brightness (TB) bands at different frequencies which are 

19 GHz, 22 GHz, 37 GHz, and 85 GHz (Che et al., 2008b, 2008a; C. te Chen et al., 2001; Foster et al., 2005; 

Josberger & Mognard, 2002; Margot Flemming, 2020; P. R. Singh & Gan, 2000; SUN et al., 2015; Walker 

& Goodison, 1993; Xiao et al., 2018b). Each these bands are available for both ascending and descending 

pass. As ascending pass was not coming in our study area, we skipped that. Now for each pass, two polarities 

are available which are Vertical and Horizontal. Both polarities have been used in this study to see how it 

correlated with SD and SWE. TB and difference of TB values has linear relationship with SD and SWE so 

difference of 19 and 37 GHz has been extracted as feature to put into model, but 22 GHz came as irrelevant 

so decision of dropping that band has been taken. All the dataset has been stacked to create a data cube 

later to put it into model. All the calculations and data collections has been done using python for model 

development.  

 

5.2.4. SRTM DEM 

SRTM DEM at 1src sec spatial resolution has been used for this research product which has been later 

resampled for specific use case (Farr et al., 2007; Hultstrand et al., 2022; Jost et al., 2007). Many products 

have been generated using this DEM like aspect, slope, hillshade and elevation was already there. All the 

dataset has been stacked to create a data cube later to put it into model. All the calculations and data 

collections has been done on GEE and later incorporated with python for model development.  

 

5.2.5. Other topographical and climatological data 

Land cover use was one of the major topographical data that has been used in this research as SD and SWE 

varies a lot in different terrains. Along with this data, climatological data like Land Surface Temperature 

(LST) which was daily composite of MODIS Aqua and Terra sensors and precipitation data was got from 

CHIRPS product. All the dataset has been stacked to create a data cube later to put it into model. All the 
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calculations and data collections has been done on GEE and later incorporated with python for model 

development.  

 

 

5.2.6. HMASR data 

HMASR data consists of many products like fSCA, SD, SWE, Snow Albedo etc for each day of water year 

October 2016 to September 2017 (M. Liu et al., 2020). For SD and SWE different ensemble statistics are 

available at resolution 500m. Out of all ensemble’s statistical values, ensemble mean, and ensemble median 

has been taken to give as reference data in model. Six different tiles have been mosaiced to cover whole 

study area and each day stacked as bands for both mean and median ensemble statistical values. Most the 

processing has been done using SNAP as the file was four-dimensional NETCDF file and mosaicking has 

been done using QGIS. Other the calculations and data collections has been done on GEE and later 

incorporated with python for model development.  

5.3. Data exploratory Analysis 

 

Data exploration has been done before development of the model to understand dataset in better way and 

to see what all dataset is going to be useful this research. First, fractional snow cover(fSCA)  is most 

important factor to determine the snow cover area(SCA) in the given study area. SCA has been calculated 

using MODIS SCA product from GEE which gives SCA map with cloud mask. To reduce the cloud mask 

in single day, composite of Aqua ad Terra product has been taken. Further, all days of SAR availability has 

been considered to take only those date of SCA. Then, intersection of SAR and SCA image has been taken 

for each day of availability. Rest other dataset has bene clipped and resampled to HMASR resolution (500m) 

and projection (which is EPSG:4326)  accordingly. 

Datasets having coarser resolution than 500m have been downscaled using bilinear interpolation resampling. 

A limit of 2000 metres elevation has been put by considering it as an average snowline of the study area to 

reduce error in the model training. All the spatio-temporal  matched images have been stacked as a data 

cube to do further analysis. All these images read as an array in python and a dataframe has been created to 

put all these data in the CSV file. Few small sample areas have been taken manually from the study area to 

avoid large number of dataset and dataframe for that created accordingly. Correlation has been checked for 

all these dataframe and static parameter like latitude and longitude has been avoided for model training to 

keep model generic.  

5.4. Models Development 

 

For estimation of SD and SWE, two different ML models have been implemented which SVR and RFR 

with having generic approach of model development as show in Figure 5.3. Each model development 

description has been mentioned here with having different combination spatial and temporal resolution of 

multiple sensors as mentioned in the table below: 

 
Table 5-1: Different Combination of input dataset for model testing 

Sensor  

Combination 

PMW SAR Optical Resolution 

1 Yes No Yes 3125m/daily 

2 No Yes Yes 500m/SAR availability 

3 Yes Yes No 500m/SAR availability 
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4 Yes Yes Yes 500m/SAR availability 

5 No Yes Yes 500m/Monthly composite 

 

A generic approach of model creation has been aimed to create generalize the SD and SWE for given study 

and minimize the random error that comes when change in study area happens. According to Figure 5.3, 

the data cube of spatiotemporal matched dataset has been used as input dataset with testing optimal 

combinations of input features and HMASR given as reference data. Hyper-parameter tuning has been done 

using optimal input features and later validation has been using ground data. All these steps have been 

discussed in later stages of this chapter. 

 

5.4.1.  ML Models 

For this study, SVR and ANN regression model has been analysed. These three different models have been 

used because each having its own merit and demerit. Explanation of usage of each regression model has 

been given below. 

5.4.1.1. Support Vector Regression (SVR) 

 

SVR model has been used using ‘rbf’ which was apt for our use case. It has been used when the number of 

predictors is less as it gives poor accuracy when number of predictors are more.  Along with this, SGD 

Boost function has been used to work on larger number of samples of dataset in given study area in order 

to get better accuracy than normal SVR function. Different combination and samples have been tried in 

order to get better accuracy in several combination has been tried to obtain minimum error.  

 

As the samples were very large, SGD regressor model has been used using sklearn library of python that 

too after a  Nystroem transformer. Nystroem transformer approximate a kernel map using a subset of the 

training data (Abdel-Rahman et al., 2014; Jap et al., 2015; Vapnik, 1998; Xiao et al., 2018a). It constructs an 

approximate feature map for an arbitrary kernel using a subset of the data as basis. 

Figure 5-3: Model Development Flowchart 
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 Training samples has been matched non-linearly with reference data that has been produced from HMA 

has a relationship which has been learned from model training. Using support vectors, a generalized model 

with less mean absolute errors and mean square has been produced. 

 

5.4.1.2. Random Forest Regressor (RFR) 

Another model to check the performance of SVR has been used which was RFR in our case. RFR created 

bootstrap of samples from different trees. Each tree predicted values and average of predicted values has 

been taken as an overall prediction of full dataset that was given in the model. Due to the large number of 

datasets, case of overfitting has been appeared for the RFR model which increase the inaccuracy of the test 

data which was later provided to the RFR model after training (Belgiu & Drăgu, 2016; Biau & Scornet, 2016; 

Breiman, 2001; Houborg & McCabe, 2018).  

Figure 5-4: SVR Model 

Figure 5-5: RFR model 



Snow Depth and SWE Estimation Using Multi-Sensor Microwave and Optical Remote Sensing Time Series Data for Indian Himalayas 

 

38 

To overcome the over-fitting issue, a sample dataset has been given by creating sample area from the full 

study area. This method helped to increase model accuracy but when model ran for full study area, 

predictions were not up to mark 

 

 

5.4.2. Hyper-parameter Tuning                                                                                                                                 

The most common method of hyper-parameter tuning in python is ‘GridSearchCV’ by sklearn library. This 

function can be used for both SVR and RFR models. Only the difference is there parameters which are 

different in both models will be different while create the grid of parameters.  

 

SVR 

The most important parameter in SVR model is kernel. For this research, two kernels have been considered 

which are ‘poly’ and ‘rbf’ but proceeded with the ‘rbf’ because of non-linearity aspect of it. As the input 

number of parameters were a lot, it increases the complexity in the SVR model (Xiao et al., 2018a). Other 

parameters in SVR models like gamma, regularization C, epsilon, verbose and max_iter have been given into 

parameter grid search to obtain optimum parameters for the given model. 

 

RFR 

Same grid search function has been used for RFR model also with having parameters in param grids like, 

n_estimators, max_depth, min_samples_split, min_sample_leaf , max_features etc. Some manual parameter 

tuning has also been done to get optimum accuracy (Yang et al., 2020). 

5.4.3. Validation and Accuracy Assessment 

 
As the problem in this thesis is a regression problem, along with r square values, other accuracy metrices 

like mean absolute error and root mean squared error has been analysed in order to obtain the best accuracy. 

We have tried to achieve accuracy in which error should be 10 percentage of the  mean value. For validation 

of the model, results have been matched with reference data and with some ground data also. Some zonal 

statistics has also been done basin wise to check whether results are coming right or not so even in the 

absence of ground dataset, results can be get verified. 

 

5.5. Chapter Summary 

In this chapter, methodology for data pre-processing and model development has been discussed in detail. 

Along with that, data exploration also has been done to check how to put dataset into model. Hyper 

parameter tuning process and validation with accuracy assessment processes has been also discussed. 

As the problem in this thesis is a regression problem, along with r square values, other accuracy metrices 

like mean absolute error and root mean squared error has been analysed in order to obtain the best accuracy. 

We have tried to achieve accuracy in which error should be 10 percentage of the  mean value. For validation 

of the model, results have been matched with reference data and with some ground data also. 
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6. RESULTS 

6.1. Pre-processing results 

To extract features from several datasets, pre-processing has been done to put input data in machine learning 

model in correct manner. Many features have been extracted and pre-processed as per our requirement in 

the models are like, features from SAR data: co-polarized and cross-polarized bands (VV and VH) with their 

ratio in log scaled value only (VH/VV), incidence and binary classification of wet and dry also has been 

created using SAR data.  From optical dataset like MODIS, Snow Covered Area (SCA) which gives fractional 

snow cover (fSCA),  NDSI and NDVI values has been extracted. Some climatological and topographical 

data has also been extracted like Land Surface Temperature  and Land Cover, respectively. Using passive 

microwave, the relevant Temperature Brightness values we got were like 19V GHz, 19HGHz, 37V GHz, 

37H GHz, 85V GHz, 85H GHz and the difference of 37V GHz from 19V GHz  and 37H GHz from 19H 

GHz has also been extracted and resampled to use predictors in our model. Some other topographical 

features like elevation, aspects slope and hill shade has also been extracted using SRTM DEM dataset. 

Figure 6-1: Land Cover Classes Map of Beas Basin 

Figure 6-2: MODIS maps of  Snow Cover (top right), NDVI (top left), NDSI (bottom left) and LST (bottom right) 
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Figure 6-3: Sentinel-1’s VV band (top left), VH band (bottom left), VH/VV (top right), wet (0) and dry snow (1) 
classification( bottom right) 

Figure 6-4: PMW TB values at 19H GHz(top left), 19V GHz (top right), 37H GHz (bottom left) and 37V 
GHz(bottom right) 
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Figure 6-5: PMW TB Values at 85H GHz (top left), 85V GHz (top right), 19H-37H GHz (bottom left), 19V-37V 
GHz (bottom right) 

Figure 6-6: HMASR values of SD median (top left), SD mean (top right), SWE median (bottom left), and SWE 
mean (bottom right) 
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Figure 6-7: Feature extracted from SRTM DEM are elevation (top left), Aspect (top right), Slope (bottom left) and 

Hillshade (toom right) 

6.2. Data Exploration Results 

 
For data exploratory analysis, correlation between input features with SD and  SWE has been calculated to 

check the weightage of each input variable which helped us to analysis like how each extracted features are 

affecting SD and SWE values.  

 

Apart from that, SD and SWE time-series analysis has been done for water year 2016-2017. In this, it has 

been seen analysed that how SD and SWE values averagely varying on daily, monthly, and weekly basis. As 

snow cover changes from season to season, it has been expected that SD and SWE values will also varies 

season-wise. 

 

For model training, missing outliers and no values handling is very important. To achieve that, all images 

has been masked with that date’s snow cover area and SAR image. If snow cover pixel and SAR pixel is not 

present in study area, that pixel has been dropped for all other features. Similar problem arose when PMW 

temperature brightness values are not present because study area did not lie in either ascending or 

descending pass that day, those pixels has also been dropped.   

 
Table 6-1: Correlation matrix of MODIS features with SD and SWE 
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Table 6-2: Correlation Matrix of Sentinel-1 SAR with SD and SWE 

 
 
Table 6-3: Correlation Matrix of PMW features with SD and SWE 

 
 
Table 6-4: Correlation Matrix of Topographical and Climatological data with SD and SWE 
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 Aggregate values of  SD and SWE at daily, weekly and monthly basis and been plotted to see how it 

changes over the seasons 

 

 
Figure 6-8: Daily aggregate values of a) SD mean values, b) SD median values, c) SWE mean values, d) SWE median 

values 

 

 

 

 
Figure 6-9: Weekly aggregate values of a) SD mean values, b) SD median values, c) SWE mean values, d) SWE 

median values 
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Figure 6-10: Monthly aggregate values of a) SD mean values, b) SD median values, c) SWE mean values, d) SWE 

median values 

 

There is direct relation between SD and SWE according to their formula as their ratio gives snow density. 

But snow density varies with height, season and elevation. To analyze this changes in snow density, a 

correlation between SD and SWE values has also been created: 

 

 
Figure 6-11: Correlation plot of SD and SWE  
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6.3. Model Results 

Below tables shows the accuracy assessment of SD and SWE with both SVR and RFR model. With given 

results, further analysis with median data of SD and SWE will be disregarded due to lower accuracy and 

doubt on the quality of data. 

 

Table 6-5: Model wise accuracy assessment 

Model 
SVR 

Accuracy 
Assessment 
 

Train 
data 

Test  
data 

SD 
(mean) 

R squared 0.894 0.675 

MAE 56.176 64.652 

RMSE 103.987 124.22 

SD 
(median) 

R squared 0.811 0.725 

MAE 7.447 9.401 

RMSE 13.940 24.302 

SWE 
(mean) 

R squared 0.861 0.708 

MAE 15.743 18.150 

RMSE 28.144 34.165 

SWE 
(median) 

R squared 0.7080 0.565 

MAE 2.750 15.743 

RMSE 5.407 28.144 

 

Using above SVR model, SD and SWE results has been generated. As accuracy came better using ensemble 

mean values of HMASR data as a reference data, their accuracy has taken, and ensemble median results has 

been disregarded.  

 

To create SD and SWE map, a gap filled data for date 24 Feb 2017 has been taken. Gaps generally occurred 

due to Full SAR pass was not present and cloud gaps in fSCA data. A composite of corresponding week 

has been taken to fill SAR and fSCA gap which resulted a complete input parameter datacube from which 

following results are generated 

 
Figure 6-12: Results of a) SD  and b) SWE on date 24/02/2017 for Beas Basin 

Model 
RFR 

Accuracy 
Assessment 
 

Train 
data 

Test  
data 

SD 
(mean) 

R squared 0.549 0.519 

MAE 92.459 96.018 

RMSE 169.565 175.498 

SD 
(median) 

R squared 0.322 0.227 

MAE 12.337 12.763 

RMSE 37.151 40.783 

SWE 
(mean) 

R squared 0.549 0.376 

MAE 92.459 26.243 

RMSE 169.565 47.745 

SWE 
(median) 

R squared 0.307 0.197 

MAE 4.547 4.752 
 

RMSE 13.396 14.851 
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Using same approach, maps on same data has been generated for Sutlej Basin also. 

 

 
Figure 6-13: Results of a) SD  and b) SWE on date 24/02/2017 for Sutlej Basin 

6.4. Field Visit Data 

 
Table 6-6: Sample data of snow density at different depth, site- Kothi 

DEPTH ATTEN  FREQUEN CY BAND WETNESS DENSITY WETNESS 

cm A/D     MHz MHz %VOL g/ccm %WGT 

0 001555  0730.2 23 1.72 0.184 9.2 

5 001268  0795.0 16 0 0.133 0 

10 001320  0797.2 17 0 0.129 0 

15 001299  0809.7 19.5 0.1 0.103 0.9 

20 001343  0814.8 18.7 0 0.099 0 

25 000249  0720.8 45.3 6.17 (ice layer) 0  (ice layer) 0 

30 000508  0589.8 22.3 5.73 0.337 16.9 

35 000575  0671.1 19.8 2.31 0.291 7.9 

40 000459  0643.5 18 2.41 0.359 6.6 

45 000452  0646.1 17.8 2.26 0.358 6.2 

50 000670  0631.1 16.2 2.02 0.413 4.8 

55 000546  0649.7 19.5 2.81 0.322 8.6 

60 000475  0649.8 19.7 2.95 0.315 9.3 

 

6.5. Chapter Summary 

In this chapter, results have presented in brief.  First, data pre-processing results have been shared for 

important feature extracted to put into model followed by some charts that came across in data exploratory 

analysis. In last, model results have been presented and implementation has been done on different study 

area also. 
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7. DISCUSSION 

As it is shown in previous chapter, model did not show good results with ensemble median values of 

HMASR data so that dataset has been disregarded and based of one study area, another study area has also 

been trained and model tested for that also. 

SVR model has performed better as compared to RFR model in terms of minimizing the mean absolute 

error and root mean square error. Other issue while generating results came arrive because of missing values 

in dataset so a composite of nearby dates has been taken to create input data cube to put into model in order 

to receive SD and SWE estimated values 

As both study area is different, problems came arrive in generalize the model for both as region is very 

different in terms of Land Cover and elevation. Upper part of Sutlej basin more arid as compared to that of 

Beas basin hence probability of getting more snow is more in Beas than that of Sutlej basin. So, a different 

dataset has been prepared to train in Sutlej basin area.  

To the further analysis, elevation wise SD and SWE map has been created for both basins  for February 

2017 and result are as follows: 

 

 
Figure 7-1: Elevation wise SD map of Beas basin (top left), SWE map of Beas basin (top right), SD map of Sutlej 

basin (bottom left), SWE map of Sutlej basin (bottom right) 

Similar maps and histograms have been generated for other years like 2018 and 2019 of month February 

as we can see from our data exploratory analysis that mostly snow occurred around month of February. 

Above analysis has shown that that SD and SWE increase with increase in elevation of the region. This 

scenario we can see year wise in Sutlej basin for both SD and SWE values. 
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Table 7-1: SD and SWE elevation wise analysis for Sutlej basin 

Sutlej SD SWE 

Year 

Elevations 

2017 2018 2019 2017 2018 2019 

<2000 0.083754 0.036721 0.230779 0.029243 0.013228 0.072357 

2000-2500 1.934065 1.022234 5.450933 0.709462 0.404925 1.602610 

2500-3000 8.616761 6.296936 19.863842 3.058381 2.381330 5.199774 

3000-3500 22.768587 22.796783 38.741451 7.382878 7.461391 9.085172 

3500-4000 32.919804 38.831807 47.032205 9.906069 11.351293 10.493782 

4000-4500 39.309015 47.546993 49.988230 11.035028 12.975639 10.848758 

4500-5000 55.033350 63.148932 65.976222 14.573079 16.442250 14.269657 

5000-5500 202.440446 209.738348 220.417821 56.025328 57.694861 55.719734 

6000> 402.869077 408.799256 426.014604 113.519374 114.607745 113.293399 

 
 

 
Figure 7-2: Line chart displays how SD(top) and SWE (bottom) values increases with increase in Elevation in Sutlej 

Basin 

Above results has been obtained by taking aggregate value of SD and SWE in particular range of elevation 

values. In our case range has been taken at every step of 500m  
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Table 7-2: SD and SWE elevation wise analysis for Beas basin 

Beas SD SWE 

Year 

Elevations 

2017 2018 2019 2017 2018 2019 

<2000 1.258780 0.732588 2.620102 0.029243 0.013228 0.072357 

2000-2500 7.623067 5.382102 14.938209 0.709462 0.404925 1.602610 

2500-3000 26.245470 23.106960 43.288546 3.058381 2.381330 5.199774 

3000-3500 53.540944 57.249449 75.160110 7.382878 7.461391 9.085172 

3500-4000 83.027661 95.605519 103.515829 9.906069 11.351293 10.493782 

4000-4500 121.003070 136.831918 143.344074 11.035028 12.975639 10.848758 

4500-5000 328.789750 341.397052 364.406894 14.573079 16.442250 14.269657 

5000-5500 1088.927581 1093.728857 1124.717101 56.025328 57.694861 55.719734 

6000> 1347.049442 1350.717261 1372.286646 113.519374 114.607745 113.293399 

 

 

 
Figure 7-3: Line chart displays how SD(top) and SWE (bottom) values increases with increase in Elevation in Beas 

Basin 
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Similar analysis has been done to check how SD and SWE values are varying with change in aspect. Again, 

SD and SWE values has been aggregated for year 2017,2018 and 2019 of month February and results has 

been matched: 

 

 

Table 7-3: Aggregated values of SD and SWE according to Aspect for year 2017,2018 and 2019 in Beas Basin 

Sutlej SD SWE 

Year 

Elevations 

2017 2018 2019 2017 2018 2019 

0-90 94.054635 98.039571 102.626162 25.829816 26.843304 25.807562 

90-180 96.008271 100.174380 106.993528 27.519179 28.434375 27.634578 

180-270 45.840738 49.590333 55.265001 13.081784 13.788167 13.349906 

270-360 82.072269 86.020528 91.820914 22.310112 23.278484 22.405013 

 

 

 
Figure 7-4: Line chart for observing change of SD and SWE values with Aspect in Sutlej basin 

 

 

 

Table 7-4: Aggregated values of SD and SWE according to Aspect for year 2017,2018 and 2019 in Beas Basin 

Beas SD SWE 

Year 

Elevations 

2017 2018 2019 2017 2018 2019 

0-90 182.026578 186.192781 196.925913 53.192698 54.638080 53.498531 

90-180 211.880395 216.549148 230.945087 63.458188 64.931158 64.039908 

180-270 196.873659 203.644062 220.800583 59.167766 61.098120 59.914660 

270-360 196.299510 201.789571 216.440989 57.399274 59.266770 57.816401 
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Figure 7-5: Line chart for observing change of SD and SWE values with Aspect in Sutlej basin 

To extract the different types of features using different multi-sensor data for SD and SWE 

estimation 

In all feature that has been extracted, CHIRPS data and 22 GHz did not play any important role. CHIRPS 

was not sufficient for model training because of its very coarse resolution and accuracy issues. On another 

hand, 22GHz TB values of SSMI sensor were not falling in our study area. Apart from that, all feature played 

decent role in development of model out of them, elevation related features played more important role in 

model training  as elevation and aspect (to be precise) highly correlates with SD and SWE values. 

 

To find an optimal downscaling technique for the fusion of extracted features from multi-sensor 

data 

Out of all spatial and temporal resolution tested, 500m at availability of SAR, or Weekly composite of all 

features to fill gaps has been the most optimal resolution for our model and results obtained. Having 

availability of high-resolution dataset like for optical sensor could have increased the spatial resolution but 

temporal resolution as challenge has been continued.  

 

To create a generalized model based on features extracted from the collection of datasets and 

implement a machine learning model for SD and SWE estimation 

Even though a generalized approach has been followed to train the model, even then having two different 

study area was quite a challenge to create a single generalized model. Apart from SVR, other deep learning 

models could have been tested to increase the accuracy and reduce the error coming along with it. Overall 

SR performed nice, and a comparison has also been done with RFR model. 
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8. CONCLUSION AND RECOMMENDATIONS 

8.1. Conclusions 

This research work majorly focussed on SD and SWE estimation with optimal spatial and temporal 

resolution using multi-sensor remote sensing data with some other topographical and climatological dataset 

using ML model like SVR and a comparison of it has been done using RFR model. Results for Beas basin 

has been common better than Sutlej basin because of sampling of dataset was better for Beas basin as 

compared to Sutlej basin. Beas basin has lower snowline and has more forest cover whereas Sutlej basin 

especially near in Lauhal and Spiti district, it is arid and snow line is much higher as compare that of Beas 

basin. Both results have been displayed and discussed in previous chapters. In section more talks about the 

research questions which came in start of this thesis and when the idea formulated for the further procedure 

of the research work. 

 

What are input optimal features that can be obtained from multi-sensor data? 

Different datasets gave us different values which we can correlate with SD and SWE values. Let us take first 

case of Sentinel-1 SAR. Sentinel-1 GRD data primarily has been used for this research from which we can 

obtain backscattering values of VV and VH band for our study and angle values at every 12 days and taking 

both ascending and descending pass it was 6 days. For optical sensor, MODIS different product has been 

used primarily SCA, NDSI and NDVI values. A climatological data has also been obtained from optical 

sensor which is LST. MODIS data was available daily, but it was having cloud gaps due inability of optical 

and thermal sensors for cloud penetration. In the end, PMW gave us brightness temperature at different 

frequencies like 19 GHz, 22 GHz, 37 GHz, 85 GHz from SSMI sensor for both ascending and descending 

pass out of which descending pass has been used because of its ability in our study area (Ahmad et al., 2019; 

Brodzik et al., 2020; Gan et al., 2013). Both Horizontal and vertical polarization of dataset has been used 

for feature extraction from PMW sensor. It was available at daily scale but sometime there was unavailability 

of dataset in both ascending and descending pass so such days has been skipped later based on either of 

data frequency’s unavailability.   

  

What are the useful SAR modalities (i.e., SAR, PolSAR, InSAR) for optimal feature extraction? 

There are much research works which are done for SD and SWE using SAR and many of them use SAR 

modalities like PolSAR, PolInSAR and InSAR. PolSAR generally used for snow cover classification whereas  

other two has been used for SD and SWE estimation at different level of snow (Nagler et al., 2016; Snapir 

et al., 2019). The problem is these techniques required a lot of data processing before putting it into the 

model whereas in this research work, SAR backscattering like co-polarized (VV) and cross-polarized (VH) 

of SAR GRD data has been used because this dataset is smaller in size and easy to process as compared 

SAR SLC Level-1 data which used for techniques like InSAR and PolInSAR (Guneriussen et al., 2001). 

Availability of SAR GRD data on GEE made it easier to process for our study area and important parameter 

like backscattering ratio of VV and VH has been used because it highly affects the SD in a particular area. 

Other than that, angle values from SAR images have been used because it also correlated with SD and SWE 

values and help to avoid SAR shadowing issues like layover and foreshortening. A mask wet and dry snow 

cover has also been processed using co-polarized band of SAR for snow cover area to do different  

estimation for both (X. Zhong et al., 2018).  
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Which downscaling technique can be used to get SD and SWE at an efficient resolution? 

To keep model generalized and efficient, same machine learning model which used for the SD and SWE 

estimation has been used for the downscaling also. Including another model separately for downscaling 

could  increase the complexity of overall SD and SWE estimation process. To solve this issue, coarse 

resolution data has been resampled using bilinear interpolation and trained with model at 500m resolution. 

Using this input dataset, downscaling, which was required for especially PMW sensor has been done using 

the same model for training. Using this method, we were able to achieve efficient resolution both spatially 

and temporally. Some other datasets which had to resample from coarse resolution to fine resolution apart 

from PMW were LST and CHIRPS precipitation. Bilinear interpolation performed well for input dataset 

and estimation model generated decent resolution at fine resolution also. 

 

What optimal resolution can be obtained by the fusion of multi-sensor data? 

Aim of this research was to publish estimated SD and SWE values at optimal temporal and spatial resolution. 

As it has been already known that different datasets have different spatial and temporal resolution like SAR 

is available at 10m resolution, but it is available at 12 days repeat cycle. Even if we are taking both ascending 

and descending pass into consideration, we can get max 6 days repeat pass. On the other hand, PMW sensor 

data was available at 3.125km to 6.25km range at daily cycle. It is almost 300 times coarse spatial resolution 

and  6-to-12-times better temporal resolution as compared to SAR. In the last, we had MODIS data mostly 

at 500m resolution twice a day (Aqua and Terra). An optimum solution for fusion of all these datasets came 

as SD and SWE estimation 500m as per the availability of SAR in the study area. Apart from that, daily SD 

and SWE estimation at 500m resolution using PMW and optical data has been tried to achieve. A monthly 

SD and SWE maps has been also tried to achieve at 30m fine resolution using other optical datasets like 

Landsat along with fusion of SAR for experimental purpose only whose results has been not verified because 

of lack of validation data availability and unavailability of reference data at that much fine resolution (Margot 

Flemming, 2020; Walters et al., 2014; L. Zhu et al., 2021b).  

 

How can input features extracted affect the training of the model from SVR? 

Different features show different feature importance with referenced SD and SWE values which has to be 

estimated using SVR model. According to the model which has been developed in this research has been 

shown that topographical factors like elevation, aspect and slope highly affects SD and SWE values. Due to 

shadowing error of SAR and mixing of both ascending and descending pass, SAR backscattering values and 

backscattering ratio has shown less feature importance as compared to topographical factors like elevation, 

aspect and slope. Other factors have been shown somewhat similar importance for SVR model. SVR has a 

drawback that with increase in number of different types of input features, it tends to show less accuracy so 

because of this reason, fusion of three different remote sensing sensors and other topographical and 

climatological data has been too much load on SVR model (Xiao et al., 2018a). Even then, decent accuracy 

has been achieved. Some static factors like land cover, week and month of the pixel data collect have been 

shown good correlation with SD and SWE values. 

 

What are the optimal parameters of SVR to create a generalized model that gives results with 

minimum error? 

Apart from some topographical and climatological data, precipitation data has shown very weak correlation 

with SD and SWE values in some regions because of unavailability of fine resolution rainfall data for water 

year which has taken in this research. Other factors like wet and dry snow have not been shown good 

correlation with SD and SWE due to unaffectedness of snow cover type or not good processing of wet and 

dry snow mask using SAR in GEE. Apart from that, different datasets have dropped according to the 
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different scenarios which came across in the model training. To keep the model most generalized, 

physiographical factors like latitude and longitude has been dropped from model training to estimate model 

results in any region in North-western Himalayas (Kirkham et al., 2019; Thakur et al., 2013, 2017). 

 

What is the performance of SVR based model, and how precisely can SD and SWE be estimated? 

SVR model came out to be better performed as compared to RFR model as it reduced the generalized error 

and estimated SD and SWE more accurately as compared to RFR. The major drawback has been seen in 

RFR model was the higher mean absolute and root mean square in the estimated regression values of SD 

and SWE. 

8.2. Recommendations 

Even though this research work was able to produce an optimum spatial and temporal resolution for SD 

and SWE estimation but many factor could have been more improved for this work. Model can be trained 

on ground data which are frequently available like SNOTEL data of USA but issue of spatial transfer of 

that model has been very difficult in our given study area. SAR was available at every 12 days repeat pass. 

To overcome this issue, other SAR sensors dataset could have been used like ERS, RADARSAT etc to 

reduce temporal gap between them. Other SAR modalities like time-series InSAR has been generated using 

High Performance Computing (HPC) systems priority or on cloud to use interferograms for time-series 

analysis on SD and SWE. Interpolation of Landsat or Sentinel-2 could have been used to generated daily 

snow cover maps to estimate SD and SWE values with temporal resolution. LiDAR could have also been 

used to validate the depth of fresh snow in the given study area. PMW sensor like SSMI-S could also have 

been to filled gaps in PMW data and to use frequencies like 91 GHz to estimate SD and SWE more 

accurately.  

 

There are new models has been introduced like GAN or LSTM to fill spatial and temporal gap in dataset. 

These models work in Deep Learning algorithm, and they are able to generate outputs with good accuracies 

too. The major concern in thesis is going to be usage of too many datasets so fusion of PMW and optical 

dataset could have been done nicely to generate daily SD and SWE maps in the thesis work. Doing study in 

Himalayas is very hard because of too much debris present in Himalayas due to its harsh and sharp terrain. 

Weather conditions also varies in Himalayas rapidly but dataset for such climatological changes is not 

available as of now. Interpolation of coarse resolution dataset like CHIRPS for precipitation didn’t help in 

thesis much. In future, availability of  high-resolution air temperature data and precipitation data is going to 

be great help in better estimation of SD and SWE.  
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APPENDICES 

Accuracy scores of models: 

SVR- SD MEDIAN 

 
SVR- SD MEAN 

 

 
SVR- SWE MEAN 

   
SVR- SD MEDIAN 

 
 

RFR- SD MEDIAN 
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RFR- SD MEDIAN 

 
 
RFR- SWE MEAN 

 
RFR- SWE MEDIAN 

 
 

 
Sutlej Basin SWE (up) and SD(down) histograms for Feb 2017,2018,2019 
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Beas Basin SWE (up) and SD(down) histograms for Feb 2017,2018,2019 

 

HMASR Data Description 
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