


Abstract

Hangboard training improves forearm flexor strength, finger strength, endurance and
postural control in a short time frame. This rapid improvement in physical strength is due
to the high load used in training. The effectiveness of the high load in hangboard training is
researched thoroughly, while the impact of this high load on the athlete is under-explored.
During hangboard training, the athletes rely on their finger tendons to hold their body
weight. This means a high concentrated load on the fingers and shoulders. Research on
injury prevention shows that training with a high load is the most common reason for
overloading injuries. Therefore, further investigation should investigate a balance between
the athlete’s capabilities (internal loads) and the training intensity (external loads). Data
from the literature, interviews, surveys and user tests were collected to investigate such
balance. Quantitatively, no statistically significant difference was found in performance
level if the athlete trained with or without the created feedback system. However, the data
does show some effect on the user, which needs further investigation. Qualitatively, an
effect has been found on self-evaluation of the athlete as the athlete was more insightful
about their performance with the help of the feedback system. Besides the findings for
hangboard training, the overall process used during this case study is not yet seen in related
studies. The executed steps in the design process are novel and can be replicated for other
sports to further explore Interaction Technology for training load management and injury
prevention. On a low level, these findings indicate the need for more in-depth research
on hangboard training to investigate the suggested framework’s steps further. On a high
level, there is the need for more expansive research on the design approach used, where
the framework is investigated and applied to other sports.
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Chapter 1

Introduction

Climbing performance has been defined as a combination of forearm flexor strength
[15], finger strength [7] [8] endurance [38] and postural control [38]. Especially when the
route characteristics become more challenging, forearm flexor and finger strength become
more important. Improving climbing performance strongly depends upon effective training
methods. Hangboard training is one of the most popular approaches to increasing finger,
and forearm strength [33] in climbing. Therefore, hangboards have become one of the most
used pieces of training equipment for climbers. During hangboard training, it is possible
to adjust the training intensity by utilising smaller and bigger holds and exploring grip
positions. In addition, it is possible to adjust the resistance by adding or reducing weight.
Within this hangboard training, the goal is to increase maximum finger strength by loading
the fingers at a very high intensity, often for a short time (repetitions of 7 seconds). This
maximum finger strength is not a fixed number but differs per person. Climbers claim
that training finger strength has to be prioritised to become a good climber, (1) because
building finger strength takes a long time and should be practised in isolation and (2)
because, without finger strength, you are not able to grip the ’harder’ climbing grips.

The workload during hangboard training focuses on specific tendons in the body (fin-
gers, forearm and shoulders), which can cause acute, abrupt and (unintuitive) unpre-
dictable injuries. Climbers have a difficult time feeling where the boundary lies between
safe training practices and high-risk training practices. The interest in better understand-
ing fitting training loads to prevent injuries is often motivated by the decrease in perfor-
mance, and the cost of the rehabilitation [21]. Besides that, when an athlete is injured,
he, of course, cannot optimise and train his skill during this critical rest period, which is
not desired and unpleasant. The most crucial component to preventing injuries among
hangboarders is the self-perception of their load capacity (for how long can I hang, with
what weight, and in what position).

As preliminary research, the current state-of-the-art of IMUs for designing interactive
applications in sports has been investigated. The results of this research can be seen in
section 5.1 Appendix. It became clear that IMUs are proven capable of measuring athletes’
postures and motions. The interaction technology research field can use this opportunity
to create meaningful and practical interactive IMU sports applications. However, as the
paper stated, each sport requires a different skill-set and training. Therefore, case studies
became apparent to maximise the potential of IMU-driven interactive applications. This
thesis is a follow-up case study focusing on hangboard training to investigate the process
of designing interactive applications to manage training load and prevent injuries. The
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use of IMUs in sports is a rising approach that seems promising. Therefore, this thesis
investigates the implementation of interactive technology in hangboard training, through
the lens of IMUs and its capabilities.

When an interactive system could give more insights into an hangboarder’s load ca-
pacity and weaknesses, it is possible to prevent injuries (prevent overloading) and improve
performance (improve the hangboarder’s weak spot). Therefore, this thesis focuses on:

• How can the internal load capacity of hangboard athletes be quantified
and effectively communicated to the user?

• How can the external load of the athlete be tuned to the internal load of
the athlete during hangboard training?

• How can interactive feedback benefit the self-perception of the athlete’s
training load during hangboard training?

These three research questions will be answered by first diving into the background to
understand the nature of the hangboard training. Then, related work will be discussed to
gain more insights on hangboard training and to spark inspiration for innovation. Then,
the methodology section will follow to find the potential for a novel product, leading to
the conclusion and discussion.
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Chapter 2

State of the Art

2.1 Background

2.1.1 The hangboard

A hangboard workout is a climbing workout which uses a piece of equipment called a
hangboard. A hangboard, also known as a fingerboard, is designed specifically to help rock
climbers increase the strength of their climbing holds and grips1. There are many hang-
boards commercially available in stores all over the world. Hangboards come in different
sizes and shapes and can be made of different materials. Figure 2.1 shows some examples
of non-interactive hangboards, such as Trango Rock 2, Metolius Wood 3, Metolius 3D 4,
Metolius Prime 5. Each hangboard has its advantages and disadvantages and should be
chosen by the user based on his capabilities and desires. The prices of these hangboards
lay between 40 euro and 150 euro.

Figure 2.1: Four examples of different hangboards (non-interactive).

Besides these ‘standard’ hangboards, there are some interactive hangboards available.
This thesis investigates the design process of an interactive application for training load
management to prevent injuries. Therefore, there are some interactive hangboards which
are interesting to look at. In total there are (only) three6 7 8 interactive hangboards com-
mercially available and are visible in Figure 2.2.

The first interactive hangboard worth discussing is the Zlagboard (€200). The Zlag-
board is a weight-triggered mechanism for smartphones to track hang-times and pull-ups

1https://www.masterclass.com/articles/hangboard-workout-guide
2https://www.amazon.com/dp/B01CK219W8?tag=outdoocom-20&linkCode=ogi&th=1&psc=1
3https://www.shorturl.at/ksFO4
4https://www.shorturl.at/qGPX7
5https://www.amazon.com/dp/B083NH5N7G?tag=outdoocom-20&linkCode=ogi&th=1&psc=1
6https://zlagboard.com/
7https://climbro.com/
8https://entralpi.com/
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Figure 2.2: Three examples of different hangboards (interactive).

automatically. Besides monitoring the climber, the system has an app that provides train-
ing plans matching the user’s goals. Thereby, the user can track his progress, create
hang-time competitions with friends and design his own sessions with certain goals. The
interaction between the board and the user is created through the IMU in the smartphone
which measures tilt differences and thus knows if the user hangs on the hangboard (the
weight makes the board tilt).

Compared to the Zlagboard, the smart hangboard Climbro (€679) is more focused on
performance and load. The Climbro app provides competition, hang-time progress and
training schemes and insights into the climbers’ physical state. Next, the Climbro app not
only functions as a stopwatch but also provides real-time feedback on applied forces and
guides the user through the exercise. In the Climbro board, force sensors are integrated,
measuring if the user hangs on the board and where the user has placed his hands (only
on the horizontal axis).

The Zlagboard and the Climbro hangboard are interactive boards with technologies
integrated within the board. This means that the climber cannot change boards and can’t
use the technology without using the provided hangboard. Entralpi (€145) works with ex-
ternal technology (force plate) that can measure the climber’s strength on any hangboard.
Based on the data from the force plate, the mobile app provides exercises, tests, automatic
analysis, benchmarks and tips.

2.1.2 The hangboarder

Informal semi-structured interviews (with consent forms) were held with hangboarders
in The Cube9 (boulder hall in Enschede) to gain some insights from the user itself. Eight
athletes had time and were willing to talk about their experiences and knowledge of hang-
board training. All eight athletes hang at least two times on the hangboard per week. The
age of the athletes ranged from 20 to 27 years. From these interviews, five main insights
came forward on how hangboarders train and what materials they use:

• Three different grip positions are often used: open hand, half crimp and full crimp
(see figure 2.7).

• Training in sets (x times 7-10 seconds) or max hangs (not more than 30 seconds).
• 90% of max for power endurance phase.
• Generated training schedules are used on applications such as Crimpd10

• Materials used: hangboard, pulley (to decrease weight), brush, timer, set of weights
and harness (to increase weight), chalk and phone (music and training schedule).

9https://cubebouldergym.nl/
10https://www.crimpd.com/
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Besides how hangboarders train and the materials they use, more focused questions
in the interview referred to the awareness of the hangboarder’s posture and the pros and
cons of hangboard training. These questions made it clear that the hangboarders had
difficulty being aware of their posture. Sometimes they try to resolve this problem by
using cameras or asking a friend/coach to ensure a correct posture during the training.
Then as a follow-up question, the hangboarders are asked to think about where (in their
opinion) handboard training is lacking. From these questions, pros and cons and a few
interesting statements came forward:

Figure 2.3: The pros and cons of hangboarding according to the interviewed
hangboard athletes.

• “When doing max hangs, the effort is so intense that your perception of your sur-
roundings mostly fades, so external motivation would probably not help much.”

• “I could use a camera, but I wouldn’t know what good form looks like”
• “I would like recommendations on technique based on force recruitment statistics.

Avoiding over gripping and recommending when to increase/decrease weight. Pos-
sibly tracking day fatigue or long-term injury prevention by noticing decreases in
performance.”

In conclusion, hangboard training is a high-load training method that can cause acute
injuries if the training load is not managed properly. Currently, the training load is sub-
jectively set via coaches, trainers and smartphone apps. By providing more guidance to
the athlete in choosing a fitting training load, injuries can be prevented.

2.1.3 Key Performance Indicator (KPI) analysis

As mentioned in the introduction, climbing performance is associated with forearm
flexor strength, endurance and postural control. Hangboard training is a popular and of-
ten used training protocol used by climbers to increase their arm/finger strength rapidly.
Hangboard training protocols are focused on maximising weight and hang time, and min-
imising edge sizes [33]. The study of Mundry [33], Stien [42], Hermans [19] and Kingsley
[26] are example studies that have investigated the effects of training with and without an
hangboard as a climber. All four studies found a significant improvement in the climber’s
grip strength and climbing endurance over a period of 4-8 weeks. The research of Meder-
nach [31], which focuses on the performance increase of boulderers by using an hangboard,
complements by also finding a significant increase in performance in the group which
trained with an hangboard for 4 weeks. Besides studies that focus on improving climbing
or bouldering performance, health care studies [5] have been focusing on the improvement
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of wrist and forearm strength by using an hangboard, which also found significant im-
provement in the participant group who used the hangboard for 4 weeks. So, it can be
concluded that the hangboard is an effective way to improve strength, and performance
over a small amount of time (+/- 4 weeks), for both traditional climbing and bouldering.
Several studies have focused on improving the hangboard to make it more effective. An-
derson [4] designed an innovative hangboard and had a significant and unique result for
the sport of climbing as his design also proved to reduce injuries. Anderson investigates
the design of the hangboard and suggested on specific features such as a) equation-driven
grip edge profiles, (b) drafted pockets, (c) novel grip designs, (d) improved grip geometry,
and (e) improved texture. However, Anderson did not dive further into training methods.
Besides proving the effectiveness of using an hangboard during climbing/bouldering train-
ing, the variables measured and researched by the above-mentioned related papers can
help to find the indicators which together form the hangboarder’s performance. Indicators
measured and mentioned are, grip strength [4][5][26][31][33], hang endurance [26][31][33],
shoulder strength [4][19], and back strength [19]. These four key performance indicators
are considered important and can explain the hangboarder’s performance.

2.1.4 Training load

Training load can be mistaken for the training intensity: reps, duration, distance, etc.
However, the total training load is more than these external training loads. The training-
process framework of Impellizzeri [21] includes essential measurable components necessary
for monitoring and controlling the whole training process: (1) the external load, (2) the
internal load, and (3) the training outcome [41][13][21], as can be seen in figure 2.4 below.

Figure 2.4: Training process framework and measurable components for monitor-
ing [21].

It is essential to understand the external loads to get a better idea of the internal load
of an athlete [32]. As said before, the external loads represent all the training modalities
imposed on the athlete. Combing the external load with the individual characteristics like
sleep, stress, nutrition, etc., a full image of the athlete’s experience (internal training load)
can be drawn. In addition, it is essential to balance the external and internal loads to
get the desired training outcome [32][3][1]. This is because the external loads should not
stress the internal load too much to prevent overloading and injuries but should stress the
individual enough to gain improvement during the training and prevent underloading [16].
It is important to monitor if this imbalance between internal and external loads happens
as identical external loads may elicit different internal loads per day (due to for example
stress, nutrition or sleep) [1].
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According to the interviews that were held with hangboarders, finger injuries seem to
happen without any warning signs. Hangboarders claim that one minute they are feeling
psyched about how strong they have become and are enthusiastic about their progress.
The next, their finger tendon snaps and the trauma hamper the hangboarder even in
simple daily tasks. According to the participants, finger injuries in hangboard training
are unpredictable and feel abrupt. This causes fear among some hangboarders, especially
when finger injuries have happened to them. Figure 3 shows an abstract representation of
the hangboarder’s internal load vs the external load. Figure 2.5 visualises the abruptness
of finger injuries (red arrow) and via the gradient, it is visible that hangboarders would
like to train in the green zone (near the red arrow) to make as much progress as possible
but do not get injured (dashed zone).

Figure 2.5: Abstract representation of internal load (y-as) vs the external load
(x-as) to find the training load (area under the curve). The red line indicates tendon
injury.

The interviewed hangboarders claim that there are three external trainings loads that
can be changed during hangboard: duration, weights and crimp type (Figure 2.7). These
variables have an inverse relationship with each other. So for example, when more weight
is added, it is likely that the athlete is not able to hang for the same duration and crimp
type as when there was no added weight. Therefore, to achieve high volume in training
(long duration), weight should be lowered and a fitting crimp type should be chosen. The
same applies for training with a relatively hard crimp and additional weight, the duration
time should be reduced in order to prevent overloading. According to the hangboarders,
it is hard to play around with the external loads, as it is hard for them to estimate which
intensity (crimp type and added weight) and volume (duration) is fitting their current
internal loads. From the interviewed hangboarders and the book called Beastmaking [14],
five ways to play around with the external loads of hangboard training are found and listed
in figure 2.6 below.

Figure 2.6: Five ways to adjust the hangboard training intensity.
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Accurate monitoring of the athlete’s training load is essential for an effective and effi-
cient training process. The adequate training stimulus contributes to an improvement in
physical strength and condition for the athlete. In contrast, an excessive training load can
increase the risk of injury and reduce the performance [44] [16]. There are two main types
of injuries, overuse injuries and acute injuries [35][37][49]. Overuse injuries result from
prolonged, repetitive motion, particularly common in endurance sports such as running or
cycling. Acute injuries, on the other hand, is an injury that suddenly occurs and is often
unpredictable. The most significant difference between overuse and acute injuries are the
injuries’ signs and symptoms. Acute injuries occur suddenly and unexpectedly with severe
pain (broken leg, muscle tear, etc.). In contrast, overuse injuries occur over a relatively
long period, where the pain emerges if the athlete exercises more. The athlete always
strives to train on peak performance to gain the most. Training loads below this peak
performance result in a low adaptation, while training loads above this peak performance
result in overloading or worse, injury. Usually, when the athlete faces a plateau or drop
in performance, he intends to increase the externals loads of the training. However, by
increasing the external loads without understanding the internal loads, an imbalance can
occur where overloading and injuries are likely to happen [44] [24]. The study of Halson
[18] complements this and has indicated that it is best to use both internal and external
training load as an indicator of fatigue to prevent overloading. Nonetheless, if the athlete
reaches an undesirable state due to overloading, then rest is the best-known treatment [11]
[20].

2.1.5 Posture

The posture of the hangboarder’s fingers/hands is one of the most important aspects, as
the training regime is mainly focused on the fingers. The indicator grip strength, which was
earlier mentioned, can be explained by how long the hangboarder can hold the grip, before
he slips away. This "slipping-away"-process makes the fingers/hands prone to injuries.
The three most common crimps are visible in figure 2.7 below.

Figure 2.7: The three most common crimps11.

Besides the fingers, the shoulders have to deal with great load as well [47]. It is advised
to hang with ‘active’ shoulders as visible in Figure 2.8, to avoid shoulder injuries. This
active posture can only be maintained with good core and shoulder strength. According
to the participants of the interview, if there is little core and shoulder strength, it is not
possible to hangboard with the correct stability and consistency. Which makes the athlete
more prone to injuries. The positions mentioned in Figure 2.8 allow the athlete to load
the muscles instead of the joints. It is important to monitor when the internal loads of

11https://www.climbinganchors.com.au/hangboard-training/
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the athlete start to respond to the external loads, to detect overloading and the prevent
injuries [1].

Figure 2.8: Hanging with bad form vs hanging with good form.12

As mentioned in the previous section, most hangboarders try to hang with the correct
posture. However, what this correct posture exactly means is not set in stone. From
interviews, it became clear that sagging into bad posture occurs slowly and imperceptibly.
The interviewees state that at ‘some’ point the athlete knows that he has sagged too
much and then considers stopping hanging to prevent injuries. However, this threshold is
subjective and self-chosen and it might be possible to identify this sagging earlier with the
help of some sensors. From the study in section 5.1 Appendix, it became clear that IMUs
have the potential to become an helpful tool to quantify this threshold to make it more
clear to the athlete when their posture is sagging into bad posture, which is an indication
for the plateau of their internal load capacity. Sensors are more likely to sense the sagging
process faster than the athlete himself, as sensors are able to detect even the slightest
change in motion. The most important part of determining this threshold is to first find
out what ‘correct’ posture is and what the characteristics are. Hangboarders claim that
each athlete has his own ‘correct’ posture due to anatomy differences per person. Therefore,
a potential system has to calibrate towards the personal characteristics of a hangboarder
in order to find the correct posture. Calibration of wearable sensors via static poses,
which is a popular method for calibration [45], might not cover enough body structure
information for hangboarders. Interviewees claimed that even hangboarders with the same
arm length might have a different correct posture, due to the body’s maximum flexibility
and muscle power. For this case study, a more fitting way to calibrate the system would
be to provide instruction to the user to find the individual ‘correct’ posture. The saved
correct posture can be set as a threshold to then monitor any deviations from the start
value. The instructions13 : for the correct hang posture can be seen in figure 2.9 below.

12https://www.climbinganchors.com.au/hangboard-training
13https://www.blackdiamondequipment.com/enCA/stories/experience-story-esther-smith-shoulder-

maintenance-for-climbers/
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Figure 2.9: 6-step instruction that helps the hangboard athlete to find a correct
hang posture14.

2.1.6 Conclusion

In conclusion, before hangboard posture can be evaluated; it is essential to understand
the correct posture and to know acceptable deviations (threshold). If unacceptable de-
viations are found, the external training load should be adjusted in order to balance the
internal training load of the athlete. In case of hangboard training, adjusting the external
training load can be done via five ways: adjusting the hang time, adjusting the rest time,
adjusting the crimp type, adjusting the grip size, and adjusting the weight.

From the previous section three main user problems came forward:
• It is hard for hangboarders (especially for beginners) to find the right external loads

so that they do work out but do not overload.
• It is hard to evaluate and correct the right (active) posture.
• It is hard to grasp for hangboarders when to let go of the grip at the moment that

their internal loads and external loads start to imbalance to prevent overloading.

Besides the problems that are identified, based on the previous section a few design con-
straints should be taken into account.

• The solution should be easy to set up (as hangboard training can be and is done
everywhere. From a tree branch outside to a doorframe inside.

• Most hangboard exercises are in repetitions of 7 seconds, so the interaction should
be fitting.

• Each hangboarder has different internal loads, the system should work for all.
• Design prototypes with an IMU lens, thus with measurement capabilities of IMUs.

2.2 Related work

The previous section discussed the hangboard training load, consisting of internal and
external loads. Subjective and objective data can explain the external and internal loads.

14https://www.blackdiamondequipment.com/enCA/stories/experience-story-esther-smith-shoulder-
maintenance-for-climbers/
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Subjective data explains an athlete’s psychological or physiological state from their point of
view. Objective data explains data about an athlete that is measurable by observation or
testing. Mapping objective/subjective data and internal/external load, results in a design
space as visible in figure 2.10.

Figure 2.10: Design space, subjective/objective and internal/external training
load.

From the previous section, it became clear that the hangboarder leans towards the
desire for objective data to fit better external loads, the correct (active) posture and to
grasp better when the internal and external loads become imbalanced. However, before
starting ideating on a novel product for hangboarders, it is helpful to look at existing and
related work to gain more insights and spark inspiration.

2.2.1 Monitoring training load systems

An often-used method to quantify the subjective internal training load is asking the
athlete to rate how he felt about the intensity of the exercise (perceived exertion). Moni-
toring the athlete’s perceived exertion per session would assure optimal training adaptation
and reduce the risks of overloading. The Rating of Perceived Exertion (RPE) scale is based
on a range between 6 and 20, in which 6 refers to no effort and 20 refers to maximum effort
[46] [6]. The RPE scale is designed to give a fairly good estimation of the actual heart rate
of the athlete during the training. The heart rate can be found by multiplying the RPE
scale score of the athlete by ten [46] [6]. Another quite similar tool is called the Modified
RPE-scale. This scale ranges from 1 to 10, in which 1 refers to no effort and 10 refers to
maximum effort. The main difference between the RPE scale and the modified RPE scale
is that the modified RPE scale is measured by the individual’s breath [17]. Both methods
have the advantage of being an easy system with no need for technology. However, the
athlete is trusted by filling in a number according to his perceived exertion. Therefore,
the score depends on a subjective assessment, and the intersubject comparisons may be
inaccurate [46] [6] [28].

Besides quantifying subjective internal training load, several studies focused on devel-
oping methods that use objective measures to quantify internal training loads. Banister [2]
created a model called TRIMP, which quantified internal training load based on the dura-
tion of the session with the mean heart rate. Other methods used ventilatory [30] or blood
lactate [22]. To overcome the limitations of the separate variables, it is recommended to
use more measures or add subjective quantifying systems such as RPE scales as mentioned
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above [45].

The external training load is often prescribed in the training program, either by an app
(objective) or by a trainer (subjective). An essential part of developing a training program
is understanding the determinants (limiting factors) [21]. Figure 2.11 visualizes Impelliz-
erri’s operational framework in the context of injury prevention, in which the determinants
are the factors related to injury occurrence. A trainer can use the framework to create a
fitting training program for their athlete(s). The external training load should be based
on (1) the evidence available (internal load), professional knowledge, own experience and
the understanding of the athlete’s characteristics.

Figure 2.11: Operational framework integrating the training process, monitoring,
and control of the training load for injury prevention [21].

2.2.2 Posture evaluation systems

Currently, the athlete’s coach/trainer has an important role in posture and motion
recognition during training. Considering this task without the use of technology, the trainer
observes and assesses the athlete with his own eyes and from experience and knowledge he
provides (fitting) feedback. Enhancing the trainer by the use of technology can help him to
provide more feedback (quantitatively) and preciser feedback (qualitatively) [43] [51] [12].

There are several studies which investigated posture evaluation in sports. The study
of Raweshdeh investigated preventative feedback in overhead sports with the use of IMUs
to collect data on the posture of the athlete [36]. The study of Yu [50] investigated on
ways to detect turn motions of alpine skiers. The study of Wu [48] investigated a posture
recognition system for yoga athletes. All three studies are rather similar, as they all
investigated ways to quantify a value, which is often assessed qualitatively by a trainer or
coach. Example values are for example shoulder rotation [36], pelvis rotation [50] and body
orientation [48]. In these studies, the variables are seen as input for the feedback system.
For example, in the study of Raweshdeh [36] the shoulder motions are tracked to see if the
athlete’s performance is decreasing. The athlete is warned when the performance decreased
till such a level that the athlete is prone to injuries. This performance decrease is inherited
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from posture deviation from the correct posture. The study of Wu [48] uses algorithms to
classify the postures of the athlete. After classification of the posture, the system was able
to provide feedback to the learner in order to improve his posture. However, without the
algorithm, it is not possible classify the athlete’s posture with an high accuracy as every
athlete has its own individual characteristics [48].

The important aspect which can be learnt from these studies is the importance of
having a start value. Deviation from this start value can be measured and quantified. In
the situation in which the trainer assesses the athlete, the trainer ’knows’ the start value
of the athlete by heart from experience and knowledge. However, this experience and
knowledge is not something that can be suddenly incorporated into technology. Therefore,
it is important to set start values and understand acceptable deviation before being able to
give proper feedback. In training without technology, the acceptable deviation is subjective
and hard to grasp for the athlete. Quantifying this deviation with sensors can help the
athletes by having more objective feedback and something to hold onto.

2.2.3 Conclusion

From existing training load monitoring systems it can be learnt that it is important to
balance the internal and external load of the athlete. There are several systems which are
often used in research to monitor the internal training load through surveys and interviews.
However, these are subjective measures and can include lots of biases. Besides, subjec-
tive measures, there are some quantitative measures, which include heart rate monitoring
or training duration. However, those quantitative measures are not as explored as the
qualitative measures. It is important to monitor the internal training load as accurate as
possible, before being able to choose fitting external training loads. The better the balance
between the internal load and external load, the better the training outcome and the more
efficient progression the athlete makes.

From existing posture monitoring systems, it can be learnt that the right posture
should be set as a start value before a deviation from this posture can be measured.
Just as with the training load monitoring systems, those measurements are often done
via qualitative measuring methods such as interviews and surveys. However, quantifying
posture measurements is an upcoming research topic and seems to have lots of potentials.
Indicators of these deviations can be different per sport, as every sport has its nature and
aspects. Therefore, it is important to investigate the most important indicators per sport.
Next to this, most of the existing systems provide only warnings to the user and do not
offer advice for adjustments. Providing the athlete tips for adjustments can be done before
the warning is given, to give the athlete the opportunity to improve on time.

2.3 Discussion

From the background research it becomes clear that a lot of measurements are done
qualitatively in hangboard training. This could be because technology for hangboard train-
ing is not yet explored that much, as there are not many papers published on hangboard
training in specific. Now climbing has become an Olympic sport, it is likely that more
research will follow. This thesis will use a co-design approach to explore interaction tech-
nology in hangboard training to investigate a training load management system to prevent
injuries. The framework, which is created for this thesis, is a combination of the two
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frameworks of Impellizzeri [21] and can be seen in figure 2.12. It is a combination as Im-
pellizzeri’s frameworks are focused on adjusting the external loads after the internal loads
were measured, to reach a certain training outcome. However, this did not fit this thesis
perfectly and a new framework was created. A readiness test is proposed to measure the
current state of the athlete’s internal load, before being able to set the external loads of
the training, to avoid the risk of overloading at the beginning of a training routine. Then,
the internal load of the athlete will be monitored during the training, to see if adjustments
in external loads are needed to reach the desired training outcome.

Figure 2.12: Proposed framework based on the two frameworks of Impellizzeri
[21].

The proposed framework in figure 2.12 is not yet filled as there are some variables not
(yet) determined. The internal load indicators, the internal load standards, possible failure
reasons, and applicable corrective actions. The next section will dive further into these
variables and will apply the framework to hangboard training. By applying the framework
to a specific sport, a step-by-step plan to fill the framework is developed which can later
be applied to other sports. Besides, the steps taken for hangboard training can be further
deepened by future research.
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Chapter 3

Methodology

This thesis focuses on developing a design approach for injury prevention, with hang-
board training as a case study. In this approach, the user is centred and involved through
different methods. This participatory approach is also called: Co-design. Co-design is a
design approach in which the participants are treated as equal collaborators in the design
process. The design decisions are postponed until after gathering the feedback from the
participants. Gathering their opinion can be done via multiple methods. For this the-
sis, the user is involved via semi-structured interviews, lo-fi prototype discussions, expert
meetings, surveys, a design workshop, and user tests. Those methods are not single events
but are together the co-design process, which can also be seen in figure 3.1. The upcoming
sections will dive further into the three phases, their methods, setups and results.

Figure 3.1: The co-design process, consisting of three phases.

3.1 Phase I: Investigating user goals and KPIs

Before being able to prevent the athletes from getting overloaded in training, the in-
ternal load indicators should be found and should then be monitored during training. The
internal load can be explained by the term Key Performance Indicators (KPI). The KPI is
a quantifiable measure which is seen as one of the most important indicators of the current
performance level of an individual1. Through academic research four KPI’s were found
and stated in section 2.1.3 Key Performance Indicators, and are listed below.

• Grip strength [4][5][26][31][33], The athlete’s ability to hang for a certain time without
slipping away the hand from the grip.

• Shoulder strength [4][19], The athlete’s ability to hang for a certain time with active
shoulders.

• Back strength [19], The athlete’s ability to hang for a certain time with a stable core.
1https://www.optimizesmart.com/understanding-key-performance-indicators-kpis-just-like-that/
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• Hang endurance [26][31][33], The athlete’s ability to hang for a certain time, in the
correct posture (correct hands, correct shoulders, correct core stability).

The specification and complementation of these through research found KPIs will be
done via user Research in the form of a lo-fi test.

3.1.1 Methods

Semi-structured interview

A semi-structured interview is a data collection method that relies on asking ques-
tions within a predetermined thematic framework. As the interview is semi-structured,
the questions are not set in order, or phrasing [29]. The semi-structured interview aims
to confirm the findings found in the previous sections’ literature and explore hangboard
training further. The interview results will be analysed via a thematic analysis, where the
data is examined to identify common topics, ideas, and patterns.

Lo-fi Prototypes

During the semi-structured interview, two lo-fi prototypes are shown to the participants,
as visible in figure 3.2 and figure 3.3. Low fidelity prototypes are simple prototypes with
which a high-level idea or concept can be explained to the participants. Lo-fi prototypes
are especially useful in the early design processes as they find out what the user thinks
about the idea before it is fully worked out [29]. This means that much time is saved
by involving the user at the start of the development process, to prevent missteps in the
early phases. The lo-fi prototypes aim to test the idea and the functionality and explore
implementation potential [29].

3.1.2 Setup

Nine participants participated in the lo-fi test. The participants’ poule ranged from
18 till 27 years old with a mix of female (5) and male (4). All participants have 2+
years of experience with wall-climbing and bouldering, work out on the hangboard at least
twice a week, and practice with the hangboard for over three months. The lo-fi testing
took place on the UTrack of the University of Twente, where a hangboard was placed in
the outdoor gym. The participants got five Xsens DOT sensors strapped on after filling
in the consent form. Two prototypes were shown and discussed via a semi-structured
interview, as visible in figure 3.2 and figure 3.3. The goal of the lo-fi test is to analyse the
Key Performance indicators during hangboard training (KPIs). Besides, the lo-fi testing
helps (1) to get confirmation on the user problems stated in section 2.5 conclusion, (2) to
explore possibilities for sensor placement (comfortability), and (3) to gain insights into the
implementation potential of Interaction Technology during hangboard training, by showing
the participants the two interactive prototype ideas.
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Figure 3.2: Prototype 1: visualising stability.

Figure 3.3: Prototype 2: KineXYZ models.

3.1.3 Results

The interview brought a lot of new valuable insights. The participants talked most of
the time about their experiences with hangboard training, both as an athlete and a trainer.
The lo-fi prototypes shown during the interview helped to spark inspiration and give the
user more meaning. Six topics are identified based on the examination of the collected
data.

First topic: user problems. The participants confirmed that hangboarders have
difficulty finding the right workload and maintaining a correct hangboard posture. Both
difficulties relate to not knowing when to stop with an hangboard exercise to prevent
injuries. In preventing injuries, the athlete must understand his body limit. This means
that he should be able to label pain as “good pain” (i.e. something you should push past
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to achieve your goals) or as “bad pain” (i.e. something you should listen to as a sign of
overdoing it)2 to prevent injuries.

Second topic: load capacity. It is stated that the weakest link (shoulder strength,
core strength or finger strength) makes the hangboarder fall during an hangboard exercise.
The hangboarder aims to strengthen this weakest link to increase his performance. The
participants mentioned three important links during hangboard training:

1. Shoulder strength, active shoulder posture during the hang.

2. Core strength, stability and control during the hang.

3. Finger strength, maintaining the right crimp during the hang.

The participants claim that the hangboarder’s muscles start to vibrate when it comes
close to the maximum internal load capacity. This vibrating within, for example, a green
doughnut (lo-fi prototype 1) could indicate changes in body posture. It thus might indicate
to the athlete how stable his hang was or could give a warning when the athlete gets too
unstable (prevent overloading). However, it is claimed by the participant that this indicator
might work differently per person.

Third topic: modality of feedback. Both lo-fi prototypes made use of visuals to
represent the motion capture data. The participants were enthusiastic about having graphs
or representations of their performance so that progress over time could be seen. The
prototype that uses a sticky figure as a representation of the athlete during the hang was
received well, and using colour codes (red, yellow, green) on different joints or limbs was
imagined to help understand what joint or limb needs improvement. The participants have
trained with audio/sound feedback. However, that feedback was focused on duration (hang
or rest) or motivation (music). Haptic feedback is not as known as auditory and visual
feedback among the participants. After discussing the haptic feedback modality, it becomes
clear that haptic feedback does not fit in a hangboard environment. The most important
reason was that hangboard training focuses on tiny tendons. Therefore, additional motions
(vibrations), even small ones, could be critical for the athlete.

Fourth topic: content of feedback. One participant mentioned that it is (currently)
hard to give precise quantitative feedback during hangboard training. Qualitative feedback
statements such as ‘lean a bit to the right’ are often used to provide feedback to the athlete.
One participant states that adding precision in hangboard training by using sensors similar
to those used in the lo-fi testing could help provide more precise and objective feedback to
improve the athlete’s learning and performance.

Fifth topic: sensor placement. According to the participants, none of the placed
sensors was uncomfortable or annoying during hangboard training. Due to the lightweight
and small size, the participant marked them as pleasant wearables. Figure 12 visualises
the sensor’s real-world location changes if the hangboarder saggs from a ‘good’ posture to
a ‘bad’ one. Both sensors on the arm (upper arm and forearm) rotate inwards, the sensor
on the pelvis shifts downwards, and the sensors on the shoulders move (shift and rotate)
towards each other. However, the difference between ‘good’ and ‘bad’ posture is slightly
exaggerated to make this point. Nevertheless, as the sensors are accurate, the slightest
difference in location can be detected and help the athlete reach and maintain a good
posture.

2https://www.pthealth.ca/blog/how-to-tell-the-difference-between-good-and-bad-pain/
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(a) Good hang posture (b) Bad hang posture

Figure 3.4: Sensor placement during good hang and bad hang posture.

Sixth topic: additional remarks. The participants mentioned multiple times that
the posture of the hangboarder highly depends on its anatomy (finger length, arm length,
etc.). Therefore, it is important to consider a calibration per person on what is ‘good’
before being able to label ‘bad’ movements or posture. Next, one participant explained
his worry about false indications, as he for example holds his breath to push that bit
extra. The last remark not yet mentioned is the importance of having a threshold as a
hangboarder to calculate, for example, 70% of their internal load capacity to train for
endurance. From this, two new ideas came up.

• A measurement system that can be used by the hangboarder each time he starts hang
boarding (personal purchase). Then he could measure his strength on that specific
day to train with a fitting workload.

• A measurement system can be used every 6-8 weeks so that the hangboarder can
measure his progress over these weeks (climb association purchase). The hangboarder
can train according to the strength report.

The sensors were placed on the participants as visualised in figure 3.20. Example data
of one participant with five sensors can be seen in section 5.2 Appendix each sensor can
be seen below. The graphs show the acceleration in the x-direction (blue line), y-direction
(orange line) and z-direction (grey line) over a certain time period (32 seconds). In total
6423 data points are collected for each sensor (2141 data points for each of the 3 different
directions). From the collected data a difference between good and bad hang posture is
clearly visible. After time sinking the data with the recorded videos of the athletes, it is
possible to segment the data into six different phases, 1) Preparing for the correct hang
pose, 2) Holding the correct pose, 3) Sagging into the bad pose, 4) Retracting into the
correct pose, 5) Sagging into the bad pose and 6) Getting off the hangboard. These six
phases are visible in figure 3.5 below.
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Figure 3.5: Segmented data of five Xsens DOTs on one participant.

Considering an automated computer system that analyses these data segments, it would
be possible to create a retrospective feedback system that outputs a report. (1) The total
hang time, (2) the time frame the athlete hangs in the correct posture (in which correctness
is determined based on the deviation from the correct posture), (3) the moment when the
athlete sags out of the correct posture and (4) the stability of the body (how controlled
the body is).

3.1.4 Conclusion

KPIs

Based on the confirmation of the participants, the three main user problems during
hangboard training are as follows:

1. It is hard to find fitting external loads for the hangboarder’s internal loads.

2. It is hard to evaluate and correct towards the right (active) posture.

3. It is hard for hangboarders to know when to stop with hangboard training as an
imbalance between external and internal loads is hard to grasp.

The first and second problems can be solved by understanding the internal training
loads of the user to find fitting external loads later. From the lo-fi test, it became clear
that there are three insightful KPIs for internal training load: shoulder strength (sagging of
the shoulders), finger strength (slipping away of the hands) and core strength (shakiness of
the back). One additional KPI mentioned by research: hang endurance, can be integrated
into the other three KPIs as the hang endurance of the hangboarder depends on the weakest
link of the hangboarder. By monitoring the other three KPIs and finding the weakest link,
hang endurance is found too. Therefore, three KPIs are the foundation for measuring the
internal load of the hangboarder, as visible in figure 3.6.
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Figure 3.6: The three KPI’s for the internal load of the hangboarder. (Source3

of the original image of the hangboarder)

Training Objectives

It is important to consider the training objectives of an hangboarder in order to un-
derstand the desired training outcome. Based on the athlete’s desired training outcome, it
can be decided where and how feedback should be given and based on which variables. In
section 2.1.2 it already came forward that there are two training types for hangboarders.
The interview held with the participants helped to specify these two types further:

- Hang in sets. This training type focuses on building strength and endurance by making
certain hang repetitions in sets [14]. For example, a set can be a hang of six seven-
second-hangs with 3 seconds of rest. The training could consist of multiple sets with
3 minutes of rest between the sets. During this training type, it is important that
the hangboarder can hold the repetitions in the correct form without failure. If the
hangboarder cannot hold, there are three possible ways to adjust the external load
of the training: change the duration, change the crimp type, or adjust the weight.
The KPIs mentioned in the previous section indicate which link in the hangboarder’s
system is the weakest. The athlete can be advised on possible training adjustments
via a feedback system. As it is key in this training type to hold on to the hangboard
for 7 seconds, each KPI is important to monitor and must meet its own KPI standard
to provide the user with fitting advice.

- Max hangs. This training type focuses on building maximum strength by letting the
hangboarder hang till he meets ’failure’. The athletes train to failure in max hang
training, but not a total failure. According to interviews and online research, failure
in max hang training is defined as losing shoulder engagement45. The slipping away
of the fingers and the core strength are in this training not as big as a problem. This

3https://www.grassrootsphysicaltherapy.com/physical-therapy-treatment/2017/
4https://mojagear.com/building-maximum-finger-strength-with-hangboarding/
5https://pitchsix.com/blogs/academy/academy-hangboard-shoulder-engagement
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is because the goal of the athlete (in this training type) is to hang till he falls off the
board which automatically protects the athlete from getting injured in the fingers
and the back. However, hanging without active shoulders does not automatically
make the athlete fall off the board, and can still cause shoulder injuries. Therefore,
for this training type, the KPI of shoulder strength is the important indicator for the
hangboarder to decide when to stop the hangboard training to prevent injuries.

Both training objectives have their nature and aspects, as mentioned above. Both
can ask for (partly) a different feedback design. Therefore, the proposed framework
of figure 2.12 is applied to both training objectives according to the findings of the
lo-fi test and can be seen in figure 3.7 and figure 3.8.

Figure 3.7: The proposed framework of figure 2.12 filled in for the training ob-
jective of hang in sets.
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Figure 3.8: The proposed framework of figure 2.12 filled in for the training ob-
jective of max hangs.
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3.2 Phase II: Investigating KPI sensing and user feed-
back

The KPIs and training objectives are found in the previous section, and the next
step is to create a system that can sense the KPIs, determine a threshold for the
KPIs and create a feedback system to communicate this to the user with the training
objective in mind.

The three KPIs mentioned in the previous section will be the foundation of the
feedback system designed for injury prevention. However, to design a system based
on these inputs, the KPIs need to be converted into measurable quantities to monitor
those during hangboard training. As visible in figure 3.6, each KPI behaves on its
axis. The finger strength (FS) KPI behaves on the y-axis (vertical movement), the
shoulder strength (SS) KPI behaves on the x-axis (horizontal movement) and the
core strength (CS) KPI is a combination of both axis, which represents shaking.
For each of the KPIs, a sensor should be chosen to measure their behaviour. It
is crucial to keep in mind that this thesis is focused on the research of a design
approach. Therefore this research is neither investigating sensors nor algorithms
but investigates human-media-interaction. The micro-controller of the prototype is
an Arduino, as this platform allows for rapid prototyping to investigate interaction
possibilities. The three sensors that can independently sense the behaviour of the
three KPIs are discussed below.

- An ultrasonic sensor measures the distance from the sensor to an object in front
of it. This means that if the sensor is perpendicular to the hand, it can measure
the distance to the ceiling. The hand will move on the vertical axis if the
hangboarder slips away (lacks finger strength). The ultrasonic sensor reads
from 2 cm to 400 cm with an accuracy of 0.3 cm, which is good for noticing the
deviation of the finger strength KPI.

- A stretch sensor measures the capacitance of the sensor. Stretching the sensor
causes both the area and thickness to change, and this deformation results
in a measurable change in capacitance. The stretch sensor can be connected
between the two shoulders of the hangboarder. The sensor will notice when
the hangboarder sags his shoulder due to the capacitance change of the sensor.
The sensor reads 180 Ohms difference per centimetre, which is good for noticing
deviation in shoulder distance with millimetre precision.

- An accelerometer measures static and dynamic acceleration. Static acceleration
is the constant force acting on a body, like gravity or friction. Dynamic ac-
celeration forces are non-uniform, and the best example is vibration or shock.
The accelerometer can be placed on the back to detect vibration in the back.
Vibration on the back is an indicator of core strength; the more stable the hang,
the more core control the hangboarder has. The accelerometer reads -2g to +2g
with a sensitivity of 270mV/g. This means that the accelerometer is sensitive
to noticing small vibrations in the athlete’s core.

The three sensors mentioned above are connected via one Arduino. The ultrasonic
sensor is sewed on a glove as visible in figure 3.9a, the stretch sensor is sewed in a
t-shirt as visible in figure 3.9b and the accelerometer is sewed on a hip band as visible
in figure 3.9c.
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(a) Ultrasonic sensor (b) Stretch sensor (c) Accelerometer

Figure 3.9: The Ultrasonic sensor, stretch sensor and accelerometer integrated on
a glove, t-shirt and hip band respectively.

At the start of a hangboard training, the standards for each sensor are calibrated via
the instructions mentioned in figure 2.9. During the hangboard training, deviation
from the standard is monitored to see how the KPIs behave. In hangboard training,
there are no quantified thresholds (yet) that the hangboarders must comply with. The
user’s involvement in making these terms is usually considered as a vital mechanism
to enhance system quality and ensure successful system implementation [9][27]. For
this thesis, the user is involved in creating these thresholds via a 5-point Likert scale
survey to measure the user’s satisfaction. Besides this, the user is involved in a
design workshop, where the possible feedback system design is discussed and further
explored.

3.2.1 Methods

5-Point likert scale survey

A 5-point Likert scale survey is a survey that is evenly scaled from which the re-
spondents choose the level of agreement or disagreement [29]. A 5-point Likert scale
survey is easy to fill in for respondents as they do not have to overthink and do not
have to write lots of lines in order to answer. As the survey title already states, the
survey is made up of a 5-point rating scale ranging from one end to another, with
a neutral point in the middle. For this thesis, the 5-point Likert scale survey deter-
mines how satisfied the respondents are with the posture displayed in the proposed
image. Therefore, the 5-point Likert scale survey ranges from very unsatisfied (1) to
very satisfied (5).

Design Workshop

A design workshop with users gives space for creative collaboration. A design work-
shop can be organised to discord and explore opportunities. Next to that, the work-
shop can help spark discussion among users and give insights into the user’s desires
[29]. The goal of the design workshop was to gain more insights into possible feedback
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systems for the KPI sensing system (ultra-sonic sensor on the hand, stretch sensor
on the shoulders, accelerometer on the back), as visible in figure 3.9a, figure 3.9b and
figure 3.9c.

3.2.2 Setup

A survey is held in the Cube in Enschede6 to be able to set the KPI reference value.
Hangboarders and hangboard trainers helped by stating their desired threshold dur-
ing hangboard training. In total, 13 participants (aged 18-27 years) were willing to
participate in the study. It is impossible to photograph a shaking effect of an hang-
boarder. Therefore, for this thesis, the core-strength KPI is more a quality indication
rather than a fixed threshold. In which less shaking indicates more quality in core
strength. For the finger strength and shoulder strength KPI, it is possible to create
an image sequence of postures. Each participant was provided with one sequence of
five images to evaluate the hand posture (FS KPI), and one sequence of five images
to evaluate the shoulder posture (SS KPI). Each participant was only provided with
images and did not know what sensor values were behind these. Data is collected
via the use of a 5-scale satisfaction rating. The survey is randomised in blocks7, so
the images within the blocks (hands, shoulders) are randomised to prevent the user
from getting biased. Figure 3.10, shows the images of the hand used for the survey,
in which you can see the slipping away process of the fingers. Figure 3.11, shows the
images of the shoulders used for the survey, which shows the sagging of the shoul-
ders. Both blocks of images are in order of ascending deviation from the first image,
which was unanimously chosen as the correct posture by the participants. For both
blocks, the first image on the left equals zero deviation from the reference value. In
contrast, the others in the hand sequence have a sensor value deviation of 1, 2, 3,
or 4, respectively, and the other images in the shoulder sequence have a sensor value
deviation of 30, 60, 90, or 130, respectively.

Figure 3.10: Images of the survey block to determine the FS KPI threshold, in
order of ascending deviation.

6https://cubebouldergym.nl/
7https://www.idsurvey.com/en/randomization-increasing-data-quality-in-research/
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Figure 3.11: Images of the survey block to determine the SS KPI threshold, in
order of ascending deviation.

The design workshop was conducted with five participants who had background
knowledge on creating User Experiences, hangboard training or both, as visible in
figure 3.12.

Figure 3.12: Background knowledge of the participants who participanted in the
design workshop.

The workshop started with an ice-breaker exercise called 30-circles8, in which the
participants had 3 minutes to fill 30 circles. This warming-up exercise aims to spark
the participants’ creativity in a brief period. After the warming-up exercise, the three
KPIs and the three sensors are explained to the participants. After this introduction
of 10 minutes, the participants are asked to help tinker a fitting feedback system
based on the output of the sensors. A user journey template9 is used to structure
the workshop and help the participants work to the workshop’s end goal: a full user-
journey map, with the translation to a feedback design. During the workshop, one
facilitator kept an eye on the participants and answered questions when those were
raised. The workshop lasted 90 minutes in total.

3.2.3 Results

KPI Threshold

The participants were asked to rate every image with a rating from 1 (very unsatis-
fied) to 5 (very satisfied), according to how satisfied they feel about the posture in
the image. The results of the survey can be seen in figure 3.15 and 3.16. In both
graphs, it is visible when there is a drop in satisfaction among the users. From the
user’s perspective, the drop in satisfaction is when a system should step in and warn
the user. The FS KPI should not deviate more than 3; the SS KPI should not deviate
more than 60. Besides setting the threshold for a user warning in the KPI monitoring
tool, it would be helpful to have a grey zone in which the system lets the user know

8https://www.ideo.com/blog/build-your-creative-confidence-thirty-circles-exercise
9https://miro.com/templates/customer-journey-map/
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he is coming close to getting a warning signal. In this grey zone, it is for the user
still possible to improve his posture (if possible) without getting the final warning
signal.

(a) Threshold FS KPI (b) Threshold SS KPI

Figure 3.13: Results of the survey in a graph, threshold for finger strength KPI
and shoulder strength KPI.

Feedback Design

The result of the design workshop is a filled-in User Journey template as visible in
figure 3.14. The participants were asked to think about the given four topics in the
user journey: the user’s desires, the feedback possibilities, goals and the difficulties
the user faces. The participants elaborated on these topics in the four phases they
came up with. The four phases of the design workshop are: before the training,
the hang during the training, the rest moments during the training, and after the
training. The insights from the design workshop can be used to develop a feedback
design system.

Based on the participant’s feedback, it is suggested to work with visual and auditory
feedback to communicate the hangboard process to the user. Deviation in sound can
help the user to understand the relationship between what he feels and how he should
act accordingly. For example, an increasing sound can help the user to understand an
increasing risk of overloading. The most important aspects of a system in hangboard
training are: instruction to start the training correctly, a timer to know how long
the training takes, a graph that resembles the athlete’s performance, a sound that
resembles the athlete’s performance, tips to adjust the training.
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Figure 3.14: Results of the design workshop: User Journey

3.2.4 Conclusion

KPI threshold

The results of figure 3.15 and figure 3.16 can be merged into a feedback recommen-
dation for a system that reacts the same as hangboarders and trainers. Of course,
it has to be taken into account that this threshold has not been researched in dept
and can be improved with future work. However, for this KPI monitoring tool, it is
key to set the deviation threshold to give feedback with at least the feedback level of
hangboard experts. Figure 3.15 and figure 3.16 show the feedback recommendation
for a potential system for hangboard training.

Figure 3.15: Feedback recommendation for the deviation threshold of the FS KPI,
based on the results of the survey.

Figure 3.16: Feedback recommendation for the deviation threshold of the SS KPI,
based on the results of the survey.
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Feedback system

From the results of the design workshop, a feedback framework consisting of three
phases can be concluded as visible in Figure 3.17.

Figure 3.17: Feedback system for hangboard training.

(1) The preparation phase. From the user, it became clear that the hanging
posture should be correct to execute the exercises properly. However, the correct
posture is different per person and cannot be based on certain fixed numbers due to
different body sizes. This project does not dive further into creating an algorithmic
model in which the correct posture is calculated based on body measurements but
uses instructions to help the athlete find the correct posture.
(2) The process phase. During this phase, the user would like to maintain the
correct posture from the previous phase and would like to be alarmed when devi-
ation from the correct posture occurs. Besides this, the slippage of the hands and
the sagging of the shoulders can be corrected by the user when it is notified on time
(until a certain level of deviation). While the core strength indicator on the back is
an indicator of stability and is less likely to be corrected by the athlete and indicates
the quality of the hang.
(3) The follow-up phase. The user desires to get a report after the training, to
see the training results and to get some follow-up steps along with the user’s goal
to improve his performance. As the detection system can detect which link is the
weakest (hands, shoulders or core stability), it is possible to provide the user tips
on this specific weak link. Understanding the weakest link of the athlete offers the
opportunity to use focused training on the athlete’s weakness. As the athlete’s maxi-
mum performance equals the weakest link’s maximum performance, the performance
of the hangboarder will improve when the weakest link does. After the athlete has
improved his weakest link, another link will become the weakest and this link can
again be improved via focused training.
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3.3 Phase III: User test

After phase I, the KPIs and training objectives for hangboard training are found.
Later in phase II, a system is created that could sense those KPIs. Then, a feedback
system was created along the threshold, which was set with the help of hangboard
experts. The next step is to combine the feedback design and the KPI sensing system
in a prototype tested in an experimental user study.

3.3.1 Methods

Within-Subjects Study Design

The goal of the user test is to investigate whether the designed system can provide
meaningful feedback on the training schedule and training load of the user. The
system is developed to give the users more insights into their internal load to better
adjust the external load to train at the desired training load. The system provides
insights into the user’s internal load and gives tips for adjusting the external load. A
within-subject study design will be done with two groups. A within-subjects design
is a user study that compares two groups of participants with the same treatments
to test the independent variable [29]. For this user test, treatment A is 3 sets of
hangboard training with feedback and treatment B is 3 sets of hangboard training
without feedback, to test the dependent variable: performance, the hang time of the
hangboard athlete in correct posture. Besides, an in-depth analysis of the results of
the user study helps to understand how users react to the provided feedback when
they surpass the system’s threshold. The most significant advantage of a within-
subjects design is that you need only half of the participants that you would need with
a between-subjects design. Next to this, as all participants get the same treatments, it
is less likely that individual differences make errors in the data [25]. From the previous
sections, it has been stated multiple times that individual characteristics play an
essential role in hangboard training, so reducing errors associated with individual
differences is important. One major disadvantage of a within-subjects design which
is important to mention is the carryover effect [29][25]. The carryover effect refers
to the influence of having one treatment before another treatment on the user’s
behaviour and performance during the second treatment.

3.3.2 Setup

In total, 12 participants were willing to participate in the experimental study, where
the impact of the system’s feedback on the hangboarder’s KPIs during hangboard
training was tested. The user test took place in the Cube in Enschede. The par-
ticipants were divided over two groups for a counter-balanced research design. All
participants had to perform 6 sets of 6 repetitions of a 7 sec hang with self-chosen
grip size and additional weight, with 3 seconds rest between the repetitions and a
1-minute rest between the sets. Group A received the system’s feedback during the
first 3 sets, and group B received the system’s feedback during the last 3 sets, while
the sensors were on the body for all 6 sets. It is chosen to use the training objective
of hang in sets during the user study, as the max hang cannot be performed too often
by the hangboarder due to the high training intensity.
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The prototype the user tried out consisted of three phases: preparation, training, and
follow-up. For the first phase, the preparation, instructions (from section 2.1.5, figure
2.9) on how to hang with active shoulders is spoken out loud by the facilitator of the
user study. The athlete’s posture is then checked by a trainer who was present in the
climbing hall to decrease the possibility that the athlete gets hurt by an incorrect
start posture. After the athlete has found the correct posture, it is time to start
the training. The athlete is asked to wear the glove (finger strength KPI), t-shirt
(shoulder strength KPI) and the hip band (back strength KPI), as visualised in figure
3.18.

Figure 3.18: The KPI sensing system figure ?? integrated in a glove, t-shirt and
hip band, worn by a test person.

During the training (training phase) the athlete receives feedback on the three KPIs
(hand, shoulder and back) as visible in figure 3.19 and via audio feedback (more
details about the audio-design will be discussed below). As visible in figure 3.19a,
the athlete’s posture is good, and the challenge is to keep all these circles green for
the remaining time (visualised with a white bar at the bottom of the screen). If
a circle turns red, the corresponding KPI deviates from the standard value. Each
KPI has its circle on the screen, with the finger strength KPI (figure 3.19b, shoulder
strength KPI (figure 3.19c), and the core strength KPI (figure 3.19d). Besides red
circles which indicate a warning signal, orange circles indicate a warning zone, where
it is still possible for the user to improve his posture before the circles turn red.
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(a) (b) (c) (d) (e)

Figure 3.19: Examples of possible feedback that can be given by the system.

The transition from green to red is also provided to the user via a tone. The tone
frequency gets higher as the athlete’s performance deteriorates. The addition of
sonification to visual feedback enhances complex motor task learning [39]. Auditory
feedback based on sensor data can help the athlete during his self-assessment by
providing direct information on the performed movements [10]. When the athlete
understands his/her performed movement, repeating the movement will be easier
and the movement repeatability of the athlete will increase [23] [40]. Next, the au-
ditory modality remains largely available without interfering with other modalities
and can be processed rapidly [10]. Based on the user’s feedback, auditory feedback is
combined with visual feedback so that the user can easily see which KPI is lacking.

After the training (follow-up phase), a report is created and provided to the athlete.
The report shows the athlete the behaviour of his three KPIs during the training,
with graphs, as visible in figure 3.20a. The coloured peaks indicate where the athlete
exceeded the thresholds and thus where he can improve. Based on the report, tips
are given to the athlete based on the behaviour of the KPIs to ensure the thresholds
are less exceeded and the athlete is less prone to get overloaded and injured. The
tips corresponding to the behaviour of the KPI are visible in figure 3.20b.

(a) Report (b) Tips

Figure 3.20: Report (a) on the behaviour of the finger strength KPI, shoulder
strength KPI and the core strength KPI, respectively. The tips (b) given by the
system based on the behaviour of the three KPIs.
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The participants were asked to hang for 6 sets, with 6 repetitions of 7 seconds per
set. It is essential in the experimental research study that the athlete starts at his
own training level because when the exercise is too easy for the athlete, it is assumed
he can execute the exercise without any problems, which means: no feedback is
given by the system. The experimental research study investigates the influence of
feedback during hangboard training. Therefore, the participants are asked to choose
the external loads (additional weight and grip size) for the training based on their
training level, to ensure the athlete starts at a reasonable level. During the test, the
athlete’s hang time in the correct posture (green zone) is timed per repetition and
averaged per set. After testing the prototype, the participants were interviewed via
a semi-structured interview as explained in section 3.1.1.

3.3.3 Results

Quantitative results

The previous section explained the setup of the user test and as mentioned, the hang
time in which the athlete hangs with good posture (green zone) is timed and noted.
All 12 participants executed 6 sets of 6 repetitions, in which group A got the system’s
feedback during the first three sets, and group B got the system’s feedback during
the last three sets. This means that the athlete’s performance while receiving feed-
back (hang time in correct posture) can be compared with the athlete’s performance
while not receiving the system’s feedback. An interesting observation is important to
mention; none of the participants received a red circle during the repetitions. This
means the participants carried out the exercises within the green and orange zones,
both injury-safe zones according to the threshold research in section 3.2.3.

Figure 3.21 shows the mean and standard deviation plot for performance per par-
ticipant over the six sets. The error bars provide details on the variances in data.
As visible in the figure, the error bar of participant 8 (SD = 12,433) is the biggest,
which indicates that the data points (athlete’s performance per set) are more spread
out. The data points of participants 5 (SD = 2,500) and 12 (SD = 2,924) are more
clustered around the mean and are therefore more reliable than participant 8. From
figure 3.21 it also becomes clear that the performance means of participants 7 and 8
are lower than the other participants’ performance means.
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Figure 3.21: Mean and standard deviation plot for performance per participant.

However, in the case of this user test, a lower performance percentage does not
automatically mean that the participant was a less skilled hangboard athlete. The
athlete’s performance during the user tests highly depended on the external loads that
the participant chose himself. So, while looking at the results, it has to be taken into
account that the performance level does not refer to the athlete’s skill level but refers
to the athlete’s performance level while training with specific external loads. All
participants chose body weight as the external load and had different choices on grip
size (19mm and 25mm) and crimp type (open hand and half crimp), as can be seen in
figure 3.22. According to the interviews from section 2.1.2, hangboard training with
an open hand and a 25 mm grip size are less demanding than climbing with a half
crimp on a 19 mm grip size. Therefore, it can be concluded that participants 5 and
8 chose the most demanding external loads for the training during the user test. For
participant 8, these external loads were too demanding, as can be concluded from his
performance and the data variance among the sets. Participant 5 had a performance
level of 92.5% and a standard deviation of 2.5, with which it can be argued that
participant 5 chose fitting external loads for his training while participant 8 did not.

From the standard deviation in figure 3.21 it can be concluded that each user has
different needs in terms of feedback. For example, participant 8, has a more signif-
icant error marge than participant 2. Therefore, the bandwidth in which feedback
is given can be smaller for participant 2 than for participant 8, in order to provide
the same feedback frequency for both participants. Adjusting the bandwidth of the
feedback system based on the standard deviation can help the system to become
effective for all skill levels. This also applies to the threshold of the system. A more
expert hangboard athlete needs a more precise threshold than a beginner athlete, as
an expert has minor errors to tweak which require more critical feedback.
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Figure 3.22: Mapping of the external loads chosen by the participants. Grip size
19 mm or 25 mm, crimp type Open hand or Half crimp

To dive deeper into the performance of each participant, the average performance per
set per participant is plotted in figure 3.23a till figure 3.23l. These figures show the
individual measurements of the 12 participants who participated in the user study.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.23: % hang time in good posture over 6 sets of 6 repetitions, where the
participant received the system’s feedback during the coloured zone.
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The coloured zone in the graph resembles the time when the participants received
the system’s feedback. The vertical axis represents the % of seconds the hangboarder
hangs in the correct posture. If the athlete performs at 100%, he hangs in the correct
posture for that specific set. Besides, performing at 100% means that the participant
did not receive feedback other than green circles throughout the whole set. As visible
in figure 3.23, there were five participants, figure 3.23a, 3.23f, 3.23j, 3.23g, 3.23k, who
only saw green circles in the feedback system, as they performed 100% of the time
in good posture. This can either be because (1) the hangboarder is performing
really well during the 6 sets, (2) the external loads chosen by the participant were
not challenging his internal loads or (3) the threshold was not sensitive enough.
Participant 3 (figure 3.23e) and participant 5 (figure 3.23i) performed better after
receiving the system’s feedback, as they positively improved their posture during
the feedback zone. In contrast, participant 2 (figure 3.23b) had an overall decrease
in performance which could also be because of tiredness or too difficult external
loads. Participant 7 (figure 3.23c) and participant 8 (3.23d) both show an increase
in performance after receiving the system’s feedback. However, even though they
seem to perform better with the feedback, they do not reach a 100% level in any set.
Participant 10 (figure 3.23h) and participant 12 (figure 3.23l) seemed to have some
difficulties with the first three sets and then reached a correct posture and kept that
posture for the rest of the sets. Both participants 10 and 12 fell in participant group
B, and thus, they improved their posture without the help of the feedback system,
as that was not yet active on the moment of improvement. Besides looking at the
individuals, it is interesting to look at the average performance of both groups, as
visible in figure 3.24.

(a) (b)

Figure 3.24: The average performance of group A and group B per set, visualised
with a red line, and the total average performance over all six sets, visualised with
a blue line.

From figure 3.24 it can be seen that group A (M = 97,35%) had an overall higher
performance than the participants from group B (M = 92,36%). The figure shows
that Group A’s performance dropped in set 2 and was improved while receiving the
system’s feedback in set 3. In the three last sets, it is visible that the participants’
performance had an overall drop. The performance of group B seems to improve
while receiving the system’s feedback. Group A received the feedback for the first
three sets and then had to finish the total of 6 sets without feedback. This could
have led to demotivating during the last three sets. Group B started the training
with 3 sets without feedback and finished the 6 sets with feedback during the last
three sets; this could have led to more motivation during the last three sets. The
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carry-over effect, as mentioned earlier, is essential to consider while looking at the
results.

As visible in figure 3.25, some individuals benefit from the feedback given by the
system. Especially those who have relatively a lower performance seem to benefit
more from the feedback than those who already perform close to 100%. However,
this can be explained by the plateau of the maximum performance, as it is harder
to improve a performance close to perfect than a performance with more room for
improvement. In total, two participants do not seem to benefit from the feedback
(participants 3 and 5), five participants already performed at a 100% level (partici-
pants 1, 4, 6, 9 and 11), and five participants (participants 2, 7, 8, 10, and 12) did
benefit from the feedback during the training (see figure 3.25a). However, of these
five participants who benefits from the feedback, was only one participant in group
A and the other four were in group B. Both participants who did not seem to benefit
from the feedback were located in group A. This can also be seen in figure 3.25b, as
it is visible that the feedback did make a difference in performance in group B, even
though in group A there is a slightly better performance for the hangboard training
without feedback. However, it has to be kept in mind that two of the six participants
of that group did not benefit from the feedback, and three of the six participants
performed at 100% performance.

(a) Individual level (b) Group level

Figure 3.25: The impact of feedback on the hangboarder’s performance, on indi-
vidual and group level.

The last interesting insight from the data was the most common weakest link among
the participants. The system measures the three KPIs independently, and therefore
it was possible to look back at the data and count the most common weakest link.
From every participant, the KPI with the highest error rate over the 6 sets was chosen
as the weakest link. As visible in figure 3.26, the shoulder strength KPI had the most
counts among the participants, only Three participants had the finger strength KPI
as the weakest link.
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Figure 3.26: The participant distribution for the experimental user study.

A statistical T-test is done to determine if there is a significant difference between
the means of performance during hangboard training with feedback compared to
hangboard training without feedback. An F-test is used to determine whether the
variances are equal or unequal. Since the p-value is larger than 0.05, we fail to
reject the null hypothesis and conclude that there is no difference in the variance of
performance level between hangboard training with feedback and hangboard training
without feedback. As the p-value is insignificant, it is assumed that the variance is
equal in a T-test. The T-test hypothesis is shown below in equation 3.1.

H0 : µ1 = µ2 H1 : µ1 ̸= µ2 (3.1)

The p-value for two-tailed t-tests is insignificant (p = 0.621). Therefore, the difference
between the means is not statistically significant. Therefore, there is no statistical
proof that training with feedback significantly influences the performance of the
athlete compared to training without feedback.

Qualitative results

The interview brought a lot of new valuable insights to light. After the hangboard
training, the participants participated in a semi-structured interview. Different top-
ics can sort the feedback from the user.

First topic: Insightfulness. From the participants, it came forward that the feed-
back helped to gain more insights into their hang behaviour. The participants state
that it can be frustrating to fall off the hangboard without knowing the cause. The
system can help the participants by understanding the cause and giving tips to im-
prove. From the answers given by the participants, it became clear that the system
creates more awareness in the user about their behaviour during hangboard training.
Besides, participants claimed that they think that they would feel more motivated
to improve hangboard training if they knew what KPI is the weakest and how to
improve this.
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Second Topic: Implementation. Each participant seemed quite enthusiastic with
the system after the training. A few participants stated that they like that hang-
board training is more often researched and has gotten more scientific attention now
that climbing has become an Olympic sport. With this enthusiasm, different imple-
mentation possibilities were ideated by the participants.

• A few participants mentioned that active shoulders is one of the most important
aspects of hangboard training. The active shoulders also seem to be an essential
part of bouldering and wall climbing. Currently, active shoulders are subjec-
tively evaluated by a trainer who is present. However, when there are more
athletes in one training, it is hard to keep track of each athlete’s shoulders.
Therefore one idea is to use the t-shirt of the system with the shoulder strength
KPI to detect if the athlete has active shoulders or is sagging. This can, for
example, be indicated on the t-shirt with a LED strip. This idea also came for-
ward from other participants who thought about athletes who had just started
climbing. In training for beginners, the t-shirts of the athletes are sometimes
taped to let the athletes feel if their shoulders are sagging (tape is bending).
This is the same principle as with the shoulder strength KPI; however, in the
system of this thesis, the tape is a stretch sensor.

• The use of phones is accepted by the hangboard community, and in a climbing
hall, there is often a small edge where a phone can be placed on. Via that
statement, the discussion led to integrating this thesis’s system in an existing
app such as CrimpD10. In that case, the system is the input for the decision-
making in the app to create training schedules and feedback. Currently, the
athlete’s performance has to be filled in manually by the athlete, including the
bias of the athlete (how can he fill in his performance if he does not know how
he performed?). The system from this thesis offers the opportunity to have
a quantified value that can be used to create a training schedule grounded in
measurements.

• From the interview, it came forward that a readiness test can help determine the
participants’ internal loads on that specific day. Then, it is easier for the user
to start the training with fitting external loads. Next, when the user starts with
fitting external loads, it is likely that at least the first part of the training can
be performed on a 100% level before adjustments are needed (if needed at all).
According to the participants, the system used in the user test has the potential
to be the measurement system of the readiness test. One participant mentioned
that, for example, speed climbers can only start their training if they perform
a speed climb within at least 80% of the time of their high score. If the athlete
cannot perform at that level, he is not feeling good enough for training, and he
is sent home. This 80% principle might be worth looking into for hangboard
training when a sensor system can provide the needed quantified measures.

• From the discussion on the readiness test, it also came forward that the system
could help test the athlete and decide on what level he is on or should climb on.
The climbing level of an athlete is an important characteristic that resembles
the athlete’s climbing skills. This climbing level is based on the level of the most
complicated route the athlete can climb. However, as climbing a route involves
more than just strength, it would be helpful to have a hangboard level as well,

10https://www.crimpd.com/
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which can explain the strength level of an athlete. This strength level can be
measured by this thesis’s system, which is thus another potential.

• It is stated by the participants that you start to train with your body weight on
an hangboard if you can execute the scapular pull-up11 correctly. According to
the participants, the judgement of executing the exercise correctly is subjective
and hard to grasp for the athletes. Therefore, a situation in which the athlete
is waiting on the ’go’ from the trainer often arises. In that situation, it is hard
for the athlete to receive a ’no go’ while the trainer cannot ground his ’no go’ in
any measurements. The thesis’s system can help ground the trainer’s opinion in
measurements to give the participants the feeling of unbiased training advice.

3.3.4 Conclusion

From the quantitative results, it can statically not be concluded that the feedback
affects the user. Visually, there is a slight improvement in performance in group B,
where the feedback is provided in the last three of the six sets. In group A, there is a
slight difference in performance, where the performance was better when no feedback
was provided to the user. Next to this, in group A, there was only one participant
who benefited from the feedback, the other three participants were neutral, and two
participants did not benefit from the feedback. Therefore, this difference should be
further tested in future work. In group B, a positive effect on performance due to the
feedback given is visible. However, as both groups consist of six participants, it is
wise to redo the experiment with more participants or as a between-subject design,
to find a statistically significant quantitative difference.

From the qualitative results, it can be concluded that the participants’ self-perception
increased by providing feedback during training. The participants were more aware
of what KPI was the weakest and were eager to improve this KPI as the way to
improvement became clear to them via the provided report. Besides, five implemen-
tation potentials came forward: (1) Further developing the t-shirt with the stretch
sensor to measure the activity of the shoulders, (2) integrating the system with ex-
isting hangboard apps, (3) using the system to develop a readiness test, (4) using
the system to determine the climbing level of the athlete, and (5) using the system
to ground the opinion of the trainer in measurements.

In conclusion, a training load management system to prevent injuries is received well
among hangboard athletes. The feedback cycle used for this management system
is crucial in its effectiveness and application to hangboard training. Therefore, the
used feedback cycle can be seen in the figure 3.27 below.

11https://trainingforclimbing.com/the-best-exercise-youre-not-doing-the-scapular-pull-up/
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Figure 3.27: Structure of the feedback cycle. The figure is based on the figure in
the A Design Space of Sports Interaction Technology Reader [34].
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Chapter 4

Conclusion and Discussion

This thesis was a follow-up case study with a focus on hangboard training to investi-
gate the process of designing interactive injury prevention applications. Throughout
this research three research questions have been answered:

• How can the internal load capacity of hangboard athletes be quanti-
fied and effectively communicated to the user? The internal load capacity
of the hangboard athletes were quantified for this research via the FS KPI, SS
KPI and the CS KPI. By setting the desired thresholds for these three KPIs,
it was possible to communicate the internal load bandwidth in which the hang-
board athlete should train to reach the desired training outcome.

• How can the external load of the athlete be tuned on the internal
load of the athlete during hangboard training? The created prototype is
capable of tracking the deviation per KPI during a hangboard training. Feed-
back can be given based on the deviation from the sensor’s start value (correct
posture). As mentioned earlier, the total endurance of the athlete equals the
weakest KPI of the athlete. Therefore, it is possible to understand the athlete’s
internal load (the KPI with the highest deviation), adjust the training accord-
ingly (tune the external training loads) to reach the desired training outcome.

• How can interactive feedback benefit the self-perception of the ath-
lete’s training load during hangboard training? An usability test is ex-
ecuted as last step of this thesis, in which the impact of the feedback on the
performance of the athlete was investigated. From this test, no significant dif-
ference was found. However, from the qualitative results it became clear that
the users were more insightful about their own training due to the provided
feedback of the system.

In order to answer these questions, information from literature, interviews, and ob-
servations were collected. The collected information was used to get a first idea of
the hangboard training scenario, in which three user problems came to light. First,
it is hard for hangboarders (especially for beginners) to find the right external loads
so that they do work out but do not overload. Second, it is hard for the hangboard
athletes to evaluate and correct the right (active) posture. Third, it is hard to grasp
for hangboarders when to let go of the grip at the moment that their internal loads
and external loads start to imbalance to prevent overloading.
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With the user problems in mind related work was investigated and discussed. Based
on the state of the art of interactive injury prevention applications for hangboard
training, a framework was proposed. The proposed framework helped to map the
necessary components before it was possible to design an interactive application that
fits hangboard training. The value of these components was found via two phases of
co-design in which surveys and interviews were held and lo-fi prototypes were created,
tested and evaluated. The components from the framework are visible in the first
column of figure 4.1, and the value of the components for hangboard training are
visible in the second column of figure 4.1.

Figure 4.1: The components of the proposed framework applied to hangboard
training.

After the components were found, the third phase of co-design was executed, in which
a final prototype was user tested via a within-subject design. From the user test,
qualitatively, there was an effect found on the user’s awareness and an increase in the
level of depth of the user’s self-evaluation after the hangboard training. Quantita-
tively, there was no statistically significant difference found between the performance
of the athletes with and without the system’s feedback. However, there seemed to be
some positive effects on the user’s performance while receiving the system’s feedback,
however as this was not statistically proven, it should be further investigated before
any concrete conclusions can be drawn.

4.1 Contributions

This thesis has many findings, and these are discussed throughout this report. How-
ever, there are three significant contributions which are worth mentioning again.

First, the created system provides real-time feedback and provides insights into the
key performance indicators that deserve the most attention in training. The system
translates these insights into tangible advice for training. The user data found via
interviews and observations was an exploration of the domain of hangboard training.
The academic papers in the domain of hangboard training focused on proving a
significant increase in the performance of the hangboarder while using an hangboard
for only 4-8 weeks. A high increase in performance requires high training loads, which
makes the athletes more prone to injuries. However, the injury topic was under-
explored for hangboard training and was therefore brought to light via this thesis.
The importance of mapping the internal loads of the athlete during training seemed
approved as a method in other sports. Therefore, the frameworks used for designing
training load management systems for other sports were therefore combined and re-
adjusted and applied to hangboard training. The user was considered important in
this first exploration of designing such a system. Therefore, a co-design approach was
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used to include the user from step one. In conclusion, the insights gathered in this
thesis are the foundation for more exploration to innovate in hangboard training.

Second, a step-to-step plan to design a training load management system with a
co-design approach is created that can be used by other researchers. The co-design
process from figure 3.1 is a process that is applied to hangboard training. How-
ever, the created process is generic and can help other researchers to create training
load management systems for other sports. Besides applying the process to other
sports, the steps taken in this thesis can be further deepened for hangboard training.
Therefore, the co-design process contributes on high-level and low-level.

Third, an interactive training load management system for hangboard training is
designed, which can be used by climbers to streamline their training efforts. The
functional prototype that was created in co-design phase III, is fully working and
shows the potential of developing a KPI monitoring tool for hangboard training with
a positive outcome. The outcome of the user test with a with-in subjects design gives
insights into the potential of creating such a system in hangboard training. Besides,
the prototype’s capabilities fall within the capability range of IMUs and thus also
show the potential of developing an IMU application in hangboard training.

Fourth, the prototype in co-design phase III shows that it is possible to create a lo-fi
prototype in a short time frame. The prototype fitted the exploitative mindset and
showed the potential for possible implementations.

4.2 Implications

The first implications of this thesis derive from the users used in the co-design process.
This thesis was a case study for hangboard training but only used users aged between
18 and 30 years old. According to the interviews and surveys, this research would
have found different results if younger users (children) or older users (30+) had been
included. Therefore, re-doing the co-design process with other aged users should be
considered as the next iteration of this thesis.

The second implication is the choice to frame this thesis’ study within the capa-
bilities of IMUs. On the one hand, this made the study more focused and helped
to decrease the number of possible sensor options for the prototype. However, if
another technology was taken as a lens, it could be that the research would have
ended with another solution, solving the same user problems. For example, if expert
hangboard athletes want a more detailed threshold, future research should evaluate
the landscape of other available technologies to find viable alternatives.

The third implication is the choice of hangboard training as a case study. The co-
design process is developed based on the findings from the user research with a focus
on hangboard training. Then, the co-design process is generalised to a generic process
that can be used in other sports to design systems that can help athletes manage
their training load and prevent injuries. However, the co-design process might have
been slightly different if another sport had been taken as a case study. Therefore,
re-considering the co-design process can be done via the execution of another case
study.

The fourth implication is the design of the prototype in co-design phase III. A rapid
prototype platform is chosen to develop and test the functionalities of the prototype.
The finger strength KPI, shoulder strength KPI and core strength KPI are important
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aspects to keep in mind in the design of a hi-fidelity prototype. Using IMUs that can
sense these KPIs could take the current prototype to a new level.

The last implication is the design of the feedback system. The feedback system is
created based on the design workshop from co-design phase II. However, the final
test was done based on this feedback system. It could be that if the design workshop
was done multiple times with different participants, the feedback design would have
turned out differently. Which then, of course, could have affected the final user test.
Therefore, it is helpful to re-do the user test with a different design for the feedback
system to evaluate the used feedback design in this thesis.

4.3 Limitations

Besides the contributions and the implications, some limitations must be kept in mind
while looking at the results of this thesis. More users could have been interviewed,
and more prototypes could have been made to gather more insights to better design
a solution for hangboard training. However, as time is an essential factor, both are
minor limitations. The most significant limitation of this thesis lies within the final
user test to prove a statistically significant difference in performance while training
on the hangboard with the provided feedback.

The user test was done with 12 participants, but it is recommended to use more than
30 participants [29]. However, as time was limited, it was impossible to execute the
test with more than 30 participants. Next, a within-subjects design was chosen even
though a between-subject design might have been a better option to get less affected
by the carryover effect as mentioned in section 3.3.1. However, as a between-subjects
design requires even more participants, it was not possible to execute the user test
with a between-subjects design. In addition, in the ideal situation, the user test
was executed over several months to evaluate better the feedback’s impact on the
athlete’s performance. However, again the lack of participants and the lack of time
made this impossible. It could be that the user test would have had other results if
more participants were included or if another test design was used.

4.4 Future Work

The previous section dived further into the contributions, implications and limita-
tions. The implications and limitations of this research can be resolved via future
work. Besides, there are some unexplored possibilities which are left for future re-
search.

First, at the end of section 2 State of The Art, it is proposed to use a readiness test
at the start of each training to estimate the internal load of the athlete before the
external loads are set. However, this thesis did not dive further into the possible
execution of this readiness test and left this opportunity for future research. Nev-
ertheless, from the qualitative data of the user test in co-design phase III, it came
forward that the prototype could also be used as a readiness test. However, the
possible implementation of this is not yet investigated.

Second, the prototype of co-design phase III consists of three parts, the ultrasonic
sensor, the stretch sensor and the accelerometer. These sensors are only tested to-
gether in one prototype and not independently. The user research showed that a
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t-shirt with a stretch sensor could benefit beginner hangboarders. For future re-
search, it seems interesting to investigate the sensors independently and decide on
other possible sensor setups.

Third, it would be interesting to investigate if the generic co-design process created
based on this case study works for other sports. Therefore, it is recommended that
future research will look into other sports to fine-tune the proposed process further.
Fourth, from the interviews, it came forward that it would be interesting if the system
created during this thesis could be integrated into other existing apps. Therefore, it
seems interesting to investigate a business model for the prototype to find potential
selling markets. The prototype can be improved toward their specific desires based
on the interested clients.

And fifth, the prototype is now designed with the idea that the athlete could evaluate
his behaviour. Even though the trainer could use this information, the prototype is
not per se designed for the trainer. Therefore, investigating if the trainer could
benefit from such a system is left for future work.

4.5 Conclusion

In conclusion, this thesis is the first step toward a training load management system
for hangboard athletes to prevent injuries. The system helps the user by identifying
and notifying his internal load capacity. The insights gained from the system help
the user better tune his external training load to reach his desired training outcome
without risking injuries. The steps taken for hangboard training can be further
explored and elaborated for future purposes. Besides, the design approach of this
thesis can be generalised into a step-to-step plan (figure 4.2), which can be applied
to other sports.

Figure 4.2: The step-to-step plan to develop a training load management system
to prevent injuries: a co-design approach.
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What the current state-of-the-art of IMUs means for the design of
interactive applications in sports.

Amber Eggengoor s1928333

March 14, 2022

1 Introduction

Inertial measurement units (IMUs) have exploded in
popularity over the last decade and their use is not
longer ignored in the domain of sports. Using IMUs
inmonitoring and analysing sport movements has be-
come common place in sports research since it avoids
the laboratory limitation [1] and gives the trainers and
coaches the ability to provide precise feedback [2].
Many researchers have investigated the value of hav-
ing those IMUs in different sport environments (visi-
ble in table 1) focusing on measuring movements [3]
[4] [5] [6] [7] [8] [9], classification of movements
[10] [2] [11] [12] [13] [14], impact detection [15]
[16] [17] [9], and performance analysis [18] [19] [20]
[21].

According to literature papers, IMUs give the pos-
sibility to find the tiniest flaws in the athlete’s pos-
ture and movements, which can bring personal bests
to a new level and can help avoiding injuries [23]. An
IMU is a combination of multiple inertial sensors: an
accelerometer (measures acceleration), a gyroscope
(measures angular velocity), and can also include a
magnetometer (measures magnetic field, to calculate
the orientation of the sensor) or barometer (measures
atmospheric pressure, to approximate the altitude of
the sensor), as visible in figure 1 [24] [25].

Badminton [3]
Cricket [10]
Football [15]
Rugby [16]

Swimming [4] [2]
Gymnastics [11]

Golf [12] [5]
Skiing [18] [13]
Yoga [19]

Running [17]
The gym [14] [20]
Dancing [6]
Rowing [7]
Tennis [21] [8] [9]
Bowling [22]

Table 1: IMU use cases in different sport environments (examples)

The output of an IMU is raw data which can be re-
fined and transformed into digestible metrics by us-
ing algorithms and task specific calculations. The
combination of the hardware (IMU) and the soft-
ware (including the algorithms) can provide the real
value to the end-user: posture and movement recog-
nition and training. Asmentioned earlier, researchers
have investigated IMUs in different sports environ-
ments. However, most of those papers are about one
sport in specific and do not dive further into or com-
pare their findings with other sports. Next to this,

1
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papers that investigate interactive applications with
IMUs do not dive further into the chosen interac-
tion. It seems that existing work especially investi-
gates IMU applications from the sensing perspective
(technology-centered), while the interaction domain
(user-centered) stays an unexplored domain. Explor-
ing the interaction domain is beneficial for (interac-
tive) training applications as approaching it from a
user-centered view can lead to new and promising
applications. It is imaginable that the technology is
not capable of reaching the desired accuracy, but this
could be compensated by the implementation of a
certain user interaction. So, it might be still possi-
ble to create an effective and fitting IMU application,
even if the technology is not at a specific accuracy
level. Therefore, the goal of this paper is to review
existing academic work, to explore interaction possi-
bilities. And thereby find out what the current state-
of-the-art of IMUsmeans for the design of interactive
applications in sports. This paper is the first step to-
wards more immersive interactive IMU applications.

Figure 1: IMU based on three type of sensors [24]

2 From sensor data to interactive
coaching and learning applica-
tions

In the sports domain, camera and video based sys-
tems are recognised as the golden standard [26].
Therefore, IMUs should at least be on par with this

technology in order to stand a chance of being a
good or even better alternative. Several studies have
proven that the data from the IMUs, for both static
and dynamic movements, have an excellent corre-
spondence with the data from the video-based and
camera-based system [27] [28]. Besides the fact that
the output of IMUs come close to the output of video-
based and camera-based systems, IMUs are more
suitable in sport environments due to (1) the fast, re-
liable and cost-efficient processing process [2] [25]
[26], (2) the small weight and thus the portability
[29] [30], (3) the ability to provide a greater range of
useful quantitative variables for sports applications
[28], and (4) the system is not limited to a confined
space (laboratory), making it suitable for sport ac-
tivities that happen over large distances such as ski-
ing and snowboarding [28] [31]. So, an IMU appli-
cation is a promising technology to enhance sports
training and support athletes. However, how can the
data of the IMUs be translated in an accessible way to
the user (athlete), so that he can improve his perfor-
mance? This question can be answered by means of
the data science life-cycle1 and the CRISP-DM pro-
cess model for data mining [32]. From this, it can be
understood what phases the data go through before it
is provided to the user.
Phase 1: Measure and Collect. This first phase

is about measuring and collecting data on the move-
ment/posture. There are several IMUs commercially
available and each have their own specifications, data
collection procedures and raw data quality [33]. It is
important to identify the best-suited IMUs depending
on the needs of the project. The accuracy of the data
can be improved in this first phase, by putting effort
into finding the optimal sensor location and orienta-
tion [34] [35]. Next to this, the set-up (number of sen-
sors) needs to be considered, as this also contributes

1https://ischoolonline.berkeley.edu/data-science/what-is-
data-science/

2
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to the quality of the raw data [36].
Phase 2: Store and Clean. After the data collec-

tion, the data has to be stored and cleaned. During
the cleaning process, data errors are detected and re-
moved in order to improve the quality of the data
[37]. Errors in data can be found via multiple ways,
such as filtering, smoothing or outlier analysis. Af-
ter the data set is cleaned, a storage medium is used
to store the data for further processing. This storage
can be on physical hardware, but due to today’s fast
internet connection, those data sets are often stored
in online databases (cloud) [6].
Phase 3: Analyse and Model. Now the clean data

is stored, the data can be analysed and modelled.
There are current studies that review different al-
gorithms for activity recognition and detection with
IMUs [35] [38]. However, it is claimed that no pro-
posed algorithm can be preferred over the others, as
the algorithm is task and goal specific. Nevertheless,
the results of the review can help other researchers
by making it easier to choose between the algorithms
for their specific project.
Phase 4: Use and Communicate. During the first

three phases, data scientists, algorithm engineers,
and mathematicians try their best to maintain the
highest data quality as possible. Therefore, the more
important is the last and fourth phase, as the last step
does not want to waste this maintained quality. This
importance is visible in the number of existing pa-
pers that investigate dashboards-communicating in-
sights from the IMU-data with trainers/athletes. This
is interesting as the communication phase is the final
step which translates the data to the user. From an
Interaction Technologist perspective, there are way
more communication methods that go beyond these
investigated dashboards. The translation should be
chosen carefully in order to design meaningful and
exciting interactive applications for sports. This re-
view dives further in this communication stage, to in-
vestigate what IMUs canmean for the design of smart

sports exercises.

3 Feedback strategies and User In-
teraction: The fourth phase of the
IMU data

As mentioned in the previous section, there are dif-
ferent communication methods possible for interac-
tive IMU applications in sports. Existing studies will
be compared to get a good understanding of their
IMU implementations and the used feedback strate-
gies to find the guiding principle behind it. It is as-
sumed that the usability of the IMU data during a
sport exercise will decrease rapidly if the data is not
appropriately communicated to the user. Therefore,
it is not only the usefulness of the IMU data that de-
termines learning success, but it is the design of the
feedback that matters.

3.1 Data monitoring

Data monitoring can help the athlete to quantify their
performance. This is especially useful for athletes
who want to optimise their posture. This process
of optimising postures can be of great value in var-
ious sports, for example in a sport as yoga. One of
the main problems for Yoga beginners is to know
whether they perform the yoga postures correctly,
without exactly knowing their joint angle. A full-
body suit consisting of 11 IMUs, as in figure 2,
can make it possible for the user to understand their
joint angle, correct this towards the wanted angle
and thereby decrease the joint angle errors signifi-
cantly [19]. By the use of IMUs, it is possible to cre-
ate quantitative evaluation methods to recognise and
evaluate motions and postures and to provide guid-
ance to the learner. However, this understanding is
not as intuitive and accessible as it could be. The
interaction with IMUs that is often seen in current

3
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Figure 2: Full-body suit for Yoga [19]

research is data recording and data monitoring (the
process of proactively reviewing and evaluating the
data and its quality to ensure that the user can im-
prove its performance, postures and motions) [39].
Besides that this data monitoring can be helpful for
the user to review his performance after the work-
out/training, it is not often implemented in such a
way that the user can review his performance during
the training. The latter, real-time feedback, is benefi-
cial for the athlete’s self-motion perception and faster
learning success, consequently, real-time feedback
has a positive effect on the performance development
of athletes [40]. Next, real-time feedback can help
to alert and inform the athlete to adjust their posture
and motions on the spot. Adding signalling to sys-
tems that only monitor data, can help to make those
applications more towards meaningful smart sports
exercises.

3.2 Data monitoring and signalling

Many sports injuries are due to high load demands
during a work-out/training and could use signalling
to prevent these injuries [16] [39]. As it has been
proven that IMUs can be helpful in detecting the
workload on specific joints [16]. Implementing these
sensors in a training makes it possible to not only
monitor workload but also issue preventative warn-
ings. This does not mean that any injury can be
prevented [41]. However, the insights on workload
might help to better plan rest breaks in order to de-
crease the possibility of getting injured. Next to this,

the insights can help the trainers/coaches to under-
stand the load volume of their training and adjust ac-
cordingly [16]. One example study focuses on the
hitting load in tennis [9]. The study proves that it is
possible to quantify shot counts and proves to be able
to discriminate shot types. However, the study does
not focus on signalling the athlete when hitting the
ball too hard or when the athlete’s intensity (work
load vs time) is too high. Nevertheless, a trainer
is able to watch the data coming from the IMUs to
makes sense of the data and prevent the athlete from
work overload. Another example study focuses on
detecting fatigue in outdoor running [17]. This study
claims to be successful in detecting and predicting fa-
tigue (weakening of the performance) during an out-
door run but did not go further into the signalling
part. This means that the paper does represent a good
start for moving IMU technology into a real-world
application, however this application is not yet fur-
ther explored. Besides these studies, there are stud-
ies that do focus on signalling the user. One example
is a study that focus on upper limb posture correc-
tion with haptic feedback [42]. The described system
gives feedback on upper limb posture via vibration
patterns (haptic feedback). From this research it be-
came clear that more complex posture might need ad-
ditional feedback mode to maintain fast posture cor-
rection. The last study is a good example of real-time
signalling the user during his activity. Besides haptic
feedback, signalling the user can be done via visual
or auditory modalities, either in isolation or in com-
bination (multi-modal) [43].

3.2.1 Visual feedback

Data visualisations of the user’s performance is often
presented to the user after he has finished the exercise
[30]. The data from the IMUs can be uploaded to the
cloud or a computer, where the data is processed. The
analytic engine can then provide 2D feedback (data
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charts) to the player for enhancing their performance
while also preventing potential injuries [8]. Besides
2D analysis, 3D analysis has been investigated by re-
lated studies [44]. 3D analysis is more accurate than
2D analysis, as 2D analysis cannot be used to deter-
mine the external or internal rotations as this move-
ment occurs in the transverse plane [45]. Therefore,
using 3D analysis to detect and prevent injuries is ad-
vised. Next to 2D analysis and 3D analysis, live anal-
ysis seem to be promising too. In fact, it is proven
that real-time 3D-feedback based on IMUs is techni-
cally and conceptually feasible [46]. A good example
of where real-time feedback is proven to be helpful is
in a study about motion mimicking [47]. This study
investigated participants who had to mimic the mo-
tions of the instructor in a video. IMUs were placed
on the participants body and based on this data, visual
feedback was given on the accuracy of their mimick-
ing movements by comparing the relevant joint an-
gle data. There was a significant difference in ac-
curacy level found when group A (no-feedback) and
group B (feedback) were compared. So, the key im-
plication of this study is that visual feedback can pro-
vide an extrinsic source that helps the user to bet-
ter synchronise their movements during their mim-
icking process [47]. This is an interesting finding
which might be helpful in sports training as well, as
then demonstrated movements can easier be repeated
(self-modelling/expert-modelling [48]). Besides rep-
resenting the IMU data via visuals, IMU data can
also be used as a remote controller to interact with
a visual display. HulaMove [49] is an good exam-
ple of an IMU application that gives the user the op-
portunity to interact with a visual device without us-
ing their eyes and hands. HulaMove is an interaction
technique that uses an IMU to measure waist move-
ments to let the user interact with for example their
phone to change volume or skip the current music
song. This is also an interesting way of combining
IMU data with visual feedback, as this can be ap-

plied to sports as well. Imaginably, IMUs can help to
transform ’boring’ drills in a sports training to an en-
gaging and fun exercise. In addition, despite it might
be helpful for the trainer to receive visual feedback of
the athlete during the exercise, the athlete might not
have the time and vision to look at a screen. In sit-
uations in which that is the case, the visual modality
might not be the right fit, and other modalities should
be explored.

3.2.2 Auditory feedback

Using the auditory modality as the feedback strategy
is proven to be an effective and pleasant way to pro-
vide information fast enough to embody the player’s
movements [50] [51] [52]. In ball sports such as golf,
volleyball and football, the athletes gaze at the ball
before hitting it. Therefore, auditory feedback could
be a better solution than visual feedback, as visual
feedback is not realistic due to impede gazing at the
ball [53]. Popular exercises in ball sports are drill
exercises. In those drill exercises, it is desired that
the athlete repeats the same movement until mas-
tery is achieved. However, it is often hard for the
athlete to understand the differences between his/her
movements inside this drill. Even though the ath-
lete might feel two movements as similar, it is hard
the quantify this [7]. Auditory feedback based on
IMU data can help the athlete during his/her self-
assessment by providing direct information on the
performed movements [54]. When the athlete un-
derstands his/her performedmovement, repeating the
movement will be easier and the movement repeata-
bility of the athlete will increase [53]. Besides the
practical advantages of the auditory feedback, high-
dimensional data can be presented via auditory feed-
back due to the high number of sound dimensions
(loudness, pitch or timbre) combined with auditory
display attributes (timing or localisation) [43]. Next,
the auditory modality remains largely available with-
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out interfering with other modalities and can be pro-
cessed rapidly [54].

3.2.3 Haptic feedback

Another feedback strategy that does not require eye-
sight is haptic feedback. Haptic feedback is less in-
vasive and less expensive compared to visual feed-
back and has the potential to revolutionise the way
athletes engage in training [55]. Haptic feedback is
found to be feasible in multiple studies: as a vibrat-
ing wrist-mounted single unit [56], vibrotactile duo
unit on abdomen and back [57], and as a vibrating
4-unit ankle band [58]. In all these studies, haptic
feedback is perceived by the users as intuitive and not
restricting in their movements. Besides this, the hap-
tic feedback can easily be implemented in real-world
training environments, which is imaginably desired
by both athletes and coaches. An example study that
showed promising results was experienced positive
and usable by the the participants [59]. The study
developed a wearable that provided haptic feedback
on postures and movements during a workday. Even
though the study was focused on the working indus-
try, the findings are promising for the sports domain
as well as it proved that haptic feedback supports
learning on how to improve postures and movements
[59].

3.2.4 Multi-modal feedback

The previous sections discussed different feedback
strategies (visual, auditory and haptic feedback) in
isolation. However, these feedback strategies can
also be combined to a multi-modal feedback strat-
egy. Multi-modal feedback is overall perceived as
a more natural interaction as users are used to their
daily life in which they interact with their environ-
ment multi-modally (eyesight, hearing, taste, touch
and smell) [60]. Next to this, multi-modal feedback

is a more immersive feedback strategy than the feed-
back strategies in isolation [43]. Noteworthy, multi-
modal feedback is often a combination of visual and
auditory [61], or visual and haptic [62] [63]. The ad-
dition of auditory feedback to visual feedback seem
to help the user to better understand their movement
velocity [64] while the addition of haptic feedback
helps the athlete to find and maintain the correct
rhythm and pace [63].

4 Posture and motion recognition
with IMUs: capability, validity
and reliability

Currently, the athlete’s coach/trainer has an impor-
tant role in posture and motion recognition during
a training. Considering this task without the use
of technology, the trainer observes and assesses the
athlete with his own eyes and from experience and
knowledge he provides (fitting) feedback. Enhanc-
ing the trainer by the use of technology can help him
to provide more feedback (quantitatively) and pre-
ciser feedback (qualitatively). However, this raises
the following question: Are IMUs capable of mea-
suring those postures and motions? In IMU related
research, the validity of an IMUmeasuring static pos-
tures and dynamic movements often arises from the
IMU data in comparison with data from video-based
or camera-based systems [27] [28] [2].

4.1 The influence of sensor placement on
the measurement capabilities

Multiple researchers have investigated using IMUs
to measure and understand static postures and dy-
namic movements. A statement that stands out in
these studies: ”For complex sequences of motion,
multiple synchronised IMUs are necessary in order to
achieve a high level of accuracy” [25]. Many of these
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studies have focused on preventing and/or correcting
postures during a certain activity. For example, IMU
sensors that can be used as a method to analyse head
postures [65]. In this research, users are corrected in
their posture while sitting on a chair. The IMU, lo-
cated in the neck, can measure the angle of the neck
and provide feedback to the user to prevent (further)
neck injuries. However, even though the anatomy
of the human is known, the placement of the IMU
or a set of IMUs seems to be key in measuring (a
specific part of) the human body, but there is a lack
of research regarding optimal sensor placement [26].
Obviously, it can differ per posture/motion what the
’optimal’ sensor placement can and may be. For ex-
ample, during cycling, the knee could technically be
the best place for the sensor. However, it still might
not be the best place to implement due to practical
issues. However, after locating the optimal place-
ment from the user’s perspective, the orientation of
the IMU also have its impact on the data output. De-
spite that orientation errors result in larger accuracy
decrease, the orientation issues can be easier cor-
rected via calibration methods compared to location
errors [34]. Besides the users comfort, it is impor-
tant to know the capability of the sensors and its abil-
ity to detect certain postures/motions. The difference
between running and walking might not be measur-
able in the pelvis, but might be at the ankles. In con-
clusion, both the technical capabilities of the sensor
and the user’s comfort should be considered while
placing the sensors, especially during long-term de-
ployment [66]. Since the goal of an interactive IMU
application is to measure characteristics the athletes
wishes to improve without restricting their motion in
any way. [67].
As there are no guidelines for placing IMUs on the

human body, different studies are compared to find
similarities. Figure 3 and figure 4 show the measure-
ments done by other researchers together with their
used IMU placements. As visible in figure 3 and fig-

ure 4, measuring joint angles (knee, elbow, wrist,
neck, etc.) is often done with at least two IMUs.
These two IMUs are necessary, because both the po-
sitions of the connected limbs have to be measured to
calculate the angle of the intermediate joint. In case
of measuring rotation of a limb, only one IMU seems
to be necessary on the limb that interests you. Full-
body motion can be done from a few sensors but the
more IMUs the more accurate data becomes avail-
able.

(a)
Knee Angle
[68] [69]

(b)
Ankle angle
[70]

(c)
Head posture
[65]

(d)
hand posture
[71]

Figure 3: IMU placement of posture measurement

(a)
Elbow rota-
tion [3]

(b)
Inter-arm mo-
tion [2]

(c)
Full body mo-
tion [72]

(d)
Full body mo-
tion [18]

Figure 4: IMU placement of motion measurement

4.2 Complexity of movements

Future innovation is likely to strive for measuring
complex movements with high accuracy via simple
setups, to maintain and/or achieve a user friendly en-
vironment. The measurement solution should adjust
according the complexity of the movement in order
to reach the same accuracy. However, as it is not de-
sired to make more complex setups when the move-
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ments become more complex, others steps should be
taken. Fortunately, there are studies that investigated
optimisation of the measurement accuracy of com-
plex movements by using more sensors in their sys-
tem. These studies show that it is possible to opti-
mise the IMU measurements by adding more sen-
sors such as electromyography sensors (EMG) [73],
force plates [74] or GPS sensors [75]. It is found that
adding theses sensors result in an high measurement
accuracy for both complex and simple movements
[76]. However, adding more sensors close to each
other can also result in noise and errors in the mea-
surements [77]. So, a reverse trend is also happen-
ing, in which researchers strive for minimal-sensor
setup, and thus remove sensors from the system [78]
[79] [80]. The results of these studies reveal that re-
ducing the sensor setup does not have to result in a
lower accuracy level or a lower classification per-
formance. Therefore, the researcher should consider
(per use case) if adding more sensors to the setup
would give that extra in-depth information about the
movement that is desired. The complexity of the
movement does not only influence the technical ca-
pability of the IMUs, but also influences the inter-
action. Complex movements are more difficult to
learn than simple movements and athletes are likely
to need more guidance while learning these complex
movements. Next to this, complex movements ask
for more precise feedback for the athlete to improve
the movement. Therefore, the reliability and validity
of the IMUs become more important in more com-
plex movements.

4.3 Validity and Reliability of IMUs

Alone, each sensor provides biased information un-
der certain circumstances, but putting them together
(sensor data fusion) allows their limitations to be
overcome and provides more accurate sensor orien-
tation [26] [30]. However, in order to get an high

accuracy from the data fusion, it is important to con-
sider the reliability of each sensor. Different stud-
ies have investigated the reliability of the IMUs and
came to the conclusion that IMUs appear to pro-
vide a suitable alternative to Video-based or camera-
based motion capture systems. It is found that
the IMUs especially reach an high accuracy while
capturing flexion/extension movements at the lower
limb joints during simple movements [26]. However,
it is claimed that the degree of accuracy is task spe-
cific, and that the increasing movement complexity
decreases the validity of the IMUs [81]. Even though
the validity of the IMUs decreases, it does not mean
that the data is unusable. However, it does mean that
the interaction should be adjusted in such a way that
the user is not subjected to false data. For example, if
the location of the athlete cannot be determined pre-
cisely, it is better to represent the athlete’s location as
a cloud with margin rather than a dot without margin.
Adjusting the interaction as in the cloud-example, the
expectations of the athlete (having a precise location)
is lowered and the validity issues of the data is cov-
ered. This means that the way of how the interac-
tion is presented can cover for the data deviations.
There are a lot of studies that investigate reliability
and validity of IMUs. However, these studies were
performed in a controlled environment (laboratory
settings). Therefore, they cannot be considered as
directly representing IMU performance during real-
life/outside of laboratory use [26]. Next to this, the
current studies did not investigate the interaction pos-
sibilities with their available data. Therefore, current
studies seem to be striving for ’perfect’ data quality
while the goal of having this data is not discussed and
might not be necessarily needed. In conclusion, the
effects on the user’s data perception by changing the
interaction have not been investigated and is interest-
ing for future work.
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5 The potential of IMUs in sports

It has been demonstrated that IMUs have compe-
tence in applications for sports as IMUs are capa-
ble of providing valuable data on the athletes pos-
ture and movements. Despite that there are many
applications found, the reasoning behind their used
IMU-setup and feedback strategy seem not be dis-
cussed clearly. Previous validation studies of IMUs
have been incomplete regarding aspects of complex-
ity of movements, joints analysed, duration of trials,
number and type of subjects [31]. However, as men-
tioned in the introduction, the application of IMUs
in different sport settings have been investigated,
and thoroughly explained. From literature it seems
that many systems are optimised for sensing but not
for application, and are in that sense irrespective to
the purpose of the system. Existing studies present
their set-up and feedback choices as inevitable, while
these decisions can have an huge impact on the re-
sult (user perception and technical capabilities). The
athlete’s movement and posture in comparison with
correct patterns and movement characteristics can be
useful not only in problem detection and identifica-
tion, but also to control the performance of desired
movements. The latter is an interesting topic for the
sports domain, as athletes strive for a better perfor-
mance. There are different topics in which IMUs
can be useful in the sports domain, for example in
game tactics, engagement, assessment, physical ed-
ucation, and refereeing. From literature four cate-
gories stood out and are discussed below. As IMUs
are capable of characterising the movements of the
athletes, they are often investigated in research for
skill assessment (how good was the movement), for
improving technique (what part of the movement can
be improved), for injury prevention (how the athlete
should not move) and for movement classification
(what kind of movement was this).

5.1 Skill assessment

From section 4.1 it became clear the IMUs are ca-
pable of recording and processing human posture
and motion, to additionally analysing the quality of
these activities. Qualifying these activities typically
refer to skill assessment [82]. As mentioned ear-
lier, IMU systems have to compete with camera and
video based systems. In case of skill assessment, the
biggest advantage of having IMUs instead of camera
systems is the portability of the IMUs. Especially in
sports as skiing, it is really hard to capture the ath-
lete during his training, as he travels a great distance.
As mentioned earlier, most of the related studies fo-
cus on one sport in specific. Besides these specialised
systems, there are a few studies related to generalised
skill assessment that is transferable to other appli-
cation domains (healthcare, industry, etc.) [82]. It
is likely that the skill level of athletes is and should
be measured differently per sport, to have an accu-
rate and meaningful skill assessment. For example
in tennis, power, rhythm and gesture are important
variables for skill assessment of the serve [21]. In
skiing, ski motion, waist rotation, and how load is
applied to the skis as well as their symmetry are im-
portant variables for skill assessment [13]. However,
generalising these variables, skill assessment is often
referred to notion of repeatability and motion consis-
tency [82]. Both of these can be measured with the
use of IMUs. In conclusion, skill assessment is the
first potential of IMUs in sports.

5.2 Improving technique

After a skill-assessment, it is possible to improve
the current skills of the athlete by looking closely at
his/her technique. As IMUs are capable of quanti-
fying movements, it is possible for the coach/trainer
to optimise the athlete’s technique by providing feed-
back on movements which a coach/trainer cannot ob-
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serve accurately just with their eyes [7]. Such feed-
back can for example be about the angle or depth of a
rowing blade in the water [7]. Besides IMUs being a
tool for coaches and trainers, IMUs offer the oppor-
tunity to provide low-cost exercise technique assess-
ment in for example body weight Squats in the gym
[20]. After the task is framed (for example improving
serving technique), a fitting interaction modality can
be chosen in order to contribute to the learning pro-
cess. Comparing IMUs with video-based systems,
the IMUs can be worn by the athletes during the prac-
tice without having camera setups around the field.
Next to this, IMUs are due to the small size and low-
weight more insensible than video-based systems.
Therefore, with IMUs the technique of the athlete can
be measured and improved in a real-time situation in
which the athlete forgets getting filmed or measured.

5.3 Injury prevention

Using IMUs as a bio-mechanical analysis method is
not yet fully accepted in the clinical practice. This
is due to a disconnect between translating the data
form the sensors into a meaning full and action-
able feedback for the users (reliability) [83]. There-
fore, it is not yet often used as injury prevention
method. However, IMUs can quantify the move-
ments of the athletes and thereby give more insights
to the coach/trainer who then can decide (if) to ad-
just the training accordingly. In that case, the IMUs
are not (yet) a stand alone system that can replace the
trainer/coach, but is more considered as a tool for the
trainer/coach to make grounded decisions and give
better advice to the athletes. Even though IMUs are
then only considered as a tool, athletes benefit greatly
by ensuring that skills are practised and performed
correctly to reduce the chances of sustaining an in-
jury [11]. Besides this, IMUs offer the opportunity
to monitor the athlete performances and work-outs.
This information can help the athletes to gain insights

into their workload (peaks).

5.4 Classification of movements

Automating sport movement recognition and the ap-
plication of IMUs has the potential to enhance both
efficiency and accuracy of sport performance analy-
sis [84]. However, as mentioned in the introduction,
algorithms and task specific calculations are needed
to actually make sense of the IMU data. For exam-
ple, the differentiating process of tennis strokes as
a forehand or backhand can be done via a machine
learning process. In such machine learning process,
the computer classifies and interpret the movement
of the athlete by comparing it with movements in its
database [85]. After processing and comparing these
movements, it is possible to help the user understand
his/her previous movements. Next to this, when the
application understands what movement the athlete
has performed, it is possible to provide feedback ac-
cordingly. For example, if the system detects that
the athlete is performing a serve, it is possible to
provide feedback according for example a ’perfect’
serve from the database, or for example according the
athlete’s own serve performance. However, this un-
derstanding should be provided via an effective feed-
back modality.

6 Discussion

Earlier studies on IMUs in sports have found promis-
ing results for several use cases. However, beyond
the use of IMUs for data review and dashboards,
IMUs could be used to fuel smart sports exercises.
This review explored the potential of IMUs for
serving this upcoming field. This shows that more
studies should be done in order to draw any con-
clusions on implementation methods. Especially in
terms of interaction and feedback strategies, there
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is currently little available research. This might be
because the use of IMUs in sports is an emerging
technology. Next to this, the implementation of
IMUs in sports are often considered from the
technology perspective, while the Human Media
Interaction (HMI) field seems to be forgotten. It
even seems to be the case that IMUs in sports are
more researched in terms of possibilities due to
technology evolvement, rather than solving an user
problem with an IMU driven product. The latter,
involves having clear product requirements which
are quite important in providing a clear visibility of
usability aspects for both product developers and
testers [86]. For example, creating an interactive
IMU application for volleyball, it is necessary to
know if the athletes would like to know more about
their results, about their performance or about both.
Recent Augmented Feedback research [43] [87]
covers the best use of feedback modalities in order
to induce enduring changes in motor learning and
achieve superior performance [87]. However, each
modality has its pros and cons and should be chosen
wisely. Researching the best feedback modality for
IMUs in a specific sport domain would be interesting
and useful as future work. If more knowledge on the
implementation of IMUs in sports will be gained,
it is possible to see and create guiding principles.
However, it should be taken into account that every
sport is different and has its own nature and its
training. Therefore, it is advised to keep researching
sports separately to prevent overlooking significant
aspects of the sport.

Based on the existing research it became clear
what the current IMU development means for sports.
Even though some sports are more explored than
others, different capabilities of IMUs in sports came
forward. IMUs are capable of measuring JL (joint
and limb) angles, JL velocities, JL accelerations,
and JL rotations. Besides the capability of a single

sensor, data fusion of data from multiple IMUs can
lead to posture and motion recognition. Available
research is promising on the capabilities of IMUs in
comparison with video based motion capture. How-
ever, the actual placement (location and orientation)
of the IMU on the body is not often discussed in use
case papers. Papers which do criticise the location
and orientation of the IMU are technical papers that
do not dive deeper into use cases. Therefore, it is not
possible to draw conclusion on the need of having
the IMU on the exact spot. This is off course com-
paring theoretical findings (technical papers) with
practical findings (use case papers). For example,
even though the measurements deviates a bit, it does
not necessarily mean that it causes problems for the
application. The reliability of the sensors should
therefore be considered per use case, as use cases
that focus on injury prevention might require more
reliability than use cases that focuses on recording a
volleyball serve. Thus, next to capability, reliability
is an important aspect to consider before creating an
IMU based sports application. However, papers that
investigate reliability of IMUs are often performed
in a controlled environment such as a laboratory.
These controlled environments are a good way to test
hypotheses. However, the most fruitful overall re-
search approach is usually to use both laboratory and
field research [88]. This is because observations in
the field produce new hypotheses which can then be
tested again in controlled experiments. Which brings
the second opportunity for future research, investi-
gating reliability of IMUs in a ’ real-life’ application.

The main challenge of this research was to find
the potential of IMU applications in sports. forward
that IMUs are helpful in skill assessment, in helping
to improving technique, injury prevention and clas-
sification of movements. However, as mentioned in
this paper, each sport is different and might require
different aspects/skills from the athlete. Therefore,
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a specific (user)problem should be tackled so that a
solution can be formed. It is found that the solution
of IMUs in sports highly depend on the implemen-
tation method. Hence, choosing a fitting feedback
modality is important so that the user is supported
and not hampered. User tests with multiple feedback
modalities (in isolation or combined) is recommend,
as each feedback modality has its impact on the users
perception. Current available research has not been
combined into implementation guidelines, which
points out the third opportunity for future research.

7 Conclusion

In current literature it is unknown what IMUs mean
for the design of interactive applications in sports.
IMUs are proven to be capable in measuring postures
and motions of athletes and this opportunity should
be used to create meaningful and effective interac-
tive IMU sport applications. From this paper it is
learnt that each sport has its own aspects and training.
Therefore, it is recommended for future research to
focus on one sport in specific. The goal of the case
study is to examine how IMUs can be leveraged to
maximise the potential of IMU driven interactive ap-
plications. This can be done via multiple steps. First,
user research should be done to understand the pains
and gains of the user. Second, with co-design ses-
sions it is possible to ideate solutions for these pains
and gains. From there, the third step, lo-fi prototypes
can be made, which can (according to user feedback)
be further developed into hi-fi prototypes. Insights
from the case study can be diverged for other sports,
so that more potential for IMU driven interactive ap-
plications can be found. Then, a shift in IMU applica-
tions in sports is created: from technology-driven in-
novation towards more user-centered problem solv-
ing.
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5.2 Appendix B: Example data of five xSens DOTs on
one participant during hangboard training

Figure 5.1: Example data of five xSens DOTs on one participant during hangboard
training
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