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ABSTRACT 

The Sebeya catchment in its downstream part of Mahoko market and tea plantations has suffered from 

frequent floods in the past years. The flooding is caused by heavy rainfall in the upstream hills and forests 

of the Sebeya floodplain and the river’s bank instability. However, the hydrological and hydrodynamic 

knowledge of flood dynamics is limited. Data required to build and calibrate the hydrological and flood 

models constitutes a main challenge in the Sebeya catchment. Therefore, this study aims to assess the 

application of satellite rainfall estimates (SREs) in the hydrological model and satellite-derived inundation 

extent in the hydrodynamic flood calibration in the Sebeya catchment. Two satellite rainfall products, 

CHIRPS and TAMSAT, were analyzed and bias-corrected for their systematic errors using the available rain 

gauge as a reference from 2014 to 2018.  Based on an analysis that relies on four statistical indicators, 

correlation, relative bias, root mean square (RMSE) and mean errors (ME), the CHIRPS product 

outperformed the TAMSAT SRE. The time-space variable bias correction was used to test the sequential 

(SW) and moving (MW) window schemes on 3, 5, 6, 7, 10, 12, 15, 17, and 20 sample window sizes to correct 

identified errors in SREs. An algorithm was developed to overcome the high difference errors found in 

uncorrected SREs and rain gauges. The RMSE, correlation, and standard deviation were used to examine 

the bias correction outputs. This study revealed that 6 days SW bias correction scheme performed well for 

the CHIRPS product and 6 days MW sampling window for the TAMSAT product. The rain gauges and 

bias-corrected satellite rainfall data served as model input to force the HBV rainfall-runoff model of the 

Sebeya catchment. Model calibration was performed using corrected and modified observed streamflow. 

The NS and RVE served as indicators to evaluate the performance of the HBV model. After calibrating the 

model with rain gauge rainfall data, NS of 0.8 and RVE of 5.9 % were found. The bias-corrected CHIRPS 

product also performed satisfactorily with the NS of 0.8 and RVE of 2.5 %. On the contrary, the bias-

corrected TAMSAT rainfall data could not reproduce the observed hydrograph because of identified weak 

rainfall detection of the product, which propagated in its further use. The rain gauges and CHIRPS bias-

correction were combined to simulate streamflow, which serves as upstream inflow to the 2D hydrodynamic 

flood model. The Planetscope satellite image was used for the hydrodynamic model calibration. NDVI 

differencing changed detection was used to delineate flood extent from the Planetscope. The available DTM 

depicts defects to represent surface features, like river reach. Therefore, the DTM was enhanced to produce 

an adequate topographic representation for the hydrodynamic model. It is deduced that the simulated flood 

extent improves after DTM enhancement for the Sebeya floodplain. The 2D HEC-RAS was found sensitive 

to upstream inflow boundaries, where streamflow generated by rain gauges and bias-corrected and 

uncorrected CHIRPS rainfall were tested. The simulated flood extent appears acceptable based on on-site 

knowledge by the author of this document. The simulation reveals the conveyance of water in the river 

reaches. The critical success index (CSI) indicator was poor when comparing the satellite-derived and 

hydrodynamic simulated flood extent. Overall, the findings indicate that the satellite-derived inundation 

extent could not be used in calibrating the hydrodynamic model of the Sebeya catchment floodplains. 

Keywords: Sebeya catchment, Satellite rainfall estimates, Bias correction, optimal sampling window, HBV 

hydrological model, DEM enhancement, satellite inundation extent, 2D HEC-RAS hydrodynamic model  
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1. INTRODUCTION 

1.1. Background 

Floods are natural disasters affecting many people and with socio-economic impacts worldwide. Flooding 

may cause loss of people’s lives, displacement, destruction of infrastructures, and environmental degradation 

(IFRC, 2012). In 2016, floods affected 78.1 million people and cost almost US $59 billion for 31 countries 

among 79 that suffered from such hazards (Beden and Ulke Keskin, 2021). Climate change may affect 

rainfall patterns and intensity, leading to flooding (Dubey et al., 2021). Projections reveal an increase in 

heavy precipitation in several regions due to a temperature increase of 1.5°C above pre-industrial conditions 

(Masson-Delmotte et al., 2018). Tropical cyclones and monsoon rains are the leading cause of flooding in 

emerging and least developed countries (Douben, 2006). Africa is the most vulnerable continent to flooding 

due to its limited adaptive capacity (Niang et al., 2015). It is expected that the African climate will change 

with an increase of 2°C in temperature above the 20th century (Weitzman, 2007), which is likely to cause 

extreme weather events, droughts, and floods (Collier et al., 2008). Moreover, population increase, 

topographic factors, and informal urbanization continue to increase flood risks. 

Flooding caused significant losses in Rwanda, particularly in the Sebeya watershed, located in the north-

western part of the country, due to heavy rainfall, illegal mining, agriculture, and the Sebeya river basin urban 

population increase (MINEMA, 2018). Flood events from the past years trigger deaths, injuries, 

displacement of people, economic losses, etc., across the country. However, there has been little research 

on floods in the Sebeya catchment. For instance, Marie Aimée (2020) highlighted flood resilience practices 

such as artificial lake creation, deviation of the Sebeya river, and retaining walls along the river to protect 

flood-prone areas. The study applies a participatory GIS1 approach to monitor floods and interventions in 

the Sebeya catchment. In recent years, through REMA2 and RWB3, the Government of Rwanda carried out 

a detailed design of flood control measures and the development of flood early warning systems for the 

Sebeya catchment. The significant outcomes of these reports were flood hotspots, mainly the Mahoko 

Centre, different agricultural lands, and Petit Séminaire high school areas, due to heavy rainfall and steep-

slope mountains in the upstream part of the Sebeya catchment. 

The Mahoko Centre and tea plantations are the areas of interest in this research. They are located in the 

downstream flat floodplain area of the Sebeya catchment, surrounded by upstream hills. Typically, the 

Mahoko area is a dynamic town with regular traffic and trade, leading to the town’s growth, thus increasing 

flood risk and vulnerability. The tea plantation areas are located upstream at almost 1.5 kilometers from the 

Mahoko Centre on the left bank of the Sebeya river. Despite their benefits, these areas are more vulnerable 

to frequent flooding. Sebeya riverbanks instability and heavy rain in the Gishwati forest and other upstream 

hills are the leading causes of the resulting inundations. However, the lack of availability and knowledge on 

the physical characteristics of flood events, the area's potential impacts, and the site's insufficient flood 

research are the main factors in selecting the Sebeya catchment as the study area.  

Rainfall data are crucial input when estimating floods using the hydrological models (Hamlin, 1983). 

However, limited and unevenly distributed rain gauges, like rain gauges in the Sebeya catchment, could lead 

to inevitable errors during streamflow simulation that causes flooding using hydrological models. 

Consequently, satellite rainfall estimates (SREs) have been alternatively used as a substitute for rain gauges 

 
1 Geographic Information System 
2 Rwanda Environment Management Authority 
3 Rwanda Water Resources Board 
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to spatially represent the rainfall in hydrological models (Nikolopoulos et al., 2010; Wu et al., 2012; Zhao et 

al., 2015). SREs provide rainfall information at good Spatio-temporal resolution and coverage in data-limited 

areas (Belay et al., 2019; Jamandre and Narisma, 2013). Different authors, Adjei et al. (2015); Bitew and 

Gebremichael (2011); Tramblay et al. (2016); Wiwoho et al. (2021), have indicated the application of SREs 

in hydrological modeling. Nevertheless, SREs possess uncertainties, which could be caused by instruments 

and algorithms used to detect rainfall of satellites (Gebregiorgis and Hossain, 2013). Habib et al. (2014) 

revealed that it is essential to correct and minimize the systematic errors in SREs products before they can 

be used in hydrological modeling.  

Flood modeling and flood forecasting use hydrodynamic models to estimate flood characteristics (flood 

extent, depth, duration, and velocity) (Ongdas et al., 2020). However, hydrodynamic models require 

calibration for their applicability using field observations or remote sensing detections to increase knowledge 

of adequate flood management (Alivio et al., 2019). Lack of field observations on the flood extent in the 

data-scarce Sebeya catchment presents difficulties in hydrodynamic model calibration. Thus, Satellite remote 

sensing flood detection is an adapted method for calibrating flood modeling with considerable spatial 

resolution and cost-effective demand for flood delineations (Addae, 2018). Flood inundation coverage is 

extracted using optical satellites or radar sensors to evaluate flood modeling in the past decades (Klemas, 

2015). Numerous satellites, such as Sentinels, Landsat, etc., provide freely available data for flood mapping 

applications. However, clouds in the atmosphere challenge optical remote sensing to monitor inundation 

areas during a flood event (Shen et al., 2019). The radar remote sensing method uses synthetic-aperture 

radar sensors in flood monitoring to differentiate flooded areas from non-flood areas (Addae, 2018). Radar 

can identify and map the inundation areas under all weather conditions and periods (day and night) using 

backscattering change and supervised classification (Manavalan, 2017). However, the effects of wind and 

backscattering magnitudes of different land cover types often hinder the possibility of the use of SAR in 

defining inundation areas (Refice et al., 2014). 

Remote sensing flood detection presents challenges, but they provide significant support for flood research 

in data deficient environments (Yan et al., 2015). Karim et al. (2011) used remote sensing derived flood 

extent by calibrating the hydrodynamic model of Fitzroy River catchment (Australia). The calibration 

method by Di Baldassarre et al. (2009) reveals that a hydrodynamic model’s optimal set of parameters 

depends on the observation of flood extent, the technique to extract flood extent, and the type of satellite 

applied to assess the model. Furthermore, Grimaldi, Li, Pauwels, and Walker (2016) describe the importance 

of remote sensing flood extent in the hydrodynamic model calibration and validation in data-scarce areas.  

1.2. Problem statement 

Knowledge and estimates of flood extent are essential in flood hazard monitoring and management, risk 

reduction, and other water resources practices in frequently flooded areas. The Sebeya catchment is one of 

the areas in Rwanda with frequent floods. Limited information on the inundation extent for hydrodynamic 

model analysis in the Sebeya catchment is the prime motive for this research. Poor and uncertain data 

availability constitutes a second motive. Hydrodynamic models are essential tools that serve in the reduction 

of flood impacts, the suggestion of protective practices, and operational flood management in flood risk 

hotspots (Singh et al., 2020). Poor data availability is one barrier to setting up, calibrating, and validating the 

hydrodynamic model outputs of flood-prone areas (Ghimire, 2013). This challenge is also found in the 

Sebeya catchment. However, the lack of observed flood extent has made flood extent assessments through 

remote sensing an alternative data source in data-limited areas like the Sebeya catchment.  
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Several researchers have explored the applicability of satellite-based inundation extent maps as cost-effective 

and valuable data in calibrating hydrodynamic flood modeling (Anusha and Bharathi, 2020; Notti et al., 

2018). However, satellite images present drawbacks like the limited temporal and spatial resolution of 

sensors, land surface cover effects, and weather conditions interference, reducing the accuracy of flood 

observed extent for model calibration (Addae, 2018). Regardless of those challenges, Giustarini et al. (2015) 

reveal that a combination of remote sensing and hydrodynamic flood extents provides necessary 

information on flood inundation maps. Therefore, investigating the capability of remote sensing inundation 

extents is a key in the hydrodynamic model for data-limited areas like the Sebeya catchment.  

The Sebeya catchment lacks detailed information on the flood events, which frequently occur in the area 

(once or twice annually) during the rainy season (Figure 1-1). The frequent flood necessitates the 

development of hydrodynamic modeling for flood mapping simulations, predictions, and forecasting. 

Furthermore, limited field observed inundation data to calibrate the hydrodynamic model makes satellite 

observations necessary as an alternative for effective flood modeling. However, applying satellite-derived 

inundation extent maps to calibrate hydrodynamic models is not common in Rwanda. Hence, this study 

aims to develop the 2D4 hydrodynamic model and calibrate it using satellite-derived flood extents in the 

Sebeya catchment’s model domain.  

  
Figure 1-1 Examples of flood events at Mahoko Centre (Photo credits: the Newtimes and umuseke 

newspapers) 

1.3. Research objectives and questions 

The main objective of this research is to investigate the applicability of satellite-based rainfall estimates 

(SREs) and satellite-derived inundation extent to perform hydrodynamic flood modeling of the floodplain 

in Sebeya catchment, Rwanda. 

1.3.1. Specific objectives 

In the context of the main objective mentioned above, the following specific objectives of the research are 

outlined. 

• To extract the extent of inundation from optical satellite images in the semi-urban floodplain. 

 
4 Two dimensional 

https://www.newtimes.co.rw/news/will-proposed-rwf75-billion-dams-curb-sebeya-river-floods
https://umuseke.rw/rubavu-sebeya-yuzuye-igira-ingaruka-zikomeye-mu-mirenge-4.html
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• To quantify the errors in satellite rainfall estimates (SREs) with reference to ground-based rainfall 

recordings. 

• To conduct bias-correction procedures on SREs for the Sebeya catchment.  

• To develop a rainfall-runoff model for streamflow estimation of the Sebeya catchment using 

satellite rainfall products. 

• To build a 2D hydrodynamic model for flood inundation simulation in a frequently flooded area. 

• To assess the relation of the inundation derived from satellite image with the hydrodynamic model 

flood extent. 

1.4. Research questions 

The following research questions will be addressed following the objectives mentioned above of this study: 

• What techniques can be applied to extract inundation extent from optical satellites in the semi-

urban flooded area? 

• What is the magnitude of errors found in the SREs with reference to InSitu rainfall? 

• What could be the appropriate scheme to bias-correct SREs in the Sebeya catchment? 

• How can satellite-based rainfall patterns be used to simulate the daily streamflow of the Sebeya 

catchment? 

• How do DEM uncertainties propagate in the hydrodynamic flood model results? 

• What is the impact of the inflow boundary conditions on the hydrodynamic model? 

• What approaches can be applied to evaluate the relationship between the model-simulated flood 

extent and satellite-derived inundation maps? 

1.5. Thesis structure 

This research thesis comprises six chapters. The first chapter introduces the study with an overview of the 

background, research problem, objectives, and research questions. The second chapter illustrates the 

literature review on the applied methods and studies related to this research thesis. The third chapter 

describes the study area, available datasets, and their pre-processing. The fourth chapter outlines the details 

of methods used to answer research questions. The fifth chapter addresses the results of the research and 

their discussions. The last chapter, the sixth, summarizes the primary research’s outcomes and provides 

recommendations for future research studies and the limitations of this study. 
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2. LITERATURE REVIEW 

2.1. Optical remote sensing applications for flood mapping 

Optical remote sensing-based techniques provide essential information in inundation detection and 

mapping for flood management (Chignell et al., 2015). Flood extent is extracted from optical satellite images 

by applying different techniques, including supervised or unsupervised classification and spectral indices 

thresholding to separate water and non-water pixels (Sekertekin, 2019). Spectral indices thresholding is a 

commonly applied method to extract water from satellite images because it is an easy-to-use, simple, 

straightforward, and less time-consuming approach to retrieving flood extent (Schumann et al., 2009). 

NDWI and MNDWI are two commonly used water indices for flood extent mapping. McFeeters (1996) 

proposed an NDWI index that uses the optical image’s Green, NIR, and MIR bands to differentiate water 

extent areas from other land use classes. However, NDWI presents difficulties in separating water and built-

up pixels in an urban flooded area (Feyisa et al., 2014). Therefore, Xu (2006) proposed a modified version 

of NDWI, MNDWI, that replaces the NIR band in NDWI with a SWIR band to accurately extract 

inundation extent from optical satellites. The choice of water index to delineate surface water extent depends 

on the bands of satellite images. Planetscope sensors use atmospherically corrected bottom-of-atmosphere 

(BOA) reflectance values for its four bands (visible and NIR bands) (Planet Labs, 2020). For other optical 

sensors like Sentinel-2, top-of-atmosphere (TOA) reflectances are used for level-1B and level-1C, while 

level-2A products consist of BOA reflectance images with visible NIR and MIR bands (SUHET, 2015).  

The available products of optical images provide pixel values of BOA or TOA reflectances scaled by 10000 

(for example, a pixel value of 1200 = 0.12 TOA or BOA reflectance value). Both indices’ values range from 

-1 to +1, where positive values ranging from 0 to 1 indicate water pixels while negative values (0 to -1) 

indicate non-water surface cover. Authors like ABAZAJ (2019) and Acharya et al. (2016) used the NDWI 

index for flood mapping in the Buna River area, Albania and Han River basin, North Korea, respectively. 

On the other hand, Sajjad et al. (2021) and Sivanpillai et al. (2021) applied MNDWI to delineate flood extent. 

Table 2-1 describes the equation of each water index. 

Table 2-1 Water indices 

𝑵𝑫𝑾𝑰 =
𝑮𝒓𝒆𝒆𝒏 − 𝑵𝑰𝑹

𝑮𝒓𝒆𝒆𝒏 + 𝑵𝑰𝑹
 𝑴𝑵𝑫𝑾𝑰 =

𝑮𝒓𝒆𝒆𝒏 − 𝑴𝑰𝑹

𝑮𝒓𝒆𝒆𝒏 + 𝑴𝑰𝑹
 

NDWI and MNDWI indices use the thresholding method to separate water and non-water features. The 

selection of threshold values makes extracting water coverage in optical images challenging. Therefore, an 

appropriate threshold value should be selected based on the visual inspection, image histogram analysis, and 

pixel-by-pixel investigation to avoid misclassifying non-water features to water extent. A threshold value 

varies according to the image characteristics (Yang et al., 2017). Addae (2018) and Ali et al. (2019) applied 

the thresholding method to differentiate water from non-water features. The approach that will be used in 

this study is detailed in section 4.2.  

Although optical satellite images provide information on the flood extent, they present various limitations. 

Spatial resolution, dark objects or shadows of buildings and vegetation, highly turbid water and cloud cover, 

and shadows introduce difficulties in inundation and surface water extent mapping (Yang et al., 2017). 
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2.2. Height Above Nearest Drainage (HAND) method 

The Height Above Nearest Drainage (HAND) approach proposed by Rennó et al. (2008) can be used to 

differentiate water lookalike features in satellite-derived flood extent. The HAND algorithm uses the digital 

elevation model (DEM) as input. First, it is corrected to remove sinks, then flow directions can be computed, 

and the drainage network definition follows (Rennó et al., 2008). The HAND model modifies the 

topographic terrain with respect to the elevation of the drainage network. The sinks in the DEM are filled 

to avoid effects on the topographical representation created. Then, the fixed DEM generates the local drain 

direction (LDD) using the flow direction method. The upstream flow accumulated cells contributing to a 

downstream grid are defined using LDD. A minimum threshold of accumulated grids is used to delineate 

the drainage network. The nearest drainage map is generated using the LDD and drainage network with 

coded flow path grid points. Therefore, subtracting the nearest drainage map from the DEM results in the 

HAND grid map (Bhatt and Srinivasa Rao, 2018). In the HAND map, zero elevation values indicate the 

drainage network (Figure 2-1). From Figure 2-1, the DEM elevation grid of 72 is connected to the drainage 

cell of 53, and their subtraction results in a HAND grid of 19, which means the grid point is 19m above its 

nearest drainage cell. Figure 2-1 describes the summarized steps in the HAND creation process adopted by 

Rennó et al. (2008). The HAND method output is categorized into different classes based on either 

knowledge of the study area or field data (Nobre et al., 2011). The HAND approach can determine 

susceptible flood-prone and non-flooded areas (Hu and Demir, 2021). Authors like Nobre et al. (2016) and 

Bhatt and Srinivasa Rao (2018) applied the HAND approach to map inundation extent. 

 

 

 

 

 

 

 

 

Figure 2-1 HAND development processes proposed by Rennó et al. (2008) 

The HAND method uses a thresholding approach where an appropriate threshold value is defined to 

separate flooded and non-flooded prone areas (Chow et al., 2016). HAND grids with zero value indicate 

the drainage network, and HAND grids with values less than or equal to the threshold value are considered 
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flood-prone areas (Hu and Demir, 2021). Therefore, this study will define threshold height to delineate the 

susceptible areas to flooding, which will be used to reduce misclassified satellite-derived flood extent in the 

model domain. The quality of DEM products used (Rennó et al., 2008) and wrong threshold value selection 

can lead to either under or over-estimation of inundation extent areas (Chow et al., 2016).     

2.3. Satellite rainfall estimates 

Rainfall is mainly an essential input in hydrological modeling. Rainfall can be measured using ground-based 

instruments (gauges and radar) and satellite-based sensors. In-situ measurements provide accurate rainfall 

data when well quantified, monitored, and spatially representative. However, the ground-based 

measurements lack the spatial representation of rainfall globally (Behrangi et al., 2011). Therefore, the 

uneven spatial distribution of rain gauges presents the scope application of satellite rainfall estimates in the 

hydrological models. 

Satellite rainfall estimates (SREs) have been investigated in hydro-meteorological applications for different 

parts of the world (Ageet et al., 2022; Ashouri et al., 2016; Habib et al., 2014; Xue et al., 2013). SREs are 

estimated using sensors with infrared-based (IR) and passive microwave-based (PMW) techniques and their 

combination to record the rainfall. The IR-based method produces precipitation based on the top of cloud 

characteristics (temperature). The PMW-based technique uses ice particles or droplets concentrated in the 

atmosphere to estimate rainfall (Kidd et al., 2003; Vant-Hull et al., 2014). Various satellite rainfall products 

exist, like CMORPH5, CHIRPS6, TRMM-3B427, GPM-IMERG8, etc. However, SREs possess uncertainties 

(i.e., random and systematic errors) in their measurements, producing erroneous results in the respective 

applications (Bakary et al., 2018). Therefore, a bias correction process is required to minimize the errors in 

the SREs. 

The bias correction method is performed to improve the accuracy of SREs in the respective applications 

(Habib et al., 2014; Omondi et al., 2021). Different approaches have been evaluated where authors like 

Gumindoga et al. (2019) considered five bias correction approaches, namely Spatio-temporal (STB), 

elevation zone (EZ), power transform (PT), distribution transformation (DT), and quantile mapping based 

on an empirical distribution (QME) bias correction methods on CMORPH satellite product where they 

concluded that STB and EZ bias correction outperform other bias correction approaches. Habib et al. 

(2014) also assessed three sub-classes of the STB scheme, namely time-space variable (TSV), time variable 

(TV), and time-space fixed (TSF) on the CMORPH satellite product, where they deduced that the TSV 

reduces Bias in the CMORPH rainfall data. The bias-corrected satellite rainfall produces accurate streamflow 

in Ethiopia’s Gilgel Abbey catchment. 

Therefore, three satellite products (CHIRPS, CMORPH, and TAMSAT) will be analyzed to select one 

product that best represents rainfall in the Sebeya catchment, Rwanda. Then, the bias correction process 

was performed to reduce the propagation of errors in the hydrological model for the study area. 

 
5 Climate Prediction Center (CPC) Morphing technique 
6 Climate Hazards Group InfraRed Precipitation with Station data 
7 Tropical Rainfall Measuring Mission 
8 Integrated Multi-satellite Retrievals for Global Precipitation Measurement 
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2.4. Rainfall-runoff modeling 

Hydrological models are a simplified representation of real-world characteristics through mathematical 

equations, several parameters, catchment characteristics, meteorological forcing, and other climatic variables 

(Devia et al., 2015). They provide information for water resources, environmental managers, hydroelectric 

projects, irrigation, flood mitigation practitioners, etc. Hydrological models can be grouped based on the 

process to be modeled, the model structure, model application, available input data for modeling, model 

approach, and mathematical equations applied (Becker and Serban, 1990). According to Rientjes (2016), 

hydrological models can also be classified as conceptual, empirical, and physical-based, depending on the 

model approach. Furthermore, each hydrological model can be divided into subclasses where a model can 

be classified as lumped, semi-distributed, and distributed based on the model's spatial representation. 

The physical-based model considers the understanding of physical processes of the real world by applying 

mathematical equations that are derived from the conservation of mass, momentum, and energy to simulate 

the processes of the hydrological approach. Empirical model approaches do not consider the physical 

characteristics of the real-world features; hence they are based on the observations and input-output 

relations of the processes to be modeled. Empirical approaches often are applied in ungauged areas when 

rainfall and streamflow data time series are available while information on the study area is limited. On the 

other hand, conceptual model approaches involve relatively simple mathematical relations to simulate real-

world processes. Conceptual approaches use semi-empirical equations and model parameters that are 

determined through calibration against observed streamflow to simulate real-world hydrologic phenomena 

(modified after Rientjes (2016)). 

Moreover, depending on the spatial discretization of the catchment system, the hydrological model is 

considered lumped when spatial variations of processes and characteristics are ignored over the entire model 

domain (catchment). A semi-distributed model divides the catchment into sub-basins of different sizes 

based on the topography within the catchment. Each subbasin unit has its set of model parameters and state 

variables (hydro-meteorological data). On the other hand, distributed models describe the real-world 

characteristics in the elaborated way where the model domain is discretized into the same or different grid 

cell sizes, for which model parameters are assigned (Godara et al., 2019). Rainfall-runoff models often apply 

conceptual model approaches (Rientjes, 2016). Several hydrological model software packages exist, including 

HEC-HMS, MIKE-SHE, SWAT, and HBV. 

Therefore, a semi-distributed conceptual Hydrologiska Byråns Vattenbalansavdelning (HBV) model will be 

used in this research to simulate the hydrologic behavior of the Sebeya catchment. The HBV model was 

selected due to its simple structure and moderate input data required (Sælthun, 1996). Several authors like 

Mendez and Calvo-Valverde (2016) used  HBV  to predict the streamflow of the river catchment. The 

estimated runoff from upstream will be used as inflow for the model domain in the flood model. 

2.5. Hydrodynamic modeling 

Hydrodynamic distributed flood modeling serves to assess spatial patterns of flood extend, flood depth, 

flow velocity, and flood duration in the main river reach and inundated areas (Costabile et al., 2020). 

Hydrodynamic models solve a set of finite difference equations using mass and momentum conservation 

principles to describe the flow dynamics across all wetted grid elements that constitute river channels and 

floodplains (Ongdas et al., 2020). Flood models may serve as simulations of flood hazards, inundation-prone 

areas, and flood mitigation strategies for flood management practitioners. These models apply concepts of 
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1D, 2D, or coupled 1D2D to simulate flow characteristics (duration, extent, depth, and velocity). The 1D 

hydrodynamic model estimates flood flow in channels or open floodplain areas with only cross-section data 

as geometry input (Yalcin, 2018). The 2D hydrodynamic model describes inundation patterns in floodplains 

in both directions (longitudinal and lateral) (Quirogaa et al., 2016). 1D and 2D models can be combined in 

a coupled 1D2D hydrodynamic model where the river and floodplains in urban areas are modeled together 

(Timbadiya et al., 2015).  

Zainalfikry et al. (2020) revealed that the 1D hydrodynamic model performs sufficiently to simulate flooding 

in the Pahang River, Malaysia. However, it requires accurate river geometry data and presents difficulties in 

estimating inundations in complex floodplains, necessitating the introduction of a 2D hydrodynamic model. 

2D hydrodynamic models use mesh patterns over the floodplain area to simulate flow paths in complicated 

topographic regions, particularly in urban areas (Yalcin, 2018). Liu et al. (2015) found that coupled 1D2D 

hydrodynamic model provides effective interactions of flow pathways between the channel and floodplain 

during urban flooding simulations. Several software packages, like MIKE FLOOD, SOBEK, HEC-RAS, 

etc., have been extensively applied in the flood simulation for channels and floodplains. 

HEC-RAS hydrodynamic model tool was selected in this research to simulate inundation patterns in the 

semi-urban flood model domain located in the downstream part of the Sebeya catchment. The tool was 

selected because of its ability to depict flood using a 1D or 2D hydrodynamic model independently or in 

the coupled 1D-2D form model approach. The main inputs in the hydrodynamic model are topographic 

representation, channel cross-sections, land cover representation, and boundary conditions.  

2.5.1. Topographical representation 

The topographic data in a digital elevation model (DEM) is one of the essential input data in the 

hydrodynamic model to describe the geometric representation of floodplain and river channels (Md Ali et 

al., 2015). DEM is represented by grids where the pixel value of each grid shows the height of the terrain 

above a datum (Hawker et al., 2018). Different techniques exist to generate DEMs, including topographic 

surveys, Light Detection and Ranging (LiDAR), photogrammetry, and interferometric method (Mesa-

Mingorance and Ariza-López, 2020). These methods extend from high resolution and accurate but 

expensive technique, LiDAR, to publicly available global, inexpensive and medium resolution data from 

Shuttle Radar Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) (Md Ali et al., 2015).  

DEM products’ spatial resolution and vertical accuracy uncertainties introduce challenges in flood 

inundation modeling (Merwade et al., 2008). Watson et al. (2015) reveal that the flood inundation extent 

and depth characteristics change in the hydrodynamic model subject to applied variable DEM products and 

their quality and irregular channel representation in the floodplain. Cook and Merwade (2009) and Md Ali 

et al. (2015) revealed that finer resolution DEMs generate precise and effective inundation maps compared 

to coarse spatial resolution DEMs, which, at grid element scale, tend to overestimate inundation extents. Ali 

(2016) also demonstrated that DEM resolution and its accuracy influence the inundation extent simulated 

in flood models. Therefore, topographic terrain data with accurate surface features (river channels, roads, 

etc.) representation in the floodplain is necessary to produce reliable flood model results. In this study, the 

local DEM product collected from RWB, 10m× 10m spatial resolution, will be investigated for application 

in the hydrodynamic model. 
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3. STUDY AREA AND DATASET 

3.1. Study Area 

Sebeya catchment, with an area of 215.4 km2, is the study area of this research and is located in the North-

Western part of Rwanda. The catchment is a part of the Congo-Kivu catchment and covers parts of the 

Rubavu, Rutsiro, and Ngororero districts. Sebeya catchment has an average annual rainfall of above 1200 

mm with an average temperature of 20°C (Hakorimana et al., 2019). Figure 3-1 shows the location of the 

Sebeya catchment. The primary stream of the catchment is the Sebeya river, with a total length of about 48 

km. The river is the source of the water treatment plant and different hydropower plants for domestic and 

commercial use. The catchment was selected for this research due to the recurrent floods in its downstream 

part. 

 
Figure 3-1 Location map of Sebeya catchment 

3.1.1. Flood model domain concept 

The Sebeya river is the main river of the catchment. A hydrodynamic model will be developed covering 

flood-prone areas, thus considering the model domain. The model domain considers the low and flatlands 

areas of the Sebeya catchment, covering the frequently flood-prone areas of Mahoko Centre and tea 

plantations. The flood model domain was delineated attentively to adequately present floodplain areas, with 

an area of about 5 km2. The inflow boundaries representing streamflow from upstream areas will be 

estimated using the rainfall-runoff model, which will be developed in this research. The location of the 

model domain is shown in Figure 3-2. 
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Figure 3-2 Location of the selected model domain 

3.2. Datasets 

Sebeya catchment experienced recurrent flooding in recent years (2018, 2020, and 2021) for Mahoko market 

Centre but there are no in-situ recordings of these flood events. Therefore, this study intends to develop a 

hydrological and hydrodynamic flood model to understand the causes and extent of these flood events. 

Various types of data were used in this study, including hydro-meteorological data, topographic data of the 

catchment and flood model domain, land use/land cover, and satellite remote sensing data (Planetscope 

optical satellite images). 

3.2.1. Optical Satellite-based surface water 

Earth observation satellites are extensively used in surface water bodies mapping and monitoring because 

they provide available, open-source, and inexpensive data (ABAZAJ, 2019). The detection of inundation 

extent from satellite requires the knowledge of the time flood took place. For this study, flood windows 

were acquired from different newspapers to download an image from the year 2018 to 2021. Numerous 

satellite products have been investigated, from freely accessible (Landsat-8, Sentinel-2, and Sentinel-1) to 

commercial (SPOT-6&7, and WorldView-3) satellite images. Still, the clouds and unavailable images during 

flood events were the main challenges to acquiring optical satellite images. However, after more efforts, a 

Planetscope optical satellite image was obtained from online data archives during the flood window. Table 

3-1 describes the details of the collected images. 

Table 3-1 Details of the downloaded Planetscope images 

Satellite image Bands 
Spatial 

resolution (m) 

Acquisition 

time 

Cloud cover 

(%) 
Condition 

Planetscope 
4-bands (Red, Green, 

Blue, NIR) 
3 

04/03/2018 15 After flood 

23/09/2017 0 Before flood 
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Following the flood event that occurred on the 3rd March 2018, around 4 PM along the Sebeya river (EFRC, 

2018), the Planetscope image after flooding was acquired on the next day (4th March) in the morning (7 

AM). The satellite image before the flood was taken five months before the flood event. Therefore, these 

images will be used to detect areas affected by flooding in the model domain.  

3.2.1.1. Planetscope satellite images 

The Planetscope satellite constellation comprises around 130 individual satellites that record optical images 

in the visible and near-infrared bands daily (Planet Labs, 2021). The Planetscope Analytic Ortho Scene 

images (PSScene4Band) were downloaded from the Planetscope Explorer repository 

(https://www.planet.com/explorer/). These images are orthorectified, radiometrically, sensor, and 

geometrically corrected products and projected to UTM map projection (Planet Labs, 2021). All images 

(before and flood) were Surface Reflectance (SR) products in a GeoTiff format where SR values are scaled 

by 10,000 (Planet Labs, 2020). Details of acquired images are shown in Table 3-1, and Table 3-2 represents 

the specifications of Planetscope Ortho Scene images. 

Table 3-2 Planetscope Analytic Ortho Scene image characteristics (source: (Planet Labs, 2021) ) 

Product Attribute Description 

Information Content  

Analytic Bands 
3-band multispectral image (red, green, blue) 

4-band multispectral image (blue, green, red, near-infrared) 

Ground Sample Distance 3.7 m (average at reference altitude 475 km) 

Processing 
 

Pixel Size (orthorectified) 3.0 m 

Bit Depth 

Analytic (DN): 12-bit 

Analytic (Radiance - W m-2 sr-1 μm-1): 16-bit 

Analytic SR (Surface Reflectance): 16-bit 

Geometric Corrections 

Sensor-related effects are corrected using sensor telemetry and a sensor model. 

Spacecraft-related effects are corrected using attitude telemetry and the best 

available ephemeris data. Orthorectified using GCPs and fine DEMs (30 m to 90 

m posting) to <10 m RMSE positional accuracy. 

Positional Accuracy Less than 10 m RMSE 

Radiometric Corrections 

• Conversion to absolute radiometric values based on calibration 
coefficients 

• Radiometric values scaled by 100 to reduce quantization error 

• Calibration coefficients are regularly monitored and updated with on-
orbit calibration techniques. 

Atmospheric Corrections 

• Conversion to top of atmosphere (TOA) reflectance values using at-
sensor radiance and supplied coefficients. 

• Conversion to surface reflectance values using the 6SV2.1 radiative 
transfer code and MODIS NRT data. 

• Reflectance values are scaled by 10,000 to reduce quantization error. 

https://www.planet.com/explorer/
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3.2.2. Topographic data 

The DEM products generally provide information on the river channel and floodplain terrain in hydrologic 

and hydraulic modeling (Manyifika, 2015; Tarekegn et al., 2010). DEM data from two sources will be used 

in this research, ALOS-PALSAR for the hydrological model and local DEM in the hydrodynamic model. 

The DEM product was used to generate elevation zones for the hydrological model. Besides, it was imported 

into the hydrodynamic flood model for topographic representation. 

The digital elevation model (DEM) used in the hydrological model for this study is the Advanced Land 

Observing Satellite/Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR) DEM 

downloaded from Alaska Satellite Facility (ASF) website ( https://search.asf.alaska.edu/#/ ). The DEM 

consists of a 12.5m × 12.5m grid cell size. The topography of the Sebeya watershed extends from 1675 to 

2930 m a.s.l based on the ALOS-PALSAR DEM product (see Figure 3-3), where the most significant parts, 

in its north and eastern regions, are dominated by high elevations and flatlands in the downstream area 

where frequent floods occur. Almost 80% of this land (particularly in the east of the catchment) is of high 

altitude (above 2000 m a.s.l.). 

The local DEM product, 10m × 10m spatial resolution, will be used in the hydrodynamic model and 

collected from RWB. This product covered the whole country and resulted from the Rwanda Land Use and 

Development Plan project that used 0.25m × 0.25m grid size orthophoto images (Manyifika, 2015). 

However, the DEM presents errors in both horizontal and vertical directions, which could be a source of 

uncertainties introduced in flood inundation modeling (Merwade et al., 2008). Therefore, the DTM was 

enhanced to refine the terrain and represent surface features. 

3.2.3. Land use/Land Cover 

Land cover is an essential input in the HBV hydrological model. Land cover data for the Sebeya catchment 

were acquired from a 10m × 10m resolution ESA WorldCover map prepared in 2020 and released in 2021. 

Sebeya catchment contains seven land cover classes where the grassland is dominated throughout the area, 

followed by forest and croplands. The built-up areas are observed in the downstream part of the catchment 

because of the Mahoko Center, a dynamic town with regular traffic and trade, leading to the town’s growth, 

thus increasing flood risk and vulnerability.  

Manning’s coefficient (n) represents the surface roughness, the resistance of river channels, and floodplain 

to flows (J.Arcement and Schneider, 1989). Surface roughness will be determined by the land use data 

extracted by classifying available orthophoto images. Optimal surface roughness is mainly estimated through 

the calibration process of the hydrodynamic model to get the best model performance (Liu et al., 2019). 

Abbas et al. (2020) and Garrote et al. (2021) use calibrated Manning’s coefficient in flood modeling and 

reveal that calibrated model with surface coefficient produces an acceptable correlation between simulated 

and observed flood extent. 

https://search.asf.alaska.edu/#/
https://viewer.esa-worldcover.org/worldcover/?language=en&bbox=28.905000720182176,-1.9879546428699655,29.921440109738747,-1.4945228010940923&overlay=false&bgLayer=MapBox_Satellite&date=2022-03-31&layer=WORLDCOVER_2020_MAP
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Figure 3-3 Topographic (a) and Land cover (b) maps of Sebeya catchment 

3.2.4. Rainfall data collected 

3.2.4.1. InSitu rainfall data 

Daily meteorological data were collected from RMA, which includes rainfall data. Among 11 rainfall stations 

provided, five stations were used in this study because they are close to the Sebeya catchment (Figure 3-4). 

This study used the Thiessen polygon method to generate a spatial representation of In-Situ meteorological 

data on the Sebeya sub-basins. Therefore, the meteorological data for each sub-basin was estimated using 

the influence fraction of each station on the sub-basin using QGIS software. 

a b 
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Name Longitude Latitude 
Elevation 

[m] 

Boneza 29.3 -1.9 1632 

Nyundo 29.31 -1.7 1690 

Bigogwe 29.41 -1.61 2408 

Kabaya 29.5 -1.76 2442 

Sovu 29.52 -1.91 2335 

Figure 3-4 Rainfall stations and their description 

3.2.4.2. Satellite rainfall data 

Three satellite rainfall products were evaluated in this study, as shown in Table 3-3. The SRE products were 

selected based on their high spatial and temporal resolutions, broad temporal coverage, and freely and easily 

accessible datasets. 

CHIRPSv2 dataset 

Rainfall data from CHIRPS produced by combining remote sensing and rain gauge stations were evaluated 

in this research. The United States Geological Survey (USGS) and the Climate Hazards Group at the 

University of California, Santa Barbara, developed the CHIRPS dataset, where they combine pentadal 

precipitation climatology, quasi-global geostationary TIR satellite observations from the Climate Prediction 

Center (CPC), and the National Climatic Data Center (NCDC), atmospheric model rainfall fields from the 

NOAA Climate Forecast System version 2 (CFSv2), and in situ rainfall observations (Funk et al., 2014). The 

product is available at 0.05° spatial resolution and at daily, pentad, and monthly temporal resolution. 

CHIRPS product extends over 50°S and 50°N and contains gridded rainfall time-series data from 1981 to 

the near-present. The daily CHIRPSv2 rainfall data was extracted from 

https://data.chc.ucsb.edu/products/CHIRPS-2.0/africa_daily/tifs/p05/. 

Table 3-3 Description of satellite rainfall products used in this study 

Satellite 

product 

Spatial Temporal 
File format References 

Resolution Coverage Resolution Coverage 

CHIRPSv2 0.05° ≈ 5 km 
50°N - 50°S 

Global 
Daily 1981-Present GeoTiff 

(Funk et al., 

2014) 

CMORPH 0.0727° ≈ 8 km 
60°N - 60°S 

Global 
½ hourly 1998-Present ILWIS 

(Joyce et al., 

2004) 

https://data.chc.ucsb.edu/products/CHIRPS-2.0/africa_daily/tifs/p05/
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TAMSATv3.1 0.0375° ≈ 4 km 
Africa 

continent 
Daily 1983-Present netCDF 

(Maidment et 

al., 2017) 

CMORPH dataset 

The CMOPH product provides rainfall using a morphing approach where PMW rainfall observations and 

IR brightness temperature from different satellites are combined to retrieve rainfall estimates. The 8km × 8 

km spatial resolution rainfall estimates are determined from different sensor types where rainfall is generated 

at 30min periods from forward and backward weighted interpolation of PMW-measured estimates recording 

the shape and intensity of rainfall estimates at a particular location (Joyce et al., 2004). CMORPH rainfall 

estimates are available at 8 km × 8 km grid resolution for ½ hour and hourly time scale and at 25 km × 25 

km daily and weekly. The data were downloaded through ILWIS software using ISOD Toolbox from 2014 

to 2018. The ½ hourly data were aggregated daily to match the time step of rain gauges and other satellite 

products. 

TAMSATv3.1 data 

The Tropical Applications of Meteorology using Satellite and ground-based observations (TAMSAT) 

version 3.1 rainfall product was also used in this research. The TAMSAT product uses Meteosat thermal 

infrared (TIR) and ground-based rainfall data for calibration. The algorithm used in the TAMSAT is based 

on the cloud-indexing technique, where rainfall proxy is determined when cold cloud tops exceed a defined 

temperature threshold(Maidment et al., 2014; Tarnavsky et al., 2014). The daily TAMSAT estimates were 

assessed using daily ground-based rainfall data from five countries (Mozambique, Niger, Nigeria, Uganda, 

and Zambia) and other SREs products (CHIRPS, CHIRP, RFE, ARC, TMPA-3B42, and CMORPH) 

(Maidment et al., 2017). TAMSATv3.1 is available at approximately 4 km × 4 km spatial resolution and at 

daily, pentadal, decadal, monthly, and seasonal temporal scales. It contains data from 1983 to nearly present 

over the African continent. The daily data of TAMSAT were downloaded from 

http://www.tamsat.org.uk/data repository. 

3.2.5. InSitu Rainfall Data pre-processing 

Daily rainfall data from five stations were used in this study. There were no gaps in the data collected from 

2014 to 2018. Double mass curve analysis was performed to check the consistency of the available rainfall 

stations. This method is estimated based on the cumulative daily rainfall of one station against the cumulative 

daily rainfall of neighboring stations (Manyifika, 2015). Figure 3-5 provides double mass curves of different 

stations, showing better consistency with a high correlation coefficient (R2 > 0.9).  

http://www.tamsat.org.uk/data
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Figure 3-5 Double mass curve of some stations 

Figure 3-6 presents the annual rainfall of selected rainfall stations for this study from 2014 to 2018. All the 

stations describe the consistency in the high amount of rainfall recorded with less rain in 2017. Boneza 

station shows high annual rainfall compared to other stations selected for this study.  

 
Figure 3-6 Annual rainfall for selected rainfall stations from 2016 to 2020 

After selecting rainfall stations, the elevation-rainfall relationship was established, as shown in Figure 3-7 

for the Sebeya catchment. It can be found that there is no relationship between the available rainfall stations 

and elevation based on the very low regression coefficient (R2 < 0.3) and limited rain gauges (five rainfall 

stations). Therefore, the elevation-rainfall relation will not be applied to estimate rainfall over sub-basins.  
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Figure 3-7 Elevation and rainfall relationship 

3.2.6. Rainfall data consistency check 

The available ground-based and satellite-based rainfall data were analyzed to determine the consistency of 

representing rainfall depth in the study area. Five rainfall stations and three satellite rainfall estimates were 

collected and acceptable for further operations. Nevertheless, some rainfall data depicts unreasonable values 

in recordings. The double mass curve was produced with all rainfall data from rain gauges and satellites, as 

it is shown in Figure 3-8. It is observed that Boneza and Sovu stations remarkably record high accumulated 

rainfall amounts compared to satellite rainfall estimates (SREs), i.e., SREs at those stations have much lower 

rainfall amounts. There is no information on the source of those effects, but they would be caused by 

erroneous data recorded on Boneza and Sovu rain gauges. Therefore, the remaining three stations were 

selected for further applications in the bias-correction process and hydrological modeling because of their 

consistent rainfall recordings.   

On the other hand, collected SREs were checked for consistency before their applications. CMORPH 

satellite product typically underestimates accumulated rainfall amount in the selected rainfall stations. 

Therefore, the CMORPH product was excluded from further use as the product was considered 

nonrepresentative for the Sebeya catchment. The exclusion is unexpected because of its technique for 

recording rain (combination of infrared and passive microwave) and better performance compared to 

ground observations observed in different areas (Awange et al., 2016; Dinku et al., 2007; Shen et al., 2010) 

and its application in rainfall bias correction and hydrological modeling (Bhatti et al., 2016; Habib et al., 

2014). However, the same underestimation of CMORPH SRE was found by Rahmawati et al. (2021), who 

indicated the larger underestimation of CMORPH satellite products compared to other satellite rainfall 

products. Therefore, the CHIRPS and TAMSAT SREs are selected for further use and application in 

hydrological modeling.  
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 Figure 3-8 Accumulated rainfall for each rain gauge station with corresponding satellite-based rainfall 
amount 

3.2.7. Temperature and potential evapotranspiration products 

Potential evapotranspiration (PET) data is another input required for HBV hydrological model. The PET 

file may include either long-term monthly mean values, long-term daily mean values, or one value for each 

day following the PTQ-file time steps (Seibert, 2005). Long-term monthly PET values were used for this 

study as input for the hydrological model. PET values were acquired from the EarthData website 

(https://appeears.earthdatacloud.nasa.gov/) using the Application for Extracting and Exploring Analysis 

Ready Samples (AppEEARS) technique. The AppEEARS uses MOD16A2 of an 8-day composite product 

at 500m pixel size. The MOD16A2 data product is based on the Penman-Monteith equation.  

  

  

 

Underestimation 

https://appeears.earthdatacloud.nasa.gov/
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The temperature data were obtained from Rwanda-Meteo, where the minimum and maximum daily 

temperatures for three stations (Bigogwe, Gisenyi-Aero, and Sovu) were provided. Therefore, the average 

between the minimum and maximum values was calculated from those three stations for the hydrological 

model.  

 
Figure 3-9 Monthly Long-term potential evapotranspiration (2015-2020) 

3.2.8. Hydrological data analysis 

Water level and flow discharge data for the Nyundo station were collected from the RWB water portal. It is 

necessary to have discharge data to calibrate the hydrological model. The available field visit measurements 

of water level and discharge were used to establish a stage-discharge relationship. There is a telemetry (Figure 

3-10) instrument that records stage data on the river that were downloaded from the RWB portal with data 

from the 2018 to 2020 period. After establishing the stage-discharge relation, the available water level data 

were converted into flow discharge using Equation 3-1. 

  

Figure 3-10 Location of Sebeya river gauging station and stage-discharge relation at Nyundo station 

𝑸 = 𝑪 ∗ (𝒉 + 𝒂)𝒃 Equation 3-1 

Where Q is the discharge [m3/s], h is water level [m], a is the water level at zero flow, and C and b are 

calibration coefficients. C is the discharge at the effective flow depth (h + a) of 1, and b is the logarithmic 

slope of the rating curve. Manyifika (2015) provided detailed information on the estimation of a, C, and b 

coefficients in the annex. After computation of those coefficients for the Nyundo hydrological station, the 

https://waterportal.rwb.rw/location_ng_info/196501
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stage-discharge relation was deduced as illustrated in Equation 3-2. With Equation 3-2, the Sebeya 

streamflow time series (Figure 3-11) was obtained based on the available water level from 2018 to 2020. 

𝑸 = 𝟏. 𝟗𝟔𝟖𝟖𝟎𝟏 ∗ (𝒉 + 𝟎. 𝟑𝟓)𝟎.𝟖𝟑𝟏𝟓𝟕𝟏 Equation 3-2 

 
Figure 3-11 Sebeya river discharge data 

3.2.8.1. Consistency analysis of hydrological data 

The analysis of the available discharge data is required to understand the rainfall response for the Sebeya 

catchment with respect to the flow at the Nyundo gauging station. This approach was developed and 

proposed by Rientjes et al. (2011), indicating that an increase or reduction of rainfall should match with an 

increase or decrease in flow discharge for a selected area. The method is applied to remove the outliers in 

the flow discharge. Therefore, the outliers were adjusted to remove erroneous data in streamflow datasets. 

Following the study of Manyifika (2015), the ratio values ranging beyond -10 to +10 were corrected in the 

streamflow data to produce consistent streamflow for the Sebeya river. The increment differences of rainfall 

and streamflow and the ratio of increments were estimated and plotted. 

∆𝑸 = 𝑸𝒕 − 𝑸𝒕−𝟏   &    ∆𝑷 = 𝑷𝒕 − 𝑷𝒕−𝟏        in [mm] Equation 3-3   

𝑹𝒂𝒕𝒊𝒐 =
|∆𝑷|

∆𝑸
 Equation 3-4 

Figure 3-12 shows the incremental differences in rainfall and observed streamflow for three years of datasets 

(2018-2020), from which we will deduce a flood event that took place on 3rd March 2018. The average 

rainfall from all available rainfall stations was used for this operation to represent the rainfall influence from 

all subbasins. On the ratio |∆P|/∆Q, a few outliers range from -10000 to 10000, and most outliers range 

from -500 to 500.  
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Figure 3-12 Sebeya river change ratios 

Figure 3-12 necessitates the correction of observed streamflow time-series data. Hence, using Equation 3-4, 

observed streamflow data were corrected following the abovementioned conditions. However, elaboration 

of Equation 3-4 resulted in Equation 3-5, from which modified streamflow was estimated. Therefore, 

Equation 3-6 was used to estimate corrected streamflow, where a starting streamflow was taken from 

observed, and the ratio (-10 where there was a decrease in rainfall and +10 when there is an increase in 

rainfall) was inserted. 

𝑹𝒂𝒕𝒊𝒐 =
|𝑷𝒕 − 𝑷𝒕−𝟏|

𝑸𝒕 − 𝑸𝒕−𝟏
 Equation 3-5 

𝑸𝒕 =
|𝑷𝒕 − 𝑷𝒕−𝟏| + 𝒓𝒂𝒕𝒊𝒐 × 𝑸𝒕−𝟏

𝒓𝒂𝒕𝒊𝒐
 

Equation 3-6 

Where 𝑷𝒕−𝟏  and 𝑸𝒕−𝟏 represents the rainfall and streamflow of the previous day, respectively. 𝑷𝒕 and 𝑸𝒕 

are rainfall and streamflow of the present day, respectively. 

3.2.8.2. Corrected hydrograph 

The errors in the available hydrograph were minimized to produce streamflow data used in the hydrological 

modeling in the Sebeya catchment. Figure 3-13 describes the corrected and modified hydrography for the 

Sebeya river during 2018. 

 
Figure 3-13 Sebeya River Corrected hydrograph 
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4. METHODOLOGY 

4.1. DTM enhancement 

Detailed analysis and enhancement of the available topographic data are essential in flood modeling to 

simulate reliable flood model results. Coarse-resolution and poor surface features’ representative DEM 

products significantly affect the water depth, flood extent, and velocity estimated from the flood model. 

Therefore, a pre-processing of the available DEM was required to refine the terrain and represent surface 

features on the topographic data. Two approaches were tested in this study. The methodologies for the two 

approaches are depicted in Figure 4-1. The first approach considers resampling the original DEM (10m × 

10m) to 1m × 1m for further operations on the DEM. Contours of 0.25m × 0.25m intervals were created 

to adjust the terrain in the flat floodplains before the available DEM was imported into the hydrodynamic 

model. After changing and correcting the contour elevations and positions, a TIN map was created using 

ArcGIS software. After that, the produced TIN was rasterized to 0.25 m resolution, which was resampled 

to 1, 5, and 10m grid size DEM to create a suitable terrain for hydrodynamic modeling. 

1st approach 

 
2nd approach 

 

Figure 4-1 DEM enhancement process 

The second approach considers the refinement of the original DEM (10m × 10m), where contours of 1m 

× 1m intervals were created to adjust the terrain in the flat floodplains before the available DEM was 

imported into the hydrodynamic model. Within the 1m interval contours, contours of 0.25m distance were 

added manually between each 1m interval, i.e., three contours were delineated at an equal distance between 

1m interval contours. A TIN map was created using ArcGIS software after adding, changing, and correcting 

the contour elevations and positions. After that, the produced TIN was rasterized to 1m × 1m resolution, 

and the TIN can also be rasterized at different spatial resolutions. After that, 10m × 10m grid size DEM 
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was resampled to 1m × 1m DEM, which was imported in HEC-RAS to introduce the channel drainage to 

create a suitable terrain for hydrodynamic modeling. The modified topography (1m × 1m resolution) was 

resampled to 5m × 5m and 10m × 10m resolution DEMs to assess their description of surface features. 

The steps to delineate channels in HEC-RAS are described in Figure 4-2. 

The HEC-RAS 6.1 using the RAS Mapper tool was used to modify the original topographic terrain. The 

terrain modification tools can create vectors like lines, shapes, and polygons, from which an elevation is 

specified to adjust the topography of the original terrain. In this case, a line vector format was created to 

modify the terrain of the main channel in the available topography. Therefore, the 1m × 1m spatial 

resolution DEM was imported into RAS Mapper to create a topographic terrain. It is better to create a 

virtual clone terrain on which the terrain modifications will be conducted, keeping the original topography 

unchanged.  

 
Figure 4-2 Steps of terrain modification in the RAS Mapper 

Figure 4-2 indicates the steps involved in the terrain modification in HEC-RAS using the GIS RAS Mapper 

tool. In the new terrain modification layer, a river centreline is aligned following the channel on the google 

satellite image. Firstly, the start editing layers is selected to begin the definition of the river in the terrain by 

clicking on the starting point. In the ground line editor, a top width, max extent width, and right and left 

slope are defined based on the study area knowledge and observations on the satellite images to delineate a 

cross-section of the river channel. In the profile station and elevation data table, default elevation values can 

be edited to produce the river profile that follows the original terrain before modification. The steps 

indicated in Figure 4-2 can be used to modify the terrain by adding different surface features like roads, 

dams, or buildings to the original topography. After establishing the surface features (channel for this case), 

click on the stop editing to save the changes on the modified terrain. Therefore, a new topography can be 

saved in the raster format by combining the original and changed topographic terrain using resample to a 

single terrain tool (Figure 4-2). Table 4-1 describes the characteristics of river reach cross-sections used to 

introduce the river network in the original terrain. 



APPLICATION OF SATELLITE-BASED RAINFALL ESTIMATES AND INUNDATION EXTENT FOR FLOOD MODELING IN THE SEBEYA CATCHMENT, RWANDA 

25 

Table 4-1 Characteristics of different river reaches used for terrain modification 

River 

characteristics 

River reaches 

Sebeya downstream Sebeya upstream Karambo 

Bottom width 10 9 8 

Left side slope -1 -1 -1 

Right side slope 1 1 1 

Max extent width 12 11 10 

 

4.2. Planetscope flood mapping 

The Planetscope satellite image for a flood event that occurred on 4th March 2018 was used in this study to 

extract inundation extent. But cloud cover in the study area for the respective acquisition date is a limitation 

in extracting appropriate surface water for use. The NDWI spectral index was suitable in this study to 

delineate surface water features based on the available Planetscope satellite images with four bands (indicated 

in Table 3-1), but the index produced unexpected inundation areas. The NDWI inundation extent results 

covered almost the whole model domain. Therefore, a change detection method was found to be another 

method that can be applied between the before and after flood images (Table 3-1) to identify pixels mostly 

affected after flooding. From this analysis, the vegetation index (NDVI) was selected for this study. Low 

values (below 0.1) of NDVI indicate bare lands, sand, water, and built-up areas. Moderate positive values 

(0.2-0.3) represent shrubs or grasslands, and high positive values describe vegetations and forests (Gandhi 

et al., 2015). NDVI images differencing method was performed in this study between before and after flood 

images. The difference image can track changes in the vegetation cover between two periods. The equations 

of NDVI and differencing method are described in Table 4-2.  

Table 4-2 NDVI and change detection method applied 

NDVI Differencing method 

𝑵𝑰𝑹 − 𝑹𝒆𝒅

𝑵𝑰𝑹 + 𝑹𝒆𝒅
 𝑁𝐷𝑉𝐼𝑏𝑒𝑓𝑜𝑟𝑒 − 𝑁𝐷𝑉𝐼𝑎𝑓𝑡𝑒𝑟 

NIR and Red in the NDVI formula are Near-Infrared and Red spectral bands of the Planetscope satellite 

images. 
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Figure 4-3 Planetscope flood extent mapping processes 

A threshold value was selected to separate water and non-water features in the residual difference image. 

Pixels in the residual difference image with almost zero value indicate no change, and pixels with negative 

values represent an increase in vegetation in the two periods. High positive values in the residual difference 

image demonstrate areas affected by flood where vegetations change to soil (muds). Pixels close to water 

bodies were investigated to facilitate the threshold value selection in the residual image. The HAND output 

will be used to limit the inundation extent for flood-prone areas. The 3m × 3m spatial resolution Planetscope 

image was resampled to 1m × 1m resolution of the HAND model output. The majority filter tool was also 

applied to create a continuous flood extent in the model domain. All the data were processed using QGIS 

software. 

4.3. Height Above Nearest Drainage (HAND) approach 

The HAND approach describes the vertical distance between the grid point and the nearest pixel belonging 

to the drainage in the DEM, aiming to produce appropriate flood-prone area delineations. The satellite-

derived flood extent from Planetscope was adjusted using the HAND model to differentiate non-water 

features from water surfaces better. Chow et al. (2016) apply the HAND approach to limit the 

misclassification of water and non-water features using a fixed threshold in HAND classes in different areas. 

The study revealed that the HAND model could improve the satellite-derived inundation extent. The 

enhanced DEM from the second approach of 1m × 1m spatial resolution DEM was used to create the 

HAND classes for the model domain. Figure 4-4 describes the steps and processes used to produce HAND 

using QGIS version 3.16.16. 
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Figure 4-4 HAND model development processes using PCRaster Tool 

PCRaster Tools plugin available in QGIS version 3.16.16 was used in this study to produce HAND output. 

The process follows the concept adopted by Rennó et al. (2008): firstly, correct the DEM by filling sinks, 

compute flow direction, and then define the drainage network in the study area. The PCRaster tool requires 

the conversation of DEM and other products into the scalar output data type. A threshold value is defined 

as a scalar data type to derive a drainage network. A conditional operation is established between flow 

accumulation or Local Drainage Direction (LDD) and threshold flow accumulation scalar data type. In this 

study, the drainage network was defined as pixels greater than or equal to 20000 because they represent the 

major stream network system of our interest in the model domain. As a result, a unique identifier (ID) was 

assigned to each pixel of the drainage network to determine the upstream area of each pixel of the drainage 

network. A minimum elevation is attributed to each area using filled DEM. Hence, the HAND output is 

calculated by subtracting the minimum height for each area from the corrected DEM using the raster 

calculator tool. Figure 4-4 shows details of HAND generation using the PCRaster tool. 

The HAND output comprises different elevation zones; therefore, elevations below or equal to 3m, with 

reference to the nearest drainage elevation, were classified as regions susceptible to flood in this study 

because they are close to the drainage network. Planetscope-derived inundation extent that falls in the 

selected HAND zones were considered water features in the model domain. Water features that do not 

satisfy the condition were changed to non-water features using the Serval tool available in QGIS software. 

4.4. Satellite Rainfall Estimates (SREs) evaluation 

To deduce the differences between satellite-based and rain gauges-based rainfall estimates, the correlation 

coefficient (r), root mean square error (RMSE), and relative Bias (rBias) statistical metrics were selected for 

this study (Table 4-3). The correlation coefficient evaluates the linear relationship between gauge-based and 

satellite-based rainfall. The root mean square error (RMSE) computes the standard deviation of rainfall 
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errors measured from the satellite. Relative Bias (rBias) measures the difference between gauge-based and 

satellite-based rainfall where negative and positive values indicate underestimation and overestimation of 

satellite, respectively. 

Additionally, the Mean Error (ME) was used to quantify the errors and their direction (overestimation or 

underestimation) of satellite products. The point-to-pixel method was executed to compare the rainfall of 

rain gauge stations with the corresponding pixel of each product from 2014 to 2018. Authors like Ageet et 

al. (2022); Bhatti et al. (2016) have applied the same approach. 

Table 4-3 Statistical measurements of SREs 

Statistical measure Value range Accurate value & units 

𝒓 =
∑ (𝑺𝒊 − 𝑺�̅�)(𝑮𝒊 − 𝑮𝒊

̅̅ ̅)𝒏
𝒊=𝟏

√∑ (𝑺𝒊 − 𝑺�̅�)𝟐𝒏
𝒊=𝟏 √∑ (𝑮𝒊 − 𝑮𝒊

̅̅ ̅)𝟐𝒏
𝒊=𝟏

 
[-1 to 1] 1, [-] 

𝑹𝑴𝑺𝑬 = √
∑ (𝑺 − 𝑮)𝟐𝒏

𝒊=𝟏

𝑵

𝟐

 [0 to +∞] 0, [mm] 

𝒓𝑩𝒊𝒂𝒔 =
∑ (𝑺 − 𝑮)𝒏

𝒊=𝟏

∑ 𝑮𝒏
𝒊=𝟏

× 𝟏𝟎𝟎 [-∞ to +∞] 0, [%] 

𝑴𝑬 =
∑ (𝑺 − 𝑮)𝒏

𝒊=𝟏

𝑵
 [-∞ to +∞] 0, [mm] 

Where S and G represent satellite-based and gauge-based rainfall estimates, respectively, and N is the 

number of recordings. 

The point-to-pixel approach facilitates the selection of satellite products that accurately represent the rainfall 

in the Sebeya catchment. The selected SREs will be aggregated on each sub-basin to produce rainfall inputs 

for the hydrological model. The Thiessen polygon approach was used to obtain the rainfall representation 

over sub-basins from InSitu measurements, which was used in the intercomparison with aggregated satellite 

rainfall.  

4.5. Satellite rainfall estimate bias-correction 

Satellite-based rainfall estimates comprise errors, which could introduce uncertainties in their applications. 

Therefore, the errors need to be reduced to produce useful rainfall information. The time-space variable 

(TSV) approach, indicated by Habib et al. (2014), was selected for this study to correct for Bias because it is 

a direct and easy method that requires moderate data (Gumindoga et al., 2019). TSV method estimates the 

bias factor (BF) at a specific satellite grid and a corresponding rain gauge for a selected day (Equation 4-1). 

The BF is estimated within a predefined time window, which is then multiplied by daily satellite rainfall 

values. The BF can be calculated either using a moving window (MW) or a sequential window (SW). MW 

approach computes BF daily using the forward or backward window length specified, while SW estimates 

BF for all the days in the defined window length (Bhatti et al., 2016). The BF was computed when we had 

a certain minimum amount of accumulated rainfall and at least minimum days raining within a predefined 

window length; otherwise, no bias was estimated (i.e., assign a value of 1). Then, the performance evaluation, 

as stated above, will be conducted to compare the corrected SRE rainfall with the gauge-based rainfall. 
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𝑩𝑭𝑻𝑺𝑽 =
∑ 𝑮(𝒊, 𝒕)𝒕=𝒅−𝒍

𝒅

∑ 𝑺(𝒊, 𝒕)𝒕=𝒅−𝒍
𝒅

 Equation 4-1 

Where G and S represent gauge-based and satellite-based rainfall, respectively, i and t are rain gauge location 

and Julian day number, respectively, and l is the length of window time to compute the bias factor. 

However, as described above, SREs possess systematic errors (hits, misses, and falses) that could be 

propagated during the bias correction process. Besides, ground-based rainfall may contain larger rainfall 

recordings (with over 50 mm/day) (see Figure 4-5) daily than satellite-based rainfall. Therefore, during the 

bias correction process, the user is required to establish an algorithm to reduce higher differences in rainfall 

recordings after bias correction. In this study, different conditions, including the reduction of differences 

between the highest rainfall on the rain gauge and satellite data, and differences between systematic errors, 

were developed after estimating BF. Figure 4-5 indicates an example scatter plot of satellite versus gauge-

based rainfall for Nyundo station using TAMSAT satellite product, where the dots on the gauge-based axis 

show missed rainfall, and dots on the satellite-based axis describe false rain in the satellite product. The 

scattered dots on the graph represents the hits of rain. Generally, all those dots should be located on a black 

line (1:1 line) if satellite-based and gauge-based records are similar. 

 
Figure 4-5 Scatter plot of satellite and gauge-based rainfall for Nyundo Station. The black line symbolizes 

the 1:1 line 

Further investigation was performed to assess the effect of the adopted bias correction algorithm on 

reducing the errors in SREs. A sample of days during the rainy season (March-April-May) was selected to 

identify the results of the SW approach for CHIRPS and MW for TAMSAT products at 5 days window size 

at the Nyundo station. Table 4-4 describes the output of the bias-correction scheme in five days sampling 

window for each product. Recap that the BF for 5 days window size is computed when we have a minimum 

amount of 3 mm accumulated rainfall and a minimum of three days of rain within a 5 days window length; 

otherwise, no bias is estimated (i.e., assign a value of 1). Equation 4-2 and Equation 4-3 show the calculations 

for day number 107 using the SW approach for the CHIRPS satellite product and day number 114 using 

MW for TAMSAT, respectively. 

𝐵𝐹107_𝑆𝑊
𝐶𝐻𝐼𝑅𝑃𝑆 =

19.8 + 2.5 + 0.3 + 3.8 + 0.0

3.6 + 7.4 + 7.4 + 3.7 + 7.4
= 1.7 Equation 4-2 
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𝐵𝐹114_𝑀𝑊
𝑇𝐴𝑀𝑆𝐴𝑇 =

0.8 + 0.5 + 11.1 + 14.1 + 8.1

0.0 + 0.0 + 0.0 + 0.0 + 0.0
= 1 Equation 4-3 

Table 4-4 indicates a value of 1 on the bias factor on the TAMSAT satellite product for day 114. It was 

produced because within 5 days sampling window, TAMSAT SRE did not detect rainfall during the rainy 

season on the Nyundo station. Therefore, the weak rainfall detection capability of the TAMSAT product 

deteriorates its rainfall recordings that could be reproduced even after bias correction during the rainy season 

for the Nyundo station and other stations in the Sebeya catchment. The defects in the TAMSAT will be 

further investigated in the results section on the sub-basin scale. Therefore, this weakness propagated during 

bias-correcting the TAMSAT data (Table 4-4). 

Table 4-4 BF estimation using 5 days sampling window size for different SREs 

Day 

number 

InSitu 

Rainfall 

Uncorrected 

CHIRPS 

Bias 

Factor 

Corrected 

CHIRPS 

Uncorrected 

TAMSAT 

Bias 

Factor 

Corrected 

TAMSAT 

105 19.8 3.6 

1.7 

4.0 17.4 1.8 31.8 

106 2.5 7.4 6.6 0.0 1.8 0.0 

107 0.3 7.4 6.6 15.3 0.7 10.4 

108 3.8 3.7 4.1 0.0 1.2 0.0 

109 0.0 7.4 6.6 16.0 0.5 8.7 

110 0.8 0.0 

0.9 

0.0 0.0 0.2 0.0 

111 0.5 8.4 4.1 0.0 0.2 0.0 

112 11.1 0.0 0.0 0.0 1.0 0.0 

113 14.1 8.4 17.3 0.0 1.7 0.0 

114 8.1 0.0 0.0 0.0 1.0 0.0 

Table 4-4 presents the errors mentioned above that typically propagate in the corrected satellite rainfall. The 

yellowish color indicates the hit errors between InSitu and CHIRPS product rainfall recordings, but 

TAMSAT missed that rainfall. Different conditions developed after estimating BF to correct satellite rainfall 

recordings to reduce the difference between ground-based and satellite-based rainfall (as shown in Table 

4-4 for the CHIRPS product) were performing reasonably. However, the artifacts detected in the TAMSAT 

satellite product propagated even after the bias correction process. Consequently, the applied algorithm in 

the bias correction improves the satellite rainfall recordings, but the bias-corrected satellite rainfall 

recordings are not always satisfactory because of deficiencies observed in SREs. 

4.5.1. Definition of time window length  

The window length needs to be defined adequately, representing bias in rainfall and allowing for effective 

bias correction to serve dynamic rainfall-runoff model simulation in this study. Authors like Habib et al. 

(2014) used a 7 days window length, and Gumindoga et al. (2016) applied a 10 days window length. 

However, Bhatti et al. (2016) evaluated different window length sizes (3, 5, 7, 9,..., 31) on both MW and SW 

techniques. They deduced that the 7 days SW approach adequately reduces errors in the CMORPH product 

for Gilgel Abbey catchment and the effectiveness of the applied bias-correction approach, which 

hydrologists can use to assess the application of CMORPH satellite data in the rainfall-runoff modeling. A 

similar process was followed in the Sebeya study area as no previous research was reported. Therefore, 3, 5, 

6, 7, 10, 12, 15, 17, and 20 sample windows were selected to determine the effective window length that 

could perform well in the bias correction for the Sebeya catchment. A minimum of 3 days window length 
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was chosen to sufficiently accumulate rainfall on a temporal scale (Bhatti et al., 2016). The optimum window 

length will be the window length on which the RMSE doesn’t show considerable changes with increasing 

window length. 

4.6. Hydrological model 

The HBV-light hydrological model was used to simulate the daily runoff of the Sebeya catchment. 

Bergstrom S (1976) developed HBV hydrological model at Swedish Meteorological and Hydrological 

Institute (SMHI) in the 1970s. HBV model can be classified as either lumped or semi-distributed model. 

The semi-distributed model approach will be applied in this study, where the Sebeya catchment was divided 

into sub-basins, elevation zones, and vegetation zones. Estimating runoff on a daily timestep of HBV 

requires daily rainfall, air temperature, and streamflow data. Evapotranspiration data, either daily or monthly 

averages, are also needed by HBV (Machlica et al., 2012).  

Table 4-5 HBV light input data files (source:(Seibert, 2005)) 

Data files Description 

PTQ-file 
.txt file containing daily precipitation, temperature, 

and observed streamflow. 

Evaporation 

file 

.txt file of potential evapotranspiration, either daily or 

monthly averages. 

Sub Catchment 

file 

.txt file with several sub-catchments to run HBV. This 

study will use five sub-basins. 

4.6.1. Description of HBV model 

Detailed information on the HBV model is further described in the document developed by Bergström 

(1992). The model can have four main components: snow routine, soil routine, response (groundwater) 

function, and river routing routine (Figure 4-6) (Heidler and Lisa, 2015). Since the study area doesn’t receive 

snow, this component is removed. HBV model solves the water balance equation (Equation 4-4) that 

regulates the flow from the land surface to the deepest lower zone reservoir (Figure 4-6). 

𝑷 − 𝑬 − 𝑸 =
𝒅

𝒅𝒕
(𝑺𝑴 + 𝑼𝒁 + 𝑳𝒁 + 𝑳𝑨𝑲𝑬𝑺) 

Equation 4-4 

Where P is rainfall, E is evapotranspiration, Q is runoff, SM is soil moisture content, UZ and LZ are upper 

zone and lower zone storages, respectively, and LAKES is the water storage in the basin.  



APPLICABILITY OF SATELLITE-BASED RAINFALL ESTIMATES AND INUNDATION EXTENT FOR FLOOD MODELING IN THE SEBEYA CATCHMENT, RWANDA 

32 

 
Figure 4-6 General description of the HBV-light model (source: (Solomatine and Shrestha, 2009)) 

Precipitation in the form of rainfall is the primary input in the soil moisture routine. Water stored in the soil 

governs actual evapotranspiration (ETa), soil water content (SM), groundwater recharge (Qin), and direct 

discharge (Qd) in this routine based on the infiltrated precipitation. The soil routine requires three 

parameters: limit for potential evaporation (LP), field capacity (FC), and shape parameter (BETA), which is 

a power relationship between the response function and rise in soil moisture storage. Water that the soil 

moisture zone cannot hold is routed in response routine as recharge (R) (Mendez and Calvo-Valverde, 2016). 

𝑸𝒅 = 𝒎𝒂𝒙(𝑷 + 𝑺𝑴 − 𝑭𝑪, 𝟎) Equation 4-5 

𝑸𝒊𝒏 = (
𝑺𝑴

𝑭𝑪
)

𝑩𝑬𝑻𝑨

× (𝑷 − 𝑸𝒅) Equation 4-6 

𝑬𝑻𝒂 = 𝑬𝑻𝟎 × 𝒎𝒊𝒏 [
𝑺𝑴

𝑭𝑪 × 𝑳𝑷
, 𝟏] Equation 4-7 

The response routine receives the water as recharge from the soil moisture zone, and it has two reservoirs, 

Upper zone (SUZ) and Lower Zone (LZ) storage. The SUZ reservoir describes the fast runoff component, 

and the LZ reservoir represents the slow or baseflow component. Three recession coefficients, K0 and K1 

and K2, and percolation rate (PERC) are the parameters used in the routine. Another parameter, alfa (α), 

represents the nonlinearity of the SUZ reservoir and varies between 0 and 3. Capillary upward transport (Cf) 

is another process from the UZ storage to the soil moisture zone and depends on the difference between 

FC and available SM and the CFLUX parameter. The CFLUX parameter determines the amount of capillary 

flow (Mendez and Calvo-Valverde, 2016). 

𝑸𝟎 = 𝑲𝟎 × 𝑺𝑼𝒁(𝟏+𝜶) Equation 4-8 

𝑪𝒇 = 𝑪𝑭𝑳𝑼𝑿 × (
𝑭𝑪 − 𝑺𝑴

𝑭𝑪
) Equation 4-9 

The baseflow is the second part of the response routine. The only input to the LZ reservoir is the PERC 

from the UZ, which depends on the recession coefficient, K2.  
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𝑸𝟐 = 𝑲𝟐 × 𝑳𝒁 Equation 4-10 

It is clearly observed that the actual evapotranspiration, groundwater recharge, and capillary flux depend on 

the amount of soil moisture storage. As the soil dries out, the actual evapotranspiration decreases. 

The total outflow from all reservoirs is transformed into river runoff by a triangular weighting function with 

the parameter MAXBAS (Seibert and Vis, 2012). Like other hydrological models, the HBV model is 

calibrated with the streamflow recordings at the catchment outlet. 

𝑸𝒕 = 𝑸𝒅 + 𝑸𝟎 + 𝑸𝟐 Equation 4-11 

4.6.2. HBV-light model set up 

The HBV-light model was used in this research to simulate streamflow due to its simple structure, user-

friendly approach, and application in different domains, including the estimation of flood cases (Seibert and 

Vis, 2012). The model requires meteorological forces, including rainfall, temperature, and potential 

evapotranspiration (see Table 4-5), as indicated in the HBV manual document developed by Seibert (2005). 

Figure 4-7 indicates the methodological framework of the hydrological model. 

 
Figure 4-7 Methodological flowchart of HBV-light model 

The available ALOS-PALSAR DEM of 12.5m × 12.5m spatial resolution was used to divide the Sebeya 

catchment into sub-catchments and create elevation zones. Five sub-catchments were delineated, and the 

elevation was classified into four elevation zones with 300m intervals. The elevation zones offer the HBV 

model the ability to consider the elevation aspect and distribution of meteorological variables in the study 

area with respect to topography (Assoumpta and Aja, 2021). The elevation slicing was performed using 
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QGIS software into four elevation zones (Figure 4-8a). The ALOS-PALSAR DEM was also used to create 

an aspect map that indicates different directions of slopes in the study area. 

  
Figure 4-8 Elevation zones (a) and vegetation zones (b) of the Sebeya catchment for the HBV model 

The WorldCover map produced by ESA based on Sentinel-1 and Sentinel-2 data was used in this study to 

create vegetation zones for the HBV model. QGIS software was used to reclassify seven LandCover classes 

into four vegetation zones to match HBV model input requirements (Figure 4-8). Afterward, the elevation 

zones map, aspect map, and vegetation zones map were combined in one map to find the vegetation zone 

ratio for each elevation zone and sub-basin.  

4.6.3. HBV model calibration 

The hydrological model requires a calibration process to produce a match between simulated and observed 

streamflow time series. Calibration is the process of adjusting model parameters, boundary conditions, and 

meteorological stresses, subject to the model approach, to obtain optimal model input and to produce 

reliable and accurate model simulations (Rientjes, 2016). In this study, model calibration only targeted model 

parameter optimization. 

Many performance functions can be used to evaluate a hydrological model. This study will use two 

evaluation functions: the Nash-Sutcliffe coefficient of efficiency (NS) and the Relative Volume Error (RVE). 

RVE indicates the model’s performance in the overall water balance, while NS shows the model’s 

performance based on the simulated and observed hydrographs. Following the value range of NS and RVE 

objective functions, as described by Rientjes (2016), the NS objective function needs to be closer to 1 and 

RVE close to zero. Table 4-6 displays the mathematical equations of these criteria. 

b a 
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Table 4-6 Model Performance criteria (source: (Rientjes, 2016)) 

Performance 

metrics 
Formula Values 

Performance 

indication 

Nash-Sutcliffe 

coefficient of 

efficiency (NS) 

𝑁𝑆 = 1 −
∑ (𝑄𝑜𝑏𝑠 − 𝑄𝑠𝑖𝑚)2𝑁

𝑛−1

∑ (𝑄𝑜𝑏𝑠 − 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )2𝑁

𝑛−1

 

1 Perfect 

0.9 – 1 Extremely well 

0.8 – 0.9 Very well 

0.6 – 0.8 Reasonably well 

Relative 

Volume Error 

(RVE) 

𝑅𝑉𝐸 = (
∑ (𝑄𝑠𝑖𝑚(𝑖) − 𝑄𝑜𝑏𝑠(𝑖))𝑛

𝑖=1

∑ 𝑄𝑜𝑏𝑠(𝑖)
𝑛
𝑖=1

) × 100 

0 Best 

‐5% to +5% Well 

±5% to ±10% Reasonable 

Where Qobs and Qsim are observed and simulated streamflow, respectively, and the “trial and error” 

optimization technique was applied to fit the observed and simulated streamflow by adjusting the model 

parameters based on the studies that used the HBV model to simulate the catchment's streamflow (Habib 

et al., 2014; Solomatine and Shrestha, 2009; Ymeti, 2007). Sensitive parameters are optimized, keeping other 

parameters fixed until optimal model parameter values are reached. 

4.7. Hydrodynamic flood modeling 

The HEC-RAS software package developed by the United States Army Corps of Engineers was selected for 

this research, which is a computer program simulating the hydrodynamic behavior of water in rivers and 

floodplains. HEC-RAS is free software with a user-friendly interface, with a GIS component (RAS Mapper) 

to display the imported geometric data, other input data, and simulation outputs. The software can model 

1D steady or unsteady water flow, 2D unsteady water flow, sediment transport computations, water quality 

analysis, and hydraulic structures design (Lea et al., 2019). Among those applications, this research will focus 

on the 2D unsteady HEC-RAS model scheme to simulate the flood extent in the river and floodplains, as 

there were no river cross-section data to integrate the 1D model approach. Several studies revealed the 

capacity and efficient performance of the HEC-RAS tool to adequately represent flood paths in rivers and 

floodplains (Boukhaly Traore et al., 2015; Lea et al., 2019; Rangari et al., 2019). Therefore, the 2D 

hydrodynamic model scheme was developed in the HEC-RAS 6.1.0 version for the Sebeya flood domain. 

4.7.1. 2D HEC-RAS model governing equations  

The 2D HEC-RAS model approach applies either Diffusion Wave equations (DWE) or Shallow Water 

equations (SWE) to simulate water flow in the channel river and floodplain. The original SWE, also known 

as Saint-Venant equations, was used in this study and comprises mass (continuity) (Equation 4-12) and 

momentum conservation equations (Equation 4-13 and Equation 4-14). 

The 2D flow continuity equation (USACE, 2021)  

𝝏𝒉

𝝏𝒕
+

𝝏(𝒉𝒖)

𝝏𝒙
+

𝝏(𝒉𝒗)

𝝏𝒚
= 𝒒 

Equation 4-12 

Where u and v are velocity in x and y direction [L/T], respectively, t is the time [T], h is the water depth [L], 

and q is the source or sink flux [-]. 
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The 2D flow momentum equation 

𝝏𝒖

𝝏𝒕
+ 𝒖

𝝏𝒖

𝝏𝒙
+ 𝒗

𝝏𝒖

𝝏𝒚
− 𝒇𝒄𝒗 = −𝒈

𝝏𝒛𝒔

𝝏𝒙
+

𝟏

𝒉

𝝏

𝝏𝒙
(𝒗𝒕,𝒙𝒙𝒉

𝝏𝒖

𝝏𝒙
) +

𝟏

𝒉

𝝏

𝝏𝒚
(𝒗𝒕,𝒚𝒚𝒉

𝝏𝒖

𝝏𝒚
) −

𝝉𝒃,𝒙

𝝆𝑹
+

𝝉𝒔,𝒙

𝝆𝒉
 Equation 4-13 

𝝏𝒖

𝝏𝒕
+ 𝒖

𝝏𝒗

𝝏𝒙
+ 𝒗

𝝏𝒗

𝝏𝒚
− 𝒇𝒄𝒖 = −𝒈

𝝏𝒛𝒔

𝝏𝒚
+

𝟏

𝒉

𝝏

𝝏𝒙
(𝒗𝒕,𝒙𝒙𝒉

𝝏𝒗

𝝏𝒙
) +

𝟏

𝒉

𝝏

𝝏𝒚
(𝒗𝒕,𝒚𝒚𝒉

𝝏𝒗

𝝏𝒚
) −

𝝉𝒃,𝒚

𝝆𝑹
+

𝝉𝒔,𝒚

𝝆𝒉
 Equation 4-14 

Where u and v are velocity in x and y direction [L/T], g is gravitational acceleration [L/T2], zs is water 

surface elevation [L], vt,xx and vt,yy are horizontal eddy viscosity coefficients in the x and y orientations [L/T], 

τb,x and τb,y are bottom shear stresses on the x and y directions [M/L/T2], R is the hydraulic radius [L], τs,x 

and τs,y are the surface wind stresses in the x and y directions [M/L/T2], h is the water depth [L] and fc is 

the Coriolis parameter [-]. 

The terms in the 2D momentum equation describe the acceleration terms on the left-hand side of the 

equation and internal or external forces acting on the fluid (water) on the right-hand side of the equation. 

4.7.2. HEC-RAS model development 

The 2D HEC-RAS model approach was applied in this research to determine the flood characteristics 

(depth, velocity, etc.) for the Sebeya floodplain. The model involves the creation of floodplain polygon, 

topographic representation (DTM data), surface roughness, and boundary conditions. The input data pre-

processing was the first step in constructing the 2D HEC-RAS model, where the DTM was firstly enhanced 

before being used in the model. The first input in the HEC-RAS model is the DTM for topographic 

representation using the RAS Mapper user interface. Afterward, the GIS component, RAS Mapper, was 

used to create a floodplain polygon in which the computational mesh would be generated (Brunner, 2021). 

Figure 4-9 describes the components of the 2D HEC-RAS model. 

 
Figure 4-9 2D HEC-RAS schematization of Sebeya model domain 
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The 2D HEC-RAS model allows the creation of a 2D flow area, considered as a floodplain in the model. 

After delineation of the 2D flow area, a computational mesh was produced. The HEC-RAS user defines the 

mesh cell size, and 10m × 10m spacing was used to create the mesh in this study (Figure 4-9). Every 

computational mesh possesses three main properties called cell center, which is a computational cell center 

where water surface elevation is estimated for each cell, cell faces that represent the boundary surfaces of 

each cell, and cell face points describing the borders of the cell faces, that can be used to connect 2D flow 

areas to 1D components, and boundary conditions (Brunner, 2021a). However, in narrow locations, like 

river channels, the mesh was refined to allow a better flow simulation in the river channel. Therefore, the 

cell size spacing was reduced up to 1m × 1m in the river, as shown in Figure 4-9. Break lines were used to 

force the mesh at a small grid size and were interpolated in the river to control flow direction within the 

channel. The break lines can be imported as shapefiles or delineated by hand in the RAS Mapper interface. 

Figure 4-9 shows an example of break lines in the 2D flow area along the river channel. 

The model was developed using the original DTM and enhanced DTM-2 to assess the effect of DTM errors 

in the flood modeling. After creating both original and enhanced terrain models and delineating mesh grid 

cells, the land cover layer was added to the model to define the surface roughness coefficient. Streamflow 

from the hydrological model was depicted on the boundary conditions, as described in the following 

sections. Therefore, each terrain model is associated with its corresponding geometry file and land cover 

layer within the 2D HEC-RAS model. 

4.7.2.1. Boundary conditions 

The 2D HEC-RAS flood model requires flow boundary conditions, upstream and downstream, to simulate 

flood flow bounded in time and space. Boundary conditions have significant effects on the flood simulation 

results, and the 2D unsteady flow simulation was used to estimate flood flow conditions in the Sebeya model 

domain. The model allows the application of different boundary conditions, which include the Flow 

Hydrograph, Stage Hydrographs, Rating Curves, and Normal Depth. The flow and stage hydrographs can 

be applied at points where water enters or leaves the 2D flow area, i.e., at upstream or downstream boundary 

conditions, while the normal depth and rating curve are used where water is discharged out of the model 

domain (downstream boundary condition) (Brunner, 2021a). Timeseries data of flow or stage (water level), 

for flow and stage hydrograph, respectively, are defined where they can be entered manually into a table or 

using an HEC-DSS9 file (Brunner, 2021b). The rating curve in the HEC-RAS model is determined by the 

relation between surface water elevation and the flow, which is entered in the table manually or using the 

HEC-DSS file. The normal depth is entered in the model as a friction slope of the river's reach (Brunner, 

2021a). The HE-RAS user can localize one boundary condition in one or more locations that are associated 

with a 2D flow area. Hence, flow Hydrograph boundary condition was used on the upstream inflows (Sebeya 

and Karambo) and the Normal Depth boundary condition in the downstream outflow of the flood model 

domain (Figure 4-10). Upstream inflows are obtained from rainfall-runoff model simulations for the 2018 

flood event. A friction slope was defined at the downstream boundary condition for the floodplain to convey 

flow out of the 2D model domain. 

 
9 Hydrologic Engineering Center - Data Storage System 
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Figure 4-10 Boundary conditions used for the Sebeya 2D flood model 

4.7.2.2. Land cover representation 

Manning’s coefficient (n) describes the flood flow resistance of the river channel and floodplain. The land 

cover map obtained using the available orthophotos was used to parameterize the roughness coefficient in 

the flood model. The definition of surface roughness values will be based on the literature. The classified 

land cover map was resampled to the DTM’s spatial resolution. The RAS Mapper user interface allows the 

creation of a land cover layer, which is used to define manning’s values for each land cover class. Figure 

4-11 shows land cover classes imported in the flood model, and Table 4-7 describes the manning’s roughness 

coefficient values used for each land cover class. 

Table 4-7 Land cover characteristics adapted from Brunner (2021) 

Land cover classes Manning’s values (n) 

Urban areas 0.08 - 0.16 

Green areas 0.06 - 0.12 

Roads 0.03 - 0.04 

River channel 0.025 - 0.05 
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Figure 4-11 Land Cover representation in RAS Mapper 

4.7.3. Comparison of model flood extent and satellite-based inundation extent 

The flood model is calibrated by comparing the simulated and satellite-derived flood extent. The calibration 

is made by adjusting the surface roughness coefficient of different land use in the model domain until an 

acceptable match between observed and simulated flood extent. The simulated flood extent was compared 

with the satellite-derived water extent because there were no observed flood recordings (flood depth or 

flood extent) to perform the hydrodynamic model calibration of the Sebeya catchment. 

Table 4-8 Contingency table (Schumann et al., 2009) 

 
Wet area in satellite 

observations 

Dry area in satellite 

observations 

Wet area in the flood 

model 
A B 

Dry area in the flood 

model 
C D 

The performance of the flood model is assessed using the goodness of fit measures. The contingency table 

(Table 4-8) compares dry and wet pixel numbers in the simulated and observed flood extent (Grimaldi et 

al., 2016; Schumann et al., 2009). Table 4-9 shows the selected statistical measure of the flood model based 

on the contingency table. The critical success index (CSI) was selected because of its wide applications 

(Addae, 2018; Grimaldi et al., 2016; Hunter et al., 2005). The CSI evaluates the ratio of satellite-derived 

water surface and/or accurately simulated flood extent pixels (Hunter, 2005). A minimum value of the CSI 

is zero, indicating that there was no simulated flood extent compared to satellite-derived inundation water, 

while a maximum value of CSI (1) represents a perfect match between the simulated and satellite-observed 

flood extent (Hunter et al., 2005). 

Table 4-9 Flood extent performance measures by Grimaldi et al. (2016) and Schumann et al.( 2009) 

Measure Equation Description Range 

Critical success index 

(CSI) 

A

A + B + C
 

Measures the wet/dry pixels 

precisely simulated by the model 
0 – 1 
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5. RESULTS AND DISCUSSION 

5.1. DTM processing 

5.1.1. DEM enhancement 

Flood model simulations are affected by the representation of topographic and elevation terrain used in the 

model, where the coarse-resolution and poor grid data tend to result in overestimating inundation extent. 

Therefore, the 10m × 10m spatial resolution DEM was resampled and enhanced based on the knowledge 

and the available 0.25m × 0.25m grid size orthophotos for the model domain to produce an appropriate 

terrain for the flood model. Figure 5-1 represents original and enhanced DEM at 1m × 1m spatial resolution 

using the second approach to illustrate refinement results. The red ellipses indicate the change in elevations 

and enhancement on the DEM in floodplains of the model domain. It can be observed that the surface was 

smoothed, and the river network is well perceived after DEM enhancement.  

 
Figure 5-1 Topography of original and enhanced DEM at 1m spatial resolution 

The output of modified terrain was resampled into elevation grid resolutions of 5m and 10m using the 

bilinear interpolation method in QGIS software (Figure 5-2). The output images significantly differ in 

representing the real-world elevation in floodplain areas. Figure 5-2 clearly describes that 5m and 10m 

resolutions fail to represent the river system in the model domain after DEM enhancement and interpolation 

on the selected floodplain ‘4’ (Figure 5-1). On the other hand, 1m × 1m resolution represents the details of 

surface features (channels) in the floodplain. Therefore, 1m × 1m spatial resolution will be used for flood 

modeling.  
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Figure 5-2 Enhanced terrain representation at different resolutions 

5.1.2. Comparison of available DEMs 

The basic intercomparison of the original DEM and the other two enhanced DEMs, generated from 

different approaches as mentioned in section 4.1, was performed in this study. All the DEMs showed nearly 

similar statistical measurements in elevations for the model domain. Table 5-1 describes the statistical 

measures of the DEMs.  

Table 5-1 Statistical analysis of the DEMs 

DEM type Minimum [m] Maximum [m] Mean [m] Standard Deviation (SD) 

Original DEM 1829.0 2047.2 1899.8 33.78 

Enhanced DEM-1 1829.0 2047.2 1899.8 33.77 

Enhanced DEM-2 1829.5 2047.0 1899.9 33.69 

This research did not perform the vertical accuracy assessment due to the lack of ground control points 

(GCPs). As a result, a small area in the floodplain was selected to explain the visible differences in the 

available DEMs. Figure 5-3 shows the difference in elevation gradient in the selected small area in the 

floodplain. It can be seen that the original DEM and the enhanced DEM using the first approach show 

almost the same gradient in the elevation within the selected area in the floodplain. Still, the DEM from the 

second approach presents the difference in elevation gradient within the interested area. The enhanced 

DEM-2 has a continuous elevation gradient in this small area, which could be the same for the whole 

floodplain. 
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Figure 5-3 The difference in elevation gradient of a selected area for DEM comparison in the floodplain 

Besides the fundamental statistical analysis and elevation gradient visual comparison of the DEMs, a 

horizontal profile was created in the floodplain using the Terrain profile tool in QGIS. Figure 5-4  shows 

the location of the profile line in the floodplain and its longitudinal gradient from the upstream side. 

According to the results, the improved DEM-2 has a continuous change in slope. The other two DEMs of 

the original and enhanced DEM-1 show some flat parts and indentations in the created profile. Therefore, 

the second approach applied to enhance the DEM could produce a valuable and reliable topography for the 

flood model in data-limited areas, like the Sebeya domain area. 
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Figure 5-4 Horizontal profile characteristics for DEMs comparison 

The difference maps were prepared where more analysis was performed on the floodplain’s selected 

polygon. The original DEM was subtracted from enhanced DEM-2, as shown in Figure 5-5. It can be seen 

that the error depicts vertical differences up to 1m in areas where smoothing the terrain and channel 

delineation were executed. The difference map also shows irregular changes in elevation due to the 

smoothing process applied to the original DEM to enhance its vertical resolution. These lines follow the 

contours that were created, as explained in section 4.1, to improve the available DEM. Afterward, the hydro-

DEM processing was performed on the enhanced DEM to fill the pits and sinks in the DEM-2 product. 

The difference map was produced for this case, where the enhanced DEM-2 was subtracted from the filled 

DEM (Figure 5-5). It can be revealed that the errors have been minimized where the majority of differences 

are below half a meter (0.5m) in vertical directions. The description of statistics of elevation differences is 

detailed in Table 5-2.  

Table 5-2 Detailed statistics of elevation difference maps of the floodplain 

DEM type Minimum [m] Maximum [m] Mean [m] Standard Deviation (SD) 

Enhanced DEM-2 - 

Original DEM 
-4.77 2.03 0.29 0.47 

Filled DEM - 

Enhanced DEM-2 
0 2.91 0.03 0.08 



APPLICABILITY OF SATELLITE-BASED RAINFALL ESTIMATES AND INUNDATION EXTENT FOR FLOOD MODELING IN THE SEBEYA CATCHMENT, RWANDA 

44 

 
Figure 5-5 Elevation difference maps for the floodplain 

5.2. Planetscope satellite-derived surface water extent 

Figure 5-6 represents the NDVI map of the Planetscope images before and after the flood event. The NDVI 

values range from 0.02 to 0.8 and from -0.04 to 0.83 for the 23/09/2017 (5 months before flooding) and 

04/03/2018 (14 hours after the flood) images, respectively. The low positive NDVI values in both images 

(before and after) represent built-up areas and water bodies (Table 5-3). Table 5-3 indicates high NDVI 

positive values for vegetation cover in the image before flooding, while on the image after flooding, low 

NDVI positive values on the same pixels show change from vegetation to water or mud, which indicates 

the effects of flooding. The residual difference image shows negative values for built-up areas and low to 

high positive values for areas affected by flooding (Figure 5-6). The reddish color on the residual difference 

image indicates areas with decreased NDVI that marks the affected regions by flooding. Therefore, a pixel-

by-pixel evaluation was performed to examine NDVI values of water bodies, buildings, and affected areas 

in the three images, i.e., before and after the flood and residual image (Table 5-3). This evaluation facilitated 

the selection of the threshold value to delineate surface water features in the Planetscope image. 
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Figure 5-6 NDVI map of Planetscope and residual difference images for model domain 

Table 5-3 shows the image’s NDVI and different residual values of water bodies, built-up areas, and affected 

areas. All selected pixels under analysis were cloud-free in the images. The change detection approach was 

conducted to deduce the regions affected by the flood in the 2018 image. The no-change pixels show zero 

value on the map. In contrast, negative and high positive values represent an increase in vegetation and a 

decrease or removal of vegetation by water and mud during flooding, respectively.  

Table 5-3 Pixel-by-pixel NDVI values evaluation of the Planetscope images 

NDVI Map 
Water bodies Built-up areas Affected areas 

1 2 3 1 2 3 1 2 3 

23/09/2017 0.281 0.218 0.255 0.102 0.227 0.303 0.496 0.629 0.696 

04/03/2018 0.261 0.208 0.248 0.216 0.358 0.395 0.325 0.205 0.175 

Difference residual 0.02 0.009 0.007 -0.116 -0.131 -0.092 0.171 0.424 0.521 

In the residual difference image, a threshold value was applied to differentiate water features from other 

land cover classes. Thus, defining the difference NDVI threshold value to discriminate water features from 

non-water was based on the pixel-by-pixel evaluation (Table 5-3). Selecting a wrong threshold value can 

result in over/under-estimating flood extent. Therefore, based on the pixel-by-pixel assessment and visual 

inspection of the residual map on the affected areas, the threshold value of >= 0.065 was used to separate 

water features from other land cover classes on the residual difference map because it fairly classified the 

flooded areas (refer to affected areas). The change detection approach delineated water features in the 

acquired Planetscope images. However, the inundation map derived from the post-flood image still shows 

a misclassification of non-water features to surface water in the high elevated areas (Figure 5-7). This effect 

was attributed to the similar difference (i.e., equivalence) in residual NDVI values of areas affected by flood 

and other land surface features. Figure 5-7 shows that inundation extent derived from Planetscope satellite 

images after masking out clouds and before HAND filtering in the model domain. 
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Figure 5-7 Planetscope satellite-derived surface water map of the model domain on 04/03/2018 

5.2.1. HAND filtering approach 

The HAND product was created using the 1m × 1m resolution DEM in the flood model domain. A 

threshold value of 20000 cells, established manually, was applied to define the drainage network in the flow-

accumulation map. Figure 5-8 describes the normalized topography from the HAND model where areas 

having elevations below or equal to 3m, with topographic reference to the drainage network, were 

considered susceptible flood-prone areas. The HAND model results were observed to cover the flood-

prone areas in the model domain, namely the Mahoko market and tea plantation on the left side of the 

Sebeya river. The HAND model was applied to limit the misclassification of surface water features detected 

from the Planetscope satellite image in the flood model domain. The HAND model provides information 

on flood-vulnerable areas based on the available DEM products (Bhatt and Srinivasa Rao, 2018). The 

HAND filtering operation was applied on the Planetscope image to detect inundation extent in flood-prone 

areas.  

 
Figure 5-8 Potential flood-prone areas prepared using drainage patterns evaluation (HAND model) 
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Figure 5-9 describes the Planetscope satellite-derived inundation extent of the model domain after HAND 

filtering applications. The HAND filter was applied to the Planetscope image to remove water features that 

appeared in the elevations higher than the selected HAND threshold class (<= 3m). The results describe 

the ability of the HAND filtering approach to enhance flood extent derived from satellite images and limit 

the water surface features in non-flood-prone areas. 

 
Figure 5-9 Planetscope flood map after HAND filter of the model domain 

5.3. Satellite based-rainfall assessment 

5.3.1. Point-to-pixel evaluation  

The daily SREs (CHIRPSv2 and TAMSATv3.1) were compared with rain gauge stations where statistical 

measurements (Table 5-4) were used to evaluate their performance. Table 5-4 describes the results where 

all satellite products showed low correlation coefficient values (0.1 ≤ r ≤ 0.3) with daily rain gauge 

observations at all stations. The lowest and highest correlation was observed for TAMSAT at the Kabaya 

station (r ≈ 0.2) and Nyundo station (r ≈ 0.3), respectively. The TAMSAT satellite product depicts a high 

RMSE value (rmse = 10.1 mm per day) for Kabaya station, while the CHIRPS satellite presents the lowest 

RMSE value (8.2 mm per day) at the Bigogwe station. Overall, CHIRPS demonstrates a smaller RMSE value 

than the TAMSAT satellite product.  

Table 5-4 Daily Statistical assessment results of different SREs with reference to ground stations (2014-

2018) 

Stations 

CHIRPSv2 TAMSATv3.1 

rBias [%] 
RMSE 

[mm] 
r [-] ME [mm] rBias [%] 

RMSE 

[mm] 
r [-] ME [mm] 

Nyundo -10.6 8.3 0.2 -0.4 -6.4 9.1 0.3 -0.2 

Bigogwe 16.2 8.2 0.2 0.5 -1.8 8.7 0.3 -0.1 

Kabaya -0.3 9.4 0.2 -0.1 -17.2 10.1 0.2 -0.6 
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All SREs present an underestimation with negative relative Bias for most stations, where large uncertainties 

were observed at the Kabaya station for the TAMSAT satellite (rBias = -17.2 %). Kabaya station shows also 

a small rBias value (rBias = -0.3 %) for CHIRPS SRE. An overestimated rainfall was observed only at 

Bigogwe station for CHIRPS SRE (rBias = 16.2 %). Overall, CHIRPS presents less rBias values compared 

to the TAMSAT satellite product. All satellite products underestimate daily rainfall with a mean of errors 

from 0.1 mm (CHIRPS at Kabaya station) to 0.6 mm (TAMSAT at Kabaya station), except Bigogwe station, 

which overestimates daily rainfall (ME = 0.5 mm). Overall, the CHIRPS product possesses minor errors on 

a daily scale, followed by TAMSAT. 

Statistical measurements vary across stations for all satellite products, which is explained by different 

techniques for recording rainfall for each SRE. Regardless of r and RMSE, CHIRPS fairly represents the 

rainfall in the Sebeya catchment compared to the TAMSAT satellite product from the overall evaluation of 

statistical criteria. Authors like Dinku et al. (2018) indicated a high correlation coefficient value for CHIRPS 

products in Rwanda compared to other products investigated in East Africa. Nkunzimana et al. (2020) also 

revealed that CHIRPS products provide valuable and reliable information for meteorological disasters in 

Burundi, a neighboring country to Rwanda. 

5.3.2. Defining window length and bias correction method 

The RMSE results of bias-corrected satellite products using SW and MW methods are used to define suitable 

window length and bias correction methods. Both approaches (SW and MW) for bias correction were 

evaluated because no literature or research has been conducted for the Sebeya catchment to guide this 

research on which method could be applied most appropriately. Therefore, RMSE values for each time 

window for both approaches were plotted to define the window length for which it can be argued that the 

final scheme is suitable for the study area. Figure 5-10 depicts the remarkable increase in RMSE values as 

window length increases from 3 days to 6 days sampling window for both satellite products. All stations 

display only very little increase in RMSE values after 7 days window length, except Nyundo station, which 

shows variations in RMSE values for the TAMSAT product. Kabaya station for CHIRPS does not display 

a remarkable difference in RMSE values for the SW approach, but it reveals an increase in RMSE up to 6 

days window size. Kabaya station depicts an increase in RMSE from 3 to 12 days when using the MW 

approach for the TAMSAT product. The RMSE values of uncorrected SREs are presented in Table 5-5. 

For all satellite products, all stations produce better results than the raw SREs data for 3 days and a larger 

time window length (comparing Table 5-5 and Figure 5-10). Therefore, from the above analysis and general 

patterns of stations in RMSE variations, 6 days window length was selected in this research. Bhatti et al. 

(2016); Habib et al. (2014) found that 7 days window size performed well to correct Bias in CMORPH 

rainfall data in the Gilgel Abbey watershed, and the corrected CMORPH rainfall revealed better 

performance in the hydrological model. However, in this research, 6 days window size was found to be the 

optimum window. This window length was selected because the analysis of RMSE values for a window 

length of 3, 5, 6, 7, 10, 12, 15, 17, and 20 do not present considerable RMSE differences after 6 days for SW 

and MW approaches for all satellite products (Figure 5-10).   

Table 5-5 RMSE of raw satellite data 

Satellite Nyundo Bigogwe Kabaya 

CHIRPS 8.3 8.2 9.4 

TAMSAT 9.1 9.4 10.1 
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Figure 5-10 Results of RMSE for SW and MW methods on CHIRPS and TAMSAT SREs 

After selecting the window size, the suitable approach for the Sebeya watershed was analyzed. Figure 5-11 

shows the cumulative differences after bias correction at 6 days window size for CHIRPS and TAMSAT 

from 2014 to 2018 using both SW and MW approaches. All stations and satellite products do not behave 

the same after bias correction, which can be associated with different techniques used to estimate rainfall in 

each satellite product. Figure 5-11 describes that no single approach (SW or MW) could be applied to all 

SREs, challenging the selection of a suitable method for bias correction in the Sebeya catchment. However, 

the CHIRPS product indicates less cumulative rainfall differences for the SW method, whereas TAMSAT 

presents less accumulated rainfall differences for the MW method. Therefore, 6 day SW sampling window 

for CHIRPS and MW approach for TAMSAT were selected to further application of bias-corrected SREs. 

CHIRPS TAMSAT 
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Figure 5-11 Cumulative difference results for 6 days window size for SW and MW bias correction 

5.3.3. Sub-basins scale analysis 

After evaluating the representation of SREs on each station available in the study area and selecting the 

sampling window and bias correction method, SREs were assessed on a sub-basin scale. Thiessen polygon 

approach was applied to estimate the aerial rainfall spatially from ground-based observations on each sub-

basin, while the pixels of satellite rainfall products were averaged over each sub-basin. The year 2018 was 

selected in this process because it will be further applied in the hydrological model to estimate the 

streamflow. 

5.3.3.1. SREs performance evaluation 

The daily rainfall averaged over sub-basins from rain gauges and satellite products were compared using the 

same statistics described in section 4.4. Table 5-6 indicates the performance of SREs over five sub-basins 

in the Sebeya catchment. All sub-basins for all SREs, except the Karambo sub-basin for CHIRPS satellite 

product which has a positive relative bias (rBias = 0.9 %) and mean error (ME ≈ 0.1 mm per day), possess 

negative rBias and ME values, that indicates the underestimation of satellite rainfall products, ranging from 

1.6 % to 23.1 % and 0.1 mm to 1.2 mm per day, respectively. The highest values of rBias and ME were 

observed at the Bihongora sub-basin for the TAMSAT product. The RMSE values are slightly in the same 

range as point-to-pixel analysis, ranging from 7.7 to 12.0 mm per day. The Sebeya upstream sub-basin 

presents a low RMSE value for the CHIRPS product, while Sebeya downstream sub-basin possesses a high 

RMSE value for the TAMSAT satellite product. 

Table 5-6 Daily Statistical assessment results of different SREs over sub-basins (2018) 

Sub-basins 

CHIRPSv2 TAMSATv3.1 

rBias [%] 
RMSE 

[mm] 
r [-] 

ME 

[mm] 
rBias [%] 

RMSE 

[mm] 
r [-] 

ME 

[mm] 

Sebeya 

upstream 
-16.6 7.7 0.4 -0.8 -20.4 10.0 0.2 -1.0 

Bihongora -16.5 9.2 0.3 -0.8 -23.1 11.7 0.1 -1.2 

Karambo 0.9 8.6 0.2 0.1 -1.6 9.7 0.2 -0.1 

Sebeya 

downstream 
-8.7 10.7 0.1 -0.4 -2.8 12.0 0.1 -0.1 

Nyundo -8.2 10.6 0.1 -0.3 -1.4 11.5 0.2 -0.1 
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The correlation coefficient (r) was used to assess the relationship between ground-based and satellite-based 

rainfall over sub-basins. The coefficient values vary from 0.1 to 0.4. The strongest correlation value was 

obtained at Sebeya upstream sub-basin for CHIRPS SRE, while the Bihongora sub-basin for TAMSAT 

product shows a weak correlation coefficient. Overall coefficient values reveal that CHIRPS outperforms 

the TAMSAT satellite product. 

5.3.3.2. SREs bias correction evaluation 

SREs were bias-corrected to improve their representation over the Sebeya catchment. The sampling window 

and bias correction approach were defined in section 5.3.2. Bias correction was performed on each sub-

basin. The outputs of the bias-correction process are described in Figure 5-12 using Taylor Diagram. The 

Taylor diagram presents the statistical relation between uncorrected and bias-corrected SREs and the 

reference (ground-based rainfall observations) in terms of the correlation coefficient, standard deviation, 

and RMSE. Black contour lines on the Taylor diagram represent RMSE, grey contour lines are for standard 

deviation, and azimuth angle lines indicate correlation coefficient values. The dotted black line describes the 

standard deviation of the reference rainfall data. 

The Taylor diagram was produced for each sub-basin in the Sebeya catchment. The overall results illustrate 

that bias-corrected SREs outperform uncorrected SREs for all sub-basins. The correlation coefficient values 

of corrected SREs range from 0.5 to 0.8. The lowest and strongest correlation values were observed at the 

Sebeya upstream sub-basin for the TAMSAT satellite and CHIRPS product, respectively. Bihongora sub-

basin significantly increases the correlation coefficient value (≈ +0.6) for TAMSAT SRE after the bias 

correction process. Generally, after bias correction, the CHIRPS satellite product has improved more than 

the TAMSAT product based on the correlation indicator. The standard deviation (SD) values of uncorrected 

SREs are below the reference ground rainfall observations SD (except for Sebeya Upstream and Karambo 

sub-basins for TAMSAT SRE). The SD values of bias-corrected SREs are smaller than the rain gauges SD 

values for most sub-basins, except at Sebeya upstream and Bihongora for CHIRPS product and Karambo 

sub-basins for all satellite (CHIRPS and TAMSAT) products. The SD values of corrected SREs vary 

between 7.1 to 10.5 mm daily. The high value was observed at the Bihongora sub-basin for the CHIRPS 

product and the low value at the Sebeya upstream sub-basin for the TAMSAT satellite product. After all, 

SREs products were biased corrected, and the RMSE was reduced across the range in all sub-basins. In the 

case of bias-corrected SREs, the RMSE values range from 4.8 to 8.3 mm per day. For the TAMSAT satellite 

product, the Sebeya downstream sub-basin had the highest RMSE, whereas the Sebeya upstream sub-basin 

had the smallest RMSE. The largest change (a reduction of 4.5 mm per day) in RMSE values between 

uncorrected and corrected SREs was observed at the Bihongora sub-basin for the TAMSAT product. 

Therefore, it is revealed that the bias-corrected SREs perform better than the uncorrected SREs with 

reference to ground rainfall observations because of significant improvement in statistical metrics found 

after the bias correction process. 
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Figure 5-12 Taylor Diagram describing the statistical performance of uncorrected and corrected SREs 

In the same context of evaluating the performance of bias-corrected SREs, accumulated rainfall over the 

whole period (the year 2018), ground-based rainfall, and uncorrected and corrected rainfall from the 

different satellites were produced to assess the capability of SREs to estimate rainfall amount before and 

after bias-correction. Figure 5-13 shows the double mass curves of all sub-basin in the Sebeya catchment. 

All satellite products underestimate rainfall before bias-correction and present an improvement after the 

bias-correction process at all sub-basins. The bias-corrected satellite products reproduce the accumulated 

rainfall observed at ground rainfall stations at all sub-basins for CHIRPS SRE. However, except for the 

Karambo sub-basin that is more likely to produce the accumulated rainfall after bias correction for 

TAMSAT, the remaining sub-basins for TAMSAT satellite product could not replicate the accumulated 

rainfall observed at rain gauges. Therefore, the difference in accumulated rainfall amount between the 

corrected TAMSAT and rain gauge data could be caused by erroneous data from the product’s rainfall 

recordings. 
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Figure 5-13 The accumulated rainfall amount of sub-basins using rain gauges, uncorrected and corrected 

SREs 

The defects of the TAMSAT rainfall product were evaluated during the rainy season before and after bias 

correction (see section 4.5). An example in Table 4-4 shows that TAMSAT SRE did not detect rainfall 

during the rainy season in the Nyundo station. Therefore, the weak rainfall detection capability of the 

TAMSAT product deteriorates its rainfall recordings even after bias correction during the rainy season for 

the Nyundo station and other stations in the Sebeya catchment. For this reason, the defects of the TAMSAT 

to detect rainfall were propagated on the sub-basin scale recordings, which were also developed during the 

bias correction process. Table 5-7 shows an example of error propagation of the TAMSAT satellite product, 

where corrected CHIRPS and corrected TAMSAT were presented for the Nyundo sub-basin. It can be 

observed that after bias correction, the poor rainfall detection ability of the TAMSAT product propagated 

on the sub-basin scale rainfall estimates, and thus its further use of the product. Yet, the weaknesses in the 
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TAMSAT could be attributed to its algorithm developed for low rainfall recordings, serving in the drought 

monitoring practices (Kimani et al., 2017). Tarnavsky et al. (2014) also found that TAMSAT presents a 

limited ability to detect rainfall during the rainy season. Therefore, this weakness is propagated during bias-

correcting the TAMSAT data (Figure 5-13). Nevertheless, the bias-corrected TAMSAT satellite data 

performs better than the raw TAMSAT data and can be accepted for the hydrological modeling applications 

in the Sebeya catchment. Therefore, the TAMSAT detected rainfall should be applied attentively to avoid 

the bias that the product could enforce in the hydrological modeling. 

Table 5-7 Example of error propagation of TAMSAT satellite product 

DOY 
InSitu 

Rainfall 

Uncorrected 

CHIRPS 

Corrected 

CHIRPS 

Uncorrected 

TAMSAT 

Corrected 

TAMSAT 

105 19.8 5.5 7.1 21.6 11.6 

106 2.5 9.0 6.8 0.0 0.0 

107 0.3 9.0 6.8 13.4 9.8 

108 3.8 4.5 3.4 0.3 0.4 

109 0.0 11.2 8.1 17.9 13.5 

110 0.8 0.0 0.0 0.0 0.0 

111 0.5 5.8 4.1 0.0 0.0 

112 11.1 0.0 0.0 0.0 0.0 

113 14.1 7.9 11.0 0.0 0.0 

114 8.1 0.0 0.0 0.0 0.0 

Therefore, from the above evaluations, it can be revealed that the applied bias-correction methods increased 

the relationship between the rainfall from rain gauges and CHIRPS and TAMSAT satellite products. At the 

same time, it could not reproduce the accumulated rainfall amount for the TAMSAT product at almost all 

sub-basins. However, overall, the CHIRPS satellite product performed better than TAMSAT regarding its 

strong correlation with ground-based rainfall and estimating rainfall amount. Therefore, it is deduced that 

SREs should be analyzed in terms of statistical performance and estimation of rainfall amount after bias 

correction and before their application in hydrological modeling or other water resources practices. This 

research accepted bias-corrected satellite products and InSitu rainfall data for the hydrological modeling 

practice in the Sebeya catchment. 

5.4. Rainfall-runoff model 

5.4.1. HBV model simulation and parameterization 

The streamflow of the Sebeya river was simulated using HBV-light hydrological modeling for different 

rainfall input datasets. The modified streamflow observations for the Sebeya river at Nyundo station were 

used for the model calibration process. The model was firstly tested and calibrated using InSitu rainfall 

forcing data where the default parameters (Table 5-8) were optimized till the acceptable NS and RVE were 

found. 
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Table 5-8 HBV model defaults parameters (Seibert, 2005) and optimized parameters for the Sebeya 
catchment 

Routines Parameter Value range Units Default value Optimized value 

Soil 

Moisture 

routine 

FC (0, inf) mm 200 380 

LP [0, 1] - 1 0.75 

BETA (0, inf) - 1 1.05 

Response 

routine 

Percolation 

[PERC] 
[0, inf) mm/∆t 1 1.05 

Upper Zone 

Storage [UZL] 
[0, inf) mm 20 30 

Recession 

coefficient 0 [K0] 
[0, 1) 1/∆t 0.2 0.15 

Recession 

coefficient 1 [K1] 
[0, 1) 1/∆t 0.1 0.0015 

Recession 

coefficient 2 [K2] 
[0, 1) 1/∆t 0.05 0.0045 

Routing 

routine 
MAXBAS [1, 100] ∆t 1 1 

NS [-] 

RVE [%] 
    

0.81 

5.91 

Table 5-8 illustrates that the model performs very well with InSitu rainfall forcing data, with an NS of 0.8 

and RVE of 5.9 %. Figure 5-14 represents the observed and simulated streamflow hydrographs for the 

Sebeya catchment. It is observed that the model replicates the observed baseflow during the dry period (Jun-

July-August) in the Sebeya catchment. However, the model overestimates the modified peak streamflow 

observations. The discrepancies (indicated in Figure 5-14 by a black box) during the months of the short 

rainy season (September-October-November-December) could be caused by the limitation of the model 

structure to respond to the short rains or errors in the observed streamflow time-series dataset.  

 
Figure 5-14 Modified observed and simulated streamflow using InSitu rainfall data for the Sebeya 

catchment 
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5.4.2. Streamflow simulations with SREs 

Different rainfall forcing data were used to simulate streamflow in the Sebeya catchment. The SREs, before 

and after bias-correction, and InSitu rainfall were applied in the HBV model. Table 5-9 describes the optimal 

HBV model parameter for ground-based and bias-corrected rainfall data for the Sebeya catchment. The 

streamflow simulated by bias-corrected satellite rainfall was compared with the observed streamflow to 

assess the performance of the HBV model. It can be observed that the soil moisture routine parameters are 

sensitive to rainfall forcings. 

Additionally, the percolation and storage in the upper zone were tuned to improve the performance of the 

HBV model for the TAMSAT SRE. The NS values were reduced when using SREs to simulate streamflow 

in the Sebeya catchment, especially for the TAMSAT product. Besides, the streamflow from CHIRPS SRE 

shows a reduction in the RVE (2.5 %), while the TAMSAT SRE depicts an increase in RVE in the negative 

direction (-11.2 %) compared to objective functions produced by InSitu forcing data. The CHIRPS product 

simulates streamflow reasonably well in the Sebeya catchment, whereas the TAMSAT satellite product 

insufficiently estimates streamflow with low NS (0.4) and poor RVE (-11.2 %) (see Table 5-9). The results 

in Table 5-9 indicate that each meteorological forcing requires an independent calibration 

Table 5-9 Optimized HBV-light model parameters for InSitu and bias-corrected satellite-based (CHIRPS 
and TAMSAT) rainfall 

Routines Parameter Units InSitu rainfall CHIRPS SRE TAMSAT SRE 

Soil 

Moisture 

routine 

FC mm 380 440 320 

LP - 0.75 0.62 0.45 

BETA - 1.05 1.05 1.35 

Response 

routine 

Percolation 

[PERC] 
mm/∆t 1.05 1.05 1.15 

Upper Zone 

Storage [UZL] 
mm 30 30 15 

Recession 

coefficient 0 [K0] 
1/∆t 0.15 0.15 0.15 

Recession 

coefficient 1 [K1] 
1/∆t 0.0015 0.0015 0.0015 

Recession 

coefficient 2 [K2] 
1/∆t 0.0045 0.0045 0.0045 

Routing 

routine 
MAXBAS ∆t 1 1 1 

NS 

RVE 
  

0.81 

5.91 

0.77 

2.47 

0.42 

-11.16 

From Table 5-9, the bias-corrected CHIRPS SRE outperforms the TAMSAT product to reasonably simulate 

streamflow in the Sebeya catchment. Besides the objective functions, the streamflow hydrographs from 

three rainfall forcing data (InSitu, bias-corrected CHIRPS, and TAMSAT) were prepared and presented in 

Figure 5-15. Figure 5-15 shows that all satellite products could maintain the observed baseflow after 

calibration. The streamflow estimated by bias-corrected CHIRPS SRE follows the trend of gauge-based 

streamflow, which is denoted by reasonable model performance metrics (NS and RVE in Table 5-9). 

However, the TAMSAT SRE could not reasonably simulate the streamflow (as demonstrated in Table 5-9), 
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where it shows the underestimations and weak recession limb compared to other forcings data (see Figure 

5-15). Hence, this has resulted from the deficiencies in TAMSAT rainfall recordings, as illustrated during 

the bias correction process. The poor replication of observed rainfall for TAMSAT SRE, even after bias-

correction, was propagated in the hydrological model of the Sebeya catchment, which caused the poor 

streamflow estimation using bias-corrected TAMSAT satellite rainfall. 

 
Figure 5-15 Streamflow simulated using gauge-based and bias-corrected SREs for the Sebeya catchment 

In the same context, the uncorrected SREs were used to simulate streamflow for the Sebeya catchment. The 

optimized parameter set for each bias-corrected satellite product was used to estimate streamflow using 

uncorrected satellite rainfall forcing data (Figure 5-16). Figure 5-16 presents the weakness of uncorrected 

SREs to simulate streamflow, where they fail to represent the observed streamflow and streamflow 

estimated by the InSitu rainfall data. The TAMSAT satellite presents an advance of almost a month in the 

recession limb before the dry period starts in the Sebeya catchment. However, Figure 5-15 describes the 

improvement in streamflow simulation after bias correcting satellite rainfall products. Still, the TMASAT 

product continually propagates its deficiencies in detecting rainfall, mainly during the rainy season in the 

Sebeya catchment. 

 
Figure 5-16 Streamflow using InSitu and uncorrected satellite rainfall for the Sebeya catchment 

Recession 
limb 

Recession 
limb 
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The InSitu and bias-corrected CHIRPS rainfall forcings performed well in simulating streamflow in the 

Sebeya catchment using the HBV-light model. The defaults in TAMSAT forcing dataset were propagated 

in the hydrological model even after bias correction. This shows that the uncertainties in the hydrological 

model were not only caused by the algorithm applied to correct the systematic errors in the available SREs. 

However, the uncertainties found in the simulated streamflow using InSitu rainfall could be affected by the 

small number of rain gauge stations available in the Sebeya catchment to represent rainfall's spatial variability 

adequately. Secondly, artifacts in satellite rainfall recordings consequently propagate in the simulated 

streamflow, but they could be reduced as indicated for the CHIRPS SRE, which improves after bias 

correction and simulate reasonable streamflow. On the other hand, the observed streamflow recordings 

contain errors that could reduce the model's efficiency using different meteorological forcing datasets. 

Besides the uncertainties found in the model, the available rainfall forcings could reasonably simulate the 

streamflow in the Sebeya catchment. 

5.4.3. Inflow boundary conditions of the flood model 

The main purpose of setting up the HBV rainfall-runoff model was to simulate streamflow hydrographs to 

serve as the upstream inflow boundaries in the flood model. Based on the schematization of the flood model 

domain, the upstream areas contributing to the model domain were found to be Karambo and Sebeya-

Downstream sub-basins. The streamflow estimated using the combination of InSitu and bias-corrected 

CHIRPS SRE rainfall was adopted for the flood model. Figure 5-17 illustrates the streamflow hydrograph 

of each contributing area, which are inputs in the flood model as inflow boundaries. 

 
Figure 5-17 Simulated inflow boundaries of the flood model 

However, this study intends to analyze the impact of inflow boundary conditions on the hydrodynamic 

flood model. Figure 5-18 shows the HBV streamflow generated by rain gauges as a reference, bias-corrected, 

and uncorrected CHIRPS satellite rainfall data for the flood event of 3rd March 2018. It can be observed 

that there was an improvement in streamflow after CHIRPS bias correction on the Sebeya inflow boundary 

condition. However, the product did not reproduce the hydrograph generated by rain gauge data. Besides, 

the streamflow on the Karambo area was changed after the bias correction of the CHIRPS product. 

Therefore, the impact of the different streamflow hydrographs will be tested in the hydrodynamic model of 

the Sebeya catchment floodplain.  

Flood 

event 

window 
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Figure 5-18 Streamflow results from rain gauges, corrected and uncorrected CHIRPS satellite rainfall for 

hydrodynamic model 

5.5. Hydrodynamic model  

5.5.1. Effect of topographic representation 

This section compares flood extent simulated using the original and enhanced DTM products. Several 

studies have indicated significant effects of DTM spatial resolution on the flood model outputs where they 

have pointed out that coarser DTM products worsen the simulated flood model results (Manyifika, 2015; 

Muthusamy et al., 2021; Xu et al., 2021). However, in this study, the available DTM presented errors in 

representing surface features as the river reaches. Therefore, it was essential to carry out the DTM 

enhancement process before using the available DTM in the flood model to reduce the errors found in the 

topographic representation. Both original and enhanced DTMs were resampled at a similar resolution (1m 

× 1m spatial resolution) to present the effect of the DTM enhancement method. Identical boundary 

conditions and the same mesh grid size and land surface characteristics (surface roughness coefficients) were 

defined on both terrains. Figure 5-19 presents the maximum flood depths using the original and enhanced 

DEM products in the Sebeya model domain. The processes of improving the DTM are described in section 

4.1. It can be well observed visually the importance of DTM enhancement on simulated flood extent in 

Figure 5-19. The irregularities of topographic representation in original DTM were propagated in model 

outputs where large flood extent and high maximum depth at the downstream part were simulated in the 

model domain. However, after enhancing the original terrain and channeling the river, water was conveyed 

in the channel, and continuous flood extent on the surface was produced. A section was selected in the 

floodplain better to visualize the effect of the DTM enhancement process.   

Flood 

event 

window 
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Figure 5-19 Maximum flood depth of different DTM products 

The selected part of the floodplain depicts depressions and humps in the original DTM that was enhanced 

to avoid water storage in those depressions (Figure 5-19). The channel was not well delineated in the original 

DTM, but after introducing it to the terrain, water could move within the river consistently. Table 5-10 

outlines the statistics of simulated flood depth in the model domain. Table 5-10 reveals different mean and 

maximum water depths for the two DTM products. The original DTM presents a high maximum water 

depth (8.6 m); after enhancement, the maximum flood depth has increased by almost 74% (Max. depth=2.3 

m), which was identified in the river channel. It can also be perceived that the total flood water extent has 

reduced from 118.3 ha to 15.3 ha (87%) after the DTM enhancement. 

Table 5-10 Statistics of simulated flood depth of two DTM products 

DEM 
products 

Max flood depth [m] Area [ha] 

Mean Max STD  

Original 0.509 8.610 0.849 118.3 

Enhanced 0.712 2.272 0.751 15.3 

Therefore, the above results illustrate the essence of DTM enhancement and correction in data-limited areas, 

like the Sebeya catchment. The enhanced DTM was practically accepted in the hydrodynamic flood 

modeling of the Sebeya model domain. This is due to its reduction in errors attributed in original DTM to 

the simulated flood outputs and its increase in the representation of surface features (ex., River channel). 

Ettritch et al. (2018) have revealed the importance of DTM enhancement and indicated an improvement of 

topographic representation in the River Gambia floodplain. 

5.5.2. Effects of inflow boundary condition 

The impact of the upstream boundary conditions on the flood model outputs was assessed by changing the 

input of streamflow. As discussed in previous sections, this study analyses the representation of satellite-
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derived rainfall in the Sebeya catchment, with a low number of rain gauges and uneven gauge distribution 

areas. The streamflow generated from the TAMSAT satellite product was not used in this analysis due to 

the deficiencies depicted by the product. Therefore, the streamflow generated from the hydrological model 

using raw and bias-corrected CHIRPS satellite rainfall data and ground observations-based rainfall were 

used in the flood model to assess their impacts on the model outputs. The enhanced DTM, same mesh grid 

size, and land cover representation were kept fixed in all simulations. Figure 5-20 shows the maximum flood 

depth simulated using different upstream inflow boundary conditions. It is observed that changing the 

inflow boundary condition significantly affects the flood model outputs. From selected spots (in red ellipses) 

in Figure 5-20, the flood extent is different from each inflow boundary, which is associated with the errors 

found in satellite-rainfall products and undistributed rain gauges in the Sebeya catchment to represent the 

rainfall better and reduce errors in the simulated streamflow, that serve as input in the flood model. 

 
Figure 5-20 Maximum flood depth outputs using different upstream inflow boundary conditions 

Table 5-11 describes the statistics of simulated maximum flood depths using upstream inflow boundaries 

generated from InSitu-based, raw CHIRPS, and bias-corrected CHIRPS satellite rainfall. It can be revealed 

that the raw CHIRPS data generated the highest maximum flood depth during the selected flood window 

(02-04 March 2018), while after correcting the errors in the satellite, the maximum flood depth has reduced 

from 7.8 m to 2.3 m (reduction of 70%). The inundation extent area was also affected by the change in the 

upstream boundary condition, where the inundation area changes with respect to the input upstream flow 

boundary condition (Table 5-11). 

Table 5-11 Statistics of simulated maximum flood depth using different inflow boundary conditions 

Upstream inflow 

boundary 

Maximum flood depth [m] 
Area[ha] 

Mean Max STD 

Insitu 0.36 4.35 0.57 81.17 

Raw CHIRPS 0.82 7.76 1.26 54.54 

Corrected CHIRPS 0.35 2.34 0.51 43.26 
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5.5.3. Simulation results 

Figure 5-21 represents the maximum flood depth and velocity outputs of the 2D HEC-RAS hydrodynamic 

model for the Sebeya floodplain on 03rd March 2018. A single simulation following the flood window 

indicated in Figure 5-17 would take almost four hours due to the refined mesh in the river section from 10m 

× 10m  to 1m × 1m  grid size. The main Sebeya river gets flooded by water from the Sebeya upstream part, 

which is filled up by water from upstream sub-basins (Sebeya upstream, Bihongora, and Sebeya downstream 

sub-basins), and water from the Karambo tributary that gets filled by the water from Karambo sub-basin. 

However, the main contribution to flooding is the Sebeya river due to a large amount of water from the 

upstream mountains and high rainfall from the Gishwati forest. However, the available topographic 

representation in the model domain could affect the simulated flood model results.  

 
Figure 5-21 Simulated maximum flood depth and velocity 

Figure 5-21 depicts that the maximum flood depth was simulated within the river channel (max. depth 

>=2m). This is attributed to the delineation of the river reach during the DTM enhancement process. 

Maximum velocity also was observed in the river reach. Besides, the model inundation extent appears 

reasonable in the tea plantation areas, while water didn’t reach the Mahoko market. This results from 

discrepancies in the DTM used during flood model simulations. Besides all the efforts made to enhance and 

correct the available DTM, it still presents defects that could not be removed completely. However, there 

were no on-site flood depth recordings inside the model domain to evaluate the effectiveness of the flood 

model. Additionally, the available DTM didn’t comprise elevation for land surface features like bridges, 

roads, and buildings, resulting in a continuing simulated inundation extent. Regardless of the difficulties 

encountered in the topographic representation, the 2D HEC-RAS hydrodynamic model simulated 

reasonable and representational inundation extent for the Sebeya floodplain.  
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5.5.4. Comparison of model simulated flood extent and satellite-derived water extent 

One of the motives for carrying out this research was to investigate the application of satellite-derived flood 

extent in the calibration of the hydrodynamic model of the Sebeya catchment. The surface roughness 

coefficients for each land use were considered as calibration parameters. The calibration was performed to 

better match satellite-derived, and 2D HEC-RAS hydrodynamic model simulated flood extent in the model 

domain. 

The inundation extent extracted from Planetscope optical satellite image acquired on 4th March 2018 at 7:48 

AM was compared with the simulated flood extent that occurred on 3rd March 2018 around 4:00 PM (EFRC, 

2018) in the Sebeya catchment. The critical surface index (CSI) measure of fit was used to compare the 

Planetscope satellite-derived and simulated inundation maps. A better fit would indicate the significant 

application of a satellite-extracted inundation map to calibrate the hydrodynamic models. Table 5-12 shows 

the results of the comparison between satellite-derived and simulated inundation extent. 

Table 5-12 Statistical comparisons of satellite-derived and simulated inundation extent 

Satellite 

image 

Area [ha] 

CSI Flood extent in satellite 

and simulated 

observations 

Flood extent in 

satellite 

observations only 

Flood extent in 

simulated 

observations only 

Planetscope 24.6 54.4 37.1 0.2 

Table 5-12 presents a low value of CSI (0.2) when comparing the Platenscope stellite-derived, and 2D HEC-

RAS simulated inundation extent. This indicates a mismatch between satellite-derived and simulated water 

maps, as the CSI should be close to 1 for a better match. The mismatch could be caused by the change 

detection method used to delineate water from the satellite, the coverage of the vegetation over the river, 

and defects in the Planetscope image. Figure 5-22 clearly describes the comparison of satellite-extracted and 

simulated water maps. 

 
Figure 5-22 Comparison of Planetscope satellite-derived and model simulated flood extent 
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Figure 5-22 deduces that the comparison results between satellite-derived and simulated flood extent were 

inadequate for the Sebeya catchment model domain. It can be visually observed that the satellite could not 

detect the river reaches because of trees on the banks of the rivers. Another misfit would be caused by the 

same reflectance of the Sebeya river and dry lands, which could be discarded during surface water extraction. 

The Sebeya river contains a lot of sediments that change the color of water reflectance. Additionally, the 

higher reflectance values in the NIR than the green for surface water pixels were found in Planestcope, 

which could cause the misfit, and it has influenced this study to use the NDVI differencing change detection, 

which caused the disqualification of water pixels in the river. The available DTM used in the flood model 

could cause defects in the simulated flood extent, thus reducing the matching between the satellite-based 

and simulated inundation extent. Therefore, from the above uncertainties, the Planetscope could not be 

used in calibrating the hydrodynamic model of the Sebeya catchment floodplain. 
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6. CONCLUSION AND RECOMMENDATION 

6.1. Conclusion  

The main objective of this research is to investigate the applicability of satellite-based rainfall estimates 

(SREs) and satellite-derived inundation extent to perform hydrodynamic flood modeling of the floodplain 

in Sebeya catchment, Rwanda. The limited research conducted in the area, data scarcity, and poor quality of 

available data were the challenges and primary considerations of the Sebeya catchment. However, the 

hydrodynamic model requires calibration using ground flood extent or depth observed during the flood 

event, which was unavailable from the site. Therefore, this results in assessing the application of satellite-

derived flood extent to calibrate the hydrodynamic model of the Sebeya floodplain. The only satellite image 

available for the respective flood time window was Planetscope, which was further processed and used in 

this study. However, the uneven spatial distribution of rain gauges in the Sebeya catchment necessitates the 

application of satellite rainfall estimates to consider the spatial variability of rainfall in the hydrological 

modeling. The CHIRPS and TAMSAT satellite product errors were assessed and bias-corrected for further 

use in the hydrological model. 

The change detection method of NDVI’s image differencing was applied to extract inundation extent from 

the Planetscope optical image. The difference between the Planetscope images acquired on 23/09/2017 

(before flooding) and 04/03/2018 (after flooding) was achieved by computing the NDVI of each image and 

then subtracting the NDVI of the image after the flood from the image before flooding. However, the main 

challenge in this study was to get an image that could capture a flood event in the Sebeya catchment. 

Nevertheless, the acquired image presents drawbacks like the presence of clouds and shadows in the image 

and masked water within the river by the vegetation. It was challenging to detect water from the NDVI 

difference image. Besides, pixel-by-pixel investigation and reasonable inundation extent extracted from the 

image guided the selection of optimum threshold to delineate surface water. The residual difference presents 

zero values in areas with no change, negative values for areas with vegetation increase, and positive values 

in areas where vegetation was removed from the site, which indicates the areas affected by flooding. A 

threshold of 0.065 was used to extract inundation areas. However, the HAND model was adopted in this 

study, which deduces the nearest locations closest to nearby drainage that are susceptible to flooding. 

Therefore, the HAND model indicates its significant application in enhancing the satellite-derived 

inundation extent. 

The daily rain gauge data from three stations (Kabaya, Bigogwe, and Nyundo) were used to evaluate the 

performance of the CHIRPS and TAMSAT satellite products in the Sebeya catchment. Overall, the daily 

assessment indicates that all satellite products underestimate rainfall amount where the daily mean errors 

from -0.1 to -0.6 mm/day were estimated, except the CHIRPS product at Bigogwe station, which 

overestimates daily rainfall of 0.5 mm/day. All satellite products at all stations reveal a weak correlation 

measure (below 0.5). Therefore, the general evaluation indicates a better performance of CHIRPS product 

than TAMSAT when compared with ground-based rainfall. However, the systematic errors found in the 

SREs were corrected in this study. 

The Spatio-temporal bias correction scheme, the time-space variable, was used to correct the bias in the 

CHIRPS and TAMSAT SREs. However, no research was conducted regarding the SRE bias correction. 

Therefore, an optimum window size was defined in this study following the method applied by Bhatti et al. 

(2016). The sampling window size on which the RMSE does not show significant changes was selected. It 
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was found that the lowest RMSE values were detected at 3 days window size, and an increase in sampling 

window size resulted in an increment of RMSE values for all satellite products (see Figure 5-10). However, 

this study found small changing RMSE values from 6 days sampling window to larger window sizes, which 

was selected as the optimal sampling window to bias-correct CHIRPS and TAMSAT SREs. The MW  and 

SW bias correction approaches were examined, where based on cumulative rainfall differences between the 

rain gauges recordings and bias-corrected satellite rainfall data (Figure 5-11), the SW approach outperforms 

MW for the CHIRPS product, and the MW approach depicts better performance than SW for the TAMSAT 

satellite. Therefore, those approaches were used on the sub-basin scale to generate rainfall for hydrological 

modeling. However, discrepancies were found in the TAMSAT satellite even after bias correction, which 

was caused by the weak rainfall detection of the product during the rainy season in the Sebeya catchment. 

This weakness propagated during bias correction and further in the hydrological modeling. Therefore, it was 

argued that the TAMSAT SRE could be cautiously used in hydrological applications. 

The HBV hydrological model was used in this study, where different rainfall forcing data were used. The 

model was firstly parameterized using InSitu rainfall recordings. The modified (observed) streamflow data 

was used in the calibration process. The InSitu rainfall data depicts a better model performance with NS of 

0.8 and RVE of 5.9 % after calibration. However, changing rainfall input data in the HBV model resulted 

in the independent optimized parameters. The soil moisture routine parameters were found sensitive to 

different rainfall input data. The bias-corrected CHIRPS rainfall data reasonably simulate streamflow of the 

Sebeya catchment with NS of 0.8 and RVE of 2.5 %. Besides, the bias-corrected TAMSAT rainfall data 

poorly simulated streamflow, resulted from the product’s lack of rainfall detection capability, mainly during 

the rainy season. The raw satellite rainfall data were used to simulate streamflow of the Sebeya catchment 

using the independent optimized parameters of each satellite using bias-corrected rainfall data. The raw 

SREs poorly reproduce the observed streamflow data. Therefore, the streamflow generated using a 

combination of InSitu and bias-corrected CHIRPS rainfall data was used in the flood modeling. 

The 2D HEC-RAS hydrodynamic model was used to simulate flood characteristics in this study. The 

upstream inflow boundary conditions were obtained from the hydrological model for the Sebeya and 

Karambo river reaches. However, the inadequate topographic representation introduces uncertainties in the 

simulated flood extent. Hence, the available DTM product was enhanced in this study, where river reaches 

were delineated in the DTM, and it was smoothed to minimize the product's defects. The adopted enhancing 

method was found to perform satisfactorily and reduce errors in the simulated flood extent and depth. 

Different inflow boundary conditions were defined using streamflow from rain gauges and raw and bias-

corrected CHIRPS rainfall data. The flood model is sensitive to the input upstream boundary condition. 

The model results were found acceptable after enhancing the DTM based on the site’s knowledge with a 

maximum depth (>=2m) observed in the river reaches. However, there were no ground flood depth or 

extent observations to compare with the simulated results. Satellite-derived flood extent from Planetscope 

was compared with the simulated flood extent using CSI statistical indicator. This study found a poor match 

of satellite-based and simulated inundation extent. The mismatch could be originated in the uncertainties of 

Planetscope image and defects in the considered DTM product, though the product was enhanced. 

Therefore, the comparison of satellite-based and simulated flood extent was insufficient, thus making the 

calibration of the 2D HEC-RAS hydrodynamic model with Planetscope-derived flood extent ineffective in 

the Sebeya catchment. 

Overall, this study indicated the significance of bias-corrected SREs, and their further use in the hydrological 

and hydrodynamic models of the Sebeya catchment. This study could be a basis to assess the extreme events 



APPLICATION OF SATELLITE-BASED RAINFALL ESTIMATES AND INUNDATION EXTENT FOR FLOOD MODELING IN THE SEBEYA CATCHMENT, RWANDA 

67 

further causing floods in the data-limited Sebeya catchment using SREs. Besides, this study was the first to 

attempt the comparison of satellite-derived and simulated flood extent in Rwanda. Therefore, the knowledge 

described in this study can be used to investigate further the application of satellite-based inundation extent 

in calibrating hydrodynamic in the Sebeya catchment and other frequently flooded areas in Rwanda.  

6.2. Recommendation  

The major challenge of this study was the limited quality of available data to set up and calibrate hydrological 

and hydrodynamic models. A smaller number of rain gauges was the first limitation to overcome the spatial 

distribution of rainfall in the hydrological model. The observed streamflow was another challenge in 

calibrating the hydrological model. Meanwhile, the available DTM for the hydrodynamic model poorly 

represents the topographic representation of surface features, which induced uncertainties in the simulated 

flood extent and depths. Furthermore, the limited availability of satellite images to extract flood extent was 

another challenge in this study. Besides, the acquired Planetscope satellite image shows cloud cover and 

shadow effects. The image possesses only four bands, which limits the investigation of other water indices 

to delineate inundation extent better. Therefore, the following recommendations could be considered for 

future studies: 

• The number of rain gauge stations should be increased to represent the spatial variability of rainfall 

in this frequently flooded area, the Sebeya catchment. The daily temporal resolution rainfall data do 

not better capture the extreme flood event, indicating the need for high temporal resolution records 

like every 15 min or 30 min or hourly rainfall data. 

• The available streamflow data were inadequate in this study. Therefore, it is recommended to check 

and improve the quality and increase the temporal coverage of disseminated streamflow before 

being available to the public. This could be done by developing a hydrological model using the 

approved and checked meteorological and streamflow data to fill the gaps and update the measured 

streamflow. 

• Due to limited time, a small number of satellite rainfall products were investigated in this study on 

a daily basis. Therefore, exploring other available SREs and analyzing them is recommended based 

on the Sebeya catchment seasons (rainy vs. dry rainfall detection capability). Additionally, one bias 

correction method was applied, but future studies can test different approaches to argue on the 

suitable bias correction scheme in the Sebeya catchment. 

• The challenge of unavailable satellite images during a flood event in the Sebeya catchment was 

inevitably in this study. Therefore, ground recordings of flood extent and depths should be 

recorded. The UAV10 or drones can also be used to capture the surface land features, including 

water extent, during a flood event. This could overcome the difficulties of the available images in 

the hydrodynamic model calibration. 

• The available DEM was enhanced in this study for the hydrodynamic model applications. Much 

effort was made to correct the DEM, but all the defects could not be removed, which caused 

uncertainties in the simulated flood results. Therefore, high-resolution and high-quality DEM 

products, like LiDAR, and detailed river cross-sections, are highly recommended to represent better 

the topography of land surface features (rivers, buildings, roads, etc.) in the frequently flooded 

Sebeya areas.  

• Extending the flood model domain to the Petit Séminaire high school is recommended to capture 

all flooded areas in the Sebeya catchment adequately. 
 

 
10 Unmanned aerial vehicle 
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