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Abstract

For the optimal quality of experience (QoE), the user should play the VR game at the highest resolution,
without stalls or quality switches and at a minimal start-up delay. However, current Head-Mounted
Displays (HMDs) have insufficient local processing power to meet these requirements, creating the
need for offloading solutions. When offloading, the HMD communicates computationally heavy tasks
such as rendering a frame to an entity with more extensive computing capabilities and awaits the results.
Multi-access Edge Computing (MEC) is an emerging computing paradigm that offers processing help at
the cellular edge by dedicated servers at the base station. Due to the proximity to the user, MEC servers
can render frames without introducing long round-trip delays. Aided by their considerable computing
power, they can render frames significantly quicker than the HMD, such that offloading can reduce the
end-to-end rendering delay. However, if channel conditions are adverse, the network transmissions
endanger the latency requirement of VR applications that expect a response in milliseconds. Hence
the decision on whether to offload or not must not be taken lightly. These rendering strategies that
decide, per frame, the location of processing and the resolution quality are central in this work. The
contributions of this thesis in relation to existing work are the focus on explainable rendering strategies
and the holistic point of view on VR games. Instead of approaching the process on a frame-by-frame
basis, the user’s QoE is evaluated as a whole by considering all the aforementioned QoE metrics. For
this purpose, a framework is developed that simultaneously simulates the video game playback at a
fixed framerate and the rendering of frames based on the strategy’s decisions. In addition, the effect of
buffering is investigated. Rendering strategies designed around traceable decision-making guarantee the
explainability of their performance. Results show that rendering strategies that frequently offload to the
MEC servers and use encoding and decoding schemes achieve better QoE-score than those that render
locally or do not use encoding. Furthermore, results show that dynamic strategies can inadvertently
deteriorate the QoE despite higher data rates when frequently alternating between different resolutions.
This result stresses the importance of only rendering frames at higher resolutions when able to sustain
this for an extended period.
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Chapter 1

Introduction

Virtual reality (VR) games are becoming increasingly popular, not only in entertainment but also in
education and healthcare [9, 46], because of the immersive experience it provides. However, some
technical challenges must be overcome to secure its spot in consumer electronics. VR videos and
especially VR games (requiring real-time rendering) have ambitious requirements concerning latency,
computation, throughput and energy consumption. For a satisfying user experience, the VR headset
must display a game’s frames at a sufficiently high framerate and resolution without interruptions
or "stalls’’. Often, this computational burden exceeds the VR headset’s processing capability. Hence,
the Head-Mounted Display (HMD) can offload the computations of the rendering process to a more
powerful device to save time and energy. While cloud servers have immense processing power, the
high round-trip time to communicate information makes them infeasible for an application that needs a
response in milliseconds. Therefore, Multi-Access Edge Computing (MEC) is a promising technology to
satisfy these demands. Located at the base station, MEC servers bring computational resources closer to
end devices and can help with their computational burden without introducing considerable round-trip
delays. Whether to render a frame locally at the VR device or remotely at the edge is called the ‘offloading
decision’. The challenge in making this decision is balancing the high quality and low latency demand
because rendering frames at higher resolutions takes longer and requires more bandwidth during the
network transmission.

To reduce the bitrates of VR applications, video streams and games make use of tiling and bitrate
adaption schemes [17]. As a human’s field of view is smaller than the 360° offered by a HMD, the video
size can be reduced by dividing the video spatially into tiles and only rendering the tiles lying in the
user’s field of view (FoV) at a higher quality.

Mandatory Flow

MEC servers

2.B. Render frame; 
B1. Encode frame 
B2. Send ready-to-

display frame

3. Display
rendered
frame

2.A. Render frame

HMD

2.B. Send frame
information

2.B1. Decode frame
to be displayed 

1. Rendering Decision: What
resolution quality and what
path (A or B)? 

Depending on
rendering decision

1. Rendering Decision: What
resolution quality and what
path (A or B)? 

2.B. Render frame; 
B1. Encode frame 
B2. Send ready-to-

display frame

3. Display
rendered
frame

2.A. Render frame

HMD

Figure 1.1: Overview of the system. The HMD can offload the rendering of frames to the MEC servers.
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In recent years, literature on MEC-enabled offloading has vastly increased. On scopus, Elsevier’s
"abstract and citation database " [12], has marked an increase of entries using "MEC-enabled offloading"-
like keywords from 31 in 2016 to 1004 in 2021. MEC-offloading algorithms that use machine-learning
techniques follow a similar trend (Appendix A provides the statistics in more detail). Also, many state-
of-the-art algorithms in VR attempt to utilise the strengths of multi-access edge computing. [28, 4]. The
key motivations for this thesis are the following observations:

• Due to the many factors involved in offloading and the complexity of algorithms, it is difficult to
explain the exact benefit of an algorithm and evaluate the impact on the system environment.

• Rendering strategies for VR games generally evaluate an algorithm’s performance on how indi-
vidual frames are rendered instead of evaluating the quality of experience as a whole [28, 16], as
done by VR streaming algorithms [20, 4, 17]. However, streaming algorithms cannot be directly
applied to VR games because they assume video encoding happens in advance, and VR games
require real-time processing.

Based on these two motivations, we first aim to find explanations for the performance of a state-of-the-art
rendering strategy for VR games. Then, we use the gained insights to devise simple and explainable
rendering heuristics and evaluate them from a holistic point of view that incorporates the following
streaming aspect. The HMD displays frames at a fixed framerate; if they are not ready in time, a stall
occurs, which deteriorates the user experience. This incorporation is the main contribution of this thesis
compared to existing work and intrinsic to its positioning: devising offloading decisions for rendering
VR games in a MEC-enabled environment under 5G and beyond data rates while considering streaming
aspects. The remainder of this chapter first clarifies the above concepts, then presents the research
questions and lastly provides an overview of the organisation of the thesis.

Figure 1.1 shows the overview of the system flow. When playing the game, the two key responsi-
bilities of the HMD are rendering frames and displaying them. The rendering task is either entirely
computed locally (Computation path 2.A in Figure 1.1) or by offloading (parts) of the rendering task
to the MEC servers (path 2.B). The rendering decision consists of two parts: choosing the resolution
quality (called bitrate decision) and choosing the offloading path (called offloading decision). In our VR
gaming setting, the possible offloading paths are:

0. Local rendering. The entirety of the next frame is rendered locally at the HMD, so it produces
all the game content by itself. No connection to the base station is necessary.

1. Remote rendering. The MEC servers render the entire frame. To do so, the HMD first commu-
nicates user input (in-game actions, expected FoV) to the MEC server that determines how to
render the next frame. Then, after the MEC servers have produced the game content of the frame,
the HMD downloads the raw frame over the cellular link and displays it to the user.

2. Cooperative rendering. The foreground activity in the frame is rendered locally, while the
background information is communicated to the MECs and rendered remotely. In the end, the
HMD integrates both images into the final frame displayed to the user.

3. Remote rendering with encoding. The procedure is equal to remote rendering except that the
frame is encoded (compressed) before the downlink transmission and decoded again at the HMD.
This reduces the downlink transmission delay by reducing the data needed to transmit over the
network, but it requires additional encoding and decoding computations.

We define the rendering delay as the end-to-end delay between starting the rendering process of a frame
and putting the ready-to-be-displayed frame into the buffer of the HMD. Moreover, a dynamic rendering
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strategy can have a different decision for every frame, while a static rendering strategy always chooses
the same offloading path and resolution quality.

The VR game is played at a fixed framerate of 60 frames per second (FPS) unless there is no frame
left in the buffer. Then, the system stalls until the new frame is rendered. When stalling, the game
stutters or even freezes, significantly reducing the player’s quality of experience (QoE). To prevent this,
frames can be rendered ahead and stored in the buffer until needed. However, in VR games, the content
of the video changes based on user actions, so rendering cannot be done entirely in advance but has
to happen during the play-through. In this work, we assume that all information necessary to render a
frame can be accurately predicted a short time ahead (at most 0.5s), allowing us to study the impact of a
buffer system.

In addition to reducing the risk of stalls, the HMD aims to maximise the video game’s resolution
quality, minimise quality changes between frames, and reduce the start-up delay. All these components
influence a player’s QoE and must be balanced. For example, rendering frames at higher resolutions
increases the video quality, but it takes longer, increasing the risk of a stall. Another example is rendering
frames at higher resolutions. If the buffer is filled, this increases the quality of the game. However, it
might come at the expense of many quality switches or stalls when the buffer is depleting. The goal of
the HMD is to have a rendering strategy (making a rendering decision at every frame) that optimises
the overall QoE of a user. To capture these four aspects in a single, measurable score, we define the
QoE-score after the principles of existing QoE-models [39, 40] to evaluate the performance of rendering
strategies.

Now, we can formulate our research questions:

1. Do dynamic rendering strategies outperform static rendering strategies in terms of QoE-score?
To stress the importance of explainable strategies, we focus on strategies with an "if-then" character
that allow us to investigate why a dynamic strategy might be superior to its static counterpart:

(a) Do dynamic strategies that consider current channel conditions achieve high QoE-Scores?
(b) Do dynamic strategies that consider the buffer space achieve high QoE-scores?
(c) What offloading path (local, remote, coop and remote rendering) leads to high QoE-scores?

2. What is the impact of system parameters on the QoE-score of different rendering strategies?
Concretely, we evaluate the impact of the following system parameters:

(a) What is the impact of the up- and downlink bandwidth on the QoE-score of rendering
strategies?

(b) What is the impact of the maximum buffer capacity on the QoE-score of rendering strategies?

(c) What is the impact of the channel quality on the QoE-score of rendering strategies?
(d) What is the impact of the compression ratio on the QoE-score of strategies that use remote

rendering with encoding?

Answering the above questions analytically is difficult, because the rendering decision of later
frames depends not only on the rendering decision of earlier frames but also on the experienced channel
quality which influences the number of frames that might already be buffered. Moreover, the rendering
and playback processes happen simultaneously, which is difficult to model mathematically, so we
resort to simulations. To our knowledge, there is no dedicated holistic framework that simulates the
rendering process of a VR game and evaluates the different components of the QoE-score, so we design
and propose our own simulation framework.
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To answer RQ 1, we design two types of rendering heuristics (in line with RQ 1a and 1b, respectively)
and compare them to strategies with static decisions. The first type of strategy, called greedy strategies,
considers (estimates of) the current system state, such as the processing capability of the HMD and
the MEC servers, the available bandwidth and the experienced channel quality. The second type of
strategy, named opp-buffer strategies, takes into account the current state of the buffer and renders at
higher resolutions if enough frames are buffered already. Both strategies have a primary goal to reduce
the risk of a stall and a secondary goal to maximise the resolution quality of frames. To answer RQ1c,
we devise different variants per heuristic that favour a specific offloading path. To respond to RQ 2, we
explore the parameter space by simulating and evaluating the above heuristics over a range of different
values for the bandwidth, buffer capacity, channel quality and compression ratio.

  Chapter 1: Introduction

   Chapter 3: Analysis of Guo et al.'s Rendering scheme for VR Games 

  Chapter 2: Background and Related Work 
  2.1 Virtual Reality Applications (VR)
  2.2 Offloading Decision Problem
  2.3 Related Work: Offloading Schemes in VR

   Chapter 5: Analysis of our System Model 

   Chapter 7: Simulation Framework 

   Chapter 9: Discussion, Limitation and Future Work 

   Chapter 10: Conclusion 

  Chapter 8: Performance Evaluation 

  8.1 Simulation set-up
  8.2 Simulation results

  8.3 Do dynamic rendering strategies     
        outperform static rendering strategies in  
        terms of QoE-Score?

  Chapter 6: Proposed Offloading Heuristics 
  6.1 Base-line offloading strategies

  6.2 Heuristic offloading strategies

  Chapter 4: System Model and  
       Problem Formulation 

  4.1 Building blocks

  4.2 Communication model

  4.3 Data model

  4.4 Computing model

  4.5 Playback model

  4.6 Quality of Experience model and QoE-score

  4.7 Problem formulation  4.7 Problem formulation

  4.6 Quality of Experience model and QoE-score

  4.5 Playback model

  4.4 Computing model

Figure 1.2: Structure of the thesis.
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Figure 1.2 provides an overview of the thesis structure. After this introduction, Chapter 2 gives
more detailed explanations of the background and related work regarding virtual reality (VR) and the
offloading decision problem. It finishes by comparing and positioning our work against related work on
VR streaming and gaming. Next, we analyse the performance of one of the state-of-the-art rendering
algorithms in Chapter 3. This chapter aims to identify bottlenecks and explain the performance results
of Guo et al.’s rendering scheme [16]. These insights are fundamental for formulating the system model
in Chapter 4. Due to the many factors involved in the rendering process, this chapter explains how the
different aspects are modelled and motivates the relevant assumptions and simplifications. The chapter
finishes with the mathematical formulation of the underlying optimisation problem. Consequently,
Chapter 5 analyses the offloading paths in our model under different parameters to determine their
feasibility, similarly to the analysis of a state-of-the-art algorithm in the earlier chapter. Afterwards,
these insights are used to design the heuristics greedy and opp-buffer presented in Chapter 6. This
chapter explains the underlying idea of the two heuristics in more detail, highlights their advantages
and disadvantages, and presents the static rendering strategies. Chapter 7 introduces the design and
functioning of the simulation framework, and Chapter 8 presents the performance evaluation in light of
research questions 1 and 2. The thesis is wrapped up by Chapters 9 and 10 that present the discussion,
limitations, future work and conclusion.
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Chapter 2

Background and RelatedWork

This chapter provides detailed information, first, about the different aspects of Virtual Reality (VR) like
the Field of View (FoV) and tiling schemes (in Section2.1), then, more generally, about the offloading
decision problem (in Section 2.2). The chapter concludes by zooming into existing offloading schemes
in literature and by positioning our work in Section2.3.

2.1 Virtual reality applications (VR)

Compared to videos and games experienced via a flat screen, such as a television screen or a monitor,
applications in virtual reality completely immerse the user in the digital environment. By wearing
a Head-Mounted Display (HMD) as in Figure 2.1, the user no longer sees any objects in the actual
room because the digitally displayed image takes over the entire vision. VR videos and games display
inherently 3D pictures, either recorded by video cameras as in most 360° videos or by rendering 3D
models as in many VR games [3]. Moreover, the individual VR images span the entire 360° range
allowing the user to turn their head and take in new views, just like in reality.

Using motion sensors to track head movements such as rotation, tilting and scaling, the HMD can
calculate which parts of the picture lie in the user’s field of view (FoV). The field of view is defined as
the vision range that the user can perceive at once, as visualised in Figure 2.2. In literature, this is also
called viewport [17]. According to [14], humans have a field of view of around 110 degrees, so we can
calculate the proportion of the image that the user can see.

Figure 2.1: Example of a VR head-mounted display with controllers: Oculus Rift [8]
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Figure 2.2: Illustration on a user’s Field of View (FoV).

For a VR game, new images must be generated based on mathematical structures, called rendering.
Much research studies efficient rendering models that produce more realistic audio and graphics [3, 44].
As video games are highly interactive, they need to render new images during the gameplay to account
for a user’s actions.

For a VR video, the editor joins individual recordings, audio and images into one final 360°video.
After the raw video is finalised, it is compressed by a video encoder if it has to be transmitted over
the network. These steps are usually done before watching the video. To watch the video, the HMD
requests the content, receives the compressed files and decodes them into a format that can be displayed.
Contrarily, rendering must be done on the spot for a VR game and does not necessarily require a server
connection.

Since a video consists of a sequence of images that are displayed in quick succession, the developer’s
goal is to provide a stream of images at a sufficiently high framerate and resolution quality to ensure
an excellent quality of experience (QoE). The framerate corresponds to how often the displayed screen
is refreshed: at 60 frames per second (fps), every 1/60 ∼ 0.167 s, the user gets a new image on the
screen [37]. Suppose a system performance cannot reach a high enough framerate. In that case, the
video experience can be ‘‘choppy": instead of a smooth video, the individual pictures are hopping from
one to another, which is generally an unpleasant experience. The more action (movement, crowded
scenery or the viewing speed), the more critical a high framerate is. For example, when looking at a
sunset, lower framerates are acceptable since the individual pictures do not differ significantly, but
watching a fast-paced race or fighting series requires higher framerates for a smooth experience. Most
researchers aim for a framerate of 60 FPS [15].

When the framerate is fixed, and the HMD cannot produce the required frames per second, the
system enters a stall. This means the streaming buffer (the queue of ready-to-display frames) is empty
before the newly rendered frame arrives. Then, the user’s screen abruptly stops (often accompanied by
the dreaded loading sign), causing frustration. Hence, stalls should be avoided at all costs. Especially
since multiple short stalling periods or a few long stalling periods are suspected of causing cybersickness
[42]. The latter refers to the phenomenon that users experience dizziness or even nausea after the VR
experience.

A third metric related to the framerate inherent to VR games is the response time. It measures
how long it takes between the action registration and the action consequence being shown on screen. As
explained in [37], so-called double buffering is commonly employed when playing VR videos: to ensure
smooth video, a frame, say frame t, is shown on the screen while the next frame t+1 is already prepared
and stored in the buffer. To react to user actions, the first frame that can show the adaptions is then
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Figure 2.3: Illustration on how a VR video is time-wise split into frames and spatially into tiles of which
part belong to the field of view (FoV).

frame t+ 2, which is prepared (fetched, rendered and decoded.) while frame t+ 1 is playing. Ergo, the
minimal response time is one frame (or 16.7ms), but if the processing related to the user action takes
longer, the changes will only be visible at a later frame. The longer this response delay, the worse the
user experience, commonly known as "laggy behaviour".

Other primary influences on the quality of experience are the resolution quality of the individual im-
ages and how the quality switches between frames. Both too many quality switches and a low resolution
deteriorate the viewing experience [7].

The main challenge in VR videos and games is to balance the above factors because rendering and
downloading a video at a higher resolution takes significantly longer, so the risk for stalling periods
increases. Images of higher qualities also result in higher file sizes causing longer transmission delays.
To combat the latter and use the VR-specific property that a user only sees the parts of the image lying in
their FoV, adaptive bitstream algorithms make use of tiling [17]. On top of splitting the video time-wise
into frames, every frame is spatially split into tiles as shown in Figure 2.3. Every tile can then be rendered
at a different resolution allowing the possibility to render the FoV at a higher quality than the rest of the
image. In this way, the user’s quality of experience remains unchanged, but the file size is significantly
reduced. A challenge of adaptive tiling schemes is correctly predicting the user’s FoV and then rendering
the appropriate tiles [17].

2.2 Offloading decision problem

In short, computational offloading is a part of resource management: how to effectively share compu-
tational resources among several, possibly heterogeneous, devices to optimise performance metrics
such as energy consumption and latency by offloading (i.e. transferring) some tasks from one entity
to another. By offloading computationally heavy tasks to entities with more considerable processing
capabilities, battery-powered end devices could save energy and shorten the end-to-end delay. However,
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they have to engage in an extra transmission with all its potential costs, such as round-trip delays, energy
costs related to the transmission power, potential jitter and packet loss and extra traffic in the network.

Context and incentives to offload

Emerging and future applications such as VR or autonomous driving require the processing of large
quantities of data in a very short time, to the extent that the hardware present on a mobile device might
not be capable of handling the request by itself [43]. Emerging (ultra) high-speed network technologies
such as Wi-Fi and (beyond) 5G can support large data transfers in a relatively short time [41]. Therefore,
it is possible and even beneficial to not execute all computations in a local device but to distribute
(offload) computing and let more powerful devices such as cloud servers handle heavy computations.
After the processing, the MECs transmit the results back to the local device. However, the network
infrastructure needs to bring computational power closer to the end-user to offer ultra-low latency. This
led to the advancements of multi-access edge computing (MEC): processing capabilities and storage,
albeit less potent than those of the cloud, are made available at the edge of the cellular network. In short,
the main advantages of computational offloading for an end-user consist of:

• Improving end-to-end latency. The lower the processing power of a device, the longer computa-
tions take. Therefore, offloading certain tasks to destinations with better processing power can
reduce end-to-end latency despite the additional communication delay.

• Improving battery life. By offloading computationally heavy tasks whose processing requires
significant energy to another destination, end devices could consume less energy and have a
higher battery life span despite the additional energy consumption to transmit the data.

At the uprising of computational offloading, cloud centres were the most prominent destination because
of their enormous processing capabilities. However, their shortcomings and emerging technologies
lead to a new popular destination, the mobile edge. Due to the proximity of the edge to the end devices,
offloading to the mobile edge can alleviate the shortcomings of cloud-based offloading:

• Shorter delays. Since cloud data centres are typically located far from the end device, offloading
to them introduces considerable round-trip delays. Therefore, it often only makes sense to offload
highly computationally intensive tasks to the cloud, whose processing time will be significantly
shorter in the cloud than at the end device. In contrast, multi-access edge computing happens at
the base station, so significantly closer to end devices and introduces a lower round-trip delay.

• Reduced load on core infrastructure. Offloading to the cloud uses the core internet infrastructure
to communicate potentially sizeable input data for a task and send the response back. Offloading
to the edge avoids this additional network traffic due to its proximity to end-users.

• Contextual information. When end-users are connected to the cellular network, the cellular edge
can directly store and access contextual information related to end-users, such as their location
and experienced link quality [11], without requiring additional bandwidth resources. The cloud
does not have access to this information by itself. Therefore, if the information is required, it
must be explicitly communicated, increasing the amount of data the end device needs to send.
Furthermore, edge servers can have access to the same environmental information as end devices.
For example, an edge server located next to monitoring sensors could also measure the current
temperature and relieve the sensors of this burden.
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Factors that play a role in offloading

The classification in Figure 2.4 categorises the different factors that influence the modelling of the of-
floading decision problem. We distinguish the following aspects: the (physical) system is the foundation
of what is possible. The top-layer application tasks use the system and pose requirements for proper
functioning. The offloading decision problem combines needs and capabilities to achieve a common goal.
Appendix B explains all the factors of Figure 2.4 in more detail.

Additional design options to consider when offloading in VR

Compared to offloading decisions in other application areas, the VR context obliges us also to consider
the following aspects.

• Buffer size (System design choice). When designing buffer space, the risk of stalls needs to be
jointly considered with spacing constraints and response delay. Intuitively, the larger the buffer
size, the lower the risk of stalling. However, the main disadvantages of large buffers are increased
memory usage and a potentially increased response delay. If the frame with the user response is
added at the end of the buffer queue, playing all older frames in the buffer first can significantly
increase the experienced response delay. On the other hand, if the same frame overwrites an
older, outdated frame, computational resources have been wasted since rendering the old frame
was unnecessary. Hence, for the optimal maximal buffer size, the risk of stalling, response time
and memory need to be in equilibrium.

• Choosing video quality (Strategy for video encoder). The higher the video quality, the better
the user experience. However, the associated delays can reduce the experience when response
time, framerate, or stalling metrics deteriorate. To balance this out, bitrate adaption schemes
like DASH are widely used in video streaming: DASH segments the video preliminarily and
encodes each segment into different quality streams. At the moment of request, it chooses the new
segment’s quality dynamically depending on the channel quality to optimise the performance [17].
These segments can range from single frame segments over multiple frame segments to not using
DASH (the whole video is one segment).

During VR videos and games, this idea is taken a step further. Instead of only splitting the video
time-wise into segments of differing quality, each frame is also segmented spatially. This is
possible because the user only sees the parts of the frame in their FoV. Dynamic DASH for VR
divides every frame into a grid of tiles [17], each tile encoded into different qualities. Depending
on the user’s FoV, only the tiles with parts in the FoV are rendered in high quality, while all tiles
outside are rendered in low quality not to waste bandwidth and processing power. Since tiles
outside the view are still rendered, stalls are prevented in case the user makes a rash movement
towards the tile.

• VR game versus 360-degree video The conceptual difference between a VR game and a
360° video is as follows. A VR video is an immersive 360° video capture of a real environ-
ment. All-around video captures can be recorded, stored and encoded to different qualities. The
only user action possible when watching such a video is rotating and tilting one’s head to view
different angles of the video. Moreover, the video always displays the same series of images.
On the contrary, a VR game is more flexible. While it can be based on real-life imagery, a game
is commonly played in a digital VR environment that is rendered on the spot. Notably, the
user has a lot more freedom in the interaction with this virtual world: on top of head motions
to see different angles, the user can move around and interact with virtual elements. Since it is
unrealistic to anticipate the user’s every move and action, the frames need to be rendered on the
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Figure 2.5: Mandatory flows and possible computation paths of a system hosting a VR gaming or
streaming a 360° video application.

spot to display the result of the user input. The available moves and actions can highly depend
on the games.

From a technical and modelling perspective, we must highlight the following key differences
that play a role in this research. The first key difference between both applications for our set-
up is depicted in Figure 2.5, showing the mandatory steps in red and the different computing
options in green. Figure 2.5a shows that offloading computations from the HMD to the MECs
in a VR game introduces new transmissions. Contrarily, as depicted in Figure 2.5b, during VR
streaming, the data has to flow from the content provider (cloud) over the base station to the HMD
in any case. Then, the offloading decision is notwhether to offload the rendering to theMECs, but
where to decode the compressed video files sent from the cloud. Contrarily, in the VR gaming setting,
offloading is entirely optional. So the trade-off between computations saved on the HMD and
added network load is more significant. When remotely rendering, the system needs to account
for an additional uplink and downlink transmission between the base station and HMD on top
of the extra computations at the MECs. Moreover, the ’offloading decision’ when streaming a
360° video can still be incorporated: we can consider remote rendering without compression (the
raw file is sent over the network, no decoding needed at the HMD) or with compression (extra
encoding delay at MECs, less volume on the downlink, but additional decoding action at the
HMD).

The second key difference is how to deal with user interaction. When streaming a video, the
360° content is always the same, but users can see different parts of the video depending on
their head movements. To ensure the FoV is displayed at the highest possible quality under
given network conditions, the content provider can encode the video and even individual tiles at
different quality resolutions [17]. Bitrate adaption schemes then determine in real-time which of
the streams to transmit. The immutable video content permits encoding and caching of these data
streams ahead of time, so no time is lost at the moment of request (computational delay is traded
for memory). When playing a real-time VR game, the content of a tile is not known beforehand
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because it highly depends on the user’s behaviour in the game. Ergo, the pre-rendering and
caching options are limited. To conclude, we considered VR gaming a more interesting scenario
to study the offloading decision problem.

2.3 Related work: offloading schemes in VR

This section presents the most relevant work on VR streaming and rendering leveraging edge and cloud
infrastructure. Our work concentrates on rendering strategies for VR games, but we intend to combine
the successful insights of existing streaming and rendering algorithms and mitigate their caveats.

Hooft et al. explore tile-based adaptive bitrate algorithms together with FoV prediction algo-
rithms [17]. Their findings conclude that the viewport prediction accuracy can be improved by modelling
the virtual movement of a user as a walk on a sphere instead of a two-dimensional representation on a
plane. Moreover, they show that their tile-based rate adaption heuristics outperform state-of-the-art
algorithms. Their work instigates us to assume the presence of accurate FoV prediction algorithms and
to consider rendering schemes that adopt different quality resolutions for FoV and non-FoV tiles. We
apply their design philosophies to a new context, namely VR gaming in a MEC-enabled environment
instead of 360° video streaming from a content provider.

Cheng et al. design and analyse a proactive 360° VR video streaming model to investigate the
benefit of caching. They also investigate offloading by determining what percentage c of the VR video
should be decoded already at the MECs or only at the user. They conclude that it highly depends on the
compression ratio h, so how much larger the file size is after decoding. When h = 5, the end-to-end
(E2E) delay when decoding only 70% at the MECs is shorter than the E2E delay when decoding entirely
at the MECs. However, it is the contrary when h = 1.5 [4]. Nonetheless, it is noteworthy to mention
two of our own observations: first, they only present results for c = 0.7, 0.8, 0.9, 1. This implies that
they see promise in decoding already at the MECs, which is an inspiration for our proposal of not
employing encoding and decoding when rendering remotely in Section 4.4. Secondly, the E2E delay
seems to hardly be below the target of 1/60s.

Li et al. have developed an analytical framework to analyse the offloading paths to determine
the minimum transmission data rate needed for the different offloading paths to meet the latency
requirements [21]. They consider a VR video streaming system, where individual frames need to be
transformed from 2D images into 3D images. This transformation can either be computed locally, at the
MEC servers or in the cloud. Moreover, they investigate the influence of caching. Their methodology
is the main inspiration for the analytical analyses in Chapters 3 and 5. The main difference to their
system model is that we assume a VR gaming setting where frames need to be rendered and cannot be
cached. Furthermore, we consider the possibility that up- and downlink capacities can vary and that the
rendering task can be shared between HMD and MECs (cooperative rendering).

Lai et al. evaluated several VR applications on the proclaimed ‘‘VR ready" PIXEL phone by Google-
and concluded that today’s (mobile) hardware cannot satisfy wireless VR needs and that QoE values are
10x worse than required. Nonetheless, they are pioneering the observation that fore- and background
activity in a VR game differ and hence develop the VR framework Furion. The framework runs on
both mobile device and server in a "split renderer architecture" [18], where the foreground is rendered at
the mobile device and the background at the remote server. In this way, Furionmanages to achieve the
desired 60 FPS. In their setting, a VR game is played on a mobile phone connected to a local desktop via
a WiFi connection. Our research intends to analyse the VR experience with more powerful hardware:
HMDs with dedicated processors to display VR, MEC servers with higher processing power than a
desktop and the promised Gbps data rates by 5G and beyond networks. Furthermore, they empirically
measure the rendering capability of existing applications, while our goal is to design new rendering
strategies that take into account current network conditions for offloading and bitrate decisions. The
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main similarities between ours and Lai et al.’s work are that both consider VR games and allow for
cooperative rendering.

Mehrabi et al. evaluate edge versus cloud VR gaming by employing a multi-tier structure (HMD,
edge and cloud). At every time period, the frame can be rendered either at the edge or in the cloud.
However, their numeric results have to be taken with caution because they "exclude the processing
delays associated with client device" [28] since it is irrelevant to the question of whether to render in the
cloud or at the edge server. But our exploratory results in Chapter 3 will show that the delay associated
with local computations is often limiting, so it should not be ignored in the bigger picture. Furthermore,
they evaluate the rendering process on a frame-by-frame basis while we consider playing the game for
an extended period of time and examine a user’s overall quality of experience.

Guo et al. already started extending Lai et al.’s ideas by involving the edge network. They run the
split-renderer architecture on a dedicated HMD combined with MEC servers [16]. However, they intend
to follow the real-time rendering principle implying that the background is rendered at the same time as
the foreground even when cooperating between HMD and MECs. The two main shortcomings of their
work are that they consider low-quality resolutions and only evaluate the system on a frame-by-frame
basis. The latter implies that they cannot measure the effect of a single long frame computation on the
overall user experience. They only calculate how many frames meet the latency requirement but not
the resulting effect on the QoE metrics such as stalling duration or quality switches. In addition, their
rendering strategy is based on deep learning and game theory which complicates explaining what exactly
happens in the system (which decisions are made and how system parameters impact the performance).
We extend their work by designing a model and simulations that take into account this streaming-like
aspect.

Da Costa Filho et al. proposed a model to evaluate the QoE based on the resolution quality, the stall
duration, the quality switches and the start-up delay [7]. Other studies such as [40] and [39] also model
their QoE model on the same factors. The QoE model presented in Section 4.6 is based on the same
principles but makes use of normalisation to establish the optimum and allow for a better comparison
between QoE metrics of different magnitudes (e.g. bitrates in MB/s and stall duration in s).

To conclude, Figure 2.6 summarises how our work is positioned relative to the above selection of
state-of-the-art literature by showing the key differences to our work. The main difference between
Li et al., Cheng et al., and Hooft et al. [21, 4, 17] is that we consider a VR gaming setting with optional
offloading instead of a streaming application. The key difference to Furion is that we consider a MEC-
enabled setting with optional offloading. Moreover, we incorporate the streaming-like aspect of a game
(displaying frames at a fixed framerate) and the impact of local computations, as opposed to Guo et
al. [16] and Mehrabi et al. [28]. Last but not least, we take into account buffering capabilities at the HMD
for VR games by assuming that user actions and FoV can be predicted a short time ahead.

Page 22



C. Schmit Chapter 2. Background and Related Work

Li et al. [21] 

Key differences: 

VR video streaming;
Caching possible
Limited to analytical
analysis of offloading
paths.

Cheng et al. [4] 

Key differences: 

Considers VR video
streaming;
Fixed offloading ratio:
video decoded locally or at
the base station;

Hooft et al. [17] 

Key differences: 

Considers VR video
streaming;
Edge not considered
Limited to bitrate adaption
scheme (not considering
computational offloading)

Video Streaming

Mehrabi et al. [28] 

Key differences: 

Independent Frame-by-
frame rendering 
Only considers rendering
at the cloud and at the
edge, not locally;
Ignores local computation
delay;
No buffering considered.

Lai et al. [18] 

Key differences: 

Empirical measurements.
Less powerful hardware
considered: mobile phone,
Wi-Fi connectivity and
offloading to local
desktop. 

Our research

Guo et al. [16] 

Key differences: 

Independent Frame-by-
frame rendering
(excessive rendering delay
for one frame does not
influence others);
No buffering mechanism;
Caching considered;
Complex decision making
based on machine
learning.

VR
 g

am
in

g

Positioning: 

Rendering of VR games;
MEC-enabled environment with
cellular connectivity between HMD and
base station;
5G and beyond data rates possible
Dynamic offloading decisions possible
(between local, remote and
cooperative rendering);
Streaming-like playthrough: 

Frames at constant framerate;
Buffering of frames;
Stalls possible;
Short-term user actions and FoV
prediction algorithms assumed.

Figure 2.6: Positioning of our work and key differences to state-of-the-art research.
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Chapter 3

Analysis of Guo et al.’s Rendering Scheme
for VRGames

Guo et al. design a dynamic offloading scheme for VR applications in future MEC-enabled wireless
networks based on distributed learning [16]. They focus on the real-time rendering process in wireless
VR to maximise the QoE utility. The QoE utility stands for the number of users whose end-to-end
latency is below the threshold of θt = min(1/η, τ), where η is the desired framerate and τ the minimal
response delay. The main distinguishing aspect of Guo et al.’s work is their sophisticated model that
considers the influence of multiple users on each other based on their movements and rendering
decisions. Furthermore, Guo et al. devise a complex rendering strategy based on deep reinforcement
learning and game theory.

To get insights into the ecosystem of the rendering process in VR games, we analyse this state-of-
the-art rendering model in more detail. The leading questions are:

1. What parts of the rendering process take the longest?

2. Can we explain the behaviour and decisions of Guo et al.’s offloading scheme?

The primary motivation for the first question is the following observation. Guo et al.’s performance
evaluation shows that with more users, a user’s average long-term end-to-end latency increases signifi-
cantly and even exceeds θt. By analysing the intermediate delays in their computing model, we aim
to identify these limiting factors to design rendering strategies with better performance. Furthermore,
Guo et al. only consider resolutions up to 720p [16], which is significantly lower than expected reso-
lutions for VR [17, 29]. Therefore, we evaluated the performance of Guo et al.’s model under higher
resolutions. Secondly, the motivation for the second question stems from the black box that encases the
decision-making process of Guo et al.’s algorithm. This obscurity makes it challenging to identify which
decisions (offloading paths, resolutions) lead to performance deterioration. The lessons learned during
this analysis guide the formulation of the system model in Chapter 4 and help shape the proposed
offloading heuristics in Chapter 6.

To get insights into the above, we studied Guo et al.’s computing model under different parameters
and stored the intermediate delays. Appendix C summarises the formulas and parameter specifications
used by Guo et al. [16]. In short, their computing model for the rendering delay when remotely rendering
T remote consists of delays corresponding to the uplink transmission, the rendering at the MECs, the
encoding, the downlink transmission and the decoding. The rendering delay when cooperatively
rendering T coop is composed of the integration delay and the maximum between the local foreground
and the remote background rendering delay [16]. We took over their simulation values whenever
possible. However, We simplified the calculations for the data rate. Instead of calculating the SINR
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values, we assume a fixed value of 16.5 dB or 20 dB corresponding to good or excellent connectivity in
LTE [10]. Moreover, they consider the presence of several users while we limit ourselves to a single
user.

Intermediate rendering delays

First of all, the analysis shows that within remote and cooperative offloading, the local processing tasks
are limiting factors. Figure 3.1 shows that only the computations at the HMD (decoding, integrating,
and the local computations in T coop) significantly affect the total rendering delay next to the downlink
transmission. All the remote processing delays are negligible. Note that the downlink transmission delay
of 14.5ms in Figure 3.1a is the same as in Figure 3.1b because Guo et al. assume that a compressed frame
has 2 MB independent of the content [16]. Consequently, T remote < T coop because the integration
delay when cooperatively rendering is assumed to be proportional to the uncompressed frame size and
easily outweighs the lower rendering delays at the MECs because remote processing is negligible in
both cases. Moreover, since decoding (and integration) are assumed to be proportional to the raw frame

(a) Guo et al.’s remote rendering delay T remote. (b) Guo et al.’s cooperative rendering delay T coop.

Figure 3.1: Intermediate delays when qi = 720p, Cf = 10e6 CPU cycles, α = 5 users share resources
at the base station and γ = 16.5 dB.

size, these processing delays become dominant when applying Guo et al.’s formulas to larger resolutions,
as shown in Figure 3.2. In this case, the decoding delay alone already exceeds the 16.7ms limit of θt.

Table 3.1 shows the local rendering delays of all combinations of processing requirements for
the foreground Cf and the background of a frame Cb assumed by Guo et al. [16]. Under all these
combinations, only 2 out of 16 fall under theθt threshold showing that local rendering is hardly advisable.
Comparing the values of T local when Cf = 10e6 CPU cycles to the decoding delays in Figure 3.2, we
can observe that the decoding delay of 51.8ms even exceeds the local rendering delay when CB ̸= 60e6
CPU cycles, implying that decompressing a frame takes longer than rendering the frame.

This observation seems counter-intuitive, which prompted us to deviate from Guo et al.’s data and
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Figure 3.2: Intermediate delays for Guo et al.’s remote rendering delay T remote when q = 2160p,
Cf = 10e6, α = 5 users share resources at the base station and γ = 16.5 dB.

computing model. In fact, we believe the origin of the observation stems from the following modelling
assumptions of Guo et al. [16]:

• The data size D and computational requirement C to render the frame are not explicitly linked.

• The decoding delay of a frame at the HMD is proportional to the data size of the corresponding
raw frame.

Both assumptions together result in the fact that the local rendering delay (Cf +Cb)/zl is smaller than
the decoding delay D/(bzl · zl) for the values specified beforehand. However, it is impossible to make
the above conclusions with certainty because Guo et al. do not describe clearly how the data sizes and
computational requirements vary between frames.

Possible decision-making process of Guo et al.’s scheme

The second main goal of the analysis is to explain the decision-making process of Guo et al.’s offloading
scheme. For the remaining calculations, we emphasise that Guo et al. do not specify how they choose the
quality q or the computational requirements Cf and Cb of a frame, so we assume that all combinations
are equally likely.

Let θt be the threshold of the QoE-utility value: the QoE utility equals 1 if the rendering delay is
below θt and 0 if it is above and let the channel quality be fixed. Then, by transforming the equations of
Guo et al.’s computing model [16], we can calculate the number of people that can simultaneously render
remotely such that everyone’s rendering delay is below θt. The formulas are given in Appendix C.2
together with the summarising figure showing the maximum number of users for the different parameter
combinations. On average, under excellent SINR (γ = 20 dB), over Guo et al.’s simulated computational
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Table 3.1: Local rendering delay T local under Guo et al.’s model specifications for local rendering when
zl = 1e9 CPU cycles/s and θt = min(1/60, 0.025) = 16.7ms.

Cb (1e6 CPU cycles) Cf (1e6 CPU cycles) T local (ms) T local ≤ θt ?
10 2.5 12.5 yes
10 5 15 yes
10 10 20 no
10 20 30 no
20 2.5 22.5 no
20 5 25 no
20 10 30 no
20 20 40 no
40 2.5 42.5 no
40 5 45 no
40 10 50 no
40 20 60 no
60 2.5 62.5 no
60 5 65 no
60 10 70 no
60 20 80 no

requirements and resolutions,

(5.8 + 10 · 5.7 + 5 · 5.6︸ ︷︷ ︸
360p

+9 · 5.3 + 7 · 5.2︸ ︷︷ ︸
480p

+4 · 4.1 + 12 · 4.0︸ ︷︷ ︸
720p

)/(3 · 16) = 4.99 ≈ 5

users can simultaneously render remotely for each of them to have a QoE-utility of 1. 16 stands for the
number of possible combinations of Cf and Cb since both can take on four different values.

Now, consider a distributed offloading strategy that ensures that maximally five users render
remotely per base station and all other users render locally. Then, the QoE-utility will be 1 for the five
users offloading remotely. For local offloading, Table 3.1 shows that the delay (Cb + Cf )/zl is below
θt in 2 out of 16 times, so with a probability of 0.125. Thus, whenever there are 100 users and 10 base
stations (as assumed in Guo et al.’s performance evaluation [16]), the expected average QoE-utility is:

Expected QoE-Utility = 5× 10× 1︸ ︷︷ ︸
Users choosing remote rendering

+ (100− 50) · 0.125︸ ︷︷ ︸
Users choosing local rendering

= 56.2.

Comparing this to the long-term average QoE-utility of Guo et al. proposed algorithm, we can observe
that its QoE-utility of 65 is higher, so the above cannot fully explain the algorithm’s decision-making. Of
course, it is challenging to estimate the exact QoE-utility because we cannot simulate the strategy under
the exact setting as Guo et al. used. With the above, we must conclude that we cannot fully explain which
decisions are made by Guo et al.’s algorithm nor what rendering decisions lead to a positive QoE-utility.
This observation encourages us to design offloading heuristics whose behaviour is fully explainable to
determine why dynamic strategies might be superior to static strategies.
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Chapter 4

SystemModel and Problem Formulation

In an edge-enabled network, a single user is playing a virtual reality game. As shown in Figure 4.1, a
base station provides connectivity and multi-access edge computing (MEC) to a single user playing an
immersive VR game on a HMD. The HMD connects to the base station via a wireless connection that
offers 5G and beyond data rates and latencies.

0: Local  
computation  

of frame
HMD

Base Station  
with MECs

1 or 3: Remote  
computation  

of frame

2: Cooperative computation  
of frame

Figure 4.1: System Overview showing the three rendering paths.

For a good user experience, the HMD needs to deliver VR frames to the user at a satisfying framerate,
a high quality and without interruptions. The rendering strategy of the HMD makes the rendering
decision on

1. which quality resolution to choose? (Bitrate decision)

2. which offloading path to choose? (Offloading decision)

Note that for every offloading path, the rendering delay (also called offloading delay) depends on the
chosen quality resolution, so the bitrate and the offloading decision must be jointly considered. The
remainder of this chapter describes the different components needed to translate this setting into a
system model:

4.1: Building blocks: how can the individual components and their interactions be mathematically
described?

4.2: Modelling the communication between edge and HMD: what data rate can be reached?

4.3: Modelling the structure and size of a frame: how large are VR frames of a given resolution?

4.4: Modelling the rendering process: what is the rendering delay per path?
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4.5: Modelling the display process: how quickly does the HMD display frames?

4.6: Modelling the quality-of-experience of the user: by which performance metrics can we measure a
‘‘good experience" ?

Finally, we present the underlying optimisation problem in Section 4.7.

4.1 Building blocks

Figure 4.1 depicts the overall system. A single base station (BS) provides MEC services to a user engaged
in a VR game using a HMD and controllers. While multiple users are present, the point of view of the
study only follows a single user and abstracts other users to a number α that affects the user’s share of
bandwidth and processing power. To clarify, the available bandwidth to the user is B/α of the total
available bandwidth B. Similarly, let ZC be the total processing power at the MECs, then the user can
receive a fair share, namely zc =

ZC
α [16].

We assume that a user is playing a VR game with the following properties. We use the terminology
video and game as follows. The user watches a video on their HMD. This video is influenced by the user’s
play actions and head movement (the latter determines the FoV). The overall process is called game.

1. VR game. We assume the user is playing a VR game in which the background content is highly
predictable (video-like) while the foreground contains all user interactions.

2. Data flow. The entire game can be played locally (at the HMD device) with optional computa-
tional offloading to MECs requiring the following prerequisite. Similarly to the assumption of
[16], all model information needed to render the game content is present at the MEC server and
the HMD. To render a frame, some uplink communication (for example, user position and user
actions) is necessary, but it is assumed small.

3. Duration. The user can, in principle, play the game at will. For our model, we assume that the
player is engaged in the game for a fixed time T .

4. Playback. If possible, the game is played at a fixed framerate of 60 FPS (frames per second). If
there is no frame ready to be displayed when needed, the video pauses until the next frame is
ready. This occurrence is called stalling.

5. Start-up delay. At the beginning of the game, a fixed number of frames are pre-rendered before
displaying frames to the user.

6. Video∋ frames∋ tiles∋ FoV. Time-wise, the video game is divided into a sequence of frames,
each depicting an image of the sequence. Furthermore, every frame is spatially split into tiles.
A user does not see the entire frame but only the tiles lying in their Field of View (further ex-
planations on FoV below). Figure 2.3 illustrates this. We assume that all tiles and frames can be
rendered separately and at different resolutions.

To focus on the effect of the rendering decision on the delay, we abstract user input by assuming the
existence of predefined, accurate user prediction models. The user influences the system in two ways:
by determining what they want to see and by their interactions when playing the game:

• Field of View (FoV). The 360° image of a VR application is larger than the human visual
range [14]. Consequently, a user only sees parts of the overall image depending on their head
position. The set of tiles that lies in the user’s viewpoint is called Field of View (FoV). Figure 2.3
shows an example of the spatial tiling of a VR video of which 4 out of 24 tiles lie in the FoV.
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User
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Figure 4.2: Overview of all components of the HMD and MEC servers.

• User Action. Since we study a VR game, user interactions are crucial. Depending on the user
input, the content of the frames changes. We assume that the short-term user actions only influence
the foreground information and not the background information. For example, whether a user
lets an apple fall onto the ground or eats an apple does not influence the rendering of the grass,
sky and mountains in the background.

We assume the presence of a perfect FoV prediction algorithm, as well as a perfect user action prediction
algorithm. Then, we can model the application with streaming aspects: the HMD has all information
necessary to render the frames at the moment of the rendering decision, producing a stream of images
similar to the contents downloaded when streaming a 360° video. In this way, we can study the clean
potential of the rendering decision uninfluenced by other algorithms to predict the FoV or user actions.

The HMD is the connection between all other entities. Figure 4.2 presents an overview of its various
components and tasks. First, it registers user inputs using sensors and controllers. These are used
to calculate (predict) the FoV and the contents of the frame (digital consequences of user actions).
Furthermore, it displays ready-frames at the desired framerate to the display of the HMD and maintains
a constant connection to the base station. Lastly, it is responsible for rendering the frames and making
the rendering decision.

The rendering decision consists of the bitrate decision and the offloading decision. The former
determines the resolution of the tiles lying in the user’s FoV. The latter decides how to compute the
frame, as the HMD can decide to offload the rendering task to the MECs. If it decides to render locally, the
HMD itself renders the frame based on the (predicted) user actions and FoV and stores the result in the
buffer until it is ready to be displayed. When rendering remotely, it transmits all necessary information
to the MECs and downloads the rendered frame after the completion of the rendering task by the MECs.
If the MECs encode the image, the HMD will first decode the frame before adding the ready frame into
the buffer. Lastly, when rendering cooperatively, the HMD will locally render the frame’s foreground
according to user actions and FoV, download the rendered background and then combine both into the
final frame.

We assume that the rendering process stops after a frame has been dropped due to a full buffer
and restarts once displaying a new frame frees buffer space. During the above, we assume that all non-
rendering delays, such as making the decision or displaying frames, are negligible (for example, they
could be done in parallel) and denote the available processing power of the HMD by zl. We consider the
unit of the buffer to be number of frames, implying that the total size of the buffer in bits can be different
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even if there is an equal number of frames in the buffer. Similarly, the maximum buffer capacity is
expressed as the maximal number of frames it can hold.

4.2 Communicationmodel

Transmitting information from the HMD to the base station and back happens over a wireless channel
using 5G and beyond technology. According to Shannon’s capacity formula, the data rate R depends on
the available bandwidth B, how the bandwidth is shared among α users, and the Signal-to-Interference-
and-Noise ratio, γ = S

N [16]. The latter ratio indicates the strength of the signal S relative to ambient
noise and interference N . We emphasise that the data rate depends not on the absolute signal strength
but the relative strength against the noise and interference. Then, assuming equal bandwidth allocation
between all α users, the data rate R is calculated by

R =
B

α
log2(1 + γl). (4.1)

Similarly to Mehrabi et al. [28], we consider γ an input parameter. This generalisation simplifies the
communication model and allows for future incorporations of more complex models to calculate SINR
values. Note that we express the SINR γ in decibel (dB), so the following conversion is done before
applying the value to Equation (4.1):

γl = 10
γ
10 ,

We differentiate between uplink and downlink by using the superscript u for uplink and d for downlink:
Ru, Rd, Bu, Bd, γu and γd.

Consequently, the transmission delay to communicate data of size D is calculated by D/R. We
assume a negligible propagation delay due to the proximity between base stations and users in 5G and
beyond networks.

4.3 Data model: quality resolutions, data sizes and computational re-
quirements

A frame’s raw data sizeD is defined as the memory needed to store the frame and measured in bits.
A frame’s computational requirement C stands for the processing needed to render the frame and is
measured in CPU cycles. Both C and D depend on the desired quality resolution q of the frame (e.g
360p, 480p, etc).

Every frame is spatially split into l × w equally sized tiles, which all can be requested at different
resolutions. The total data size D and computational requirement C of a frame are calculated by
summing the sizes Dt and requirements Ct of all tiles in the frame, respectively. Furthermore, a tile
consists of a background and a foreground which can be computed separately and whose sum equals
the size or requirement of a tile:

Dt = Db +Df , Ct = Cb + Cf , (4.2)

where the subscript b stands for the background and f for the foreground of a tile.
First, we describe the calculations of the raw data sizes from the requested resolution q and the

number of tiles l × w. Given a picture at qp, the short side of the picture consists of q pixels. Assuming
an aspect ratio of 16:9 [5], the longer side has 16/9 ·q pixels. This work assumes that every pixel requires
10 bits for deeper colour storage implying that a full frame at qp has a data size of 16/9q2 · 10 bits.
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Furthermore, since we assume a spatial tiling of l×w of every frame, a single tile has a size of 16/9q2·10
l·w

bits. We assume that the background is richer and more detailed. Formally, a tile consists for β out of
background and 1− β out of foreground with β ∈ [0, 1]. Next, when rendering (parts of) the frame
at the MECs, the HMD does not need to communicate a full frame to the base station, but only the
information necessary to render it, such as the (predicted) user actions, the requested quality resolution
and the FoV. We consider the data size to be sent proportional to the full frame. Similarly to Guo et
al. [16], we assume that the uplink data size to send is 1/1000 of the full frame size. Then, the data sizes
for a tile are calculated as follows:

Dt(q) = Df (q) +Db(q) =
16/9q2 · 10

lw
, (Data size of tile in bits)

Df (q) = (1− β) ·Dt(q) =
(1− β) · 16/9q2 · 10

lw
, (Data size of foreground in bits)

Db(q) = β ·Dt(q) =
β · 16/9q2 · 10

lw
, (Data size of background in bits)

Du(q) = Df (q)/1000 =
(1− β)16/9q2 · 10

1000lw
, (Uplink data size in bits)

with l × w the number of tiles in a frame (length × width), q the requested resolution and β the
proportion of the frame that belongs to the background.

The computational requirements of a tile are calculated as follows. Guo et al. assume that both
the HMD and MECs can process 0.4 bits per CPU cycle [16]. Hence 1 CPU cycle is equivalent to
0.4 bits and we translate this relationship to the data sizes and computational requirements to get
D (bits) = 0.4 (bits/CPU cycle) · C (CPU cycles). Applying this relation to the above data sizes gives:

Ct(q) = Cf (q) + Cb(q) =
Dt(q)

0.4
=

16/9q2 · 8
0.4lw

, (Computational requirement of tile in CPU cycles)

Cf (q) =
Df (q)

0.4
=

(1− β)16/9q2 · 8
0.4lw

, (Computational requirement of foreground in CPU cycles)

Cb(q) =
Db(q)

0.4
=

β16/9q2 · 8
0.4lw

, (Computational requirement of background in CPU cycles)

with the number of tiles in a frame l×w ( length×width), the requested resolution q and the proportion
of the frame that belongs to the background β.

Finally, the raw data size D and computational requirement C of the full frame is:

D =
∑
tile t

Dt,

C =
∑
tile t

Ct.

When referring to a specific frame i, all symbols have an additional superscript i, such as Ci and Di.
To give an idea about the resulting uncompressed bit-streams at a framerate of 60 FPS, consult

Figure 4.3. VR applications generally aim for high quality to provide a realistic immersion. This means
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Figure 4.3: Bitrates for different quality resolutions q.

that resolutions such as ultra-high-definition (UHD) at 2160p are not uncommon. To support UHD,
bitrate adaption schemes render tiles in the FoV at higher quality than the remaining tiles [17]. Figure 4.3
shows that this technique significantly reduces the application’s bit-stream. To further reduce the bit
stream over the network, algorithms use compression algorithms to decrease the file size of individual
images. In case compression is used, the data size and reduces by a compression ratio factor k:

Dk =
1

k

∑
tile t

Dt,

Ck =
1

k

∑
tile t

Ct.

Video compression is also called encoding, and video decompression is called decoding.

4.4 Computingmodel

The rendering of a frame i depends on the rendering decision ϕ = (o, qi). More concretely, it depends
on the requested resolution qi to determine a frame’s size and computational requirements and the
chosen offloading path o. Rendering a frame can happen locally at the HMD (local), without encoding
and decoding at the MECs (remotely), at both (cooperative), or with encoding at the MECs (remote
encoding). LetO = {0, 1, 2, 3}denote themode selection indicator set, i.e the set of all possible offloading
decisions, with

• 0: local rendering;

• 1: remote rendering;

• 2: cooperative rendering;

• 3: remote encoding, remote rendering with encoding and decoding.

Page 33



C. Schmit Chapter 4. System Model and Problem Formulation

Rendering of the gaming application happens frame-by-frame. As explained in Section 4.1, every
frame consists of a set of tiles of which a subset is contained in the user’s FoV. We assume that the game
is displayed at a fixed ’screen’ resolution; hence, the number of tiles in every frame is fixed to l × w.
Furthermore, we assume that the number of tiles within the FoV is fixed (i.e. the minimum number of
tiles that can cover the FoV at all times) and set to n. Additionally, we assume that every tile can be
rendered at a different resolution.

Let q0 be the lowest resolution and qi the requested FoV resolution according to strategy ϕ. Then,
the n tiles in the FoV are rendered at quality qi, while the other l × w − n tiles are rendered at quality
q0. As specified in Section 4.3 the resulting data size D and computational requirement C of a frame is:

D = n ·Dt(qi) + (l × w − n) ·Dt(q0), (4.3)
C = n · Ct(qi) + (l × w − n) · Ct(q0). (4.4)

Depending on the selected mode (local, remote, cooperative or remote encoding), the task computa-
tion and corresponding delay have different components listed below.

4.4.1 Local rendering

In local rendering, the entire frame is rendered locally at the HMD. Hence the computation delay Tlocal

only depends on the frame’s computational requirement C and the HMD’s processing capability zl:

Tlocal =
C

zl︸︷︷︸
render fore- and background

. (4.5)

4.4.2 Remote rendering

In remote rendering, both fore- and background of a frame are rendered remotely at the base station. For
the base station to render the dynamic foreground, it needs to receive some information from the VR
device; Du denotes the volume of this data. The latency for remote rendering consists of the delay for
the uplink transmission, the rendering of the frame, and the downlink transmission delay:

Tremote =
Du

Ru︸︷︷︸
Uplink transmission

+
C

zc︸︷︷︸
render fore- and background

+
D

Rd︸︷︷︸
Downlink Transmission

, (4.6)

whereRu andRd are the up- and downlink transmission rates of the user, D andC the data volume
and size of the frame, Du the data volume needed for the uplink communication and zc the processing
power at the MECs allocated to the user.

Compared to Guo et al.’s model [16], we assume that the frames are not cached and not encoded
between the base station and HMD. The former is a model simplification, and the latter results from
our analysis of Guo et al.’s model: in Chapter 3, we show that decoding the file locally is a significant
delay in their model and comparable to rendering the frame in itself. Cheng et al. engaged in a similar
idea in their streaming model where the offloading decision determines what percent of the frame to
already decode at the base station [4], instead of decoding the entire frame at the HMD.

4.4.3 Cooperative rendering

In cooperative rendering, the foreground of a frame is rendered locally at the VR end device, while the
background is rendered at the base station. Since back- and foreground are computed separately, the
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HMD needs to eventually integrate both parts into a final frame. According to [18], this action comes
down to a copying instruction making the delay negligible. We regard this integration delay tintegrate as
a constant and set it to 1ms, the empirical measurement of Lai et al. [18].

Tcoop = max

(
Cf

zl︸︷︷︸
local foreground rendering

,
Du

Ru︸︷︷︸
Uplink Transmission

+
Cb

zc︸︷︷︸
Remote background rendering

+
Db

Rd︸︷︷︸
Downlink Transmission︸ ︷︷ ︸

Remote background rendering

)

+ tintegrate︸ ︷︷ ︸
integrate fore- and background

, (4.7)

where zc is the processing power at the base station that is allocated to the user, Cf and Cb are the
computational requirements of the fore- and background of the frame, Db is the associated data size
of the frame’s background, Ru and Rd the up- and download transmission rates and tintegrate the
integration delay constant. We do not consider encoding and decoding with the same reasoning as in
Section 4.4.2.

4.4.4 Remote rendering with encoding

Remote rendering with encoding and decoding is comparable to current streaming practices. Content is
readied at a remote content provider (often the cloud) and encoded before communicating it over the
network. Conceptually, encoding uses an image or video’s intrinsic structures and patterns to reduce the
file size, which is also known as compressing a file. After downloading the encoded frame, the HMD
must decode the video to display the uncompressed version. This practice trades transmission delay
against computation delay because it reduces the amount of data in transit at the expense of additional
computations at the endpoints.

We assume that encoding a frame requires processing of the entire uncompressed frame and decoding
requires processing of the compressed frame. The size relation between compressed and uncompressed
files is denoted by the compression coefficient k. We acknowledge that modelling precise encoding and
decoding values is tricky and highly dependent on the compression algorithm, the characteristics of
the content and the hardware used. Lai et al. empirically measure the encoding and decoding delays
and the compression ratio when running three high-end VR apps on a mobile phone connected to a
desktop server [18]. For example, using H.264, the server needs 10 ms each to render and encode the
video of the "Corridor" app, while the phone needs 16ms to decode it [18]. As the desktop’s processing
power is at least twice as large as the phone’s, their empirical numbers support the claim that encoding
is comparable to processing the entire frame size and decoding only needs to process a smaller file. All
other intermediate delays are the same as in Section 4.4.2:

Tremoteenc =
Du

Ru︸︷︷︸
Uplink transmission

+
C

zc︸︷︷︸
render fore- and background

+
kenc ·D
zc · bzc︸ ︷︷ ︸

Compression latency

+
Dk

Rd︸︷︷︸
Downlink Transmission

+
Dk

zl · bzl︸ ︷︷ ︸
Decoding compressed frame

, (4.8)

where Ru and Rd are the up- and downlink transmission rates of the user, D and C the data volume
and size of the frame, Du the data volume needed for the uplink communication about the foreground
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rendering, Dk = D
k the file size of the compressed frame depending on the compression ratio k, zc

the processing power at the MECs allocated to the user and bzc (bzl) the number of bits the MECs (the
HMD) can process per CPU cycle.

4.5 Playbackmodel

The HMD plays out content at a fixed framerate of η frames per second if the buffer is non-empty. If the
buffer is empty, the next frame is displayed as soon as it is available. We assume displaying a frame to
the user does not take away processing resources from the rendering process and can happen in parallel.
We justify this assumption by assuming that the HMD has a dedicated part of its processing power
reserved for core functionalities, and the remaining processing power zl is available for the rendering
process.

4.6 Quality of Experiencemodel: QoE-score

Measuring a user’s experience when playing a VR game goes beyond measuring the quality of ser-
vice (QoS) agreement on a networking level. Even if QoS requirements are met, a user can still have a
bad quality of experience (QoE). For example, the link latency could be below the service-level threshold,
ensuring that the link communication was sufficiently quick. However, if the HMD needs too long
to process additional tasks (such as decoding), the end-to-end delay between requesting a frame and
displaying the frame could still be too long. Conversely, the same holds. Even if QoS requirements are
not guaranteed, the HMD could ensure a constant framerate by employing buffers and making good
offloading choices on when to use the network and when to compute locally. Hence, we would like to
compare our proposed offloading strategies on a singleQoE-score encompassing the main measurable
QoE metrics involved in VR streaming. As proposed by [7], we consider quality, stalling, quality switches
and the start-up delay. Differently from their model, we normalise the individual components to bring
the values into the same order of magnitude. The goal is to maximise the quality while reducing stalling,
quality switches and start-up delay.

First, theQoE-quality is the division between the effective bitrate θ and the maximally achievable
bitrate Θ. The maximal bitrate Θ corresponds to continually rendering the FoV of frames at the highest
resolution (2160p) while supporting the desired framerate of 60 FPS, resulting in a raw bitrate of 1348
Mbits/s as shown in Figure 4.3. Moreover, let NT be the total number of frames played to the user.
Then:

Dplayed =

NT∑
i=1

Di, (Sum of displayed bits) (4.9)

θ =
Dplayed

T − T0
, (Effective bitrate) (4.10)

QoE-quality =
θ

Θ
. (4.11)

Secondly, theQoE-start-up is the time needed between starting the game and b frames being buffered
divided by the maximally accepted start-up time. We set this maximum to 1s. According to [35], start-up
delays are a significant factor in why users abandon a video stream. However, we argue that users have a
higher tolerance for start-up delays when playing a VR game since they already made a more significant
time dedication by putting on the HMD and installing a specific game. Hence:

QoE-start-up =
T0

1
= T0. (Time until b frames are buffered) (4.12)
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Next,QoE-stall is the percentage of the total playtime during which the system was in a stall. Mathemat-
ically, this translates to:

TS = T − T0 −NT ·
1

η
, (Total stall duration) (4.13)

QoE-stalls =
TS

T
; (4.14)

with T the total play time, T0 the start-up delay, NT the total number of frames played and η the desired
framerate. Last but not least, theQoE-switchesmetric is the sum of all bits involved in a quality switch
divided by the sum of all bits played:

Dplayed =

NT∑
i=1

Di, (All bits played) (4.15)

Dswitches =

NT∑
i=2

|Di −Di−1|, (Bits involved in quality switch) (4.16)

QoE-switches =
Dswitches

Dplayed
, (4.17)

with NT the total number of frames played to the user and Di the data size of frame i. By basing the
QoE-switches metric on the difference between frame sizes, we can measure the ‘severeness’ of a quality
switch. For example, switching between 2160p and 720p is more severe than a switch from 360p to
480p because the number of pixels on the screen changes more significantly in the former case. Finally,
theQoE-score is calculated by:

QoE-score = κ1 · QoE-quality− κ2 · QoE-stalls− κ3 · Quality-switches− κ4 · QoE-start-up,
(4.18)

κ1, κ2, κ3 and κ4 are coefficients that can tweak the influence of the individual components. For the
remainder of the document, we assume that all components are equally important and set the coefficients
to 1.

Moreover, while we desire a single value to compare the offloading strategies in a single glance, we
also want to evaluate them on other performance metrics. The complete overview of performance met-
rics considered in the performance evaluation of the proposed offloading strategies is given in Section 8.1.

4.7 Problem formulation

The main goal of our research is to find a rendering strategy ϕ that optimises the QoE experience of
a user playing a VR game. The rendering decision ϕ decides for every frame i ∈ {1, 2, . . . , NT }, at
what quality resolutionQ(i) = qi the frame should be rendered and which offloading pathO(i) = oi
to take. LetO be the sequence of chosen offloading modes andQ the sequence of chosen resolutions.
Then, for every frame i, the offloading strategy ϕ decides the offloading mode oi and the resolution qi.
In symbols, ϕ(i) = (O(i),Q(i)), ∀i. Then, the optimisation problem can be formulated as follows:
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max
ϕ


∑NT

i=1D
i

Θ︸ ︷︷ ︸
QoE-quality

− T − T0 −NT · η
T︸ ︷︷ ︸

QoE-stalls

−
∑NT

i=2 |Di −D(i−1)|∑NT
i=1D

i︸ ︷︷ ︸
QoE-switches

− T0︸︷︷︸
QoE-start-up

 (4.19)

with
ϕ(i) = (O(i), Q(i)), ∀i ∈ [0, 1, 2, . . . , NT ], (Rendering strategy) (4.20)
O(i) ∈ {0, 1, 2, 3}, (Offloading mode for frame i) (4.21)
Q(i) ∈ {360p, 480p, 720p, 1080p, 2060p}, (Quality resolution for frame i) (4.22)
T0 ≤ T, (Start-up delay) (4.23)
NT ≤ η · T, (Number of frames played in time T ) (4.24)

with NT the number of frames played, T the play duration, η the desired framerate and Θ the maximal
bitrate possible andκ1, κ2, κ3 andκ4 are coefficients of the optimisation problem to tweak the influence
of the individual components.

This optimisation problem depends on the randomness of the channel quality at different moments
in time and on other system parameters that we consider fixed, such as the bandwidth or the available
processing power of the MECs or the HMD. The optimisation problem is difficult to solve analytically
because the rendering of earlier frames influences the stalling probability of later frames. Moreover,
the rendering and display loops happen simultaneously, which is problematic to accurately model in a
mathematical model.
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Chapter 5

Analysis of our SystemModel

This chapter analyses the offloading paths under the system model proposed in Chapter 4. More
concretely, the offloading delays in Equations (4.5), (4.6), (4.7) and (4.8) are studied under different
system parameter values. To design offloading heuristics and choose adequate system parameters,
we first seek better insights into the system’s behaviour. This chapter aims to answer the following
questions:

1. Under what bandwidth and SINR conditions is offloading feasible? In other words, under what
circumstances are Tlocal, Tremote, Tcoop and Tremoteenc below the threshold 1/η = 1/60 s
= 16.7 ms needed to support a framerate of η = 60FPS?

2. What is the maximum number of people that can be served in the system? We define the maximum
number of people, denoted by Mα, as the number of people that can simultaneously offload to
the MECs using the same offloading path.

3. What are typical offloading delays? Typicallymeaning under reasonable bandwidth and SINR
conditions that we could expect when playing a VR game.

First, under three different SINR values, the offloading delays are computed over up- and downlink
bandwidth ranging from 50MHz to 1000 MHz. This range allows us to consider next-generation
technologies such as 5G and beyond. The SINR values represent an excellent connection, when γ = 20
dB, a good connection when γ = 16.5 dB or amid-cell connection when γ = 6.5 dB [10]. The resulting
offloading delays are depicted in Figure 5.1. The local rendering delay naturally does not change with
the bandwidth as it only consists of the delay to render the frame at the HMD. The main conclusion
from the first row of these figures is that Tlocal only falls below the desired threshold of 16.7 ms when
the resolution q ≤ 720p. Hence, when constantly computing locally, the highest quality to choose
without risking stalls is 720p. A general observation regarding all other offloading delays that make
use of the network is that the delays increase between Figures 5.1a, 5.1b and 5.1c as the SINR value
worsens but still fall under the 1/60s threshold eventually for every resolution. Note that we assume that
the user can fully use the entire bandwidth. In practice, even with 5G mmWaves providing Gbit-data
rates, an effective bandwidth of 450MHz as needed for Tremote under mid-cell circumstances is likely
to be unrealistic for the foreseeable future since a user needs to share the bandwidth with other users.
Converting this to data rates, to remotely render a frame at 2160p, the user requires a bandwidth of
300MHz, which equals a data rate of 300e6 · log2(1 + 100) ≈ 2Gbps, which is still beyond the
promised 1 Gbps of 5G. Hence, we would require offloading heuristics that can consider the buffered
frames to remotely or cooperatively render frames at 2160p.

The remote offloading with encoding delay Tremoteenc is by far the lowest delay over all SINR and
bandwidth values. Except for a bandwidth of 50MHz, Tremoteenc is also below the 1/60s threshold,
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(a) Excellent SINR of 20dB. (b) Good SINR of 16.5dB. (c) Mid-cell SINR of 6.5dB.

Figure 5.1: Offloading delays over different bandwidths for fixed SINR values.

making remotely offloading with encoding very promising. However, we must be cautious because,
in Chapter 3, we have shown that the decoding delay is a limiting factor. Different from the model by
Guo et al. in [16], we assume the decoding delay is also proportional to the compression ratio k. To
be precise, in our model, we assume that the HMD only needs to process data of size D/k, the size of
the compressed frame. The last observation is that at 150 MHz, Tremote and Tcoop when rendering at
1080p are below the threshold of 1/60 s.

The above numbers are all under the assumption that the user can hoard the entire bandwidth and
processing power of the MECs. In reality, these resources are shared between users. For the remainder
of the section, we assume a bandwidth of 150MHz, which by Shannon’s formula corresponds to a bitrate
of almost 1 Gbps, the promised data rates available to users in 5G and beyond technologies. Figure 5.2
shows how the offloading delays develop when additional users are connected to the base station, all
getting an equal share of the bandwidth B and the processing power ZC . Remarkably, even rendering
at the lowest resolution 360p does not ensure that Tremote or Tcoop stay below the 1/60 s framerate if
the number of users exceeds 5. Analytically, we determined the maximal number of people Mα that
can be accommodated at the base station for the different offloading paths:

Tremote ≤
1

η
⇐⇒ Du

Bu

Mα,remote
log2(1 + γ)

+
C
ZC

Mα,remote

+
D

Bd

Mα,remote
log2(1 + γ)

≤ 1

η

⇐⇒ Mα,remote ≤
1

η
· 1

Du
Bu·log2(1+γ) +

C
ZC

+ D
Bd·log2(1+γ)

, (5.1)

where η is the framerate, Du the uplink data size, C the computational requirements and D the data
size of the frame, Bu and Bd the up- and downlink bandwidths, γ the fixed SINR value and ZC the
total processing power at the MECs.
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Figure 5.2: Offloading delays over α, the number
of people at the base station, for γ = 16.5 dB.
Vertical lines are intersections with 1/60 s.

Figure 5.3: Maximum number of people that can
be supported at the base station over SINR values
for Bu = 10 MHz and Bd = 150 MHz.

For cooperative rendering as in Equation (4.7). Here, we assume that the local rendering part Cf/zl ≤
1
η − tintegrate, then:

Tcoop ≤
1

η
⇐⇒ max

(
Cf

zl
,

Cb
ZC

Mα,coop

+
Db

Bd

Mα,coop
log2(1 + γ)

)
+ tintegrate ≤

1

η

⇐⇒ Mα,coop ≤
(
1/η − tintegrate −

Cb

zc

)
·Bd ∗ log2(1 + γ) ·Db (5.2)

where η is the desired framerate, Du the data volume to transmit uplink, C the task size of the frame, D
the data volume of the frame, Bu and Bd the up- and downlink bandwidths, γ the fixed SINR value
and ZC the total processing power at the MECs. Lastly, for remote rendering with encoding as in
Equation (4.8):

Tremoteenc ≤
1

η
⇐⇒ Du

Bu

Mα,remoteenc
log2(1 + γ)

+
C
ZC

Mα,remoteenc

+
D

ZC
Mα,remoteenc

· bzc

+
Dk

Bd

Mα,remoteenc
log2(1 + γ)

+
Dk

zl · bzl
≤ 1

η

⇐⇒Mα,remoteenc ≤
(
1

η
− Dk

zl · bzl

)
· 1

Du
Bu log2(1+γ) +

C
ZC

+ D
ZC ·bzc

+ Dk

Bd log2(1+γ)

, (5.3)
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where η is the desired framerate, Du the data volume to transmit uplink, C the task size of the frame, D
the data volume of the frame, Bu and Bd the up- and downlink bandwidths, γ the fixed SINR value
and ZC the total processing power at the MECs.

Figure 5.3 plots these equations against different SINR values for B = 150MHz. The results show
that with increasing SINR, more users can be supported, but for remote and cooperative rendering, the
numbers still stay low, below 10. For remote encoding the Mα,remoteenc are reasonably high for low
resolutions, but still only 3 for rendering frames at 2160p (vertical line in Figure 5.2).

Table 5.1: Example offloading delays in seconds when B = 150 MHz and γ = 16.5 dB. Tremoteenc

assumes the HMD needs to decode the entire file size.

Resolution q Tlocal (ms) Tremote (ms) Tcoop (ms) Tremoteenc (ms)

360 5.76 3.73 3.98 0.96
480 6.88 4.45 4.56 1.15
720 10.08 6.52 6.22 1.68

1080 17.28 11.18 9.94 2.88
2160 56.16 36.33 30.06 9.36

Finally, what typical offloading delays can we expect for reasonable SINR and bandwidth? Table 5.1
summarises the offloading delays under good network conditions (γ = 16.5dB) and a bandwidth of
B = 150MHz.
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Chapter 6

Proposed OffloadingHeuristics

This chapter describes and proposes the offloading heuristics greedy and opp-buffer, as well as some
simple strategies that act as baselines to investigate the research questions. Table 6.1 summarises the
main idea, variants and parameters of the different rendering strategies. A rendering strategy consists of
two parts: what offloading path (0,1,2,3) and what quality resolution to choose. The possible resolutions
are 360p, 480p, 720p, 1080p or 2160p and the possible offloading paths are:

0: Local computations;

1: Remote computations without encoding and decoding;

2: Cooperative computations without encoding and decoding;

3: Remote computations with encoding and decoding.

Table 6.1: Summary of the main idea, the variants and the parameters of the proposed heuristics.

Strategy Idea Variants Parameter
greedy Highest resolution possible under current network cir-

cumstances, default computing locally at 720p
remote, remote
enc

SINR perturbation fac-
tor σ

opp-
buffer

Highest resolution possible if enough frames are
buffered, default resolution q∗, always the same offload-
ing path o.

local, remote,
remote-enc

Per variant: default q∗
and expected rendering
delays tq ’s.

o-q Static rendering strategy, always choose the same of-
floading mode o and resolution q

All possible combi-
nations

Offloading path o and
resolution quality q.

random Random offloading mode o ∈ {0, 1, 2, 3} and random
quality resolution q ∈ {360, 480, 720, 1080, 2160}

If the resolution
is fixed: random-
<resolution>

-

6.1 Base-line offloading strategies

Static rendering strategies

The simplest base case is an offloading strategy that always chooses the same offloading path and the
same quality resolution. Naming-wise they are designated by <offloading path> -<resolution>

We consider as baselines the strategies that always choose the same offloading path but do not
risk stalling. Ergo, the resolution is chosen such that at B = 150 MHz, the offloading delay is below
1/η = 16.7 ms for average SINR. As shown in Figure 5.1b, this holds for the following: local-720,
remote-1080, remote-enc-2160 and coop-1080.
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Random choice

To evaluate whether designing an offloading strategy even makes sense, we also consider a random
offloading strategy that chooses an offloading path at random as well as a resolution at random. If
the randomness is limited to the offloading decision, the rendering strategy is denoted by random-
<resolution> and does not alter the chosen resolution quality.

6.2 Heuristic offloading strategies

To answer RQ 1, we devised two different offloading heuristics that dynamically base their rendering
decision on a different aspect: greedy calculates the expected rendering delay based on current channel
condition estimates, and opp-buffer bases its decision on the current buffer state. The primary goal
of both heuristics is to minimise the risk of system stalls at the desired framerate of η FPS. This risk
is eliminated if a frame is rendered under 1/η s. The secondary goal of the heuristics is to render the
frames at the highest quality possible. Moreover, we have designed explainable heuristics with low
computational complexity. Both greedy and opp-Buffer have a complexity of O(nq), where nq is the
number of resolutions that both heuristics attempt to use. In our setting, nq ≤ 5, since we consider 5
different quality resolutions that are possible.

6.2.1 GREEDY: highest quality based on estimated channel quality

Algorithm 1: greedy rendering heuristic g-x.
Data: Favoured offloading path X ∈ [0, 1, 2, 3], state information S (available bandwidth,

processing power, etc.), SINR perturbation factor σ, framerate η.
Result: The frame’s rendering decision ϕ = (o, q) with the selected offloading path o and

resolution quality q.
qs ← [2160, 1080, 720] ; /* List of quality resolutions */
o← X ; /* g-x where X is the favoured offloading path */
/* Starting with the highest quality, check whether the estimated

delay is below 1/framerate */
for q ∈ qs do

t = get_estimated_rendering_delay_with_quality(q, o, S, σ )
if t ≤ 1/η: then

; /* If delay lower than threshold, offload and stop loop. */
return (o, q)

end
/* else consider the next largest resolution */

end
/* Default is local offloading at 720p, which is below 1/η */
return (0, 720)

The greedy heuristic has three variants, denoted by g-remote, g-remote-enc and g-coop, but we
concentrate on the two former variants. The idea behind greedy is to attempt to offload the rendering
of a frame at the highest resolution possible under the current network circumstances. The pseudocode
in Algorithm 1 starts with the highest resolution and calculates the corresponding offloading delay. g-
remote calculatesTremote as in Equation (4.6), g-remote-enc calculatesTremoteenc as in Equation (4.8)
and g-coop calculates Tcoop as in Equation (4.7) under the current system state.
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If the delay is below 1/η s, then greedy chooses to render at the MECs (with or without encoding,
respectively). If it is above, the algorithm repeats the calculations with a resolution of 1080p. If this
estimated delay is below 1/η s, it chooses remote offloading at 1080p. Otherwise, it tries to offload
at 720p. If the estimated offloading delay at 720p is also larger than 1/η s, then it chooses its default
offloading option, namely to render locally at 720p.

An advantage of this heuristic is that it attempts to render the highest resolution possible under
current network circumstances. Furthermore, the default alternative of locally rendering at 720p will
always work, as shown in Chapter 5. Finally, this heuristic is not dependent on the buffer, so it can also
be used in a real-time rendering scenario where frames are displayed as soon as they are rendered. A
disadvantage is that this heuristic requires estimates of all values in Equations 4.6 or 4.8. Even getting
the correct system parameters is a challenge in itself that would have to be tackled before implementing
this heuristic in practice. We do not face this complication in the simulation environment since we
define all system parameters at the start. To estimate the channel conditions or, more precisely, the
SINR values, the simulator takes the actual SINR value γ that is simulated and perturbs it with a factor
σ. Then, greedy calculates not with the actual SINR value γ but with an over- or underestimation of
γ ± σ · γ instead. For this work, by default σ = 1 to see the full potential of greedy.

6.2.2 OPP-BUFFER: highest quality based on buffered frames

Algorithm 2: opp-buffer rendering heuristic ob-x.
Data: Favoured offloading path X ∈ [0, 1, 2, 3], state information S (available bandwidth,

processing power, etc.), opp-buffer parameters q∗, t2160 and t1080, framerate η, buffer.
Result: The frame’s rendering decision ϕ = (o, q) with the selected offloading path o and

resolution quality q.
tbudget ← length(buffer) · 1/η ; /* Determine the already buffered video
duration */
o← X ; /* ob-x where X is the favoured offloading path */
/* Choose the first resolution whose pre-determined parameter fits

into this budget */
/* Start from the highest resolution */
if tbudget > t2160: then

; /* If delay lower than threshold, offload and stop loop. */
return (o, 2160)

else
if tbudget > t1080: then

; /* If delay lower than threshold, offload and stop loop. */
return (o, 1080)

end
end
/* Continue until default resolution q∗. */
return (o, q∗)

For local, remote and remote encoding, we denote the respective opp-buffer strategy by ob-local,
ob-remote and ob-remote-enc, respectively. The main idea behind opp-buffer is to render frames
at higher resolutions only if the buffer contains enough frames to display to the user until the higher
resolution frame is rendered. As shown in the pseudocode in Algorithm 2, opp-buffer first calculates
a budget, namely how much time it maximally has to render a frame. The budget is calculated by
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Table 6.2: Parameters for opp-buffer heuristics

opp-buffer q∗ (p) t2160 (s) t1080 (s)

ob-local 720 0.057 0.0173
ob-remote 1080 0.0273 0.0084
ob-remote-enc 2160 0.0084 0.0026

multiplying the number of frames in the buffer by the desired inter-frame rate 1/η. If the budget is high
enough to render a frame at 2160p, so higher than t2160, the heuristic chooses to render at 2160p. If not,
it checks whether the budget allows for 1080p and so forth until a pre-determined value q∗, which is
the default resolution if all higher resolutions are not possible. The X in the Algorithm 2 stands for the
respective offloading path because ob-x always makes the same offloading choice, namely o = X . This
implies that all parameters q∗ and tq ’s vary between the opp-buffer variants. Table 6.2 summarises
the parameters chosen for every variant. The reasoning for these parameter values originates from the
analytical analysis in Chapter 5. The q∗ value are chosen in such a way that for B = 150 MHz under
good conditions, rendering at q∗ is below 1/η. The delay numbers for tq ’s originate from Table 5.1.

When designing opp-buffer, we have chosen to hard-code the tq values to avoid greedy’s disadvan-
tage of needing complete knowledge of the system state. Therefore, an advantage of opp-buffer is that
it only requires the number of currently buffered frames. However, the main advantage of opp-buffer
is that it can render frames at resolutions with "too large" offloading delays by using the buffer space.
The main disadvantage is that this forbids us from using the heuristic in a real-time setting where no
buffer is kept. A second disadvantage is that the parameters are indeed fixed and cannot adapt to the
actual system state.

Page 46



Chapter 7

Simulation Framework

This chapter presents the simulation framework developed to answer the research questions. The
simulator simulates a VR game where the HMD can make rendering decisions based on the current
system state and optionally offload to MEC servers. To incorporate the streaming-like aspect of VR
games, it simultaneously simulates the rendering and the display process and evaluates the quality of
experience as a whole. This simulator is used in the performance evaluation of Chapter 8.

The core of the event-based simulation framework consists of a global system state, a simple loop
and a sorted event queue. At every iteration, the next event is taken from the queue and executed.
An event can, in turn, alter the system state and add new events to the queue. The queue is ordered
according to the virtual time in the simulation. Progressing the simulation time happens when executing
an event. Then, the current simulation time is set to the time of the event. When adding new events
to the queue, we must calculate when to execute them and sort them in the queue accordingly. This
procedure repeats until no events are left in the queue or a specific ending criterion triggers.

In essence, the events and their interactions need to simulate the play-through of a VR game. The
simulator achieves this by translating the play-through of a VR game into discrete steps. As shown in
Figure 7.1, we devised a simulation flow, where playing a VR game (the playing phase) consists actually
out of two different loops, the display loop and the rendering loop. The display loop can be divided into
consecutive "Display next frame" events. Since we assume a fixed playback model at η frames per
second, every 1/η, the system should display a frame. The rendering loop consists of the alteration
between two events, "Render next frame", so start the rendering process, and "Rendered frame arrived at
HMD", meaning that the ready-to-display frame is at the HMD. The time between both events depends
on the offloading delay, which is determined by the chosen rendering strategy. As typical with video
applications, the rendering loop begins earlier than the display loop to build up a buffer already and
improve the replay experience. This process is called the "Start-up phase" and usually ends as soon as a
fixed number of frames is computed.
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Figure 7.1: Overview of the simulation flow.

The VR experience is simulated in our framework using the following events, which will be explained
one-by-one below:

• Start Game event in Figure 7.2;

• Start-up phase ending event in Figure 7.3;
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• Render next frame event in Figure 7.4;

• Rendered frame at HMD event in Figure 7.5;

• Display next frame event in Figure 7.6;

• End simulation event in Figure 7.7.

In all the simulation flow figures, themagenta-coloured boxes and text do not aid with the simula-
tion process but explain how the performance metrics in Section 8.1 are calculated.

Reset all variables

Start rendering frames by
scheduling new  

"Render frame (n, q)" event  
at time t + 0

Figure 7.2: Event "Start game"

User starts playing (receiving
frames on display);  

Schedule "Display next frame"
event at time t + 0 

Figure 7.3: Event "Start-up phase
ending"

The "Start game" event in Figure 7.2 starts the simulation by scheduling the first "Render next frame"
event. When a user starts playing a game, we assume that the HMD immediately starts rendering the
required frames. However, the player sees a loading screen until the start-up phase is finished. The
start-up phase is finished once a pre-defined number of frames b has been rendered and stored in the
buffer. Once the start-up phase is supposed to end, a "Start-up phase ending" event is scheduled, which
commences the display loop by scheduling a new "Display next frame" event.

The "Render next frame" event takes into account the chosen offloading mode o and quality resolution
q. Depending on o, the "Rendered frame at HMD" is scheduled after the corresponding offloading delay.
The offloading delay is calculated according to the system state at time t and the computing model in
Section 4.4.

The events "Rendered frame atHMD" and "Display next frame" in Figure 7.5 and Figure 7.6 contain the
core functioning of the VR game simulation. When a rendered frame arrives at the HMD, the simulation
framework first has to check whether the start-up phase has already ended. If not, it must check whether
the arrival of the new frame ends the start-up period. During start-up, the buffer space can never be full
(otherwise, the start-up has already ended), but afterwards, the simulator must check whether there
is space. If the buffer is full, the newly arrived frame must be dropped, and the simulation halts the
rendering loop until a new frame is displayed (during the "Display next frame" event). Otherwise, the
arriving frame is added to the buffer. Then, the system needs to check whether the game is in a stall, so
whether the display loop was stopped because the buffer was empty. If tstall is set, this has been the
case, and the newly arrived frame can resolve the stall. At this moment, the display loop restarts by
scheduling a new "Display next frame" event immediately after the resolution of this event, as there is
now a frame to display. In the end, if the system is not in a stall or the start-up phase, the event ensures
that a new frame is rendered immediately after by scheduling a "Render next frame" event.
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Figure 7.4: Event "Render next frame"

In the display loop, the HMD displays rendered frames to the user in the desired framerate via its
display. When a new frame should be displayed, the system needs to check whether the buffer contains
a rendered frame. If this is not the case, the system stalls, and we must wait for a rendered frame to
arrive at the HMD. Furthermore, the simulator must check if the rendering loop stopped due to a full
buffer. If so, the simulator needs to restart the rendering loop by scheduling a new "Render next frame"
event. Only then the oldest frame is shown to the user and taken from the buffer. We still assume that
the FoV prediction is always correct, but in future work, the simulator could be extended to include
wrong predictions and potential re-computations. We schedule an "End simulation" event if the player
is finished. Otherwise, we schedule a new "Display next frame" event at the interval corresponding to
the desired framerate η. In our simulations, the user stops playing after a fixed time T .

At the end of the simulation, we calculate the necessary statistics and export the values to a .csv file,
as shown in Figure 7.7.
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Figure 7.5: Event "Rendered frame at HMD"

Modular simulation framework: pick your inputs

Our goal is to keep the same core simulation structure in different simulation settings. Hence, different
rendering strategies, stopping methods, display methods, signal-to-noise generators and other system
parameters can be passed as input arguments to the simulation framework. In the following paragraphs,
we elaborate on these concepts. Any of the rendering strategies presented in Chapter 6 is implemented in
the framework and can be selected for a simulation run. At the "Render next frame" event, the chosen
rendering strategy determines the offloading path and the resolution quality. Within the framework, a
rendering strategy has access to all system components, even if they might not be needed. The stopping
strategy indicates how long the simulation is running. Currently, we only implemented the most
straightforward stopping strategy, namely stopping after some fixed time T . Similarly, the simulation
framework supports different display strategies that, after displaying a frame, provide the number of
seconds after which to display the next frame. Again, the simulator implements the most straightforward
strategy: displaying frames at constant framerate η FPS.

A source of uncertainty in the system is the experienced signal-to-interference-and-noise ratio
(SINR) of the HMD. At every time step, the simulator provides SINR values according to some SINR
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Figure 7.6: Event "Display next frame"

generator. In the current simulator version, the default SINR generator draws SINR values according
to a uniform distribution between 1 dB (close to the cellular edge) and 20dB (excellent connectivity).
This implies that the individual SINR values are independent (of the time and previous values) and
identically distributed. The simulator can be extended with more complex SINR value generators.
For instance, drawing SINR values according to a time-dependent distribution, using existing values
from a file or trace [28] or calculating them based on the current state (position, noise, interference and
transmission power). In any case, if a random number generator is used, the used seeds are saved to a
file for reproducibility.
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Figure 7.7: Event "End simulation"
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Chapter 8

Performance Evaluation

To answer RQ 1 and RQ 2, the heuristics in Chapter 6 are evaluated using the proposed simulation
framework in Chapter 7. This chapter is organised as follows. First, Section 8.1 describes the simulation
set-up, including the simulated scenarios, the measured performance metrics and the system parameters.
Then, Section 8.2 presents the performance evaluation results. Following the structure of RQ 2, we
answer the following questions in sequence:

2a What is the impact of the downlink bandwidth on the QoE-score of rendering strategies?

2b What is the impact of the maximum buffer capacity on the QoE-score of rendering strategies?

2c What is the impact of the channel quality on the QoE-score of rendering strategies?

2d What is the impact of the compression ratio on the QoE-score of strategies that use remote
rendering with encoding?

During the above, we also closely compare the different rendering strategies to answer RQ 1.

8.1 Simulation set-up

The simulator of Chapter 7 has been implemented using python. All simulation experiments have been
conducted on a Lenovo P20 laptop with an Intel(R) Core(TM) i7-6700HQ processor running Windows
10. The code can be found under "VR Gaming Offloading Decision Simulation" at the University of
Twente’s GitLab [30]. The git-repository includes the .csv files with the simulation results and the
random number generator’s text files with the seeds. The simulated setting is described in Chapter 4.
Frames can be computed locally or remotely at the MECs using pre-stored mathematical models to
render the required image. The system is equipped with a buffer space that can hold MB frames into
which ready-frames are stored until they are displayed to the user’s HMD display at a fixed framerate of
η FPS. For every frame, the proposed rendering heuristic determines the offloading mode o and the
resolution q at which the frame should be rendered. The primary performance metric is the QoE-score
defined in Equation (4.18).

While other base-line scenarios have also been simulated, we only included local-720, remote-1080
and random-1080 in the comparison against the heuristics greedy and opp-buffer. We chose local-720
because it does not make use of offloading (shedding light on the question of whether offloading is
indeed advantageous), and remote-1080 because it does, but not smartly. Chapter 5 shows that 720p
and 1080p are the largest resolutions that can be computed locally and remotely under the threshold
of 1/60 s. random-1080was included to see whether designing dedicated rendering strategies merits
attention at all.
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Table 8.1: Supported performance metrics.

Name Description Unit

Number of stalls The number of times the buffer is empty when next frame
should be displayed.

stalls

Total duration stalls The sum of every stall’s duration. s
Number of dropped frames The number of times the buffer is full when a rendered

frame arrives at the HMD.
frames

Number of frames displayed The total number of frames shown to the user. frames
Average FoV quality of a frame The average resolution quality of all displayed frames. p
Number of decisions Counts the total number of rendering decisions made and

equals the number of rendered frames. It can exceed the
number of displayed frames.

decisions

Decision frequencies How often every offloading path is chosen. -
Average rendering delays The rendering delays are calculated per offloading path

according to Equations (4.5)-(4.8).
s

Number of quality changes How often the quality between two consecutive frames
changed.

-

Average quality change The average difference between two consecutive frames’
data sizes.

bits

Average age of a frame The average time between starting the rendering process
and eventually displaying the frame.

s

Start-up duration The time until the start-up phase ended, meaning that
enough frames were added to the buffer.

s

Total simulation time The time at which the simulation stopped. s
Per offloading path: QoE utility Guo et al.’s main performance metric counting how often

the rendering delay is below 1/η [16].
-

Average buffer length on display How many frames are left in the buffer on average after
displaying the next frame.

frames

Average buffer length when ren-
dered frames arrive at HMD

How many frames are already in the buffer at the arrival of
the new frame.

frames

Achieved frames per second Equals the number of frames displayed divided by the total
simulation time.

fps

Achieved frames per second with-
out start-up delay

Equals the number of frames displayed divided by the dif-
ference between the total simulation time and the start-up
duration.

fps

Average stall duration Calculated by dividing the total duration of stalls by the
total number of stalls.

s

Offloading decision percentages Per offloading path: divide the number of times each of-
floading path is chosen by the total number of decisions
and multiply by 100.

%

Percentage of frames that incurred
a quality change

Calculated by dividing the number of quality changes be-
tween consecutive frames by the number of displayed
frames times 100.

%

Percentage of rendered frames that
got displayed

Calculated by the division between the number of dis-
played frames and the number of rendered frames times
100. The non-displayed frames were either dropped or still
in the buffer when the simulation stopped.

%
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Performancemetrics (y axes)

To calculate the QoE-scores defined in Section 4.6, the simulator keeps track of several metrics during
the simulation. Next to all information needed for QoE-score, the simulator also tracks the performance
metrics described in Table 8.1.

Statistical significance

To ensure the statistical significance of the above metrics, every simulation scenario is run 50 separate
times with different seeds. Uncertainty originates from the chosen values for the channel quality
which are determined by SINR generators. In our performance evaluation, SINR values are drawn
uniformly between 1 and 20 dB except otherwise mentioned. This implies that individual SINR
values are independent and identically distributed. Since these SINR generators are random number
generators, we choose a new seed for every run and save it to a file for reproducibility. In this way,
every run experiences identically distributed SINR values (as the only source of uncertainty), implying
that the performance metrics are also identically distributed. Furthermore, running entirely separate
occasions (i.e. restarting the simulation every time) ensures the independence between the different
runs’ performance values. Lastly, 50 is a large enough number that we can apply a law for large numbers.

Putting all of the above together, we can apply the Central Limit Theorem to calculate 95%-confidence
intervals with z-values. The computed intervals are plotted together with the performance metrics in
Section 8.2 but are largely invisible due to small widths. As a consequence, we are 95%-confident that,
on average, the performance metric’s mean is indeed as depicted in the figures.

Fixed parameters

Unless otherwise specified, we use the parameters defined in Table 8.2. This section provides arguments
for the various parameter choices. First of all, the desired framerate η is set to 60 FPS, commonly referred
to as the minimal framerate needed for a satisfying VR experience [16]. Oculus Rift, a state-of-the-art
VR HMD, also supports 60 FPS [8]. The colour information of a single pixel is set to 10 bits according to
Snapdragon 835, commonly used in VR [36], which provides a deeper colour than its 8-bit alternative.
According to Hooft et al., many tiling schemes are possible, so we chose for l × w = 8 × 6 as in
the Sandwich and Spotlight 360° video [17]. Since the human vision has a field of view of 110° [14],
which is supported by the Oculus Rift specs [8], we calculated that 3 × 4 tiles cover the FoV at all
times.s Many system parameters are based on the model specifications of Guo et al. [16], including the
processing powers ZC and zl at MECs and HMD, as well as the number of bits that can be computed
in a CPU cycle at both destinations bzl and bzc. Furthermore, the uplink and downlink bandwidths
by Guo et al., namely 10 MHz and 1 GHz, have been a starting point. We set the uplink bandwidth to
10 MHz but reduce the downlink bandwidth to 150 MHz. This choice is because Guo et al. assume
that approximately ten users share the same bandwidth [16] while we assume a single user is connected
to the BS. Furthermore, a downlink bandwidth of 150 MHz offers data rates close to 1 Gbps, the
promised speed by 5G networks. The empirical experiments by Lai et al. [18] are the basis for choosing
an integration delay tintegrate = 0.001s. The compression coefficient k is set to 10, larger than the
coefficient assumed by Guo et al. [16] which was set to 5, but lower than the reduction of almost 35
measured by Lai et al.[18]. Hence, we deem the coefficient reasonable but not overly ambitious since
compression highly depends on the encoding algorithm and the video content. Moreover, we assume a
small buffer size MB of 10 frames and compute b = 3 frames in the start-up phase. Finally, the ratio
between background and foreground β is set to 0.8 to reflect the assumption that the background is
richer and more detailed than the foreground. Finally SINR values are drawn uniformly between 1 and
20 dB, representing channel qualities ranging from bad (close to 1 dB), up to excellent (close to 20 dB).
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Table 8.2: Table of simulation parameters unless otherwise specified.

Symbol Name Value Unit

η Desired framerate 60 FPS
tintegrate Delay to integrate back- and foreground of a frame on

the HMD
1 ms

k Encoding data ratio between raw and encoded frame 1/10 -
- Encoding coefficient 1 -
- Decoding coefficient =k=1/10 -
bzc , bzl Number of bits processed in a CPU cycle at MECs or

locally
0.4 bits/CPU cycle

- Bits per pixel to store colour information 10 bits
l × w Tiling scheme: frame divided into l × w tiles in length

and width
8× 6 tiles

n Number of tiles in the FoV 4× 3 tiles
- Aspect ratio of a frame 16:9 -
- Uplink data ratio (ratio that needs to be communicated

uplink)
1/1000 -

β Proportion of a frame corresponding to the background 0.8 -
ZC Total processing power of the MECs 1000e9 Hz
zl Local processing power of the HMD 1e9 Hz
α Number of people associated to the base station 1 user
Bu Uplink bandwidth 10 MHz
Bd Downlink bandwidth 150 MHz
γ Signal-to-noise-and-interference-ratio, drawn from uni-

form distribution
U(1, 20) dB

Θ Maximally achievable bitrate of VR game-play Mbits/s 1348
MB Maximal buffer size 10 frames
b Number of frames to buffer before displaying first frame 3 frames
κ1−4 Coefficients of the QoE-score 1 -

Simulation scenarios based on variable system parameters

To answer RQ 2 and investigate the influence of system parameters, one by one, we run simulations for
a varying parameter space for:

1. Up- and downlink bandwidthBu andBd: As all offloading paths except local rendering use
network transmissions, it is essential to vary network parameters such as the bandwidth. The
bandwidths range between 50MHz and 950 MHz. According to Shannon’s formula, a bandwidth
of 150MHz under excellent conditions results in a data rate of approximately 1 Gbps. 5G promises
such data rates to its users, making the emergence of applications such as VR possible. However,
we would like to examine the influence of even better data rates in beyond 5G networks. Therefore
we chose a range going up until 950 MHz. The upper value stems from Guo et al.’s experiments,
which assume an uplink bandwidth of 1 GHz for 100 users and 10 BSs. Note that the simulated
user is the only user present and can use the entire bandwidth and MECs’ processing power for
themselves.

2. SINR distributions: In default scenarios, the SINR value γ is drawn uniformly between 1 and
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20 dB. In these runs, we vary the interval from which to uniformly draw the SINR values from
low values ([1, 2] and [2, 3] dB) to larger intervals (until [10, 15] and [15, 20] dB).

3. The maximum buffer capacityMB : Buffering frames might significantly impact the user’s
overall experience, so it is relevant to evaluate the rendering strategies’ performance on a varying
maximum buffer capacity. We simulate MB from 1 to 30. Buffer capacities close to 1 resemble
scenarios where the rendering has to be done in real-time since not many frames can be buffered,
while buffer capacities around 30 can store up to 0.5s of game content.

4. The encoding ratio k: this scenario is limited to heuristics that render remotely with encoding.
This coefficient determines by what ratio the compressed file-sizes decreases compared to the
original file for downlink transmission and decoding. We evaluate k, ranging between 1 and 45.

8.2 Simulation results for a VR gamewith buffer space

This section first presents the impact of the bandwidth on the rendering process in Section 8.2.1,
then the impact of the maximum buffer capacity in Section 8.2.2, afterwards the impact of the SINR
in Section 8.2.3 and finally the impact of the encoding coefficient in Section 8.2.4 to answer RQ 2.
Furthermore, all above sections have as second goal to evaluate the performance of the proposed
heuristics greedy and opp-buffer against constant base cases to answer RQ 1: Do dynamic rendering
strategies outperform static rendering strategies in terms of QoE-score? Note that all the values in the
figures are averages over 50 runs and confidence intervals are plotted (although invisible).

8.2.1 Impact of the up- and downlink bandwidth

The main result of this section is depicted in Figure 8.1 showing the QoE-score of all evaluated rendering
strategies over (up- and downlink) bandwidths ranging from 50 MHz to 950 MHz. The structure of
the section is organised as follows: First, we observe the impact of the bandwidth in general, then we
compare the individual rendering strategies and afterwards we discuss potential explanations for the
observations using other performance metrics.

Figure 8.1: QoE score over the up- and downlink bandwidths Bu and Bd.

The main trend in Figure 8.1 is that between 50 and 350 MHz, the higher bandwidth significantly
improves the QoE-scores of all heuristics that offload remotely. Especially between 150 MHz and
250 MHz, the scores of ob-remote and g-remote jump notably. For bandwidths larger than 350
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MHz, only the score of g-remote improves, but less significantly. All other heuristics already reach
their maximum before or at 350 MHz, either by having a QoE-score close to the upper bound of 1, or
close to 0.3, the upper bound when rendering at most at 1080p ( Dt(1080)/Θ = 414/1348 ≈ 0.3).
The QoE-score of g-remote-enc drops slightly from 150 MHZ to 50 MHz, but is still outperforming
other strategies by more than 0.5. Interestingly, the score of ob-remote is unchanged between 50 and
150 MHz and the scores of ob-remote-enc and remote-enc-2160 are almost unaffected overall. To
conclude, the increase in bandwidth improves the QoE-score of all rendering strategies, but all strategies
eventually reach their performance cap. This means that a limitless bandwidth does not guarantee a
QoE-score of 1. Strategies that require less bandwidth (such as all strategies using remote encoding)
already achieve this cap early on, at 150 MHz.

The most striking observation when comparing the QoE-scores of the rendering strategies is the
substantial difference in maximally achieved QoE-score. All strategies plateau (or converge to) some
performance cap: g-remote, g-remote-enc, remote-enc-2160, ob-remote and ob-remote-enc even-
tually reach a score close to 1, while random-1080 and remote-1080 only achieve a score close to 0.3.
Local rendering strategies like local-720 and ob-local do not exceed a score of 0.18, the maximally
achievable score when rendering at most at 720p: Dt(720)/Θ = /1348 ≈ 0.18. This implies that
rendering strategies that allow rendering at 2160p are superior if the circumstances allow for it. The
latter condition is important, because the second main observation is that the QoE-scores of ob-remote
and remote-1080 plummet below 0 for bandwidths below 150MHz or 50MHz, respectively. Last
but not least, the strategies with the best performance make use of remote offloading with encoding.
Especially under a bandwidth of 50 MHz, their scores above 0.7 are considerably better than those of
other strategies which do not exceed 0.2. Overall, ob-remote-enc performs the best, closely joined by
remote-enc-2160 and g-remote-enc.

(a) Average local rendering delay Tlocal. (b) Average remote rendering delay Tremote.

(c) Average remote rendering delay with encoding
Tremoteenc.

Figure 8.2: Average rendering delays over the up- and downlink bandwidths Bu and Bd for constant
rendering strategies.
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The remainder of the section discusses explanations for the above results. To begin with, the
massive impact of the bandwidth between 50 and 250MHz on strategies using remote offloading can
be explained by Figure 8.2. The average rendering delays Tremote and Tremoteenc drop significantly
in this range. While Tremoteenc is always below 1/η = 1/60 ≈ 16.7 ms, Tremote is not. At 50 MHz,
when rendering at 1080p, the average rendering delay is 17.3 ms. With 10 ms, Tlocal is only below
16.7 ms when rendering at 720p, while the values for 1080p and 2160p are above the 1/η s. This
threshold is important because it marks the moment at which the rendering loop and display loop are
equally fast. 60 frames are displayed to the user per second, so if frames are rendered under 16.7 ms,
newly rendered frames are entering the buffer quicker than they leave and the buffer can be filled.
Consequently, opp-buffer can potentially render frames at higher resolutions than previously possible
and, most importantly, the risk of stalls is eliminated. If rendering frames takes longer than 16.7 ms, the
system will stall eventually because the rendering process cannot keep up with the playback demand.
Figure 8.4a also displays this cross-over point for ob-remote, since the average buffer length on display
jumps from near 1 to almost maximum buffer space between 250 and 350 MHz, allowing ob-remote to
render at 2160p, hence improving its QoE-quality and consequently its QoE-score.

(a) QoE-stall (Percentage of time in stall). (b) QoE-start-up (start-up delay over 1s).

(c) QoE-switches (Percentage of bit-stream behind qual-
ity switches).

(d) QoE-quality (Percentage of maximal bit-stream
achieved).

Figure 8.3: Components of the QoE-score over the up- and downlink bandwidths Bu and Bd.

The breakdown of the QoE-score into its individual component in Figure 8.3 reinforces the above
argumentation. The QoE-stall in Figure 8.3a shows that at 50 MHz, the system is in a stall for 40%
of time when using remote-1080 or ob-remote. After 350MHz all rendering strategies prevent stalls
completely. The explanation for the negative QoE-score of ob-remote can be explained by the high
QoE-stall as well as the high QoE-switch scores in Figures 8.3a and 8.3c. Concerning quality switches,
we highlight the behaviour of ob-remote and g-remote, whose QoE-switches peak at 150 MHz and
250 MHz, respectively. Figure 8.4b shows that at those bandwidths, the average FoV quality is the
closest to the middle between 1080p and 2160p, ergo, the strategy switches most often between 1080p
and 2160p. This substantial increase in QoE-switches explains the stagnating QoE-score between 50
and 150 MHz of ob-remote in Figure 8.1, where the increase in QoE-quality (Figure 8.3d) is negated by
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the increased QoE-switches. Figure 8.3b explains why ob-remote-enc has a slightly higher QoE-score
than remote-enc-2160, since the former has a lower start-up delay than the latter over all bandwidths.
This is explained by the fact that ob-remote-enc renders the first frames at a lower resolution, since an
empty buffer pushes opp-buffer to render at lower resolutions. This does not significantly affect the
QoE-quality in Figure 8.3d because the lower quality of the first few frames is eclipsed by the increased
quality of all remaining frames. Surprisingly, the random strategy has the third best QoE-quality score
in Figure 8.3d, but the enormous amount of quality switches natural to the random strategy make it
unfeasible (Figure 8.3c).

(a) Average buffer length when displaying a frame. (b) Average FoV quality chosen.

Figure 8.4: Other performance metrics over the up- and downlink bandwidths Bu and Bd.

The strength of the greedy heuristic can be seen in Figures 8.6 - 8.8. Under adverse conditions
such as insufficient bandwidth, greedy can fall back to its default: local rendering at 720p which always
falls under the 16.7 ms threshold. This explains why g-remote outperforms ob-remote significantly at
50MHz in Figure 8.1. As the bandwidth improves, Figures 8.7 and 8.8 show that remote offloading is
by far the favoured and at 250MHz even the sole offloading path.

25%25%

25% 25%

Local
Remote
Coop
Remote Encoding

Figure 8.5: Distribution of offloading decisions
for random-1080B = 150MHz.

26.7%

73.3%

Local
Remote

Figure 8.6: Distribution of offloading decisions
for g-remote for B = 50MHz.

0.8%99.2%
Local
Remote

Figure 8.7: Distribution of offloading decisions
for g-remote for B = 150MHz.

0%100%
Local
Remote

Figure 8.8: Distribution of offloading decisions
for g-remote for B = 250MHz.
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8.2.2 Impact of maximum buffer capacity

Figure 8.9 presents the main result of this section. It depicts the QoE-score against different values
for the maximum buffer size MB . The number of frames to render in the start-up phase b is set to
min(3,max(1,MB − 1)) to avoid rendering more frames than fit into the buffer. Similarly to the
previous section, we first discuss the impact of MB and then compare the rendering strategies.

Figure 8.9: QoE-score over the maximum buffer length MB .

As depicted in Figure 8.9, the maximal buffer size does not have large influence beyond a length of
2 and beyond 5 hardly any change is visible, even for opp-buffer strategies. The only significant impact
of the buffer size is between 1 (no buffer) and 2 (1 frame can be stored additionally to the next frame).
A buffer size of 2 is significantly improving the QoE-score of ob-remote-enc and, counter-intuitively,
decreasing the performance of ob-remote.

When MB ≥ 2, ob-remote-enc has the highest QoE-score. Surprisingly, the other buffer-related
strategies ob-local and ob-remote are the two worst rendering strategies even with an increased buffer
length. ob-remote even has a score below 0. Since we assume a downlink bandwidth of 150 MHz, its
poor QoE-score is referable to the explanation in Section 8.2.1. Beyond a buffer size of 2, g-remote-enc
and remote-enc-2160 are the second and third best performing strategies.

To explain the trends of Figure 8.9, we examine the individual components of the QoE-score in
Figure 8.10. The drop of ob-local, local-720, g-remote and g-remote-enc’s QoE-scores between a
buffer size of 2 and 4 results from the fact that between 2 an 5 the stalling property in Figure 8.10a and
the QoE-quality in Figure 8.10d stagnate, but the start-up delay in Figure 8.10b increases since more
frames need to be pre-rendered. Moreover, the increase in op-local’s QoE-quality between a buffer size
of 1 and 2 is negated due to an larger rise in the QoE-switches score, leading to an overall decrease in
the QoE-score between 1 and 2. The initial increase in QoE-start-up of all strategies in Figure 8.10b is
explained by the definition of b, the number of frames to render in the start-up phase. Usually, 3 frames
are rendered in the start-up phase and the rendering of the 4th frame commences when the display loop
begins. If MB is less than 4, b is set to max(1, B − 1) to prevent a buffer overflow.

The QoE-quality and QoE-switches scores explain the immense decrease in performance of ob-
remote between a buffer size of 1 and above. At MB = 1, the QoE-quality score in Figure 8.10d is
around 0.3, equivalent to constantly rendering at a resolution of 1080p. Starting from 2, the QoE-quality
increases implying that the strategy renders frames at a higher resolution. However, this is accompanied
by an even larger increase of the QoE-switches metric that leads to an overall decrease of the QoE-score.
Furthermore, since ob-remote does not fill manage to fill up the buffer (the average buffer length on
display is close to 0 in Figure 8.11b), the situation is never improved. This implies that, to achieve a
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(a) QoE-stall. (b) QoE-start-up.

(c) QoE-switches. (d) QoE-quality.

Figure 8.10: Components of the QoE-score over the maximum buffer length MB .

better QoE-score, strategies should only render at a higher resolution if the system can do so consistently
to prevent switching back and forth between two resolutions. For strategies such as remote-enc-2160,
ob-remote-enc, remote-1080 and random-1080 that fill the buffer (see Figure 8.11b), the average stall
duration in Figure 8.11a first increases and then decreases with additional frames in the buffer, while
the QoE-stall score continuously decreases. The increase could signify that stalls become rarer, but last
longer, as Figure 8.11a does not consider the total number of stalls but only the average duration of all
stalls.

The risk with an increased buffer space is that the age of the individual frames becomes large. Indeed,
for all strategies that fill up the buffer space (which have a diagonal line in Figure 8.11b ), the average age
of a frame increases as well (see Figure 8.11c). Especially for VR gaming where we for now assume that
user action is perfectly predicted, this is a significant consideration. Since we can conclude that a buffer
size up until 5 is impactful, we can also conclude that investing in prediction algorithms for FoV and
user actions is useful. Moreover, we can define the performance goal of such prediction algorithms: with
a buffer length of 5, the average frame age is about 0.1 s or 100 ms. According to Guo et al. we must aim
for a response delay of at most 25 ms [16], this means the prediction algorithm would need to correctly
predict a user’s actions up to 75 ms ahead of time.
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(a) Average stall duration.

(b) Average buffer length on display. (c) Average frame age.

Figure 8.11: Other performance metrics over the maximum buffer length MB .

8.2.3 Impact of the SINR

The results in this section were obtained by drawing the SINR from different uniform distributions.
Previous sections assumed SINR values drawn uniformly between 1 and 20 dB. In this section, we
draw the SINR values from different uniform intervals: uniformly in [1, 2], [2, 3], . . . , [10, 15] and
[15, 20] dB. The x-axis in every figure shows the range chosen. Atx, the SNR has been drawn uniformly
between the previous value on the x-axis and x. In this way, we keep some uncertainty in the system.
This section first presents the impact of the SINR, then compares the rendering strategies before giving
potential explanations for the observed results.

Figure 8.12: QoE score over SINR (in dB).
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With better connectivity, i.e larger SINR, the QoE-scores tend to increase. This trend is most significant
between 1 dB and 10 dB where the QoE-scores of almost all strategies that offload to the MECs steadily
increase. At some point, all strategies have achieved their upper bound and then an increase in γ
no longer improves the score. The most surprising observation is that the QoE-score of ob-remote
decreases with larger SINR when γ ≥ 8.

According to the QoE score in Figure 8.12, ob-remote-enc and remote-enc-2160 perform the
best over all γ. g-remote-enc is a close second and equals their QoE-score beyond a SINR of 4 dB.
Remarkably, the QoE-score stays constant between 1 dB and 2B. Interestingly, random-1080 is the next
best performing strategy if γ ≥ 5 dB. For SINR values below 5 dB the local strategies local-720 and
ob-local become more competitive, even though their score is still below 0.15. remote-1080 performs
as expected between 1 and 10 dB, as its QoE-score continuously rises with a better connectivity. Above
10 dB its QoE-score stagnates. Furthermore, this figure highlights the strength of the greedy strategy:
compared to the constant baseline remote-1080 and the heuristic ob-remote, g-remotemaintains a
positive QoE-score even under adverse channel conditions because it can fall back to its default, namely
rendering frames locally at 720p. Another interesting observation is that g-remote experiences a sudden
decrease of the QoE-score at 8 dB. Finally, the strategy that overall performs poorly is ob-remotewhich
has a negative QoE-score over almost the entire SINR range.

(a) QoE-stall. (b) QoE-start-up delay.

(c) QoE-switches. (d) QoE-quality.

Figure 8.13: Components of the QoE-score over SINR (in dB).

To explain the behaviour of Figure 8.12, we refer to Figure 8.13 highlighting the evolution of the
individual QoE components under different SINR values. First of all, the upper bound on the different
QoE-scores can be explained by Figure 8.13d: most strategies converge towards always rendering at a
fixed resolution. Rendering at 2160p equals a QoE-quality of 1, while 1080p implies 0.3 and 720p 0.18.
We assume that ob-remote trends to the QoE-quality of 1, but it does not converge yet in the simulated
SINR range.

The dip of g-remote’s QoE-score results from the peak in the QoE-switches score in Figure 8.13c.
At 8 dB, the QoE-quality in Figure 8.13d increases, implying that the strategy renders at higher quality.
The corresponding increase in QoE-switches shows that the higher resolution cannot be supported
consistently and even causes a deteriorating QoE-score. Furthermore, we can see an equivalent peak
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of QoE-switches in the other greedy strategy at 3 dB. However, g-remote-enc’s QoE-quality rises
enormously at the same time, leading to an overall improvement of the QoE-score. The low QoE-score
of local strategies local-720 and ob-local primarily results from the low QoE-quality in Figure 8.13d.
Even though ob-local has a higher QoE-quality, the overall QoE-score is lower compared to local-720
because of the many quality switches. This is yet another example why switching to higher qualities
should only be done if it can be pulled off consistently, otherwise the overall performance is deteriorated
due to the many switches.

The average Tremote and Tremoteenc of the constant base line strategies are shown in Figures 8.14a
and 8.14b. The rendering delay Tremoteenc is below the threshold of 16.7ms for all resolutions lower
or equal to 1080p for all γ. When rendering at 2160p it is below the 1/60 threshold if γ ≥ 5 dB. For
the delay Tremote this only happens for 720p when γ ≥ 5 dB and when γ ≥ 10 dB for 1080p and
never when rendering at 2160p. This behaviour explains the bad performance of ob-remotewhich
after 8 dB, counter-intuitively, performs worse with a better SINR. At 10 dB, the rendering process (at
1080p) is quicker than the framerate, such that the buffer can fill up. Consequently, rendering a frame at
2160p becomes feasible if the buffer is full enough. So while the QoE-quality score increases with γ in
Figure 8.13d as expected, the QoE-switches score increases even harder in Figure 8.13c, resulting in an
overall decrease of the QoE-score. At some point, the QoE-switches score is above 90% meaning that the
heuristic switches quality resolution for almost every frame, which cannot be a comfortable experience
for the user.

(a) Average remote rendering delay Tremote. (b) Average remote rendering with encoding delay.

Figure 8.14: Average rendering delays over SINRs at Bu = 150 MHz for constant rendering strategies.

8.2.4 Impact of the remote encoding ratio

This section studies the impact of the remote encoding ratio k on all strategies that use remote offloading
with encoding. These strategies showed the best performance in previous sections, so we want to
examine them in more detail. First, this chapter sheds light on the impact of the encoding ratio k. To
recapitulate, an encoding ratio of k means that the fully rendered frame is compressed to 1/kth’s of
its original size before transmitting the file from the MECs to the HMD. Furthermore, compared to
Tremote, Tremoteenc has an additional encoding delay of D

zc·bzc
and an additional decoding delay of

1
k

D
zl·bzl

. Secondly, this section discusses an important assumption for the calculation of Tremoteenc. We
show that the QoE-score significantly drops if we make a different assumption on how to calculate the
decoding delay at the HMD.

From Figure 8.15, we can see that the best QoE-score for all heuristics is already achieved at an
encoding ratio of 11. For all heuristics except g-remote-enc, the strategies already reach their respective
maximum when k ≥ 3. At k = 1, so without compression, the QoE-scores plummet significantly as
expected from the results of strategies like remote-1080 or g-remote in previous sections. Especially
ob-remote and remote-enc-2160, which render primarily at 2160p, have devastating QoE-scores below
0. Finally, it is noteworthy that remote-enc-1080 actually outperforms g-remote-enc at k = 1.
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(a) Smaller encoding ratios. (b) Larger encoding ratios.

Figure 8.15: QoE-score over smaller and larger encoding ratios k.

(a) Average Tremoteenc. (b) QoE utility.

Figure 8.16: Other performance metrics over encoding ratios k.

Figures 8.16a shows indeed that, when k ≥ 3, the average rendering delay of all strategies is below
16.7 ms, explaining why the QoE-score does not change significantly beyond this point. However, we
can observe that although the average is below 16.7ms, the QoE utility in Figures 8.16b is only around
100% for all strategies when k ≥ 11. To recall, the QoE utility stands for the percentage of frames whose
rendering delay is below 16.7ms. These two observations imply that remote-enc-2160’s rendering
delay highly depends on the SINR value γ when k < 11, because on average the rendering delay meets
the 1/60 s threshold, but there must be a high variance due to the randomness in γ.

An important discussion point when considering heuristics that use encoding when remotely
offloading, is that we assume that the HMD does not need to process the full file size when decoding
the frame but only the compressed file size. In Chapter 3, we noted that decoding is one of the main
limiting factors of the rendering delays. In Guo et al.’s model [16], the MECs always need to process
10MB to compress the frame, the compressed frame always has a size of 2 MB (so only k = 5) and the
HMD needs to process (5/9) · q2i bytes to decode the frame. In other words, in Guo et al.’s model, the
decoding delay is not dependent on the compression ratio k.

To see the influence on the QoE-score when we remove the compression coefficient k from the
decoding delay computations, we simulated the same setting as above using the following T ∗

remoteenc:

T ∗
remoteenc =

Du

Ru︸︷︷︸
Uplink transmission

+
C

zc
+︸︷︷︸

render fore- and background

+
D

zc · bzc︸ ︷︷ ︸
Compression latency

+
Dk

Rd︸︷︷︸
Downlink Transmission

+
D

zl · bzl︸ ︷︷ ︸
Decoding compressed frame

, (8.1)
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where Ru and Rd are the up- and downlink transmission rates of the user, D and C the data size and
computational requirement of the frame, Du the data size needed for the uplink communication about
the foreground rendering, Dk = D

k the file size of the compressed frame depending on the compression
ratio k and zc the processing power at the MECs allocated to the user. The difference to Tremoteenc in
Equation (4.8) is only in the last term.

(a) Smaller encoding ratios (b) Larger encoding ratios

Figure 8.17: QoE-score over encoding ratios k using T ∗
remoteenc.

Figure 8.17 shows the QoE-scores for the simulations with T ∗
remoteenc. These plots show that even

for an encoding ratio of 45, the QoE-score does not exceed 0.2. Interestingly, we can again note that the
encoding ratio does not influence the QoE-score significantly anymore when k ≥ 11. Compared to the
scores around 1.00 in Figure 8.15, a score of 0.2 is a strong deterioration.

(a) Average T ∗
remoteenc. (b) QoE utility.

Figure 8.18: Other performance metrics over encoding ratios k.

The explanation for the deterioration can be found in Figure 8.18a showing that T ∗
remoteenc never

falls below the 16.7ms threshold for resolutions higher or equal to 1080p. Only strategies that settle
for a resolution of 720p, such as remote-enc-720 and g-remote-enc, have QoE-utilities of 100% in
Figure 8.18b. This implies that they never cause stalls which explains why these two strategies have the
highest QoE-score despite the lower resolution of 720p.

The true decoding delay likely lies in between these two extremes. In T ∗
remoteenc, the HMD needs

to again process the entire file size D to decode it. However, in our model this is equivalent to rendering
the frame from scratchwith a computational requirement of C , because the values C and D are linked in
such a way that the processing delays are equal: D/(bzl · zl) = C/zl. Consequently, when rendering a
frame and decoding a frame take equally long, it logically never makes sense to offload remotely with
encoding because it only introduces additional delays such as the compression delay or the transmission
delays compared to rendering locally. To conclude, strategies using encoding have the biggest potential
among all offloading strategies, if the decoding delay decreases proportionally to the encoding ratio k.
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8.3 Do dynamic rendering strategies outperform static rendering strate-
gies in terms of QoE-score?

Based on the results in Section 8.2, we can draw the following conclusions regarding RQ 1:

1. Are dynamic rendering strategies outperforming static rendering strategies in terms of QoE-score?

In all scenarios, static rendering strategies have either been outperformed or matched by a opp-
buffer or greedy strategy. However, we cannot conclude that the evaluated dynamic heuristics
always have a significantly higher QoE-score than the static strategies. In fact, remote-enc-2160,
which always renders remotely at 2160p with encoding has a QoE-score close to 1.00 in most
scenarios, which exceeds the QoE-score of g-remote, ob-remote and ob-local at 150MHz in
Figure 8.1 by more than 0.5. This result shows that the influence of the chosen offloading paths is
larger than the dynamic decision-making itself. The main advantage of dynamic strategies is that
they can adjust to rapid system deterioration, such as poor SINR in Figure 8.12, where greedy
could decide to render locally at a lower resolution instead of risking a performance deterioration
by remotely offloading such as remote-1080.

(a) & (b) Do strategies that consider current channel conditions and strategies that consider the buffer
space achieve a high QoE-score?
Both types of heuristics have performed reasonably well. We cannot conclude that one
type of heuristic is significantly better than the other because it depends on the paths they
favour and on the system parameters. However, we notice that whenever the user has a
decent data rate available (high bandwidths or good SINR), ob-remote-enc is (one of) the
best performing strategy. However, opp-buffer can also suffer from many quality switches
resulting in a devastating performance, as we could see from ob-remote. The main advan-
tage of greedy is that it can fall back to local rendering under adverse channel conditions
(low SINR). However, it generally performs worse than its opp-buffer counterpart. Only
g-remote outperforms ob-remotewhen the bandwidth is below 250MHz.

(c) What offloading path (local, remote, coop and remote rendering) lead to high QoE-scores?
Remote rendering with encoding and decoding outperforms other offloading paths signif-
icantly in our current model. However, even in Figure 8.17a, where the decoding delay
is proportional to the full frame size, the QoE-score is around 0.2. While it is a massive
deterioration from the previous score of almost 1, it is similar to the other heuristics at
150MHz in Figure 8.1 and still better than rendering locally (local-720). This observation
leads us to conclude that a simple rendering heuristic such as always remotely offload-
ing with encoding (remote-enc-2160) is sufficient as a rendering strategy. Investing in
lightweight compression algorithms that can be quickly decoded is more beneficial than
complex offloading algorithms to achieve better performance.
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Discussion and Future Directions

This chapter first reflects on the system model and the performance evaluation before providing inspira-
tion for future rendering heuristics based on the gained insights.

First of all, while the results for the remote encoding paths are the most promising, we have to take
the results with a grain of salt because the encoding and decoding delays are the most difficult to model
correctly. While we have some empirical evidence that the relations could be modelled in this way (see
Section 4.4.4), the numbers measured by [18] are significantly larger than our values. This discrepancy
could result from the fact that they performed their experiments on a consumer desktop and phone. In
contrast, we assume the processing capabilities of the MECs and the HMD to be larger by taking the
values proposed by Guo et al. [16]. In order to verify the model and determine appropriate encoding and
decoding delays, future work could consist of replicating Lai et al.’s measurement experiments with our
system set-up. To avoid the challenges when testing over the actual cellular network, the measurements
can be reduced to only measuring the rendering, encoding and decoding delays instead of replicating
the entire offloading system. The results in Section 8.2.4 show that reducing the decoding delay can
significantly improve the QoE-scores of strategies that remotely offload with encoding. Hence, the
modelling assumptions regarding the decoding delay deserve serious attention in future work.

Another point of discussion is the distributed nature of the offloading decision. All our proposed
heuristics can be implemented in a distributed fashion on every end device and do not require a central
decision maker. Distributivity was relevant because a centralised decision (at, for example, the edge
server) will encounter difficulties in a practical set-up. Not only would devices have to interoperate (all
VR brands would have to stick to the same offloading decision-making procedure that the edge under-
stands) but also edge operators and application-makers would have to cooperate and share information.
However, despite the distributed nature, some challenges concerning information accessibility must be
overcome before applying the proposed heuristics in practice. For example, greedy requires estimates
of the channel quality and the available bandwidth and processing power at the MECs to estimate the
rendering delay. Communicating this cross-layer information is a challenge in itself. Moreover, we
must tackle the question, "Which entity of the HMD is responsible for the offloading decision?" Here,
several answers are possible since one option could be the game developers who know the game best,
thus, know better how to divide a frame into fore- and background or which actions the player is likely
to do next. Another option could be the HMD’s manufacturer, which has a better knowledge of the
device’s computing and networking capabilities. A third option could be an external party joining the
information of both. All in all, we acknowledge that the proposed heuristics serve as proof of concept,
and many practical challenges would need to be resolved if it was to be applied in practice.
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One of the main limitations of our model is that we assume the user’s action to be perfectly predictable
both concerning the FoV and the user input. In a VR game, the latter influences the game-play content,
so what needs to be rendered. If we aim to show the effect of user actions within a response time of 20ms
following the framerate of 60 FPS [16], then there can only be a single frame shown between the action
input and the display of the new frame showing the corresponding reaction on screen. This scenario is
equivalent to a buffer size of 2. Figure 8.9 showed that maximum buffer sizes beyond 2 have only a minor
influence on the QoE-score of strategies, such that the impact of this assumption is minor. Secondly, we
assume perfect FoV prediction with a predefined number of tiles lying in the FoV. However, bitrate
adaption schemes exist that use other tiling schemes and ways to predict the FoV and to decide at which
resolution to fetch the individual tiles [17]. Moreover, FoV prediction schemes are predictions, so they
might not be 100% accurate. To mitigate this assumption, future studies could investigate the impact
of tiling schemes and include an error term whenever the FoV is wrongly predicted. A second main
limitation is that our results are based on simulations because it is unfeasible to determine the optimal
strategy for the optimisation problem. This is reinforced by the fact that system parameters significantly
impact the system, so even an optimal strategy under some system parameters (available bandwidth,
processing power, etc.) might not be optimal anymore under others. Moreover, we assume that such
system parameters are immutable and correctly communicated to rendering strategies. Future work
could investigate the impact of delayed or erroneous information about system parameters such as the
available processing power at the MECs, the available bandwidth or the SINR ratio. The perturbation
coefficient σ that can alter the SINR value used in the estimates of greedy strategies is a starting point
to evaluate the influence of inaccurate system information.

Furthermore, since this work is based on simulations which are in turn based on a model of the
real world, a natural limitation of the research is that, intrinsically, the results show the performance
evaluation of the model. These results might not directly apply to reality, and we must critically
assess our system model’s shortcomings and abstractions to determine this. The main simplification
in our model is to draw independent SINR values from a uniform distribution, whereas, in practice,
subsequent SINR values are probably correlated. Models with more realistic SINR distributions
exist that calculate SINRs from the HMD’s transmission power, its distance to the base station and
ambient noise and interference models [16]. In such a model, it would be possible to integrate other
performance metrics, such as the energy consumption of the HMD, which strongly depends on the
HMD’s transmission power. Furthermore, the best method to verify the system model would be to
conduct real-life experiments and compare whether the empirical results match the simulation results.
However, real-life experiments can be costly, time-intensive and risk adding implicit dependencies on
specific materials and applications, making it harder to generalise the findings and compare them to a
‘sterile’ simulation. Instead of implementing the entire system, individual aspects of the model could be
replaced with empiric measurements. For example, SINR values are drawn from a random distribution
in the current performance evaluation. However, they could be taken from actual SINR traces as done
by Mehrabi et al. [28]. Additionally, instead of calculating all data volumes and intermediate delays as
in Sections 4.3 and 4.4, the simulator could use empirically measured rendering, encoding and decoding
delays, as well as application bitrates. A specific HMD and VR application would need to be chosen to
measure these different aspects.

Finally, in the current setting, some delays are assumed to be negligible similar to simulations
in related works. For a practical implementation, future work would have to determine whether this
assumption is indeed valid. Some actions for which we assume negligible delays are: adding a frame to
the buffer, removing a frame to the buffer and displaying it on the HMD, determining the next frame that
needs to be rendered, queuing delays before transmissions or making the rendering decision. However,
we are optimistic that the delays are indeed minor because many consist only of a few operations or
instructions. Future work could empirically investigate how long it takes to make a decision. In our
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case, we can expect the computational complexity of the static and dynamic rendering strategies and
the delay accordingly to be reasonably small. However, when employing a more complex offloading
strategy based on deep reinforcement learning and game theory, such as Guo et al. [16], the complexity
is higher, and decision-making might not be instant.

We wrap up this chapter by presenting other directions for designing rendering heuristics that could
be investigated in the future.

Future direction: Other rendering heuristics

One of the main results in Chapter 8 is that dynamic strategies risk a significant decrease of the QoE-score
under circumstances where rendering at higher resolutions is sometimes possible but not always. Then,
the increase in QoE-quality is overshadowed by the decrease in QoE-switches. Hence, a new type of
rendering strategy can minimise this problem by only rendering at higher resolutions if the system allows
it to do so consistently. For example, strategies could only adapt the quality of everyxth frame instead of
every single frame. Alternatively, opp-buffer could check if the currently buffered frames would allow
rendering at leastx frames at a higher resolution by calculating whether1/60·length(buffer)+x−1) >
x · Tq , where Tq is the expected rendering delay at a higher resolution q, to prevent switching to a higher
resolution for only a single frame. Furthermore, heuristics that account for the history until the decision
moment could be worthwhile in settings where the SINRs are time-dependent and correlated.

What is more, so far, the proposed heuristics have been designed to maximise the QoE-score by
reducing stalling times and increasing the QoE-quality. However, they do not directly optimise based
on the QoE-score. Future work could look into rendering strategies whose goal is the more direct
maximisation of the QoE-score at every single frame. Here below, we provide a possible heuristic based
on the idea that Equation (4.19) can be rewritten to the following, where the influence of every frame i
towards the final QoE-score becomes more apparent:

D1

Θ
− T 1

o︸ ︷︷ ︸
First frame

+

i∗∑
i=2

(
Di

Θ
− |D

i −Di−1|
D

− T i
o

)
︸ ︷︷ ︸

During start-up phase

+

NT∑
i=i∗+1

(
Di

Θ
− |D

i −Di−1|
D

)
︸ ︷︷ ︸

Others

− TS

T︸︷︷︸
QoE-stall

,

whereΘ is the maximally achievable bitrate,D is the total number of bits played,T is the total play time,
TS the total stall duration, i∗ is the ID of the last frame of the start-up phase, NT is the last displayed
frame and T i

o the rendering delay of frame i using the offloading path o. Only the rendering delays of
the terms in the start-up phase contribute to the QoE-start-up. Moreover, the first term cannot incur a
quality switch. The only QoE-metric that depends on the rendering of previous frames is the QoE-stall
metric. To minimise the stall duration at the frame level, the system state needs to monitor whether a
stall occurs before the new frame’s rendering is finished. If a stall happens, the rendering decision can
minimise the total stall duration by minimising the expected rendering delay of the new frame.

Then, for example, a heuristic that more directly maximises the QoE-score chooses the offloading
mode and resolution quality to maximise:

κ′1 ·Di︸ ︷︷ ︸
Quality of the frame

−κ′2 · |Di −Di−1|︸ ︷︷ ︸
Quality difference
to previous frame

−

{
κ′3 · T i

o, during start-up phase
0, else︸ ︷︷ ︸

Rendering delay during start-up

−

{
κ′4 · T i

0, during a stall
0, else︸ ︷︷ ︸
Rendering delay when stalling

,

with Di the size and T i
o the rendering delay of frame i. For the above, the system state needs to include

a variable that indicates whether the system is currently in a stall or not. The coefficients κ′1, κ′2, κ′3 and
κ′4 can be used to balance the magnitudes of the individual components and adjust their significance.
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We emphasise that the above heuristic would not guarantee an optimal QoE-score. Firstly, the
sequential decision process cannot reach an optimum that requires earlier frames to adopt sub-par
rendering decisions for a later benefit. Secondly, even if aNash Equilibrium is reached, it might not be
the optimum (a typical game theory example showing this principle is the Prisoner’s Dilemma) [33]. A
rendering strategy (the collection of every frame’s rendering decision) results in a Nash Equilibrium if
the QoE-score cannot improve by changing one frame’s rendering decision if all other decisions stay the
same.

To conclude, there are still many rendering heuristics that can serve as inspiration for future research
directions.
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Conclusion

VR games have stringent computation and latency requirements that the HMD cannot handle by
itself. Offloading to MEC servers at the base station can alleviate this computational burden while
assuring low delays due to the proximity of the servers to the HMD and due to 5G and beyond data
rates. Rendering strategies determine at which resolution quality to render new frames and where to
do the computations (locally or at the MECs). A user’s quality of experience increases with higher
resolution qualities since the VR immersion becomes more realistic, and the risk of cybersickness is
reduced. However, higher resolutions require more computations, hence the rendering takes longer,
and the HMD risks not keeping up with the framerate required for a smooth viewing. We measure the
overall quality of experience by the QoE-score, which factors in the quality of frames, the experienced
stalls, the quality differences between frames and the start-up delay.

While many algorithms come up with strategies to stream VR videos or render VR games in real-
time, the complexity of the algorithms and the many factors involved make it difficult to explain the
performance of a strategy and to determine potential bottlenecks. Since the networking landscape
is constantly changing and processing capabilities increase, it is valuable to know which part of the
system limits further performance enhancements. Hence, we tackle the problem by focusing on the
explainability of the results. Moreover, to our knowledge, no existing work on rendering strategies for
VR games considers the video streaming-like nature of VR games. Therein lies the main contribution of
this thesis: we consider the VR gaming process holistically by studying the effects of rendering strategies
not on a frame-by-frame basis but by simulating an HMD whose rendering process needs to keep up
with the steady demand for rendered frames and where stalls and quality switches deteriorate the QoE.

To answer the leading research questions "Do dynamic rendering strategies outperform static ren-
dering strategies in terms of QoE-score?" (RQ 1) and "What is the impact of system parameters?"(RQ 2),
two dynamic heuristics, greedy and opp-buffer, have been compared to static rendering strategies and
evaluated under different system parameters using a simulation framework that takes into account the
‘streaming’-aspect of a VR game. The main results and conclusions are as follows:

1. Rendering frames under 1/60s eliminates the risk of stalls when displaying the game at 60 FPS.
If, in addition, the frame can be rendered consistently at 2160p, the QoE-score is close to 1.

2. The proposed dynamic heuristics do not outperform all static rendering strategies, because
remote-enc-2160 outperforms all greedy and opp-buffer strategies that do not consider remote
offloading with encoding. Nonetheless, dynamic strategies have displayed advantages over
static strategies. For example, considering the channel quality was beneficial whenever the
network quality did not allow for offloading. Under such circumstances, greedy defaulted to
rendering frames locally, keeping its QoE-score from deteriorating drastically under poor SINR
or bandwidth conditions.
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3. The factor with the most impact on the rendering strategies is the favoured offloading path.
All rendering strategies that concentrate on offloading remotely with encoding, even the static
remote-enc-2160, outperform all other strategies. However, this result is linked to our main
discussion point, namely how to realistically model the decoding delay because the result only
holds when the encoding delay is proportional to the data size of the compressed frame. If it is
proportional to the raw frame size, the QoE-scores of all strategies using remote rendering with
encoding deteriorate significantly.

4. The evaluated rendering strategies have an intrinsic upper bound on their QoE-score that highly
depends on the resolution quality of frames. Despite better system conditions (such as bandwidth
or SINR), the QoE-score stagnates if a strategy does not consider rendering at higher resolutions
or if such a rendering delay would exceed the 1/60 s threshold under the given system conditions.
Hence, blindly increasing the available data rates does not necessarily imply an improved QoE-
score.

5. A large number of quality switches between frames deteriorates the QoE-score significantly.
Both the greedy and opp-buffer strategies can suffer from this problem when the buffer or
estimated channel conditions sometimes allow rendering at higher resolutions but cannot keep
it up consistently. Then, the strategy risks switching back and forth between two resolutions,
and the substantial QoE deterioration due to the many quality switches negates the benefit of the
higher quality. Hence, strategies should only render at higher quality resolutions if it can be done
consistently.

The last point is an opportunity for future work to investigate other rendering heuristics that can
mitigate the many quality switches. Other future directions include an elaborate verification of model
assumptions and the inclusion of more complex models for SINR values or empirical measurements
thereof.

To conclude, edge networks can provide promising opportunities for VR gaming applications by
taking over parts of the rendering process. The MEC server’s additional processing power and data rates
of 5G and beyond networks can accommodate the rendering of frames at 4K resolutions or 2160p while
satisfying a framerate of 60 FPS if the HMD can decode compressed frames quick enough.
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APPENDIXA

Surge in offloading-related literature

Computation offloading has already been a subject of numerous studies over the past decades. On scopus,
Elsevier’s "abstract and citation database" [12], the first paper studying ‘‘computation offloading to save
energy on handheld devices" [22] dates back to 2001. In their survey, Akherfi et al. note a progressive
increase in research works concerning offloading: less than 10 in 2004 cited "computational offloading"
while around 40 cited it in 2014 [2]. Ghobaei-Arani et al. also noted an increase in research papers
between 2014 and 2018 [13, Figure 2]. By querying scopus [12], the above trends can be replicated.
Note that the exact numbers have not been verified in-depth (e.g. search might not be complete) and
have to be taken with a grain of salt.

Figure A.1 shows per year how many hits are received when querying ‘‘computation offloading"-like
terms in their title, abstract or keywords and how many papers thereof also cite edge or fog-related
concepts. In 2016, 31 of 223 hits (13.9%) study offloading in MEC-enabled scenarios, while in 2021,
there are 1004 of 1179 (85.2%) with these criteria. This not only shows the increasing importance of
offloading itself but also the role of the edge (or fog) in the development. Moreover, these numbers
show that MEC-enabled offloading is an emerging technology and is actively researched at the moment.
Another significant trend, namely the rise of machine learning, is depicted in Figure A.2. In 2021, 312
of the 1004 (31.1%) search results also have keywords related to deep learning.

The following search queries have been used when creating Figures A.1 and A.2. Table A.1 shows a
tabular overview of the numbers.

1 ( TITLE -ABS -KEY ( "computation offloading" ) OR TITLE -ABS -KEY ( "data
offloading" ) OR TITLE -ABS -KEY ( "computational offloading" ) OR
TITLE -ABS -KEY ( "task offloading" ) OR TITLE -ABS -KEY ( "offloading
decision problem" ) ) AND ( LIMIT -TO ( SUBJAREA , "COMP" ) OR
LIMIT -TO ( SUBJAREA , "ENGI" ) OR LIMIT -TO ( SUBJAREA , "MATH" )
OR LIMIT -TO ( SUBJAREA , "ENER" ) OR LIMIT -TO ( SUBJAREA , "DECI"
) ) AND ( LIMIT -TO ( DOCTYPE , "cp" ) OR LIMIT -TO ( DOCTYPE , "ar
" ) OR LIMIT -TO ( DOCTYPE , "cr" ) OR LIMIT -TO ( DOCTYPE , "re" )

OR LIMIT -TO ( DOCTYPE , "ch" ) )

Listing A.1: Scopus search Query: Offloading

1 (TITLE -ABS -KEY(" computation offloading ") OR TITLE -ABS -KEY("data offloading
") OR TITLE -ABS -KEY(" computational offloading ") OR TITLE -ABS -KEY("task
offloading ") OR TITLE -ABS -KEY(" offloading decision problem ") OR TITLE -
ABS -KEY("MEC -ENABLED" OR "MEC -Assisted ") ) AND (TITLE -ABS -KEY("MEC") OR
TITLE -ABS -KEY("fog computing ") OR TITLE -ABS -KEY("edge computing ") )

AND ( LIMIT -TO ( SUBJAREA ,"COMP" ) OR LIMIT -TO ( SUBJAREA ,"ENGI" ) OR
LIMIT -TO ( SUBJAREA ,"MATH" ) OR LIMIT -TO ( SUBJAREA ,"ENER" ) OR LIMIT -
TO ( SUBJAREA ,"DECI" ) ) AND ( LIMIT -TO ( DOCTYPE ,"cp" ) OR LIMIT -TO (
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Figure A.1: Number of search results per year on Scopus [12] citing offloading or offloading and MEC,
respectively (Listing A.1 and A.2 ), executed on 21st February 2022, but excluding results from after
2021.
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Figure A.2: Number of search results per year on Scopus [12] citing machine learning together with
MEC and offloading (Listing A.3), executed on 21st February 2022, but excluding results from after
2021.
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DOCTYPE ,"ar" ) OR LIMIT -TO ( DOCTYPE ,"cr" ) OR LIMIT -TO ( DOCTYPE ,"re"
) OR LIMIT -TO ( DOCTYPE ,"ch" ) )

Listing A.2: Scopus search Query: Offloading and MEC

1 (TITLE -ABS -KEY(" computation offloading ") OR TITLE -ABS -KEY("data offloading
") OR TITLE -ABS -KEY(" computational offloading ") OR TITLE -ABS -KEY("task
offloading ") OR TITLE -ABS -KEY(" offloading decision problem ") OR TITLE -
ABS -KEY("MEC -ENABLED" OR "MEC -Assisted ") ) AND (TITLE -ABS -KEY("MEC") OR
TITLE -ABS -KEY("fog computing ") OR TITLE -ABS -KEY("edge computing ") )

AND ( LIMIT -TO ( SUBJAREA ,"COMP" ) OR LIMIT -TO ( SUBJAREA ,"ENGI" ) OR
LIMIT -TO ( SUBJAREA ,"MATH" ) OR LIMIT -TO ( SUBJAREA ,"ENER" ) OR LIMIT -
TO ( SUBJAREA ,"DECI" ) ) AND ( LIMIT -TO ( DOCTYPE ,"cp" ) OR LIMIT -TO (
DOCTYPE ,"ar" ) OR LIMIT -TO ( DOCTYPE ,"cr" ) OR LIMIT -TO ( DOCTYPE ,"re"
) OR LIMIT -TO ( DOCTYPE ,"ch" ) ) AND ( LIMIT -TO ( EXACTKEYWORD ,"
Reinforcement Learning" ) OR LIMIT -TO ( EXACTKEYWORD ,"Deep Learning" )
OR LIMIT -TO ( EXACTKEYWORD ," Learning Algorithms" ) OR LIMIT -TO (
EXACTKEYWORD ,"Deep Reinforcement Learning" ) OR LIMIT -TO ( EXACTKEYWORD
," Genetic Algorithms" ) OR LIMIT -TO ( EXACTKEYWORD ," Machine Learning" )
OR LIMIT -TO ( EXACTKEYWORD ,"Deep Neural Networks" ) )

Listing A.3: Scopus search Query: Offloading MEC and Machine Learning

Table A.1: Number of Search Results on Scopus[12] per year and per query (from 21/02/2022)

Year Offloading Offloading,MEC Offloading, MEC and Ma-
chine Learning

Listing A.1 Listing A.2 Listing A.3
2001 3 0 0
2002 1 0 0
2003 2 0 0
2004 3 0 0
2005 4 0 0
2006 4 1 0
2007 4 0 0
2008 10 0 0
2009 5 0 0
2010 11 0 0
2011 16 0 0
2012 45 0 0
2013 87 0 0
2014 130 0 0
2015 186 3 0
2016 223 31 2
2017 293 87 2
2018 496 261 14
2019 866 656 125
2020 978 850 210
2021 1179 1004 312
2022 154 145 45
Total 4700 3038 710
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Explanations of factors involved in the
offloading decision problem

This chapter defines and elaborates on the factors mentioned in Figure 2.4. All details necessary to
understand our research are given in Chapter 4. This appendix provides a high-level overview of a more
general offloading decision setting. Aspects that were not analyzed in detail in this final project could be
starting points for future work.

B.1 Systemmodel

First, the physical system can take many forms: both considering the overall infrastructure as well as
the individual components. Hence, we describe the different entities and properties in detail here below.

1. (Mobile and Wireless) Network refers to the transmission capabilities among agents in the
system. In our context, the focus is on wireless mobile networks. Ultimately, the network model
determines the data rate of users and base stations (BSs), so how much (throughput) and how
fast (latency) data can be transmitted.
In a single system, network specifications can differ per communication link. For example, the
backhaul link from a BS to the core network could be a reliable, high-speed fibre-optic connection.
In contrast, the fronthaul connection between BSs could be some custom protocol from the
network operator. Similarly, the uplink transmission from end-user to BS can use the 5G sub-
6GHz link, while downlink communication uses 5G mmWaves [16].
In models, digital communication is often abstracted to the following:

Coverage for wireless connections. What is the transmission range of the Base Station or the end
devices? How is the signal strength affected by the distance from the source? Modelling the
fading (decrease in signal strength between source to destination) is important to determine
which devices can successfully exchange transmissions.

Noise and Interference. To model the achievable data rate, the signal-to-noise-and-interference
ratio (SINR) of a user is calculated. SINR indicates the effect of the environment on the
signal strength. The lower the effect of noise and interference on the signal strength, the
larger the SINR ratio and the better transmission quality. The signal strength depends on
the transmission power from the emitting device, while interference highly depends on the
transmission power from other devices.

Bandwidth. In the literal definition, the bandwidth is expressed in Hertz (Hz) and measures the
width of a frequency band. In practice, the available bandwidth indicates how much data
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can maximally be transmitted over a link (in bits per second) [34]. The actual bandwidth
available to a user depends on the protocol implementation and bandwidth allocation (how
the bandwidth is shared among end-users). The latter often depends on the number of users
connected to a BS.

Refer to Table III of [26] for a ‘‘comparison between short-range and long-range communication
technologies’’ illustrating the coverage, data rates and typical applications of technologies such as
4G, 5G and LoRa.

2. Entities describe all devices connected through the network that participate in the system. From a
high-level point of view, we distinguish the end device (or end-user), such as HMDs, mobile phones,
smart cameras and sensors, that run a certain application for which offloading is considered. Then,
edge and cloud entities have the processing capabilities to handle offloaded tasks.

Number of entities. How many of the different entities are present? Some variations are shown
in Figure B.1.

Heterogeneity. If there are more entities of the same type, are they homogeneous or heteroge-
neous? In other words, if there are multiple end devices, do they all have the same properties,
such as processing power, transmission power or energy consumption (homogeneity)? Or
do the devices differ in terms of capabilities (heterogeneity)? Furthermore, if there are
multiple offloading decision-makers, they could have different objectives. Figure B.1 shows
an example with heterogeneous end devices and edge nodes.

Most offloading schemes consider a selection of the following entities.

1. Edge or Fog device. Often seen as part of 5G and beyond network infrastructure, edge devices
bring processing power closer to end-users, namely to the network edge. It is agreed that fog and
edge both refer to this computing paradigm, but opinions differ on how to distinguish them pre-
cisely [19]. We stick to the definition of edge as part of the telecommunication perspective (5G
and beyond), while fog is the more general description of bringing computing resources to end
devices. The edge device (or edge node, edge server) often resides at the BS.

Processing Power is expressed in CPU cycles per second. It indicates the computational ca-
pacity of a device, so how quickly (cycles per second) a task (number of cycles) can be
processed. The actual processing power allocated to the task of an end-user depends on
how the processing power is divided and shared among all end-users connected to the edge
node.

Memory, Transmission Power, Energy consumption and Source of Energy are explained
below under EndDevice.

Mobility indicates whether the device is moving or stationary. For instance, unmanned aerial
vehicles (UAVs) providing communication and offloading services can be considered as
moving fog nodes [25].

Cost. For commercial edge networks, a monetary cost might be associated with the use of com-
putational or communications resources.

Caching, temporarily storing popular content for quick accessibility at the edge is an important
factor in VR applications and, therefore, also needs to be taken into account when offloading
in a VR setting. Who decides what to store and why can differ among edge operators.
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2. Cloud Center. Numerous cloud providers such as IBM SoftLayer, Amazon, Google and Mi-
crosoft provide computational resources in large data centres committed to providing high pro-
cessing power [31]. Elements specific to the inner workings of a cloud centre are out-of-scope,
so the factors here below are limited to what could influence the decision to offload a task to the
cloud.

Location. Depending on the data centre’s location, the round-trip time of sending tasks to the
cloud can outweigh the benefits of the quicker computation time due to the high processing
power. Furthermore, the location of the cloud centre influences what information can legally
be offloaded. For example, in Europe, transferring personal data to a third country can only
happen if strict conditions are fulfilled according to the GDPR [6].

Cost associated with using the cloud centre’s resources in monetary value, often a ‘‘pay as you
go access’’ [31].

Processing power allocated to the offloaded task to model how quickly (cycles per second) a
task (number of cycles) can be processed.

3. EndDevice. Properties of the end device influence the functioning of a device, such as transmis-
sion and computational strength. The following are the most important properties.

Memory indicates how much storage a device has available, both in long-term or temporary
storage. For example, a device needs long-term storage to save the models needed for the
execution of tasks [16] or to keep track of the environment’s history for better predictions.
Short-term storage, such as RAM, is significant for processing computational tasks that
need temporary storage.

Processing power is expressed in CPU cycles per second and indicates the computational ca-
pacity of a device. It affects the processing latency of a task.

Transmission power determines the signal strength of the emitting device. The higher the
transmission power, the larger the range and the better the signal quality is at the destination.
However, this goes at the expense of energy consumption.

Energy consumption indicates the energy cost associated with the processing power or the
transmission power, respectively.

Source of energy. Some systems have access to renewable energy sources through energy har-
vesting, such that energy is not a limiting factor but should be utilized if available [27].
Other systems that also rely on batteries and backup batteries require a more careful design
concerning energy consumption [24]. Depending on the energy source, the energy cost and
processing capabilities might differ [24].

Mobility indicates whether end devices are stationary or mobile. If they are mobile, one must
consider the speed, paths travelled (pre-defined or in any direction), predictability (random
or scheduled movement) and covered distance (same cellular cell or inter-cell movement).
The position of an end device (and, therefore, the relative distance to BSs) affects the SINR.
Furthermore, when end devices move out of range from a BS during a time period, hand-
over procedures (transferring the responsibility to communicate with a device to another
Base Station) and fault tolerance of the application (how to handle errors, such as tasks
being dropped) need to be considered.
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Figure B.1: System variants
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Mandatory Flow Optional  
offloading pathsa: Remote connection between EDs

ED CloudBS
ED

d: Reporting or monitoring applications

ED CloudBS

c: Local task with optional offloading

ED CloudBS

b: Streaming or downloading from cloud

ED CloudBS

Figure B.2: Different information flows.

B.2 Application requirements

Whether or not to offload an application’s task highly depends on its characteristics and requirements,
summarised as follows.

1. Type. Depending on how an application is subdivided into and generates different tasks, it is
suitable for offloading or not. It encompasses the following properties.

Granularity relates to the ‘unit’ of the task considered for offloading: is the task a full program
or a simpler piece of code that needs processing, or is the task mainly comprised of data
that needs to be preprocessed?

Flow describes the mandatory and optional flow of information of the application. Variants are
shown in Figure B.2.

Arrival rate. The arrival rate of computational tasks defines how many tasks arrive to be pro-
cessed in a time period.

Partitioning defines whether a task can be subdivided into smaller tasks. I.e. can a task be
partially offloaded, or is the decision either fully offload everything or nothing?

Prioritization defines which tasks of an application should be handled with a higher urgency
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than others. For example, Reddy et al. improved the transmission of video files by prioritiz-
ing I-Frames containing the base picture [38].

2. Computational Requirements. Which requirements or constraints play a physical role in how a
task can be computed? They are distinguished from the quality requirements of a task mentioned
below.

Dependencies. If multiple tasks have to be computed, can they be executed in parallel or do
inputs to certain tasks depend on outputs of other tasks?

Prerequisites. Whether or not the model accommodates tasks that need specific circumstances
and therefore might not be executable at every destination.
For example, the VR rendering task converts models into actual pictures [16], so it requires
these models to be present on any system before executing the task. Another example is
privacy-sensitive tasks that need to be processed locally to prevent malicious interference
during transmissions.

Size. In offloading models, the size of a task is often expressed in CPU cycles per second necessary
to process it.

3. Quality Requirements. Quality requirements are requirements related to how well the applica-
tion is functioning and not to the practical computation of the task. This includes the effects on
user experience.

Quality of Service / Experience (QoS/QoE) requirements dictate the minimum performance
required for a smooth operation of the application. QoE refers to the overall user experience
with the application, while QoS are more technical, service-level agreements guaranteeing
network performance [39]. Examples of QoS requirements are minimum delay or band-
width, or maximal jitter and packet loss rate specifications, and examples of QoE are latency,
availability and fault tolerance [1, 39].

Security and Privacy. Confidentiality (no eavesdropping), Integrity (no tempering) and Avail-
ability (no outage), denoted by CIA, are well-known security requirements. Other security
concepts include authentication (identity is verified), non-Repudiation (authorship can-
not be refuted) and authorization (actions are permitted) [32], as well as privacy and data
protection [19].

B.3 Offloading decision problem

The offloading decision problem is the core of resource management involving devices with different
processing capabilities. Considering the given system and all the application’s requirements, deciding
whether or not to offload computations to another device is the key problem to solve. Despite identi-
cal system and application models, the offloading decision problem can still differ depending on the
following factors, increasing the complexity.

1. Decision moment. When is the decision on whether and how to offload being made? Is it a
pre-defined percentage [4], (static decision) or is it a dynamic decision being adapted in every
time slot? [16] Is the decision reactive to network changes or proactive?

2. Objective. The objective defineswhat (performance) metric should be optimized in the offload-
ing process and for whom. For example, minimizing latency [49], minimizing overall energy
consumption for edge servers and end devices [48] or only minimizing energy consumption of
the end devices [50].
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3. Constraints define restrictions and checks that the system should always uphold during the
optimization. A system constraint could be the caching limit of an edge server, while a performance
constraint could be an upper bound for the latency. In other words, even if it would optimize the
energy consumption objective, a trade-off leading to a latency above this threshold cannot be
considered.

4. (Offloading) destinations are the places or devices where a task could potentially be processed.
In MEC-enabled dynamic offloading models, this, typically, at least includes local processing
or computing at the edge. Other possibilities are: dropping the task, processing in the cloud and
offloading to another end device.

5. Actions. The decision problem intends to optimize the objective by choosing the best available
action. In the offloading decision problem, the action includes the chosen offloading destination.
In joint optimization schemes, actions can, for example, also include the server selection [45] or
caching policy [16].

6. DecisionMaker. Which entity makes the offloading decision? This simple concept can become
quite complex because it ties into the information available to the decision-maker. If the decision
is made centrally, the central entity needs to gather all the information necessary, which can lead
to overhead if many entities are part of the system. If the decision is distributed - e.g. every end
device makes its own offloading decision, bottlenecks risk arising. For example, if every device
decides to offload to one specific edge server, its processing capabilities risk being exceeded.

7. Mathematical technique. Li et al. provide an extensive summary of the most common tech-
niques to model offloading by elaborating on definitions, differences, advantages and disadvan-
tages and by giving examples of offloading schemes based on the different techniques [23]. The
following enumeration briefly summarizes the techniques they describe.

Convex and non-convex optimization techniques such as linear (convex) and mixed-integer
(non-convex) optimization problems are classic mathematical optimization techniques
that analytically seek to find the action(s) that optimize some objective function under pre-
defined system constraints. While such techniques are mathematically proven to provide
local or global optima, they often cannot handle highly complex situations and are unable
to take into account a changing environment.

Lyapunov optimization is used to optimize dynamical systems that use network queues by
defining a ‘‘drift-plus-penalty-expression" [23]. For example, application tasks or energy
processes can be modelled using queues and be represented in the drift, whereas the objec-
tive is embodied in the penalty. By jointly minimizing drift and penalty, an optimal solution
is sought. The advantages of this method are that their solutions have lower computational
complexity than those of (non)-convex optimizations while still being close to optimal. Dis-
advantages include that the optimum cannot be guaranteed, and some unrealistic modelling
assumptions need to be addressed, such as time-independent and identically distributed
action sets.

MarkovDecision Processes (MDP) can model dynamic decision making in an uncertain and
varying environment by defining states and seeking an optimal decision for every state.
With state-dependent actions and transition probabilities (chance of transitioning from
one state to another given some action), uncertainties in the system can be modelled. A
disadvantage is that MDPs suffer from the curse of dimensionality: the more complex systems,
the more states are required to model the system properly, and an algorithm’s computing
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times might increase exponentially as a consequence. Another disadvantage is that many
real-life scenarios do not have well-known and well-defined transition probabilities.

Game Theory (GT) is a powerful mathematical technique to model the (distributed) decision
making and resulting interaction of multiple players (or users) of a system, each player trying
to optimize their own benefit. The solution, calledNash Equilibrium, to such a system is a
state in which no player can switch their action and receive a higher reward if all other players
keep their original action. The advantage is that it allows for the modelling of distributed,
independent and selfish decision-making of multiple actors. Furthermore, stochastic games
can also consider an uncertain and varying environment. The main disadvantages are that
a Nash Equilibria might not be global optima and that, similarly to MDPs, stochastic games
might also suffer from the curse of dimensionality.

Machine learning (ML) defines self-learning algorithms that seek a solution by learning from
past behaviours and then predicting the future. A form of machine learning suitable for
modelling offloading is (deep) reinforcement learning (DRL) since it is based on MDPs.
Because of its ability to learn, it is often applied to stochastic environments where transition
probabilities are hard to model or even unknown. A comprehensive survey on deep learning
in mobile edge is done by [47]. By using detailed schemes and tables, they classify the use of
deep learning, the different algorithms’ advantages and disadvantages, typical application
areas and focus on the difference between "intelligent edge" and "edge intelligence". The
former relates to deep learning embedded in the functioning of the edge (such as using
machine learning in the offloading decision problem), while the latter refers to intelligent
applications (e.g. self-driving cars or facial recognition) making use of the edge infrastructure.

Considerations to decide which modelling technique is appropriate for a scenario include: is it
a centralized (one party deciding for all actors) or a distributed (every entity making their own
choice) decision? Is the scenario static (system parameters do not change) or dynamic (an uncer-
tain environment is involved)? How can information be distributed in the system to determine
what information would be available for the decision-maker(s)? Does the model need to scale?
Are the entities powerful enough to calculate solutions to the model? [23]

In addition, we make a distinction on whether the model can be solved analytically or using
simulations.

Analytically. Some traditional optimization techniques can be evaluated analytically and guar-
antee the optimal solution. However, the complexity and uncertainty inherent to the
offloading problem make analytical solutions hard or even impossible: they often require
significant simplifications of the models (e.g., making a system linear) so that they are no
longer feasible in practice.

Simulations. Most studies evaluate their offloading scheme using simulations. By implementing
the system, application and offloading decision scheme and simulating a stochastic environ-
ment, they can get a more realistic insight into the performance of a scheme. However, due
to a large number of factors, comparing the simulation results between different offloading
schemes is often unjust. Commonly used simulation frameworks include iFogSim (30%),
CloudSim (19%), MATLAB (15%), and Java JMT (9%) according to [13]. Studies that make
use of machine learning solutions often evaluate their scheme using TensorFlow [16].
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Analysis of Guo et al.’s offloading scheme:
recapitulation of their formulas

C.1 Guo et al.’s computingmodel

The rendering delays in Guo et al.’s rendering scheme are modelled as follows. Note that these formulas
are taken from [16]. The only alterations are changing the variables such that they are consistent with
the remainder of the thesis and substituting the calculations of the SINR by a fixed value γ.

Table C.1: Table of simulation parameters by Guo et al. The parameters in bold differ from our
simulation parameters.

Symbol Name Value Unit

bzc , bzl Number of bits processed in a CPU cycle at MECs or
locally

0.4 bits/CPU cycle

- Uplink data ratio (ratio that needs to be communicated
uplink)

1/1000 -

ZC Total processing power of the MECs 1000e9 Hz
zl Local processing power of the HMD 1e9 Hz
Bu Uplink bandwidth 10 MHz
Bd Downlink bandwidth 1000 MHz
qi Quality resolution {720, 600, 480, 720} p
Cf Computational requirement of the frame’s foreground {2.5e6, 5e6, 10e6, 20e6} CPU cycles
Cb Computational requirement of the frame’s background {10e6, 20e6, 40e6, 60e6} CPU cycles
α Number of people associated to the base station (used in

Chapter 3, but not by Guo et al.)
5 user

The simulation parameters of Guo et al. are summarised in Table C.1 and Guo et al. provide the
following formulas to calculate the data sizes:

h(qi) =
5

9
q2i ,

Df = h(qi)/1000,

f(q0) = 10MB,
g(q0) = 2MB.
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where qi is the resolution. Looking at these formulas, it is unclear to determine their derivation: 5/9
probably results from assuming a 5:9 screen resolution and then having qi pixels as length and 5/9qi
pixels as height resulting in a length times height number of pixels.

The data rate of a user R is calculated as follows, based on the bandwidth B, the number of people
associated with the base station α and the SINR value γ:

R =
B

α
· log2(1 + γ).

Note that they calculate with 100 users and 10 base stations, but we simplify this to the number of users
α that are associated with the base station, because in Chapter 3 we assume the point of view of a single
user.

In local rendering, both fore- and background of a frame are rendered locally at the VR device. No
communication to the base station is needed. The latency for local rendering consists of the delay to
render the back- and foreground with computational requirements Cb and Cf on the local device with
processing power zl.

T local =
Cb + Cf

zl︸ ︷︷ ︸
Render back- and foreground

(C.1)

In remote rendering, both fore- and background of a frame are rendered remotely at the base station.
For the base station to render the foreground, it needs to receive some information from the VR device.
It is assumed that this information is not needed to render the background.

The latency for remote rendering consists of the delay for the uplink transmission, the rendering of
the frame (depending on whether the background is cached or not), the delay to compress the frame
for transmission, the downlink transmission delay of the compressed frame and decoding delay to
decompress the frame containing fore- and background information:

T remote =
Df

Ru︸︷︷︸
Uplink transmission

+
Cf

zc
+

{
Cb
zc
, if not cached

k(qi)
zc·bzc

, if cached︸ ︷︷ ︸
render fore- and background

+
f(q0)

zc · bzc︸ ︷︷ ︸
Compression latency

+
g(q0)

Rd︸ ︷︷ ︸
Downlink Transmission

+
h(qi)

zl · bzl︸ ︷︷ ︸
Decoding compressed frame

, (C.2)

where Df is the uplink data size, Ru and Rd the up- and downlink data rates, Cf and Cb the fore- and
background computational requirements, k(qi)

In cooperative rendering, the foreground of a frame is rendered locally at the VR end device, while
the background is rendered at the base station. No uplink communication is needed.
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Tcoop = max

(
Cf

zl︸︷︷︸
local foreground rendering

,

{
0, if cached
Cb
zc
, if not cached︸ ︷︷ ︸

Remote background rendering

+
f(q0)

zc · bzc︸ ︷︷ ︸
Compression latency

+
g(q0)

Rd︸ ︷︷ ︸
Downlink Transmission

+
h(qi)

zl · bzl︸ ︷︷ ︸
Decoding compressed frame

)

︸ ︷︷ ︸
Remote background rendering

+
k(qi)

zl · bzl︸ ︷︷ ︸
integrate fore- and background

(C.3)

C.2 Maximumnumber of users based onGuo et al.’s computingmodel

Based on the formulas in the previous section, the maximum number of people that can simultaneously
render remotely (under the same system state) can be calculated as follows. Note that this formula as-
sumes that everyone renders frames with the same quality resolution q and computational requirements
Cf and Cb. The upper bound on the number of users that can be associated with the same base station
j as user i for user i to meet its latency requirement is calculated as follows. To include the two cases
(the background frame is cached, or it is not cached), we define v ∈ {0, 1} as the caching parameter,
v = 1 if the background is cached and v = 0 if not. Let N be the number of users associated with base
station j (including user i). Then the following values depend on N :

Ru =
Bu

N
· log2(1 + γ)

Rd =
Bd

N
· log2(1 + γ)

zc =
Zc

N
.

Filling this into the equation for T remote:

Df

Bu

N · log2(1 + SINRu
ij)

+
Cf

Zc
N

+
1
Zc
N

· (1− v)Cbbzc + vk(qi)

bzc
+

f(q0)
Zc
N bzc

+
g(q0)

Bd

N · log2(1 + SINRd
ij)

+
h(qi)

zl · bzl
≤ τ

⇐⇒ N ·

(
Df

Bu · log2(1 + SINRu
ij)

+
Cf

Zc
+

(1− v)Cbbzc + vk(qi)

Zcbzc
+

f(q0)

Zcbzc
+

g(q0)

Bd · log2(1 + SINRd
ij)

)
︸ ︷︷ ︸

≥0

≤ τ − h(qi)

zl · bzl
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Since all individual terms and factors in the coefficient ofN are positive, we can divide by the coefficient
and determine the upper bound for N :

N ≤
(
τ − h(qi)

zlbzl

)
· 1

Df

Bu·log2(1+SINRu
ij)

+
Cf

Zc
+ (1−v)Cbbzc+vk(qi)

Zcbzc
+ f(q0)

Zcbzc
+ g(q0)

Bd·log2(1+SINRd
ij)

.

Figure C.1 shows the maximum number of users that can simultaneously offload for different
parameters.
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Figure C.1: Maximum number of people that can simultaneously offload under different parameters
when θt = 1/60 s and γ = 20 dB.
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