
Master’s Thesis

 Solving the Dynamic Container

Relocation Problem to Minimize

Transportation Costs using Approximate

Dynamic Programming

R.R. Bosch

Sep 2022

Supervisors University of Twente:

Martijn Mes

Eduardo Lalla

Supervisors Cofano:

Leon de Vries

Address:

Drienerlolaan 5

7522NB

Enschede

Address:

Capitool 9

7521PL

Enschede

Management Summary

1

Management Summary

Problem definition

This research on container logistics is done for Cofano, a software-as-a-service company for many

logistics companies. One of their products is a Terminal Operating System, which among other things

provides advice on where to stack containers within a terminal. Container terminals are busy

interfaces between different modes of transport for containers, where they are stored in stacks until

they are retrieved. Transport companies want to be able to drop off and retrieve their containers as

quickly as possible, so efficient handling of containers within a terminal is important. The decision

where to locate a terminal is an important problem, as the decision has long-term effects on the layout

of the terminal. This is because retrieving a container requires the relocation of all containers above

it, called a reshuffle. Each reshuffle introduces inefficiency, so it is important to anticipate on which

stack you put a container. Additionally, exact information about the arrival and departure times of

containers is not known in advance, and each container has many possible destinations, making it

infeasible to evaluate each option in-depth.

Methods

To solve this problem, we formulate the container terminal and schedule of arriving and departing

containers as a Markov Decision Problem. Each state represents the layout of the terminal, and in

each stage a batch of containers arrives or departs. The actions that are required are the allocation of

each arriving container to the terminal, and the reshuffling of all containers that block the departing

container from doing so.

To solve the Markov Decision Problem, we use Approximate Dynamic Programming. This method is

good at optimizing complex stochastic Markov Decision Problems by offering a solution to the “curses

of dimensionality”, which makes solving these problems impossible due to the number of states,

choices and outcomes that are possible in these kinds of problems. It achieves this through iterative

learning and separation of the consequences of actions in a particular state from randomness. The

algorithm attempts to learn the optimal decision at each stage by going through the problem multiple

times and approximating the future costs at each stage using a value function approximation. We use

a Basis Feature Function, which uses characteristics of the terminal layout as input, called features.

These features give an indication of the goodness of a particular layout at a specific time, and these

values are combined in a weighted sum to arrive at the expected future costs. These weights are

learned iteratively by updating the weights so that the predicted costs approach the costs realized in

each iteration. In addition, this research tests a neural network as an alternative to the linear

approximation used in the basis feature function.

In this particular problem we also have to deal with finding the optimal decision in a single stage, as

the available decisions in any given state are too many to evaluate completely. We solve this problem

using two methods: a partial search tree and a mixed integer program. The partial search tree

evaluates only the 𝑥 most promising moves, which are determined using the value function

approximation and direct costs. The mixed integer program turns the single-stage optimization

problem into a set of decision variable and linear constraints, which allow for powerful algorithms to

solve this problem efficiently.

R.R. Bosch

2

Results

The proposed solutions are tested on a set of 13 generated problems. These are terminals with

characteristics ranging from 10 to 40 stacks, 40% to 80% occupation, and different length-of-stay for

containers and batch sizes. We tested multiple sets of features, different weight-updating algorithms

for the basis feature function, choice policies and pre-training using heuristics. All results are

benchmarked against two heuristics from literature: the min-max heuristic and the reshuffle-index

heuristic.

We find fast convergence towards the optimal performance of the algorithm (<200 iterations). For all

of the problem instances we compare the performance of the algorithm to the best performing

benchmark heuristics and find that the proposed solution results in a reduction of costs of on average

6.8%, with a standard deviation of 4.8%.

When testing the Neural Network as an alternative to the linear approximation of a basis feature

function we find that the Neural Network requires a significantly larger training time (5000 iterations

compared to 200), and performs on par or slightly better, resulting in 2% less costs. This is not a robust

improvement however, as the Neural Network performance fluctuates more over training iterations.

In testing single-stage solution methods, the Linear Program outperformed the partial search tree by

on average …, but the search tree outperformed the algorithm used in (Boschma, 2020) by 3.2%. The

Linear Program was prohibitively slow to train with however, so some solution for this would need to

be found before it can be used. In the meantime, the partial search tree already provides an

improvement over existing methods.

Recommendations

To conclude, the developed solution resulted in an improvement of on average 6.8% reduction in costs

compared to benchmark heuristics and converges quickly for an Approximate Dynamic Programming

algorithm. However, while this model is able to solve the problem it was tested on better than any

tested heuristic, it is not applicable to realistic problems as is. The problems on which it was tested

are too small to be realistic terminals, as the algorithm as it is written in this thesis took a prohibitively

long time to solve on realistic problem instances (300+ stacks compared to 40). However,

improvements in computation time are possible by using a different programming language, using a

more powerful computer, and other optimizations in the implementation.

Additionally, the performance of the solution can be further improved. We suggest studying other

methods to implement the information process in the Markov Decision Problem, such that the amount

of uncertainty in container arrivals can be better represented. We also recommend looking at other

decision pruning methods, and further exploring possible features for the basis feature function.

Acknowledgements

3

Acknowledgements

“Then I saw all that God has done. No one can comprehend what goes on under

the sun. Despite all their efforts to search it out, no one can discover its meaning.

Even if the wise claim they know, they cannot really comprehend it.”

Ecclesiastes 8:17, NIV

Before you lies my master thesis ‘Solving the Dynamic Container Relocation Problem to Minimize

Transportation Costs using Approximate Dynamic Programming’, which is the result of a year of work

at the company of Cofano. It also marks the end of my study Industrial Engineering and Management

at the University of Twente. While it has been a challenging year, I feel like a learned a lot from an

academic and a personal point of view. I learned a lot about doing scientific research, about modelling

and programming, and got a sneak peek into the world of logistics companies. I want to thank my

colleagues at Cofano for the easy welcome they gave me, and in particular I want to thank Leon, who

orchestrated the assignment, and Quirijn, for the biweekly update meetings and interest in my

research.

I also want to thank my supervisors at the university, Martijn and Eduardo. Their knowledge about the

problem and solution method I used were indispensable, and their insights and remarks about my

research kept me in the right direction.

I’m also very grateful for the support of my friends and family. I want to thank my housemates for

listening to my rants when I encountered one too many bugs in my code, and my parents for

supporting me throughout my entire study. I specifically want to thank Matthijs, Eveline and Jedidja,

whose friendship and study-related advice have been immensely helpful when I had no idea what to

do. Lastly, I want to thank Mette, who was a blessing and great support for me throughout the process

of my thesis.

During my life as first a Civil Engineering student and then as an Industrial Engineering student I

learned much about modelling, logistics, algorithms, teamwork, writing and thinking in a scientific

manner in general. I had a great time, and I’m looking forward to the future, whatever it may bring.

Robbert Bosch,
September 2022

R.R. Bosch

4

Table of Contents

Management Summary 1

Acknowledgements 3

Table of Contents 4

Nomenclature and Abbreviations 6

1. Introduction 8

1.1. Company Introduction 8

1.2. Context Description 8

1.3. Problem Cluster and Problem Statement 9

1.4. Scope 10

1.5. Research Objective and Questions 11

2. Context Analysis 13

2.1. Introduction 13

2.2. Containers 14

2.3. Equipment 15

2.4. Container Allocation 17

2.5. The Information Process 19

2.6. Conclusions 19

3. Literature Review 20

3.1. Container Relocation Problems 20

3.2. CRP Solution Methods 22

3.3. Approximate Dynamic Programming 26

3.4. Aspects of ADP 29

3.5. Single-Stage Optimization Methods 31

3.6. Conclusions 33

4. Model Design 35

4.1. Introduction of problem 35

4.2. Assumptions 35

4.3. Markov Decision Process model 37

4.4. Value Function Approximation Design 42

4.5. Single-Stage Optimization Methods 49

4.6. Pruning methods 51

4.7. Conclusions 52

5. Experiments and Analysis of Results 53

Table of Contents

5

5.1. Experiment Design 53

5.2. Problem Instance Generation 53

5.3. Feature Generation 55

5.4. Feature Set Selection 56

5.5. Weight Updating Algorithm 59

5.6. Choice policy 61

5.7. Pre-training 62

5.8. Corridor 62

5.9. Single-Stage Optimization Method Experiments 63

5.10. Neural Network Design Experiments 65

5.11. Sensitivity Analysis 68

5.12. Conclusions 71

6. Conclusions, Discussion & Recommendations 72

6.1. Conclusions 72

6.2. Discussion 72

6.3. Recommendations 73

7. References 76

8. Appendices 79

Appendix A – Linear Program Formulation 79

Appendix B – Problem Instance Generation Script 85

Appendix C – Problem Instance Information 86

Appendix D – Pearson’s Correlation Between Future Costs and (Composite) Features 92

Appendix E – Standard Configuration of the ADP Algorithm Used in Testing 94

Appendix F – Average Contribution to the Value Function Approximation per Feature 95

Appendix G – Overview of the Composition of Each Tested Feature Set 96

R.R. Bosch

6

Nomenclature and Abbreviations
Table 1 - Abbreviations used in this Thesis

Term Meaning

20DV 20-foot Dry Van

20RF 20-foot Reefer

40DV 40-foot Dry Van

40RF 40-foot Reefer

ADP Approximate Dynamic Programming

ASH Average Non-Empty Stack Height

B&B Branch & Bound

BD Blocking Degree

BFF Basis Feature Function

BLB Blocking Lower Bound

BLD Batch Label Difference

BRP Blocks Relocation Problem

CRP Container Relocation Problem

DLEBLB Dynamic-Lookahead Expected Blocking Lower Bound

EBLB Expected Blocking Lower Bound

EEBLB Expanded Expected Blocking Lower Bound

FIC Future Incoming Costs

FOC Future Outgoing Costs

HUSP Highest Used-Space Percentage

ILP Integer Linear Program

LB Lower Bound

LoS Length-of-Stay

LP Linear Program

MAE Mean Absolute Error

MDP Markov Decision Process

MMH Min-Max Heuristic

MMV Min-Max Value

MSE Mean Square Error

MWSP Minimum Wrong-Stacking Penalty

NES Non-Empty Stacks

NIC Non-Ideal Containers

NIS Non-Ideal Stacks

PST Partial Search Tree

R^2 R-squared

RIH Reshuffle-Index Heuristic

RL Reinforcement-Learning

SOS Semi-Ordered Stacks

SSH Squared Stack Height

TDLB Travel Distance Lower Bound

TEU Twenty-Foot Equivalent Unit

UB Upper Bound

Nomenclature and Abbreviations

7

US Unordered Stacks

USP Used-Space Percentage

VFA Value Function Approximation

Table 2 - Symbols used in this thesis

Symbol meaning

𝛼 Values of the cost-function

𝛾 discounting factor for future costs

𝜔 Random information

𝜙(𝑆𝑡) basis feature function

𝜋 policy

𝜃 weights of the VFA

𝑎 arrival batch

𝑏 order within arrival batch

𝑐 stack

𝐶 constant

𝐶𝑡(𝑆𝑡, 𝑥𝑡) direct contribution to the cost

𝑑 departure batch

𝑒 exit

𝑓 order within departure batch

𝑖 Iteration or container id

𝑛 simulation

𝑛 entrance

𝑝 tier

𝑆𝑡 State at time 𝑡

𝑆𝑡
𝑥 Post-decision state 𝑆𝑥 at time 𝑡

𝑡 timestep

𝑉𝑡(𝑆𝑡) Value of state 𝑆 at time 𝑡

𝑊𝑡 random information at time 𝑡

𝑥𝑡 decision at time 𝑡

R.R. Bosch

8

1. Introduction

In this chapter, we introduce the company of Cofano and their business, the problem of container

handling at container terminals, and identify the problem Cofano experiences the problem this thesis

will cover. Afterwards we determine the scope and research questions.

1.1. Company Introduction
Cofano is a company founded in 2010 that provides software-as-a-service in a variety of logistics

sectors. They offer services for terminals, air transport, shipping, warehousing, and rail transport. With

two offices and 50 employees, they are a small company, but their clients have used Cofano’s software

to handle over 2.3 million containers in the last year. In the sector for terminals, Cofano offers

Terminal Operating Systems that help with the entire cargo handling process, from order management

to physical handling of cargo.

One of the aspects that clients of Cofano are looking for in their Terminal Operating Systems is advise

on the optimal placement of containers. Cofano offers in their software a basic container handling

system, where all containers of one client can be designated to one stack, or where simple rules can

be applied (e.g., ‘do not stack a container on top of one that is needed today’). This software helps,

but still depends on manual configuration, meaning the solution quality depends on the planner. As

terminals are judged on KPIs such as the length of stay of trucks or ships, Cofano’s clients would like

to see as efficient container handling as possible, to improve the performance of their terminals.

1.2. Context Description
In modern logistics, containers have become an essential method of transporting goods; in 2020 over

9 billion USD worth of goods were transported using containers (Statista Research Department, n.d.).

The fact that they are relatively uniform boxes whose contents do not need to be unpacked at each

point of transfer makes them the standard for freight transport. Container sizes are expressed in terms

of the twenty feet long standard container, also known as the Twenty Feet Equivalent Unit (or TEU).

Deep-sea general cargo is heavily containerized, with 849 million TEUs being brought through ports in

2021 (Statista Research Department, 2022). This means that these containers are loaded from or onto

a ship twice or more, depending on whether they are first transported from a smaller port to a larger

international port. The large and increasing number of container shipment causes high demands on

seaport container terminals to keep the flow of incoming cargo smooth and fast. Seaports compete

between each other for sea traffic, and the competitiveness of a port is mostly determined by the time

in port for ships (transshipment time) and low prices for loading and unloading. This means that a

crucial advantage for seaports is the rapid turnover for containers, which leads to minimization of the

time a ship spends in port, and thus more satisfied customers and better utilization of seaport

equipment.

One phenomenon that introduces inefficiency in the handling of containers is reshuffling: containers

are stored on-site between arrival and departure, and containers are often stacked on top of each

other to preserve space and minimize moving distance. Stacked containers have a Last-in-First-out

retrieving order, which means that if a container needs to depart before other containers on top it,

those need to be relocated somewhere else. The removal of containers blocking another container is

called a reshuffle, and this move is inherently inefficient, particularly when this occurs during the

loading of a ship. Reducing the number of reshuffles is a classic optimization problem called the

Container Relocation Problem (CRP).

Introduction

9

The CRP has many different variants and extensions, and all variants on the problem have solution

spaces large enough to make exact solutions to this problem infeasible (Lehnfeld & Knust, 2014). In

addition, the CRP problem has many variants depending on the type of problem and the objective.

There exists a tradeoff between the ease of computation of solutions and applicability; most classic

CRPs try to reduce the number of reshuffles and consider each reshuffle as identical in cost, but in

reality, there is a difference in time cost between long-distance moves and short-distance moves.

Additionally, some CRPs only consider one loading or unloading scenario, while in terminal operations

a series of loading and unloading problems exist where the solution to one problem influences the

terminal layout for the next problem. Furthermore, knowledge about the order and timing of arrivals

is limited as the priority of containers within a ship, called the stowage plan, is mostly unknown before

a ship comes to port. Some containers may even change destination last-minute, meaning that

containers can be added or removed from the schedule. To deal with these complex aspects of the

CRP, sophisticated algorithms are required, which is discussed in Chapter 3.

1.3. Problem Cluster and Problem Statement
This section identifies the action problem and the structure of problems that underly that problem,

then we identify the core problem and lastly, we give the problem statement. The problem cluster

(Figure 1) starts with the action problem that is being experienced by Cofano (no. 11); their software

for scheduling container handling could offer a better service, so clients would like better tools to help

reduce costs, which would lead to more customer satisfaction for Cofano. In the problem cluster given

in Figure 1, this problem is demarcated in red.

Figure 1 - Problem Cluster of Cofano

The action problem is caused by the lack of an efficient container planning methodology that Cofano

offers within their tools (no. 7) coupled with the situation at their clients’ terminals (no. 10): shipping

terminals are strained in their workflow due to the amount of traffic that goes through them, and the

fact that container loading is not sufficiently efficient. The volume of traffic going through terminals is

not a problem we can solve, as this is a direct result of the number of containers handled by the

terminal, i.e., their core business. We can however improve efficiency.

The source of inefficiencies are reshuffles, as discussed in Section 1.2. The necessity for container

stacking and thus the source of reshuffles, cannot be prevented without a massive decrease in

terminal capacity, but finding more efficient container handling schedules can alleviate the problem.

The problem bundle ends with different reasons why current solutions to the CRP are not sufficient

(no. 1 - 5). These characteristics are inherent to the real-life application of the CRP to terminals, so

these cannot be changed, only their effects can be diminished. Following this logic, the core problem

that can be addressed in this problem bundle is ‘Solution methods to the CRP problem are not optimal’

R.R. Bosch

10

(no. 7), which is what this research will focus on improving. With the core problem identified, we

formulate the following problem statement:

“Cofano lacks an algorithm to create near-optimal container handling schedules

for their clients, leading to a situation where unnecessary reshuffles are executed

and containers travel unnecessarily long distances, introducing delay in transport,

a reduction in terminal capacity, and an increase in handling cost.”

1.4. Scope
The goal of this research is to develop an algorithm that creates well-optimized schedules for

container handling in terminals. To accurately define what is and is not part of the problem and this

research, we line out the following assumptions and restrictions to arrive at the scope:

1. The CRP is solved at an operational level; layout and machinery are assumed to be fixed, and

demand is treated as unchangeable input.

The handling of containers can be managed on different planning ranges: strategic (e.g., terminal

design), tactical (e.g., client management) and operational (day-to-day physical handling of

containers). This research focuses only on the operational level of container handling, so the terminal

layout is assumed to be fixed. Client- and demand management is also on a higher planning range, so

this is assumed to be unchangeable.

2. The CRP is considered as a continuous combined loading and unloading problem.

The CRP comes in several different variants, so it is important to distinguish what is and what is not

considered part of the operational planning problem. A classification system of CRPs is given in

(Lehnfeld & Knust, 2014), where part of the classification is the problem type. In alignment with the

wishes of Cofano we treat the CRP as a continuous combined loading/unloading problem; a situation

where several loading and unloading problems take place after each other.

3. Objective of this research is to minimize transportation costs, expressed in the form of the

number of reshuffles and distance travelled per container.

Commonly in CRPs, the objective is to minimize the number of reshuffles. This goal keeps the problem

instance abstract and thus easily generalizable. This means however that all moves are considered to

take up an equal amount of effort, which is not the case in reality. An alternative objective is to

minimize the transportation costs, which can be expressed as the weighted sum of the number of

reshuffles and distance travelled per container (Li et al., 2019).

4. This problem focuses on the restricted CRP, meaning that proactive container moves are not

allowed.

In literature on the CRP, two variants of the problem are distinguished: the restricted and unrestricted

CRP. In the unrestricted CRP, any container may be moved at any time. This can be useful, as a

container may be reshuffled voluntarily in order to accommodate a better destination for a container

that is currently blocking a target container. In the restricted variant, only the top container of the

stack containing the current target container may be moved. While this can lead to suboptimal

solutions for a given stack layout, this restriction heavily reduces the available moves at any time (Jin,

2020). For practical purposes, this research will limit itself to the restricted CRP.

5. Stochasticity in the arrival of containers is taken into account by assuming containers arrive

and depart in batches; container priority within batches is only known upon arrival of said

batch or ship.

Introduction

11

Arrival and departure of containers is semi-planned; ships and their contents are largely known in

advance, but a stowage plan is only known hours beforehand. Additionally, the departure time for

containers is not always known beforehand, as routes are subject to change and trucks that deliver or

retrieve containers can be early or late depending on traffic conditions. To reflect this partial

knowledge in a model, all containers are assumed to be arriving in a certain batch. Even if the order

of containers within a ship is partly known, the content of a ship can simply be treated as a sequence

of batches. The order of batches (as well as if they are inbound or outbound) is known in advance, but

the order of containers within this batch is unknown until the batch itself arrives. Additionally,

containers may arrive or depart earlier or later due to fluctuations in the arrival time of the truck or

vessel that carries the container. This is reflected by sometimes changing the batch in which a

container arrives or departs. In this way, this research will limit the knowledge that is available

beforehand to reflect real-life scenarios.

6. The types and lengths of containers that are considered are any common standard type of

container present at the terminals of clients of Cofano.

Most approaches to CRP assume all containers are uniform blocks. This massively simplifies the

problems’ state space and thus allows for faster solutions to the CRP. In reality, while there exists a

standard size for container shipping (the Twenty-foot Equivalent Unit or TEU), containers can also be

twice as long, forming a 2 TEU container. Thus, containers are not uniform in size and type, meaning

they cannot all be stacked on top of one another. Additionally, there are restrictions on where

containers are allowed to be depending on their contents (e.g., containers containing dangerous

chemicals often have to be put in designated areas).

7. The model is not designed for one particular terminal, but instead such that by adjusting the

input and output of the model, the model can be trained and used by any terminal layout.

Cofano wants to have a model that is applicable to multiple terminals, in order to have a product that

can be sold to multiple clients. In designing a model for terminals, a trade-off needs to be made

between generalizability and performance. Functions that can approximate values of certain states

need to be different depending on the shape and size of a given terminal. Additionally, the schedule

of unloading a ship is different when there are multiple cranes available as opposed to one. A cutoff

needs to be made here. As most of Cofano’s clients operate small to medium sized terminals, where

one crane is available per ship, this assumption will be made for the remainder of this research.

1.5. Research Objective and Questions
With the problem statement and scope defined, we now define the main research objective and the

research questions that need to be answered to achieve the research objective. We define the

research objective as follows:

“Develop a model that creates container handling schedules for a container

terminal that minimizes the transportation costs and ship transshipment times,

while taking long-term costs into account.”

To be able to develop this model, several research questions need to be answered. The first objective

is to perform an analysis of the context of container handling at terminals, by looking at the logistics

behind container terminals and the state of the art in how container handling schedules are made.

The accompanying research question is:

1. What does container handling at terminals look like?

a. What are the important places, movements and equipment at a terminal?

R.R. Bosch

12

b. How is the handling of containers at terminals planned in general and at Cofano?

c. What is the nature of delays and information about delays at container terminals?

The second objective is to perform a literature review of state-of-the-art solution methods for the CRP

and variants that are relevant for our research. A specific focus is on data-driven methods such as

Approximate Dynamic Programming (ADP) and Reinforcement Learning (RL), as these methods are

well-suited to solve problems that are too large to solve exactly, especially when the environment is

stochastic (Powell, 2011). This gives the following research question:

2. What can we learn from literature on methods to solve CRPs?

a. How are CRPs categorized?

b. What methods exist for solving different types of CRPs?

c. What methods exist for solving the CRP treated in this research?

d. How can Approximate Dynamic Programming be used to solve the CRP treated in this

research?

The third step in this research is to use the knowledge gained from the context analysis and literature

review to design the model that can create container handling schedules for terminals in the manner

as described in the Research Objective. The research question that covers this objective is:

3. How is the problem and the corresponding solution method treated in this research

formulated?

a. What are the characteristics and assumptions underlying the problem treated in this

research?

b. How is the Markov Decision Process formulated from the problem description?

c. How are future costs of the Markov Decision Process accounted for when using

Approximate Dynamic Programming?

d. How is the optimal single-stage action found at each stage of the Markov Decision

Process?

e. What methods can be used to speed up the Approximate Dynamic Programming

algorithm?

The next objective is to compare the performance of the new model against existing solutions in

different contexts. The research question that addresses this objective is:

4. What is the performance of the proposed solution?

a. What features are optimal to use to approximate future costs in a container terminal?

b. How do parameters for the ADP algorithm influence the performance of the proposed

solution?

c. How can you best find the optimal way to allocate a single batch of containers?

d. What is the best function to use to approximate future costs in a container terminal?

e. How sensitive is the performance of the proposed solution to different

circumstances?

This thesis has a chapter devoted to each of these research questions, with additionally the customary

Introduction and the chapter Conclusions and Recommendations.

Context Analysis

13

2. Context Analysis

This chapter answers the first research question: “What does container handling at terminals currently

look like?”. We discuss the process of container handling at container terminals, terminal layout and

equipment present at terminals, and introduce container scheduling and related problems in

literature.

2.1. Introduction
From a logistics standpoint, container terminals are open systems of material flow with two external

interfaces: the quayside, where ships are loaded and unloaded, and the landside (also known as

hinterland), where containers arrive and depart via train or truck. The terminal contains equipment to

move containers, as well as places to store containers between their arrival and departure, see Figure

2. Upon arrival at a port, a ship is assigned to a berth within a terminal, where cranes are assigned to

load and unload containers onto the wharf behind it.

Figure 2 - Flow of transport within and around a container terminal (Steenken et al., 2004)

The yard of a terminal is the place where containers are stored, and is often divided into stacks, which

are often grouped into blocks of stacks. These blocks usually have containers of the same length, or

all contain empty containers belonging to the same company, for practical purposes. Blocks are

further divided in the x direction into rows and in the y direction into bays, as shown in Figure 3. A

particular [x, y] place containing containers is a stack, whereas a tier refers to the position in the

direction of z.

Figure 3 - Overview of the layout of containers in a terminal (Zhu et al., 2012)

Two types of ships are handled quayside: Deep-sea vessels (around 2000 TEU) which travel to main

ports between countries and continents, and feeder vessels (around 100-1200 TEU), which link smaller

R.R. Bosch

14

ports with oversea ports via sea, rivers or channels. Landside, trucks (1-2 TEU) and trains (up to 120

TEU) handle transport land inwards. Container handling at quayside and landside are separated;

quayside containers are typically handled using quay/gantry cranes, and landside containers are

handled using straddle carriers or reach stackers.

2.2. Containers
Containers are the units that go from point A to point B through the terminal, where it is stored while

waiting for their retrieval by a different (type of) vessel. The come in different sizes and types; the

‘standard size’ of a container is defined as the twenty-feet equivalent unit (TEU), and has a length of

20 feet, a height of 8 feet 6 inch and a width of 8 feet. Container sizes can differ however: container

length can be 20feet, 40feet or 45feet, with additionally different types having different dimensions.

The most common types of containers are:

Table 3 - List of common container types

Abbreviation Name Explanation

DV Dry van Standard sized container.
HC Highcube Container with 1feet extra height.
PW Pallet Wide Container with 1feet extra width.
HW Highcube Pallet Wide Container with 1feet extra width and height.
RF Reefer Container with cooling for perishable products.

TK Tank Cylindrical tank with container frame for chemicals.
OT Open Top Container lacking a roof, for oversized cargo.

Containers are referred by [length][type] (e.g., 40HC for a 40feet Highcube container). The most

common container type in use currently is the 40HC, see Figure 4. An additional important property

is whether a container is empty, as any empty container of the same size/type is interchangeable with

another, if they both have the same owner. In the distribution of container types, empty containers

are denoted by the ‘_E’-suffix. Empty containers are assigned to a separate bay of empty containers

due to their interchangeability and are left out of the research beyond this context analysis.

Figure 4 - Distribution of container types at client X

These different container types have restrictions about where they can be placed and how they can

be stacked. While stacking different lengths of container is technically possible, in practice different

container lengths are stored separately as much as possible, as this reduced planning complexity.

Reefers need electricity to keep running, which restricts their placement. Open top containers can

technically have others on top of them, but in practice these are used to store oversized cargo, which

40HC_E

40HC

20DV_E

45HW_E

20DV

40DV_E

40DV

40HW
40HW_E

45HW20RF Other

Context Analysis

15

means no other containers can be stored on top. DV, HC, PW, HW containers as well as reefers and

tanks can be stacked on top of each other, but tanks often contain dangerous chemicals which limits

their placement; some are not allowed to be stored near each other, while others have to be stored

separately (Steenken et al., 2004). The specifics of these restrictions can change depending on the

country, but in general 9 classes of dangerous goods are classified by the Economic Commission for

Europe Inland Transport Committee (Committee, 2021).

While many types of containers with specific stacking restrictions exist (open top containers,

containers containing dangerous chemicals, etc.), 98% of containers are normal containers with either

an extra foot of height and/or width (HC, DV, HW, PW), and of the remaining 2%, the majority consists

of reefer containers. These have the stacking constraint that they are confined to stacks where access

to electricity is available, so their contents can be cooled. For this reason, only a distinction is made

between 20/40ft containers and regular containers and reefers.

2.3. Equipment
The equipment present on a container handling terminal depends on the port, location and the

volume of container traffic it needs to process. The port of Shanghai, the largest port in the world

(Zhao et al., 2013) since 2008, has over 13km of quay length, 43 berths and 156 quay cranes. On the

other end of the spectrum are small river ports that ship cargo to and from deep-sea ports, where

cargo is loaded onto bigger, more efficient ships.

Figure 5 - Photo of Shanghai port (left) vs the port of Meppen (right), (MFAME, 2019; RTVDrenthe, 2021)

Equipment on a container terminal can be divided into quayside equipment and landside equipment.

Quayside equipment consists of quay cranes, dedicated to loading/unloading ships. Depending on the

type of port, different sized ships can visit the port, requiring different sizes of quay cranes. On the

landside, containers are transported from quay crane to storage and from storage to the hinterland

using straddle carriers, reach stackers or a combination of trucks and gantry cranes. These types of

equipment are shown in Figure 6.

R.R. Bosch

16

Figure 6 - landside equipment for a container terminal: straddle carrier (left), reach stacker (middle), and gantry crane (right)

Depending on the type of equipment used, the restrictions for where containers might be located

changes. Gantry cranes can put any container on top of any stack, as long as the stack height does not

exceed the height of the crane. Straddle carriers can put a container on top of another one as long as

the stack height does not exceed the straddle carrier height and the straddle carrier can drive up to

the stack itself (e.g., it is not surrounded by other stacks). Reach stackers lift diagonally, so in addition

to the restriction that a stack may not exceed height n, at least one neighboring stack in the same bay

may not exceed height n-1, and the stack next to that n-2, etc. These different stacking methods

impose restrictions on the layout of a container terminal.

Figure 7 - Histogram of the handling modality and movement type per client

We thus see that the equipment present at a terminal can vary between terminals, which leads to

different stacking constraints. Figure 7 shows that almost all internal movements (also known as

reshuffles) are performed by reach stackers at Cofano’s clients. However, other research done using

data from the clients of Cofano has already focused on the stacking restrictions imposed by reach

stackers, and using these restrictions limits this research’s applicability to terminals with other types

of stacking equipment. This research will thus not focus on that aspect of container stacking (Boschma,

2020).

Context Analysis

17

2.4. Container Allocation
The ship planning process takes place at different levels and contains different types of optimization

problems. In general, three different levels of planning are distinguished: strategic, tactical and

operational. Common decision problems encountered at each level are (Steenken et al., 2004):

1. Strategic: equipment acquisition, terminal design

2. Tactical: personnel scheduling, berth allocation, stowage planning, crane split

3. Operational: container storage logistics

At the strategic level (planning horizon of multiple years), long-term decisions are being made, such

as design of new or existing container terminals, and acquisition and maintenance strategies related

to the amount and type of equipment. At the tactical level (planning horizon of several days to several

months), semi-long term planning decisions take place. These include the scheduling of personnel as

well as the allocation of ships to berths in a terminal. Additionally, cranes are assigned to ships and

ship sections. There are constraints on the accessibility of cranes at a berth as well as constraints on

what ship types a crane can service, and often a range of cranes are present at a terminal due to

organic growth of a terminal over time. At the shipside of operations, stowage planning is done, where

containers are grouped according to their destination, weight and length, and assigned to minimize

the number of shifts required during loading/unloading, maximize utilization of the ship and ensure

stability. At the operational level, container stacking logistics takes place. This is also the level of

planning where the subject of this research takes place.

Cofano offers a container allocation planning tool. Extensive information on this tool was not

available, but a rudimentary explanation of the tool is provided by an employee. When a container is

picked up, the operator of the crane or reach stacker gets suggestions for a location of the container.

These suggestions are based on restrictions on the location of a container and decision rules (e.g., “do

not place a container on top of one that needs to be retrieved today”) and are determined by the

client. The final decision on where a container is located however, depends heavily on the operator.

The number of reshuffles per container for clients of Cofano is shown in Figure 8. The number of

reshuffles differs per client; containers are on average reshuffled 0.24, 1.66, 0.77 and 0.18 times for

each client respectively. The maximum number of reshuffles encountered was 35 times.

Figure 8 – Histogram of the number of reshuffles per container for each client

R.R. Bosch

18

The container arrival process and length of stay is also highly dynamic. The intensity with which

containers arrive differs per client and can change heavily depending on the time of day and weekday,

as demonstrated in Figure 9. Containers mostly arrive on weekdays between 7:00 and 18:00, but

outliers exist as well. Length-of-stay of containers (shown in Figure 10) has a wide range and is also

dependent on the client. While no data is available on the occupation of terminals at any given time,

the fact that containers arrive in irregular intensity while their length of stay is also irregular suggest

that the occupation of a terminal can vary wildly over time.

Figure 9 - Arrival frequency over a week for each client

Figure 10 - Histogram of the length of stay of containers for each client. A cutoff is made for >625 hours.

Context Analysis

19

2.5. The Information Process
Container terminals have limited information about the arrival times of vessels that bring in / take out

containers. While Cofano did not have quantitative data available about the delays vehicles

experience, an employee was able to provide a description about the nature of delays. In general, a

schedule about arriving and departing containers is made days to weeks in advance. The actual time

of arrival and departure however depends entirely on when a truck, train or ship arrives at the

terminal. The type and amount of delay experienced by containers is dependent on its mode of

transport. Ships have planned and realized delay; the majority of ships is delayed by a day or more,

which is communicated to port authorities. This type of delay is planned delay and can be accounted

for in planning of container handling. The exact time of arrival can still vary several hours. Trains are

relatively reliable. Trucks can get stuck in traffic and experience delays of an hour to several hours.

Delays and changes in arrival are also dependent on whether a container is retrieved or delivered to

the terminal. As ships can have delays of several days, trucks retrieving containers that arrive by ship

are only dispatched from the party retrieving the container when the ship has arrived at the terminal.

There is no adaptation however when a truck delivers a container to be retrieved by a ship, so a delay

of arrival of a ship can result in a pile-up of containers that are retrieved by a ship.

2.6. Conclusions
This chapter looked at the context where container handling within a terminal takes place. We

discovered that container terminals are an interface between different modes of transport. We

determined the relevant types of containers that attend terminals of clients of Cofano, which are

20HV, 40HV, 20RF and 40RF. The constraints that these types of containers impose on container

stacking at a terminal is that in general, containers of different lengths are supposed to be stacked

separately from each other, and reefer containers impose the restriction that these can only be stored

in stacks that have access to electricity, to allow for cooling of the container. In addition, we looked at

equipment of different types, and what restrictions these have when it comes to stacking containers.

The available stackers and cranes available depend on the size of the terminal and the modes of

transport available to the terminal, with large terminals that are attended by ships generally having

quay cranes and gantry cranes available, which can transport a container horizontally and vertically,

while land-based terminals generally operate using reach stackers, which can only stack diagonally.

The planning of container handling is done at three levels: strategic (equipment acquisition and

terminal design), tactical (personnel scheduling, berth allocation, etc.) and operational (container

storage logistics). The problem handled in this research concerns planning on the operational level.

Cofano offers a rudimentary container allocation tool that provides suggestions for container

placement. While helpful, this still results in situations where some containers are reshuffled >3 times,

and up to 35 times.

Container logistics are made more difficult due to delays in vehicle arrivals and thus in container

arrivals and departures. These delays can range from hours in the case of trains to days in the case of

ships. Trucks will wait to retrieve containers until they have arrived, but trucks delivering containers

to be taken by ship will not wait if a ship is delayed, which can result in pileups of containers.

Information about delay is partial; ships experiencing delay of one or multiple days will notify

terminals, but delay on the day of arrival is unknown until the ship arrives at port.

R.R. Bosch

20

3. Literature Review

This chapter discusses the second research question: “What can we learn from literature on methods

to solve CRPs?”. In doing so, we discuss the mathematical model behind different CRPs, popular

methods to solve CRPs, and introduce ADP and relevant aspects of ADP.

3.1. Container Relocation Problems
As discussed in Section 1.2, the problem of preventing reshuffles when handling containers is called

the Container Relocation Problem (CRP). This section introduces the concept of the CRP as well as

variants that exist within this class of problems. Additionally, a classification scheme is discussed to

concisely distinguish which variant of the CRP is being discussed, and the problem that this thesis

concerns is given a classification.

3.1.1. Basics

Consider a storage area that is arranged in stacks with fixed positions in a two-dimensional area. Let

ℳ = {1…𝑚} be a set of stacks. We introduce a set of items 𝒩 = {1…𝑛} that need to be stored in

this area, where typically 𝑚 < 𝑛. From a theoretical standpoint these items can be any stackable

identical item, such as coil springs, boxes or containers. In this case the problem is referred to as the

Blocks Relocation Problem (BRP), which is the most general form of the problem. The problem context

of this paper has containers as the item to be stacked, so that term will be used from this point on.

The CRP is a subsection of the BRP, where basic assumptions are used from the environment of a

container terminal.

In practice, containers might not be the same size, but containers of different sizes are often stored in

different places, so we assume that all items are the same size. Items are moved by cranes above the

stacks, so stack size is limited to a number of items 𝑝. An item is blocked if one or more items with

later retrieval times are stacked on top of it.

Typically, the storage area is represented as a rectangular bay which is divided into 𝐶 columns, each

having 𝑅 rows that are filled from the bottom up to 𝑟, with 𝑟 ≤ 𝑝. Container terminals are usually

divided into blocks, as mentioned in Section 2.1. The distance between stacks of the same block is

much smaller than the distance between stacks of different blocks, which is relevant if one is not only

concerned with the number of reshuffles but also other metric such as total distance per container or

travel time per container (Lehnfeld & Knust, 2014).

3.1.2. Loading, Unloading and Premarshalling

CRPs can be divided into several categories of problems based on whether containers loaded into the

terminal, containers are unloaded from the terminal, or a mix of these processes happens.

Additionally, a variation of the loading problem called the premarshalling problem exists.

Loading problems are concerned with storage of incoming items. Pure loading problems assume no

items are retrieved during the loading process. The solution to such a problem is a schedule with the

picking order and location for each incoming item. The objective is often to minimize the expected

number of reshufflings, as individual retrieval times are often unknown (Lehnfeld & Knust, 2014).

Unloading problems deal with retrieval of items. One must define the order to retrieve items in, and

if reshuffles are needed, where they should go. Dependent on the problem, the order of items to be

retrieved can be (partially) fixed.

Literature Review

21

A variation on the unloading is premarshalling, where items are sorted in storage such that when the

time comes that they have to be retrieved, this can be done in the shortest time or with the lowest

number of required reshuffles.

Combined problems occur as a combination of loading and unloading, and possibly also

premarshalling problems. These can be formulated as a sequence of individual problems of the

loading, unloading and premarshalling kind.

3.1.1. CRP Problem Variants
Aside from loading, unloading, premarshalling and a combination of those, CRPs are also defined by

the sequence in which containers are handled and the amount of freedom in the order of handling

containers. When discussing the order of container handling, we distinguish sequences (ordered

groups of containers) sets (unordered groups of containers).

In loading problems, it is common to store a set of incoming items since a train or ship provides several

containers to be unloaded at once. Alternatively, a sequence of incoming items can be given, when

the order of handling is preset. The order in which containers from a ship must be handled is a stowage

plan. Deviations from the stowage plan are sometimes possible and can improve efficiency, but are

commonly not considered, see (Jovanovic et al., 2019).

In unloading problems, items often must be retrieved in a predefined sequence given by the order in

which trucks arrive. Another possibility is that a sequence of outgoing item sets is given. In this case it

is known in advance which container has to be loaded on which ship, but not the order in which

containers for any given ship have to be handled. Other applications are based on items being grouped

by weight or other attributes. Sets of sequences or sequences of sets can also be given

Aside from the order in which containers are handles, additional constraints or possibilities allow for

different variants and applications of the CRP. Examples of these are: additional temporary storage,

grouping of empty containers, stacking restrictions (weight, type, etc.), location constrictions, and

different objective functions. Conventionally, the objective is to minimize the number of reshuffles, as

it is generally applicable to all CRP contexts and not dependent on equipment present at a terminal.

Purely considering the number of reshuffles keeps inconsistencies of the real world out of the

optimization model. Another option is minimization of costs, given by travel costs or penalties for

(soft) violations.

3.1.2. Problem Classification
A classification scheme of loading, unloading, premarshalling etc. problems is given in (Lehnfeld &

Knust, 2014). It is denoted by 𝛼|𝛽|𝛾, and denotes the type of problem, specifications around the

containers, and the objective. The α field stands for the type of problem:

𝛼1 =

{

𝐿 𝑖𝑓 𝑎 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑
𝑈 𝑖𝑓 𝑎𝑛 𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑

𝑃
𝐿𝑈
𝐿𝑃

𝑖𝑓 𝑎 𝑝𝑟𝑒𝑚𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑
𝑖𝑓 𝑎 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑

𝑖𝑓 𝑎 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑝𝑟𝑒𝑚𝑎𝑟𝑠ℎ𝑎𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑

With additional fields α2, α3 and α4 for determining the number of available stacks, the height of

available stacks, and the presence of temporary storage area respectively. There is no α1 notation for

a combined loading, unloading and premarshalling problem, as a combined unloading and

premarshalling problem decomposes into several independent premarshalling problems (Lehnfeld &

Knust, 2014).The β field specifies restrictions around the containers:

R.R. Bosch

22

𝛽1 =

{

𝜋𝑖𝑛

ℒ𝑖𝑛
𝑖𝑓 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑠𝑒𝑡𝑠 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛
𝑖𝑓 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑖𝑡𝑒𝑚𝑠 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛

(ℒ𝑖𝑛)𝐾
{𝜋𝑖𝑛}𝐾

𝑖𝑓 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐾 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡𝑠 𝑜𝑓 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑖𝑡𝑒𝑚𝑠 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛
𝑖𝑓 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝐾 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛

Fields β2 through β7 give information on the presence of stacking restrictions, weight limits, height

limits, location restrictions, the possibility of voluntary moves and if items have to be pushed back to

their original location if not retrieved. The γ field involves de objective function. The most popular

objective functions are:

𝛾 = {

#𝑅𝑆
𝐸(#𝑅𝑆)

𝑚𝑖𝑛 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑠
𝑚𝑖𝑛 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑠, 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

𝑇𝐶
𝑓

𝑚𝑖𝑛 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠,𝑚𝑜𝑠𝑡𝑙𝑦 𝑔𝑖𝑣𝑒𝑛 𝑎𝑠 𝑡𝑖𝑚𝑒 𝑛𝑒𝑒𝑑𝑒𝑑/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑔𝑖𝑣𝑒𝑛 (𝑚𝑢𝑙𝑡𝑖 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒) 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓

Using this classification scheme, we can classify the problem under consideration in this research. In

Section 1.4 the scope of the problem was formulated. The problem that is discussed is a combined

loading/unloading problem. The layout of the terminal under consideration is given as part of the

input, so that determines the number of stacks and the limit of number of items within each stack. In

container terminals, there is no temporary storage available, so the α field of this problem is given by

LU.

The input of the problem is given as a sequence of sets of containers, where the first set in the

sequence has its sequence revealed, following restriction 5 in the scope. This is different from any

option the classification scheme provides, so a new option is defined (ℒ𝑘≥2
𝑖𝑛 & 𝑜𝑢𝑡; 𝜋𝑘=1

𝑖𝑛 & 𝑜𝑢𝑡)
𝐾

. This

research does respect stacking and location restrictions surrounding reefers, dangerous goods etc. as

defined in Section 1.4, assumption 6. We do not allow proactive moves as explained in Section 1.4,

restriction 4, and items do not have to be pushed back. The β field is thus defined as

(ℒ𝑘≥2
𝑖𝑛 ; 𝜋𝑘=1

𝑖𝑛)
𝐾
, 𝑠𝑖𝑗 , 𝐿𝑖.

The γ field defines the objective function, which as per restriction 3 in the scope is defined as

minimizing the transportation cost, expressed as a combination of number of reshuffles and distance

travelled per container. (Li et al., 2019) define a flexible objective function 𝓍1*#RS + 𝓍2*D, where D

stands for the average distance travelled per container. As this problem contains stochastic input, the

objective is adapted to be 𝓍1*E(#RS) + 𝓍2*E(D). The complete α|β|γ classification of this CRP is then

𝐿𝑈|(ℒ𝑘≥2
𝑖𝑛 ; 𝜋𝑘=1

𝑖𝑛)
𝐾
, 𝑠𝑖𝑗 , 𝐿𝑖|𝓍1𝔼(#𝑅𝑆) + 𝓍2𝔼(𝐷).

3.2. CRP Solution Methods
There have been numerous papers into the CRP and related problems, with a variety of different

approaches. This section addresses these previous works, first by looking at research that addresses

individual loading/unloading problems and then by looking at combined loading/unloading problems.

Special attention is paid to research that has used ADP and ways in which the value of states of a CRP

can be approximated, as that is relevant for our approach.

3.2.1. Individual Loading / Unloading Problems
The 𝑈|𝜋𝑖𝑛|#𝑅𝑆 CRP is the most common form of the CRP and has a significant amount of research

done. These often assume a static environment, in which all information is available from the start.

Multiple papers have formulated mathematical models / LPs of the unloading CRP, with varying

approaches to solve this mathematical model, such as Branch and Bound, heuristics or LP solvers

(Forster & Bortfeldt, 2012; Jin, 2020; Kim & Hong, 2006; Wan et al., 2009).

Literature Review

23

Loading CRPs are less straightforward, as there is not a direct measure available to evaluate the quality

of a certain layout; the appearance of reshuffles only occurs during retrieval of containers, so the

quality of a layout only becomes apparent upon unloading. Nevertheless there is research done into

these problems, often called the Container Allocation/Storage Problem (Jovanovic et al., 2019; Li et

al., 2019; Sikorra et al., 2021; Zhang et al., 2014).

3.2.2. Combined Loading / Unloading Problems

Combined LU problems are more diverse in the problem environment they try to solve and in their

approaches. Almost all of the research done on these types of problem use a sequence of sets of

alternating incoming and outgoing containers. (Güven & Eliiyi, 2014; Ries et al., 2014) use a ‘Value of

Goodness’ to first allocate a container to a bay based on characteristics such as bay utilization and

quay-bay distance, and then to a place within that bay based on characteristics such as expected time

until departure for containers in that bay. These algorithms provide rudimentary but effective

methods to reduce the expected number of reshuffles and total transportation costs respectively.

There are also multiple papers that tackle the Dynamic CRP; a variant of the unloading CRP where a

sequence of batches needs to be loaded and unloaded, which is formulated as a series of U/L CRPs

that are solved sequentially. These problems keep information on future batches of containers out of

the problem until they are handled, in order to account for the limited amount of information available

in advance in real-world terminal operations (Tang, 2015).

3.2.3. ADP Approaches

There has been little research on using ADP to solve the CRP. (Zhang et al., 2014) construct a Stochastic

Dynamic Program (SDP) to solve the container loading problem, by constructing a punishment metric

𝑟(𝑋, 𝐷, 𝑘) based on assignment of a new container k to a heaver stack D, given input state X. Overall

objective of this method is to efficiently stack containers by incurring cost based on stacking of

containers using weight categories. To solve this for large problem instances, the SDP approach is

replaced with an ADP approach. Additionally, (Boschma, 2020) has done research also at Cofano into

the combined LU CRP using ADP, with minimizing the expected number of reshuffles as the objective.

A linear value function approximation is used to estimate the value of a certain layout, which is a linear

combination of features that approximate the value of a state. This concept is elaborated on in Section

3.2.4. This is to our knowledge currently the only research that tackles the combined LU CRP using

ADP, so the model formulated in this paper will provide a novel approach to this problem.

3.2.4. Value Approximations
Most methods that solve non-trivially sized versions of a CRP make use of approximations of the value

of a certain layout in order to approximate the long-term value of a decision, as it is established that

evaluating all states is not feasible due to the NP-hard property of the CRP. In ADP, and the remainder

of this thesis, these approximations are referred to as feature functions. This section discusses some

lower bounds, upper bounds and other characteristics that are important.

Lower Bounds

Using a lower bound on the number of reshuffles to estimate the quality of a certain layout without

evaluating the exact number of reshuffles necessary is a popular method in research on CRPs. The

simplest lower bound that is commonly used is known under many names such as Optimistic Expected

Number of Additional Reshuffles (Optimistic ENAR) (Kim & Hong, 2006), LB1 (Zhu et al., 2012) or

Blocking Lower Bound (BLB) (Galle, 2018), and simply assumes that for any container blocking any

below it, it is relocated once (as if to a temporary infinite storage area), and never again.

R.R. Bosch

24

More sophisticated LBs try to account for where reshuffled containers can be placed when they are

reshuffled. (Zhu et al., 2012) expand on the simple lower bound by checking if the reshuffled

containers from LB1 can be put on any stack where all containers are retrieved later than it, where an

additional reshuffle is added to get LB2. LB3 expands on that by looking at what container causes the

reshuffle. Let’s say container 16 in the retrieval order is blocking container 4 in a given layout, then

the layout is considered where containers 1-3 are removed, as well as their blocking containers.

Container 16 then causes another reshuffle if it cannot be placed in that new layout without blocking.

Another lower bound, called ELB4, is used in (Zhang et al., 2020). This lower bound preserves the

relocated container if it becomes the highest priority container in that stack, and then looks ahead to

the next container and determines the lower bound using a similar lower bound to LB3. At this point

however, the lower bound looks more like a small tree search that returns the best lower bound and

is thus not computationally efficient according to the paper.

For stochastic variants of the CRP an expected BLB is formulated, where for containers that might

block a container with the same batch number, the chance of blocking is calculated based on a uniform

distribution of order within that batch. For any two containers, this is 1/2, but this becomes more

complicated as more containers of the same batch end up in the same stack (Galle, 2018).

Upper Bounds

Upper bounds are usually generated from partial solutions that are derived using a fast heuristic. One

such heuristic is the Reshuffle Index (RI) heuristic: for each column in a yard-bay, the number of

relocations necessary to retrieve the earliest departing container from that column is determined. Any

container is then assigned to the stack with the lowest RI (Hakan Akyuz & Lee, 2014; Wan et al., 2009).

For each container that needs to be reshuffled, the destination is determined by finding the RI for

each non-empty stack. Another relatively fast heuristic is the Min-Max heuristic (Caserta et al., 2012),

where the first outgoing container of each stack is found, disregarding empty stacks. If any stacks exist

with an earliest retrieval order higher than the container under consideration (an incoming or

reshuffled container), the stack among that group with the earliest retrieval order is chosen.

Otherwise, an empty stack is chosen. If that is not available, the stack with the highest retrieval order

is chosen.

A more computationally heavy heuristic is the MRIPk
 upper bound, where the ‘minimize reshuffle

integer program’ of the CRP is solved exactly for the next K containers, where K is any number lower

than the number of containers in the terminal. The first container is then relocated according to the

optimal solution of that subproblem, and then the MRIPk problem is solved for containers 2 through

K+1, until no more containers are left (Wan et al., 2009). Another upper bound is the Virtual Relocation

Heuristic (VRH), consisting of two stages. First, all blocking containers above the target container are

sorted by descending priority number. Then the well-relocated stacks (stacks that do not have any

blocking containers) for the blocking containers are determined, and the stack with the top container

with the highest priority number is chosen. If no such stack is found, the container is relocated in the

second stage. There, the remaining containers are ranked by ascending priority number and relocated,

where possibly they must be inserted into a stack that had a container relocated to it in stage one.

The stack with the lowest number of blocking containers is then selected.

Other Indicators

There are other characteristics of a terminal layout that do not give a lower or upper bound, but

instead give some form of estimate for the number of reshuffles. One of those is the pessimistic ENAR

(Kim & Hong, 2006). This ENAR differs from the Optimistic ENAR lower bound, in that the assumption

Literature Review

25

is that containers are not located to a separate location but relocated to a random location within the

available area. This is expressed using E(k,n), which is the expected additional relocations resulting

from future blocks relocated to the empty slots of a stack with blocks whose highest priority is n and

empty slots which is number k. E(k,n) can be calculated recursively, starting at E(1,n) using the

formulas:

𝐸(𝑘, 𝑛) =

∑ 𝐸(𝑘 − 1, 𝑖)𝑛−1
𝑖=1

𝑁 − 𝑇 + 𝑘
+
𝑁 − 𝑛 − 𝑇 + 𝑘 + 1

𝑁 − 𝑇 + 𝑘
∗ {1 + 𝐸(𝑘 − 1, 𝑛)}

(1)

𝐸(1, 𝑛) =

𝑁 − 𝑇 − 𝑛 + 2

𝑁 − 𝑇 + 1

(2)

Where T is the maximum height of a stack in the future, n is the highest priority number in a stack, k

the number of empty slots in a stack under the assumption that blocks are filled up to tier T (Kim &

Hong, 2006).

Another measure is the blocking degree proposed in (Jiang et al., 2021). This does not determine the

number of reshuffles but sums the amount of priority difference for every blocking container. It does

this by determining the container with the highest priority and dividing the stack in an upper and lower

part. For the upper part, the difference in priority is summed up. For the lower part, this procedure

starts again by identifying the highest priority container in that stack. Lastly, some papers combine a

lower and upper bound method, and combine them in a weighted sum to get a composite measure

(Scholl et al., 2017). The paper uses the minimax rule as upper bound, and 𝓍∈{blocking number,

confirmed relocations, confirmed relocations with lookahead} as possible lower bounds, giving the

formula:

 𝐶𝑀(𝑥, 𝛼) = 𝛼 ∗ 𝑀𝑀 − (1 − 𝛼) ∗ 𝑥 (3)

3.2.5. Overview of CRP Solution Methods
This section discussed multiple theses that solve (a variant of) the CRP. Table 4 shows an overview of

all discussed theses, with classification of the CRP type as mentioned in Section 3.1.2. Many different

ways of formulating CRPs are possible, depending on the goal of the research. Research is mostly

either a more sophisticated method of solving a more abstract version of the CRP, or a rudimentary

method of solving realistically sized CRPs. Studies on the Unloading CRP are most common, as this

problem has a well understood objective. The performance of Loading CRPs is more difficult to

evaluate, as the costs (reshuffles) incurred during loading only become apparent when unloading, so

this would have to be included in the problem definition. Search tree related methods are popular for

deterministic versions of the CRP (A*, B&B, BSFT, LP), but for larger problem instances these methods

are assisted by heuristics to truncate the decision space. Realistic problem instances are often solved

entirely using heuristics.

R.R. Bosch

26

Table 4 - Overview of theses on the CRP. Solution Method abbreviations are: RL – Reinforcement Learning, B&B – Branch

& Bound, LP – Linear Programming, GA – Genetic Algorithm, NS – Neighbor Search, BFST – Best-First-Search Tree, FL –

Fuzzy Logic.

Work CRP type Goal Variations Solution

Method

Approximations

(Sikorra et

al., 2021)
𝐿 | 𝜋 𝐸(#𝑅𝑆) RL, Deep Q-

learning
-

(Boschma,

2020)
𝐿𝑈 | {ℒ𝑖𝑛 , ℒ𝑜𝑢𝑡} 𝐸(#𝑅𝑆) State

abstraction
ADP Multiple

(Jiang et al.,

2021)
𝑈 | 𝜋 𝐸(#𝑅𝑆) RL +

heuristic
Blocking Degree

(Zhang et

al., 2020)
𝑈 | 𝜋 #𝑅𝑆 B&B Multiple

UB/LBs; ML
improved LB

(Jin, 2020) 𝑈 | 𝜋 #𝑅𝑆 LP -
(Li et al.,

2019)
𝐿 | 𝜋 #𝑅𝑆 & 𝑇𝐶 Real-life

terminals
GA -

(Jovanovic

et al., 2019)
𝐿 | ℒ & 𝜋 #𝑅𝑆 Semi-

restricted
NS -

(Galle,

2018)
𝑈 | {𝜋} 𝐸(#𝑅𝑆) BFST -

(Scholl et

al., 2017)
𝑈|𝜋, 𝑈𝑃|𝜋 #𝑅𝑆 Heuristic UB/LB

Composite
(Tang,

2015)
𝑈|𝜋, 𝐿𝑈|{𝜋𝑖𝑛, 𝜋𝑜𝑢𝑡} #𝑅𝑆 LP -

(Hakan

Akyuz &

Lee, 2014)

𝐿𝑈|{𝜋} 𝐸(#𝑅𝑆) LP with
heuristics

Column index,
UB heuristic,
beam search
heuristic

(Ries et al.,

2014)
𝐿𝑈|{𝜋} #𝑅𝑆 + 𝑇𝐶 FL Time-until-

departure
(Güven &

Eliiyi, 2014)
𝐿𝑈|{𝜋} 𝐸(#𝑅𝑆) 2-Stage

Heuristic
Stack utilization
& Time-until-
departure

(Forster &

Bortfeldt,

2012)

𝑈|𝜋 #𝑅𝑆 Min-Max
Heuristic

-

(Zhu et al.,

2012)
𝑈|𝜋 #𝑅𝑆 A*-

algorithm
Multiple LBs

(Wan et al.,

2009)
𝑈|𝜋 #𝑅𝑆 Iterative LP -

(Kim &

Hong, 2006)
𝑈|𝜋 #𝑅𝑆 B&B Optimistic &

Pessimistic
ENAR

3.3. Approximate Dynamic Programming
This section introduces the concept of ADP by first introducing the Markov Decision Process, and the

changes to this problem that then form the basis for ADP. Afterwards, design choices that are

important about ADP are discussed.

Literature Review

27

3.3.1. Markov Decision Processes
Markov Decision Processes (MDP) are a class of optimization problems. Assume there is a state space

𝒮, and at each point in time t you are in state St ∈ 𝒮 . At that point one can take a decision xt ∈ 𝒳,

which results in a reward or cost given by Ct(St, xt), and a transition to a new state St+1 with probability

ℙ(St+1|St, xt). So, the decision xt affects the direct rewards and the transition probability towards the

next state. The solution to this problem comes in the form of a policy π ∈ Π, a function Xπ (St) that

returns a decision xt ∈ 𝒳t for all states. The best policy is found by solving the objective function of

Equation (4), which minimizes the total costs over all timesteps, possibly discounted by a discount

factor γ (Powell, 2011):

min
𝜋∈Π

𝔼𝜋 {∑𝛾𝐶𝑡(𝑆𝑡, 𝑋𝑡
𝜋(𝑆𝑡))

𝑇

𝑡=0

} (4)

Where the minimization objective can be replaced by maximization depending on the context of the

problem at hand. Solving this problem for every given path of states from t=0 to t=T is inefficient, and

backwards recursion, a classic method used for MDPs, can be applied. In this method we start at t=T

and introduce a function VT(ST), that gives the value of being in state ST. We then evaluate each action

xT to find VT(ST), and then step back one timestep t=T-1 to find the optimal action xt, where xt has the

largest one-period contribution (in terms of cost or profit) plus the value Vt+1(St+1) of landing in state

St+1, possibly discounted by a factor γ. Thus, we must solve equation 2, where equation 3 gives the

value of being in state St using the optimal action in that state. These equations are also known as the

optimality equations.

 𝑥𝑡
∗(𝑆𝑡) = arg max

𝑥𝑡∈𝑋𝑡

(𝐶𝑡(𝑆𝑡, 𝑥𝑡) + 𝛾𝑉𝑡+1(𝑆𝑡+1)) (5)

 𝑉𝑡(𝑆𝑡) = 𝐶𝑡(𝑆𝑡, 𝑥𝑡
∗(𝑆𝑡)) + 𝛾𝑉𝑡+1 (𝑆𝑡+1(𝑆𝑡, 𝑥𝑡

∗(𝑆𝑡))) (6)

These equations assume that the transition from state St to St+1 is deterministic, however in real-life

problems (and with the problem this research concerns), this transition is stochastic. Equation 4 can

be modified to account for this stochasticity:

 𝑉𝑡(𝑆𝑡) = max
𝑥𝑡∈𝑋𝑡

(𝐶𝑡(𝑆𝑡, 𝑥𝑡) + 𝛾𝔼{𝑉𝑡+1(𝑆𝑡+1(𝑆𝑡, 𝑥𝑡 ,𝑊𝑡+1))|𝑆𝑡}) (7)

Where Wt+1 is the random incoming information between t and t+1. This gives the expectation form

of the Bellman equation. The standard form is slightly different in that it does not use the expectation,

but ∑ℙ(St+1|St,xt), the sum of probabilities of transitioning from St to St+1, given xt. The expectation

form is more common however in ADP, so that will be used instead.

3.3.2. From Exact to Approximate Dynamic Programming
As discussed, stochastic MDPs can be solved by recursively computing Equation (7). However,

practical problem instances quickly become too large to solve exactly, due to the three curses of

dimensionality:

1. The state space 𝒮t becomes too large to find Vt(St) for all states S ∈ 𝒮t

2. The decision space 𝒳t becomes too large to evaluate the optimal decisions for all states

3. The expectation of future costs becomes too large to evaluate due to a large information

space 𝒲t

ADP tries to solve this problem by stepping forward in time. This first introduces two challenges: we

need a way to sample random incoming information, and a way to make decisions. For the second

problem we introduce V̅t(St), which approximates the value of being in state S at time t. This starts

R.R. Bosch

28

with an initial estimate V̅t
0. This initial estimate is improved by iterating over the problem multiple

times, improving the estimate V̅t(St) every iteration based on previous observations.

The Post-Decision State

A way to avoid approximating the expectation in Equation (7) and reduce the computational burden

is introducing the Post-Decision State variable (Mes & Rivera, 2017). Consider the standard transition

function St+1 = SM(St, xt, Wt+1). This function can be broken down into 1) the effect of the decision, and

2) the effect of the external information. This allows breaking the transition function into two parts:

𝑆𝑡
𝑥 = 𝑆𝑀,𝑥(𝑆𝑡, 𝑥𝑡) (5)

𝑆𝑡+1 = 𝑆
𝑀,𝑊(𝑆𝑡

𝑥,𝑊𝑡+1) (6)

Where St
x is the post-decision state: the point immediately after making a decision, but before new

information Wt+1 has become available. This distinction has as a benefit that computing the

expectation in equation 4 is not necessary anymore, as St
x is the point before any random information

is available, and thus the transition from St to St
x is deterministic. An illustration of the transitions

including the pre-decision state and post-decision state is given in Figure 11.

Figure 11 - Generic decision tree showing difference between MDP and ADP. Decision nodes (squares) and outcome nodes

(circles). Solid lines are decisions, and dotted lines are random

With the introduction of the post-decision state, the optimality equations change. Just as Vt(St)

represents the value of state St, we introduce Vt
x(St

x) as the value of the post-decision state St
x. The

relation between these two form the new optimality equations:

 𝑉𝑡(𝑆𝑡) = max
𝑥𝑡∈𝑋𝑡

(𝐶𝑡(𝑆𝑡, 𝑥𝑡) + 𝛾𝑉𝑡
𝑥(𝑆𝑡

𝑥)) (8)

 𝑉𝑡
𝑥(𝑆𝑡

𝑥) = 𝔼{𝑉𝑡+1(𝑆𝑡+1)|𝑆𝑡
𝑥} (9)

The advantage in computation lies in the fact that Equation (8) is a deterministic optimization

problem, which while still challenging, opens up a vast base of research for solving these problems

(Powell, 2011). Equation (9) can be replaced by a Value Function Approximation (VFA) using

knowledge learnt through previous iterations.

Iterations and Sampling

As we are using an approximation of the value of a state V̅t(St
x) that has little to no knowledge of the

actual value at the start, we have to run our algorithm iteratively and let the algorithm approach the

value function over iterations. Assuming we have a suitable approximation V̅(St
x) for post-decision

state St
x, and we are in iteration n at time t in state St

n, our optimization problem becomes:

Literature Review

29

 𝑣𝑡
𝑛 = max

𝑥𝑡∈𝑋𝑡
(𝐶𝑡(𝑆𝑡

𝑛, 𝑥𝑡
𝑛) + �̅�𝑡

𝑥,𝑛−1(𝑆𝑀,𝑥(𝑆𝑡
𝑛, 𝑥𝑡

𝑛))) (10)

 �̃�𝑡
𝑛 = arg max

𝑥𝑡
𝑛∈𝒳𝑡

(𝐶(𝑆𝑡
𝑛, 𝑥𝑡

𝑛) + 𝛾�̅�𝑡
𝑥,𝑛−1(𝑆𝑀,𝑥(𝑆𝑡

𝑛, 𝑥𝑡
𝑛))) (11)

After determining the optimal decision, the VFA of the post-decision state St-1
x,n needs to be updated.

This is possible, as the decision xt-1
n puts you state St-1

x,n, after which random information Wt(ωn) puts

you in state St
n. This means that while v̂tn is a sample of the value of being in state St

n, it is also a sample

of the value of the decision that put us in state St-1
x,n, so we can update our post-decision VFA using

the formula:

 �̅�𝑡−1
𝑥,𝑛(𝑆𝑡−1

𝑥,𝑛) = (1 − 𝛼𝑛−1)�̅�𝑡−1
𝑥,𝑛−1(𝑆𝑡−1

𝑥,𝑛) + 𝛼𝑛−1�̂�𝑡
𝑛 (12)

Where αn-1 is the updating factor at iteration n-1. The basic structure of the ADP algorithm then

becomes:

0. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

a. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 �̅�𝑡
𝑥,0, 𝑡 ∈ 𝒯

b. 𝑆𝑒𝑡 𝑛 = 1

c. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑆0
1

1. 𝐶ℎ𝑜𝑜𝑠𝑒 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑎𝑡ℎ 𝜔𝑛

2. 𝐹𝑜𝑟 𝑡 = 0, 1, ,2, … , 𝑇:

a. 𝑆𝑜𝑙𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10) 𝑎𝑛𝑑 (11)

b. 𝐼𝑓 𝑡 > 0, 𝑢𝑝𝑑𝑎𝑡𝑒 �̅�𝑡−1
𝑥,𝑛−1 𝑢𝑠𝑖𝑛𝑔 (12)

c. 𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑝𝑜𝑠𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒

3. 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑛. 𝑖𝑓 𝑛 ≤ 𝑁, 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 1

4. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 �̅�𝑡
𝑁

3.4. Aspects of ADP
In the previous section we discussed the basic structure of the ADP algorithm. There are however still

many options available within the ADP algorithm with regards to the structure of the VFA, finite

problems vs infinite problems, choice policies, and action enumeration vs linear programming. These

aspects are discussed in this section.

3.4.1. VFA Options
In the introduction to ADP, the structure of the VFA has been handwaved. There are however many

structures that can be chosen from. In problems with a large number of states (even with a post-

decision state), the learning rate is still prohibitively low if the chosen VFA cannot visit every state

often enough. A lookup table is an example of a VFA that suffers from this, while others can generalize

across states to alleviate this problem, at the cost of accuracy for specific states. Common forms of

VFA’s are:

1. Lookup tables

2. Hierarchical state aggregation

3. Basis functions

4. Neural networks

Hierarchical state aggregation

A common strategy used in ADP that is similar to using simple lookup tables is hierarchical state

aggregation. Using knowledge of characteristics of the state, several layers of aggregation are made,

where each state belongs to one aggregated state in each layer (Mes & Rivera, 2017). When new

knowledge about a state comes in, the value of each aggregated state it belongs to is also updated,

R.R. Bosch

30

giving general knowledge about similar kinds of states. Estimates about a new state are then made

using a weighted sum of the aggregated states it belongs to. This does introduces two new challenges:

knowledge about the problem is required to make meaningful aggregation levels, and a tradeoff needs

to be made between aggregation error and sampling error (Mes & Rivera, 2017).

Basis Function

This VFA uses the assumption that particular features or quantitative characteristics of a (post-

decision) state can be used to approximate the value of that state. For each identified feature a basis

function a ∈ A is created, of which the value is obtained from a post-decision state St
x,n using a basis

function ϕa(St
x,n). We assume the approximated next-stage value of a post-decision state can be

expressed by a weighted linear combination of features (a linear approximation):

 �̅�𝑡
𝑥,𝑛(𝑆𝑡

𝑥,𝑛) = ∑ 𝜃𝑎
𝑛𝜙𝑎(𝑆𝑡

𝑥,𝑛)

𝑎∈𝒜

 (13)

This weight θ is updated recursively in each iteration n. While the basis function is linear, the values

for features do not have to be. Selecting the right set of features for the basis function can be done in

small instances by testing all combinations and using the set with the highest R2 based on the goodness

of fit between the values of the basis function and the optimal value functions. For larger instances,

the right combination can be found by first running the ADP algorithm for a subset of states using

different feature sets, then simulating the resulting policies for a couple of iterations, and repeating

that for a number of replications (Powell, 2011).

Neural Networks

Neural networks are a relatively new method to use as a VFA. The concept of a neural network is

inspired by that of a biological neural network: a layer of input, consisting of nodes containing a single

datapoint, feeds values into one or multiple hidden intermediate layers via matrix multiplication and

ends into the activation of one or multiple nodes in the output layer.

Figure 12 - Basic structure of a Neural Network

In the context of ADP, a NN is given feature functions and/or parts of the state St∈𝒮, and as output

gives an approximation of the value of a state, similar to a basis feature function. Neural networks

have as an advantage that they can approximate complex higher-order interactions of features

without using non-linear functions (van Heeswijk & La Poutré, 2019), meaning they can still be applied

in a Linear Programming setting (this concept is explored in Section 3.4.3). Neural Networks in ADP

Literature Review

31

have been tested on classic problems such as the Linear Sum Assignment Problem, Travelling

Salesman Problem and Talent Scheduling Problem, providing considerable computation time

reduction at the cost of reasonable performance loss when compared to popular heuristics for these

problems (Xu et al., 2020). Of note is that while for NNs in Reinforcement Learning settings often the

entire state is given as input without feature functions, in ADP this can lead to prohibitively large input

layers due to the state space increasing exponentially. To solve this, domain knowledge about the ADP

problem at hand is required to select state features that might be relevant, and supplement those

with feature functions (Huré et al., 2021).

3.4.2. Finite problems vs Infinite problems
In Markov Decision Processes, problems can be either finite or infinite, meaning that they end at some

point or are stationary. As a finite problem terminates at some point, transient input can be provided.

This means that a model can be trained for one specific scenario instead of all scenarios that can be

encountered in a problem setting. To illustrate using the Dynamic CRP; A finite problem setting can

train for 3 ships arriving today, a general strike tomorrow, and 5 ships the day after. Meanwhile an

infinite problem has to train for all reasonable combinations of ships within that 3-day period and may

not be able to account for special events. An advantage infinite problems have over finite problems is

however that they do not need to be re-trained; once trained, the model would be able to give

solutions immediately, regardless of the situation. This can be an advantage if there is a small period

between when information becomes available and when a new solution is required.

The finite vs infinite problem property also has an effect on the VFA to be used, as in a finite problem

setting the VFA has to reflect that over time the optimal behavior shifts from long-term strategy to

greedy behavior. In (hierarchical) lookup tables and basis functions, this shift can be accounted for by

creating separate values for each timestep in a lookup table, or separate weights in case of a basis

function. Neural networks have not been applied extensively in finite horizon optimization problems,

so it is not possible to definitively say if a neural network can account for shifting priorities in finite

optimization problems. They have however been applied in (Huré et al., 2021), and intuitively it should

be possible to give the indicators of the finite planning horizon as input for a neural network, such as

the remaining number of containers or time left in the planning horizon.

Single pass vs double pass

In case of a finite problem with separate weight sets for each timestep, costs incurred late in the

problem horizon take a large number of iterations to be reflected in the VFA at early timesteps, in case

of a simple forward pass when updating weights. To overcome this, a double pass approach can be

used, consisting of a forward pass and a backwards pass. In the forward pass the decisions are

simulated moving forward. Then in the backward pass the value functions moving backward are

updated using the trajectory information.

3.5. Single-Stage Optimization Methods
In ADP, equation (11) needs to be solved at every stage, in every iteration of the training process. This

means that it is important to find the optimal decision quickly in order to prevent a prohibitively long

training time. In the case of the Dynamic CRP this presents a problem, as the decision space for any

timestep is very large, even for the restricted CRP; every incoming container requires one 1 container

to be placed, and every departing container requires 𝐸[𝑏𝑙𝑜𝑐𝑘𝑒𝑟𝑠] containers to be reshuffled. All

batches consist on average for one half out of incoming containers, and for one half of outgoing

containers. This means that the size of the decision space |𝒳𝑡| becomes equal to Equation

Error! Reference source not found..

R.R. Bosch

32

|𝒳𝑡| = (𝐸[𝑎𝑠] ∗
1

2
(1 + 𝐸[𝑏𝑙𝑜𝑐𝑘𝑒𝑟𝑠]))

|𝐵𝑡|

 (14)

Where 𝐸[𝑎𝑠] is the expected number of available stacks, 𝐸[𝑏𝑙𝑜𝑐𝑘𝑒𝑟𝑠] the number of expected

blockers of any particular container, and |𝐵𝑡| the size of batches. This means that the decision space

grows exponentially with the size of batches, making it infeasible to enumerate over all available

decisions xt ∈ 𝒳t for realistically sized terminals. If we assume that 𝐸[𝑎𝑠] = 𝐶 with 𝐶 being the number

of stacks in the terminal, and 𝐸[𝑏𝑙𝑜𝑐𝑘𝑒𝑟𝑠] = 𝜌
1

2
(𝑃 − 1) (i.e., the number amount of containers

above any particular container for a terminal with 𝑃 stacks and an occupation of 𝜌), the decision space

for different sizes of terminals becomes:

C P ρ |B| E[as] E[blockers] |X|

8 4 0.6 2 8 0.9 5.78E+01

20 4 0.6 3 20 0.9 6.86E+03

50 6 0.6 5 50 1.5 9.54E+08

300 8 0.6 8 300 2.1 2.19E+21

300 8 0.6 15 300 2.1 1.03E+40

These decision space estimations are only rough indications but demonstrate that evaluating all

possible actions in a single timestep is not possible for all but the smallest problem sizes. We thus

need algorithms to efficiently find the optimal decision that minimizes not only the direct costs

𝐶(𝑆𝑡
𝑛, 𝑥𝑡

𝑛) but also the estimated future costs �̅�𝑡
𝑥,𝑛−1(𝑆𝑀,𝑥(𝑆𝑡

𝑛, 𝑥𝑡
𝑛)).

3.5.1. Pruning-Best-First Search

As there is little research done on using ADP on the CRP, not many methods have been tried for single-

stage action optimization in the context of ADP. One thesis that has is from (Boschma, 2020), which

uses an adaptation of the Pruning-Best-First-Search (PBFS) to find the best set of actions sequentially

by allocating each container that needs to be allocated in in this timestep in order. In this way, the size

of the decision space of a batch of containers doesn’t scale exponentially with the size of a batch, but

multiplicatively. The indicator that is used to determine where to allocate the containers is the Value

Function Approximation, which is trained during the training of the ADP algorithm.

3.5.2. Linear Programming
An exact method for finding the optimal decision is Linear Programming. Linear programming allows

large optimization problems to be solved effectively by formulating all aspects of the problem as a

linear expression of decision variables. As equation (11) is an optimization problem, this too can be

solved using linear programming. This does require all parts of the equation to be expressed in a linear

program:

5. The direct costs

6. The VFA

7. The decision space

8. Transition of the current state to the post-decision state as a result of the actions taken

9. Basis functions for a VFA

This matter is problem-dependent for the direct costs, decision space and transition to the post-

decision state. For the CRP, LPs have been formulated (Jin, 2020; Tang, 2015; Wan et al., 2009). Several

options exist for the VFA: Lookup tables can be made compatible with LP by multiplying the presence

of a certain state with the future cost associated with that state. Basis feature functions are linear

combinations of basis functions, so if the basis functions are expressed linearly, a basis feature

Literature Review

33

function can also be used. Linear Neural Networks also exist, and have as a benefit that they can

express non-linear interactions without using non-linear activation functions (van Heeswijk & La

Poutré, 2019).

3.5.3. A*- algorithm
The A*-algorithm is a procedure generally used to find the shortest path between two points in a

graph. In the CRP the method has been used to solve the unloading problem (Zhu et al., 2012), where

the number of reshuffles is used as the distance to be minimized. Additionally, a variant on the A*-

algorithm called the Adapted Pruning-Best-First Search (PBFS) has been used to solve large problem

instances of the dynamic CRP. In this variant, the set of decisions in xt is divided into a sequence of

decisions to relocate incoming or reshuffled containers. The VFA learnt using ADP is used to estimate

the best location to put each container. While this reduces the size of the decision space to |𝒳t| ≤

(i,j)*|Bt|, the performance of the algorithm is reduced significantly when compared to exact methods

for small problem instances. An improvement on this tradeoff can be to reintroduce a priority queue

on states to visit, and to find more promising decisions to make.

3.5.4. Branch & Bound
Another solution method for solving the optimization problem of finding xt

* ∈ 𝒳t is to use Branch &

Bound. Multiple papers have used this method for solving the unloading CRP (Kim & Hong, 2006;

Zhang et al., 2020). In this approach, the problem is divided into allocating individual containers,

similarly to the search tree used by A*. For each point in the search tree, a LB and UB is produced, and

points in the tree with a LB ≥ the global UB are discarded. As the worst-case complexity of this method

is still equal to |𝒳𝑡| = (𝑖 ∗ 𝑗)
|𝐵𝑡,𝑐|, a Beam Search method can be applied to the procedure. In this

method, a maximum amount of viable nodes is allowed to be explored at any stage in the search tree.

Unpromising nodes are pruned, even if their LB < the global UB, reducing the decision space to |𝒳t|

≤ (i,j)*z*|Bt|, where z is the max width of the beam search. In (Zhang et al., 2020), the decision to

prune nodes is made using a random forest using a range of LBs/UBs as input. While training a random

forest takes time, the VFA in our ADP approach can provide a metric to prune unpromising nodes on.

3.6. Conclusions
In conclusion, CRPs are categorized by a couple of characteristics. The first is the type of movement

containers make; Unloading problems only have containers moving out of the terminal, loading

problems have containers moving into the terminal, Premarshalling problems shuffle containers to

minimize future unloading costs, and some combine Loading and Unloading or Loading and

Premarshalling. Another characteristic is restrictions in the order in which containers are handled;

containers can have a given sequence of handling or be an unordered set of containers. Lastly,

different objectives can be distinguished. Minimizing the number of reshuffles or expected reshuffles

in the presence of randomness is the most common objectives. Others are the minimization of

transportation cost, usually given as the amount of moves and total distance travelled.

A variety of solution methods exist to solve CRPs. Exact methods are done on small terminals (<30

containers) and are mostly in the form of LPs. Larger Unloading problems are solved using B&B,

Lookahead policies and various heuristics. Combined Loading/Unloading problems concern real-life

problem instances and use general heuristic methods such as 2-stage heuristics or tree search with

pruning. An overview of the discussed theses is given in Table 4.

The Dynamic CRP can also be formulated as a Markov Decision Problem (MDP). Formulating the

problem this way makes it possible to incorporate randomness into a CRP, by having information

become available between stages. Large instances of MDPs can be solved using Approximate Dynamic

R.R. Bosch

34

Programming (ADP). This method makes it possible to account for the exploding state-space that

happens due to randomness and larger problem instances. It does this by separating the transition

from state 𝑆𝑡 to 𝑆𝑡+1 by introducing a post-decision state 𝑆𝑡
𝑎; the state after which a decision is made,

but before random information comes in. This distinction allows effective computation of the optimal

decision by avoiding the need to calculate expectations.

Model Design

35

4. Model Design

In this chapter, we formally introduce the problem and propose an Approximate Dynamic

Programming (ADP) approach to solve it. We first introduce the problem that will be modelled.

Afterwards, it is formalized into a Markov Decision Process (MDP) using a design framework for MDP’s.

Afterwards we discuss the design of the Value Function Approximation (VFA). Finally, some methods

to prune the decision space of the ADP are discussed.

4.1. Introduction of problem
The setting of the problem that is solved in this research is a terminal with 𝑐 stacks and 𝑝 tiers, where

each place (𝑐, 𝑝) can hold one container. At the start of the problem a number of places are occupied

with containers, and over a given planning horizon a number of containers arrive and depart in

batches. The sequence of batches is known, the order of containers arriving/departing within these

batches is not. Containers can have one of four types: 20HV, 40HV, 20RF, 40RF. This is further

explained in Section 4.2, assumption 2. For each stack it is pre-determined which types of containers

can be placed there, so that containers of different sizes are not stacked on top of each other.

When a batch of containers arrives, the order of containers within that batch is revealed, and these

containers must be handled in the given order. Containers can be moved out of the terminal towards

an entrance, into the terminal from an entrance, and internally, with any internal move being a

reshuffle. Any container that blocks containers moving out of the terminal need to be reshuffled, but

this is only allowed for containers blocking the container that currently needs to leave the terminal.

The goal is to minimize costs made during the handling of all batches in the planning horizon, which

consist of the number of reshuffles, the distance travelled by all containers, and the number of times

a container is put on a stack it was not allowed, see Section 4.2, assumption 11. After all containers in

a batch are either moved in or out of the terminal we arrive at the post-decision state. To transition

from the post-decision state to the pre-decision state of the next stage we process random

information, which in this context arrives in the form of revealing the order in which the next batch of

containers needs to be handled.

4.2. Assumptions
With the problem introduced, we formalize all assumptions made in the model.

1. The objective of this model is to minimize transportation costs, defined as a weighted sum of the

amount of reshuffles, distance travelled by all containers and violation of soft constraints

The objective of this model is to minimize transportation costs. In CRPs transportation costs are

commonly defined as the weighted sum of the number of reshuffles and distance travelled by all

containers. As this model also contains a soft constraint, we add this to the cost function. How the

cost for reshuffles, distance and soft constraint violations are defined are explained in assumptions 9,

10 and 11 respectively.

2. The stacks, entrances and their locations are fixed

As described in Section 2.4, this research is focused on optimizing the logistics of container handling

at an operation level. This means that long-term planning decisions such as the layout of the terminal,

allocation of ships to berths and equipment are assumed not in the scope of this problem.

3. There are 4 types of containers present at the terminal: 20HV, 40HV, 20RF and 40RF

R.R. Bosch

36

During the analysis of the types of containers that enter the terminals of clients of Cofano 73% of

containers were 40HV/45HV or minor variants of those, 25% are 20HV or minor variants, 1% are 20RF

containers, and 1% are other types, as mentioned in Section 2.2. In order to take multiple lengths and

types of containers into account while not adding exceptions for container types that make up <0.1%

of containers, we assume that these 4 types make up the containers arriving at the terminal.

4. Containers of different lengths are kept separated, and terminal stacks are designated to one

length

While in theory 20ft and 40ft containers can be stacked on top of each other, with two 20ft containers

supporting one 40ft container and vice versa, in practice the stacking of different lengths of containers

is avoided as much as possible, as it complicates stacking. For this reason, containers are only stacked

on containers with the same length. Terminal stacks are designated to a specific container length in

advance, as stack allocation to container types is left out of the scope to reduce complexity.

5. Containers are handled one-by-one

In a terminal multiple containers from different areas of a terminal can be moved at the same time,

but this research assumes containers are handled one by one. As long as it is accounted for that moves

are done in parallel, this should not reduce the practical applicability of the algorithm, and this

assumption reduces complexity.

6. Containers arrive and depart in batches

Containers can arrive in a terminal via ship, train or truck. Ships and trains contain a large number of

containers that are released at the same time, which allows them to be grouped. While trucks do not

necessarily follow this pattern, this assumption allows the incorporation of partial knowledge about

the arrival and departure sequence of containers.

7. The sequence of batches is known beforehand, but the order of containers within a batch is

known when that batch is next in line

At a container terminal the containers that are scheduled to arrive and depart is known in advance

but delays as discussed in Section 2.5 mean that the exact sequence of arrivals and departures is not

completely known. In addition, containers arriving by ship are loaded and unloaded with a stowage

plan, which is not released beforehand. This process of partial information is modelled by assuming a

fixed sequence of batches of containers arriving and departing from the terminal, with the order

within a batch only being released when that batch is the next one to be handled.

8. A container may only be reshuffled when it is blocking the current target container

As mentioned in Section 1.4, restriction 4, the CRP has a restricted and unrestricted variant. The

unrestricted variant is in small cases shown to result in lower amounts of reshuffles, but with a

decision space that is multiple factors larger than the restricted variant. As this problem already has a

large decision space, we use the restricted CRP, meaning that only containers blocking the currently

leaving container are allowed to be reshuffled.

9. The cost of a reshuffle is assumed to be a flat amount

The goal of this research is to reduce the total time spent moving containers, which can be expressed

as the sum of reshuffles plus the distance of all reshuffles, inward and outward moves. As equipment

is not accounted for, we assume a fixed cost for each reshuffle. We use a value of 2 as the cost for

Model Design

37

reshuffling a container, derived from an assumed 1 minute to lift a container, and 1 minute to lower

a container, for 1 minutes of work total. We base these values on (Li et al., 2019).

10. The distance cost for a movement from point a to point b is assumed to be fixed

For the same reason described in assumption 9, we calculate the distance cost from point a to point

b in advance and assume it to be fixed. We assume the cost of distance travelled to be equal to 0.006

per travelled meter, which is the amount of minutes per travelled meter, assuming a speed of 10km/h

(Li et al., 2019).

11. The restriction of container types to a pre-determined stacks is used as a soft constraint

For each stack it is pre-determined which types of containers can be placed there. We formulate this

restriction as a soft constraint however, as it would otherwise be possible to get stuck in a deadlock

position, where due to the allocation of containers no spots are left for an incoming container of type

𝑦. We define the cost of violating this soft constraint as equal to the cost of 4 reshuffles, so a cost of

8.

4.3. Markov Decision Process model
In this Section the problem that needs to be solved is formalized using a framework a MDP, which can

be solved using ADP. It requires the following parts, mentioned in chapter 5 of (Powell, 2011).

- Sets and constants

- State Variables

- Decision Variables

- Exogenous information processes

- Transition function

- Objective Function

This section describes the set up of these parts according to the framework provided. First however,

we define the stage of the Markov Decision Process (MDP), as this is a standard part of any MDP and

will not be covered by the framework. In our model, each stage is a timestep where a batch of

containers is handled. This batch is a combination of outgoing and incoming containers that are

scheduled to arrive/depart in a certain timeframe (e.g., all the containers scheduled to arrive or depart

in the next 30 mins). The sequence of batches is known, but the order of containers arriving/departing

within each batch is not. This information is only given when the batch itself is due to be handled.

These timesteps are denoted by t.

4.3.1. Sets and constants
The MDP contains a number of sets and parameters.

Sets

- Timestep 𝑡 ∈ {0…𝑇}

o The stage of the MDP. In each stage one batch of containers needs to be handled.

- Location index 𝑐 ∈ {1…𝐶, 𝐶 + 1…𝐶 + 𝑅}

o The locations consist of c stacks in the terminal and r entrances of a terminal. If a

terminal has 10 stacks and 2 entrances, locations 0-9 are the 10 stacks, and locations

10 and 11 are the two entrances.

- Tier index 𝑝 ∈ {0…𝑃}

o Tier 𝑝 indicates the vertical location of a container within a stack 𝑐. The combination

of (𝑐, 𝑝) forms a location where one container can be placed.

R.R. Bosch

38

- Container index 𝑖 ∈ {0… 𝐼}

Parameters

- Values of the transportation-cost function 𝛼1, 𝛼2, 𝛼3

o 𝛼1 refers to the weight of reshuffling costs, with 𝛼1 = 2

o 𝛼2 refers to the weight of distance travelled, with 𝛼2 = 0.06

o 𝛼3 refers to the weight of violating the soft constraint mentioned in Section 4.1, with

𝛼3 = 8

- Information about container i:

o Arrival batch 𝑎𝑖 ∈ {0…𝑇 𝑖𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛,

𝑜𝑟 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚}

▪ Some containers are already present at the initial state of the terminal,

meaning they do not have an arrival batch

o Departure batch: 𝑑𝑖 ∈ {0…𝑇}

o Length/type 𝑦𝑖 ∈ {0: 20𝐻𝑉, 1: 40𝐻𝑉, 2: 20𝑅𝐹, 3: 40𝑅𝐹}

o Entrance 𝑛𝑖 ∈ {𝐶 + 1,… , 𝐶 + 𝑅}

o Exit 𝑒𝑖 ∈ {𝐶 + 1, 𝐶 + 𝑅}

- Distance between location c and e: 𝑑𝑐𝑒 ≥ 0

- Boolean indicating that container type 𝑦 is allowed on stack 𝑐. 𝑤𝑐𝑦 ∈ {0, 1}

o There are 4 types of containers in this problem: 20HV, 40HV, 20RF, 40RF. In this

problem the assumption is that 20/40 containers do not mix, and both lengths have

their allocated stacks. Additionally, a small fraction of stacks for both lengths can

contain reefer containers. On these stacks it is also allowed to place HV containers. If

containers are allocated on a stack they are not allowed on this results in a soft-

constraint penalty.

- Initial position of container in the terminal (𝑐𝑖, 𝑝𝑖) ∈ {(0…𝐶, 0…𝑃) if container is present at

the start of the problem, or undefined if container arrives later}

4.3.2. State Variables

The state variables consist of all the changeable information needed at time 𝑡 to model the system

from time 𝑡 onward. For our problem we define the following variables of the state:

Variables

- Information about container i:

o Order within batch when arriving: 𝑏𝑖 ∈ {ℝ 𝑖𝑓 𝑎𝑖 ≤ 𝑡, − 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}

o Order within batch when departing: 𝑓𝑖 ∈ {ℝ 𝑖𝑓 𝑎𝑖 ≤ 𝑡,− 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}

o Location of container: 𝑐𝑖 ∈ {0…𝐶 + 𝑅}

o Tier of container: 𝑝𝑖 ∈ {0…𝑃 𝑖𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖𝑠 𝑖𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙, −𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}

To illustrate: Let’s take the example of Table 5, illustrated in Figure 13. This is a state at t=1, so the

order-within-batch of all incoming and outgoing containers up until t=1 is known. From columns 𝑎 and

𝑑 we can see that in 𝑡 = 1, first container 1 needs to exit, then container 4 enters, then container 5

enters, and lastly container 3 leaves. This is shown in Table 4.

Model Design

39

Table 5 - Example of a possible state at t=1

ID a b d f y (c, p) n e

0 - - 3 - 1 (3, 1) 4 4
1 - - 1 0 0 (2, 0) 4 5
2 0 1 2 - 1 (0, 0) 5 4
3 0 0 1 3 0 (3, 0) 4 5
4 1 1 3 - 2 (5, -) 5 5
5 1 2 5 - 1 (5, -) 5 4
6 2 - 4 - 0 (4, -) 4 4

Table 6 - The arrivals and departures from Table 3 given as a sequence of batches.

Timestep 𝑡 Required actions (𝑎 & 𝑑) Order within batch (𝑏 & 𝑓)

0 3 IN 0

2 IN 1
1 1 OUT 0

4 IN 1

5 IN 2

3 OUT 3
2 6 IN ?

2 OUT ?
… … …

Figure 13 - Illustration of what the state from Table 3 would look like

4.3.3. Decision Variables
The decision space 𝒳t contains all possible combinations of every decision that can be made at time

t. The decisions that make up this decision space are highly problem context dependent. In the

problem setup, at every timestep t a batch of incoming/outgoing containers needs to be handled in a

given order. We use the restricted version of the CRP, which means that only containers that are

blocking a target (outgoing) container may be reshuffled. The decisions that thus need to be made

are:

- For every incoming container:

o Which location (c, p) to put the container

- For every outgoing container:

o For every blocking container:

▪ Which location (c, p) to reshuffle the container to

Of course, containers cannot be placed on any (c, p) position. Containers can only be stacked on top

of an existing stack, so for each stack c only tier p is available for which p = stack height + 1. If the stack

R.R. Bosch

40

height is at the height limit, no container can be placed there at all. Additionally, containers should

only be placed on stacks where their container type is allowed. It is chosen to leave this as a soft

constraint with penalty α3, in order to prevent deadlocks in the case of a nearly full terminal. In that

case, the container can be placed on a non-allowed stack anyway, and a large cost is incurred.

To come back to the example given in Table 3 and Figure 13: First container 1 needs to exit, then

container 4 enters, then container 5 enters, and lastly container 3 leaves. The decision space is thus:

- Nothing for container 1 (no reshuffles required)

- Where to put container 4

- Where to put container 5

- Where to reshuffle all containers that block container 3 (so container 0, and container 4 and 5

also possibly, if they were put on stack 3).

The size of the decision space for a single timestep can grow very fast; every incoming container

requires one 1 container to be placed, and every departing container requires 𝐸[𝑏𝑙𝑜𝑐𝑘𝑒𝑟𝑠] containers

to be reshuffled. All batches consist on average for one half out of incoming containers, and for one

half out of outgoing containers. This means that the expected size of the decision space |𝒳𝑡| becomes

equal to Equation Error! Reference source not found., with an upper bound equal to Equation (16.

|𝒳𝑡| = (𝐸[𝑎𝑠] ∗
1

2
(1 + 𝐸[𝑏𝑙𝑜𝑐𝑘𝑒𝑟𝑠]))

|𝐵𝑡|

 (15)

𝑈𝐵[|𝒳𝑡|] = ((𝐶 − 1) ∗ (𝑃 − 1))
|𝐵𝑡|

 (16)

Where 𝐸[𝑎𝑠] is the expected amount of available stacks, 𝐸[𝑏𝑙𝑜𝑐𝑘𝑒𝑟𝑠] the amount of expected

blockers of any particular container, |𝐵𝑡| the size of batches, and 𝐶 and 𝑃 the number of stacks and

tiers. This means that the decision space grows exponentially with the size of batches, making it

infeasible to enumerate over all available decisions xt ∈ 𝒳t for realistically sized terminals. A different

method for finding xt needs to be found, which is discussed in Section 4.5.

4.3.4. Transition function

The transition function takes in decision 𝑥𝑡 to get from pre-decision state 𝑆𝑡 to post-decision state 𝑆𝑡
𝑥,

see Equation (5). In this problem context, processing the decision 𝑥𝑡 means assigning incoming

containers to their location, reshuffling blocking containers and removing outgoing containers. New

information about incoming batches and updates about the retrieval order is not incorporated, as that

is part of the exogenous information 𝑊𝑡.

In our example, if we send container 1 to entrance 4, container 4 to stack 2, container 5 to stack 0,

and then reshuffle container 0 to stack 1 and lastly send container 3 to entrance 5, we get the post-

decision state in Table 7 and Figure 14:

Model Design

41

Table 7 - The post-decision state 𝑆𝑡
𝑥

ID a b d f y (c, p) n e

0 0 3 3 - 1 (1, 0) 4 4
1 0 1 1 0 0 (4, -) 4 5
2 0 2 2 - 1 (0, 0) 5 4

3 0 0 1 3 0 (5, -) 4 5
4 1 1 3 - 2 (2, 0) 5 5
5 1 2 5 - 1 (0, 1) 5 4
6 2 - 4 - 0 (4, -) 4 4

Figure 14 - Illustration of what post-decision state 𝑆1
𝑥 looks like

4.3.5. Exogenous information processes
The flow of exogenous information is an important dimension in ADP, as it brings the model from state

𝑆𝑡
𝑥 to 𝑆𝑡+1. While the possibilities of random incoming information is often (assumed to be) in the

form of random distributions, ADP works using sampling with realizations of this random information.

We use 𝑊𝑡 to denote the general exogenous information that becomes available at time 𝑡, and 𝜔 ∈ 𝛺

for realizations of this exogenous information. In our problem the exogenous information is the

random information that becomes available after handling the container batch at timestep 𝑡 − 1:

- The definitive order of containers arriving/departing in, realized by generating the sequence of

incoming/outgoing containers in that batch according to assumption 7.

In our example, the exogenous information in this case is that container 6 arrives first, then container

2 leaves afterwards, shown in Table 8.

Table 8 - State S2 after the exogenous information

ID a b d f y (c, p) n e

0 0 3 3 - 1 (1, 0) 4 4
1 0 1 1 0 0 (4, -) 4 5
2 0 2 2 1 1 (0, 0) 5 4
3 0 0 1 3 0 (5, -) 4 5
4 1 1 3 - 2 (2, 0) 5 5
5 1 2 5 - 1 (0, 1) 5 4
6 2 0 4 - 0 (4, -) 4 4

4.3.6. Objective Function
The objective function is the combination of the direct contributions to the objective function plus the

estimated value of the post-decision state one arrives in due to the state 𝑆𝑡 and action 𝑥𝑡.

R.R. Bosch

42

𝑧 = min
𝑥𝑡∈𝑋𝑡

(𝐶𝑡(𝑆𝑡, 𝑥𝑡) + 𝛾𝑉𝑡
𝑥(𝑆𝑡

𝑥))

The contribution function is the first part of this equation, and as mentioned in Section 3.3.2, is a

weighted sum of the amount of reshuffles (#RS) and distance (D) travelled by containers in timestep

t. Additionally, a penalty (#P) is given for putting containers where they aren’t allowed:

𝐶𝑡(𝑆𝑡, 𝑥𝑡) = 𝛼1(#𝑅𝑆) + 𝛼2(𝐷) + 𝛼3(#𝑃)

To calculate the distance travelled by containers, a distance matrix is used. The distance this matrix

represents can be the Euclidian distance, shortest direct path between locations, or some other

arbitrary measure. The only limitation is that this distance is fixed.

The weights for this composite contribution function are to be decided. One approach is to use weights

such that 𝓍1 is equal to the average picking up + putting down time of a container (Li et al., 2019), and

𝓍2 is equal to the average speed of horizontal movement within the terminal, as this would cause a

minimization of total time spent handling containers.

The remaining part of the objective function is the VFA, which considers the value of future states.

Section 4.4 will discuss the design of this VFA.

4.4. Value Function Approximation Design
Section 4.1 described the problem that needs to be solved, and Section 4.3.5 mentions the objective

function that is optimized for. This objective function contains a ‘Value Function Approximation’, that

approximates the expected future costs. This section discusses the methods this research uses to

approximate this value function approximation, which are a Basis Feature Function and a Neural

Network, which both use features as input.

4.4.1. Basis Feature Function

A basis feature function consists of a set of features that indicate the quality of a state, combined into

a weighted sum to indicate the value of a state, see Equation (13). This method of approximation is

powerful if it works, as the linear relation between the value of features and value of the state allows

the weights of the basis function to be fitted with a relatively low amount of observations (Si et al.,

n.d.). This method however is only applicable if features can be found that have a somewhat linear

relation between the value of a feature and the value of a state, and thus extensive knowledge about

the problem domain is required. In Section 4.4.3 the list of features used in this research are listed.

As mentioned in Section 3.4.2, the application of a basis feature function is different dependent on

whether the problem is finite or infinite. The problem in this research is finite, meaning that for each

timestep in this problem a separate set of weights for each of the features is used. The updating of

the weights is done using ‘recursive least squares’ updating, which has the advantage of converging

faster than other methods such as stochastic gradient descent (Boschma, 2020). Recursive least

squares works using the following set of formulas:

𝛼𝑛 = 1 −
𝛿

𝑛 + 1

𝛾𝑛 = 𝛼
𝑛 + (𝜙𝑛(𝑆𝑡))

𝑇
𝐵𝑛−1𝜙𝑛(𝑆𝑡)

𝐵𝑛 =
1

𝑎𝑛
(𝐵𝑛−1 −

1

𝛾𝑛
(𝐵𝑛−1𝜙𝑛(𝑆𝑡)(𝜙

𝑛(𝑆𝑡))
𝑇
𝐵𝑛−1))

Model Design

43

𝐻𝑛 =
1

𝛾𝑛
∗ 𝐵𝑛−1

𝑢𝑛 = 𝐻𝑛𝜙𝑛(𝑆𝑡)(�̅�𝑡
𝑛−1(𝑆𝑡) − 𝑣𝑡

𝑛)

𝜃𝑡
𝑛 = 𝜃𝑡

𝑛−1 − 𝑢𝑛

Where δ is a variable between [0, 1), and 𝐵𝑛 a matrix of 𝑎 ∗ 𝑎, where 𝑎 is the number of features. 𝐵0

is initialized with 𝜌𝕀, where 𝜌 is a small constant (0.1 is used in this research).

4.4.2. Neural Network

Neural networks are a powerful and general method for approximation, as they combine the quality

of being able to approximate any non-linear function while being differentiable at all points, allowing

for directed optimization. The drawback of being able to approximate non-linear functions is that this

method is not able to fit a function with the low amount of observations a basis function can. As neural

networks allow features to interact with each other through the multiple layers a network has, the

interactions between features can be captured (e.g., the importance of the number of unordered

stacks decreases as the amount of non-empty stacks increases). This means that features used as input

for the neural network do not need to directly correlate with the value of a state. In Reinforcement

Learning it is common to include the entire information on the state, or large parts of it, to fit the value

function. However, in order to keep the Neural Network comparable to the Basis Feature Function

both use features as input, with as difference that the Neural Network will use 1 set of weights for all

timesteps of the problem, with ‘time since start’ and ‘time until end’ as extra features.

Updating is done using the Adam algorithm, which is a variation on the Stochastic Gradient Descent

algorithm that adapts the parameter learning rates of weights based on the average first moment and

second moment of gradients, speeding up convergence to the optimal values (Ruder, 2016). This

research uses the Huber loss function, which is a loss function that is equal to the Mean Square Error

(MSE) for any particular error, up until a threshold value γ, at which point the gradient for loss does

not increase anymore. This loss function strikes a balance between the MSE, which tends to put a lot

of emphasis on outliers in data (or states in the case of this research), and Mean Absolute Error, which

has a constant gradient, which can diminish convergence speed.

4.4.3. Features

In both the Basis Feature Function and Neural Network, features form the input with which the value

(or in this problem, the future expected costs) of the post-decision state is estimated. In this section

we list all the features that this research uses. As a selection criterium for this list, we require that a

feature 1) plausibly gives an indication of future costs, and 2) that it is actionable; it must indicate a

value that can be changed by choosing different actions. For instance, ‘terminal occupation’ or ‘batch

size of timestep 𝑡 + 𝑦’ is not featured in this list, as these features are a given in the problem and

cannot be changed by changing the decision policy.

Expected Blocking Lower Bound (EBLB)

This feature is a simplification of the Expected Blocking Lower Bound (Galle, 2018), also used in the

ADP method in (Boschma, 2020), which takes the possibility of containers departing in the same stack

into account. Instead of calculating the exact probability that a container blocks one below it if it

departs in the same stack, we assume the possibility is always 0.5. This makes this feature

computationally simple. An example of this feature is given in Figure 15.

R.R. Bosch

44

Figure 15 - Example of the EBLB. Container batch labels are shown on the left, and the blocking value it results in is given

on the right

Expanded EBLB (E-EBLB)

This feature is an adaptation of the LB2 from (Zhu et al., 2012), and adapts it to the Dynamic CRP. The

principle of the lower bound revolves around adding more reshuffles if no stacks are readily available

where the blocking container can be located. It works using the following algorithm:

1. Note for every stack in the terminal the earliest departing container

2. For all containers, determine if a (possible) block happens for container x, resulting in an initial

blocking value 𝑏𝑥
𝑖𝑛𝑖𝑡 = 0.5 𝑜𝑟 1

3. If so, compare the earliest departing container in all other stacks to the departure batch of

container x:

a. If there is any stack where the earliest departing container departs later, the additional

blocking value 𝑏𝑥
𝑎𝑑𝑑 = 0

b. Else, if there is any stack where the earliest departing container departs at the same time,

𝑏𝑥
𝑎𝑑𝑑 = 0.5

c. Else, the 𝑏𝑥
𝑎𝑑𝑑 = 1

4. The final blocking value 𝑏𝑥
𝑡𝑜𝑡 = 𝑏𝑥

𝑖𝑛𝑖𝑡 ∗ (1 + 𝑏𝑥
𝑎𝑑𝑑)

5. The value for 𝐸­𝐸𝐵𝐿𝐵 = ∑ 𝑏𝑥
𝑡𝑜𝑡

𝑥

Figure 16 shows an example of this procedure.

Figure 16 - Example of the expanded blocking lower bound for the container in grey

Model Design

45

Dynamic Lookahead Lower Bound (DLLB)

The LB3 from (Zhu et al., 2012) is written for the unloading problem, but can be adjusted to apply to

the dynamic CRP:

1. For all containers, denote their initial blocking value 𝑏𝑥
𝑖𝑛𝑖𝑡 = 0.5 𝑜𝑟 1

2. Then, remove all containers from the terminal whose departure is before the time this container

is reshuffled. This time is determined by the earliest departing container below container x in the

stack.

3. If so, compare the earliest departing container in all other stacks to the departure batch of

container x:

a. If there is any stack where the earliest departing container departs later, the additional

blocking value 𝑏𝑥
𝑎𝑑𝑑 = 0

b. Else, if there is any stack where the earliest departing container departs at the same time,

𝑏𝑥
𝑎𝑑𝑑 = 0.5

c. Else, the 𝑏𝑥
𝑎𝑑𝑑 = 1

4. The final blocking value 𝑏𝑥
𝑡𝑜𝑡 = 𝑏𝑥

𝑖𝑛𝑖𝑡 ∗ (1 + 𝑏𝑥
𝑎𝑑𝑑)

5. The value for 𝐿𝐴­𝐸𝐵𝐿𝐵 = ∑ 𝑏𝑥
𝑡𝑜𝑡

𝑥

Figure 17 shows an example of this procedure.

Figure 17 - Example of the lookahead blocking lower bound for the container in grey

Travel Distance Lower Bound (TDLB)

As the objective function of this CRP not only concerns the amount of reshuffles but also the distance

travelled per container, a lower bound for this objective also needs to be found. A simple lower bound

can be found by assuming no additional reshuffles take place, and all containers are moved straight

from their origin to destination. This is done for all containers in the terminal.

Blocking Degree (BD)

This feature calculates for each container x the difference between its departure time and the earliest

departure time of containers below it, if any container below it departs earlier than container x. This

indicates not only the amount of blocking containers, but also the amount by which containers are

blocking. As generally it is assumed that if a container has to be blocking, it should preferably be close

in retrieval order to the container it is blocking (Caserta et al., 2012), this indicator can give additional

information on the quality of a state compared to the EBLB.

Unordered Stacks (US)

This measure counts the number of stacks that (may) require a reshuffle. This measure is similar to

the BLB, but only counts stacks instead of containers. It is also used in (Boschma, 2020).

R.R. Bosch

46

Semi-Ordered Stacks (SOS)

This feature is a variation on Unordered Stacks that counts the amount of stacks that do not contain

containers that block earlier departing containers but does contain containers that depart in the same

timestep.

Batch Label Difference (BLD)

The BLD calculates for each container in the terminal the absolute difference in batches between the

container below it and the container itself. A BLD near zero indicates a stack of which batch labels lay

close to each other, which is assumed to be beneficial. The sum of BLDs of all containers gives the BLD

feature value for the entire terminal. It is also used in (Boschma, 2020).

Average Stack Height (ASH)

The ASH calculates the average stack height of all non-empty stacks. It is also used in (Boschma, 2020).

Squared Stack Height (SSH)

This feature as an adjustment of the ASH feature, by instead calculating the sum of the squares of

each stack height. Terminals with a more evenly distributed stack height will have a lower squared

sum.

Non-Empty Stacks (NES)

This feature gives the sum of the nr of stacks that contain at least one container.

Used Space Percentage (USP)

The USP takes a container type as argument, and for that type returns the amount of used spaces

where container type y is allowed divided by the total amount of spaces for container type y available.

Having a high percentage of used spaces for a certain type of container can lead to a situation where

a container has to be placed on a spot where it is not allowed, violating the soft constraint mentioned

in Section 4.1. This results in high costs by having to incur the penalty associated with it.

Highest Used Space Percentage (HUSP)

This feature calculates the USP for each container type in the terminal and returns the highest value.

Non-Ideal Stacks (NIS)

This feature takes as input an integer 𝑦, and for all incoming containers 𝑥 in batch 𝑡 + 𝑦, and returns

the sum of stacks that meet the following criteria:

4. The container is allowed on the stack

5. The stack is not full

6. The stack doesn’t contain containers that depart earlier than container 𝑥

These criteria are calculated over the terminal in the current position, so containers that might arrive

before container 𝑦 are not accounted for. The value of the feature is the sum of this count over all

incoming containers in batch 𝑡 + 𝑦. Figure 18 shows an example; stacks 0, 1 and 2 are not ideal, stack

3 is.

Model Design

47

Figure 18 - Illustration of the calculation of the Non-Ideal Stacks feature

Non-Ideal Containers (NIC)

This feature does the same as the NIS feature, but instead of summing the amount of non-ideal stacks,

it tallies all the containers for which there are 0 stacks that meet the criteria.

Future Incoming Costs (FIC)

This feature takes in an argument y. For each container x that arrives at the terminal in timestep 𝑡 +

𝑦, the move costs are calculated for each viable destination stack, consisting of:

7. The distance multiplied by objective weight 𝛼1

8. The reshuffle costs multiplied by objective weight 𝛼2

o The reshuffle costs are 1 if the earliest departing container departs earlier than

container 𝑥, and 0 otherwise

9. Wrong stack penalty costs multiplied by objective weight 𝛼3

o A wrong stack penalty is applied if container 𝑥 is not allowed on that stack

The destination with the lowest cost is chosen. The value of the feature is the lowest cost available for

each incoming container in batch 𝑡 + 𝑦. Of note is that containers are not actually placed in the

terminal. Instead, the FIC value for each container is calculated based on the terminal as-is. This is

because the order of arrivals of containers not known when batch 𝑡 + 𝑦 is handled, and thus not

possible to account for without testing all permutations of batch 𝑡 + 𝑦, whose order is not yet known.

Future Outgoing Costs (FOC)

This feature does the same as FIC, except using outgoing costs. The costs consist of 1) the distance

between the current location of the outgoing container and its exit multiplied by 𝛼1 and 2) the amount

of containers on top of the outgoing container multiplied by 𝛼2.

R.R. Bosch

48

Minimum Wrong-Stack Penalty (MWSP)

This feature takes in an argument 𝑦. It then calculates the following:

0. Check the amount of spots available for each container type

1. Set 𝑀𝑊𝑆𝑃 to 0

2. For 𝑡 + 1 until 𝑡 + 𝑦:

a. For each incoming container:

i. If there is an available spot for that container type, use it. Decrease available

spots for that type by 1.

ii. Else, 𝑀𝑊𝑆𝑃+= 1, and add container to list of wrongly stacked containers

b. For each outgoing container:

i. If container is wrongly stacked, remove from list.

ii. Else, increase available spots for that container type by 1.

The value for this feature is the value for MWSP after this procedure.

Min-Max Value (MMV)

The MMV is designed such that if it was the feature by which containers were allocated, it would

always allocate according to the Min-Max Heuristic. It does this by using the following procedure:

1. 𝑀𝑀𝑉 = 0

Calculate 𝑏𝑚𝑎𝑥 = latest departing container in terminal

Calculate 𝑏𝑚𝑖𝑛 = earliest departing container in terminal

2. For all containers in terminal:

a. 𝑏𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 = Departure batch for container

b. If container is on the ground floor:

i. 𝑀𝑀𝑉 += 𝑏𝑚𝑎𝑥 − 𝑏𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

c. Else, if it blocks any containers below it:

i. 𝑏𝑙𝑜𝑤𝑒𝑠𝑡 = earliest departure batch for the containers below

ii. 𝑀𝑀𝑉 += 𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛 + 𝑏𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 − 𝑏𝑙𝑜𝑤𝑒𝑠𝑡

d. Else, if it does not block any containers below it:

i. 𝑏𝑙𝑜𝑤𝑒𝑠𝑡 = earliest departure batch for the containers below

ii. 𝑀𝑀𝑉 += 𝑏𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 − 𝑏𝑙𝑜𝑤𝑒𝑠𝑡

The value for this feature is the value of MMV after this procedure.

Squared (SQ)

Features for a Basis Feature Function are most useful if there is a linear positive relation between

future costs and the value of the feature [source]. For some features however, this may not be the

case; the USP feature likely does not correlate linearly with increased costs, but is largely irrelevant

until the value approaches 1, which is when the costs start to increase rapidly. For this reason, features

can be squared in order to make their value increase more than linearly with future costs.

Square-Root (SQRT)

Just as some feature values only correlate with increased costs when their values get large, some

features can only indicate a lack of increased future costs when their value approaches zero, while at

higher values the correlation disappears. This feature takes the square root of features, so that such

a feature correlates more linearly with increased future costs.

Model Design

49

Reshuffle Index Heuristic (RIH)

This heuristic, discussed in Section 3.2.4, produces an approximation of future costs. For the Dynamic

CRP, this feature is modified by assuming no more containers enter the terminal, and all containers

are removed from the terminal in order. In the case of ties, the container with the lowest ID is assumed

to leave first. The value of this heuristic is the sum of 1) distance costs, 2) reshuffle costs and 3) wrong-

stack penalty costs incurred during the unloading of all containers in the terminal. The way containers

are relocated is using the following:

1. For all possible destinations for container 𝑥:

a. Get the reshuffle-index, which is the amount of reshuffles necessary to access the

earliest departing container if container 𝑥 is placed there.

2. Place the container in the location that has the lowest reshuffle index

a. In case of a tie, place the container in the closest destination

Min-Max-Heuristic (MMH)

This heuristic also produces an approximation of future costs similar to the RIH but uses the Min-Max

heuristic instead. This heuristic works using the following:

1. Get all possible destinations for container x, and find the bc
min = batch of the earliest departing

container of stack c

2. bcontainer = the departure batch of container x

3. If there are any stacks c for which bc
min > bcontainer:

a. Place the container in the stack with the highest bc
min for which bc

min > bcontainer

b. In the case of a tie, place the container in the closest destination

4. Else, if there is any empty stack:

a. Place the container in an empty stack

b. In the case of a tie, place the container in the closest destination

5. Else:

a. Place the container in the destination with the lowest bc
min

b. In the case of a tie, place the container in the closest destination

Constant (C)

As part of basis function design, one of the features needs to be a constant, which returns the same

value for all states. This is done so that states that return zero on all features can still have a value,

and so that for the linear regression to determine the weights of each feature, the approximation is

not forced to go through the origin, which may introduce bias.

4.5. Single-Stage Optimization Methods
As mentioned in Section 4.3.3, the decision space for this problem explodes when using realistically

sized terminals. Therefore, a method is needed to generate promising decisions. This section will

discuss the methods that are used for this optimization problem.

4.5.1. Linear Programming

Linear programming is an efficient exact solution method to determine the optimal solution for

decision problems with a large decision space, as the linearity of the problem formulation can be used

to discard entire regions within 𝒳t that are not promising. This makes Linear Programming much faster

than enumerating over all options xt ∈ 𝒳t. This does require the problem to be formulated in a linear

program. There exist (integer) LPs of the individual unloading problem (Jin, 2020; Tang, 2015), but this

problem needs to be adapted to be suitable for use in our problem setting.

R.R. Bosch

50

The CRP as used in this research has minimization of the amount of reshuffles as well as the distance

travelled by containers as the objective function, which needs to be included into the LP. Additionally,

the value of St
x as estimated by a VFA needs to be incorporated as well. For a basis function this means

that all features that make up the basis function need to be included in the linear program, and for a

neural network this means that all input (features, metadata) as well as the structure of the neural

network need to be written into the linear program.

As Linear Programming is an exact solution method, it still has the potential to have a prohibitively

large computation time if the decision space is large enough, but with the possibility of lower costs.

The LP formulated for the single-stage decision problem and VFA as used in this research can be found

in Appendix A – Linear Program .

4.5.2. Partial Search Tree
The Partial Search Tree (PST) is a method adapted from (Boschma, 2020) in their research on the

Dynamic CRP using ADP. This method uses the fact that within a timestep, the ADP problem is

deterministic. It divides the decision needed for the MDP problem (a set of decisions to move outgoing

containers, locate incoming containers and reshuffle blocking containers) into a sequence of individual

actions to locate a container somewhere. It then uses a search tree with individual containers as

nodes, and locations as branches, to quickly find a decision approximating the optimal decision. Which

branch to explore next is determined using the value function approximation of the ADP algorithm;

the node with the lowest sum of immediate costs and estimated future costs is chosen. If the end

node of tree is reached, where no more containers need to be handled, the path from root to the end

node forms one action 𝑥𝑡. As the decision space is prohibitively large, this method does not explore

the search tree completely. Instead, it generates 𝑦 number of decisions, and chooses the best option

from those. The difference in method between this research and (Boschma, 2020) is that their

algorithm explores one path through the tree and uses that option, while this research then goes back

to explore other unexplored nodes, starting with the option that has the lowest combined direct

contribution plus estimated future costs 𝐶(𝑆𝑡, 𝑋𝑡) + 𝑉(𝑆𝑡). This can have added value, as the

indication 𝑉(𝑆𝑡) is an approximation of future costs, meaning that it can under- or overestimate future

costs.

To illustrate, we use the example in Figure 19. The order of containers that need to be handled is {1

out, 7 in, 4 out}. We start in the root node, where container 3 needs to be reshuffled (as it is the

topmost blocking container of container 1). The options to reshuffle container 3 to are stack 0 and

stack 2. We choose stack 0, as the sum of immediate + estimated future costs is the lowest for stack

0. Container 1 can then leave. The next action is to put container 7 in, which can go to stack 0, 1, or 2.

Once every container in this batch is handled, we have a complete set of decisions, see Figure 20. The

decision set made using this tree is then {3 to stack 0, 1 out. 7 to stack 1. 3 to stack 1, 4 out.}, marked

in grey in Figure 20. The next option that is explored is the node with the lowest total estimated cost,

which would be to place container 7 in stack 2.

Model Design

51

Figure 19 - example of PST, pre-decision

Figure 20 - example of PST, post-decision

The path of nodes in grey form one complete action for the MDP, but the PST does not stop at that

point. It continues exploring unexplored nodes, starting with the lowest 𝐶(𝑆𝑡, 𝑋𝑡) + 𝑉(𝑆𝑡), which in

this case is to place container 7 in stack 2 instead of stack 1. It works out the rest of the tree until all

containers are handled from that point, creating a new set of container allocations that form a

complete action for the MDP. It repeats this process until the stopping criteria is met, which in this

research is when 𝑦 complete actions are made.

4.6. Pruning methods
Regardless of employing more effective methods to find the optimal decision, the speed at which this

happens can be improved if actions that we know beforehand (probably) are not productive are not

considered at all. As the vast amount of computation time is spent calculating the values of features,

and that this is done for each potential post-decision state, reducing the amount of states that need

to be evaluated reduces the computation time greatly.

Considering that the size of the decision space in our problem is given by

(𝑛𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ) ∗ (𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑝𝑒𝑟 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟) for the PST, the

decision space can be shrunk by eliminating a portion of the available spots per container. The pruning

of unpromising moves is already done by using the restricted form of the CRP instead of the

unrestricted form (see restriction 4, Section 1.4).

R.R. Bosch

52

Another method that has previously been used in the Dynamic CRP is the use of a Corridor (Boschma,

2020; Caserta et al., 2009): When considering the possible stacks to reshuffle a container to, only the

stacks within a certain range 𝛿 are considered, limiting the amount of options. In both papers the limit

𝛿 refers to the 𝛿𝑡ℎ nearest neighbor stack, as both papers consider a terminal consisting of a

rectangular grid, not considering distance between stacks. This research does consider distance, and

intuitively it makes sense to reshuffle to a location that is nearby rather than far away, all other things

being the same, if part of the objective is to minimize the amount of distance travelled per container.

In order to make sure the amount of destinations for any container is not reduced too much, the

corridor that is implemented in this research only goes into effect when the stacks that are full and

stacks where a container is not allowed are pruned beforehand. The list of possible destinations is

then pruned to the 𝛿𝑡ℎ closest stacks.

4.7. Conclusions
In this chapter we formulated the problem and the model that provides the solution to the problem.

We first introduced the problem using a description and assumptions. The problem can be formulated

as a Markov Decision Problem, consisting of states, stages, a transition function, an exogenous

information process and an objective function. We use Approximate Dynamic Programming as the

solution method for the MDP, which consist of a Value Function Approximation (VFA) to estimate

future costs, and a Single-Stage Optimization Method to find the optimal decision in a given stage. For

the VFA we discuss a Basis Feature Function and a Neural Network approach and discuss features that

might be appropriate for our problem, both from literature and original contributions. For the Single-

Stage Optimization Method we discuss Linear Programming and a Partial Search Tree as options.

Lastly, we discuss methods to prune the decision space in a single stage by introducing a Corridor

method, which restricts movements to those with a low distance cost.

Experiments and Analysis of Results

53

5. Experiments and Analysis of Results

In this chapter, several experiments are performed to evaluate the performance of the ADP algorithm

when used with particular settings described in Chapter 4 and compare its performance against

heuristics.

5.1. Experiment Design
The structure of experiments is as follows. We first generate a set of problem instances that are going

to be used for all the experiments. This allows for consistent comparison of results between

experiments. We then perform several experiments regarding different options and settings for the

ADP algorithm, and then test its performance in different problem settings. The experiments are done

in sequence and concern one aspect each, namely:

1. Features

2. Feature sets

3. Algorithm for updating weights of the Basis Feature Function

4. Choice policy

5. Pre-training

6. Corridor method

7. Single-stage optimization methods

These experiments are done in sequence, as testing all combinations of configurations is prohibitively

time-consuming. The experiments are done in the listed order, as we estimate that in this order the

most impactful experiments are done first. As these experiments are done sequentially, we initially

assume some commonsense default values for the algorithm to begin with and adjust settings as the

optimal parameters for each setting is found. These default settings are given in Appendix E.

Afterwards, we also run experiments on using a Neural Network as an alternative to a Basis Feature

Function. After running the mentioned experiments, we evaluate the performance and variance in

performance of the ADP algorithm in different problem settings.

5.2. Problem Instance Generation
To evaluate the performance of different variants of the algorithm that this chapter investigates, a set

of problem instances need to be generated. This set of problem instances can be used to compare the

results of different algorithms more fairly. Problem instances are generated using a script that takes

in a set of desired characteristics of the problem. These characteristics are:

- Number of stacks; 𝑐

The number of stacks present in a terminal. This variable influences the capacity of a terminal and how

many options are available to locate a container to.

- Number of tiers; 𝑝

The number of tiers per stack influences the capacity of a terminal, and how many containers each

container is expected to have below it, assuming the same fraction of occupation. With a larger

amount of tiers, stacking properly becomes more important.

- Expected Length of stay; 𝐸[𝐿𝑜𝑆]

The expected length of stay of a container in the terminal in hours. Containers stay in the terminal

with an exponential distribution, with an average stay of 𝐸[𝐿𝑜𝑆]. In a terminal with a lower length of

stay, a larger fraction of the containers in a terminal leaves each batch.

R.R. Bosch

54

- Expected number of cycles; 𝐸[𝑐𝑦𝑐𝑙𝑒s]

The planning horizon of the problem, expressed as the expected amount of container cycles a

terminal encounters. Each container stays in the terminal for 𝐸[𝐿𝑜𝑆] hours, and the problem

instance deals with a schedule of incoming/outgoing containers of 𝑡 hours. The timespan 𝑡 that a

problem instance deals with is then given by 𝑡 = 𝐸[𝑐𝑦𝑐𝑙𝑒𝑠] ∗ 𝐸[𝐿𝑜𝑆]

- Average occupation; 𝐸[𝑜𝑐𝑐]

Average occupation of the terminal as a fraction of the total capacity of a terminal. This variable

determines how busy the terminal is expected to be at any given moment. The initial terminal layout

as well as the schedule of arrivals and departures is generated semi-randomly such that occupation

can fluctuate, but hovers around the given 𝐸[𝑜𝑐𝑐].

- Batch timespan; ℎ

The timespan that each batch covers in hours. Larger batch timespans mean a lower amount of

batches in a problem instance, but with a larger amount of containers per batch. This increases the

uncertainty of a problem instance, as the order of arrivals/departures of containers between batches

is known, but not within a batch.

To generate the problem set, for each of these settings a standard value is used, as well as a lower

setting and a higher setting. One problem instance will have standard values for all of these settings,

and twelve other problem instances have a higher or lower value for one of these settings. This means

that the problem instances are generated with the following settings:

Table 9 - settings of generated problem instances

instance c p E[LoS] E[cycles] E[occ] h

0 20 4 40 4 0.6 1

1 10 4 40 4 0.6 1

2 40 4 40 4 0.6 1

3 20 3 40 4 0.6 1

4 20 6 40 4 0.6 1

5 20 4 20 4 0.6 1

6 20 4 80 4 0.6 1

7 20 4 40 2 0.6 1

8 20 4 40 8 0.6 1

9 20 4 40 4 0.4 1

10 20 4 40 4 0.8 1

11 20 4 40 4 0.6 0.5

12 20 4 40 4 0.6 2

These problem instances are used in the following sections. As can be noted from the table, the

generated terminals are not realistically sized, containing 10, 20 to up to 40 stacks. Real terminals

contain upwards of 300 stacks. However, several factors limit the problem size that this thesis will be

able to handle. ADP has high computation costs due to the iterative nature of the algorithm.

Additionally, the algorithm is written in Python, a flexible but slow programming language, and some

aspects of the algorithm were not efficiently written, such as the aspect that in each state, all features

are calculated from scratch, instead of calculating the changes in values from the changes since the

previous state. Additionally, this thesis trains multiple hundreds of algorithms over the course of all

the experiments, so the available time to train each algorithm is limited. We additionally do not train

Experiments and Analysis of Results

55

the algorithm on problems available in literature, as no literature with the exact same problem

formulation could be found.

The pseudo-code that was used to generate the problem instances is provided in Appendix B, and an

example of a complete problem instance is given in Appendix C. In order to make experiments better

comparable to each other and over iterations, random-number generation is controlled in two ways.

For the evaluation simulations that are used to track the performance of the algorithm over iterations,

the same set of 5 pre-generated samples is used, and at the start of training a random-number

generator is initialized so that for each algorithm instance the same random samples are drawn during

training.

5.3. Feature Generation
A crucial step in using ADP with a Basis Feature Function successfully is to have features that give

useful information about future costs. We thus investigate the Pearson’s correlation between

available features and future costs. To do this, we generated 1000 problem instances with the

characteristics of problem instance 0 and solved the problem instances using the min-max heuristic.

We noted the total costs, and costs in each category (distance, reshuffling, wrong-stack penalty). Of

these states, we use all states in timesteps 0-20, leaving us with 20.000 states. For each feature

mentioned in Section 4.3.2 the correlation between it and the future costs is calculated. Additionally,

we generate composite features using the following methods:

- Generate a composite feature by taking the squared value of a feature

- Generate a composite feature by taking the square-root of a feature

- Generate a composite feature by calculating the product of two features

- Generate a composite feature by calculating the product of a feature with a terminal

characteristic.

o A terminal characteristic is an indication of the terminal that cannot be influenced by the

actions taken. Used characteristics are:

▪ Batch size of timestep t + 1 and t+2

▪ Occupation of the terminal

▪ Amount of incoming containers at t+1, t+2 of type 0, 1, 2, 3

▪ Amount of outgoing containers at t+1, t+2 of type 0, 1, 2, 3

▪ Average, st.dev., min, max of leaving timestep of containers at t+1, t+2

With 23 original features, this results in 23 + 23 + 253 + 621 = 920 additional composite features.

These are too many too list, so in Table x we give the correlation for all original features as well as the

top 10 highest correlating composite features for the total future costs, distance future costs, reshuffle

future costs and penalty future costs. To calculate future costs, we use a discounting factor of 0.9, as

this resulted in the highest average correlation between future costs and feature values. Additionally,

we use the absolute value of the correlation, as both a large negative or positive Pearson’s correlation

indicate that a feature contains useful information about future costs.

R.R. Bosch

56

Table 10 – Selection of Absolute Pearson's correlation between future costs of different types and (composite) feature values

Feature name Total Distance Reshuffle Penalty

√RIH 0.512 0.263 0.562 0.483

RIH 0.510 0.256 0.558 0.488

√MMH 0.509 0.265 0.560 0.476

MMH 0.507 0.258 0.556 0.481

RIH*MMH 0.495 0.238 0.540 0.486

RIH2 0.494 0.236 0.538 0.487

MMH2 0.492 0.239 0.537 0.480

RIH*EBLB 0.452 0.236 0.582 0.362

RIH*SOS 0.451 0.235 0.580 0.361

MMH*EBLB 0.449 0.236 0.579 0.356

MMH*SOS 0.447 0.235 0.577 0.355

RIH*ASH 0.439 0.191 0.465 0.462

MMH*ASH 0.437 0.193 0.463 0.458

RIH*OCC 0.423 0.183 0.443 0.450

√LAEBLB 0.414 0.241 0.579 0.273

LAEBLB 0.410 0.231 0.577 0.275

Table 10 shows the highest correlating features found. The complete table with all features is given in

Appendix D. The selection consists mostly of the Reshuffle-index heuristic, Min-Max heuristic and

variations on it. Another notable thing is that even the features that correlate most with the cost

categories have a relatively weak correlation value, as in general features with a correlation value of

>0.75 are seen as highly correlating, 0.5-0.75 are moderately correlating, and anything <0.5 is seen as

weakly correlating. This suggests that no single feature in this set is capable in itself of approximating

the value of future costs.

5.4. Feature Set Selection
This section evaluates the selection of a feature set for the basis feature function, using the discussion

of individual features in Section 5.2. We first test the performance of the ADP algorithm using all

features, and then generate a variety of feature sets using a combination of sequential feature

selection, nearest-neighbor search, and several handmade feature sets. For the ADP algorithm we use

common sense settings wherever possible. We use the settings given in Appendix E.

One measure to evaluate how useful each feature is, is to look at the contribution of each feature to

the basis feature function. The contribution of a feature to the future cost estimation is given by its

weight multiplied by its activation, and thus the contribution of each feature in simulation n at

timestep t can be expressed as:

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 =
𝜃𝑖
𝑛𝜙𝑖(𝑆𝑡

𝑥,𝑛)

∑ 𝜃𝑎
𝑛𝜙𝑎(𝑆𝑡

𝑥,𝑛)𝑎∈𝒜

At the end of the training period, the trained agent is run through a set of 5 evaluation simulations,

which have pre-defined random events, which allows them to be compared more easily over iterations

and settings. This still leaves (𝑛𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠) ∗ (𝑛𝑟 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠) ∗ (𝑛𝑟 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠/𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜) of

observations per feature. From these observations we calculate the average and the maximum over

the nr of simulations and timesteps to find which features have a large contribution, and which do

Experiments and Analysis of Results

57

not. The top features in both of these indicators are shown in Table 7 and 8, with the full tables given

in Appendix F.

Table 11 – average contribution of each feature from all timesteps per problem

Feature 0 1 2 3 4 5 6 7 8 9 10 11 12 avg

TDLB 0.049 0.046 0.050 0.064 0.041 0.039 0.057 0.049 0.045 0.052 0.052 0.049 0.055 0.050

ASH 0.058 0.051 0.051 0.068 0.049 0.046 0.070 0.054 0.046 0.049 0.068 0.053 0.055 0.055

SSH 0.045 0.034 0.040 0.055 0.037 0.037 0.051 0.042 0.033 0.037 0.050 0.037 0.038 0.041

NIS1 0.051 0.052 0.044 0.068 0.047 0.056 0.061 0.049 0.048 0.058 0.057 0.055 0.053 0.054

NIS2 0.056 0.063 0.044 0.064 0.047 0.056 0.062 0.049 0.071 0.063 0.058 0.066 0.053 0.058

MMV 0.028 0.057 0.025 0.028 0.036 0.032 0.025 0.036 0.049 0.081 0.031 0.041 0.034 0.039

MMH 0.046 0.040 0.039 0.050 0.045 0.050 0.046 0.050 0.041 0.051 0.049 0.045 0.050 0.046

RIH 0.044 0.040 0.039 0.050 0.043 0.048 0.042 0.048 0.042 0.051 0.047 0.045 0.049 0.045

EBLB^0.5 0.063 0.052 0.049 0.056 0.052 0.049 0.053 0.051 0.051 0.028 0.057 0.046 0.055 0.051

Table 12 –max contribution of each feature from all timesteps per problem

Feature 0 1 2 3 4 5 6 7 8 9 10 11 12 avg max

NIS1 0.283 0.674 0.262 0.473 0.481 0.281 0.480 0.254 0.632 0.509 0.226 0.690 0.413 0.435 0.690

NIS2 0.288 0.797 0.206 0.503 0.435 0.390 0.576 0.225 1.101 0.409 0.271 0.705 0.379 0.483 1.101

NIC1 0.279 0.208 0.203 0.260 0.498 0.194 0.279 0.198 0.234 0.202 0.304 0.193 0.349 0.262 0.498

FIC1 0.698 0.756 0.707 0.841 0.700 0.779 0.948 0.377 0.986 0.347 0.656 0.480 0.305 0.660 0.986

FIC2 0.587 0.791 0.176 0.885 0.621 0.557 0.715 0.506 0.374 0.261 0.535 0.694 0.347 0.542 0.885

FOC1 0.703 0.647 0.718 0.719 1.807 0.845 0.699 0.698 0.711 0.724 0.937 0.644 0.563 0.801 1.807

FOC2 0.652 0.333 0.683 0.572 0.820 0.665 0.683 0.412 0.645 0.469 0.835 0.627 0.313 0.593 0.835

EBLB^2 0.088 0.301 0.120 0.233 0.101 0.136 0.135 0.101 0.675 0.309 0.091 0.255 0.109 0.204 0.675

NES^2 0.136 0.251 0.090 0.102 0.079 0.047 0.116 0.102 0.171 0.058 0.258 0.123 1.157 0.207 1.157

Values that have a low standard deviation and a low absolute average consistently contribute little to

the value estimation. Features that jump out this way are MWSP1, MWSP2, NES^2 and HUSP^2.

Others occasionally or consistently contribute a significant amount to the value estimation. Features

that (occasionally) contribute a relatively large amount to the value estimation are TDLB, ASH, NIS1,

NIS2, FOC1, FOC2, MMV, EBLB^0.5. These contributions can give some idea as to which features are

useful to have in a feature set. A number of other feature sets are composed and trained with, namely:

1. ‘no bad’: the full feature set without bad performers (MWSP, NES^2, HUSP^2)

2. ‘only good’: a feature set containing only the top contributing features (TDLB, ASH, NIS1, NIS2,

FOC1, FOC2, MMV and EBLB^0.5)

3. ‘composite’: a feature set containing 1 feature; a composite feature containing the sum of

a. α1 * Expanded-EBLB

b. α2 * TDLB

c. α3 * MWSP1

4. ‘heuristics’: a feature set containing two heuristics; Min-Max and Reshuffle-Index

5. ‘future features’: a feature set containing all the features whose evaluation depends on future

incoming/outgoing containers

6. ‘half’: a feature set containing the 18 features that had an above average contribution to the

value estimation as mentioned in Table 7

7. ‘top 14’: a feature set containing the top 14 features in contribution to the value estimation:

a. C, ASH, √EBLB, TDLB, NIS2, MMH, RIH, NIS1, MMV, SSH, √BD, BLD, US, EBLB

8. ‘new 1’: a handpicked feature set containing:

R.R. Bosch

58

a. √EBLB, TDLB, MMH, RIH, SSH, √BD, BLD, US, E-EBLB, EBLB2, C

9. ‘new 2’: a handpicked feature set containing:

a. ASH, NIS2, MMH, RIH, NIS1, MMV, LA-EBLB, BD, HUSP, C

10. ‘new 3’: a handpicked feature set containing:

a. ASH, √EBLB, TDLB, NIS2, MMH, RIH, NIS1, NIC1, MMV, SSH, √BD, BLD, US, E-EBLB,

FOC1, FOC2, BD, EBLB2, USP1, HUSP, MWSP1, C

Additionally, we generate potential feature sets using sequential feature selection and neighbor-

search: With the states and future costs discussed in Section 5.3 we first create a feature set using

backwards sequential feature selection. This procedure evaluates the performance of an estimator (in

this case the Lasso approximation, a variant on Ordinary Least Squares that tries to minimize the

amount of non-zero weights) on a given feature set, initially the full set of features. It then removes

features one at a time, keeping the feature set that loses the least amount of accuracy, until the

desired feature set size is achieved. Using this initial feature set, we create new feature sets using

neighbor search. By removing or adding a feature and testing its performance using the same

estimator, we generate 100 feature sets that can estimate the future costs using a linear model

estimator. We then select 10 from these that ensure a variety of set sizes and set compositions, which

are called ‘sfs 1 – 10’. An overview of which set contains which feature is given in Appendix G. Testing

all these feature sets gives the following results:

Table 13 - The realized Cost, MAE, R-squared and R-squared of the lasso linear approximation for each feature set. For

some feature sets the lasso R2 was not available as the set wasn’t tested using a lasso approximation.

KPI Cost MAE R2 lasso R2

composite 366.4 10.520 0.9761 -

full 338.8 9.319 0.9816 0.3639

future_features 433.7 23.437 0.9241 -

half 317.3 8.083 0.9828 -

heuristic 324.2 9.897 0.9759 0.2641

heuristic_indicators 345.6 10.383 0.9756 -

new_1 325.6 9.344 0.9753 0.1323

new_2 315.6 7.938 0.9823 0.2961

new_3 325.9 8.755 0.9809 0.3123

no_bad 340.5 9.599 0.9790 -

only_good 340.2 10.352 0.9748 -

reduced full 337.3 9.778 0.9774 0.3639

sfs 1 317.2 8.708 0.9797 0.3583

sfs 2 345.4 11.528 0.9671 0.3484

sfs 3 344.1 11.115 0.9717 0.3353

sfs 4 355.6 11.966 0.9706 0.3378

sfs 6 336.8 9.659 0.9785 0.3571

sfs 7 354.5 12.613 0.9671 0.3614

sfs 8 352.1 10.734 0.9743 0.3407

sfs 9 384.7 13.837 0.9653 0.3518

sfs 10 331.5 10.311 0.9719 0.3548

top_14 316.7 8.054 0.9822 0.3306

Min-max* 333.0 - - -

Reshuffle-index* 373.4 - - -

Experiments and Analysis of Results

59

A couple of things stand out from this data. The difference in performance between feature sets is

stark, with ‘half, ‘top 14’, ‘new 2’ and ‘sfs 1’ standing out as positive outliers, while ‘future features’

performs the worst by a large margin. A significant portion of feature sets also fails to perform better

than the min-max heuristic, the best performing heuristic that was tested.

Another interesting result is that prediction accuracy and lower costs are a not a one-to-one

correlation, which is especially true for the prediction accuracy of the lasso approximation. An

explanation for this is that the point of minimizing costs using a basis feature function lies not in

accurate prediction of costs, but in a composition that results in choosing states that result in lower

costs vs higher costs. To minimize costs, accurately predicting future costs may thus be sufficient, but

not necessary. For future experiments, the feature set “top 14” is used, as it is the top performer

together with ‘new-2’ and ‘sfs 1’.

Figure 21 - Scatter plot of costs vs accuracy (in the form of r squared) of the final iteration of each feature set

5.5. Weight Updating Algorithm
The weight updating algorithm is responsible for adjusting the weights for each feature in the VFA.

For this, we use the Recursive Least Squares (RLS) method. This method has the advantage over

Stochastic Gradient Descent (SGD) in that the convergence towards the optimum is much faster, and

in preliminary testing this method did not result in lower final performance than SGD. We use a variant

of RLS with a harmonic step size. The algorithm requires two inputs, 𝜌 and 𝛿. The algorithm works

using the following formula’s:

composite

full

future_features

half

heuristic

heuristic_indicators

new_1

new_2

new_3

no_bad

only_good

reduced full

sfs 1

sfs 2
sfs 3

sfs 4

sfs 6

sfs 7
sfs 8

sfs 9

sfs 10

top_14

300

320

340

360

380

400

420

440

460

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

C
o

st
s

R^2

R.R. Bosch

60

𝐵0 = 𝜌 ∗ 𝕀

𝑎𝑛 = 1 − 𝛿/(𝑛 + 1)

𝛾𝑛 = 𝛼𝑛 + (𝜙𝑖(𝑆𝑡
𝑥,𝑛) ∗ 𝐵𝑛 ∗ 𝜙𝑖(𝑆𝑡

𝑥,𝑛))

𝐻𝑛 =
1

𝛾𝑛
∗ 𝐵𝑛

𝑢𝑝𝑑𝑎𝑡𝑒 = 𝐻𝑛 ∗ (𝜙𝑖(𝑆𝑡
𝑥,𝑛)) ∗ 𝑒𝑟𝑟𝑜𝑟

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑛+1 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑛 − 𝑢𝑝𝑑𝑎𝑡𝑒

𝐵𝑛+1 =
1

𝛼𝑛
∗ (𝐵𝑛 −

1

𝛾𝑛
(𝐵𝑛 ∗ 𝜙𝑖(𝑆𝑡

𝑥,𝑛) ∗ 𝜙𝑖(𝑆𝑡
𝑥,𝑛)𝑇 ∗ 𝐵𝑛))

From the formula’s we can deduce that 𝜌 has an influence on the initial values of 𝐵𝑛, which results in

a larger value of 𝛾𝑛, which leads to a lower 𝐻𝑛, which leads to a smaller update of weights. A larger

value of 𝛿 results in a lower initial 𝛼𝑛, which leads to a larger value for 𝛾𝑛, and thus also a smaller

update of weights. We first test a range of values for 𝛿: 0, 0.25, 0.5, 0.75 and 0.999 (a value of 1 results

in a division by 0). This leads to the following results:

Table 14 - settings and results of the different options for delta. (*=average of last 50 iterations, **=heuristics for

comparison)

delta a_0 a_100 a_500 R^2* MAE* Cost*

0 1 1 1 0.9825 12.28 310.4

0.25 0.75 0.9975 0.9995 0.9836 11.78 311.2

0.5 0.5 0.995 0.999 0.9832 12.28 312.0

0.75 0.25 0.993 0.999 0.9832 12.32 312.4

0.999 0.001 0.990 0.998 0.9865 10.99 312.1

Min-max** 333.018

Reshuffle-index** 387.0723

Overall, there does not seem to be a significant difference between any of the options (a difference

of -2 between the best and worst performer for cost). As δ=0.5 was used before, this value will be

kept in future experiments. For the value of 𝜌 we test the following values: 0.025, 0.05, 0.1, 0.2 and

0.4. This leads to the following results:

Table 15 - Settings and results of the different options for rho

KPI 0.025 0.05 0.1 0.2 0.4

Cost 333.018 373.4279 315.6315 317.5825 315.38

MSE 176.0997 165.5349 168.581 170.6431 152.9873

Bias -0.32787 0.064635 -0.80046 -0.62358 0.673754

Experiments and Analysis of Results

61

Figure 22 - Cost over iterations for different settings of rho, with min-max and reshuffle-index heuristics for comparison

While we see lower costs and MSE for a 𝜌 of 0.4, the progression in costs over iterations is similar

between all settings of 𝜌. For future experiments we use a value for 𝜌 of 0.4.

5.6. Choice policy
The first parameter of the basis feature function that is tested is the choice policy. A decreasing-

epsilon policy is used, where with a probability of ϵ a random action is taken. This value of ϵ is

multiplied by a factor each iteration, so that it decreases over time. A variety of settings is tested with

the following results:

Table 16 - Settings and results of different choice policy options (*= average of the last 50 iterations, **=heuristics for

comparison)

Name Initial e

multiplication

factor

e at 100

iterations

e at 500

iterations Cost* MAE* R^2*

pure exploitation 0 0 0 0 312.7 7.48 0.985

low non-decreasing 0.02 1 0.02 0.02 311.4 7.89 0.979

medium non-decreasing 0.05 1 0.05 0.05 310.4 7.90 0.983

high non-decreasing 0.2 1 0.2 0.2 309.6 7.62 0.985

medium decreasing 0.2 0.99 0.073 0.0013 311.5 8.36 0.976

highly decreasing 1 0.95 0.0059 7.27E-12 309.6 8.51 0.978

Minmax** 333.0

Reshuffle-index** 387.1
From the results, no significant differences in performance are distinguishable; the worst performing

option has a score that is 1% worse than the best performing option. Just as in the experiments with

feature sets, there is no strict correlation between prediction accuracy and performance.

One would expect at least a difference between ‘high non-decreasing epsilon’ and ‘pure exploitation’,

so this lack of difference is in contrast with other reinforcement-learning problems. A possible

explanation for this lack of difference could be the magnitude and compounding effect of randomness

in this problem setting, akin to the ‘butterfly effect’; two containers that arrive in a swapped order

early in the problem can result in a slightly different container layout in the next timestep, which

causes different actions in the next timestep, and the further along the problem is, the larger the

differences become. In this way, ‘exploration’ is forced upon the algorithm due to the inherent

randomness of the problem. Another explanation is that the algorithm is not able to learn the future

costs to such a degree that exploration vs exploitation becomes a relevant matter.

300

320

340

360

380

400

0 100 200 300 400 500

Cost over iterations

minmax

reshuffleindex

0.025

0.05

0.1

0.2

0.4

R.R. Bosch

62

As there was no significant difference between options, the option that is chosen is ‘medium

decreasing’ epsilon, as that is a common choice for choice policies and was the default choice in the

setup of these experiments. This choice policy is used for future experiments.

5.7. Pre-training
In ADP, feature weights for the BFF are commonly initialized at 0 to prevent unrealistically large

estimated future costs. This does mean that initially the algorithm learns future values using a myopic

policy, which typically results in high predicted future costs. To prevent this, it is possible to do pre-

training, where the decision making in a simulation is done by a heuristic, while algorithm is updated

to estimate future costs. To test this, the algorithm is pre-trained for 10, 100 and 1000 iterations using

the min-max heuristic. Table 17 shows the resulting costs, MAE and R2.

Table 17 - Costs, MAE and R2 for different amounts of pre-training

KPI 0 10 100 1000 Min-max Reshuffle-index

cost 315.4244 317.555 319.608 320.0199 333.018 373.4279

MAE 8.318282 6.946515 8.116679 8.272115 - -

r_2 0.980588 0.986581 0.981394 0.980472 - -

The results are paradoxical; while all amounts of pre-training improve the accuracy of the

approximation, resulting in a higher R2
 and lower MAE, this improved accuracy results in higher

realized costs.

5.8. Corridor
A measure that can be used to speed up the algorithm is a corridor; a pre-selection method that makes

it so only the x closest options are considered. To test the effect of this measure on time-savings and

performance, the problem instances are all tested without corridor, and a corridor of 30, 20, 15, 10,

8, 7, 6 and 5. The effect of this corridor can depend on the problem instance being tested, as a corridor

of size 5 means that in problem instance 2 5/50=10% of all stacks are considered, while in problem

instance 1 5/10=50% of all options are considered. We get the following results:

Table 18 – Costs* per problem instance / corridor size, expressed as a fraction of the costs in ‘No corridor’. Instance 1 has

10 stacks, Instance 2 has 50, all others have 20. (*=average of last 100 iterations)

Problem

Instance 5 6 7 8 10 15 20 30 None Min-max

Reshuffle-

index

0 1.04 1.02 1.00 0.98 1.02 1.00 - - 1.00 1.04 1.26

1 1.04 1.08 1.03 1.07 - - - - 1.00 1.13 1.15

2 1.11 1.07 1.04 1.02 1.00 1.00 0.99 1.01 1.00 1.01 1.42

3 1.04 1.03 1.02 1.01 1.00 1.01 - - 1.00 1.09 1.17

4 0.99 0.98 0.97 0.96 0.96 0.99 - - 1.00 1.07 1.34

5 1.11 1.02 1.04 1.04 1.00 0.99 - - 1.00 1.13 1.33

6 1.02 1.02 1.02 1.03 1.02 1.00 - - 1.00 1.04 1.32

7 1.03 1.01 0.97 1.01 0.99 1.00 - - 1.00 1.04 1.27

8 1.06 0.98 0.95 0.96 0.98 0.97 - - 1.00 0.94 1.11

9 1.00 0.99 0.98 1.04 1.02 0.98 - - 1.00 1.16 1.05

10 1.06 1.03 1.02 1.00 1.05 1.02 - - 1.00 1.04 1.22

11 1.00 1.00 1.04 1.01 1.01 1.00 - - 1.00 1.11 1.37

12 1.06 1.05 1.04 1.02 1.01 1.00 - - 1.00 1.09 1.18

avg 1.044 1.022 1.011 1.011 1.004 0.997 0.993 1.005 1.000 1.068 1.245

Experiments and Analysis of Results

63

We expect to get a gradual and increasingly sharp increase in the costs as the corridor size decreases.

While this is true in general, we see that for some problem instances this is not true; instance 4 has

no increase in costs, and in some cases costs decrease going from a larger to a smaller corridor.

Table 19 - Time per problem instance / corridor size, expressed as a fraction of no corridor

Problem Instance 5 6 7 8 10 15 20 30 None

0 0.65 0.88 0.89 0.96 0.86 0.86 - - 1.00

1 0.70 0.98 1.01 1.09 - - - - 1.00

2 0.45 0.60 0.62 0.68 0.67 0.79 0.82 0.82 1.00

3 0.55 0.78 0.82 0.85 0.77 0.82 - - 1.00

4 0.63 0.83 0.88 0.86 0.76 0.79 - - 1.00

5 0.54 0.72 0.80 0.83 0.73 0.79 - - 1.00

6 0.64 0.87 0.91 0.93 0.82 0.85 - - 1.00

7 0.69 0.90 0.91 0.95 0.82 0.86 - - 1.00

8 0.52 0.67 0.72 0.77 0.70 0.75 - - 1.00

9 0.40 0.58 0.63 0.70 0.64 0.79 - - 1.00

10 0.73 0.94 0.96 0.97 0.83 0.85 - - 1.00

11 0.65 0.66 0.73 0.73 0.89 0.98 - - 1.00

12 0.79 0.95 1.04 1.02 0.87 0.87 - - 1.00

avg 0.612 0.797 0.840 0.872 0.781 0.834 0.815 0.822 1.000

Time savings across problem instances and corridors are inconsistent, but this is somewhat expected;

the speed at which the experiments ran is dependent on a number of things such as other processes

executed on the computer. In general however, they show a slight decrease in time which gets more

drastic as the corridor gets narrower. As a corridor size of 15 is the smallest corridor that does not

increase the average costs compared to no corridor, this setting is used for future experiments.

5.9. Single-Stage Optimization Method Experiments
This section discusses experiments regarding the short-term decision-making tools this problem

explores; a LP and a PST (see Section 4.4).

5.9.1. Partial Search Tree
The PST can have a different amount of tries, which can increase performance at the cost of extra

computation time. The algorithm is tested using a range of 1 to 10 attempts for the PST as explained

in Section 4.5.2, and these are the results:

Figure 23 - Cost over iterations for the PST settings (minmax heuristic added for comparison)

300

310

320

330

340

350

360

370

380

1 2 3 4 5 6 7 8 9 10

C
o

st

Nr of PST Attempts

PST

minmax

reshuffleindex

R.R. Bosch

64

This figure shows a decline up to 6 attempts, at which point there is no visible improvement. The MSE

of each algorithm shown in Table 20 shows a similar pattern.

Table 20 - Cost, Bias and MSE for all PST settings

Attempts 1 2 3 4 5 6 7 8 9 10

Cost 315.6 311.0 309.2 307.2 308.0 305.5 307.5 305.8 309.0 307.7

Bias -0.226 0.129 0.077 0.684 0.066 1.412 0.143 0.728 -0.610 0.134

MSE 210.7 170.0 166.5 153.3 153.9 144.2 153.2 156.2 133.9 142.2

Figure 24 - stacked histogram of the proportion of times option x is chosen in the PST, with option x being the x-th finished

solution from the PST

This histogram shows the proportion of times each option is chosen in the PST. The vast majority of

times the first option from the PST is found to be the optimal one, with the first option being the best

option even if the partial search tree provides 10 options. The PST with 6 attempts provided the lowest

costs overall, so this setting is used in the Neural Network experiments.

5.9.2. Linear Programming

To compare the PST heuristic to an exact method we implement the LP as discussed in Section 4.5.1.

It is however practically impossible to train the ADP algorithm using the LP as a single-stage solution

method, as the method takes a prohibitively long time in python; compiling the LP at each timestep

costs 30s to 3 mins, and solving it takes around 30s. The PST at 6 attempts, for comparison, requires

0.2 to 1 second per stage. To have some comparison between the performance of the two models,

we first train an agent using the PST with 6 attempts. We then use the weights learned with those

settings for the LP and run through the 5 evaluation simulations. The average cost per category is

shown in Figure 25. From this figure it is clear that the LP outperforms the PST, as it resulted in a

reduction of 5.3% costs overall, with a reduction of 10% in the amount of reshuffles.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10

P
ro

p
o

rt
io

n
 o

f
ch

o
ic

es

PST Setting

Distribution of Chosen Attempts for each PST Setting

10

9

8

7

6

5

4

3

2

1

Experiments and Analysis of Results

65

Figure 25 - Costs per category for the PST-3 and the LP

5.10. Neural Network Design Experiments
This section discusses experiments related to a Neural Network as a value function estimation

alternative to the basis feature function. In order to keep the approach similar to the basis feature

function, features are still used as input. However, in contrast to the basis feature function, one set of

weights is used for all timesteps, and we use all features in the feature set that provided some amount

of contribution in Section 5.4: E-EBLB, TDLB, BD, US, BLD, ASH, SSH, USP1, USP2, USP3, USP4, NIS1,

NIS2, NIC1, FIC1, FOC1, MWSP1, MMV, MMH, RIH. In addition we provide some characteristics of the

terminal as input, which provide an indication of future costs in the problem that cannot be influenced

by the actions taken, those being: Timestep, batch size of t+1 and t+2, occupation of the terminal,

amount of incoming containers at t+1, t+2 of each container type, amount of outgoing containers at

t+1, t+2 of each container type, and the average/st.dev./min/max of departure timestep of containers

at t+1 and t+2.

Additionally, the Neural Networks need more iterations to reach their optimal performance: 5000

instead of 500. To keep computation times reasonable, only problem instance 0 is tested on instead

of all instances. Experiments are done on the learning rate schedule and the layers / layer size. To start

with, one layer of 20 nodes with ReLu activation is used.

5.10.1. Learning rate schedule
The first setting used for the neural network approach is the learning rate schedule. An exponential

decay learning rate schedule is used, where the learning rate is given by the following formula:

𝑟𝑖 = 𝑟0 ∗ 𝑑
𝑖

Where the learning rate at iteration 𝑖 is 𝑟𝑖, the initial learning rate is 𝑟0 and the decay 𝑑. We test the

following settings for 𝑟𝑖 and 𝑑, shown in Table 21:

140.2 126.4

221.1
218.3

98.8
91.0

0

100

200

300

400

500

PST-6 LP

C
o

st
s

reshuffle distance penalty

R.R. Bosch

66

Table 21 - Initial learning rate, decay rate, and learning rate at 500, 2500 and 5000 iterations.

name r0 d r500 r2500 r5000

high decay 0.1 0.99 6.57E-04 1.22E-12 1.50E-23

high initial 0.3 0.995 2.45E-02 1.08E-06 3.91E-12

low decay 0.1 0.9975 2.86E-02 1.92E-04 3.67E-07

low initial 0.033 0.995 2.69E-03 1.19E-07 4.30E-13

medium 0.1 0.995 8.16E-03 3.61E-07 1.30E-12

This leads to the following results:

Figure 26 - Cost over iterations for the different learning rate settings. Heuristics and BFF added for comparison

Figure 27 - MSE and Bias for different learning rate schedules for the Neural Network. BFF added for comparison

Figure 29 shows the cost over iterations for the different learning rate settings. All settings end up at

a similar cost point except ‘low initial’, which did not manage to adjust its weights fast enough. This is

also reflected in the MAE and R2. All other settings end up around the same cost point, with ‘high

initial’ scoring the best by a slight margin. However, all settings of the Neural Network perform worse

than the Basis Feature Function, which additionally converges in
1

10

𝑡ℎ
 of the iterations.

400

450

500

550

600

650

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

st

Iterations

minmax

reshuffleindex

BFF

high decay

high initial

low decay

low initial

medium

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000

M
SE

Iterations
-40

-30

-20

-10

0

10

20

30

40

0 1000 2000 3000 4000 5000

B
ia

s

Iterations

Experiments and Analysis of Results

67

Of note is that occasionally the library that is used for updating the Neural Network fails to update,

meaning that no learning takes place in that iteration. In testing, this happened 5%-10% of the time.

This does not seem to have a significant impact on the performance of the algorithm.

5.10.2. Layers, and layer size
For the layer experiments, three options are explored: 1, 2 and 3 layers. These options have an

increasing amount of nodes in their Neural Network. The option with a large amount of nodes still has

an extremely low amount of nodes compared to modern reinforcement learning projects, which can

have tenths to hundreds of layers with hundreds to thousands of nodes each, but this experiment is

meant to explore the capabilities of small neural networks, not a deep learning approach. The

following settings are used:

name layer 1 size layer 2 size layer 3 size

1 layer 20 - -

2 layers 40 20 -

3 layers 80 40 20

This leads to the following results:

Figure 28 - Cost over iterations for different NN layer options.

Figure 29 - R^2 and MAE over iterations for different NN layers

400

450

500

550

600

650

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

st

Iterations

minmax

reshuffleindex

BFF

1 layer

2 layers

3 layers

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000

M
SE

Iterations
-40

-30

-20

-10

0

10

20

30

40

0 1000 2000 3000 4000 5000

B
ia

s

Iterations

R.R. Bosch

68

From Figure 28 we see that there is no significant difference in performance between the different

layer options. Additionally, we see that neither option performs better than the BFF, even after 10

times the amount of training. The same goes for MSE and Bias, shown in Figure 29. While the Neural

Networks is in essence not much different from the linear regression that the BFF uses, there are a

number of key differences that can explain the difference in performance. The Neural Network has

multiple layers and can thus have interaction between the activation of features. In exchange, the

Neural Network has one regression for the entire problem instance, instead of one for each timestep,

like the BFF. The methods for updating weights is also much different, with the BFF using Recursive

Least-Squares (See Section 5.5), while the Neural Network uses Stochastic Gradient Descent, which

has a much slower convergence rate.

5.11. Sensitivity Analysis
This section discusses the sensitivity of the produced algorithm to various aspects of the problem

setting. We discuss sensitivity in performance to problem instances with differing characteristics,

sensitivity to randomness, and sensitivity to different cost weights.

5.11.1. Sensitivity to characteristics of problem instances
As all problem instances were generated with distinctive characteristics, we can compare how the

best version of the ADP algorithm in this research (the algorithm from the results in Section 5.4)

compares to different heuristics in each problem instance. In Table 22, you can see the costs made in

each problem instance by the ADP algorithm, the minmax heuristic and reshuffle-index heuristic. The

last column shows the comparative costs of the ADP algorithm compared to the best performing

heuristic (min-max or reshuffle-index, depending on the problem instance). As you can see, the ADP

algorithm results in 3.2% higher costs to 13.6% lower costs, depending on the problem instance, with

an average savings of 6.5%.

Table 22 - Comparison of ADP algorithm performance to heuristics. *= savings are compared to best performing heuristic.

**=total training time in minutes

Problem
instance

name
cost

minmax
reshuffle
index Savings* training time**

0 normal 410.8 443.7 515.7 7.4% 381

1 low c 165.4 177.9 165.1 -0.2% 36

2 high c 811.6 839.0 1092.4 3.3% 3059

3 low p 224.7 248.1 254.5 9.4% 139

4 high p 905.9 1048.4 1247.5 13.6% 1707

5 short E[LoS] 258.0 295.7 361.8 12.7% 249

6 long E[LoS] 620.0 646.2 824.8 4.1% 622

7 Low E[cycles] 718.8 750.8 895.3 4.3% 569

8 High E[cycles] 194.6 188.5 217.1 -3.2% 203

9 low occupation 157.6 195.5 166.4 5.2% 84

10 high occupation 799.6 849.1 981.6 5.8% 496

11 short batch timespan 176.9 200.5 221.9 11.8% 226

12 long batch timespan 665.4 738.3 811.3 9.9% 423

average - 469.9 509.4 596.6 6.5% 630

We test the variance in performance by generating another 9 problem instances with the settings of

problem instance 0. Figure 30 shows the costs per category for these problem instances. The green

line shows the costs made by the best performing heuristic, so we can see that the proposed solution

consistently results in marginally lower costs. We can also see that especially the ‘wrong-stack penalty’

Experiments and Analysis of Results

69

soft-constraint cost is the most variable along problem instances, but that the total amount of costs

can also vary a large amount. With such high variability in costs within the same settings for problem

instances however, it is not possible to draw conclusions about changes in algorithm performance for

different types of problems.

Figure 30 - Comparison of costs per category and costs of heuristic per problem instance

5.11.2. Sensitivity to randomness
We test the sensitivity of the algorithm to randomness by training it on a modified version of the

problem instances. Instead of training the algorithm normally, the algorithm is trained using one of

the five pre-drawn RNG samples used only for evaluation simulations. This means that every time, the

algorithm will encounter the same revealed order within batches, turning this problem into a

deterministic problem. These five trained algorithms from pre-drawn RNG samples are shown in

Figure 31 in blue. Shown in red are the evaluation simulations using the same five pre-drawn RNG

samples, but with an algorithm trained on the regular stochastic problem. The accuracy of the

algorithms trained on the deterministic problem are averaged and shown in Figure 32, together with

the accuracy of the normal algorithm.

Figure 31 - Cost over iterations for the fixed RNG (in blue) and the normal RNG (in orange) on the pre-generated evaluation

sample paths

0

100

200

300

400

500

600

0
(original)

1 2 3 4 5 6 7 8 9

C
o

st

Problem Instance

penalty

reshuffle

distance

heuristic

300

302

304

306

308

310

312

314

316

318

320

0 100 200 300 400 500

C
o

st

Iteration

fixed 0

fixed 1

fixed 2

fixed 3

fixed 4

random 0

random 1

random 2

random 3

random 4

R.R. Bosch

70

Figure 32 - MAE and R^2 over iterations for the fixed RNG and normal RNG

Surprisingly, the algorithm performs worse when the problem instances are converted to a

deterministic problem. One would expect that the removal of randomness would make it possible to

predict future costs more accurately, however the costs incurred by the algorithm trained on the

regular stochastic problem performs as well as the deterministic variant and achieves equal accuracy.

5.11.3. Sensitivity to cost categories
Lastly, we compare the performance of the ADP algorithm when the distance, reshuffle and wrong-

stack penalty costs are changed. In previous experiments the algorithm is tested with the following

cost weights:

𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑚 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 = 𝛼1 = 0.06,

 𝑟𝑒𝑠ℎ𝑢𝑓𝑓𝑙𝑒 𝑐𝑜𝑠𝑡 = 𝛼2 = 2,

𝑤𝑟𝑜𝑛𝑔­𝑠𝑡𝑎𝑐𝑘 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝛼3 = 8.

In this analysis the algorithm is tested with each cost either doubled or halved. This leads to the results

shown in Table 16. From this we see that if any cost category weight increases or decreases, the costs

made in that category simply increase by that amount, implying that the weight increase influences

decisions made by the algorithm minimally. This effect is not as strong for the weight for the wrong-

stacking penalty, with an increase of 83% when doubling weight 𝛼3.

Table 23 - Changes in costs caused by different multi-objective cost weights

Cost type Change
Category-specific
cost change Total change

distance x2 1.95 1.53

÷2 0.51 0.74

reshuffle x2 2.01 1.28

÷2 0.52 0.88

penalty x2 1.83 1.17

÷2 0.53 0.91

0

5

10

15

0 100 200 300 400 500

M
A

E

Iteration

random fixed

0.9

0.92

0.94

0.96

0.98

1

0 100 200 300 400 500

R
^2

Iteration

random fixed

Experiments and Analysis of Results

71

5.12. Conclusions
In this chapter, multiple experiments are done to determine the best settings for the ADP algorithm

for the problem being solved in this research. These include feature sets, choice policy, updating

schedule for feature weights, a corridor, and settings for the PST. General observations are that the

algorithm settings that produce the most accurate estimation of future costs do not always correlate

with the settings that produce the lowest costs. The best version of the algorithm, a BFF with a PST

with 3 attempts, produces lower costs than the minmax heuristic on the problem instances on which

it was tested (306 vs 334), but at the cost of a training time of several hours, while the heuristic can

compute its solution in less than a minute. A simple Neural Network was also tested on the problem,

but these required 10 times the training and performed similarly to the BFF.

A sensitivity analysis was also performed using different types of problem instances, different cost

weights and the randomness in the problem. These analyses show that the performance of the ADP

algorithm compared to heuristics can depend on the problem instance, but that the ADP algorithm

performs relatively better in instances where containers have a shorter length-of-stay. The algorithm

is insensitive to changes in the multi-objective weights of the cost function, choosing similar actions

if the costs of a single cost weight are multiplied or divided by 2.

R.R. Bosch

72

6. Conclusions, Discussion & Recommendations
This chapter provides the conclusions of this research, a discussion of the scientific contribution of this

research, the limitations on this research and recommendations for the company Cofano and for

future research.

6.1. Conclusions
In Section 1.5 we defined research questions to achieve the research objective:

“Develop a model that creates container handling schedules for a container

terminal that minimizes the transportation costs and ship transshipment times,

while taking long-term costs into account.”

In subsequent chapters these questions were answered. In the context analysis we identified the types

of containers that are handled at a container terminal and which stacking restrictions this imposes.

We identify that vessels entering the terminal experience delay, which results in incomplete

information about the sequence in which containers arrive at and depart from the terminal. In the

literature review we discussed several methods by which CRPs are solved, including Linear Programs

for small problem instances and heuristic methods for larger instances. We discuss the concept of ADP

and how it can be applied to the CRP. We then formalize a model of the problem in the form of a

Markov Decision Problem and solve this problem using ADP. This solution method consists of two

parts: an approximation of future costs �̅�𝑡
𝑥(𝑆𝑀,𝑥(𝑆𝑡

𝑛, 𝑥𝑡
𝑛)) using a Basis Feature Function or Neural

Network, and an optimization method for solving the Bellman equation:

�̃�𝑡
𝑛 = arg min

𝑥𝑡
𝑛∈𝒳𝑡

(𝐶(𝑆𝑡
𝑛, 𝑥𝑡

𝑛) + 𝛾�̅�𝑡
𝑥(𝑆𝑀,𝑥(𝑆𝑡

𝑛, 𝑥𝑡
𝑛)))

For the first part of the solution method, we develop a BFF that uses features that give an indication

of future costs. We test different feature sets and different parameters for the ADP algorithm and find

several sets that are best at the approximation. In addition, we test several parameters of the ADP

algorithm, such as choice-policy, learning step size and pre-training using a heuristic. These tests do

not provide conclusive results regarding which parameters result in the best performance. Lastly we

also test several small Neural Networks, which perform at a similar level as the BFF, but which take

several factors more computation time to train.

For the single-stage solution method we develop a Linear Program and a PST method. The PST resulted

in an increase of 8% costs over the LP, which is an exact method. Overall, the ADP algorithm provides

better performance than the min-max heuristic, which was the best performing heuristic we tested.

We do think the method can be improved using adjustments in the problem formulation and solution

method discussed in the following section.

6.2. Discussion
The contribution of this thesis builds on the research done by (Boschma, 2020), and expands on it in

several ways. Firstly, the objective is expanded to a multi-objective function that can take into account

distance as a cost, which more accurately reflects the costs made in a terminal. It is also flexible, as

the algorithm performance is not sensitive to the weight values chosen (see Section 5.11.3).

Additionally, the assumption that any batch of containers only contains incoming or outgoing

containers is relaxed. This means that any timeframe where a number of containers arrive and depart

can be represented in a batch, whereas previously these would need to be represented as two

different batches, with all departing containers being handled before or after the arriving containers.

Conclusions, Discussion & Recommendations

73

The model also accounts for the four different kinds of containers that constitute 99% of all containers

arriving in the terminals of clients of Cofano.

The method for finding actions within a timestep is improved upon by expanding the partial search

tree method. By creating a predetermined number of branches of the search tree, better action sets

can be found, improving performance. Multiple new features are tested for the basis feature function

of this model, of which multiple were included in the final feature set (TDLB, SSH, NIS1, NIS2, FOC1,

MMV, √EBLB, √BD). Lastly, a simple Neural Network approach is tested, and found to perform subpar

compared to a basis feature function. Performance might be improved by adding characteristics as

input that are not valid as features for a BFF; terminal occupation, number of containers left in the

schedule, amount of containers in the next batch are all examples of cost indicators that do not qualify

as features, as these are not dependent on the actions at a single stage, as explained at the beginning

of Section 4.4.3.

This research does have limitations. As discussed in Section 5.11.1, the algorithm generally performs

better than the tested heuristics, but in some cases it does not, while requiring orders of magnitude

more computation time than any heuristic. The mathematical model that is used as the problem on

which the algorithm is trained also contains assumptions that may not be reflective of reality. One of

these is that containers arrive in pre-determined batches, of which the order is unknown. This

represents on one hand a strictness where containers can not arrive in a later or earlier timeslot, and

on the other hand a complete lack of knowledge about the order of containers arriving within a

timeslot. The information process in reality is more complicated; containers arriving far into the future

are more uncertain, and some containers are guaranteed to arrive together as they arrive in the same

boat or train.

Additionally, the model tries to keep 20ft and 40ft long containers in completely separate stacks by

using a soft constraint penalty. While this is done in real life as well for practical purposes, two 20ft

containers can stack upon one 40ft container, and vice versa. This allows for more flexible stacking,

which this algorithm does not utilize at all. Containers other than 20HV, 40HV, 20RF and 40RF were

not used at all. While containers other than these four make up <5% of all container traffic in the

clients of Cofano, they still need to be allocated manually, as some of their restrictions (containers

with chemicals have set locations, open top containers cannot have containers above them, etc.) are

not included into the model. Thus, they would need to be scheduled manually.

Lastly, the algorithm made in this research is tested entirely on toy problem sizes. Due to a

combination of poorly written code, a low amount of available computation power and the nature of

some features, the algorithm could not be trained on realistically sized problem instances. This means

that the added value of this algorithm is hard to quantify on real-life problems.

6.3. Recommendations
This section provides recommendations to Cofano and for future research. First, we give the

recommendations to Cofano for providing optimization software for their clients. The algorithm

developed in this research can provide better results than heuristics, but is severely limited by the

computation time required to train the algorithm. This means that the algorithm cannot be used in

practical scenarios, but several things can be done to improve this problem. The training time of this

algorithm was set at 500 iterations for the BFF, but as Figure 22 and others show, almost all training

happens in the first 50 iterations. If the algorithm is trained not for a set amount of iterations, but

instead until it hasn’t improved in the last 𝑖 iterations (e.g., last 50 iterations), then the training can be

stopped prematurely, saving a large amount of time. Additionally, the algorithm is written in Python,

which is a flexible high-level programming language that is easy to program in, but loses in speed.

R.R. Bosch

74

Lastly, the computation time consists for a large majority in computing features, which are calculated

from scratch for each state. This can be done more efficiently by not calculating feature values from

scratch, but wherever possible only calculating the change in value compared to the previous

evaluated state using a change-list.

The second category of recommendations is for future research. These can be divided into

improvements to the mathematical model that represents the real-life problem, and the algorithm

that solves the mathematical model. First we discuss potential improvements to the mathematical

model. While the model formulated in this research relaxes the previous assumption that containers

in a batch may only be one type out of incoming or outgoing, containers are still divided into batches

whose sequence is randomly generated. This means that on one hand the model is restrictive in that

containers can not arrive a batch earlier or later, but naïve in the sense that the order of containers is

assumed to be unknown until that batch is handled. The information process in real-life container

terminals is more complex, as described in Section 2.5. A potential subject for future research is a

change in the information process where the vessel a container has a planned arrival (including known

delays), and where the vessel that containers arrive on is kept track of. Ships can have random planned

and day-of-arrival delays, and trucks and trains can also have random amounts of small delays. The

fact that trucks delivering containers do not adjust for delayed ships can be simulated this way, as well

as that trucks that retrieve containers arriving by vessel will wait to be dispatched until the ship has

arrived.

Another assumption of the model used in this research is that containers with 20ft length and 40ft

length do not mix, and stacks are designated to either type at the start of the planning. Mixing stacks

of 20ft and 40ft containers is avoided in real life, as it introduces complexities in stacking, but it does

happen. More importantly, stacks aren’t dedicated to 20ft or 40ft containers alone in advance,

allowing for flexibility in storage. Both of these assumptions can be relaxed to more accurately

describe reality, but the latter is most relevant. This can be done by making 40ft containers take up

two adjacent stacks, which then are temporarily ‘fused’ for as long as there are 40ft containers lying

on top of them.

Lastly, this research did not account for containers other than 20HV, 40HV, 20RF and 40RF containers,

as mentioned in Section 6.2. Most relevantly, this research did not distinguish between full containers

and empty containers. While filled containers have a particular destination, empty containers are

mostly interchangeable between each other, as long as both belong to the same owner. Other than

accounting for whether the container is filled, creating more types of containers and features that can

account for them (i.e., an ‘non-accessible stacks’ feature to indicate which stacks have an open-top

container on top of them, and thus can not receive more containers) is a way to work towards a

mathematical model that represents real life more closely.

We also have recommendations with regards to potential future research regarding the algorithm.

This research used a distance-based corridor to eliminate reshuffle locations that are not promising.

There are other characteristics to eliminate destinations on other than distance however, such as the

reshuffle-index heuristic or the min-max heuristic. Both of these can be used to rank destinations from

best to worst, at which point the top 𝑥 destinations can be used as potential destinations. Another

option is to reduce the amount of times the VFA is used by changing the way the PST chooses potential

action sets. By using heuristic evaluations as the decision metric at nodes in the decision tree, a large

set of action sets can be created quickly. The post-decision states of the final nodes in the search tree

can then be evaluated using a VFA.

Conclusions, Discussion & Recommendations

75

Another subject for future research is to split out features into more detailed mini-features. A

significant portion of the features used in this research are sums of characteristics (e.g., the sum of

unordered stacks, the sum of blocking lower bounds over all stacks or containers, the sum of batch-

label differences over all stacks, etc.). By splitting these sums out over individual features, a BFF can

account for situations where the stacks height, blocking amount or any other characteristics is more

important for stacks closer to the exit, or for stacks that can have more types of containers, etc. This

will result in a BFF with orders of magnitude more features, which can reduce the convergence speed

of the algorithm. But this would have to be found out.

The last and most impactful potential research subject is to train the VFA not on accuracy of estimated

future costs, but on minimization of costs directly. This changes the purpose of the VFA from a function

that estimates future costs, to a function that influences decision making in a single stage such that

the overall costs are minimized. Hypothetically, it is preferable that a VFA wildly over- or

underestimates future costs, if that results in a situation where low-quality actions are punished

better. The motivation for this being a possibility is found in multiple experiments where the setting

that minimized the costs the best did not predict future costs most accurately (this happens in Section

4, 5.5, 5.6, and 5.7.

This method can be achieved using a genetic algorithm; creating random mutations in feature weights,

evaluating the costs made by the resulting algorithm, and keeping the best scoring mutations. This

training method converges far slower than a directed optimization method, so this method can be

used to refine a set of weights that has been pre-trained using a faster converging method such as

Recursive Least Squares, used in this research.

R.R. Bosch

76

7. References

Boschma, R. (2020). Exploring the world of Container Stacking using Approximate Dynamic
Programming.

Caserta, M., Schwarze, S., & Voß, S. (2012). A mathematical formulation and complexity
considerations for the blocks relocation problem. European Journal of Operational Research,
219(1), 96–104. https://doi.org/10.1016/j.ejor.2011.12.039

Caserta, M., Voß, S., & Sniedovich, M. (2009). Applying the corridor method to a blocks relocation
problem. OR Spectrum 2009 33:4, 33(4), 915–929. https://doi.org/10.1007/S00291-009-0176-5

Committee, E. C. for E. I. T. (2021). ADR 2021 Volume 1 | UNECE.
https://unece.org/transport/documents/2021/01/standards/adr-2021-volume-1

Forster, F., & Bortfeldt, A. (2012). A tree search procedure for the container relocation problem.
Computers & Operations Research, 39(2), 299–309. https://doi.org/10.1016/J.COR.2011.04.004

Galle, V. (2018). The Stochastic Container Relocation Problem. Transportation Science, 52(5), 1035–
1058. https://doi.org/10.1287/trsc.2018.0828

Güven, C., & Eliiyi, D. T. (2014). Trip Allocation and Stacking Policies at a Container Terminal.
Transportation Research Procedia, 3, 565–573. https://doi.org/10.1016/J.TRPRO.2014.10.035

Hakan Akyuz, M., & Lee, C. Y. (2014). A mathematical formulation and efficient heuristics for the
dynamic container relocation problem. Naval Research Logistics, 61(2), 101–118.
https://doi.org/10.1002/NAV.21569

Huré, C., Pham, H., Bachouch, A., & Langrené, N. (2021). Deep Neural Networks Algorithms for
Stochastic Control Problems on Finite Horizon: Convergence Analysis.
Https://Doi.Org/10.1137/20M1316640, 59(1), 525–557. https://doi.org/10.1137/20M1316640

Jiang, T., Zeng, B., Wang, Y., & Yan, W. (2021). A New Heuristic Reinforcement Learning for Container
Relocation Problem. Journal of Physics: Conference Series, 1873(1), 012050.
https://doi.org/10.1088/1742-6596/1873/1/012050

Jin, B. (2020). On the integer programming formulation for the relaxed restricted container relocation
problem. European Journal of Operational Research, 281(2), 475–482.
https://doi.org/10.1016/J.EJOR.2019.08.041

Jovanovic, R., Tanaka, S., Nishi, T., & Voß, S. (2019). A GRASP approach for solving the Blocks Relocation
Problem with Stowage Plan. Flexible Services and Manufacturing Journal, 31(3), 702–729.
https://doi.org/10.1007/s10696-018-9320-3

Kim, K. H., & Hong, G.-P. (2006). A heuristic rule for relocating blocks. Computers and Operations
Research, 33(4), 940–954. https://doi.org/10.1016/j.cor.2004.08.005

Lehnfeld, J., & Knust, S. (2014). Loading, unloading and premarshalling of stacks in storage areas:
Survey and classification. European Journal of Operational Research, 239(2), 297–312.
https://doi.org/10.1016/J.EJOR.2014.03.011

Li, W., Xiaoning, Z., & Zhengyu, X. (2019). Efficient container stacking approach to improve handling:
efficiency in Chinese rail–truck transshipment terminals:
Https://Doi.Org/10.1177/0037549719843347, 96(1), 3–15.
https://doi.org/10.1177/0037549719843347

References

77

Mes, M. R. K., & Rivera, A. P. (2017). Approximate Dynamic Programming by Practical Examples.
International Series in Operations Research and Management Science, 248, 63–101.
https://doi.org/10.1007/978-3-319-47766-4_3

MFAME. (2019). Port of Shanghai Rated World’s Best Connected Port by UN.
https://mfame.guru/port-of-shanghai-rated-worlds-best-connected-port-by-un/

Powell, W. B. (2011). Approximate Dynamic Programming: Solving the Curses of Dimensionality:
Second Edition. Approximate Dynamic Programming: Solving the Curses of Dimensionality:
Second Edition, 1–638.

Ries, J., González-Ramírez, R. G., & Miranda, P. (2014). A Fuzzy Logic Model for the Container Stacking
Problem at Container Terminals. Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8760, 93–111.
https://doi.org/10.1007/978-3-319-11421-7_7

RTVDrenthe. (2021). Minder containers, maar toch wil haven Meppel investeren.
https://www.rtvdrenthe.nl/nieuws/168011/Minder-containers-maar-toch-wil-haven-Meppel-
investeren

Ruder, S. (2016). An overview of gradient descent optimization algorithms.
http://arxiv.org/abs/1609.04747

Scholl, J., Boywitz, D., & Boysen, N. (2017). On the quality of simple measures predicting block
relocations in container yards. Https://Doi.Org/10.1080/00207543.2017.1394595, 56(1–2), 60–
71. https://doi.org/10.1080/00207543.2017.1394595

Si, J., Barto, A., Powell, W., & Wunsch, D. (n.d.). Handbook of Learning and Approximate Dynamic
Programming. Retrieved June 28, 2021, from
https://books.google.nl/books?hl=nl&lr=&id=JHvz1elubJQC&oi=fnd&pg=PA1&dq=advantages+
approximate+dynamic+programming&ots=Ul0BH79mXY&sig=6wKqdDzpT4GqxwlGVp_LABxHE
TM&redir_esc=y#v=onepage&q=advantages approximate dynamic programming&f=false

Sikorra, J., Bohlken, W., & Goes, M. (2021). Allocation of container slots based on machine learning.
Hhla.De, 11–15. https://hhla.de/fileadmin/module/its/ITS_Tech_Paper-
HPC_machine_learning.pdf

Statista Research Department. (n.d.). Projected size of the global shipping container market between
2019 and 2027. Retrieved June 28, 2021, from
https://www.statista.com/statistics/1097059/global-shipping-containers-market-size/

Statista Research Department. (2022). No Title.
https://www.statista.com/statistics/913398/container-throughput-worldwide/

Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations research -
a classification and literature review. OR Spectrum 2004 26:1, 26(1), 3–49.
https://doi.org/10.1007/S00291-003-0157-Z

Tang, L. (2015). Research into container reshuffling and stacking problems in container terminal yards.
IIE Transactions, 47(7), 751–766.

van Heeswijk, W., & La Poutré, H. (2019). Approximate Dynamic Programming with Neural Networks
in Linear Discrete Action Spaces. https://arxiv.org/abs/1902.09855v1

Wan, Y., Liu, J., & Tsai, P.-C. (2009). The assignment of storage locations to containers for a container
stack. Naval Research Logistics (NRL), 56(8), 699–713. https://doi.org/10.1002/nav.20373

Xu, S., Panwar, S. S., Kodialam, M., & Lakshman, T. V. (2020). Deep Neural Network Approximated

R.R. Bosch

78

Dynamic Programming for Combinatorial Optimization. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(02), 1684–1691. https://doi.org/10.1609/AAAI.V34I02.5531

Zhang, C., Guan, H., Yuan, Y., Chen, W., & Wu, T. (2020). Machine learning-driven algorithms for the
container relocation problem. Transportation Research Part B: Methodological, 139, 102–131.
https://doi.org/10.1016/J.TRB.2020.05.017

Zhang, C., Wu, T., Kim, K. H., & Miao, L. (2014). Conservative allocation models for outbound
containers in container terminals. European Journal of Operational Research, 238(1), 155–165.
https://doi.org/10.1016/J.EJOR.2014.03.040

Zhao, M., Zhang, Y., Ma, W., Fu, Q., Yang, X., Li, C., Zhou, B., Yu, Q., & Chen, L. (2013). Characteristics
and ship traffic source identification of air pollutants in China’s largest port. Atmospheric
Environment, 64, 277–286. https://doi.org/10.1016/J.ATMOSENV.2012.10.007

Zhu, W., Qin, H., Lim, A., & Zhang, H. (2012). Iterative deepening A* algorithms for the container
relocation problem. IEEE Transactions on Automation Science and Engineering, 9(4), 710–722.
https://doi.org/10.1109/TASE.2012.2198642

Appendices

79

8. Appendices

Appendix A – Linear Program Formulation
Situation is as described in Section 4.1 and 4.2. The LP is adapted from (Tang, 2015), but adapted to

reduce the amount of constraints, fit the problem more to this problem setting, and the VFA including

features has been added. The changes are as follows:

1. The original LP was a pure unloading CRP, where all containers were unloaded. This problem

is a mixed loading and unloading problem where a large part of the containers is not unloaded.

As such, each stage either a container 𝑖 leaves or enters, and that is indicated using constraints

3 and 4.

2. The original LP contained variable 𝑊𝑠𝑐𝑖𝑗, indicating that at stage s at column c, container j was

above container i. Sets 𝑖, 𝑗 and 𝑐 are large, resulting in a large amount of variables and

constraints related to that variable. It is rewritten to variable 𝑊𝑠𝑖𝑗, which removes the index

𝑐. This requires more constraints per variable than 𝑊𝑠𝑐𝑖𝑗, but if |𝑐| > 5, our approach results

in overall less constraints.

3. Distance is calculated by introducing variable 𝑇𝑠𝑖𝑐𝑒, indicating that container i travelled from

stack 𝑐 to 𝑒 at stage 𝑠. This variable is multiplied by the distance between 𝑐 and 𝑒.

4. A dummy stage 𝑆+ is introduced after all containers are handled, which indicates the post-

decision state over which features can be calculated.

Sets:

- stage of the problem = s, with 𝑠− = {0…𝑆} and 𝑠+ = {0…𝑆 + 1}, where S is the amount of

containers that leave or enter in this batch. The last stage is a dummy stage which represents the

post-decision state.

- index for each container 𝑖 ∈ {0… 𝐼}

o Index starts at 0 for programming reasons. Containers are sorted in the order that they

leave.

- index for columns in a bay = 𝑐 ∈ {0…𝐶}

- tier of stack c = 𝑝 ∈ {0…𝑃}

- number of features for the basis feature function = 𝑛 ∈ {0…𝑁}

Constants:

- weights for the multi-objective function = 𝛼1, 𝛼2, 𝛼3 = 2, 0.006, 8

- distance between column c and e = 𝑑𝑐𝑒 > 0

- distance between column c and the designated exit for the container leaving at stage s = 𝑑𝑜𝑐 > 0

- distance between column c and the entrance for the container entering at stage s = 𝑑𝑒𝑐 > 0

- Initial layout of the terminal = 𝑙𝑖𝑐𝑝 ∈ {0,1}

- Penalty moves 𝑝𝑚𝑖𝑒 ∈ {0 𝑖𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖 𝑖𝑠 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑜𝑛 𝑠𝑡𝑎𝑐𝑘 𝑒, 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}

- Incoming penalty move 𝑖𝑝𝑚𝑠𝑒 ∈ {0 𝑖𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑖𝑛 𝑠𝑡𝑎𝑔𝑒 𝑠 𝑖𝑠 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑜𝑛 𝑠𝑡𝑎𝑐𝑘 𝑒,

 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}

- Id of container moving at stage s 𝑖𝑑𝑠 = ℤ
+

- Indicator whether a container moves out at stage s 𝑜𝑠𝑠 ∈ {0,1}

- Big number 𝑀 = 99999

Decision variables:

R.R. Bosch

80

- 𝑋𝑠𝑖𝑐𝑝 = 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖 𝑖𝑠 𝑎𝑡 𝑠𝑡𝑎𝑐𝑘 𝑐, 𝑡𝑖𝑒𝑟 𝑝 𝑎𝑡 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔

𝑜𝑓 𝑠𝑡𝑎𝑔𝑒 𝑠. 𝑋𝑠𝑖𝑐𝑝 ∈ {1 𝑖𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡, 0 𝑖𝑓 𝑛𝑜𝑡}

- 𝑊𝑠𝑖𝑗 = 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 𝑐, 𝑎𝑛𝑑 𝑗 𝑖𝑠

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝑎𝑏𝑜𝑣𝑒 𝑖.𝑊𝑠𝑖𝑗 ∈ {0 𝑖𝑓 𝑛𝑜𝑡, 1 𝑖𝑓 𝑦𝑒𝑠}

- 𝐴𝑠𝑖𝑗 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑠𝑡𝑎𝑐𝑘 𝑖𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑡

𝑠𝑡𝑎𝑔𝑒 𝑠. 𝐴𝑠𝑖𝑗 ≥ 0

- 𝐴𝑌𝑠𝑖𝑗 = 𝑎𝑢𝑥𝑖𝑙𝑙𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑜 ℎ𝑒𝑙𝑝 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝐴𝑠𝑖𝑗 . 𝐴𝑌𝑠𝑖𝑗 ∈ {0,1}

- 𝑇𝑠𝑖𝑐𝑒 = 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑓𝑟𝑜𝑚 𝑐𝑜𝑙𝑢𝑚𝑛 𝑐 𝑡𝑜 𝑐𝑜𝑙𝑢𝑚𝑛 𝑒 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 𝑠.

 𝑇𝑠𝑖𝑐𝑒 ∈ {0, 1}

- 𝑂𝑇𝑖𝑐 = 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑡𝑜 𝑖𝑡𝑠 𝑒𝑥𝑖𝑡 𝑓𝑟𝑜𝑚 𝑐𝑜𝑙𝑢𝑚𝑛 𝑐

- 𝐼𝑇𝑖𝑐 = 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑓𝑟𝑜𝑚 𝑖𝑡𝑠 𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑜𝑙𝑢𝑚𝑛 𝑐

- 𝑈 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑏𝑦 𝑎𝑙𝑙 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠. 𝑈 ≥ 0

- 𝐶 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡. 𝐶 ≥ 0

Objective:

1. min𝑧 = 𝐶 + 𝛾 ∗ 𝑉𝐹𝐴

Minimize the direct costs plus the discounted estimated future costs

2. 𝐶 = 𝛼1 ∗ ∑ 𝑇𝑠𝑖𝑐𝑒

𝑠𝑖𝑐𝑒 + 𝛼2 ∗ 𝑈 + 𝛼3 ∗𝑊𝑆𝑃

The direct costs are equal to the weighted sum of reshuffles, distance U and penalty WSP

3. 𝑈 = ∑ 𝑇𝑠𝑖𝑐𝑒 ∗ 𝑑𝑐𝑒𝑠∈𝑆−,𝑖𝑐𝑒 + ∑ 𝑂𝑇𝑠𝑒 ∗ 𝑑𝑜𝑠𝑒𝑠∈𝑆−,𝑒 + ∑ 𝐼𝑇𝑠𝑒 ∗ 𝑑𝑒𝑠𝑒𝑠∈𝑆−,𝑒

Distance is equal to the amount of internal, outward, and inward distance travelled

4. 𝑊𝑆𝑃 = ∑ 𝑇𝑠𝑖𝑐𝑒 ∗ 𝑝𝑚𝑖𝑒𝑠𝑖𝑐𝑒 +∑ 𝐼𝑇𝑠𝑐𝑒 ∗ 𝑖𝑝𝑚𝑠𝑒𝑠𝑒

The ‘wrong-stack penalty’ is equal to the sum of times that container i was moved to stack 𝑒 when

container 𝑖 is not allowed on stack 𝑒. 𝑛𝑎𝑖𝑒 is equal to 1 if it is not allowed, and 0 if not.

5. 𝑉𝐹𝐴 = 𝜃1 ∗ 𝐸𝐵𝐿𝐵 + 𝜃2 ∗ 𝑇𝐷𝐿𝐵 + 𝜃3 ∗ 𝐵𝐷 + 𝜃4 ∗ 𝑈𝑆 + 𝜃5 ∗ 𝐵𝐿𝐷 + 𝜃6 ∗ 𝑆𝑆𝐻 +⋯+ 𝜃7 ∗ 1

The VFA is equal to the value of each feature multiplied by its weight

Constraints:

1. ∑ ∑ 𝑋𝑠𝑖𝑐𝑝
𝑃
𝑝=1

𝐶
𝑐=1 = 1 𝑖𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑛𝑒𝑒𝑑𝑠 𝑡𝑜 𝑏𝑒 𝑖𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑎𝑡 𝑡ℎ𝑎𝑡 𝑡𝑖𝑚𝑒, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 ∈

𝐼, 𝑠 ∈ 𝑆+

Every container needs to be somewhere at stage s IFF it should be in the terminal.

2. 𝑋0𝑖𝑐𝑝 = 𝑙𝑖𝑐𝑝 , ∀𝑖, 𝑐, 𝑝

Fix the layout of containers at stage s=0 to the initial layout of the problem Licp

3. ∀𝑖, 𝑠 ∈ 𝑆−, 𝑖𝑓 𝑖 = 𝑖𝑑𝑠 𝑎𝑛𝑑 𝑠 = 1:

o 𝑋𝑠𝑖𝑐𝑝 − 𝑋𝑠+1,𝑖𝑐𝑝 ≤ ∑ 𝑇𝑠𝑖𝑐𝑒𝑒 +𝑂𝑇𝑖𝑐 , 𝑐 ∈ 𝐶, 𝑝 ∈ 𝑃

𝑒𝑙𝑠𝑒:

o 𝑋𝑠𝑖𝑐𝑝 − 𝑋𝑠+1,𝑖𝑐𝑝 ≤ ∑ 𝑇𝑠𝑖𝑐𝑒𝑒 , 𝑐 ∈ 𝐶, 𝑝 ∈ 𝑃

Any container can only ‘disappear’ from one place if it gets moved from that place, or gets

removed

4. ∀𝑖, 𝑠 ∈ 𝑆−, 𝑖𝑓 𝑖 = 𝑖𝑑𝑠 𝑎𝑛𝑑 𝑠 = 0:

o 𝑋𝑠+1,𝑖𝑐𝑝 − 𝑋𝑠𝑖𝑐𝑝 ≤ ∑ 𝑇𝑠𝑖𝑒𝑐𝑒 + 𝐼𝑇𝑖𝑐 , 𝑐 ∈ 𝐶, 𝑝 ∈ 𝑃

𝑒𝑙𝑠𝑒:

o 𝑋𝑠+1,𝑖𝑐𝑝 − 𝑋𝑠𝑖𝑐𝑝 ≤ ∑ 𝑇𝑠𝑖𝑒𝑐𝑒 , 𝑐 ∈ 𝐶, 𝑝 ∈ 𝑃

Appendices

81

Any container can only ‘appear’ in one place if it is the destination of a movement T or if it is

moved into the terminal

5. ∑ 𝑋𝑠𝑖𝑐𝑝
𝑆
𝑖=𝑠 ≤ ∑ 𝑋𝑠𝑖𝑐𝑝−1

𝑆
𝑖=𝑠 , 𝑠 ∈ 𝑆+, 𝑐 ∈ 𝐶, 1 ≤ 𝑝 ≤ 𝑃

Any container not on p=0 may only be there if there is a container beneath it.

6. 𝑇𝑠𝑖𝑐𝑐 = 0 , 𝑠 ∈ 𝑆
−, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶

Travel from/to the same container is not allowed

7. ∑ 𝑂𝑇𝑠𝑐 = 1𝑐 𝑖𝑓 𝑎 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑙𝑒𝑎𝑣𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 𝑠 ∈ 𝑆−

Exactly 1 container leaves during the appropriate stage

8. ∑ 𝐼𝑇𝑠𝑐 = 1𝑐 𝑖𝑓 𝑎 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑒𝑛𝑡𝑒𝑟𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑙𝑒𝑚, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 𝑠 ∈ 𝑆−

Exactly 1 container leaves during the appropriate stage

9. 𝐴𝑠𝑖𝑗 ≥ ∑ 𝑐 ∗ 𝑋𝑠𝑖𝑐𝑝𝑐𝑝 − ∑ 𝑐 ∗ 𝑋𝑠𝑗𝑐𝑝𝑐𝑝 , 𝑠 ∈ 𝑆+, 𝑖 ∈ 𝐼, 𝑗 ∈ {𝐼 ≠ 𝑖}

10. 𝐴𝑠𝑖𝑗 ≥ ∑ 𝑐 ∗ 𝑋𝑠𝑗𝑐𝑝𝑐𝑝 − ∑ 𝑐 ∗ 𝑋𝑠𝑖𝑐𝑝𝑐𝑝 , 𝑠 ∈ 𝑆+, 𝑖 ∈ 𝐼, 𝑗 ∈ {𝐼 ≠ 𝑖}

11. 𝐴𝑠𝑖𝑗 ≤ ∑ 𝑐 ∗ 𝑋𝑠𝑖𝑐𝑝𝑐𝑝 − ∑ 𝑐 ∗ 𝑋𝑠𝑗𝑐𝑝𝑐𝑝 +𝑀 ∗ 𝐴𝑌𝑠𝑖𝑗 , 𝑠 ∈ 𝑆
+, 𝑖 ∈ 𝐼, 𝑗 ∈ {𝐼 ≠ 𝑖}

12. 𝐴𝑠𝑖𝑗 ≤ ∑ 𝑐 ∗ 𝑋𝑠𝑖𝑐𝑝𝑐𝑝 − ∑ 𝑐 ∗ 𝑋𝑠𝑗𝑐𝑝𝑐𝑝 +𝑀 ∗ (1 − 𝐴𝑌𝑠𝑖𝑗) , 𝑠 ∈ 𝑆
+, 𝑖 ∈ 𝐼, 𝑗 ∈ {𝐼 ≠ 𝑖}

Setting the value of 𝐴𝑠𝑖𝑗, which gives the absolute difference in column id between container i

and j.

13. 𝑊𝑠𝑖𝑗 ≥ (∑ 𝑝 ∗ 𝑋𝑠𝑗𝑐𝑝𝑐𝑝 − ∑ 𝑝 ∗ 𝑋𝑠𝑖𝑐𝑝𝑐𝑝)/𝑀 − 𝐴𝑠𝑖𝑗 , 𝑖 ∈ 𝐼, 𝑗 ∈ {𝐼 ≠ 𝑖}, 𝑠 ∈ 𝑆
+

Wsij is higher than 0 if tier of j is larger and i, and difference in columns is 0 (they are in the same

column). Practically, this means that container j blocks container i.

14. 𝑊𝑠𝑖𝑗 ≤ 1 −
𝐴𝑠𝑖𝑗

𝑀
 , 𝑠 ∈ 𝑆+, 𝑖 ∈ 𝐼, 𝑗 ∈ {𝐼 ≠ 𝑖}

𝑊𝑠𝑖𝑗 is 0 if the difference in columns is larger than 0.

15. 𝑊𝑠𝑖𝑗 ≤ 1 − (∑ 𝑝 ∗ 𝑋𝑠𝑖𝑐𝑝𝑐𝑝 − ∑ 𝑝 ∗ 𝑋𝑠𝑗𝑐𝑝𝑐𝑝)/𝑀 , 𝑠 ∈ 𝑆+, 𝑖 ∈ 𝐼, 𝑗 ∈ {𝐼 ≠ 𝑖}

𝑊𝑠𝑖𝑗 is 0 if the tier of container j is lower than the tier of container i.

16. 𝑊𝑠+1,𝑖𝑗 ≤ 2 − ∑ ∑ 𝑇𝑠𝑖𝑐𝑒𝑒𝑐 − ∑ 𝑊𝑠𝑖𝑗𝑐 , 𝑖 ∈ 𝐼, 𝑗 ∈ {𝐼 ≠ 𝑖}, 𝑠 ∈ 𝑆−

If Wsij is 1 (so container j is above i on the same stack) and container i moves, then Ws+1,ij must be

0 (as that would mean that both are moved towards the same stack, and then j must be under i).

17. ∑ 𝑋𝑠𝑖𝑐𝑝
𝑆
𝑖=𝑠 ≤ 1 , 𝑠 ∈ 𝑆+, 𝑐 ∈ 𝐶, 𝑝 ∈ 𝑃

There is always at most 1 container per spot.

18. ∑ ∑ 𝑇𝑠𝑖𝑐𝑒𝑐𝑒 = 𝑊𝑠𝑢𝑖 , 𝑖 ∈ 𝐼, 𝑆
−, 𝑢 = 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑎𝑡 𝑠𝑡𝑎𝑔𝑒 𝑠

Do internal travel IFF you are blocking the currently leaving container.

VFA-Related Constants:

- 𝜃𝑛 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑠𝑖𝑠 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

- 𝐵𝑖 = 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑏𝑎𝑡𝑐ℎ 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖

- 𝑒𝑥𝑖𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑐 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑖𝑡𝑠 𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑒𝑑 𝑒𝑥𝑖𝑡 𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑐𝑘 𝑐

- 𝑠𝑞𝑑𝑝 = 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑠𝑡𝑎𝑐𝑘 ℎ𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝

o so sqdp = {1, 3, 5, 7, …, 2p+1}, assuming p starts at 0

- 𝑎 = 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑡 + 1

- 𝑖𝑡𝑎 = 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑎𝑐𝑘𝑠 𝑤ℎ𝑒𝑟𝑒 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑎 𝑖𝑠 𝑎𝑙𝑙𝑜𝑤𝑒𝑑

- 𝑏 = 𝑠𝑒𝑡 𝑜𝑓 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑖𝑛 𝑏𝑎𝑡𝑐ℎ 𝑡 + 1

- 𝐵𝑚𝑎𝑥 = 𝑏𝑎𝑡𝑐ℎ 𝑜𝑓 𝑙𝑎𝑡𝑒𝑠𝑡 𝑑𝑒𝑝𝑎𝑟𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑎𝑡 𝑝𝑜𝑠𝑡 − 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑠𝑡𝑎𝑔𝑒

- 𝐵𝑚𝑖𝑛 = 𝑏𝑎𝑡𝑐ℎ 𝑜𝑓 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑑𝑒𝑝𝑎𝑟𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑎𝑡 𝑝𝑜𝑠𝑡 − 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑠𝑡𝑎𝑔𝑒

VFA-Related variables:

R.R. Bosch

82

- VFA = Value-Function Approximation; the estimation of the value of the post-decision state.

o VFA is continuous, with a lower bound on 0

- EBLB = Expected Blocking Lower Bound; the sum of the blocking number of all containers

o EBLB is integer, with a lower bound of 0

- TDLB = Travel Distance Lower Bound; the sum of the distance between the location of all

containers to their designated exits

o TDLB is continuous, with a lower bound of 0

- BDj = Blocking Degree; the largest batch difference between container j and any container i it

blocks

o BDj is integer, with a lower bound of 0

- TBD = Total Blocking Degree; the sum of blocking degree for all containers

o TBD is integer, with a lower bound of 0

- USc = indicator whether stack c is ordered or not, with US=1 if it is ordered, and 0 if it is not

o USc ∈{0, 1}

- TUS = Total Unordered Stacks; the sum of unordered stacks

o TUS is integer, with a lower bound of 0 and an upper bound of |C|

- BLDcp = Batch Label Difference; absolute batch label difference between the container at (c,p) and

(c,p+1)

- TBLD = Total Batch Label Difference; the sum of all BLDs

- NES = Non-Empty Stacks; the amount of non-empty stacks in the terminal

- SSH = Squared Stack Height; the sum of all squared stack heights in the terminal

- AS1 = available spots 1; the squared percentage of used spots for container type 1 (also available

for other types of containers)

- LAS = Least Available Spots; the highest value of AS1, AS2, etc.; giving the most constrained

percentage of container spots.

VFA-Related Constraints:

1. 𝐿𝐵𝐿𝑐0 = 𝑀

2. 𝐿𝐵𝐿𝑐𝑝 ≤ ∑ 𝐵𝑗 ∗ 𝑋𝑆,𝑗𝑐𝑘𝑗 , ∀𝑐, 1 ≤ 𝑝 ≤ 𝑃, 0 ≤ 𝑘 < 𝑝

3. 𝐿𝐵𝐿𝑐𝑝 ≥ ∑ 𝐵𝑗 ∗ 𝑋𝑆,𝑗𝑐𝑘𝑗 −𝑀 ∗ (1 − 𝐿𝐵𝐿𝑏𝑐𝑝𝑘)

4. ∑ 𝐿𝐵𝐿𝑏𝑐𝑝𝑘𝑘 = 1

Lowest Batch Label 𝐿𝐵𝐿𝑐𝑝 is the lowest batch label of all containers underneath it.

5. 𝑃𝐵𝑐0 = 0 , ∀𝑐

6. 𝐷𝐵𝑐0 = 0 , ∀𝑐

7. 𝑃𝐵𝑐𝑝 ≥ (∑ ((𝐵𝑖 + 1) ∗ 𝑋𝑆,𝑖𝑐𝑝)𝑖 − 𝐿𝐵𝐿𝑐𝑝)/𝑀 , ∀𝑐𝑝

8. 𝑃𝐵𝑐𝑝 ≤ 1 + (∑ (𝐵𝑖 ∗ 𝑋𝑆,𝑖𝑐𝑝)𝑖 − 𝐿𝐵𝐿𝑐𝑝)/𝑀 , ∀𝑐𝑝

9. 𝐷𝐵𝑐𝑝 ≥ (∑ (𝐵𝑖 ∗ 𝑋𝑆,𝑖𝑐𝑝)𝑖 − 𝐿𝐵𝐿𝑐𝑝)/𝑀 , ∀𝑐𝑝

10. 𝐷𝐵𝑐𝑝 ≤ 1 + (∑ ((𝐵𝑖 − 1) ∗ 𝑋𝑆,𝑖𝑐𝑝)𝑖 − 𝐿𝐵𝐿𝑐𝑝) /𝑀 , ∀𝑐𝑝

Introduce ‘possibly blocking’ 𝑃𝐵𝑐𝑝 and ‘definitively blocking’ 𝐷𝐵𝑐𝑝, which indicate if the container

on 𝑐, 𝑝 is (possibly) blocking another container.

11. 𝐸𝐵𝐿𝐵 = 0.5 ∗ ∑ 𝑃𝐵𝑐𝑝𝑐𝑝 + 0.5 ∗ ∑ 𝐷𝐵𝑐𝑝𝑐𝑝

𝐸𝐵𝐿𝐵 is equal to half of the sum of PB’s and DB’s.

12. 𝑇𝐷𝐿𝐵 = ∑ 𝑋𝑆+,𝑖𝑐𝑝 ∗ 𝑒𝑥𝑖𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑐𝑖,𝑐,𝑝

TDLB is equal to the minimum total distance all containers must travel to their exits

13. 𝐵𝐷𝑐𝑝 ≥ ∑ 𝐵𝑖 ∗ 𝑋𝑆+,𝑖𝑐𝑝𝑖 − 𝐿𝐵𝐿𝑐𝑝 , ∀𝑐𝑝

14. 𝐵𝐷𝑐𝑝 ≤ ∑ 𝐵𝑖 ∗ 𝑋𝑆+,𝑖𝑐𝑝𝑖 − 𝐿𝐵𝐿𝑐𝑝 + (1 − 𝑃𝐵𝑐𝑝) ∗ 𝑀 , ∀𝑐𝑝

Appendices

83

15. 𝐵𝐷𝑐𝑝 ≤ 𝑃𝐵𝑐𝑝 ∗ 𝑀 , ∀𝑐𝑝

Blocking degree 𝐵𝐷𝑐𝑝 is the amount of batches by which the container at (𝑐, 𝑝) blocks any

container below it.

16. 𝐵𝐷𝑇 = ∑ 𝐵𝐷𝑐𝑝𝑐𝑝

Total blocking degree is the sum of BD over all (c,p)

17. 𝑈𝑆𝑐 ≥
∑ 𝑃𝐵𝑐𝑝𝑝

𝑀
 , ∀𝑐

18. 𝑈𝑆𝑐 ≤ ∑ 𝑃𝐵𝑐𝑝𝑝 , ∀𝑐

19. 𝑈𝑆𝑇 = ∑ 𝑈𝑆𝑐𝑐

Introduce 𝑈𝑆𝑐, which is a binary variable that is 1 if there is any possible blocking in that stack,

and 0 otherwise. 𝑈𝑆𝑇 is the sum of all unordered stacks.

20. 𝐵𝐿𝐷𝑐𝑝 ≥ ∑ 𝐵𝑖 ∗ 𝑋𝑆+,𝑖𝑐𝑝 𝑖 − ∑ 𝐵𝑗 ∗ 𝑋𝑆+,𝑗𝑐,𝑝−1𝑗 , ∀𝑐𝑝

21. 𝐵𝐿𝐷𝑐𝑝 ≥ ∑ 𝐵𝑖 ∗ 𝑋𝑆+,𝑖𝑐,𝑝−1𝑖 −∑ 𝐵𝑗 ∗ 𝑋𝑆+,𝑗𝑐𝑝𝑗 −𝑀 +𝑀 ∗ ∑ 𝑋𝑆,𝑗𝑐𝑝𝑗 , ∀𝑐𝑝

22. 𝐵𝐿𝐷𝑐𝑝 ≤ ∑ 𝐵𝑖 ∗ 𝑋𝑆+,𝑖𝑐𝑝𝑖 − ∑ 𝐵𝑗 ∗ 𝑋𝑆+,𝑗𝑐,𝑝−1𝑗 +𝑀 ∗ 𝐵𝐿𝐷𝑌𝑐𝑝 , ∀𝑐𝑝

23. 𝐵𝐿𝐷𝑐𝑝 ≤ ∑ 𝐵𝑖 ∗ 𝑋𝑆+,𝑖𝑐,𝑝−1𝑖 −∑ 𝐵𝑗 ∗ 𝑋𝑆+,𝑗𝑐,𝑝𝑗 +𝑀 ∗ (1 − 𝐵𝐿𝐷𝑌𝑐𝑝) , ∀𝑐𝑝

24. 𝐵𝐿𝐷𝑐𝑝 ≤ 𝑀 ∗ ∑ 𝑋𝑆+,𝑖𝑐𝑝𝑖 , ∀𝑐𝑝

25. 𝐵𝐿𝐷𝑇 = ∑ 𝐵𝐿𝐷𝑐𝑝𝑐𝑝

Introduce 𝐵𝐿𝐷𝑐𝑝, indicating the absolute difference in batch between the container at (c,p) and

(c,p-1). 𝐵𝐿𝐷𝑇 is the sum of all batch label differences

26. 𝑆𝑆𝐻 = ∑ 𝑠𝑞𝑑𝑝 ∗ 𝑋𝑆+,𝑖𝑐𝑝𝑖𝑐𝑝

Squared Stack height (SSH) is the sum of the square of each stack height. 𝑠𝑞𝑑𝑐𝑝 is the derivative

in value of the squared stack height between (c,p-1) and (c,p).

27. 𝑁𝐼𝑆𝑎,𝑖𝑡𝑎 ≥ ∑ 𝑋𝑆,𝑎,𝑖𝑡𝑎,𝑃𝑖𝑡𝑎 /𝑀 , ∀𝑎, 𝑖𝑡𝑎

28. 𝑁𝐼𝑆𝑎,𝑖𝑡𝑎 ≥ (𝑖𝑏𝑎 − 𝐿𝐵𝐿𝑖𝑡𝑎)/𝑀 , ∀𝑎, 𝑖𝑡𝑎

29. 𝑁𝐼𝑆𝑎,𝑖𝑡𝑎 ≤ 1 − ∑ 𝑋𝑆,𝑎,𝑖𝑡𝑎,𝑃𝑖𝑡𝑎 /𝑀 + 𝑁𝐼𝑆𝑏𝑎,𝑖𝑡𝑎 , ∀𝑎, 𝑖𝑡𝑎

30. 𝑁𝐼𝑆𝑎,𝑖𝑡𝑎 ≤ 1 − (𝑖𝑏𝑎 − 𝐿𝐵𝐿𝑖𝑡𝑎)/𝑀 + 𝑁𝐼𝑆𝑏𝑎,𝑖𝑡𝑎 , ∀𝑎, 𝑖𝑡𝑎

31. 𝑁𝐼𝑆 = ∑ ∑ 𝑁𝐼𝑆𝑎,𝑖𝑡𝑎𝑖𝑡𝑎𝑎

NIS1 is for each incoming container in batch t+1 the amount of stacks where container type x is

allowed, that either 1) are full, or 2) have a LBL lower than the container in question. Introduce

𝑁𝐼𝑆𝑎,𝑖𝑡𝑎, which indicates that for container 𝑎, which is allowed in stack 𝑖𝑡𝑎, stack 𝑖𝑡𝑎 is ‘not ideal’.

32. 𝐹𝑂𝐶 = ∑ 𝑑𝑐𝑒 ∗ 𝑋𝑆+,𝑏𝑐𝑝𝑐 + ∑ 𝑊𝑆,𝑏𝑗𝑗

Future outgoing costs is equal to the distance costs + reshuffle costs of containers b. Any

container on top of container b is going to be reshuffled next timestep, so using 𝑊 is sufficient.

33. 𝑀𝑀𝑉𝑐0 = ∑ 𝑋𝑆,𝑖𝑐0𝑖 ∗ 𝐵𝑚𝑎𝑥 + 1

Min-max value is equal to 𝐵𝑚𝑎𝑥 + 1 for any container on p=0

34. 𝑀𝑀𝑉𝑌𝑐𝑝 ≥ 𝐿𝐵𝐿𝑐𝑝 − ∑ 𝐵𝑖 ∗ 𝑋𝑆,𝑖𝑐𝑝𝑖 −𝑀 ∗ (1 − ∑ 𝑋𝑆,𝑖𝑐𝑝𝑖) , ∀𝑐, 𝑝 > 0

35. 𝑀𝑀𝑉𝑌𝑐𝑝 ≤ 𝑀 ∗ (1 − 𝑃𝐵𝑐𝑝) , ∀𝑐, 𝑝 > 0

36. 𝑀𝑀𝑉𝑌𝑐𝑝 ≤ 𝐿𝐵𝐿𝑐𝑝 − ∑ 𝐵𝑖 ∗ 𝑋𝑆,𝑖𝑐𝑝𝑖 +𝑀 ∗ 𝐷𝐵𝑐𝑝 , ∀𝑐, 𝑝 > 0

37. 𝑀𝑀𝑉𝑌𝑐𝑝 ≤ 𝑀 ∗ ∑ 𝑋𝑆,𝑖𝑐𝑝𝑖 , ∀𝑐, 𝑝 > 0

If container at place (c,p) is not blocking a container, 𝑀𝑀𝑉𝑌𝑐𝑝 is equal to the difference in batch

between the container at (c,p) and the earliest departing container. Otherwise, it is 0.

38. 𝑀𝑀𝑉𝑐𝑝 = (𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛) ∗ 𝑃𝐵𝑐𝑝 + 𝐵𝐷𝑐𝑝 +𝑀𝑀𝑉𝑌𝑐𝑝 , ∀𝑐, 𝑝 > 0

The min-max value for the spot (c,p>0) is either the batch difference between the earliest and

latest container + the blocking degree of the container it is blocking, or the value for MMVY if it

is not blocking.

R.R. Bosch

84

39. 𝑀𝑀𝑉𝑇 = ∑ 𝑀𝑀𝑉𝑐𝑝𝑐𝑝

The total Min-Max Value is the sum of values over all (c,p)

Heuristics such as the min-max heuristic or the reshuffle-index heuristic are not possible in a LP.

40. 𝐸𝐵𝐿𝐵𝑌𝑧 ∈ {0,1}

41. ∑ 𝐸𝐵𝐿𝐵𝑌𝑧𝑧 = 2 ∗ 𝐸𝐵𝐿𝐵

42. 𝐸𝐵𝐿𝐵𝑌𝑧 ≥ 𝐸𝐵𝐿𝐵𝑧+1

43. 𝐸𝐵𝐿𝐵𝑆𝑄 = ∑ 𝐸𝐵𝐿𝐵𝑌𝑧 ∗ 𝑠𝑞𝑑𝑧𝑧

44. 𝐸𝐵𝐿𝐵𝑆𝑄𝑅𝑇 = ∑ 𝐸𝐵𝐿𝐵𝑌𝑧 ∗ 𝑠𝑞𝑟𝑡𝑧𝑧

𝐸𝐵𝐿𝐵𝑆𝑄 is the squared value of EBLB, and 𝐸𝐵𝐿𝐵𝑆𝑄𝑅𝑇 is the square-rooted value of EBLB. EBLB

increases in steps of 0.5, so each 𝐸𝐵𝐿𝐵𝑌𝑧 represents an increase of 0.5, and 𝑠𝑞𝑑𝑧 and 𝑠𝑞𝑟𝑡𝑧

represent the derivative between 𝑧 and 𝑧 − 1 of the squared and square-rooted value

respectively.

45. ∑ 𝐵𝐷𝑌𝑌𝑧𝑧 =𝑧𝑧 𝐵𝐷𝑇

46. 𝐵𝐷𝑌𝑌𝑧𝑧 ≥ 𝐵𝐷𝑌𝑌𝑧𝑧+1

47. 𝐵𝐷𝑆𝑄𝑅𝑇 = ∑ 𝐵𝐷𝑌𝑌𝑧𝑧 ∗ 𝑠𝑞𝑟𝑡𝑧𝑧𝑧

𝐵𝐷𝑆𝑄𝑅𝑇 is the square-rooted value of BD.

48. 𝐶 = 1

Constant

Appendices

85

Appendix B – Problem Instance Generation Script
0. Input:

o Nr of stacks 𝐶

o Nr of tiers 𝑃

o E[cycles] 𝐸[𝑐𝑦𝑐𝑙𝑒𝑠]

o LoS in hours 𝐿𝑜𝑆𝑡𝑖𝑚𝑒

o Avg occupation 𝐸[𝑜𝑐𝑐]

o Batch timespan 𝑡𝑖𝑚𝑒𝑏𝑎𝑡𝑐ℎ

o Fraction 20ft 𝑓[20𝑓𝑡]

o Fraction reefer 𝑓[𝑟𝑒𝑒𝑓𝑒𝑟]

1. Create Batch List

a. Create 𝑥 containers equal to 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝐸[𝑜𝑐𝑐]

b. Determine the total amount of containers in the planning horizon

c. Max timestep is equal to 𝐿𝑜𝑆𝑡𝑖𝑚𝑒 ∗ 𝐸[𝑐𝑦𝑐𝑙𝑒𝑠] ∗ 𝑡𝑖𝑚𝑒𝑏𝑎𝑡𝑐ℎ

d. 𝐿𝑜𝑆𝑏𝑎𝑡𝑐ℎ =
𝐿𝑜𝑆ℎ𝑜𝑢𝑟𝑠

𝑡𝑖𝑚𝑒𝑏𝑎𝑡𝑐ℎ

e. 𝐸[𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒] =
2

𝐿𝑜𝑆𝑏𝑎𝑡𝑐ℎ
∗ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝐸[𝑜𝑐𝑐]

f. For each timestep, starting at t=0:

i. Nr incoming containers is drawn from Poisson distribution with as average
1

2
𝐸[𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒] +

1

2
(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝐸[𝑜𝑐𝑐] − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠)

ii. Nr leaving containers is drawn from Poisson distribution with average
1

𝐿𝑜𝑆𝑏𝑎𝑡𝑐ℎ
∗ 𝑛𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑖𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙

iii. A number of containers equal to the amount leaving and arriving are

marked to depart in this timestep

2. Create Container Allowance

a. Determine fraction of containers of type 0, 1, 2, 3 arriving at terminal

b. Divide stacks in terminal up in these fractions evenly, rounded down

c. Remaining stacks are allocated to the container type with least allocated stacks

3. Create Initial Layout and container type allocations

a. All containers that are present at t=0 are randomly allocated to a stack and are given

the container type that matches with the allowed containers on that stack

b. For each timestep:

i. Check available empty spots in the terminal of each type

ii. Allocate each arriving container at time 1 according to the proportion of

available spots at that time

iii. Add available spots of appropriate type for each departing container

4. Create entrances and distance matrix

a. Create stack locations according to uniform distribution within [0, 200] x value and

[0, 300] y value. Create entrance locations along the border of this region.

b. Calculate distance matrix according to

5. Create sample realizations

a. For each timestep:

i. Create 5 random shuffle orders equal to the size of the batch at timestep t

R.R. Bosch

86

Appendix C – Problem Instance Information
Table 24 – Information of containers at t=0 of problem instance 0

ID type departure
batch

order
within
departure

arrival
batch

order
within
arrival

exit ID starting
stack

starting
tier

0 0 45

22 0 0

1 0 74

22 3 0

2 0 15

20 3 1

3 0 43

22 11 0

4 0 39

22 2 0

5 0 27

22 5 0

6 1 19

22 12 0

7 0 24

20 0 1

8 2 15

22 15 0

9 0 95

20 4 0

10 0 4

21 8 0

11 2 114

20 14 0

12 2 0

21 16 0

13 2 53

21 16 1

14 0 29

20 2 1

15 3 45

21 19 0

16 0 153

21 11 1

17 0 31

20 1 0

18 2 1

20 15 1

19 0 67

22 1 1

20 0 86

22 11 2

21 2 6

20 18 0

22 2 42

21 16 2

23 0 2

20 11 3

24 1 75

22 12 1

25 2 162

22 16 3

26 0 17

22 9 0

27 3 112

22 19 1

28 0 30

21 5 1

29 2 70

22 18 1

30 3 25

22 19 2

31 1 55

21 13 0

32 1 14

21 13 1

33 0 28

21 10 0

34 0 42

20 2 2

35 0 17

21 3 2

36 3 16

22 19 3

37 0 79

21 8 1

38 2 45

20 14 1

39 2 26

20 17 0

40 2 82

22 15 2

Appendices

87

41 2 8

21 14 2

42 0 102

21 2 3

43 2 24

21 17 1

44 1 13

21 13 2

45 0 195

20 7 0

46 0 9

21 10 1

47 0 10

21 3 3

48 0 158

0

21 21

49 0 14

0

21 21

50 0 59

1

22 20

51 0 11

1

20 22

52 0 67

1

21 21

53 0 34

2

22 21

54 0 55

2

22 22

55 2 37

3

20 20

56 0 26

3

20 20

57 0 8

3

21 22

58 0 9

5

21 22

59 2 8

7

20 21

60 2 78

7

21 20

61 0 24

7

20 20

62 2 44

7

21 20

63 0 12

8

21 20

64 0 30

9

20 20

65 1 21

11

22 22

66 0 46

11

22 21

67 0 73

12

21 21

68 0 90

14

22 20

69 1 15

14

22 20

70 0 36

15

20 22

71 0 79

15

22 20

72 2 66

15

21 20

73 2 63

16

22 22

74 2 150

17

20 22

75 0 79

17

22 22

76 2 147

17

20 21

77 0 62

17

22 21

78 2 186

18

21 20

79 2 35

18

21 22

80 0 63

18

22 21

81 1 114

18

20 21

82 0 161

19

22 20

83 0 132

19

22 20

84 2 91

19

20 21

85 0 81

19

21 22

86 2 47

20

21 21

R.R. Bosch

88

87 0 51

23

21 20

88 0 30

23

22 21

89 0 72

23

22 21

90 0 64

24

21 22

91 0 45

25

22 20

92 0 75

26

20 20

93 0 124

26

21 20

94 0 98

28

21 21

95 1 146

28

21 21

96 0 59

29

21 20

97 2 130

30

20 21

98 2 67

31

22 22

99 0 38

32

20 22

100 0 48

32

21 21

101 0 72

32

20 20

102 1 58

33

21 21

103 0 45

34

21 22

104 3 57

35

20 20

105 1 80

35

22 22

106 0 70

35

20 21

107 0 178

37

20 21

108 2 84

38

20 20

109 2 149

38

22 21

110 0 47

38

21 20

111 0 41

39

20 20

112 0 133

39

22 21

113 0 64

39

20 22

114 0 85

39

22 21

115 0 42

40

22 21

116 0 49

42

21 22

117 0 140

42

21 21

118 0 105

43

21 22

119 2 58

43

20 22

120 0 99

43

22 21

121 0 76

44

20 21

122 0 121

45

20 21

123 0 140

45

22 22

124 0 79

46

21 21

125 0 62

47

20 22

126 1 78

48

22 20

127 0 125

48

20 21

128 2 103

48

22 20

129 0 73

49

22 21

130 0 106

49

22 22

131 0 76

50

21 22

132 0 59

50

21 22

Appendices

89

133 0 155

51

21 21

134 3 142

51

21 20

135 2 121

53

22 22

136 2 58

54

20 22

137 0 174

56

20 20

138 2 118

57

20 21

139 0 82

59

22 20

140 2 163

59

21 22

141 0 68

61

21 22

142 0 83

62

20 21

143 2 170

64

21 22

144 2 92

64

22 21

145 0 101

65

22 22

146 0 89

66

20 22

147 0 147

66

22 22

148 0 82

68

22 22

149 2 89

69

20 21

150 2 96

70

21 20

151 0 94

70

20 21

152 0 189

72

21 22

153 2 97

72

21 22

154 0 78

72

20 21

155 0 183

73

22 20

156 0 77

73

20 20

157 0 87

74

21 21

158 0 104

74

20 20

159 0 87

75

22 21

160 0 81

75

20 20

161 0 116

75

21 21

162 0 167

78

21 20

163 0 102

79

20 22

164 2 120

79

20 21

165 0 135

80

20 20

166 0 148

80

21 21

167 0 86

82

21 22

168 0 118

83

21 20

169 2 91

88

21 20

170 2 138

88

22 22

171 0 129

88

22 20

172 0 103

89

20 20

173 1 117

90

20 20

174 0 97

90

21 22

175 0 105

92

20 22

176 0 102

92

20 20

177 0 116

95

21 22

178 1 116

96

22 22

R.R. Bosch

90

179 0 191

97

21 22

180 0 114

98

22 20

181 0 151

99

21 22

182 2 192

100

22 22

183 0 106

100

21 20

184 0 173

101

22 20

185 2 130

101

22 21

186 0 118

103

21 22

187 0 124

103

20 20

188 2 119

104

20 22

189 0 114

105

22 22

190 0 133

107

20 22

191 0 165

109

20 20

192 2 151

110

20 22

193 0 123

110

20 20

194 0 179

112

22 22

195 2 148

113

21 21

196 0 120

114

20 21

197 0 169

115

21 20

198 0 156

116

21 22

199 2 130

118

20 20

200 0 194

118

21 21

201 1 141

119

22 22

202 0 127

120

21 22

203 0 123

122

20 20

204 2 184

123

20 20

205 0 193

125

22 22

206 1 166

126

22 21

207 0 140

127

20 22

208 0 131

128

22 21

209 0 190

129

20 21

210 0 175

130

21 20

211 0 156

131

20 22

212 2 188

131

20 21

213 0 193

132

21 20

214 2 144

134

22 21

215 2 197

135

21 22

216 2 196

136

22 20

217 0 148

137

20 21

218 1 177

139

22 22

219 0 148

140

20 20

220 2 180

141

21 20

221 0 160

142

20 21

222 2 191

143

21 21

223 0 192

144

20 21

224 0 194

145

20 21

Appendices

91

225 2 182

146

20 21

226 0 198

147

21 22

227 1 187

148

22 22

228 0 185

149

21 20

229 0 197

150

22 21

230 2 164

151

20 21

231 0 172

152

22 21

232 0 198

153

22 22

233 0 171

154

22 22

234 0 176

155

22 22

235 0 196

156

21 20

236 0 181

157

20 21

237 2 168

158

22 22

238 0 190

159

20 21

239 1 195

159

21 22

Table 25 - Distance matrix of problem instance 0

0.00E+00 3.32E+01 3.02E+01 6.13E+01 1.35E+02 1.58E+02 4.46E+01 8.58E+01 7.62E+01 3.12E+01

3.32E+01 0.00E+00 4.49E+01 9.35E+01 1.17E+02 1.82E+02 1.20E+01 1.00E+02 6.83E+01 6.36E+01

3.02E+01 4.49E+01 0.00E+00 5.96E+01 1.60E+02 1.81E+02 5.62E+01 1.15E+02 1.04E+02 3.59E+01

6.13E+01 9.35E+01 5.96E+01 0.00E+00 1.89E+02 1.43E+02 1.05E+02 1.07E+02 1.27E+02 3.01E+01

1.35E+02 1.17E+02 1.60E+02 1.89E+02 0.00E+00 1.93E+02 1.08E+02 1.11E+02 6.30E+01 1.62E+02

1.58E+02 1.82E+02 1.81E+02 1.43E+02 1.93E+02 0.00E+00 1.88E+02 8.97E+01 1.49E+02 1.47E+02

4.46E+01 1.20E+01 5.62E+01 1.05E+02 1.08E+02 1.88E+02 0.00E+00 1.04E+02 6.48E+01 7.53E+01

8.58E+01 1.00E+02 1.15E+02 1.07E+02 1.11E+02 8.97E+01 1.04E+02 0.00E+00 5.94E+01 9.25E+01

7.62E+01 6.83E+01 1.04E+02 1.27E+02 6.30E+01 1.49E+02 6.48E+01 5.94E+01 0.00E+00 1.01E+02

3.12E+01 6.36E+01 3.59E+01 3.01E+01 1.62E+02 1.47E+02 7.53E+01 9.25E+01 1.01E+02 0.00E+00

1.31E+02 1.45E+02 1.60E+02 1.44E+02 1.28E+02 6.66E+01 1.47E+02 4.54E+01 9.38E+01 1.35E+02

1.11E+02 1.13E+02 1.41E+02 1.47E+02 7.41E+01 1.19E+02 1.11E+02 4.51E+01 4.80E+01 1.27E+02

1.05E+02 9.38E+01 1.32E+02 1.54E+02 3.82E+01 1.58E+02 8.82E+01 7.35E+01 2.85E+01 1.29E+02

1.17E+02 1.48E+02 1.31E+02 7.98E+01 2.03E+02 7.19E+01 1.58E+02 9.34E+01 1.45E+02 9.54E+01

8.64E+01 5.92E+01 1.04E+02 1.47E+02 6.49E+01 1.98E+02 4.83E+01 1.09E+02 5.08E+01 1.17E+02

1.67E+02 1.87E+02 1.93E+02 1.62E+02 1.79E+02 3.05E+01 1.91E+02 8.78E+01 1.43E+02 1.62E+02

1.13E+02 1.13E+02 1.43E+02 1.50E+02 6.90E+01 1.24E+02 1.11E+02 4.96E+01 4.65E+01 1.30E+02

2.19E+02 2.42E+02 2.43E+02 2.04E+02 2.34E+02 6.23E+01 2.47E+02 1.45E+02 2.01E+02 2.10E+02

6.00E+01 8.75E+01 8.34E+01 6.07E+01 1.44E+02 9.79E+01 9.57E+01 4.66E+01 8.29E+01 5.25E+01

1.04E+02 1.21E+02 1.33E+02 1.17E+02 1.24E+02 7.10E+01 1.24E+02 2.08E+01 7.81E+01 1.07E+02

1.66E+02 1.46E+02 1.90E+02 2.21E+02 3.20E+01 2.19E+02 1.36E+02 1.41E+02 9.50E+01 1.94E+02

2.25E+02 2.55E+02 2.39E+02 1.84E+02 2.89E+02 9.84E+01 2.64E+02 1.80E+02 2.39E+02 2.03E+02

8.88E+01 1.20E+02 8.11E+01 2.89E+01 2.18E+02 1.54E+02 1.32E+02 1.32E+02 1.55E+02 5.79E+01

R.R. Bosch

92

Appendix D – Pearson’s Correlation Between Future Costs and (Composite)

Features
Table 26 - Pearson's correlation between values of features and total, distance, reshuffle, or penalty costs

Feature name Total Distance Reshuffle Penalty

√RIH 0.512 0.263 0.562 0.483

RIH 0.510 0.256 0.558 0.488

√MMH 0.509 0.265 0.560 0.476

MMH 0.507 0.258 0.556 0.481

RIH*MMH 0.495 0.238 0.540 0.486

RIH2 0.494 0.236 0.538 0.487

MMH2 0.492 0.239 0.537 0.480

RIH*EBLB 0.452 0.236 0.582 0.362

RIH*SOS 0.451 0.235 0.580 0.361

MMH*EBLB 0.449 0.236 0.579 0.356

MMH*SOS 0.447 0.235 0.577 0.355

RIH*ASH 0.439 0.191 0.465 0.462

MMH*ASH 0.437 0.193 0.463 0.458

RIH*OCC 0.423 0.183 0.443 0.450

√LAEBLB 0.414 0.241 0.579 0.273

LAEBLB 0.410 0.231 0.577 0.275

√EBLB 0.408 0.249 0.578 0.251

√SOS 0.407 0.249 0.576 0.249

EBLB 0.404 0.240 0.579 0.252

SOS 0.403 0.239 0.577 0.250

√BS1*LAEBLB 0.348 0.276 0.396 0.216

MMV 0.346 0.219 0.494 0.203

BD 0.338 0.191 0.478 0.224

BS1*EBLB 0.337 0.278 0.381 0.198

SOS*BS1 0.336 0.277 0.380 0.198

US 0.335 0.210 0.475 0.201

RIH*BS1 0.333 0.269 0.304 0.254

EEBLB 0.333 0.177 0.466 0.236

MMH*BS1 0.330 0.269 0.300 0.249

BS1*BD 0.323 0.259 0.366 0.198

BS1*MMV 0.309 0.270 0.337 0.175

BS1*US 0.293 0.261 0.311 0.167

FOC1 0.243 0.196 0.329 0.109

FOC2 0.216 0.178 0.290 0.094

BLD 0.199 0.081 0.235 0.197

SLBL 0.167 0.133 0.207 0.091

TDLB 0.138 0.049 0.081 0.203

SSH 0.116 0.015 0.068 0.231

USP2 0.107 0.004 0.132 0.145

NIS1 0.102 0.125 0.049 0.063

Appendices

93

USP1 0.101 0.020 0.024 0.267

MWSP2 0.095 0.003 0.023 0.235

HUSP 0.094 0.004 0.063 0.163

NES 0.092 0.051 0.078 0.099

SHA0 0.092 0.051 0.078 0.099

NIS2 0.087 0.111 0.041 0.050

USP0 0.084 0.002 0.015 0.178

SHA4 0.084 0.035 0.036 0.201

ASH 0.084 0.031 0.041 0.193

USP3 0.083 0.014 0.066 0.126

FIC1 0.080 0.014 0.019 0.178

FIC2 0.079 0.013 0.002 0.167

MWSP1 0.070 0.003 0.022 0.177

NIC1 0.063 0.113 0.009 0.029

SHA1 0.058 0.009 0.041 0.112

NIC2 0.053 0.102 0.016 0.022

SHA2 0.016 0.031 0.005 0.073

SHA3 0.014 0.042 0.032 0.036

R.R. Bosch

94

Appendix E – Standard Configuration of the ADP Algorithm Used in Testing
- Weights updating algorithm:

o Recursive Least Squares (see Section 4.4.1)

▪ Rho value of 0.1

▪ Harmonic step size with a delta of 0.5

- Choice policy: Decreasing epsilon-greedy

o Starting epsilon: 0.2

o Multiplication factor per iteration: 0.99

- No pre-training

- Discount factor: 0.99

- Single-stage optimization method: Partial search tree, 1 attempt

Appendices

95

Appendix F – Average Contribution to the Value Function Approximation

per Feature
Table 27 - average contribution to the VFA per feature from experiment 5.4

Feature 0 1 2 3 4 5 6 7 8 9 10 11 12 avg

EBLB 0.040 0.028 0.031 0.023 0.036 0.037 0.025 0.037 0.026 0.018 0.038 0.024 0.031 0.030

E-EBLB 0.042 0.027 0.034 0.020 0.036 0.034 0.026 0.040 0.025 0.018 0.040 0.015 0.034 0.030

LA-EBLB 0.034 0.021 0.028 0.019 0.033 0.039 0.023 0.037 0.027 0.013 0.038 0.021 0.025 0.028

TDLB 0.049 0.046 0.050 0.064 0.041 0.039 0.057 0.049 0.045 0.052 0.052 0.049 0.055 0.050

BD 0.028 0.026 0.022 0.013 0.043 0.027 0.014 0.029 0.018 0.009 0.031 0.015 0.018 0.023

US 0.041 0.021 0.040 0.020 0.036 0.040 0.030 0.034 0.029 0.018 0.040 0.021 0.034 0.031

BLD 0.040 0.022 0.033 0.036 0.032 0.032 0.034 0.035 0.025 0.033 0.040 0.032 0.029 0.032

ASH 0.058 0.051 0.051 0.068 0.049 0.046 0.070 0.054 0.046 0.049 0.068 0.053 0.055 0.055

SSH 0.045 0.034 0.040 0.055 0.037 0.037 0.051 0.042 0.033 0.037 0.050 0.037 0.038 0.041

NES
-

0.003 0.015 0.013 0.004 0.005 0.001 0.001 0.015 0.022 0.013
-

0.006 0.016 0.023 0.009

USP0 0.012 0.035 0.016 0.023 0.013 0.014 0.023 0.012 0.028 0.032 0.008 0.034 0.019 0.021

USP1
-

0.019 0.017
-

0.002
-

0.004
-

0.002
-

0.005
-

0.002
-

0.003
-

0.003 0.006
-

0.013 0.014
-

0.003
-

0.001

USP2 0.007 0.025 0.016 0.023 0.008 0.002 0.023 0.007 0.038 0.030 0.009 0.035 0.015 0.018

USP3
-

0.001 0.020 0.001
-

0.023
-

0.015
-

0.015 0.002
-

0.005 0.018 0.014
-

0.005 0.021
-

0.010 0.000

HUSP 0.010 0.030 0.015 0.022 0.012 0.011 0.023 0.010 0.034 0.032 0.007 0.035 0.017 0.020

NIS1 0.051 0.052 0.044 0.068 0.047 0.056 0.061 0.049 0.048 0.058 0.057 0.055 0.053 0.054

NIS2 0.056 0.063 0.044 0.064 0.047 0.056 0.062 0.049 0.071 0.063 0.058 0.066 0.053 0.058

NIC1 0.025 0.014 0.026 0.030 0.033 0.022 0.034 0.020 0.015 0.027 0.022 0.018 0.027 0.024

NIC2 0.023 0.017 0.027 0.031 0.035 0.023 0.032 0.020 0.019 0.030 0.018 0.022 0.027 0.025

FIC1 0.017 0.022 0.016 0.016 0.015 0.029 0.018 0.017 0.020 0.019 0.017 0.015 0.012 0.018

FIC2 0.011 0.023 0.009 0.018 0.011 0.006 0.020 0.021 0.020 0.019 0.011 0.017 0.020 0.016

FOC1 0.044 0.021 0.044 0.039 0.045 0.066 0.033 0.053 0.019 0.025 0.041 0.021 0.048 0.038

FOC2 0.043 0.019 0.040 0.040 0.040 0.055 0.033 0.045 0.019 0.029 0.040 0.024 0.040 0.036

MWSP1
-

0.002
-

0.001
-

0.002
-

0.001
-

0.003
-

0.004
-

0.003
-

0.005 0.000 0.000
-

0.004 0.000
-

0.004
-

0.002

MWSP2
-

0.005
-

0.001
-

0.002
-

0.002
-

0.007
-

0.005
-

0.006
-

0.012 0.000 0.000
-

0.006 0.001
-

0.008
-

0.004

MMV 0.028 0.057 0.025 0.028 0.036 0.032 0.025 0.036 0.049 0.081 0.031 0.041 0.034 0.039

MMH 0.046 0.040 0.039 0.050 0.045 0.050 0.046 0.050 0.041 0.051 0.049 0.045 0.050 0.046

RIH 0.044 0.040 0.039 0.050 0.043 0.048 0.042 0.048 0.042 0.051 0.047 0.045 0.049 0.045

EBLB^2 0.020 0.023 0.039 0.016 0.029 0.040 0.013 0.031 0.020 0.012 0.023 0.020 0.018 0.023

EBLB^0.5 0.063 0.052 0.049 0.056 0.052 0.049 0.053 0.051 0.051 0.028 0.057 0.046 0.055 0.051

BD^2 0.016 0.024 0.058 0.020 0.039 0.030 0.008 0.027 0.015 0.006 0.016 0.008 0.008 0.021

BD^0.5 0.041 0.034 0.036 0.034 0.050 0.036 0.035 0.041 0.035 0.036 0.045 0.032 0.038 0.038

NES^2 0.001 0.000
-

0.003
-

0.004
-

0.003
-

0.001
-

0.002
-

0.011 0.011 0.001 0.000 0.003 0.017 0.001

BLD^2 0.038 0.012 0.025 0.015 0.025 0.022 0.020 0.029 0.016 0.018 0.028 0.019 0.021 0.022

HUSP^2 0.001 0.016 0.001
-

0.003
-

0.003 0.004 0.002
-

0.006 0.021 0.016
-

0.004 0.017 0.000 0.005

C 0.053 0.055 0.056 0.070 0.061 0.046 0.072 0.053 0.056 0.056 0.059 0.063 0.062 0.059

R.R. Bosch

96

Appendix G – Overview of the Composition of Each Tested Feature Set
Table 28 - Overview of the composition of each tested feature set

Features sfs

1

sfs

2

sfs

3

sfs

4

sfs

5

sfs

6

sfs

7

sfs

8

sfs

9

sfs

10

full red.

full

Heur-

istic

new

1

new

2

new

3

amount

used

ASH 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 2

BD 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 5

BLD 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 7

EBLB 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 3

EEBLB 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 7

FIC1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 0 0 9

FIC2 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 8

FOC1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 10

FOC2 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 13

HUSP 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 2

LAEBLB 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 3

BS1*LAEBLB 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 5

BS1*MMV 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

BS1*US 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2

MMH*BS1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 6

SOS*BS1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

MMH 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 8

MMV 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 6

MWSP1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 3

MWSP2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 2

NES 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 5

NIC1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 5

NIC2 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 9

NIS1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 7

NIS2 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 7

RIH 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 8

√BD 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 3

√EBLB 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 3

√MMH 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

√RIH 0 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 8

√SOS 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

SHA4 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2

SLBL 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

BD2 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 5

BLD2 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 5

EBLB2 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 7

HUSP2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

MMH2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

NES2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

RIH2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Appendices

97

SSH 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 6

TDLB 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 11

US 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 5

USP0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 2

USP1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

USP2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

USP3 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 7

Set Size 14 7 4 5 14 16 6 8 8 4 23 17 4 10 6 14

