N
_ Cartography M.Sc.

Master thesis

MapColPal — a color palette
generation and testing tool
for thematic maps

Valerian Lange

M TECHNISCHE
UNIVERSITAT
x\ilelnEn,: University of Technology
TECHNISCHE @
UNIVERSITAT ‘
DRESDEN UNIVERSITY OF TWENTE.

ITC

2022

@D UNIVERSITY OF TWENTE.

ITC

Statement of Authorship
Herewith | declare that | am the sole author of the submitted Master’s thesis entitled:
“MapColPal — a color palette generation and testing tool for thematic maps”

I have fully referenced the ideas and work of others, whether published or unpublished.
Literal or analogous citations are clearly marked as such.

Vienna, September 2022 Valerian Lange

MapColPal - a color palette
generation and testing tool for
thematic maps

VALERIAN LANGE
Enschede, The Netherlands, September 2022

Thesis submitted to the Faculty of Geo-Information Science and Earth
Observation of the University of Twente in partial fulfilment of the
requirements for the degree of Master of Science in Geo-information Science
and Earth Observation.

Specialization:; Cartography M.Sc.

SUPERVISORS:
Dr. P. Raposo

THESIS ASSESSMENT BOARD:
Dr. rer. nat. F. Mocnik
M.Sc. E. P. Bogucka (Reviewer, TU Munich)

DISCLAIMER
This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and
Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the
author, and do not necessarily represent those of the Faculty.

MapColPal

a color palette generation

and testing tool for thematic
maps

Valerian Lange

thesis for the M.Sc. Cartography
September 20, 2022

Abstract

Colorisa crucial part of cartographicvisualization while simultaneously posing many
challenges to the cartographer working on it. Creating and testing self-made color
palettes for mapsinstead of relying on standard palettes requires manual effort, time,
and expertise. Tools to aid in the cartographic design process with a limited scope and
high depth became known as cartographic brewers Brewer (2003), with ColorBrewer
(Harrower & Brewer, 2003) as one of the most influential examples among them.
ColorBrewer helps to work with and understand properties of color palettes more
easily. And yet, there are limitations to it: It features only a selection of pre-created
color palettes for one map layer at a time and presents these palettes only applied to
a choropleth map. What could a tool look like which improves on previous applica-
tions like ColorBrewer to assist cartographers in choosing color palettes for thematic
maps?

In this thesis, MapColPal, a web-based color palette generation and testing tool
for thematic maps, was designed, built, and evaluated. It provides a new take on the
old problem of selecting colors for maps in a way suiting the data, human perception,
and aesthetic preferences. MapColPal tackles this problem by deriving color palettes
in a structured way from a shared set of seed colors, visualizing each update imme-
diately, as well as offering user interaction and palette testing at all steps along the
process. It builds on previous tools like ColorBrewer and combines their ideas with
insight from recent literature and modern technology.

keywords: color palette generation, color palette testing, thematic cartography, car-
tographic design, requirements engineering, prototyping, web development

Contents

Contents 10
List of Figures 12
List of Tables 13
Glossary with Acronyms 14
1 Introduction 15
1.1 Researchobjective oo . 16
1.2 Researchquestions 16
1.3 Thesisoutline 17
2 Background on color science 19
2.1 Perceptionofcolor 19
2.2 Coloruseandharmony 26
2.3 Color for maps and simultaneous contrast 28
2.4 Digital cartography and web map applications 30
3 Related work 32
3.0 ColorBrewer e e 36
3.2 Colorgorical e 36
3.3 Chroma.jscolor palettehelper 37
4 Methodology 38
4.1 Requirementengineering 38
4.2 Prototyping o o 40
4.3 Heuristicevaluation 41
5 Implementation 43
5.1 Identified criteria for thematic map color palettes 43
5.2 Identified criteria for cartographic color palettetools 44
53 Requirements 45
5.4 Iterative prototypingprocess 49
6 Results 56
6.1 Completed proof of concept 56
6.2 Requirementscheck L L0 L. 62
6.3 Heuristicevaluation 64

10

Contents

7 Conclusion and outlook

References

A Heuristics form

B Screenshots of intermediate prototypes
Ba Wireframe 0 L,
B.2 Technical capabilitytest.
B.3 First coded user interface prototype
B.4 Proof of concept implementation - First merge
B.s Proof of concept implementation - Third merge
B.6 Proof of concept implementation - Fifth merge
B.7 Proof of concept implementation - Seventh merge

C Proof of concept - Responsive views

D Screenshots of usage scenarios

6.4 Sampleresults L.

D.1 ScenarioI-sequential palette generation
D.2 Scenario 2 - diverging palette generation
D.3 Scenario 3 - qualitative palette generation

70

73

79

II

2.1

2.2

5.1
5.2
53
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

List of Figures

Color gradient with varying hue and constant value and saturation in

HSVusingthesRGBcolorspace 26
Color gradient with varying hue and constant lightness and chroma in

Oklabcolorspace 26
Wireframe i e e e e e e e e e e e 49
Technical capabilitytest, 50
First coded user interface prototype 51
Implementation-Firstmerge 52
Implementation-Thirdmerge 53
Implementation - Fifthmerge 54
Implementation - Seventhmerge 54
Proof of concept-Mainview 56
Proof of concept-Layerspanel, 59
Proof of concept-Testpanel 60
Proof of concept - Exportpanel 61
Proof of concept - Tutorialmodal 61
Proof of concept- Aboutmodal 62
Proof of concept-Successalert., 62
Proof of concept-Erroralert 62
Proof of concept-Exportalert 62
Scenario I - MapColPalinputcolors 67
Scenario I - Sequential MapColPal palette 67
Scenario I - ColorBrewer YIGnBupalette 68
Scenario 2 - Diverging MapColPal palette 68
Scenario 2 - ColorBrewer PiYG palette 68
Scenario 3 - MapColPalinputcolors 69
Scenario 3 - Qualitative MapColPal palette 69
Scenario 3 - ColorBrewer Dark2 palette 69

12

I.I

2.1
2.2

3.1

List of Tables

Relation between thesis outline and research questions 18
Estimated occurrences of color vision deficiencies (in %). 22
Hierarchyofscales 26
Overviewof relatedwork 33

13

CIE
CVvD

L cone
M cone
S cone
GIS
GUI
JND
RO

RQ

Glossary with Acronyms

International Commission on Illumination
color vision deficiency

long-wavelength sensitive cone
middle-wavelength sensitive cone
short-wavelength sensitive cone
geographic information system

graphical user interface

just-noticeable difference

research objective

research question

14

CHAPTER

Introduction

More delicate than the historians’ are the map-makers’ colors. (Bishop,
2011, from the poem The Map, first published in North & South 1946)

Color is crucial within cartography: it is part of multiple visual variables (Bertin,
2011, p. 42), it is an aesthetic element (Brown & Feringa, 2003, p. 127), and it is in-
cluded in most textbooks on cartography (e.g., Brown & Feringa, 2003; Brewer, 2016).
And yet, suitable color use in a map is challenging. The colors should be aesthetically
pleasing to make the map attractive and enjoyable to read, but also need to be fitting
to the map’s theme and also match the kind of data that is displayed. Otherwise, an
ill-fitted color palette may make the map unappealing and, even worse, distort the
meaning of the data, instead of facilitating comprehension. Additionally, colors that
work well for one map might not be suitable for another. A typical mistake is usage
of the same color palette for every mapping need (Harrower & Brewer, 2003, p. 27).

When in the process of finding a suitable color palette for a given map, cartog-
raphers can either choose from standards supplied by the software they intend to
use, for example a geographic information system (GIS) may offer a selection built-
in, or they can rely on palettes crafted and tested by experts. In cartography, the most
popular example of this is likely the color schemes provided by the ColorBrewer ap-
plication (Harrower & Brewer, 2003). Using one of these pre-defined color palettes
leaves the cartographer with a limited, finite set of options. This, in turn, not only
limits the cartographer’s control and agency over the map design, it can lead to data-
distortion as a result, severely impacting the quality of the resulting map. Moreover,
existing tools like ColorBrewer are not designed to be used effectively in situations
where specific colors are required, e.g. a brand color (Smart, Wu, & Szafir, 2020,
p. 1215). Of course, there is also the possibility to adapt an existing palette or craft
a completely new one. This process of creating and testing such a self-made color
palette instead of relying on a standard choice requires manual effort, time, and ex-
pertise (K. Lu et al., 2021, p. 475). Most textbooks and tools to date focus on providing
advice for choosing and applying a pre-defined color palette (see chapter 2 for an
overview). Also, it is possible to do this prototyping of a new palette within a GIS,
but such systems offer little help in this demanding procedure.

Therefore, the need for a current review of research on color palettes within car-
tography and a summary of this information was identified, to provide cartogra-

15

1. INTRODUCTION

phers with the necessary knowledge to be able to craft their own color schemes. Fur-
thermore, to provide aid in the creation process, generation algorithms, which are
already utilized in different disciplines (see chapter 3), can be adapted to fit the needs
of cartography and data visualization, like providing a set of related color palettes
for visualizations on the same topic that shall be displayed together, considering a
basemap’s colors for the palette generation, and taking multiple map layers into ac-
count. For example, in the case of a point symbol map overlaid on top of a choro-
pleth map. Utilizing a generation algorithm provides creative inspiration and a base
for guaranteed consideration of color design principles and can lead to outcomes
that are preferred to standard palettes in direct comparison (Gramazio, Laidlaw, &
Schloss, 2017, p. 529). A fitted generation algorithm can then be combined with the
summarized advice and a palette choosing and testing interface similar to Color-
Brewer. This will be further improved to also allow for different geometry types,
multiple map scales, and color vision deficiency simulation, to create a unique new
tool for cartographic color palette generation and testing that will be able to provide
the cartographer with fitting palettes for varied map designs.

1.1 Research objective

The general research objective (RO) of this thesis is to design, build, and evaluate
a tool to assist cartographers in choosing suitable color palettes for thematic
maps.

For the cartographer to be able to choose a color scheme well, the tool combines
relevant information on color palette design with a palette generation algorithm and
a testing environment to visualize and assess the palette in relevant situations with-
out the need to export a potential palette to other applications. The tool is focused
on web maps to be displayed on screen displays like computer monitors and smart-
phones. In terms of what combinations of map layers are supported, the proof of
concept shall support a basemap overlaid with a choropleth map layer which can in
turn be overlaid with a point symbol map layer. For map scales, a city-scale (Web
Mercator zoom level 11, rounded scale 1:300000) and a country-scale (Web Mercator
zoom level 4, rounded scale 1:37000000) view shall be provided.

1.2 Research questions
To reach the research objective, the following research questions (RQs) were defined:

RQ1 What criteria are necessary to decide whether to use a color palette for a the-
matic map considering not only choropleth maps, but also proportional point
symbol maps and multi-layered combinations?

RQ 2 What color palette generation and testing tools exist already? How can a new
tool improve upon the existing ones?

RQ 3 What requirements exist for a tool implementing these criteria and improving
upon the existing tools?

RQ 4 How can these requirements be implemented in a proof of concept?

RQ 5 Does the proof of concept fulfill the requirements set before?

16

1.3. Thesis outline

1.3 Thesis outline

As the intended research objective is a prototype of a tool, the general philosophy
and style of work will follow the system design type of research. System design is
defined as research “[...]where the researcher designs a system (database, visualiza-
tion, modelling ...) and shows that it is somehow ’better’ than previous designs; this
includes design of algorithms and methods” (Rossiter, 2018a, 35). Rossiter (2018a,
p- 64) names important parts of a thesis using this mode of research: Firstly, estab-
lishing the need for a design. This gets explicitly addressed in chapter 1 and is then
built upon in chapter 2 and 3. Secondly, inspecting existing designs to determine
their deficiencies. This is being handled in chapter 3 in detail. Thirdly, proposing a
design and specifying its innovations. This is being done in chapter 5. And lastly,
showing that the design fulfills its promises. This is the content of chapter 6 before
a general conclusion is taken in chapter 7.

To handle each of these aspects and answer the research questions accompany-
ing each chapter and in the end reach the research objective, scientific methods need
tobe chosen to work on this in a controlled and comprehensible manner. As research
questions I and 2 deal with existing knowledge and its synopsis, a literature review
was identified as the method to answer these questions. Research question 3 deals
with the theoretical concept for the proof of concept, or in other words, the design
to be implemented as well as its innovations. To define these theoretical aspects, re-
quirements engineering was chosen as a fitting method to answer this research ques-
tion. The fourth research question deals with the realization of the requirements
identified in RQ 3 and uses prototyping combined with additional considerations for
the software developing to implement these.

Introduction. Introduces the topic of research and the research objective.

Background on color science. This chapter builds the knowledge foundation
upon which the first research question will be answered during implementation.

Related work. This chapter reviews existing tools and calculations for color palette
generation and testing.

Methodology. This chapter describes the approach chosen to fulfill the research
objective.

Implementation. This chapter describes the process of creating the require-
ments for the proof of concept as well as the actual proof of concept itself.

Results. In this chapter the final proof of concept is presented and evaluated.

Conclusion and outlook. This chapter discusses how far the research objective
was achieved and how to proceed from here.

The structure of this thesis was chosen in relation to the research questions. Table
1.1 lists which research questions are addressed in which chapter.

17

1. INTRODUCTION

Table 1.1: Relation between thesis outline and research questions

Chapter Relevant research question(s)

Introduction RO
Background RQ1
Related work RQ 2
Methodology RO
Implementation RQ1,RQ2,RQ3,RQ4
Results RQ35
Conclusion and outlook RO

18

CHAPTER

Background on color science

To be able to answer the first research question and identify relevant criteria for color
palette usage in thematic maps, an overview of the current body of knowledge on this
topic is summarized from cartography and relevant other disciplines in this chap-
ter. It is structured from general to specific and follows the parts of the research
question: First, the necessary foundations for discussing color and color palette de-
sign are laid out before moving to the specifics for thematic maps. Then, the more
implementation-focused aspects of web map applications are considered including
user interface design for such applications.

2.1 Perception of color

The most vital term to define for this research is the concept of color. And as this re-
search does not feature a solely artistic view on color but wants to leverage the con-
cept in the context of data visualization, the important aspects are color appearance
and perceived color. One possible definition is stated by the International Commis-
sion on Illumination (CIE), which are well-known for the definition of multiple color
spaces (Fairchild, 2013, p. 79-83): In the International Lighting Vocabulary, they de-
fine perceived, or also perceptual, color as a “characteristic of visual perception that
can be described by attributes of hue, brightness (or lightness) and colourfulness (or
saturation or chroma)” (CIE, 2020). Thus, color is seen as a part of visual perception.
It also relies on the terms hue, brightness, lightness, colorfulness, saturation, and
chroma, which will be regarded in the following. Fairchild (2013) also emphasizes
that while color can be difficult to define, these attributes upon which its definition
is relying are easier to define more precisely and are also exceedingly important for
color appearance modeling (p. 88).

To start with visual perception, while it relies on the electromagnetic spectrum
of light, it is not proper to state that a specific wavelength within this spectrum, or a
specific object, are a given color. It is more fitting to state that those stimuli are per-
ceived to be of a specific color when viewed under a given set of conditions (Fairchild,
2013, p. xix). Human visual perception is influenced by rods and cones, the two types
of retinal photoreceptors. They do not always differ in their shape, which the names
are derived from, but they have an important difference in visual function: Rods al-

19

2. BACKGROUND ON COLOR SCIENCE

low for vision when there is low luminance, or in other words only a small amount
of light received by the eyes, while cones allow for vision in high luminance situa-
tions, and both are active in intermediate levels of luminance. When only the rods
are providing vision, it is called scotopic vision. Similarly, when only the cones are ac-
tive, it is called photopic vision, and mesopic vision is used for the intermediate situations
where both are supplying vision (Fairchild, 2013, p. 8). While only one kind of rod re-
ceptor exists, there are three types of cone receptors with partly overlapping areas
of spectral responsivity and peak responsivities at different points within the visual
spectrum. They are therefore referred to as long-wavelength (L cone), middle-wavelength
(M cone) and short-wavelength (S cone) sensitive cones. Color vision is achieved through
the three types of cones. Rods are incapable of color vision. Cones utilize three
kinds of pigment for sensing these different wavelengths, therefore vision including
all three types of pigment is known as trichromatic vision (Bleicher, 2012, p. 11). Two
modes of color vision can be discerned, light-color perception, visual effects produced
byhomogenous, non-varying light which are attributed to the interaction of the light
with our eyes, and object-color perception, where perceived light is intercepted by an ob-
ject which thereby appears to possess a color. The latter can only occur when more
than one object is present (Evans, 1964, p. 1468). The overlap in responsivity between
the kinds of cones differs from physical imaging systems, which are built with non-
overlapping areas of responsivities for practical reasons, and this difference is part
of the reason why precise color reproduction is difficult to realize (Fairchild, 2013,
P-9)-

The different qualities of perception that together define a certain perceived color
are also relevant for the definition of color. Hue is considered an “attribute of a visual
perception according to which an area appears to be similar to one of the colours red,
yellow, green, and blue, or to a combination of adjacent pairs of these colours con-
sidered in a closed ring” (CIE, 2020). This definition also introduces the concept of
hues ordered in a circle, which is also known as a color wheel. A color wheel is a com-
mon element in color theoryto describe color combinations geometrically and is also
used in user interfaces to visualize or choose a color for an action (Tan, Echevarria, &
Gingold, 2018, p. 1). Hue is also used to discern perceived colors into chromatic colors,
which possess hue, and achromatic colors, those without hue (CIE, 2020). Brightness is
defined as an “attribute of a visual perception according to which an area appears to
emit, transmit or reflect, more or less light” (CIE, 2020) and lightness builds on this
as itis the “brightness of an area judged relative to the brightness of a similarly illu-
minated area that appears to be white or highly transmitting” (CIE, 2020). As light-
ness needs a reference area for this relative measurement, it is restricted to related
colors. These are defined as belonging to an area relative to other colors as opposed
to unrelated colors which are perceived as not belonging or as being isolated from
other colors (CIE, 2020). Colorfulness is an “attribute of a visual perception accord-
ing to which the perceived colour of an area appears to be more or less chromatic”
(CIE, 2020). Saturation in turn is the “colourfulness of an area judged in proportion
toits brightness” (CIE, 2020) and lastly chroma is the “colourfulness of an area judged
as a proportion of the brightness of a similarly illuminated area that appears grey,
white or highly transmitting” (CIE, 2020). So while colorfulness is a property of its
own, saturation relates to the brightness of an area as well while chroma relies on
the comparison to a reference area along the lines of lightness.

A perceived color is never described as e.g. greenish and reddish at the same
time. This led to the foundation of opponent colors theory, which states that some hues
are connected to the same pigments and receptors for processing within the human

20

2.1. Perception of color

body and can therefore not be perceived at the same time. Opponent colors theory
can be used to explain visual afterimages (Bleicher, 2012, p. 11), the loss in distinc-
tion for specific hue pairs in color vision deficiencies, and observations made re-
garding simultaneous contrast, where objects on a green background appear more
red (Fairchild, 2013, p. 19). This theory further developed in the middle of the last
century, and red-green and yellow-blue opponent mechanisms are important for all
color appearance models (Fairchild, 2013, pp. 20-21).

Acuity

Visual acuity is the eye’s ability to see detail; the sharpness of what is being visually
perceived (Holtzschue, 2017, p. 234). It is varying per person, over the field of view,
for different amounts of light energy received and also for different wavelengths of
the visible spectrum (CIE, 2020). While technically the amount and wavelength of a
light perception can be measured, the human eye perceives the spectrum of light and
the colors connected with this perception not as separate, but as one continuous flow
where one color blends into the next (Holtzschue, 2017, p. 44). The point at which two
stimuli are just barely perceivable as being different is known as a just-noticeable dif-
ference (JND) (Fairchild, 2013, p. 41). It is an important concept for defining palette
colors for visualization because colors for two different classes should be at least one
JND apart, so that the classes are distinguishable. The JND can be different for a tar-
geted object depending on the context, so it cannot be simply statically derived per
color and object size, but also distance to other objects and their composition needs
to be considered (M. Lu et al., 2022, p. 718). In terms of hue, there are more perceiv-
able variations in reds and blues and less in yellows and greens (Kraak, Roth, Ricker,
Kagawa, & Le Sourd, 2020, p. 42).

Preference

If accurate representation of datais not the only goal of avisualization, choosing col-
ors which are appealing to the target audience becomes a relevant factor in choosing
palette colors as well. To find an objective answer to the question "What colors are
preferential to a certain group of people?’ is difficult though. Generally speaking,
previous research found that a majority of test subjects, in humans as well as ani-
mals, favor blue and dislike yellow hues (McManus, Jones, & Cottrell, 1981, p. 665).
When narrowing down the group of people, the differences in preference get less
clear. While cultural biases, and learned responses as part of a group, seem likely to
exist in color preference too, there is little documentation and explanation for them
(Fairchild, 2013, pp. 361-362). The range of difference in individual color prefer-
ence within a culture, and variations because of the depicted content of an image,
are more apparent than the difference between cultural mean preference levels, and
exceed their range (Fernandez, Fairchild, & Braun, 2005, p. 104). Therefore, if the
general preference of blue hues is not specific enough for a given application, stud-
ies with the actual visualization, to account for variation in preference due to image
content, and members of the actual target group, to account for individual prefer-
ence, are required to achieve meaningful preference measurements.

Color vision deficiencies

Nobody has exactly the same optical perception and visual functionality also changes
within a lifetime. If someone misses certain qualities of color vision, they are pop-

21

2. BACKGROUND ON COLOR SCIENCE

ularly known as 'colorblind’, but as in the majority of cases there is only a reduction
in color discriminability and not a complete loss of color vision, more appropriate
terms are “color defective” (Hunt & Pointer, 2011, p. 13) or “color vision deficient”
(Fairchild, 2013, p. 32). The terms color vision deficient and color vision deficiency CVD will
be used for this thesis. Color vision can change within a lifetime, for example related
to diseases, but inherited color vision deficiencies account for most cases. Because
the genes for photopigments are present on the X chromosome, persons with only
one X chromosome are more likely to be born color vision deficient. Hunt and Pointer
(zo11) combined statistics for the occurrence of color vision deficiencies in people of
European descent from multiple surveys and arrives at around 4% occurrence for
the total population, which splits up into 8% for persons with one X chromosome
and 0.4% for persons with two X chromosomes (p. 14).

Table 2.1: Estimated occurrences of color vision deficiencies in populations of Euro-
pean descent (in %)

Type One X chromosome Two X chromosomes
Protanopia 1.0 0.02
Deuteranopia LI 0.01
Tritanopia 0.002 0.001
Cone monochromatism o (very rare) o (very rare)
Rod monochromatism 0.003% 0.002
Protanomaly 1.0 0.02
Deuteranomaly 4.9 0.38
Tritanomaly o (rare) o (rare)
Total 8.0 0.4

Data by Hunt & Pointer, 2011, p. 14

Ascanbeseenin table 2.1, the most common kind of color vision deficiency by far
is deuteranomaly, followed by deuteranopia, protanopia and protanomaly. Deuter-
anomaly and protanomaly are kinds of anomalous trichromacy, so the color percep-
tion is changed, but still trichromatic. With deuteranomaly, affected persons experi-
ence reduced discrimination of the reddish and greenish contents of colors. Protanomaly
leads to a similar experience, but reddish colors also appear to be more dim than
usual (Hunt & Pointer, 2011, pp. 13-14;Fairchild, 2013, pp. 32-33). With deuteranopia
and protanopia on the other hand, certain photopigments are missing completely
which leads to a dichromatic color vision. Deuteranopes, persons with deuteranopia,
as well as protanopes, persons with protanopia, are missing a red-green opponent
mechanism completely and therefore cannot distinguish reddish and greenish hues
atall. For protanopes reddish colors appear dimmer, similar to persons with protanomaly
(Hunt & Pointer, 2011, pp. 13-14;Fairchild, 2013, pp. 32-33).

A person with average color vision cannot experience what the world looks like
to a person with a color vision deficiency. It is possible though to visualize the hues
that become indistinguishable due to the loss or reduction in color differentiation
(Fairchild, 2013, p. 33). As color vision deficiencies are quite common, as was illus-
trated before, people about to make critical color appearance or color matching de-
cisions should be screened and briefed beforehand to enable them to make informed
decisions. Prevalent tests include pseudoisochromatic plates, like the Ishihara test,

22

2.1. Perception of color

and the Farnsworth-Munsell 100-Hue test (Fairchild, 2013, p. 36). To allow persons
with a color vision deficiency to perceive a visualization as intended, it is recom-
mended to avoid colors not suitable for the specific CVD in question and in general
keep the amount of classes to the least possible number and use strong contrasts
(Weninger, 2015, pp. 109-110).

Color models

To facilitate working with colors, standardized descriptions of colors are required.
Color models allow for this by specifying a space within a coordinate system in which
each possible color represents a point (Silva, Sousa Santos, & Madeira, 2011, p. 320).
A color space on the other hand can be defined as a “geometric representation of colour
in space” (CIE, 2020), so it is the space of possible colors that a color model is applied
to. Therefore, a color space is bound to the color model it is based on, while a color
model can be represented within multiple possible color spaces. Various color mod-
els and color spaces exist with their own properties and can be more or less appropri-
ate for a certain task, thus relevant ones to the domain of this research are introduced
in this section.

Color models can be either device dependent or device independent (Silva et al.,
2011, pp. 320-321), and they are closely related to the notions of color order systems
and color appearance models. The former use basic colorimetry to specify visual
stimuli and collect those within a color order system (Fairchild, 2013, p. 97). The latter
on the other hand are defined as “[...] any[models] that [include] predictors of at least
the relative color appearance attributes of lightness, chroma, and hue” (Fairchild,
2013, p. 200). Color order systems supply data and specification techniques, but no
mathematical framework to allow for extension of the system. So color order sys-
tems can be a relevant precursor to color appearance models, but no replacement
(Fairchild, 2013, p. 97). Because of these characteristics, color appearance models
are better suited to create color palettes based on human perception in.

A color space is called uniform if it is a “colour space in which equal distances are
intended to represent threshold or suprathreshold perceived colour differences of
equalsize” (CIE, 2020). Out of three colors A, B, and C, if color B is twice as chromatic
as color A and color C is four times as chromatic as color A, the geometric distance
between A and B should be the same as between B and C in a perceptually uniform
color space. A perceptually uniform color space relies on its context and therefore
standard illuminants are defined to generalize this context. I[lluminants build upon
the concept of a light source, an actual emitter of visible energy, and abstract that
into standardized tables of spectral power distribution values typical for a certain
light source. Well-known examples include the CIE illuminants A (for incandescent
light), D65 (for daylight) and F2 (for fluorescent light) (Fairchild, 2013, p. 59).

RGB

The RGB color model, named after its red, green, and blue primary colors, is an ad-
ditive color model, which means varying intensities of the three primary colors get
added together to represent the possible colors within the color model. Itis a device-
dependent color model, because the same intensities of the R, G, and B components
can appear differently on different devices. While the RGB color model is based in
human perception, it is not a perceptually uniform color model (Zeileis et al., 2020,

p-8).

23

2. BACKGROUND ON COLOR SCIENCE

When each of the primary colors gets mapped to an axis in space, RGB color
space can be represented as a three-dimensional cube. Working with amounts of red,
green, and blue components per color and orienting in a cubical space is considered
unintuitive and impractical for color selection (Brown & Feringa, 2003, p. 39), which
are the major disadvantages of the RGB color model apart from not being perceptu-
ally uniform.

The gamma-corrected standard RGB, sRGB, is the currently defined standard
color space for the World Wide Web (CIE, 2020). This implementation of the RGB
color model adopts gamma correction to standardize the perception of colors rep-
resented in sRGB. Otherwise, it shares the same general properties with the RGB
model (Zeileis et al., 2020, p. 8).

HSL and HSV

HSV and HSL are transformations of one of the RGB color spaces, that allow to spec-
ify RGB colors with different components with the goal of making them more in-
tuitive to work with. The HSL color model is a transformation using hue, saturation,
and lightness components. HSV on the other hand utilizes hue, saturation, and value
components (Zeileis et al., 2020, pp. 8-9).

They are used in applications which use RGB, but a more intuitive way of color
specification is wanted, for example in a color picker within the application. HSV and
HSL still share the same properties with RGB though, so they are also not perceptu-
allyuniform, therefore their simple and intuitive design, and the naming of the color
components, can be misleading. Because of this, their use is discouraged by experts,
but as of now, they are still in use on the internet and in GIS applications (Brown &
Feringa, 2003, p. 43).

Munsell

The Munsell system is a color order system which is especially used in the United
States of America, and was developed by the artist Albert H. Munsell in the early
twentieth century to aid education. In this system color appearance is specified by
three variables: hue, value and chroma. The definition of these three values match
the definitions currently used by the CIE, which are given above, with Munsell value
referring to lightness (Fairchild, 2013, p. 99).

The Munsell system is still accepted as a standard, but as a color order system,
the Munsell system is missing a mathematical framework as well as being not wholly
perceptually uniform. Also, the three-dimensional color solid that the variables are
applied to is asymmetric, it is neither fully a cylinder nor shaped as a double cone
(Brown & Feringa, 2003, pp. 32-34).

Many modern color appearance models share similarities with the Munsell sys-
tem though, so it is an important historical predecessor to them (Brown & Feringa,

2003, p. 37).

CIE color spaces

The CIE introduced the XYZ color system in 1931, which is still a standard for color de-
scription. It is based on the human optical system and offers the advantage of allow-
ing spectrophotometer measurements to be plotted onto a two-dimensional graph
that can be derived from its color space, a so-called chromaticity diagram (Brown &

24

2.1. Perception of color

Feringa, 2003, p. 44). One unit within the CIELAB color space is approximately cor-
responding to one JND (Szafir, 2018, p. 393).

The system is based on the same primaries as RGB, but uses artificial primaries
which correspond to one of the types of retinal cone each respectively. All of this
has certain advantages for color science, but as the luminance is only represented as a
separate number in the chromaticity diagram, the idea to derive a three-dimensional
color space from the XYZ color system arose (Brown & Feringa, 2003, pp. 44-46).
Two such color spaces were created by the CIE itself, CIELAB and CIELUV. They made
chromaticity diagrams mostly obsolete, as these extend tristimulus colorimetry into
“[...] three-dimensional spaces with dimensions that approximately correlate with
the perceived lightness, chroma, and hue of a stimulus” (Fairchild, 2013, p. 79). They
are well-known and especially CIELAB is an established standard among color ap-
pearance models in use today (Brown & Feringa, 2003, pp. 47-48, Fairchild, 2013,
p.210). These color spaces allow for uniform color difference measurements (Fairchild,
2013, p. 79). Yet, CIELAB also has its drawbacks, for example an incorrect hue shift
in the blue hue range. Therefore, it is recommended to use it merely as a bench-
mark to compare more sophisticated color appearance models to (Fairchild, 2013,
pp-209-2I0).

CIELAB and CIELUV can also be transformed into a cylindrical form, CIELCH,
also known as HCL(Zeileis et al., 2020, p. 9), which uses lightness, chroma and hue
components. The respective versions for CIELAB and CIELUV are also referred to as
CIELCH, and CIELCH,y (Zhou & Hansen, 2016, p. 2059).

HSLuv

One newer, in 2012, developed color space is the HSLuv space, which was developed
asan alternative to HSL in color pickers and is based on CIELCH, (Boronine, 2012). It
specifies colors with hue, saturation, and lightness components. The hue and light-
ness components are the same as in CIELCH,, while the saturation component is
defined as in CIELCH,y, but rescaled relatively to the most saturated sRGB color pos-
sible with the same hue and lightness components. The hue component shares the
same hue distortion problem with the CIE color spaces, due to the definition of the
saturation component, loses its perceptual uniformity and does not vary smoothly
(Ottosson, 202I).

Oklab

Another recently developed color space is the Oklab color space. It is designed to
be easy to use, perceptually uniform and allowing for even transitions between two
colors. It assumes a D65 illuminant, which is also used in SRGB and therefore makes
it well-suited for working with it on the internet (Ottosson, 2020).

Figures 2.1 and 2.2 show two color gradients with varying hue while keeping the
other color components stable. Figure 2.1 uses the HSV color space for this, while
figure 2.2 uses the Oklab color space for the transformation. When viewing these
images digitally, figure 2.1 using HSV has shifts in apparent lightness even though
the HSV value is constant. Oklab performs much better in comparison, which also
serves as a general comparison between perceptually not-uniform and uniform color
spaces.

Atransformation into polar coordinates is possible and results in lightness, chroma,
and hue components for color specification, similar to CIELAB and CIELCH (Ottos-

25

2. BACKGROUND ON COLOR SCIENCE

son, 2020). This transformation will be called OklIch in this thesis. Because of these
properties, and the disadvantages of the other color spaces presented before, the
OklIch color space was chosen as the primary color space for the implementation of
the proof of concept.

Figure 2.1: Color gradient with varying hue and constant value and saturation in HSV
using the sRGB color space. Source: Ottosson, 2020

Figure 2.2: Color gradient with varying hue and constant lightness and chroma in
Oklab color space. Source: Ottosson, 2020

2.2 Color use and harmony

The general method to visualize data using color is to apply a color palette or colormap
to the data, which is defined as “[...] a mapping from data values to colors that gen-
erates visual structures for the data” (Zhou & Hansen, 2016, p. 2051). Colormaps can
be either discrete or continuous. A discrete colormap works with classified data or
single values that are each assigned a color. Continuous colormaps define a series of
colors along the data range and the colors for values in-between are interpolated. A
continuous colormap is represented by a curve in a color space (Bujack et al., 2018,

p. 926).

Table 2.2: Hierarchy of scales

Scale Properties Operations

Nominal Naming Counting

Ordinal Order, unequal intervals Ranking

Interval ~ Equalintervals, arbitrary zero Addition, substraction
Ratio Natural zero, equal intervals Multiplication, division

Own table, adapted from Fairchild, 2013, p. 43

Decisions regarding color palette design, like this one between a continuous or
discrete colormap, also depend on the kind of data and the resulting perceived scales
to be displayed. For this, the hierarchy of scales, as depicted in figure 2.2 is impor-
tant knowledge to base decisions on. For example, nominal data should not be en-
coded with a color palette that conveys the impression of an ordered succession to
the reader, as the original data does not have this kind of order or rank to it. Note,

26

2.2. Color use and harmony

that the mathematical operations per level of scaling are adding to the possible op-
erations of all scale types lower in the hierarchy (Fairchild, 2013, p. 43).

Bujack et al. (2018, p. 924) summarize the following design rules for perceptual
colormaps from the literature:

« Order (intuitive, natural, easy to remember)

- Discriminative power (separation, sensitivity, just noticeable differences, dis-
tinct color levels, color space utilization/ exploitation, perceptual range / res-
olution, discriminability)

+ Uniformity (equidistant differences, separation, associability, separability, lin-
earity, equal values shall be mapped to equal colors)

+ Smoothness (continuity, noboundaries, no Mach bands, low curvature nosharp
bends)

+ Equal visual importance

+ Robust to vision deficiencies

+ Robustness to contrast effects

+ Robustness to shading on 3D surfaces Background sensitivity
+ Device independence (do not leave the gamut)

+ Aesthetically pleasing

« Intuitive / natural color choices

« Use different colormaps for different variables

+ Separation of values into low, medium, and high

+ Avoid rainbow

+ Highlighting of prominent values

Bujack et al. (2018) highlight especially order, discriminative power and unifor-
mity as important. This coincides with mentions of preservation of order (if existing
in the data) and correctly conveying uniformity among values by Levkowitz (1996,
p. 97) and Weninger (2015, pp. 109-110). Although papers and books containing ad-
vice on the scientific use of colormaps exist, usage of colormaps unfit for scientific
data visualization, for example not perceptually uniform rainbow colormaps which
therefore distort the perception of the visualized data, is still prevalent among sci-
entists as well as the public (Crameri, Shephard, & Heron, 2020, p. 2). Thus, a need
for further information on correct color use in data visualization can be identified.

To aid the comprehension of the data at hand and also to be aesthetically pleas-
ing, colors in a colormap are chosen to be harmonious. Itten defines color harmony
as

27

2. BACKGROUND ON COLOR SCIENCE

[-..] the craft of developing themes from systematic color relationships
capable of serving as a basis for composition. Since it would be impossi-
ble to catalogue all combinations here, let us confine ourselves to devel-
oping some of the harmonic relationships. Color chords may be formed
of two, three, four, or more tones. We shall refer to such chords as dyads,
triads, tetrads etc. (1970, p. 72)

These systemic color relationships are also known as harmony templates. Espe-
cially hue templates, operating within a color wheel, are the most widely-used model
for color harmony (O’'Donovan, Agarwala, & Hertzmann, 2011, p. 2). Templates are
seen as being equally harmonious among each other and to be independent of its
rotational placement on the color wheel. Also, they are defined independently of
the color space the wheel is placed in, so they include an element of uncertainty by
definition and are often rather seen as a starting point than a strict rule (O’Dono-
van et al., 2011, p. 2). Itten (1973) proposes sets of two to six hues equidistant on a
color wheel to be harmonious. Matsuda (1995) defined hue templates with sectors
on a color wheel.O’Donovan et al. (2011, p. 2) evaluated these and templates used by
color picker applications and did not find higher color preferences when templates
were used. This study only examined general color themes and had no specific con-
siderations for data visualization or cartography. At the same time, O’'Donovan et
al. (zo11) note the trend of colors harmonizing when they have the same hue, sim-
ilar saturation and contrasting lightness. Colors being harmonious with lightness
and saturation de- or increasing systematically towards one end of the colormap is
also mentioned by Weninger (2015, pp. 109-110). For this thesis, hues will be seen as
harmonious, when they are equidistant on a color wheel that represents the polar hue
component of a perceptually uniform color space. For example, the hue angles of the
CIELch or OKLch color spaces can be used to map harmonious colors. Palette colors
will be considered harmonious, if they have a systematic lightness and saturation
(or chroma, depending on the color space used) shift and a visual hierarchy emerg-
ing from this value change that matches the order and scale of the data visualized.

2.3 Color for maps and simultaneous contrast

Cartography is defined as “[...] the art, science, and technology of making and using
maps” (Kraak et al., 2020, p. V). When designing a color palette for map use, some
phenomena need to be considered that are especially important in cartography.
One such phenomenon is simultaneous contrast. Simultaneous contrast is the effect
that the perception of a color may be altered due to surrounding colors. Because in
maps not every combination of neighboring data values is always known upfront, for
example in automatically updated digital maps, simultaneous contrast is especially
relevant to cartographic color design (Kraak et al., 2020, p. 42). Simultaneous con-
trast is related to the perception of transparency. A colored element nested within
uniformly colored surroundings appears increasingly transparent the more similar
the colors of the element and its surroundings are (Ekroll & Faul, 2013, p. 350).
Anotherimportant topicis the consideration of layered information for the color
design of a map, as most maps consist of multiple map layers. A map layer describes
a geographic dataset or an abstraction of one. A map layer can be either a structure
layer, a group of features based on the same topological data structure and logically
related, or a thematic layer, a group of features belonging to the same theme. The lat-
ter are not explicitly existing but can be derived from structure layers (Hoop, Oos-

28

2.3. Color for maps and simultaneous contrast

terom, & Molenaar, 1993, p. 140). To consider the layered structure of the map for
its color design, Brewer (2016, p. 37) mentions that a basemap is background infor-
mation in a map, and therefore needs to be different enough in lightness compared
to the main map layers to allow the main content to stand out against the basemap.
A basemap is a map layer meant to provide context to the main information con-
tained in a map (Brewer, 2016, p. 21). This also hints at related and helpful concepts:
visual hierarchy and the figure-ground relationship within a visualization. Visual hierar-
chy is the order in which map elements are perceived and should be designed to en-
sure that important information is perceived first (Kraak et al., 2020, p. 49). Brewer
(2016, p. 111) lists color lightness as one characteristic to use to establish visual hi-
erarchy. Kraak et al. (2020, p. 42) recommend designing a map’s visual hierarchy
in grayscale with only lightness in mind first, before building up chroma and hue for
emphasis of the most important features. The figure-ground relationship is a similar
concept from psychology and when applied to a map the ground is background infor-
mation, like basemaps and less important map layers, and should be less chromatic
and lighter, while the figure is the more important layers and foreground informa-
tion, and should be more chromatic and darker (Brown & Feringa, 2003, p. 139).

Visual variables

An important concept within cartography and related sciences is the notion of visual
variables as first introduced by Bertin in 1967. If given a graphical mark with a fixed
position on a two-dimensional plane, this mark can be varying in multiple modes
which are called visual variables. Bertin defined these as size, value, texture, color,
orientation, and shape (2011, p. 42). Brewer (2016) names eight visual variables: size,
lightness, (pattern) spacing, saturation, hue, shape, orientation, and arrangement
(p. 194). While Bertin (2011) includes color only in two variables, 'value’ and 'color’,
which refer to lightness and hue according to the CIE definitions, Brewer (2016) in-
cludes 'lightness’, 'saturation’, and "hue’, which are named according to the CIE defi-
nitions. So in both approaches, color is represented in multiple visual variables, al-
though the organization in the newer publication is more easy to work with from the
perspective of color science and will be used for this thesis. In general, the concept
of visual variables helps to conceptualize the different qualities a color palette has to
fulfil in visualization and how to use these qualities correctly depending on the con-
text: Hue can be used to differentiate qualitative data, lightness is better suited for
visualizing rank-ordered phenomena, and saturation (or chroma) can help establish
the visual hierarchy with more important information being more chromatic (Brown
& Feringa, 2003, pp. 132-138).

Thematic cartography

Thematic cartography is the subsection of cartography focused on thematic maps
andis the application domain for this research. A thematic map “[...] depicts the vari-
ation of one or sometimes several [...] geographic phenomena, mapping spatial and
attribute information together. Meeting the SDGs requires thematic mapping of in-
dicator data. Thematic maps enable geographic imagination and spatial thinking,
and often represent abstract or statistical concepts that cannot be observed directly”
(Kraak et al., 2020, p. 58).

Different types of thematic map exist, e.g. graduated point symbol maps and
choropleth maps, and utilize differing visual variables for depiction of information

29

2. BACKGROUND ON COLOR SCIENCE

(Kraak et al., 2020, pp. 58-59): A nominal map represents differences in mode or a
binaryvalue. A choropleth map shades enumeration units according to their respec-
tive attribute values. A proportional symbol map uses point symbols scaled accord-
ing to their respective attribute values. A graduated point symbol map is similar, but
uses fixed size intervals. And an isoline map represents a gradient of interpolated
values between sampled attribute values. A map can contain multiple kinds of the-
matic map within it, as each map layer can be of one of these types.

2.4 Digital cartography and web map applications

Web mapping is a kind of multimedia mapping and “[...] is dynamic and interactive
(most of the time) and makes use of or connects to many different types of media”
(Muehlenhaus, 2014, p. 19). Web mapping is the technological context for the im-
plementation of the proof of concept and also the target medium for many maps
nowadays.

Digital maps as a target medium influence both the design of a map or tool to be
developed and the color space to design a color palette in. As a goal of digital maps
is consistency of colors when being viewed on a range of possible output devices,
colors are necessary that are visible within the color space supported by the screen
in question (Weninger, 2015, pp. 109-110).

User interface and usability

As this thesis is less concerned with the usability of existing tools and primarily fo-
cuses on the aspect of color palette generation and testing for thematic maps, this
section just aims to lay down the core concepts of usability to make sure not to de-
grade the proposed tool from existing solutions.

Usability is defined as a product’s ease of use. Usability is important for the us-
age of the product to lead to a successful and satisfactory result, which is the user
experience (Kraak et al., 2020, p. 112). To ensure usability, a well-designed user interface
is important, through which the user can interact with and manipulate elements on
the screen. Graphical user interfaces (GUIs) with the possibility of immediate inter-
action are important in cartography because of its visual nature (Kraak et al., 2020,
P- 94).

Shneiderman (1996, p. 337) lists the following core interaction concepts for user
experience design:

I. Overview. Gain an overview of the entire collection.

2. Zoom. Zoom in on items of interest.

3. Filter. Filter out uninteresting items.

4. Details-on-demand. Select an item or group and get details when needed.
5. Relate. View relationships among items.

6. History. Keep a history of actions to support undo, replay, and progressive
refinement.

7. Extract. Allow extraction of sub-collections and of the query parameters.

30

2.4. Digital cartography and web map applications

The proof of concept will be implemented considering these concepts as well as
possible. Additionally, Brewer (2003, p. 161) coins the term cartographic brewer for a
tool with a limited scope and high depth to aid in the cartographic design process
and states the following characteristics of such a brewer:

1. Aselection of choices are offered for a specific representation challenge (a brewer
is not simply a general lesson in principles).

2. Choices are organized by a set of mapping principles made explicit to the user
(the choices are not merely listed in an unstructured catalog).

3. All of the choices offered are potentially suitable for problems for which the
tool is used (there are no extreme choices or straw men in a symbol set).

4. All choices can be examined as categories are explored, encouraging the user
to learn about criteria for applying the existing variety of choices.

5. Choices are not software specific (solutions can be implemented in multiple
mapping applications).

6. Only basic skills in the use of mapping software are needed to implement the
representations offered (programming skills are not required).

7. Representations are further augmented with tips on their suitability, though
the user making a quick selection can ignore these details.

8. Usersare encouraged to be critical of the choices offered, evaluating them with
a display that will reveal potential shortcomings.

While these influence the general design requirements for a tool that is to be
deemed a brewer, all of these aspects influence the user interface design as well.

31

CHAPTER

Related work

This chapter summarizes the research done on existing tools and calculations to be
able to answer the second research question. 42 publications were identified as rele-
vant to this thesis in terms of practical implementation and the underlying concepts.
These are listed in table 3.1 with a description of the content related to this thesis as
well as the category of apparent evaluation method that was utilized.

From these publications, at least seven of them deal in some fashion with the
ColorBrewer tool. ColorBrewer also gets mentioned multiple times in the literature
reviewed for chapter 2 (see e.g. Brewer, 2016; Kraak et al., 2020; Muehlenhaus, 2014;
Weninger, 2015). Therefore, ColorBrewer was identified as the most central tool to
this field of research in existence so far and will be regarded first. Afterwards, further
publications from table 3.1 will be examined in more detail, based on which are the
most relevant to the research objective. A discussion of the works presented here
follows in the beginning of chapters.

32

a8ed 1xou uo panurjuo)

‘syuawrradxa 109(qns uewiny
‘syuawLradxa J09(qns uewiny
‘syuawLIddxa 103(qns uewrny

‘syuawiLradxa 109(qns uewiny

‘QUON

‘uorn

-eoriqnd SIY} U1 paqLIdSaP J0N
‘UOIJBN[BAD [BII}DI0J],
‘sjuawLIadxa J03(gqns uewr
-nY ‘UorjeneAd [edIr}_I0d]
‘syuawirradxa J03(qns uewiny
‘UON

‘uon

-edo1[qnd ST} UI paqLIOSap JON
‘syuawrradxa 109(qns uewiny
‘syuawLradxa J0a(qns uewiny

‘[e9110810[0)) pue JoM3IFI0[0)) IO SYILWI ‘SI9}[IJ pUE S90UaIJaxd Jasn 10 ejep 0}
Sundepe pue suorjouny Surroos saxy} Sursn uorjerauad syjared 10105 :I0[TE}IA[EJ
‘sajeduwra) any Sursn ‘spIom woay uorjerauas a3jared 10[0)

*[00] 9AT}OBISIUI Uk Y}IM UOTIEIdUSST SWIAYDS JO[0D [BIUISJII]

‘sayerd

-wa} any Sursn {00} SATIORIIIUI UE [}IM UOIIEIdUIS dUWIdYds JO[0D SNOTUOULIEE]
“I9MIIGIO0[0))

10y Sy TeWaI ‘UoTjen[ead a33a1ed 10[0d 103 adesn ‘[apowr SUTWEU J0[0D B JO UOIJEII))

‘sdew orjeuwIay) I0J SAWAYDS I0[0d SUIII[AS 10 [00} gOM :T9MIIGIO[0))
'sdeULIO[0D SNONUIIUO0D JO UOTI}091100 [en}dadiad

‘soy3a1ed 10700 [ed11080

-yed a[qerayaxd A[[ed13oy}sae pue S[qRUTWLIOSIP SUI}EaId 10J [00} oM [ed1I0810[0))
“19MaIg10[0)) dA0XdWIT 0} SUOIEPUIUWITOIT USISI(]

*sdeuLIO[0D SNONUIIUOD JO JUIWISSISSE 10J IOMIUTEI]

‘sdewr orjewWaY} J0J SOWIAYDS J0[0d SUI}O3[3S 10J [00] OM :IOMIIGIO[0D)
*}SEIJU0D SNodUE}[NWIS }01paid 0} [FPON
*}SEIJU0D Snodue)[nwIs }01paid 0} [FpoN

120T “Tejo nT Yy
€102 ‘YunIIssng x Jaupury
¢102 “[e 39 nY4

TI0T “Te 3@ nH
TIOT ‘QU0l§ N 199

€007 ‘Tomalg § JoMoLIeH
8007 ‘Usain

L107 “'Te }9 OIZRWERID)
S00z ‘Iaupien
8102 “Te 32 Yoelng

£00%2 ‘Tamaag
L661 ‘1omarg
1661 ‘Tomarg

‘QUON -1ad[aY 9139[e(J0[0D) S[*eUWOIYD Q61072 ‘Yosty
‘UON *SIO[0D 3JeS PUI[qIO[0d-UOU JI0J SUOIJEZI[eNSIA YOy A[[ed1jewony 8102 ‘YosIy
*QUON -1od[aY 9139[e 100D S[*ewoIy) €102 ‘Yosty
pasn uonjenyeaa yuareddy JUDIUO0D JUBAI[IY uonedrqng

JIOM PIIB[II JO MITAIDAQ :I'S d[qe[,

33

3. RELATED WORK

a8ed jxau uo panurjuo)

‘syuawLIadxa 10a(qns uewrny
‘UOTJeN[BAD [BII}2I0d],
‘syuawrLIadxa 309(qns uewrny
‘UOTJEN[EAD [BII}DI0d],

‘syuawrLIadxa 303(qns uewrny

"UOT}eN[BAD [BJTIDIO],
‘QUON

‘syuawLradxa 309(qns uewiny
"UOT}EN[BAD [BJTIDIO],

*QUON

‘sjuawLIddxa 103(qns uewrny

“J9XTUWI JO[0D OIISTLIE DATIORIIIUI :9))9[ed [NJAe[J

-0eds 10100 [SH pa1edyIzzng - [SHA
*SUOI}BUIqUIOD I0[0D paLIajard pue snoruourIey s}saf,
-aseq agpaymouy e Sursn ‘Kyderdolred ur 10[00 10J uisap papre-roynduo))

'soouanbas J0100 91eLIRAIQ PUE JELIBATUN JO UOT}RIDUIL)

1y31s A D 10J saul| uoIsnyuod Juisn ‘sqAD Ino

-[}IM pUE Y3IM I0] 9[qeysinur)sIp aIe SUoIjeuIquIod 1o[od Ji Aynuapr djay o3 [00],
‘Kouarfes 10100 pue ‘punoidyoeq ay3 yrm }serjuod wnwiurw ‘Surjurad

9[edsAeId ‘saroUAIOYAP UOISIA-JO[OD SSAIPPE ey} SIUTeIISU0d AJ[IGISSAIVE YIIM
pauIquIod s[apowr ddudIajaId-oreyIsae Jururesr-aurydewr YIm yoeordde usaLIp
-ejep e Jursn ‘K[IqIssaooe pue sonay)sae Jurouereq ‘yuawdoaasp souanbas 1010)
"SISA[EUE JUIWI}US / SpIom J0aje woj udisap aj391ed 10[0)

‘soje[dura)

any Sursn Apred ‘Kyiqryeduroo 10[0d 03 spaedax ur s}asejep I0[0d JO UOIjeN[BAY

'SqAD Surpaeda osfe sdeurio[od snonurjuod aziwndQo

‘so[na

Kuourrey ; saje[duray any Sursn Apared ‘sjooy a3391ed 10700 aarpoeIdjul odrynN
-aseq a8pamouy| e Jursn ‘udisap 90€JI9)UI IdSN UL I0[0D 10f uSIsap papre-1anduro)

*S9IOUSIOLJIP UOISIA 1000 Surje[nuuis 1oj suoryenby

1107 ‘1p12AI(] ¥ ‘N ‘euriSnyg
1oz

‘eyeueme) ¥ ‘onouj ‘rowreysg
1102 ‘IauIfed N SSO[YdS

G861 ‘uosweg

9861

‘ueyde[[e),0 ¥ UOSIPGOY

0707 ‘9p00n) Y 1504

1202 ‘goaidd
6102 ‘noy) § Suag

1107 “[e 3@ UBAOUO(],O
8107 ‘Mo[suay

] ‘uojrepuy ‘zaunN
Yooz

‘zyaaey ¥ ‘reyedg ‘retopy
8861 ‘IO

6007 ‘sopueu
-19 ¥ ‘BIRAIO ‘Opeydeny

posn uonjenjeas juareddy

JUIIUO0D JUeAI[OY

uonedtqng

PaNUIIUOD - YIOM PaJe[aI JO MIIAISAQ 1'% d[qe],

34

‘syuawLIadxa 103(qns uewrny

‘sjuawLradxa 109(qns uewIny

"UOT}eN[BAD [BITIDI0],

‘syuawrradxa 109(qns uewiny
‘syuawiLradxa 103(qns uewiny

‘syuawrLIadxa 103(qns uewrny
*QUON
"UOT}EN[BAD [BITIDIO],

‘sjuewrLIadxa 10a(qns uewny

‘sadew1 w0y UoTjeZI[ensIA elep [ed11039)ed J0] sa)3a[ed J0[00 ALIS(
-9oeds 10700
TDH 9y} ut sajared 10100 Surjerauad pue yum Sunyrom 1oy a8eyoed Y :90edsiofod

-9oeds 10100 TOH Ul sa3331ed 10700 SurALIdg
‘sorydexSoyur 103 uorjerauag/aorape apared 10[0D SAI}ORISIUT :IOZLIO[O)OFU]

‘uorjerauas ay391ed [eryuanbas/pazapao ssouySIy a)erTRATU)
‘uoTIeZI
-[ensIA 9} JO 9[eJS PUEB MIIA JULIND Y} 0} ISN UT dWaYds 10[0d 1depy :ysys[1n)d

'soje[d w9} 9U0) pue any pue AUoOWLILY I0[0D)

‘uonezIu

-ourrey Jo[o0d ‘sajejdwa) any Jursn ‘uorjoerixs ayaed pue uorjrsodwosap adewry
“juspuadapur pue Juspuadap JZIS S[PPOW DUIIYIP I0[0))

*9Z1S JO UONOUNJ € SB 3DUIIYIP I0[0D

pue (SgN[) seouaiayIp a[qesdnou-1sn(aqLIdSap 0} [POW SDUIIPYIP I[Gead[}0U
*S9ZIS [[ews 10] ysing

-urjsip o} Jarsea soueurwin| Surkrea ‘udrsap 10700 10§ $303(qO JO IZIS JO dUBAI[DY
‘[@pow 10[0d

yunpyy - exreqny Sursn ‘urxrwu 1o0o yuawrdid a1y [eas/Soreue Juswdne Arediq
‘3urroy

-snpo pasiaradnsun pue Sururw udrsap Sursn sdwres 1000 ajerauad :Suryer) 100D

2207 “Te 18 Suayy

0T0T “[e 19 SI9[I_YZ

60072

TRIMWN R “IWIOH ‘SO[IPZ
10T “Ie 19 ueng

8007 ‘uapur 19p uea § NlIpn
uea ‘uaforjp ‘sieedplIpn

6102 “[e 39 UIp[ep
00T ‘Iysiuew]

Xy ‘eyeueinpy ‘niewrnyoj,

810z “Teja ue],
8107 ‘IYyezg

Y102 ‘an[)as ¥ ‘Iyezg ‘ouolg
2107T ‘9u0lg
1202 ‘eysLIwre(3 BAOJIOYD0S

0707 ‘e }9 JIewS

pasn uonjenyeaa yuareddy

JUIIUO0D JUBAI[OY

uonedrqng

PoNUIIUOD - JIOM PIJe[al JO MIIAIIAQ :I'S d[qe],

35

3. RELATED WORK

3.1 ColorBrewer

ColorBrewer is a collection of color palettes to be used in thematic maps (and de facto
used in general in data visualization (see e.g. K.Luetal., 2021; Gramazio et al., 2017))
and a tool to visualize these online to help with selecting a palette from this collec-
tion. To this end, the tool provides the user with a selection interface to choose the
number of classes and the type of data to be visualized as well as allowing for filter-
ing the available palettes by further qualities like suitability for printing or for color
vision deficient persons (Brewer, 2016, p. 205). The main user interface consists of a
side panel on the left side with the adjustable controls and a choropleth map on the
right side. The map visualizes a chosen color palette on example data that cannot be
adjusted. The background color can be changed as well as borderlines and the trans-
parency of the choropleth map overlay (ColorBrewer source code, 2021). The palettes
are created by following conceptual arcs through a color space, although they were
not actually plotted in one color space but used expert knowledge combining cyan,
magenta, yellow and black (CMYK) color mixing as is used in printing as well as the
Munsell color order system. The diverging color palettes arc over lighter colors in the
middle in perceptual color space, the multi-hue sequential palettes change more in
hue in the middle of the palette and more in lightness at the ends of the palette. The
qualitative palettes, apart from the 'Paired’ and '’Accent’ palettes, keep saturation and
lightness the same while contrasting in hues (Harrower & Brewer, 2003, pp. 30-3I).
For varying class numbers, ColorBrewer systematically derives palettes from shared
sets of colors (Harrower & Brewer, 2003, pp. 36-37). ColorBrewer deviates in its user
interface from the hierarchy of scales with nominal, ordinal, interval and ratio scales
and instead simplifies to three types of color palette: qualitative, sequential and di-
verging. While the qualitative palettes are suited for nominal data and the sequential
palettes are suited for ordinal, interval, and ratio data, the diverging palettes are a
special case, as they are also meant to be used with ordinal, interval, and ratio-scale
data, but with the difference of highlighting a critical value in the data, for example
zero or the mean or median value (Harrower & Brewer, 2003, pp.29-31). The cur-
rent version of the web application is implemented in HTML, CSS and JavaScript.
As ColorBrewer consists only of premade palettes, the tool does not require a back-
end running calculations, just the web frontend presenting the palettes (ColorBrewer
source code, 2021).

In 2005, Gardner evaluated the ColorBrewer color schemes in terms of how well
they accommodate map readers with impaired color vision and found the major-
ity of the ColorBrewer color schemes to be accommodating these readers. For the
schemes which are not or might not be accommodating, Gardner proposed user in-
terface changes to communicate this to the ColorBrewer user (Gardner, 2005, p. 88).
Brewer (2006) recommends using an additional tool ('Daltonize’ on vischeck.com)
apart from ColorBrewer to better check color palettes for CVD suitability.

3.2 Colorgorical

Colorgorical is an online tool for qualitative color palette generation. It utilizes an al-
gorithm that ensures at least J]NDs between all palette colors while also allowing for
aesthetically preferable palette generation and user input to use only a certain hue
or lightness range for generation. The aesthetical preference can be influenced by
setting the range filters and adjusting the importance of perceptual distance, name
difference, pair preference, and name uniqueness, which are then used as weights

36

3.3. Chroma.js color palette helper

within the generation algorithm (Gramazio et al., 2017). The main user interface con-
sists of a side panel on the left side with the adjustable controls and the main page on
theright side, which consists of text information and after generation of colors a row
per generated palette, which houses example data visualized as a choropleth map, a
bar chart and a scatter plot using the color palette. The example data cannot be ad-
justed. A small button allows for the display of additional graphs plotting the palette
colors’ CIELab lightness, and a and b components, as well as CIELch chroma and hue
(Gramazio, 2016). Colorgorical is implemented with a backend for palette construc-
tion using NumPy and C combined with a frontend for user interaction using HTML,
CSS and JavaScript with the D3 and Bootstrap libraries (Gramazio, 2016).

3.3 Chroma.js color palette helper

The Chroma.js color palette helper is a web tool to help create sequential and diverg-
ing color palettes. It utilizes interpolation through the perceptually uniform CIELAB
color space and automatic checks after palette generation to test for suitability for
color vision deficient viewers. The CVD test checks whether the difference between
two colors is similar to the difference under normal vision, therefore it does not check
whether the classes in general are always at least one JND apart (Aisch, 2o19a). The
user interface is only one main screen with one column with four steps from top to
bottom which lead through the generation and export process. The currently gener-
ated palette is visualized as a bar showing the palette colors next to each other and
graphs for the lightness, saturation and hue components of the palette colors. There
is no visualization on example data (Aisch, 2019a). The tool is implemented using
just a frontend which runs all necessary scripts on client-side with HTML, CSS and
JavaScript using the Chroma.js and Svelte libraries.

37

CHAPTER

Methodology

In the following the methods chosen to answer the research questions will each be
described in their own section, as well as argued to why they were chosen and how
exactly they were applied in the context of this thesis.

For the overview of the existing theoretical knowledge on the subject in chapter
2 and the review of related applied research and software development projects in
chapter 3, a literature review was conducted. A literature review is defined as

“[the]selection of available documents (both published and unpublished)
on the topic, which contain information, ideas, data, and evidence writ-
ten from a particular standpoint to fulfil certain aims or express certain
views on the nature of the topic and how it is to be investigated, and the
effective evaluation of these documents in relation to the research being
proposed” (Hart, 2009, p. 13).

A literature review can only live up to this definition if it was conducted system-
atically. The literature reviews undertaken for the chapters 2 and 3 were conducted
following the principles established in (Rossiter, 2018b, pp. 31-46): The search strat-
egyincluded keyword searches in digital databases which were then followed up with
the 'spider’ approach to identify further publications from the publications previ-
ously identified as relevant. For this, ConnectedPapers, a tool for bibliometric net-
work analysis as described by Kammerer, Goster, Reichert, and Pryss (2021) proved
useful and enabled a time-efficient literature review.

4.1 Requirement engineering

As the research objective includes the design of a new system, a method is needed
to formulate what is necessary for this system to be innovative, necessary and rele-
vant based on the previous work in the field in a structured way. The research field
concerned with this is called requirements engineering, seen as a part of engineering
but also traversing disciplinary boundaries in the form of multidisciplinary require-
ments engineering (see Crowder & Hoff, 2022). In a general way it can be defined
as “[...] the subset of systems engineering concerned with discovering, developing,

38

4.1. Requirement engineering

tracing, analyzing, qualifying, communicating and managing requirements that de-
fine the system at successive levels of abstraction” (Dick, Hull, & Jackson, 2017, p. 9)
or as “[...] concerned with the elicitation, evaluation, specification, analysis and evo-
lution of the objectives, functionalities, qualities and constraints to be achieved by
a software-intensive system within some organizational or physical environment”
(van Lamsweerde, 2009, p. xxi). The latter definition already includes the mention of
a software-intensive system and as the system to be designed in this thesis is com-
pletely software-based, there are more concrete definitions of requirements engi-
neering especially for within software engineering. Based on and adding to a defini-
tion by Zave (1997, p. 315), Laplante (2018) defines requirements engineering as [...]
the branch of engineering concerned with the real-world goals for, functions of, and
constraints on systems. It is also concerned with the relationship of these factors to
precise specifications of system behavior and to their evolution over time and across families
of related systems”(pp. 2-3). Good requirements are supposed to be feasible, valid,
unambiguous, verifiable, modifiable, consistent, complete and traceable (Berenbach,
Paulish, Kazmeier, & Rudorfer, 2009, pp. 9-13).

For software development, a differentiation can be made between user require-
ments and system requirements (Sommerville, 2016, p. 102):

1. User requirements [emphasis added] are statements, in a natural lan-
guage plus diagrams, of what services the system is expected to
provide to system users and the constraints under which it must
operate. The user requirements may vary from broad statements
of the system features required to detailed, precise descriptions of
the system functionality.

2. Systemrequirements[emphasis added]are more detailed descriptions
of the software system'’s functions, services, and operational con-
straints. The system requirements document (sometimes called a
functional specification) should define exactly what is to be imple-
mented.

Requirements can be further concretized by subdividing them into functional and
nonfunctional requirements. The former are defined as “[...] statements of services the
system should provide, how the system should react to particular inputs, and how
the system should behave in particular situations. In some cases, the functional re-
quirements may also explicitly state what the system should not do” (Sommerville,
2016, p. 105) and the latter as “[...] constraints on the services or functions offered by
the system. They include timing constraints, constraints on the development pro-
cess, and constraints imposed by standards. Non-functional requirements often ap-
plyto the system as awhole rather than individual system features or services” (Som-
merville, 2016, p. 105) and consist of product requirements, organizational require-
ments, and external requirements.

Product requirements define or restrict the software behavior at runtime (Crow-
der & Hoff, 2022, p. 132). Organizational requirements on the other hand encompass
vast system requirements which result from the context of the development and the
later use. Examples are requirements that define use cases for the system, and de-
velopment process requirements like a specific programming language that has to
be used. And finally external requirements are factors from outside the system that in-
fluence it and the process of its development. Examples include ethical or legal re-
quirements. These categories are in practice not as clearly separated and might be

39

4. METHODOLOGY

depending on one another, but still provide a useful order to stick to (Sommerville,
2016, p. 105-109).

Understandings of the word requirement can differ (Laplante, 2018, p. 3), for the
use in this thesis, a requirement is seen as the specification of how a goal, or a high-
level objective in other words, should be accomplished by the proposed system (see
Laplante, 2018, p. 4). The requirements for the proof of concept development for this
thesis are structured into user and system requirements, with the latter subdivided
in functional or nonfunctional requirements. Nonfunctional system requirements
will be further split into product, organizational, and external requirements.

4.2 Prototyping

Written requirements are an important part of any software implementation, but
the lack of a visual explanation can lead to misinterpretation, which is why a proof-
of-concept consisting of wireframes and prototypes is a valuable support in commu-
nication requirements and showing how a concept is intended to work (Warfel, 2009,
pp- 5-6). The process of creating these wireframes and prototypes is called prototyp-
ing and can be defined as “[...] externalizing and making concrete a design idea for
the purpose of evaluation” (Muifioz, Miller-Jacobs, Spool, & Verplank, 1992, p. 579).
A wireframe is “[...] a visual representation of the functional page structure. Theyvisu-
ally communicate what functional pieces are present on a page and their relationship
to each other. Wireframes are typically in black and white or shades of gray” (War-
fel, 2009, p. 6). Wireframes are also known as mockups (Arnowitz, Arent, & Berger,
2007; Bihr, 2017). Even wireframes can only further the understanding to a certain
extent though, which is where prototypes come in: “A prototype is a representative
model or simulation of the final system. Unlike requirements documents and wire-
frames, prototypes go further than show and tell and actually let you experience the
design” (Warfel, 2009, p. 6). Thereby, prototypes help demonstrate the feasibility of
a software product and provide insight into the possible organization and structure
of the final product (Sommerville, 2021, p. 26). For this thesis, in the beginning of
the prototyping process, a wireframe is being created before moving on to coding a
functional prototype.

Arnowitz et al. (2007, pp. 21-25) name the following four phases for effective pro-

totyping:
I. Plan. Determine prototyping needs and plan the prototyping process.
2. Specification. Determine prototyping methods and tools.
3. Design. Formulate design criteria, and create the prototype.

4. Results. Review the prototype, validate the design, and implement the design.

For this thesis, the planning phase consists of establishing the criteria for the-
matic map color palette creation and for the tool itself, and the derivation of the re-
quirements for the prototype from these. This phase is described in the first part of
chapters.

The specification phase is described in the second part of chapter 5 asitisrathera
continuous process than a step to be done with because of the iterative nature of the
prototyping for this thesis: There was not a single prototyping method to be speci-
fied, but instead the process started with paper and wireframing prototyping meth-
ods before moving on more and more to working on a coded prototype. The design

40

4.3. Heuristic evaluation

phase with making design decisions and creating the actual prototypes is described
in detail in the second part of chapter 5 as well. The results phase with a review of the
prototype and an evaluation of the design is the content of chapter 6 and the further
development of the design after this thesis is discussed in 7.

4.3 Heuristic evaluation

Apart from reviewing whether the requirements could be met or not, a second evalu-
ation method was added to also evaluate the usability of the proof of concept. Heuris-
tic evaluation is a method from usability engineering to identify usability problems
within the design of user interfaces. The key feature is to work with a small group
of evaluators who examine the interface and assess its conformance to accepted us-
ability principles, the eponymous heuristics (Nielsen, 1994a). Heuristic evaluation is
among the most actively researched and used usability inspection methods, and it
can be utilized early on in the software development cycle to allow for discussion of
interface changes while the product is not yet fully developed (Hollingsed & Novick,
2007). Also, it is suited for all development stages, requires only low training, and
has low costs (Wilson, 2014, p. XIII). Nielsen (1994b) states that usability specialists
normally lead to better results, but are not necessarily required as the method is easy
enough to apply. For all of these reasons, heuristic evaluation was chosen as the sec-
ond evaluation method for this thesis.

While a single evaluator is prone to miss a lot of the possible usability problems
in an interface, working with a small panel of evaluators significantly increases the
proportion of found problems. Nielsen (1994a) recommends working with three to
five evaluators, as the additional information gained per additional evaluator de-
creases with each evaluator more. For this thesis, five evaluators and me participated
in the heuristic evaluation, which should lead to about 78 percent of possible usabil-
ity problems being detected (Nielsen, 1994a).

Including me, four evaluators have an education in cartography. These are there-
fore not usability experts, but have some knowledge in the field and at the same time
add knowledge from a user perspective as cartographers are also the target group
of the developed tool. The other two evaluators are a person with communications
background and an artistic researcher, both of which added a second perspective on
the user interface aspects and the color palette generation aspects of the application
each.

Nielsen (2020) names ten general principles for interaction design:

1. Visibility of system status

2. Match between system and the real world
3. User control and freedom

4. Consistency and standards

5. Error prevention

6. Recognition rather than recall

7. Flexibility and efficiency of use

8. Aesthetic and minimalist design

41

4. METHODOLOGY

9. Help users recognize, diagnose, and recover from errors
10. Help and documentation

The form used for the heuristic evaluation was derived from these ten principles
by assigning heuristics specific to the context of the proof of concept to each prin-
ciple. As a last section in the form, three usage scenarios were added to see if the
evaluators could achieve actual results using the application from a user perspective.
The main body of the heuristics form is provided in appendix A, while the complete,
formatted Excel spreadsheet sent to the evaluators is provided with the thesis.

42

CHAPTER

Implementation

This chapter describes how the proof of concept was implemented to fulfil the re-
search objective. It is structured into sections for each of the research questions I to
4 and answers them one by one.

5.1 Identified criteria for thematic map color palettes

Research question 1, "What criteria are necessary to decide whether to use a color
palette for a thematic map considering not only choropleth maps, but also propor-
tional point symbol maps and multi-layered combinations?’, aims to encompass the
decision process that the proof of concept is being built to assist. The criteria to an-
swer this question are derived from the theoretical background in chapter 2 and are
unweighted and therefore in random order here. They are phrased as binary ques-
tions that can be answered with yes or no. The important criteria for this decision
are...

I. Is the palette suited for the kind of data to be displayed? Are the visual vari-
ables which vary within the palette suitable to represent the variation in the
data?

2. Does the palette consider human perception to not skew the comprehension
of the data?
2.1 Are the palette colors notably different from one another?

2.2 Arethe palette colors correctly spread out in a perceptually uniform color
space to represent the data?

2.3 Is the palette considering simultaneous contrast (and similar phenom-
ena)?

2.4 Isthe palette considering color vision deficiencies in its design? Are the
other criteria also being met for viewers with color vision deficiencies?

3. Isthe palette aesthetically pleasing?

4. Are the palette colors harmonious (according to the definition in chapter 2)?

43

5. IMPLEMENTATION

5. Is the palette supporting the position of the map layer within the visual hier-
archy of the map?

6. Is the palette suitable for the deployment situation of the map?

7. Was the palette tested before use to ensure meeting the other criteria?

For this thesis, a color palette meeting these criteria will be considered suitable
for use in a map.

5.2 Identified criteria for cartographic color palette tools

While the section before focuses on the color palette itself, this section is directed at
important aspects for the implementation of a cartographic color palette tool with
the aim of improving over existing research and tools. In doing so, research question
2, "'What color palette generation and testing tools exist already? How can a new
tool improve upon the existing ones?’, will be answered and the practical side of the
implementation is considered. This builds upon the review of related work in chapter
3.

Discussion of related work

As ColorBrewer is the most well-known cartographic color palette tool and uses a
screen layout, that e.g. also Colorgorical uses as well (side panel with controls on left
side plus right side for visualization), this general layout of the application will be
taken over for the proof of concept, to create a sense of familiarity for everybodywho
worked with ColorBrewer before and to ensure a certain baseline of user interface
quality.

In the same sentiment, the three categories 'sequential’, 'diverging’, and 'qualita-
tive’ as used by ColorBrewer for possible palettes seem like a good choice and are a
better distinction than for example using the hierarchy of scales directly. Also, this
distinction of possible palettes is well-established, e.g. the Chroma.js color palette
helper alsouses the terms 'sequential’ and 'diverging’ as well as textbooks like (Brewer,
2016). As the proposed tool is supposed to improve over existing tools, it should be
able to generate palettes of all three categories.

Colorgorical is a powerful tool for the generation of qualitative color palettes and
has alot of algorithm input customization with intuitively designed controls. Also, it
is possible to generate multiple palettes and compare them to each other. It does need
aserver backend though, which makes the application infrastructure more complex.
And the used algorithm is very specific to qualitative palettes, cannot be easily ad-
justed to also output sequential and diverging palettes. Furthermore, the given test-
ing environment does not offer customization options apart from the option to tog-
gle a certain visualization on and off and does not offer additional information for
color vision deficiency support or information how to read and properly work with
the given graphs.

ColorBrewer as well as Colorgorical only offer a choropleth map as the only car-
tographic option, so it would be better to include different kinds of thematic map to
allow for more different usage scenarios. For the proof of concept, at least a point
symbol map and a choropleth map should be supported, as well as viewing both as
layers of the same map. Other color palette tools, like the Chroma.js color palette
helper offer no cartographic visualization at all. Also, none of the reviewed color

44

5.3. Requirements

palette tools offer the option of displaying the chosen palette on example data in
front of changing basemaps. ColorBrewer only has the option to display grayscale
terrain as a background.

The testing environment in the Chroma.js color palette helper is helpful with the
graphs forlightness, saturation and hue, aswell as the automatic CVD testing and the
possibility to also apply a CVD view simulation to the palette for manual evaluation
of the generated color palette.

Color harmony templates like used by Tokumaru et al. (2002) can be used to en-
sure a certain level of harmonyin the generated color palettes. Basemap color extrac-
tion could be implemented similar to Tan et al. (2018) and Zheng et al. (2022). If no
libraries to work with color vision deficiencys in a web environment are found during
prototyping, CVD testing could be implemented with the equations from Machado
etal. (2009).

Six reviewed works only considered color schemes for general design purposes
and not specifically for data visualization and were thus less relevant for this thesis
(see Hu et al., 2012, 2013; Lindner & Siisstrunk, 2013; Meier et al., 2004; O’'Donovan
et al., 2011; Peng & Chou, 2019).

Criteria for cartographic color palette tools

The criteria are formulated to add to the criteria for thematic map color palettes,
therefore e.g. color harmony is not mentioned here again. They are unweighted and
presented in random order. The criteria are phrased as binary questions that can be
answered with yes or no. The final important criteria are...

I. Does the tool feature an easy-to-understand screen layout and user interface
similar to the ColorBrewer design?

2. Does the tool offer palette generation and testing for the types 'sequential’, 'di-
verging’, and 'qualitative’?

3. Does the tool offer example visualization for relevant types of map?
4. Does the tool offer example visualization in front of a selection of basemaps?
5. Doesthetool offer additional graphs to help evaluate the color palette visually?

6. Does the tool run automatic tests and algorithms to ensure a certain quality
level for the generated output? (Especially regarding JNDs and CVDs)

5.3 Requirements

The criteria for thematic map color palettes and the criteria for cartographic color
palette tools were combined to derive the requirements for the proof of concept and
thereby answer research question 3, "What requirements exist for a tool implement-
ing these criteria and improving upon the existing tools?".

The user requirements 1 - 7 and the functional system requirements 1 - 7 are or-
dered in the same way as the seven criteria for thematic map color palettes, so the
connection from a criterion to its corresponding user requirement and in turn the
more detailed system requirement is easy to make. The criteria for cartographic color
palette tools influenced the same requirements and if necessary, additional require-
ments were added.

45

5. IMPLEMENTATION

User requirements for the proof of concept

The general objective of the tool stated as a high-level goal is: The tool assists cartogra-
phers in choosing suitable color palettes for thematic maps.

I.

The tool generates color palettes suited for a chosen kind of data to be displayed
(sequential, diverging, and qualitative) by utilizing changes in lightness, hue
and chroma accordingly.

. The tool generates color palettes that consider human perception to not skew

the comprehension of the data.
2.1 The tool generates color palettes with colors notably different from one
another.

2.2 The tool generates color palettes with colors spread out in a perceptually
uniform color space befitting the distribution of data.

2.3 The tool generates color palettes considering simultaneous contrast and
similar phenomena.

2.4 The tool generates color palettes considering color vision deficiencies.
The tool generates color palettes which please aesthetically.
The tool generates color palettes consisting of harmonious colors.

The tool generates palettes for multiple map layers at once in a systematical
fashion. This is facilitated through palette derivation from a set of seed colors
as well as shifts in lightness and chroma per information layer.

The tool generates color palettes fitting the deployment situation of the map.

The tool provides a testing environment and information to allow the user to
evaluate the previous requirements, as well as running automated tests and
communicating the results of these.

The tool is easy to use, easily available online and can be executed on a variety
of target devices.

Functional system requirements for the proof of concept

I.

2.

46

The tool offers modes for the mentioned three kinds of data and changes set-
tings accordingly internally to work with proper visual variables; e.g. for cat-
egorical data the lightness for all colors shall be the same and only the hue
should be varied.

Functional system requirements for color palette generation considering human perception

2.1 The tool checks the difference between palette colors and ensures it is at
least a JND. The result of this test is given back to the user as a visual
feedback.

2.2 The tool derives color palettes from so-called seed colors by interpolat-
ing between them through a perceptually uniform color space to ensure
correct distances between the colors within the palette.

5.3. Requirements

2.3 Based onimported user data to be displayed, layer opacities, symbol sizes,
and the currently chosen color palette, the tool checks for problematic si-
multaneous contrast and gives the user a visual feedback.

2.4 Thetool checks that colors are still noticeably different when viewed with
a color vision deficiency and gives a visual feedback about the result of
this check.

. The tool utilizes randomness and the option to regenerate seed colors to allow
the user to find a palette aesthetically preferable to them or their target group.
A color picker and simultaneous updating of all displayed colors accordingly
allow for on-the-fly quick changes to the generated colors to fit them to prefer-
ence if the general direction is already likeable to the user. Seed color hue tem-
plateimplementation and filters allow for more targeted generation directly as
well. Seed colors should also be able to be generated from a basemap or one or
multiple start colors, as well as allow for loading of seed colors.

. Hue templates with equidistant hues are to be implemented as an option in
seed color generation.

. Thetool first generates so-called seed colors from which then multiple palettes
can be derived to aid in generating a uniting theme for multiple map layers.
Lightness and chroma shifts from lighter and less chromatic colors in the back
to darker and more chromatic colors in the front (or vice versa for palettes to
be utilized on a dark background).

. Thetool is specialized on thematic maps in a web environment in typical light-
ing situations. The tool considers different deployment scenarios within this
context by considering a variety of basemaps and background colors for the
palette generation.

. Functional system requirements for the testing environment

7.1 The changes applied per mode are also visualized to the user immedi-
ately.

7.2 Functional system requirements for testing a color palette considering human per-
ception

7.2.1 The user receives feedback on how different colors are from one an-
other perceptually using graphs to visualize the steps in lightness,
hue and chroma within the palette.

7.2.2 The user receives feedback on how colors are spread out in the color
space by using graphs to visualize the steps in lightness, hue and
chroma within the palette.

7.2.3 The tool visualizes two different scale datasets to the user and allows
for random data regeneration or own data import to see unlimited
possible class combinations. A range of freely available basemaps is
supplied as well. The tool also features an opacity slider to allow for
testing at different opacities per layer and to toggle layer visibility on
and off in general.

7.2.4 The tool also simulates the view of a person with a CVD and visual-
izes this view to the user to allow for evaluation by the user them-
selves.

47

5. IMPLEMENTATION

7.3 The seed colors, the generated palettes and changes to them, e.g. applied
modifiers, are always directly visualized to the user to evaluate their aes-
thetics.

7.4 The seed colors, the generated palettes and changes to them, e.g. applied
modifiers, are always directly visualized to the user to evaluate their har-
mony.

7.5 The tool offers the user to adjust settings regarding the visual hierarchy.

7.6 The variety of basemaps and background colors is also available in the
given testing environment as well.

8. Thetool’suserinterface is designed after ColorBrewer to help with orientation

for cartographers familiar with this or similar existing tools. Further, the tool
utilizes intuitive metaphors and standards often used in user interface design.
The generated palettes should be easily exported in multiple formats to ease
continued work with them. The tool features a responsive user interface which
adapts to a range of target devices.

Nonfunctional system requirements for the proof of concept

Product requirements

. Asnouser datais collected and the tool runs directly on the target device with-

out a server backend, no security concerns arise. This also keeps the chance of
reliability failures apart from bugs and the initial loading of the page low as
the program can be run offline as long as the website was loaded fully while
still online.

. Performance requirements are supposed to be low, the implementation in gen-

eral should allow for loading times to be longer on less powerful devices in-
stead of a complete system failure. Also, using a frontend only approach keeps
reaction times comparably small, especially with slow internet connections,
as the software doesn’t need to communicate back and forth outside the target
device.

Organizational requirements

48

. Anoperational process requirement is, that the system shall be useable by car-

tographers globally and with varying skill sets, therefore aweb-based approach
is chosen as the most including.

. A development process requirement resulting from this is, that a program-

ming language, that can be executed on the web should be chosen. For this,
JavaScript was selected and during the third iteration of prototyping further
specified to TypeScript, a superset of JavaScript.

. The development environment and process standards are to use Visual Studio

Code for the prototyping, together with the Prettier formatting extension, and
with the Svelte for VS Code extension (added during the third iteration of pro-

totyping).

5.4. Iterative prototyping process

4. The operating environment should support a long and cheap product life span
during and after the thesis. For this, also a frontend only approach is prefer-
able, as well as using only necessary external libraries and web standard tech-
nologies.

External requirements

I. Asnouserdataisbeing collected, and no cookies are used, there are no specific
ethical requirements.

2. Theresearch context influences the prototyping, because the proof of concept
has to be able to be implemented in a short time period and has to be adaptable
to new insights, and possible feedback by the thesis supervisor.

5.4 Iterative prototyping process

After the requirements were fixed, the prototyping process began to develop the ac-
tual proof of concept from the requirements and answer research question 4, 'How
can these requirements be implemented in a proof of concept?’.

The prototyping process is composed of multiple iterations with intermediate
prototypes each, before reaching the working proof of concept as a web application
in the last iteration. To keep the thesis concise, only selected screenshots in smaller
scale will be shown in this section. For a full overview of screenshots for all interme-
diate prototyping results, refer to appendix B.

First iteration: Wireframe of the intended proof of concept

The first iteration began with brainstorming and first drafts on paper, which were
then transferred and refined into a first digital wireframe. This digital version was
created using Figma, a web-based design platform, and Untitled U, a user interface
design kit for this platform, to allow for fast wireframing while at the same time
achieving a comparably polished result. The wireframing was helpful in deciding
how to lay out the user interface roughly for the first versions of the proof of con-
cept. The main view of the wireframe is depicted in figure 5.1.

Figure 5.1: Wireframe

49

5. IMPLEMENTATION

Second iteration: Technical capability testing

After the wireframe was done, and I also found JavaScript libraries that appeared
promising for the implementation of the proof of concept, the next step was to do
simple technical tests to better gauge whether I think the technologies and my own
coding skills allow for an actual coded proof of concept. This iteration followed the
idea of an early rapid prototype, a prototype helping to plan out concepts, make them
easiertounderstand, and increase confidence in the project planning later on (Arnowitz

etal., 2007, p. 16).

Figure 5.2: Technical capability test

In this first coded prototype, depicted in figure 5.2, I combined color interpola-
tion through a perceptually uniform color space with chroma.js and a simple graphic
visualizing these colors with D3.js. Implementing this first prototype worked well,
therefore I moved on to the next, knowing that at least a simple tool for sequential
palettes using color interpolation should be possible to implement.

Third iteration: First coded user interface prototype

This iteration also followed the principle of an early rapid prototype and had the goal
to fix the rest of the technologies to be used in the proof of concept, at least the ones
that were clear would be needed: A library to work with basemaps as D3.js does not
easily facilitate that, a frontend framework to be able to store state and update re-
lated parts of the application on state change as well as facilitate easier development,
a user interface component library to not have to design every interface control en-
tirely on my own.

For this test, I used Svelte as a frontend framework, because it seemed tobe a good
choice for a small-scale application with less boilerplate code than e.g. React would
require. Together with Svelte, I tested switching to TypeScript, as this supports type
checking which eases development by allowing error messages during compiling and
not only during runtime. Using Svelte also made testing of a specific programming
approach possible: Encapsulated components, where the H-TML, CSS and TypeScript
code for each component are written together in one ’svelte-file. As a Ul component
library, I tested daisyUI, which in turn is based on Tailwind CSS and PostCSS. Apart
from D3.js and chroma.js as in the last iteration, I now also tested Leaflet and Open-
Layers for working with basemaps. The implemented prototype for this iteration is
depicted in figure 5.3.

Also during this iteration, the name MapColPal was brainstormed for the tool
as a shortened combination of the words 'map’, ‘color’, and ’palette’, and at the same
time a pun with the word 'pal’ as well. During this test I decided to use Leaflet for
the proof of concept, as it was easier to get D3.js and Leaflet to work together than
D3.js and OpenLayers. To easily use different basemaps within Leaflet, the plugin
Leaflet-providers was added to the libraries in use. As this then all worked without
problems, I decided to continue working with these technologies.

50

5.4. Iterative prototyping process

Figure 5.3: First coded user interface prototype

Identified components of the proof of concept

During this iteration, one decision to make was, how to divide the planned applica-
tion into parts to structure the code. For this, the concept of encapsulated compo-
nents was applied and the layout of the wireframe was used as an orientation. The
application was divided into the following components:

1. Side panel
2. Mapview

a) OpenLayers test map
b) Leaflet test map

This basic structure of dividing the app into the side panel and the map viewwas
kept after this iteration and adapted to house more components as they were being
programmed, the final structure is being presented in chapter 6.

Fourth iteration: Proof of concept implementation

After having created the wireframe to know how the user interface could look like
generally and having coded two early rapid prototypes to fix the technological base
of implementation, I started working on the actual proof of concept.

Itwas developed iteratively and organically over time in an agile manner, without
setting myself clear milestones for what order to code in. Even though I worked on it
alone, the proof of concept was created using the Git version control system, so each
committed change to the code is documented with a commit message. The commit
messages are loosely structured into four categories:

« New: Adds new features to the codebase.
« Fix: Fixes a bug or broken feature.

+ Refactor: Rewrites a part of the code to improve readability and maintainabil-
ity, and reduce complexity.

+ Merge: Update the 'main’ branch with the new commits from the 'prototyping’
branch.

In total, there were 165 commits. The categories were not used mutually exclu-
sively, so a commit can also be tagged with two categories at the same time. 114 of

51

5. IMPLEMENTATION

the commits included the category 'New’, 29 commits each included the categories
'Fix’ or 'Refactor’, and 9 commits were of the category 'Merge’. I merged the 'proto-
typing’ branch into the ‘'main’ branch, when I felt like having done some important
changes, therefore these provide good points to pick for in-between-versions to ex-
emplary summarize the development process here. As some merge points were in
short succession, every second merge will be described here with the last being pre-
sented in more detail in the Results chapter.

Screenshots are taken at full-screen resolution on a full HD, 1920 x 1080 pixel,
monitor as this is the size the user interface was created at in the beginning before
optimizing the display at smaller resolutions later on in the process.

First merge

MapColPal - your pal for map color palettes
Button group

+]

Figure 5.4: Implementation - First merge

The application at the first merge, as depicted in figure 5.4, is visually and func-
tionally still similar to the first coded user interface prototype. The main map dis-
play on the right side of the screen features a zoomable and draggable overlay im-
plemented with D3.js with country polygons and manually placed points in front of
a Leaflet basemap, which can be chosen from two options. The user interface ele-
ments in the side panel on the left are still placeholders only. The data used for the
country polygons was from Project Linework (projectlinework.org), already with a
loose focus on Europe. The colors applied to the polygons and points are regener-
ated randomly on reload of the website.

Third merge

At the third merge, the application is already much closer to the final design, as de-
picted in figure 5.5 and also implements all the features planned in the wireframe
visually. The side panel was subdivided into three different sub-panels. Firstly, the
'start’ panel for seed color generation, the 'options’ panel for derivation of color palettes
from these seed colors and for viewing them, and the ’export’ panel to export the
generated color palettes. A progress indicator in the top of the side panel visualizes

52

5.4. Iterative prototyping process

which step the user is currently in. Within the code repository, Svelte stores were in-
troduced, to allow for exchange of values between components and at the same time
be able to store them. The seed colors can now be regenerated on button click as well
and the export panel also is functional already. All other user interface elements are
not functioning yet. For the data, the polygons were changed to Natural Earth data
(naturalearthdata.com) and filtered in GIS software to only contain member states
of the European Union. This was done so that the test data, and area depicted, is not
completely randomly chosen. The European Union was chosen, because this thesis
is written within a Master’s program which is co-funded by the Erasmus+ program
of the European Union.

your pal for map color palettes

GENERATE

Figure 5.5: Implementation - Third merge

Fifth merge

For the fifth merge, as depicted in figure 5.6, a favicon was added that is meant to be
simple and represent the shape and color from the progress indicator at the top of the
side panel as this is a visually present element in the MapColPal interface. The fifth
merge added alert messages on error during import of seed colors or after a success-
ful import. Modals, pop-ups which open on button click, were added. At this point
one of them was intended for additional settings the user could set and the second
one for additional information about the application. Capitals from Natural Earth
were added as point data for the country level visualization and Vienna districts and
swimming pools were added as polygon and point data on city level, as Vienna is a
city I like and the geodata is freely and easily available. The size of the displayed
points is relative to the generated data values. The basemap can now be chosen from
a control in the side panel. Seed colors can be loaded from a text input or from the
URL of the website. Other generation controls apart from the number of colors are
not working yet. The 'options’ panel was split into two panels, the 'layers’ panel with
options regarding the structure layers within the map and the color palette genera-
tion for them, and the 'test’ panel for future palette testing facilities. The 'test’ panel s
still mostly empty for now, the 'layers’ panel offers the user to choose between coun-

53

5. IMPLEMENTATION

try or city level for the map, to generate new random data for each layer, and to toggle
layers on or off and change their opacities. Also, the background color can be set.

e
Y 5 5 g
= v T B
Welcome to MapColPal!

Hey! This taol s here to help you work with color palettes for thematic maps.
Is this your first time here? Then make sure to check o the tutoria.

I want to..
generate 6 © seed colors
with 2 hue iter
vith a htness iter
and it them o tis asemap: Posron

load seed colors

GENERATE
Current seed colors
SETTINGS ABOUT NexT

= Lot Openreeniap ontutors 8 CARTO

Figure 5.6: Implementation - Fifth merge

Seventh merge

your pal for map color palettes
o 2 3 4
start Layers Test Export
Welcome!
This tool i here to help you work with color palettes for thematic maps.
Is it your first time here? Check out the tutoial,
Iwant to
generate 6 ¢ seed colors
with harmoriously spead hues
it hues ranging from 120 © 10 300 degrees
fited to tris basemapy Posoon
andorly

load seed colors

GENERATE
Current seed colors
TUTORIAL ABOUT Cnea

= Loatel] & OpensSisaiap ontivulors © CARTO

Figure 5.7: Implementation - Seventh merge

For the seventh merge, as depicted in figure 5.7, the seed colors are now automat-
ically updated in the URL as the application is used. In terms of the code, the seed
colors are now handled not only as an array of hexadecimal color codes, but as an ar-
ray of objects containing also an ID, which allows for easier working with them. The
former ’settings’ modal was now changed to host a tutorial as the 'settings’ modal
seemed to stay unnecessary for now, as there are no additional options that need

54

5.4. Iterative prototyping process

space to put them. The tutorial follows the same order as the sub-panels, although
no actual content was added yet. Also, buttons for additional information are spread
out throughout the app. The seed colors are now finally not directly applied to the
data anymore, but instead a palette is derived from the seed colors depending on user
input within the "layer’ panel. Drag and drop elements were added to choose which
seed colors to use for palette generation for a layer and for the order they should be
used in. They are based on the visual metaphor of a deck of cards. Further options in
the 'layer’ panel include lightness optimization which differs per palette type, color
curve smoothing which utilizes Bézier interpolation through CIELAB color space, a
button to reverse the input color order, and size options for the point layer. Now all
points can also be set to a fixed size instead of changing with the data. The user inter-
face is conditional, for example if a layer is toggled off, all unneeded controls are set
to be invisible as well. Now, seed colors can not only be generated randomly, but also
with a hue template to spread them out equally depending on the number of seed
colors to be generated, and if selected then map them to a certain hue range. The
basemap seed color derivation is also functional now, and a loading animation was
added to signal that the asynchronous process is still running. The basemap color
derivation first merges, for performance reasons only a part of, all loaded basemap
tiles into one image, then extracts the color from each pixel and quantizes the colors
to reduce to a small palette before deriving the mean color from this palette. This
mean color is then used as the first color in the hue template as described before. The
color quantization was implemented following Sniurevicius (2022). The "test’ panel
is now also functional and allows for CVD view simulation, and shows a lightness
graph for each layer. The 'export’ panel is now more formatted and offers to export
colors for each generated palette and for the seed and input colors.

Ninth merge

The ninth merge was the final one and while it will be presented in more detail in
chapter 6, the changes included in this merge will be discussed here. So far the user
interface contained a mix of flat shading and drop shadows, which were now uni-
fied into a simplified shading using colored CSS borders inspired by Tanaka contours
with an imaginary light source in the upper left corner of the screen. All informa-
tional texts and the tutorial were added in as well as overall the user interface and
content was polished and unified.

55

CHAPTER

Results

This chapter sets out to answer the last research question 'Does the proof of concept
fulfill the requirements set before? And can it fulfil the research objective?’ by pre-
senting the completed proof of concept and then evaluating it. The evaluation is on
one hand done by checking the proof of concept against the requirements set be-
fore. On the other hand, the results of the heuristic evaluation are being discussed
afterwards. Finally, sample resulting palettes are presented and compared to Color-
Brewer palettes.

6.1 Completed proof of concept

The proof of concept is a responsive web application for color palette generation and
testing for thematic maps, as shown in figure 6.1.

your pal for map color palettes

load seed colors

GENERATE

Current seed colors

T = |

Figure 6.1: Proof of concept - Main view

56

6.1. Completed proof of concept

It allows to either generate seed colors according to a hue template or randomly,
or to load colors in hexadecimal RGB form. When generation, the first color in the
hue template can be derived from the currently displayed basemap, or the colors can
be mapped to a certain range of hues. Seed colors can be further adapted by the user
on click wherever they are shown in the user interface.

These seed colors are then used to derive a color palette per map layer. This can
be influenced by choosing which seed colors to use and in what order, the number of
classes and a palette type from the options 'sequential’, 'diverging’, and 'qualitative’.
The seed colors chosen as input then get interpolated between to derive a palette.
Depending on the chosen palette type, the lightness is optimized fittingly: For se-
quential palettes, it ranges from low to high or vice versa, for diverging palettes from
low to high to low or vice versa, and for qualitative palettes, the lightness is set to the
same level. The exact middle value and range to use for this lightness correction can
be chosen by the user. A Bézier curve interpolation between the input colors can be
applied to smooth the resulting color palette. If only one seed color is used for se-
quential palette derivation, lightness steps of this color are generated. In the same
situation for diverging palettes, the complementary color, the color on the opposite
side of the color wheel, is chosen for the other end of the color palette, while diverg-
ing palettes with only one or two input colors use an achromatic color for the middle
of the palette.

Afterwards, the created color palettes can be viewed with a CVD simulation and
evaluated using a graph showing the steps in lightness within the palettes. This way,
the user can verify that a palette applies lightness in a way befitting the data type and
distribution, and that it is discriminable also when viewed with a CVD.

Finally, the palettes can be exported as a JavaScript array, with or without quota-
tion marks around each color element, and formatted as hexadecimal RGB colors, as
the RGB format used in CSS, as CIELAB components, or as CIELCH components.

During this whole process, the generated palettes get displayed on a sample map
in real-time. They are shown as a point symbol map layer and/or a choropleth map
layer in front of a chosen basemap or background with a chosen color. Every map
layer can be shown or not and the opacity can bevaried. The data values are randomly
generated and can be regenerated to view the same palette in different conditions, as
well as changing the map scale between a city-scale (Web Mercator zoom level 11,
rounded scale 1:300000) and a country-scale (Web Mercator zoom level 4, rounded
scale 1:37000000). The point symbols can be changed in size and can be either of a
fixed size or sized relatively to the data.

Additional information on everything is presented in form of a tutorial modal, a
modal with metadata, and contextual pop-ups.

Technologies used

The proof of concept uses the following technologies and libraries:

« HTML, CSS, TypeScript, Node Package Manager, Vite, and Svelte. The ba-
sic technologies the application is based on.

« PostCSS, Tailwind CSS, and daisyUI. The libraries used for the user interface.

« D3.js. To display and interactively update the map point and polygon data lay-
ers.

57

6. RESULTSs

+ Leaflet, and Leaflet-providers. To display the basemap tiles.

+ Merge-images. To merge the basemap tiles into one canvas element to then
extract its colors.

« Color-blind. To simulate CVD vision.

Component hierarchy

The proof of concept uses the following code structure:
I. Stores
2. Components

a) Map view

b) Controls
i. Side panel
ii. Start panel
iii. Layers panel
iv. Test panel
v. Export panel

c) Elements

i. Exported colors
ii. Help dropdown
iii. Input colors
iv. Lightness graphs
v. Modal
vi. About modal
vii. Tutorial modal

The 'stores’ hold information that needs to be accessed and manipulated by mul-
tiple other components. The ‘components’ house all components with parts visible in
the user interface, such as the 'map view’ which displays the map on the right side of
the application. The 'controls’ house the main user interface control groups. The 'side
panel’ is the parent component for the other four panels which are displayed within
this parent component. The 'elements’ house all other components of smaller scope.
The 'exported colors’ are used within the export panel, the "help dropdown’ is used
throughout all side panels. The 'input colors’ and 'lightness graphs’ are used in the
layers panel and the test panel respectively and are extracted as their own compo-
nents because they are each used twice, once for the point layer and once for the area
layer of the map. The 'modal’ is the parent element for the 'about’ and the 'tutorial’
modal.

User interface elements

The user interface is designed after the flow of the process as described before. It
mainly consists of the side panel housing all important user controls on the left side
of the screen, and the map view on the right side of the screen. On a device with a
small screen the map gets displayed below the side panel. Additional screenshots of
the user interface at different screen resolutions can be found in appendix C.

58

6.1. Completed proof of concept

Map view

The map view informs the user about the current settings and allows viewing the
generated palettes. It is depicted in figure 6.1 on the right side of the application’s
interface.

Start panel

The 'start’ panel contains all controls related to seed color generation and loading. It
is depicted in figure 6.1 on the left side of the application’s interface.

Layers panel

The "layers’ panel, depicted in figure 6.2, holds all controls related to color palette
derivation from seed colors, as well as the major map view options, such as the ability
to change layer opacities for example.

your pal for map color palettes
1 2 3 4
Start Layers Test Export

Choose your layers

Adjust the zoom level of the map and the data type per layer to fit your use case.
Then drag and drop seed colors to derive your palettes.

Show me...
COUNTRY LEVEL DATA
Layers
Points | sequential ~ OPACITY ~ NEWDATA SIZE
o Optimize lightness and mapto «/- 02 ° around 05 <

" Smooth with Bézier curve interpolation

#00800D #74afdp #0006b6

#58001F #c676db #eteaTl

Palettewith 9 © dlasses | REVERSEORDER
Areas | sequential v | ((OPACITY) [NEW DATA
+ Optimize lightnessandmapto +/- 02 < around 07 <
| Smooth with Bézier curve interpolation
BACK TUTORIAL ABOUT NEXT

Figure 6.2: Proof of concept - Layers panel

Test panel

The ’test’ panel, shown in figure 6.3, contains the control for the CVD view simula-
tion, and the lightness graphs with the ability to switch between a relative and abso-
lute scale.

59

6. RESULTSs

MapColPal

your pal for map color palettes

® ® d 4

Start Layers Test Export

Test your palettes

Apply a color vision deficiency simulation @ and check the lightness graphs.

| Mone - Pick a CVD to simulate -

Point palette D
Lightness graph © Absolute scale
100%
65% 10%
50% d00 _ 45% 50% oot (f3 p—
319 _ 36%
0%
Area palette (®
Lightness graph © Absolute scale
100%
83%

75% 79%
50% 509 _54% _59% 630 67% 1%

0%

- TUTORIAL ABOUT .

Figure 6.3: Proof of concept - Test panel

Export panel

The ’export’ panel, depicted in figure 6.4, contains customization options related to
palette export as well as the export button per collection of colors and a text window
which allows for manual copying of the colors as well.

60

6.1. Completed proof of concept

MapColPal

your pal for map color palettes

Start Layers Test Export

Export
Copy palettes as JavaScript arrays.

Exported colors

Point palette copy

[#00207e, "#2e2989', '#4a3393", '#633d9c’, #7c48a4’, '#9552a9',
‘#b05daa’, ‘#cc67a3’, '#f36e74]

Avrea palette COPY

['#1e5ebf, '#5864c5", ‘#7b6bc9’, '#9973cb’, ‘#b37cch, “#ca86c8’,
‘#de92c4’, '#f09fbc’, ‘#ffaeb2’]

Other colors ~

- TUTORIAL ABOUT

Figure 6.4: Proof of concept - Export panel

Tutorial and About modals

The ’tutorial’ and 'about’ modals, depicted in figures 6.5 and 6.6 respectively, contain
additional information for new users and users interested in knowing more about
the application in detail.

- -~ — —

Tutorial |
i Welcome to MapColPal!
| o Introduction MapColPal is a tool to ease working with color palettes for thematic maps.
! This app is color coded in the following way: Important user interface elements are marked bluc and minor elements are . The most important

actions are highlighted in
¥ 1. Generate seed colors Tip: You can also navigate the side panels pressing 4 |and| B | on your keyboard.

The next sections of this tutorial lead you through each of the screens of the app and there are also info icons © placed throughout the website with
more concise information!
O 2. Adjust layers

@ 3. Test palettes

| 4. Export them!
i

z T— ——

Figure 6.5: Proof of concept - Tutorial modal

61

6.

RESULTS

About

MapColPal was originally created as part of a thesis within the Cartography. M.Sc. programme by me, Valerian Lange, and is currently maintained as a personal project. Feel free to reach out if you
want to get involved! Via Linkedin, github or via e-mail.

You can find the source code here. Links to the thesis and the abstract will be added in October 2022.

Technical aspects
Made with Svelte, vite, TypeScript, postCSS, tailwindCSS and daisyUl via svelte-add.

The user interface uses flat shading inspired by and loosely designed after the classic Tanaka contours.
Using the following npm packages: d3, chroma-js, leaflet, leaflet-providers, merge-images, and color-blind.

Sources
The data used is open data from the following sources:
Small scale: European Union country polygons and capital city points from Natural Earth (public domain)

Large scale: Vienna districts as polygons and Vienna public swimming pools as points (both licensed under CC BY 4.0), data source: Stadt Wien — data.wien.gv.at.

License
MapColPal © Valerian Lange under the MIT license. See code repository for details.

Code with @ by justvalerian.

T— L —

Figure 6.6: Proof of concept - About modal

Error and success alerts

The alert messages which appear and disappear on the user interface automatically

as

cess message shown in figure 6.7 appears on successful seed color import, the error
alert depicted in figure 6.8 appears on unsuccessful seed color import, and the mes-
sage shown in figure 6.9 appears on button press to export colors by copying them to

required, give feedback for the import and export steps of the workflow. The suc-

the clipboard.

TUTORIAL ABOUT -

Figure 6.7: Proof of concept - Success alert

TUTORIAL ABOUT -

Figure 6.8: Proof of concept - Error alert

TUTORIAL ABOUT

= Leatet OpenSrsetiap conmautors € CARTO.

Figure 6.9: Proof of concept - Export alert

6.2 Requirements check

The finished proof of concept will now be compared to the set requirements in chap-
ter 5. For this comparison, the functional system requirements have been selected, as

62

6.2. Requirements check

they are more detailed and implementation-focused compared to the user require-
ments, and comparing both here would yield overlapping results. The nonfunctional
system requirements are not discussed here in detail, as they were shaping the proto-
typing process more than the final outcome and were adhered to during this process.
The tool was tested in the Firefox and Chrome browsers in the current versions for
September 2022.

¥ RequirementIisbeing metbythe proof of concept, it can generate color palettes
of all three kinds.

Functional system requirements for color palette generation considering human perception

¥ Requirement 2.1is not being met, currently no automated check for color
difference is implemented.

¢ Requirement 2.2 is being met.

¥ Requirement 2.3 is not being met. To consider visual phenomena like si-
multaneous contrastin palette generation requires the import of the data
used in the end product and more extensive analysis, as the data and its
surroundings, layer opacities, symbol sizes and the current color palette
need to be considered. Given the non-functional system requirements
and restrictions, for the proof-of-concept the focus was then instead put
on providing an extensive testing environment. Especially important for
this testing requirement is the possibility to see different combinations
of data, scale, geographic distribution and basemap. Therefore, the focus
for the current tool was on providing the possibility to see random com-
binations of classes next to each other and at different scale levels and for
multiple geographic datasets in front of different basemaps.

X Requirement 2.4 is not being met, there is no automated check for CVD
compatibility.

-~

Requirement 3 has mostly been met, but seed color generation with a given
start color is not yet implemented in the user interface.

¥ Requirement 4 is being met.

? Requirement 5is being partly met. Instead of implementing an automatic dis-
tribution of the map layers along the possible range in lightness, the users can
edit the values themselves. Chroma shifts have not been implemented yet.

¥ Requirement 6 is being met. Seed color generation based on the background
color was purposefully not implemented to not clutter the interface unneces-
sarily. Instead, it could be implemented as a sub-feature of the generation with
a given start color which is part of requirement 3.

Functional system requirements for the testing environment
¥ Requirement 7.1 is being met, all changes to the controls are visualized
immediately.

Functional system requirements for testing a color palette considering human per-
ception
? Requirement 7.2.1 is being partly met. Only graphs for lightness are
implemented currently.

63

6. RESULTSs

-~

Requirement 7.2.2 is being party met. Only graphs for lightness are
implemented currently.

-~

Requirement 7.2.3 is mostly met. Only import of data by the user
is not implemented yet, see the check of requirement 2.3 for more
information. Also, the opacity setting for the basemap resets, when
the basemap is changed or moved, and needs to be set again.

v Requirement 7.2.4 is being met.
v Requirement 7.3 is being met.
¥ Requirement 7.4 is being met.
¥ Requirement 7.5 is being met.
¥ Requirement 7.6 is being met.

¢ Requirement 8isbeing met. An example of a utilized metaphoris a card-based
drag and drop interface for rearranging the seed colors for palette generation.

Eleven of the 19 functional system requirements were fully met, five of them are
partly met, and three are not being met currently.

6.3 Heuristic evaluation

The results of the heuristic evaluation were compiled into one Excel spreadsheet which
is provided with the thesis. The evaluators were pseudonymized with numbers: eval-
uator Iis me, the author of this thesis, evaluators 2-4 are the evaluators with cartog-
raphy background, evaluator 5 is the artist and artistic researcher, evaluator 6 is the
evaluator with communications background. If nothing else is mentioned, a "passed’
heuristic was marked as passing by all evaluators.

1. Visibility of system status

¥ Heuristic I.I passed.

? Heuristic 1.2 passed for all but one evaluator, evaluator 6 tended towards
passed, but was unclear on what the heuristic is meant to judge.

v Heuristic 1.3 passed, evaluator 2 mentioned visible loading times for the
'Imagery’ basemap.

« Heuristic 1.4 passed.
2. Match between system and the real world

? Heuristic 2.1 passed for four evaluators and was unclear for two. Evalu-
ator 4 notes that some concepts are advanced for non-cartographers or
cartographers focused on design, evaluator 6 noted from a non-cartographer
perspective, that the application seems mostly understandable for them,
but that some words are unclear to them.

? Heuristic 2.2 passed for all but evaluator 6, who found the drag and drop
capabilities to be unintuitive and suggested a hand symbol when hover-
ing a drag and drop element as a possible solution.

3. User control and freedom

64

6.3. Heuristic evaluation

v Heuristic 3.1 passed.

' Heuristic 3.2 passed. Evaluator 1 noted that changes to the seed colors can
only be reverted via the browser 'undo’ button. Evaluator 4 noted that
a possible improvement could be to make the progress indicator steps
clickable to switch panels with this element as well.

4. Consistency and standards

' Heuristic 4.1 passed.

' Heuristic 4.2 passed.

' Heuristic 4.3 passed.

« Heuristic 4.4 passed. Evaluator 3 was unclear on what the heuristic is
meant to judge.

5. Error prevention

' Heuristic 5.1 passed.

® Heuristic 5.2 passed for all but evaluator 1, who mentioned a bug where
thebasemap seed color generation runsinto an endless loop, when abasemap
doesnot havetiles available for a given zoom level, which requires switch-
ing to a different side panel and back to the start panel to get the button
to reset and the operation to stop.

« Heuristic 5.3 passed.
6. Recognition rather than recall

X Heuristic 6.1 passed for all but evaluator 1. When generating seed colors
with a given hue range, the user needs to remember or look up the cor-
responding hue degrees manually in the tutorial. Similar remarks were
made under heuristic 11.1 by evaluator 4 and 5.

-~

Heuristic 6.2 passed for all but evaluator 4, who needed multiple trues
to get to know the tool without referring the tutorial and recommends
showing it automatically on first opening of the website. Also, the tuto-
rial is missing a 'finish’ button.

7. Flexibility and efficiency of use

« Heuristic 7.1 passed.

? Heuristic 7.2 passed for all but evaluator 5, who remarked that both the
point layer palette and area layer palette are visible in the export panel
even when one was disabled in the previous panels.

8. Aesthetic and minimalist design

« Heuristic 8.1 passed.
' Heuristic 8.2 passed.

9. Help users recognize, diagnose, and recover from errors

« Heuristic 9.1 passed. Three evaluators marked it as unclear, but only be-
cause no errors were encountered.

65

6. RESULTSs

¥ Heuristic 9.2 passed. Three evaluators marked it as unclear, but only be-
cause no errors were encountered.

10. Help and documentation

v Heuristic 10.1 passed.

« Heuristic 10.2 passed.
11. User stories

¥ Heuristic 11.I was not passed by evaluator 2 and marked as unclear by
evaluator 4, who were either unable to achieve the desired result or only
with trial and error. Evaluator 4 connected their troubles with this user
story to the problem described here under heuristic 6.1.

« Heuristic 11.2 passed.

v Heuristic11.3 passed. Evaluator 3 mentioned that restricting users to cor-
rect options in the sense of a cartographic visualization guide could be
helpful. Evaluator 5 needed a moment to realize that the basemap needs
to be disabled from view to see the chosen background color.

12. Other

Evaluator 2 stated, that it might be helpful to disallow panning the map
on the right side and also remarked about a clickable progress indicator
as described under heuristic 3.2.

Heuristics 1.2, 4.4, 9.1, and 9.2 should be rephrased or receive additional explana-
tion in a similar heuristic evaluation, as they were not clear enough for one evaluator,
or in the case of heuristics 9.1 and 9.2 multiple evaluators. With the strict definition
of marking a heuristic as unclear or not passed as soon as one evaluator marked them
as such, 20 heuristics are passing, five are unclear, and three are not passing. Two
of the not passing heuristics were marked as such only by evaluator 1 with in-depth
knowledge.

The mentioned visible loading times for the 'Imagery’ basemap are not directly
related to the application, but most likely due to the tile server of that basemap tile
service or the internet connection of the evaluator, as the basemaps are the only
part of the application that requires internet while using the application. After the
heuristic implementation, the suggestion with the hand cursor symbol for heuristic
2.2, when hovering the drag and drop elements, was implemented directly, as well as
a grabbing hand symbol on click and also a pointer symbol when hovering the seed
color inputs that allow to change the color, as this was a missing indicator as well.
Heuristic 5.2 is due to a basemap tile server misfunctioning as well, but could be fixed
easier by either deactivating that basemap option or setting a timeout for the func-
tion and then displaying an error message. Heuristic 6.1 could be fixed by showing
addition information when the control is selected. Heuristic 6.2 can be fixed by im-
plementing the suggested solution with 'JavaScript localStorage’, which is similar to
a cookie, but places only settings to be used on the client’s side and could be as simple
as one boolean value to check if the tutorial was viewed before. Heuristic 7.2 can be
fixed easily by adding the same controls as for the layer panel and the test panel.

66

6.4. Sample results

6.4 Sample results

After these two forms of evaluation, sample palettes are generated after the example
of randomly chosen ColorBrewer palettes of each of the three palette types. These
scenarios are executed as examples of what results are possible when using the toolin
its current state. Using ColorBrewer as a benchmark is meant to ensure that MapCol-
Pal is able to generate useable color palettes. The seed colors for these comparisons
will all be generated using standard settings (6 seed colors with harmoniously spread
hues) and were not altered afterwards. The comparisons are done using MapColPal.
For the ColorBrewer palettes, they are exported using ColorBrewer’s export feature
and then imported via the text import of MapColPal. Then the lightness correction
and Bézier curve interpolation are deactivated, and all seed colors are used as palette
input colors. Full screenshots of the scenarios are in appendix D and allow to see the
palettes applied to a sample map each.

Scenario I: Create a sequential color palette similar to the ColorBrewer YIGnBu palette
with 5 classes.

#79a0ed #00b7c3 #690460 #c99417

Figure 6.10: Scenario 1 - MapColPal input colors

For this comparison four of the six seed colors were used and arranged from blue
over green to yellow hues, as shown in figure 6.10. With the 'sequential’ mode se-
lected, smoothing and lightness optimization enabled, and the latter set to a range
of '0.4’ around '0.8’ lightness, the results depicted in figure 6.11 were achieved.

Point palette

Lightness graph Absolute scale

100% 99%
83%
68%
54%
0% 40% I
—

0%
Figure 6.11: Scenario I - Sequential MapColPal palette

When comparing this to the ColorBrewer YIGnBu palette, as shown in figure 6.12,
the overall look of the palette is very similar, with the ColorBrewer palette being
slightly more chromatic. The lightness steps are also similar, with the ColorBrewer
palette making bigger steps at the edge of the palette and smaller in the middle, while
MapColPal has equally sized lightness steps throughout the whole palette.

The exported MapColPal palette as hexadecimal RGB codes in a JavaScript array
is [[#234388’, #37769D, '#62a99a’, '#add6ao’, '#fiffcf’).

67

6. RESULTSs

Point palette

Lightness graph Absolute scale

100% 99%
84%

3 —
38%

I
0%

Figure 6.12: Scenario I - ColorBrewer YIGnBu palette

Scenario 2: Create a diverging color palette similar to the ColorBrewer PiYG palette
with 5 classes.

For this comparison, seed colors were regenerated until a suitable pink color was
generated, then only this color was used as an input color for the palette generation.
With the 'diverging’ mode selected, smoothing disabled and lightness optimization
with a range of ‘0.3’ around ‘0.9’ lightness enabled, the results depicted in figure 6.13
were achieved.

Area palette
Lightness graph Absolute scale
100% 100%
82% 83%
61%
RO & —

0%

Figure 6.13: Scenario 2 - Diverging MapColPal palette

When compared to the ColorBrewer PiYG palette, as shown in figure 6.14, the
palettes are similar overall, with the hues being slightly different due to the random-
ness of the seed color generation. The palettes appear to be equally chromatic, the
lightness steps in the ColorBrewer palette are again bigger on the outer sides of the
palette.

Area palette

Lightness graph Absolute scale

100% 98%
84% 86%
66%

50% & —

0%
Figure 6.14: Scenario 2 - ColorBrewer PiYG palette

The exported MapColPal palette as hexadecimal RGB codes in a JavaScript array
is ['#e21286’, '#fcagcy’, '#{IfIfl’, '#a6d3bd’, '#oo9b6d’].

68

6.4. Sample results

Scenario 3: Create a qualitative color palette similar to the ColorBrewer Darkz2 palette
with 8 classes.

#00ae%a #e16d00 #8791 #ef5267 #82a641 #b19000

#2234ce #d15dcs

Figure 6.15: Scenario 3 - MapColPal input colors

For the last comparison, eight seed colors were generated to match the number
of classes. All eight seed colors were used as input colors and arranged to match the
order of the ColorBrewer palette, as shown in figure 6.15. With the 'qualitative’ mode
selected and lightness optimization enabled, set to a lightness of '0.65’, the results
depicted in figure 6.16 were achieved.

Area palette

Lightness graph © Absolute scale

100%

65% 65% 65% 65% 65% 65% 65% 65%
50%

Figure 6.16: Scenario 3 - Qualitative MapColPal palette

In comparison to the ColorBrewer Dark2 palette, as depicted in figure 6.17, there
are comparably more differences than in the other scenarios. While the Dark2 palette
hasvarying lightness in a range of almost 30 percent, in MapColPal all palette colors
receive the same lightness. Also, as all colors are equally chromatic, colors like the
gray in the Dark2 palette are only possible in MapColPal with manual adjustment at
the moment.

Area palette

Lightness graph © Absolute scale.

100%

78%
62% 63% 58% 62% 66% 60%

50% —— 51%
—

0%

Figure 6.17: Scenario 3 - ColorBrewer Darkz2 palette

The exported MapColPal palette as hexadecimal RGB codes in a JavaScript array
is['#00a793’,'#dd6ao0’, '#8a76fc’, '#ec5065’, '#65a24D’, '#ac8bo0’, '#149dc7’, '#cesacs’].

69

CHAPTER

Conclusion and outlook

The research objective of this thesis is to design, build, and evaluate a tool to as-
sist cartographers in choosing suitable color palettes for thematic maps. To
reach this objective, five research questions were phrased and answered within the
previous chapters of this thesis.

To answer RQ 1, criteria for suitable color palettes for thematic maps were iden-
tified.

To answer RQ 2, criteria, which a cartographic color palette tool should fulfil to
improve over previous designs, were identified from a review of related work.

To answer RQ 3, requirements were derived from both kinds of criteria, which
can serve as a foundation for software development.

To answer RQ 4, building on these requirements, a proof of concept was coded
in an iterative prototyping process.

To answer RQ 5, the proof of concept was evaluated against the requirements
that it was designed after, as well as being subject of a heuristic evaluation to further
evaluate its user interface and usability, and used to generate color palettes which
then were compared to ColorBrewer color palettes.

Based on the conducted evaluation, the proof of concept fulfilled the majority
of the requirements and the heuristics. The tool offers cartographers a unique ex-
perience in working with colors for maps with options for the design of fitting color
palettes that previous tools and pre-defined color palettes do not offer. It provides a
new take on the old problem of selecting colors for maps in a way suiting the data, hu-
man perception, and aesthetic preferences. The proof of concept tackles this prob-
lem by deriving color palettes in a structured way from a shared set of seed colors,
visualizing each update immediately, as well as offering user interaction and palette
testing at all steps along the process.

Thelast part of the evaluation showed, that the toolin its current state can be used
to achieve ColorBrewer-like results while offering more testing options and consid-
ering the user’s creative freedom and contextual requirements. The main drawback
of the current tool is, that it still requires the user to have in-depth knowledge, as the
automated test features of the tool could not be implemented yet. Also control over a
color’s chroma is limited. This is offset by the color picker functionality which allows
for manual adjustments, as long as the user knows what they are doing. Therefore,

70

the research objective is seen as achieved. Improvement is possible for color gener-
ation and testing tools based on MapColPal and further research in this area. Both
will be discussed in the following two sections.

Ideas for further development

Apart from the improvement ideas stated in the last chapter, next possible steps in
developing the application are:

+ Refactoring the code further, adding more comments and documentation, and
restructuring the components.

- Saving all application state in the URL, to allow sharing a link which not only
contains the seed colors, as well as enabling full 'undo’ and 'redo’ capabilities
using web standards.

« Enable automated chroma (and hue) adjustments and allow for user control
over these adjustments.

« Allow for different palette class distributions apart from equal interval classes.

+ The import of user data could be enabled to see a possible color palette more
closely to the final deployment scenario, which would also allowimplementing
calculations regarding simultaneous contrast.

+ Enabling bivariate color palette generation per map layer.
Further, the following notions specifically for the testing environment exist:

+ Example visualization with full map layouts using procedural generation to
generate example title, text, and legend elements, as well as the layout itself.

+ Support deriving pseudo-random data from seed values to allow for reproduc-
tion of the same sample visualization.

« Offer multiple kinds of example visualization per data type, e.g. hexagonal
binned data.

- Offer additional monitoring views, e.g. for hue and chroma.
Lastly, for the user interface, the ensuing ideas exist:

+ Optimize the mobile view in the responsive design.
+ Add a comparison function for direct comparison of multiple color palettes.
+ Allow the user to choose the color space the application utilizes.

+ Add a custom color picker that also uses the specified color space instead of
relying on the browser standard color picker.

« Allow for export within the currently used color space.

- Show filters currently applied to palettes in the export panel.

71

7. CONCLUSION AND OUTLOOK

Add atoggle to switch between a shortened tutorial and the full-length detailed
version.

« Allow easily switching which palette gets assigned to the point layer and which
to the area layer.

« Change the automated disappearance of the side panel scrollbar based on fur-
ther user feedback.

« Allow for basic display options like changing the basemap or switching be-
tween country and city scale on all panels.

Gray out the basemap selection control in the start panel, if the option is not
selected.

+ Add an educational walkthrough video.
« Add a button to switch the theme to a dark theme.

+ Enable option to add or remove layers.

Further research needs

Further development of the MapColPal proof of concept into a fully fleshed out tool
should go hand in hand with more extensive evaluation of the tool and the concepts
behind it. For this, in-depth user testing is recommendable. This testing could be
directed at confirming or falsifying the results of the evaluation conducted within
this thesis, or at using the tool for a specific application domain. For example, the
suitability of the tool for color decisions in mapping sustainable development goals
could be examined. Widening the scope of the tool to cover thematic maps more ex-
tensively is another promising direction of research, for example by including con-
siderations for printed maps or other kinds of thematic map. Continuing research
could also target transfer of the concepts and criteria the proof of concept was de-
veloped on to other map types, for example, developing a color palette helper for
topographic maps.

At the same time, I also encourage revitalizing the idea of cartographic brewers
in all parts of cartography. I see a lot of potential in using the improving capabilities
of the web and web-based applications for help in decision processes in general and
especially within cartographic design. The proof of concept could also be further
developed into a generalized framework to be used as a base for such applications
using the same ideas of bundled user controls and a map view to visualize changes
in real-time.

This thesis offers important contributions for working with colors in cartogra-
phy. The development of the proof of concept can be seen as a first step towards
more advanced research and tools in this domain.

72

References

Aisch, G. (2013). Mastering multi-hued color scales with chroma.js. Retrieved 01.08.2022,
from https://web.archive.org/web/20220801080621/https://www.vis4.net/
blog/2013/09/mastering-multi-hued-color-scales/

Aisch, G. (2018). I wrote some code that automatically checks visualizations for
non-colorblind safe colors. here’s how it works. Retrieved 01.08.2022, from
https://web.archive.org/web/20220801082159/https://www.vis4.net/blog/
2018/02/automate-colorblind-checking/

Aisch, G. (2019a). Chroma.js color palette helper: A tool for creating nice, percerptually
correct and colorblind-safe color palettes. https://github.com/gka/palettes. Retrieved
01.08.2022, from https://web.archive.org/web/20220801075558/https://
github.com/gka/palettes

Aisch, G. (2019b). Update for the chroma.js palette helper. Retrieved 01.08.2022, from
https://web.archive.org/web/20220801080840/https://www.vis4.net/blog/
2019/06/chroma-js-color-palette-tool-update/

Arnowitz, J., Arent, M., & Berger, N. (2007). Effective prototyping for software makers (1st
ed.). Elsevier.

Bihr, B. (2017). Prototyping of user interfaces for mobile applications. Cham: Springer
International Publishing.

Berenbach, B., Paulish, D.]., Kazmeier,]., & Rudorfer, A. (2009). Software & systems
requirements engineering: In practice. New York, NY, USA: McGraw-Hill.

Bertin, J. (2o11). Semiology of graphics: Diagrams, networks, maps: Translated by william j.
berg (1st ed., Vol. 62). Redlands, Calif.: Esri Press.

Bishop, E. (2011). Poems (1st ed.). New York: Farrar Straus and Giroux.

Bleicher, S. (2012). Contemporary color: Theory & use (2nd ed.). Clifton Park, NY: Delmar
Cengage Learning.

Boronine, A. (2012). Color spaces for human beings. Retrieved 16.09.2022, from
https://web.archive.org/web/20220610174227/https://www.boronine.com/
2012/03/26/Color-Spaces-for-Human-Beings/

Brewer, C. A. (1991). The prediction of surround-induced changes in map color appearance
(Unpublished doctoral dissertation). Michigan State University.

Brewer, C. A. (1997). Evaluation of a model for predicting simultaneous contrast on
color maps. The Professional Geographer, 49(3), 280-294.

Brewer, C. A. (2003). A transition in improving maps: The colorbrewer example.
Cartography and Geographic Information Science, 30(2), 159-162.

Brewer, C. A. (2006). Updates to colorbrewer resources. Retrieved 17.09.2022, from
https://web.archive.org/web/20220602090428/http://www.personal.psu
.edu/cab38/ColorBrewer/ColorBrewer_updates.html

Brewer, C. A. (2016). Designing better maps: A guide for gis users (2nd ed.). Redlands,
California: Esri Press.

73

https://web.archive.org/web/20220801080621/https://www.vis4.net/blog/2013/09/mastering-multi-hued-color-scales/
https://web.archive.org/web/20220801080621/https://www.vis4.net/blog/2013/09/mastering-multi-hued-color-scales/
https://web.archive.org/web/20220801082159/https://www.vis4.net/blog/2018/02/automate-colorblind-checking/
https://web.archive.org/web/20220801082159/https://www.vis4.net/blog/2018/02/automate-colorblind-checking/
https://web.archive.org/web/20220801075558/https://github.com/gka/palettes
https://web.archive.org/web/20220801075558/https://github.com/gka/palettes
https://web.archive.org/web/20220801080840/https://www.vis4.net/blog/2019/06/chroma-js-color-palette-tool-update/
https://web.archive.org/web/20220801080840/https://www.vis4.net/blog/2019/06/chroma-js-color-palette-tool-update/
https://web.archive.org/web/20220610174227/https://www.boronine.com/2012/03/26/Color-Spaces-for-Human-Beings/
https://web.archive.org/web/20220610174227/https://www.boronine.com/2012/03/26/Color-Spaces-for-Human-Beings/
https://web.archive.org/web/20220602090428/http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_updates.html
https://web.archive.org/web/20220602090428/http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_updates.html

7. CONCLUSION AND OUTLOOK

Brown, A., & Feringa, W. (2003). Colour basics for gis users. Harlow: Prentice Hall.

Bujack, R., Turton, T. L., Samsel, F., Ware, C., Rogers, D. H., & Ahrens,]. (2018). The
good, the bad, and the ugly: A theoretical framework for the assessment of
continuous colormaps. IEEE transactions on visualization and computer graphics,
24(1), 923-933.

CIE. (2020). International lighting vocabulary (ilv): Cie s o17/e:2020 (2nd ed.). Interna-
tional Commission on Illumination (CIE).

Colorbrewer source code. (202I). Retrieved 17.09.2022, from https://github.com/
axismaps/colorbrewer/

Crameri, F., Shephard, G. E., & Heron, P.]. (2020). The misuse of colour in science
communication. Nature communications, I1(1).

Crowder, J. A., & Hoff, C. W. (2022). Requirements engineering: Laying a firm foundation (1st
ed. 2022 ed.). Cham: Springer International Publishing and Imprint Springer.

Dick, J., Hull, E., & Jackson, K. (2017). Requirements engineering (4th ed.). Cham:
Springer International Publishing.

Ekroll, V., & Faul, F. (2013). Transparency perception: the key to understanding si-
multaneous color contrast. Journal of the Optical Society of America. A, Optics, image
science, and vision, 30(3), 342-7352.

Evans, R. M. (1964). Variables of perceived color. Journal of the Optical Society of America,
54(12), 1467-1474.

Fairchild, M. D. (2013). Color appearance models (3rd ed.). Chichester, West Sussex:
Wiley.

Fernandez, S. R., Fairchild, M. D., & Braun, K. (2005). Analysis of observer and cul-
tural variability while generating “preferred” color reproductions of pictorial
images. Journal of Imaging Science and Technology, 49(1), 96-104.

Gardner, S. D. (2005). Evaluation of the colorbrewer color schemes for accommodation of map
readers with impaired color vision (Unpublished doctoral dissertation). Pennsylva-
nia State University.

Gramazio, C. C. (2016). Colorgorical source code. Retrieved 17.09.2022, from https://
github.com/connorgr/colorgorical

Gramazio, C. C., Laidlaw, D. H., & Schloss, K. B. (2017). Colorgorical: Creating dis-
criminable and preferable color palettes for information visualization. IEEE
transactions on visualization and computer graphics, 23(1), 521-530.

Gresh, D. L. (2008). Self-corrected perceptual colormaps (No. RC24542).

Harrower, M., & Brewer, C. A. (2003). Colorbrewer.org: An online tool for selecting
colour schemes for maps. The Cartographic Journal, 40(1), 27-37.

Hart, C. (2009). Doing a literature review: Releasing the social science research imagination.
London: Sage.

Heer,]., & Stone, M. (2012). Color naming models for color selection, image editing
and palette design. In J. A. Konstan (Ed.), Proceedings of the sigchi conference on
human factors in computing systems. ACM. Retrieved from http://portal.acm.org/
citation.cfm?id=2207676&CFID=94747092& CFTOKEN=43686596

Hollingsed, T., & Novick, D. G. (2007). Usability inspection methods after 15 years
of research and practice. In D. Novick (Ed.), Proceedings of the 25th annual acm
international conference on design of communication (pp. 249-255). ACM.

Holtzschue, L. (2017). Understanding color: An introduction for designers (5th ed.). Hobo-
ken: Wiley.

Hoop, S., Oosterom, P., & Molenaar, M. (1993). Topological querying of multiple
map layers. In G. Goos, . Hartmanis, A. U. Frank, & I. Campari (Eds.), Spatial

74

https://github.com/axismaps/colorbrewer/
https://github.com/axismaps/colorbrewer/
https://github.com/connorgr/colorgorical
https://github.com/connorgr/colorgorical
http://portal.acm.org/citation.cfm?id=2207676&CFID=94747092&CFTOKEN=43686596
http://portal.acm.org/citation.cfm?id=2207676&CFID=94747092&CFTOKEN=43686596

information theory a theoretical basis for gis (Vol. 716, pp. 139-157). Springer Berlin
Heidelberg.

Hu, G., Pan, Z., Zhang, M., Chen, Yang, W., & Chen,]. (2012). An interactive method
for generating harmonious color schemes. Color Research & Application, 39(1),
70-78.

Hu, G., Zhang, M., Pan, Z., Lin, L., Rhalibi, A. E. L., & Song,]. (2013). A user-oriented
method for preferential color scheme generation. Color Research & Application,
40(2), 147-156.

Hunt, R. W. G., & Pointer, M. (2011). Measuring colour (4th ed.). Chichester: Wiley.

Itten, J. (1970). The elements of color: A treatise on the color system of johannes itten, based on
his book the art of color. New York: Van Nostrand Reinhold Co.

Itten,]. (1973). The art of color: The subjective experience and objective rationale of color. New
York, NY: Van Nostrand Reinhold.

Kammerer, K., Goster, M., Reichert, M., & Pryss, R. (2021). Ambalytics: A scalable
and distributed system architecture concept for bibliometric network analy-
ses. Future Internet, 13(8), 203.

Kraak, M-J., Roth, R. E., Ricker, B., Kagawa, A., & Le Sourd, G. (2020). Mapping for a
sustainable world.

Laplante, P. A. (2018). Requirements engineering for software and systems (Third edition
ed.). Boca Raton: CRC Press Taylor & Francis Group.

Levkowitz, H. (1996). Perceptual steps along color scales. International Journal of Imag-
ing Systems and Technology, 7, 97-101.

Lindner, A.J., & Siisstrunk, S. (2013). Automatic color palette creation from words. In
Proceedings of the is&t 21st color and imaging conference (pp. 69-74). Retrieved from
https://api.semanticscholar.org/CorpusID:15979145

Lu, K., Feng, M., Chen, X., Sedlmair, M., Deussen, O., Lischinski, D., ... Wang, Y.
(2021). Palettailor: Discriminable colorization for categorical data. IEEE trans-
actions on visualization and computer graphics, 27(2), 475-484.

Lu, M., Lanir, J., Wang, C., Yao, Y., Zhang, W., Deussen, O., & Huang, H. (2022). Mod-
eling just noticeable differences in charts. IEEE transactions on visualization and
computer graphics, 28(1), 718-726.

Machado, G. M., Oliveira, M. M., & Fernandes, L. A. F. (2009). A physiologically-
based model for simulation of color vision deficiency. IEEE transactions on visu-
alization and computer graphics, 15(6), 1291-1298.

Matsuda, Y. (1995). Color design. Asakura Shoten.

McManus, 1. C., Jones, A. L., & Cottrell, J. (1981). The aesthetics of colour. Perception,
10, 651-666.

Meier, B.]. (1988). Ace: A color expert system for user interface design. In M. Green
(Ed.), Proceedings of the 1st annual acm siggraph symposium on user interface software
(pp. 117-128). ACM.

Meier, B. J., Spalter, A. M., & Karelitz, D. B. (2004). Interactive color palette tools.
IEEE computer graphics and applications, 24(3), 64-72.

Muehlenhaus, I. (2014). Web cartography: Map design for interactive and mobile devices.
Boca Raton, FL: CRC Press.

Muiioz, R., Miller-Jacobs, H. H., Spool, J. M., & Verplank, B. (1992). In search of the
ideal prototype. In Chi '92: Proceedings of the sigchi conference on human factors in
computing systems (pp. 577-579).

Nielsen,]. (1994a). How to conduct a heuristic evaluation. Retrieved 01.08.2022, from
https://web.archive.org/web/20220801112221/https://www.nngroup.com/
articles/how-to-conduct-a-heuristic-evaluation/

75

https://api.semanticscholar.org/CorpusID:15979145
https://web.archive.org/web/20220801112221/https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
https://web.archive.org/web/20220801112221/https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/

7. CONCLUSION AND OUTLOOK

Nielsen, J. (1994D). Summary of usability inspection methods. Retrieved
01.08.2022, from https://web.archive.org/web/20220801112114/https://www
.nngroup.com/articles/summary-of-usability-inspection-methods/

Nielsen, J. (2020). 10 usability heuristics for user interface design. Retrieved
01.08.2022, from https://web.archive.org/web/20220801111113/https://www
.nngroup.com/articles/ten-usability-heuristics/

Nuiiez, J. R., Anderton, C. R., & Renslow, R. S. (2018). Optimizing colormaps with
consideration for color vision deficiency to enable accurate interpretation of
scientific data. PloS one, 13(7), €0199239.

O’Donovan, P., Agarwala, A., & Hertzmann, A. (2o11). Color compatibility from large
datasets. In H. Hoppe (Ed.), Acm siggraph 2011 papers. ACM.

Ottosson, B. (2020). A perceptual color space for image processing. ~ Retrieved
15.09.2022, from https://web.archive.org/web/20220915200056/https://
bottosson.github.io/posts/oklab/

Ottosson, B. (2021). Okhsv and okhsl: Two new color spaces for color picking.
Retrieved 18.09.2022, from https://web.archive.org/web/20220918115450/
https://bottosson.github.io/posts/colorpicker/

Peng, Y-F., & Chou, T-R. (2019). Automatic color palette design using color image
and sentiment analysis. In 2019 ieee 4th international conference on cloud computing
and big data analysis (icccbda) (pp. 389-7392). IEEE.

Petroff, M. A. (2021). Accessible color sequences for data visualization. Retrieved from
http://arxiv.org/pdf/2107.02270v2

Post, D.L., & Goode, W. E. (2020). Palette designer: A color-code design tool. Displays,
6I.

Robertson, P., & O’Callaghan,]. (1986). The generation of color sequences for uni-
variate and bivariate mapping. IEEE Computer Graphics and Applications, 6(2),
24-32.

Rossiter, D. G. (2018a). Research concepts & skills - volume 1: Concepts: Version 3.4.

Rossiter, D. G. (2018b). Research concepts & skills - volume 2: Skills: Version 3.7.

Samson, L. (1985). Graphic design with color using a knowledge base (Unpublished doctoral
dissertation). Simon Fraser University.

Schloss, K. B., & Palmer, S. E. (2011). Aesthetic response to color combinations:
preference, harmony, and similarity. Attention, perception & psychophysics, 73(2),
551-571.

Shamoi, P., Inoue, A., & Kawanaka, H. (2014). Perceptual color space: Motivations,
methodology, applications. In 2014 joint 7th international conference on soft com-
puting and intelligent systems (scis) and 15th international symposium on advanced in-
telligent systems (isis) (pp. 1354-1359). IEEE.

Shneiderman, B. (1996). The eyes have it: a task by data type taxonomy for infor-
mation visualizations. In Proceedings 1996 ieee symposium on visual languages (pp.
336-343). IEEE Comput. Soc. Press.

Shugrina, M., Lu, J., & Diverdi, S. (2017). Playful palette: An interactive parametric
color mixer for artists. ACM Transactions on Graphics, 36(4), 1-10.

Silva, S., Sousa Santos, B., & Madeira, J. (2011). Using color in visualization: A survey.
Computers & Graphics, 35(2), 320-333.

Smart, S., Wu, K., & Szafir, D. A. (2020). Color crafting: Automating the construction
of designer quality color ramps. IEEE transactions on visualization and computer
graphics, 26(1), 1215-1225.

Sniurevicius, Z. (2022). Extracting a color palette from an image with javascript. Retrieved

76

https://web.archive.org/web/20220801112114/https://www.nngroup.com/articles/summary-of-usability-inspection-methods/
https://web.archive.org/web/20220801112114/https://www.nngroup.com/articles/summary-of-usability-inspection-methods/
https://web.archive.org/web/20220801111113/https://www.nngroup.com/articles/ten-usability-heuristics/
https://web.archive.org/web/20220801111113/https://www.nngroup.com/articles/ten-usability-heuristics/
https://web.archive.org/web/20220915200056/https://bottosson.github.io/posts/oklab/
https://web.archive.org/web/20220915200056/https://bottosson.github.io/posts/oklab/
https://web.archive.org/web/20220918115450/https://bottosson.github.io/posts/colorpicker/
https://web.archive.org/web/20220918115450/https://bottosson.github.io/posts/colorpicker/
http://arxiv.org/pdf/2107.02270v2

19.09.2022, from https://web.archive.org/web/20220918235320/https://dev
.to/producthackers/creating-a-color-palette-with-javascript-44ip

Sochorov4, S., & Jamriska, O. (2021). Practical pigment mixing for digital painting.
ACM Transactions on Graphics, 40(6), 1-11.

Sommerville, I. (2016). Software engineering: Global edition (10th ed.). Boston and Colum-
bus and Indianapolis and New York and San Francisco and Hoboken and Am-
sterdam and Cape Town and Dubai and London and Madrid and Milan and
Munich and Paris and Montreal and Toronto and Delhi and Mexico City and
Sao Paulo and Sydney and Hong Kong and Seoul and Singapore and Taipei and
Tokyo: Pearson.

Sommerville, I. (2021). Engineering software products: An introduction to modern software
engineering: Global edition. Hoboken, NJ: Pearson.

Stone, M. (2012). In color perception, size matters. IEEE Computer Graphics and Appli-
cations, 32(2), 6-1I.

Stone, M., Szafir, D. A., & Setlur, V. (2014). An engineering model for color difference
as a function of size. In Color and imaging conference (pp. 253-258). Retrieved
from https://api.semanticscholar.org/CorpusID:11337646

Szafir, D. A. (2018). Modeling color difference for visualization design. IEEE transac-
tions on visualization and computer graphics, 24(1), 392—401.

Tan, J., Echevarria, J., & Gingold, Y. (2018). Palette-based image decomposition, harmo-
nization, and color transfer.

Tokumaru, M., Muranaka, N., & Imanishi, S. (2002). Color design support system
considering color harmony. In Fuzz-ieee’'oz (pp. 378-383). IEEE.

van Lamsweerde, A. (2009). Requirements engineering: From system goals to uml models to
software specifications. Hoboken, N.J. and Chichester: Wiley.

Waldin, N., Waldner, M., Le Muzic, M., Gréller, E., Goodsell, D. S., Autin, L., ... Viola,
I. (2019). Cuttlefish: Color mapping for dynamic multi-scale visualizations.
Computer Graphics Forum, 38(6), 150-164.

Warfel, T. Z. (2009). Prototyping: A practitioner’s guide. Brooklyn, NY: Rosenfeld Media.

Weninger, B. (2015). A framework for color design of digital maps: An example of
noise maps. In J. Brus, A. Vondrakova, & V. Vozenilek (Eds.), Modern trends in
cartography (pp. 103-116). Springer International Publishing.

Wijffelaars, M., Vliegen, R., van Wijk, J.]., & van der Linden, E--]. (2008). Generat-
ing color palettes using intuitive parameters. Computer Graphics Forum, 27(3),
743-750.

Wilson, C. (2014). User interface inspection methods: A user-centered design method.
Waltham, MA, USA: Morgan Kaufmann.

Yuan, L., Zhou, Z., Zhao, J., Guo, Y., Dy, F., & Qu, H. (2021). Infocolorizer: Inter-
active recommendation of color palettes for infographics. IEEE transactions on
visualization and computer graphics, PP.

Zave, P. (1997). Classification of research efforts in requirements engineering. In Pro-
ceedings of the third ieee international symposium on requirements engineering, january
6-10, 1997, annapolis, maryland, usa (pp. 315-321). IEEE Computer Society Press.

Zeileis, A., Fisher,]. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., ... Wilke,
C. 0. (2020). colorspace : A toolbox for manipulating and assessing colors and
palettes. Journal of Statistical Software, 96(1).

Zeileis, A., Hornik, K., & Murrell, P. (2009). Escaping rgbland: Selecting colors for
statistical graphics. Computational Statistics & Data Analysis, 53(9), 3259-3270.

Zheng, Q., Lu, M., Wu, S., Hu, R., Lanir,]., & Huang, H. (2022). Image-guided color

77

https://web.archive.org/web/20220918235320/https://dev.to/producthackers/creating-a-color-palette-with-javascript-44ip
https://web.archive.org/web/20220918235320/https://dev.to/producthackers/creating-a-color-palette-with-javascript-44ip
https://api.semanticscholar.org/CorpusID:11337646

7. CONCLUSION AND OUTLOOK

mapping for categorical data visualization. Computational Visual Media, 8(4),
613-629.

Zhou, L., & Hansen, C. D. (2016). A survey of colormaps in visualization. IEEE trans-
actions on visualization and computer graphics, 22(8), 2051-2069.

78

APPENDIX / \ -

Heuristics form

79

A. HEURISTICS FORM

a8ed jxau uo panuruo)

*9I9Y pLIoM
€31 9} pUE WAISAS UIam}aq

PlIOM [e31 3}

[0}eW UO SJUSUWIUOD [eIdUID) 0’7 pue WIIsAS UdaM}aq YOIEW T
"UOT}eOYy
-1JOU }I0Y[S B SIATIIAI IISN 9}
‘p1odxs pue jxodwr 10100 uQ ¥1 snjels walsAs Jo AJIQISIA I
‘A[rens
-1a pordde A[ojerpawruur axe
s3urpes dde ay3 03 saduey) o1 snje)s walsAs Jo AJIQISIA I
‘PAUOIIUSWI USYM PIZI[eNS
-1A seme are s10[0d 9339red
pue s10[0d ndul ‘s10[0d pIag 71 snje)s waysAs Jo AN[IqISIA I
*JX9U S9WI0D YOTYM pue
uo axe Kay) a8ed [oued aprs
YOIYM $998 SAeM[e Jasn aY], I'l snje)s wajsAs Jo AJIqISIA I
*319Y snje)s wajsAs Jo A}[iq
-ISIA UO S}UdWITIOD [eIdUIL) o1 snje)s waysAs Jo ANIqISIA 1
‘Aym £y11e[d 03 JEd[OUN,
JO ,0U, USYM JUSWIWO0D A[3)TU
-J9(] 'UwWN[od SIY} Ul S}UW
-wod JAY}INJ °0u, 10 Jed[d
-un, ‘sak, aq prnoys passed -ordurexa ue s SIY], ardurexa ardwexy ordwexa
SHUWWO0)) dNSINAY AN dIISLINOY Lx083ye) -aN AxoSaje)

ULIOJ SONISLINAY :I'Y d[qe],

80

a8ed jxau uo panurjuo)

*(uo3Inq & 9YI] Sy0O] UOYING
e -39) suonyuaauod Ansnp

-UI SMOJ[0J 90BLIDIUI JISN Y], v SplIepue)s pue AdUIISISUO)) 14
*9I9Y SpIepue}s pue AOus)sIs
-UOD UO SJUSWIWIOD [eIdUSD) o¥ SpIepue)}s pue AJUI)SISU0)) 14
-3urjies snorasad e josax
03} juem £ayj ased ur saded
[Pued opIs uweam}aq YIOJ
pue oeq of ued Jasn aYL 4 WOPIAIJ PUE [OIJUOD JIS[) ¢
Juem L9y} se uayo se umn
-39S A1949 Isn(pe ued Iasn 9y [, s WOPIAIJ PUE [OI)UOD JIS[) ¢
*9I9Y WIOPIAIJ pUE [0I}UO0D
JOsSn UO S)UIWWOD [BIIUDL) o< WOPIAIJ PUE [0I)UO0D JIS[) 9
*(po pue uo Surylawos
5918803 a3803 € -8-3) wayy 03
jos suorjejoadxa aAnyINIuL 3} PIOM [B3I 9Y}
}J SJUSWID[D 9OBJIAIUI JIIS() T'7 pUe WI)ISAS UdaM}aq YDIEW T
‘s1oydeadolred o) Jerru
-ey oSenSue; pueiszopun PIIOM [€3I 3}
-0}-Asea sosn dde ayj, I'C pue WA)SAS U2IMI_q YOI\ T
SUdWWO)) passeq dHSIANJY AN JIISLINAY Ax0893e) -aN Ax083aje)

PONUIIUO0D - UWLIOY SONSLINSY :I'Y d[qe[,

81

A. HEURISTICS FORM

a8ed 1xou uo panurnuo)

*9I9Y [[BO9J UBY[} JIOYJRI UOI}IU Ired
-802a1 U0 sjULWILIOD [eISUSD) 0'9 -3I UeY} JI3YJeI UOIIIUS009Y 9
UIIM JO€
-I93ur 03 £sed aq 03 ySnous J1q
9Je SJUSWII[d JDBLIIUI JIS[) I uorjuasaxd roxrg S
“INJD0 UED JUOP
-un aq },ued ey} 1o safessawr
Sururem JNOYIIM SIOLId ON TS uorjuaadxd soxxyg S
“INJJ0 UED SI0X
-13 (Suryeaaq-dde) eonrio oN IS uorjuaadxd Joxrq S
"a19y uorjuaAaxd
IOXId UO SJUSWIUIOD [BIdUIL) oS uorjuasaxd soxxyg S
*SU0DI pafaq
-e[un asn jussop dde oyf Vv spaIepue)s pue Aoua)sIsuo)) 4
‘pa3odas-axd uony
-do jnejap e sey Surpes yoey 14 SpaIepuej}s pue £oud)sISuo)) L4
‘(oures a3 Yooy
uorjoe dWes Y} I0j suoynq
-§-9) juaysisuod surewraxr dde
9} UIY}IM J0BJISIUT JOSN Y], ¥ Splepue)s pue AJUd)}SISU0)) 14
SHUWWO0)) posseq dNSINAY AN dIISLINOY Lx083ye) -aN AxoSaje)

PpenuIjuod - WLIOJ SOTISLINAY 1Y 9[qe],

82

a8ed jxau uo panuruo)

"UOT)eULIO]
-UI pUE $2IN}EedJ [EIJUISSd U0 ulrs
PasNO0J ST 90BJI9)UI JIsN Y], I'f -9p ISI[EWIUIW PUE J[}OYISAY 8
Iy
ugIsop IS[EWIUTW pUe d1}aY[} ugrs
-S38 U0 SJUSUWIWIOD [eIdUoD) 0’8 -9p ISI[RWIUIW PUE O1}3YISAY 8
‘s3uryjas pajos[as A[puaa
-INd 3y} 0} JUBAJ[dI UOTIeW
-IOJUT SMOYS A[UO pUe [euor} asn
-IpUOd ST 3DBJIAIUI JOSN I, 2, Jo Aouarongs pue AN[IqIXa[] L
‘s£9)] modIe pIeoq
-£oy oy} Suisn Aq padueyd asn
aq ued aded [oued apis oyl 'L jo Kduspige pue AN[IqIXal] L
Iy
asn jo Aouamoyja pue AJyIqr asn
-X3[J UO S]USWIWIOD [eIdUoD) oL jo Aouarongs pue AN[IqIXa[] L
"3[qe[IeAe sI [eLI0In] e A[Uo ITed
J0U ‘)X93u00 ur paJajjo stdjoy 29 -3l Uey} Jayjel uonrugoday 9
"90BJIDIUI 9} UI J[ISIA ST
UOT}O€ JO UOISIOAp UIAIS € I10]
uoneurrojur jueprodwr ‘uon
-euLIOJUT PaIInbal raquiswual ITeo
0] PpIau }USI0p JIsn Y], I'9 -a1 ueyj} Jayjer uoryudoday 9
SUdWWO)) passeq dHSIANJY AN JIISLINAY Ax0893e) -aN Ax083aje)

PONUIIUO0D - UWLIOY SONSLINSY :I'Y d[qe[,

83

A. HEURISTICS FORM

aded 1xou uo panurnuo)

*3197] UOT}BJUSIWNIOP pue
d[oy uo SjUSWIUWIOD [eIdUID)

*219Y AI9A0031 pue dsou
-erp ‘uorjrudooas 10119 I0J
d[ey uo sjuewWIWIod [eIdUIL)

-o1do} oyroads e uo uorny
-ewroyut axow puy A}omb 0}
Ppasn aq Ued YIIYM UOT}eJUdW
-noop d[ay e os[e sta19Yy3 ‘(29
99s) d[9Y [ENIX9}U0D 3} IPISY

‘uodxe(

[eoruyod) noyim adenSuey
pUE)SISPUN-0}-ASEd UI paje|
-nuLIoy are safessaw JOIIY
‘uon

-e0Yynou par ‘a[qIsIA € YIIm
P9IEOTUNTIWIOD dJE SIOLIY

‘Ayoresary
[ensIA Ted[d e ST 213y} ‘pajySy
-ydry pue paznuond are
saxnjeay juelroduwr jsowr Y],

I'0I

0'0I

26

6

06

T

uonejuswndop pue djoy
uonejuawmoop pue djoyg
SIOLId WO} IDA0DII PUE ‘dS0U
-8erp ‘azru8ooax siasn dpy

SIOLId WO} JOA0DDI PUE ‘dsou
-8erp ‘ozrudooarx siasn djoy

SJIOJI9 WOJJ I9A003J pue ‘asou

-8erp ‘azru8ooax siasn dppy

ugis
-9 ISI[EWIUIW PUE JI}OYISAY

(0)

oI

8

sjudwmo)

passeq

dNISLINdY

“IN STISLINSY

Lx08a3ye)

<IN Ax0893e)

PpenuIjuod - WLIOJ SOTISLINAY 1Y 9[qe],

84

a8ed jxau uo panuruo)

"319Y] SALI0}S JIsN
9} UO SJUSWWOD [eIdUIL)

‘punoidyoeq
yrep e jo juoxy ur Aerd
-SI(J] ‘[9Ad] Anjunod uo dew
yjerdoroyo ue JI0J sassep
9 Surnjesy oj39[ed 100D
aanejyenb e jrodxyg :e0us
-1radxe Inok UO jUSWIMIOD
pue Summoroy oy} jdweny

‘[9A9] £310 uo dew
[oquifs jurod e 10J sasse[
S Suunjesy opored 0[O
Surdiaalp e jzodxyg :P0uUL
-t1adxe InOK UO JUSWWIOD
pue Summoroy oy} jdwrepy
‘sany MO[[34 0} pax ATuo Sursn
apored [enyuanbes e jrodxy
:90Ua119dXa INOA U0 JUSWI0D
pue Summoroy oy} jdweny

‘(no
paLiIed aq o3 sdays -§-9) a01a
-pe 93210u00 sxdygo d[Py ay[,

11

(A0)

S91103S 19S[)

S9LIO}S J9S[)

SAL10)S I3S[)

S9LIO}S J9S[)

uonejuawndop pue djoy

II

II

II

II

oI

SjuomuImo)

onsSLINAY

“IN dTISLINSY

A10891e)

<IN £x0893e)

PONUIIUO0D - UWLIOY SONSLINSY :I'Y d[qe[,

85

A. HEURISTICS FORM

*axay asye Sury)
-AUe UO SJUAWITIOD [eISUIL)

021

Y10

(4

sjudwmo)

poessed

dNSINAY AN dIISLINOY

Lx08a3ye)

<IN Ax0893e)

PpenuIjuod - WLIOJ SOTISLINAY 1Y 9[qe],

86

APPENDIX

Screenshots of intermediate
prototypes

B.1 Wireframe

MapColPal

your pal for cartographic color palettes
Back Regenerate (same settings)

Palette type (2)

Welcome to MapColPal,

sequential divergent qua\ilatiJ your pal for cartographic color palettes!
3" Introductory text here. Lorem ipsum dolor sit amet,
v consetetur sadipscing elitr, sed diam nonumy eirmod
tempor invidunt ut labore et dolore magna aliguyam erat,
Layers ® sed diam voluptua. At vero eos et accusam et justo duo
dolores et ea rebum. Stet clita kasd gubergren, no sea
Points . . . takimata sanctus est Lorem ipsum dolor sit amet.
Polygons Take me to the full tutorial
Basemap change
Title/Text IEL 0
Background (8) generate seed colors

with a hue filter

Viewing options @ with a lightness filter
and fit the palette to this basemap: Toner v

Map scale]
load seed colors 2
country level city level

%

//paste array or JSON object here

Colorblindness

" ['#606c38, '#1alb41, '#0e77ed’]
lone v

Opacity Execute!

100%

/\Q .
$ N
Export About Contact \ /-@ DN

\ AN\ 74

Figure B.1: Wireframe - Start view

N7

/,
S

o

>
e

A
N,

B. SCREENSHOTS OF INTERMEDIATE PROTOTYPES

ICE

(e

=

] infliin
|

|
e E

MapColPal
our pal f

S

s £ 2 5
£ 2c g

5
S
e

bl
s
=
Q
o

Figure B.2: Wireframe - Main view

88

B.1. Wireframe

£

/A0 DIMIE

MapColPal & N - =

your pal for cartographic color palettes p f“"@ E‘@‘E
// % \—}L:J == JL

Back Regenel e settings / N I

Palette type @

/
sequential divergent qualitative y,

3’ o«
o Classes

Layers @
Points . . .
Polygons
Basema P change
Title/Text
Background

Viewing options @

Map scale

Copy to clipboard J

4
4
a
§ Hex B Lab
e
%
7
§
3

o - Close J "
Opacity e "y
100% @ \’ v @ @

IS,
tttttttttttt e S

TN 2NN

Figure B.3: Wireframe - Export view

2

89

B. SCREENSHOTS OF INTERMEDIATE PROTOTYPES

B.2 Technical capability test

Figure B.4: Technical capability test

B.3 First coded user interface prototype

© Opensucedtap conbutos.

Figure B.5: First coded user interface prototype

90

B.4. Proof of concept implementation - First merge

B.4 Proof of concept implementation - First merge

Figure B.6: Implementation - First merge

B.5 Proof of concept implementation - Third merge

MapColPal

your pl for map color paleties
° : ;
strt Gptions Eport

Welcome to MapColPal!

Hey! This tool s here to help you work with color palettes for
thematic maps.

nis your
sutorial

Iwantto...

®
O
O
(@)

geneateseed colors
with 3 e fiter

with 3 fghiness fter

and it the paete o ths bsemap

load seed colors:

4

Figure B.7: Implementation - Third merge - Start panel

¢ mLeatet | © Openstesiiap contibutors

91

B. SCREENSHOTS OF INTERMEDIATE PROTOTYPES

MapColPal
your pal for map color palettes

I

Start Options

Options

Current seed colors. -
SEQUENTIAL | DIVERGING | QuALTATIVE

]
|
]
]
]

i

Layers
(@) roits
C® Poygons
® -
Viewing options

Map scale
COUNTRYLEVEL | Ty LEveL

olor vision deficiency simulation

Picka CVD to simulate:

i

- =Leatit]@ Opensieeniap contiotors.

Figure B.8: Implementation - Third merge - Options panel

MapColPal
your pl for map color palettes

1SON OBJECT
rmat
'NO QUOTE MARKS

‘s

< o]

Figure B.9: Implementation - Third merge - Export panel

B.6. Proof of concept implementation - Fifth merge

B.6 Proof of concept implementation - Fifth merge

MapColPal
your pl for map colorpaletes

[] 2 2 4
Start Layers Test Export
Welcome to MapColPal!

Hey! This tool s here to help you work with color palettes for thematic maps.
Then L

T want o
@ generate 6 % seed clors
) viha e e
it alghnes it
) o et i baseags rosvon =~

load seed colors

Current seed colors

Figure B.10: Implementation - Fifth merge - Start panel

= Lot OpenStsatiap contiburs @ CARTO

MapColPal
your pal for map color palettes
o—=0 3 4
St Layers Test Export
Choose your layers...

Now thatyou have your seed colors,choose what layers you want to apply ther to
and with which derived paties.

o e~) (D)
) e+ G (D
(® Baserap poston) (@G

B sackgrouna

Figure B.11: Implementation - Fifth merge - Layers panel

= Lestet|© OpenSteeniap conuors & CARTO

93

B. SCREENSHOTS OF INTERMEDIATE PROTOTYPES

MapColPal
your pal for map colo paletes

00—

Start Layers Test
Test
Color vision deficiency simulation

 pickca VD to simuiste -

o S

Export

‘= Learet | OpenSieeniap conouors S CARTO

Figure B.12: Implementation - Fifth merge - Test panel

MapColPal
your pal for map color palties

Start Layers Test
Export

a5 a Javascript aray

String format

. No QUOTEMARKS

Color notation

Ree | e | tcn)

Exported colors

[RASAO0RD, $247551. #4TF3a3. FABST54. sacdace #17E7de], snareatie Ik o seed

Export

= Leatet| © OpsnSieetiap contibors © CARTO

Figure B.13: Implementation - Fifth merge - Export panel

94

B.6. Proof of concept implementation - Fifth merge

Code with © by justvalerian.

Figure B.14: Implementation - Fifth merge - About modal

95

B. SCREENSHOTS OF INTERMEDIATE PROTOTYPES

B.7 Proof of concept implementation - Seventh merge

MapColPal
your pl for map color paletes

® g : g
= v 20

Welcome!

This toal is Py P
Isit your firt time here? Check out the tutoral.
Hwant to.
(®) generate 6 © seed colors.

@ with ity sreas s

with hues ranging from 120 & 10 300 © degrees

fited o tis basemap: Poswon
randomly

load seed colors

Current seed colors

rr e ()

Figure B.15: Implementation - Seventh merge - Start panel

= Loatel| © OpsnSisatiap contibuors © CARTO

MapColPal
your palfor map color paletes

o—=0 3 4

start Layers Test Export
Choose your layers.
Now that you have your seed colors, choose what layers you want to apply them to
and with which derived palettes.
Show me..

7Y LEVEL DATA)

Layers
© pois xveret -) (WEHORR) G °

@ crimizekohnes maoto @) 02 Jaruna 05
@ oot cobo irve s el

outofthe

frame to not incuce them.

e son: sstaea

eacs s a0

Poctewitn 5 < doses (RVTSEOROE)

) Aress (senvnia - (GBRE) (NEWORT))

ightness, mapto (< 02 & around 07 ©

curve (Beser interpolation)

e
® - @

Figure B.16: Implementation - Seventh merge - Layers panel

= Leatet|© OpsnSieehiap conuors © CARTO

96

B.7. Proof of concept implementation - Seventh merge

MapColPal
your pal for map color palettes
o———0 2
Start Layers Test Export
Test your palettes.
Apply a color vision deficiency simulation ©
(" None - picka VD to simulats
Point palette
Lightness graph © ®
100%

619 _66% T0%

15 56%
O i e T

0%

Area palette

Lightness graph ©

100%

81%
o Gh% 6% T3% T8% 2%
%

SO 5055

0%

= Lestet 8 OpenSteeniap conbuors & CARTO

Figure B.17: Implementation - Seventh merge - Test panel

MapColPal

your pal for map color palettes

Start Layers Test Export
Export

as avaScript arays O

Exported colors FORMATTING

Point palette

~copy

[#480066', #510f6a', '#751e6d, *#8b2d6e, ‘#9f3che’, #b3abbb, #c6ScoA’,
4476155, '#db8a00]

Area palette copv

[#8240a4' #9BOd, #b75895' ‘#cbBT8e’, #dCT88E, ‘#eadbTe’ ‘#HASNTE,
“#1bbd6d, #fica62]

Other colors

= Lestet|@ OpenStectiap contbutors @ CARTO

Figure B.18: Implementation - Seventh merge - Export panel

97

98

B. SCREENSHOTS OF INTERMEDIATE PROTOTYPES

Tutorial

Welcome to MapColPalt
Explain color coding in app Remermber,

@ introduction

T 1. Generate seed colors
© 2 Adjustlayers
@ .Testpalettes

@ 4 Bponthem:

Figure B.19: Implementation - Seventh merge - Tutorial modal

APPENDIX

Proof of concept - Responsive
views

MapColPal
your pal for map color palettes

Figure C.1: Proof of concept - Main view on a full HD screen

29

C. PROOF OF CONCEPT - RESPONSIVE VIEWS

MapColPal

your pal for map color palettes

. 2 3 4

Start Layers Test Export
Welcome!

This tool is here to help you work with color palettes for thematic
maps.
First time here? Check out the tutorial.

I want to...

(@) generate 6 * seed colors

with harmoniously spread hues

) with hues ranging from 120 < to 300 < degrees

| fitted to this basemap:| Pasitran -

_) randomly

load seed colors

Current seed colors ©

#00c146 #00cDel #96adff #e0Bach 13870 #c5abla

TUTORIAL ABOUT -

= eaflet | ® OpenStreetiap contributors ® CARTO

Figure C.2: Proof of concept - Main view on a tablet screen

100

MapColPal

your pal for map color palettes

o . : :

Start Layers Test Export

Welcome!

This tool is here to help you work with color palettes for thematic maps.
First time here? Check out the tutorial.

I want to...

generate 6 © seed colors

with harmoniously spread hues

() with hues ranging from 120 & to 300 & degrees
| fitted to this basemap: | _Positron -
") randomly

load seed colors

Current seed colors

#00c146 #00cle] #36adif #e0Bach #3870 #cSabla

TUTORIAL ABOUT .

= Leaflet | © OpenSreetiap contributors ® CARTO

Figure C.3: Proof of concept - Main view on a small screen

I0I

APPENDIX

Screenshots of usage scenarios

D.1 Scenario I - sequential palette generation

MapColPal
your ! for map color

3 4 .
e L
- ([

Figure D.1: Scenario 1 - MapColPal sequential palette - Full screenshot

102

D.2. Scenario 2 - diverging palette generation

MapColPal
ourpatformap color st
G—0 s s

Start Layers Test Export

Choose your layers

e zoom level of the map and the data type per layer to fit your use case.
ind drop seed colors to derive your palettes,

Paletewith 5 © dasses (REVERSEORDER

Areas

Figure D.2: Scenario I - ColorBrewer YIGnBu palette - Full screenshot

D.2 Scenario 2 - diverging palette generation

MapColPal
your pl for map color paletes

Paletiewith 5 © dasses (REVERSEORDER

. .
Figure D.3: Scenario 2 - MapColPal diverging palette - Full screenshot

eatet @ open

StoeaD contbuors & CARTO

103

D. SCREENSHOTS OF USAGE SCENARIOS

MapColPal
Your pal for map color palettes
o——o s .
strt Layers Test Export
Choose your layers

Adjust the zoom level of the map and the data type per layer to ft your use case.
“Then drag and drop seed colors to derive your palettes.

Show me...

Layers
@ roins
" Aveas [dheong -) (GG (HEHEHR) o

Optimize ghtness and mapto < 02 © aound 07 ©

Smoothwith Bézier curv iterpolaton

C I N

Paevitn 5 < dosss (RVHSEOHORR)

| || .
o £
. TUTORAL - pout -

= Leatet| 8 OpenSieetiap conouors B CARTO

Figure D.4: Scenario 2 - ColorBrewer PiYG palette - Full screenshot

D.3 Scenario 3 - qualitative palette generation

MapColPal
your sl for map color palsties

o—e ; .

Start Layers Test Export
Layers
) Points.

© Aveas | avtome +) (@RRGHD (NEWOHA))

) Optinize fghtness and mapto 065 &

Paevitn o < dosss (RVHSEOHOTR)

© Bosemop (e) @D ©

- TUTORAL - pout -

oo

Figure D.5: Scenario 3 - MapColPal qualitative palette - Full screenshot

104

D.3. Scenario 3 - qualitative palette generation

MapColPal
your pal for map color palettes
o—=©0 3 4
Stat Layers Test Export
Layers
@) points.

) Optimizeghtness and map to. 0.7

paetowith & < dses (REVERSEODRR)
cosr

seout -

) -
Figure D.6: Scenario 3 - ColorBrewer Dark2 palette - Full screenshot

(® Areas [aiave

(® Basemap (Tone

105

	Contents
	List of Figures
	List of Tables
	Glossary with Acronyms
	Introduction
	Research objective
	Research questions
	Thesis outline

	Background on color science
	Perception of color
	Color use and harmony
	Color for maps and simultaneous contrast
	Digital cartography and web map applications

	Related work
	ColorBrewer
	Colorgorical
	Chroma.js color palette helper

	Methodology
	Requirement engineering
	Prototyping
	Heuristic evaluation

	Implementation
	Identified criteria for thematic map color palettes
	Identified criteria for cartographic color palette tools
	Requirements
	Iterative prototyping process

	Results
	Completed proof of concept
	Requirements check
	Heuristic evaluation
	Sample results

	Conclusion and outlook
	References
	Heuristics form
	Screenshots of intermediate prototypes
	Wireframe
	Technical capability test
	First coded user interface prototype
	Proof of concept implementation - First merge
	Proof of concept implementation - Third merge
	Proof of concept implementation - Fifth merge
	Proof of concept implementation - Seventh merge

	Proof of concept - Responsive views
	Screenshots of usage scenarios
	Scenario 1 - sequential palette generation
	Scenario 2 - diverging palette generation
	Scenario 3 - qualitative palette generation

