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ABSTRACT 

Conservation planning for a highly diverse vegetated area and its ecosystem relies on accurate vegetation 
maps. Unmanned Aerial Vehicles (UAVs) have been proven reliable, efficient, and cost-effective tools in 
improving the monitoring of natural habitats and facilitating their management. UAV allows monitoring of 
remote and inaccessible areas through ultra-high resolution imagery. The conventional method of using 
ground survey is expensive and requires manual efforts, while UAVs with various advantages like cost-
effective, flexible, and high spatial resolution can be used efficiently for mapping vegetation in a 
heterogeneous landscape. Using UAV high resolution images and Structure from Motion (SfM) processing, 
the research aims to assess the low-cost methods and the effectiveness of UAVs in vegetation mapping on 
the aspect of image compression, sensors, and seasonality.   For UAV data acquisition, this research used 
the DJI-Phantom 4 RGB camera and Parrot Sequoia multispectral camera together at two sites in Greater 
Côa Valley, Portugal. The study examines the feasibility and potential of using SfM photogrammetry and 
object-based image analysis (OBIA) to classify vegetation into seven dominant life form classes. The 
workflow of OBIA consisted of segmentation and classification using Random Forest in eCognition 
software. The workflow was used to assess the efficiency of the methods in improving the classification 
accuracy of vegetation maps. Further, each classification results were compared using accuracy assessment 
i.e., overall accuracy and kappa value.  
 
The study investigated the effect of image compression (raw DNG format and JPEG format) in vegetation 
classification, yielding a better classification accuracy in uncompressed RGB images (overall accuracy 
80.65% and kappa 0.77) compared to compressed RGB images (overall accuracy 62.04% and kappa 0.54). 
Secondly, vegetation classification was compared between sensors, for which RGB camera and Parrot 
Sequoia multispectral camera were used to acquire RGB and multispectral images, respectively. The 
classification accuracy of different classes improved using multispectral images (overall accuracy 85.19% 
and kappa 0.83) compared to RGB images. The study also assesses the importance of Ground Control 
Points (GCPs) in vegetation mapping. Lastly, to determine the usefulness of seasonality in vegetation 
classification, single-season image classification was compared with tri-seasonal image classification. The 
outcome of vegetation classification for seasonal comparison showed that tri-seasonal images have 
higher accuracy in each life-form class than single-season images. The overall accuracy resulted in 92.99% 
and 0.91 kappa value for the orthomosaic of the combination of three seasons images. The results from 
the study show that SfM processing with OBIA is a useful method for vegetation classification, and OBIA 
is sensitive to the number of training samples used for image classification. It is also found that multispectral 
sensor is useful in identifying different life-form, but the combination of seasonal image classification (using 
RGB images) has resulted in the best overall classification accuracy. However, GCPs are significant in 
aligning multi-temporal images and can be helpful for future monitoring purposes. From the study, these 
low-cost methods have shown potential in classifying vegetation precisely, but processing requires high 
computational storage. The study elaborates that these accurate vegetation maps can be used to monitor 
vegetation changes for the factors such as the introduction and increase of herbivores and grazing in the 
area. The present research results offer valuable information for optimizing a UAV-based vegetation 
mapping protocol to be used in all Rewilding areas in Europe and other conservation areas. 
 

Keywords: UAV, Vegetation mapping, Object-based Image Analysis (OBIA), Structure from Motion 
(SfM), random forest 
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1. INTRODUCTION 

1.1. Background and justification  

Vegetation is an integral feature of every landscape that helps regulate water, nitrogen, and carbon 

biogeochemical cycles as well as regulate climate and support biodiversity. Vegetation patterns respond to 

the region’s environmental conditions and historical factors like natural disturbances, soil properties, land-

use history, etc. (Motzkin et al., 1999). Many critical plants and their communities are at risk of habitat loss 

(Müllerová et al., 2017), and plant conservation plays a vital role in achieving Sustainable Development 

Goals (SDGs) (Sharrock and Jackson, 2017). In general terms, plant conservation contributes directly or 

indirectly to all 17 Sustainable Development Goals (SDGs). However, it has a specific contribution to 

individual targets under particular goals (like target 6.6 protect and restore water-related ecosystems, target 

12.2 sustainable management and use of natural resources, target 14.2 protect and restore ecosystems, target 

15.5 protect biodiversity and natural habitats and many more (Sharrock and Jackson, 2017). 

People have used several materials and methods to monitor, manage, and conserve the protected areas 

(Heywood and Iriondo, 2003), necessitating time and effort to survey and map the area, making it costly. 

Using aerial photographs coupled with substantial fieldwork to record the data requires experience, and 

vegetation classification and mapping is a prerequisite for natural resources inventory, land-use planning, 

and forming a baseline to monitor the changes in the landscape. Vegetation mapping is done to understand 

a region’s vegetation patterns, in which factors such as the scale of an area, the source of data, the type of 

information, and the method are considered. Traditional methods such as literature review, map 

interpretation, ancillary data, and field survey are important for mapping vegetation, but they are time-

consuming, expensive, and laborious (Xie et al., 2008). Vegetation mapping using aerial images acquired by 

manned aerial photography and fieldwork used to be difficult for the experts to analyze the area in minimum 

time (Morgan et al., 2010). Using aerial photos to monitor minor changes and differentiate vegetation 

change was difficult in large areas without any field reference. 

However, digital image classification using satellite imagery of large areas effectively classified different 

vegetation (Baxendale et al., 2016). A survey was usually considered the primary method of mapping the 

vegetation, but for large inaccessible areas, satellite imageries are mainly used with remote sensing 

techniques to discriminate the plants on the community level. With the advancement in technology, 

different sources of remote sensing imageries are available, like Advanced Very High-Resolution 

Radiometer (AVHRR), SPOT-4, MODIS, etc., which can be classified, analyzed, and compared for various 

use. Each source of images can be used for vegetation mapping with different spectral, spatial, radiometric, 

and temporal characteristics (Xie et al., 2008).  

Satellite imagery is used in classifying the land cover, but sometimes it lacks precise information for 

vegetation mapping due to low-resolution images (Berra et al., 2019). Unmanned Aerial Vehicle (UAV) can 

assist in surveying and characterizing plant species in very high spatial resolution data at a low cost 

(Müllerová et al., 2017). Unlike traditional field observations, drone imagery has a superior level of detail 

that can identify individual plant species for areas larger than the size of quadrats (Baena et al., 2017). On 

the other hand, satellite data is less efficient in detecting vegetation differences based on their phenology 

than UAV images due to coarse spatial resolution (Strong et al., 2017). The distinct advantage of using a 

UAV (with a digital camera) over conventional pilot aircraft and satellites is its low cost, better spatial and 

temporal resolution with operational flexibility to produce orthoimages, and Digital Surface Model (DSM) 

(Agüera-Vega et al., 2017a). 

UAV has gained significance for capturing images for qualitative research for precision agriculture, 

cartography, forest management, marine conservation, and quantitative remote sensing applications 

(Radoglou-Grammatikis et al., 2020; Crommelinck et al., 2017; Manfreda et al., 2018; Johnston, 2019; Aasen 
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et al., 2018). UAV can be an efficient method for mapping the vegetation precisely and creating detailed 

vegetation maps (Kaneko and Nohara, 2014), which can be used to gain information about the region. The 

constraints of poor weather conditions and cloud cover should be considered before a UAV flight. Studies 

on the plant species are frequently conducted at the local scale with help from UAV mapping and satellite 

remote sensing (Kattenborn et al., 2019). The combination of satellite data (Sentinel-2 and Pleiades) with 

UAV have been demonstrated to be useful for habitat mapping in wetland region using a spectral unmixing 

approach and can fill the gap between in-situ survey and satellite imagery with some technical limitations 

(Alvarez-Vanhard et al., 2020). A study by Kattenborn et al., (2019) proposed using UAVs instead of ground 

surveys because of better species identification as UAVs can discriminate plant communities on a scale of 

1/50. Another by Baena et al., (2017) suggests that UAVs can be an excellent alternative to satellites to 

obtain color and infrared imagery for an affordable price. By providing high-resolution images and 

determining plant development over time, drones could contribute to in situ conservation of highly 

endangered plants (López and Mulero-Pázmány, 2019; Räsänen and Virtanen, 2019). 

When it comes to ultra-high resolution UAV data, it is crucial to have a thorough understanding and 

familiarity with UAV technology, particularly the communication method between the drone and the 

imaging equipment. Images captured and obtained from UAV photogrammetry platforms generally come 

in different formats. These formats of the images depend upon the compression methods. The term 

compression refers to the method that helps reduce the amount of the data, whereas the data signify a 

certain amount of information. The image compression in UAV photogrammetry is performed mainly in 

two different ways, a) loseless and b)lossy. The process of lossy and loseless depends upon the compression 

scheme, which may lead to a decrease in image quality, information, and size. In image processing methods, 

the various image formats adapt different compression schemes, such as the most common image format, 

“TIFF” which uses a loseless method. In contrast, another popular format called “JPEG” utilizes 

controllable losses (Alfio et al., 2020). JPEG files lose some potential information but are easy to store and 

can be used directly on various electronic devices compared to RAW format images. However, RAW files 

are best suited to the detailed identification of plant parts. It is because RAW images have a greater range 

of color values than other formats (Sharma, 2019). 

It is difficult to obtain the accurate spatial distribution of highly heterogeneous plant communities using 

traditional field methods and remote sensing, which led to using UAVs with multispectral sensors to take 

samples of heterogeneous landscapes. Near-infrared images captured from multispectral sensors help 

distinguish plants from soil and water due to spectral differences (Tay et al., 2018). Multispectral cameras 

with UAVs can significantly impact monitoring diversity in the grasslands and preserving it for future 

generations (Strong et al., 2017). In addition to offering ultra-high spatial resolution over relatively large 

areas at a reasonable cost, UAV-mounted sensors provide an excellent way to bridge the gap between field 

observation and traditional remote sensing methods (Manfreda et al., 2018). The type of sensor and spectral 

resolution can help define the region’s vegetation more accurately at a local level (Furukawa et al., 2021). 

The vegetation maps make understanding distribution patterns easy, and UAVs have made vegetation 

surveys possible where field reconnaissance is challenging. 

Vegetation indices were used to distinguish riparian vegetation from bare soil, crops, and grasses (Yang, 

2007). Normalized Difference Vegetation Index (NDVI) acquired using a multispectral camera provides 

useful data about vegetation vigor and biomass, which is helpful for the identification of vegetation in 

images compared to RGB sensor-based spectral indices (Visible Atmospheric Resistant Index (VARI), 

Triangular Greenness Index (TGI)) (Fuentes-Peailillo et al., 2019). It was observed that RGB indices could 

identify the patterns but the division of different classes in the image was poor, which is important for 

mapping the species (Fuentes-Peailillo et al., 2019). Also, there are other RGB-based vegetation indices like 

Normalized Green Red Difference Index (NGRDI), Green Leaf Index (GLI), Visible Atmospherically 

Resistant Index (VARI), Red-Green-Blue Vegetation Index (RGBVI), which were used to predict dry 

matter yield of a grassland (Lussem et al., 2018). The efficiency of UAVs with photogrammetric techniques 

has been exhibited in agriculture as high-resolution data have helped evaluate various vegetation indices 
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(Candiago et al., 2015). The classification accuracy of the images of a landcover and vegetation types can 

help evaluate the area’s natural regeneration process (Furukawa et al., 2021), which requires planning and 

monitoring of the area for future purposes. 

UAV-acquired two-dimensional images are reconstructed in a three-dimensional structure, which can be 

processed using Structure from Motion (SfM) photogrammetry. With low-cost methods for high-resolution 

images, SfM helps construct 3D structures using the number of overlapping images for feature extraction, 

matching, and refining reconstruction using bundle adjustment (Schonberger and Frahm, 2016). SfM is also 

helpful in generating dense 3D point clouds with high quality and can be used to create Canopy Height 

Models of the forest areas but is unsuitable for dense canopy trees (Mlambo et al., 2017). Using LiDAR-

derived CHMs is expensive compared to UAV SfM-derived CHMs, which are useful for ecological studies 

and can help in improving classification accuracy (Prošek and Šímová, 2019a). 

In the environmental research community, researchers utilize various image processing techniques to 

extract information that helps analyze the scenario based on environmental parameters for monitoring 

purposes. Similarly, the Object-based Image Analysis (OBIA) method is used, which uses the image 

segmentation process and is more prevalent among the researchers while implementing different image 

processing techniques. Image segmentation implies partitioning any images based on their homogeneous 

characteristics, which further help categorize similar objects. The specific blocks of the segmented images 

help to analyze while categorizing the objects into small units based on similar context, spectral value, or 

spatial information. These spatial, spectral, and contextual properties of the segmented images further help 

the researcher monitor the changes over the decades and so on (Johnson and Ma, 2020). Object-based 

image analysis technique is a robust approach in vegetation studies while extracting significant features. In 

past studies, proven object-based image analysis is a beneficial and powerful method for working with 

UAVs based on high-resolution RGB(Red, Green, Blue) images (Grybas and Congalton, 2021; Yang et al., 

2022; Zhou et al., 2021). The advantages of working with UAV-based images are economical, flexible, and 

high resolution. It offers massive information about vegetation, including precise shape, color, texture, and 

geometry. This information further helps to improve the homogeneity within the image pixels and 

influences the accuracies of the segmentation algorithm of object-based image analysis(Zhou et al., 2021). 

OBIA has proved to be better for vegetation mapping (Grybas and Congalton, 2021; Liang et al., 2020; 

Yang et al., 2022). When accurate landcover maps are limited for an area, OBIA can be a valuable method 

for vegetation classification, which can be used for future monitoring. For the classification of imageries, 

object-based classification has resulted in better vegetation maps compared to two pixel-based 

classifications (Kamagata et al., 2006). 

Machine learning is a powerful tool for qualitative vegetation mapping, and Random Forest is one of the 

popular classifiers used for large datasets. A random forest is an ensemble of decision trees using a set of 

data to make predictions (Belgiu and Drăgu, 2016). Millard and Richardson, (2015) have mentioned the 

Random Forest as one of the most commonly used classification algorithms and is highly sensitive to the 

size of the training datasets. The same authors state that training samples are essential to improve 

classification accuracy, and their impact can be seen in their study. 

During the process of classification of vegetation in different landscapes, vertical information plays a crucial 

role in differentiating the vegetation into different life forms, for which GCPs are helpful. GCP plays a 

critical role during georeferencing of the images as the number and location help improve UAV accuracy 

(Sanz-Ablanedo et al., 2018). It was evident in the results that 3D root mean square error (RMSE) improves 

when more GCPs are used, like an error in Z-component reduced from 20cm to 8cm when 18GCPs were 

used instead of 4GCPs (Gerke and Przybilla, 2016). For many years, researchers have been working with 

Digital Surface Models (DSM) and orthoimages, for which accuracy is essential. With the improvement in 

UAV photogrammetry applications, the influence of the number of GCP for georeferencing DSM is 

evident (Agüera-Vega et al., 2017b). Gerke and Przybilla, (2016) mentioned that bundle adjustment is 

influenced by the flight directions and altitudes (cross flight), as RTK-option improves the absolute image 



COMPARISON OF LOW-COST METHODS FOR VEGETATION MAPPINGUSING OBJECT BASED ANALYSIS OF UAV IMAGERY: A CASE STUDY FOR THE GREATER 

COA VALLEY, PORTUGAL  

 

4 

orientation and reduces block deformation. The technological advancement of UAVs is improving each 

day, and in the present scenario, there are several types of models of UAVs to be used. It is a practical 

approach of using vertical data with spectral data derived from UAVs to improve classification accuracy 

(Prošek and Šímová, 2019b).  To generate 3D models, creating orthophotos requires the highest possible 

accuracy, for which good distribution and optimum number of GCPs are recommended (Awasthi et al., 

2020). The horizontal and vertical accuracy was improved when GCP was used for georeferencing the 

products of UAV photogrammetry, such as orthophotos and DSM (Agüera-Vega et al., 2017a). So, such 

results promote the application of UAV photogrammetry, especially in highly risky study areas. A study 

also showed the significance of vertical information (derived from UAV SfM) with multispectral data of 

the shrubland vegetation helps in improving the accuracy of the classification and can be a cost-effective 

method for its mapping (Prošek and Šímová, 2019b). 

Multi-temporal data of Unmanned Aerial System(UAS) have proved significant in improving the accuracy 

of classification of forests at the species level by using RGB and multispectral (MS) imageries (Grybas and 

Congalton, 2021). Similarly, the multi-temporal imagery of UAS was used for the comparison of the canopy 

cover model derived from RGB and MS sensors, which resulted in the MS sensor being stable and accurate, 

but RGB-based estimation of canopy cover can be a suitable alternative to MS (Ashapure et al., 2019). The 

classification accuracy of mapping the vegetation can be improved by using multi-seasonal imageries from 

Sentinel-2, which can narrow down the errors while classifying and be highly informative about the 

vegetation in the study area (Macintyre et al., 2020). For landscapes with similar vegetation, it is difficult to 

detect the changes in the species unless it is acquired in different seasons. This study will consider the 

heterogeneous landscape in mapping dominant life-form classes using high-resolution multi-temporal data. 

1.2. Research problem  

Mapping vegetation is essential to understanding species distribution and deriving important landscape 

information. UAV and field reconnaissance is invaluable (Müllerová et al., 2021). In heterogeneous 

landscapes, detecting changes in vegetation in the short to medium term at a fine scale can be challenging 

(Motzkin et al., 1999). So, a detailed and accurate vegetation map is necessary to assess the effect of the 

conservation practices in the area of interest. Field-based methods and satellite data have been used, which 

is more time-consuming and expensive. Satellite imageries cover a large area but are not helpful for detailed 

vegetation maps. So, this study was done to find the solution to unanswered questions. This research will 

help investigate the components that can improve the accuracy and precision of vegetation mapping of 

large heterogeneous landscapes with the combination of field methods and UAVs in different aspects. It 

aims to find more straightforward and cost-effective methods for classifying different vegetation types 

present in the area with good classification accuracy. It is necessary to improve the classification accuracy 

for the vegetation maps. Integrating UAV using different sensors with field surveys can help transform the 

tedious monitoring task into more functional and accurate maps that will take less time than traditional 

methods. Using the same methods and comparing the classification accuracy of vegetation maps in different 

conditions will help understand the best conditions and inputs required for vegetation mapping. A 

comparison between classification using different image formats will help in selecting parameters during 

the flight planning. While comparing the sensors results will help in determining the importance of spectral 

information in generating vegetation maps. Also, this study will help to investigate the seasonal effect in 

vegetation mapping and  determining parameters for flight planning. UAV photogrammetric methods for 

vegetation mapping using GCPs will help in better georeferencing which can be helpful to align the multi-

temporal UAV imageries. These combination of imageries can be used with field surveys for monitoring 

the changes in a period of time. It is important to select the best parameters to generate an accurate 

vegetation maps. So that such maps can be used to make an informative decision for its conservation and 

management for future reference by the end-users. 
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1.3. Research objectives and research questions 

1.3.1. General objective: This research aims to assess the effectiveness of UAVs with GCP in 
vegetation mapping to monitor the dominant life forms in a heterogeneous landscape. The 
research focuses on improving a vegetation map's classification accuracy based on image 
compression, sensor, and seasonality. The research objectives, research questions, and hypothesis 
are as follows.  

1.3.2. Specific objectives 

R.O.1: To evaluate Multispectral and RGB images for mapping vegetation at the dominant life form level. 

R.Q.1.1: What is the effect of image compression (JPEG format) in image classification? 

Hypothesis: Uncompressed (DNG/TIFF format) UAV imagery results in higher classification 

accuracy. 

R.Q.1.2: Is vegetation classification accuracy with RGB-UAV data significantly different from MS-

UAV vegetation classification? 

Hypothesis: Vegetation classification accuracy with MS-UAV is significantly better than RGB-

UAV imagery. 

R.O.2: To assess the importance of GCPs to improve accuracy in vegetation mapping. 

R.Q.2.1: What is the effect of GCPs on point cloud density and vegetation structure using point 

clouds? 

 Hypothesis: GCP can improve vertical information extracted from SfM processing as it decreases 

the potential deformations in the block. 

R.O.3: To assess the usefulness of tri-seasonal UAV image classification (Winter, spring, and summer) in 

vegetation classification accuracy. 

R.Q.3.1: How do combined UAV images from three seasons affect classification accuracy 

compared to a single-season image classification?  

Hypothesis: The combination of winter, spring, and summer UAV imagery will result in higher 

vegetation classification accuracy than individual season data. 
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2. STUDY AREA & METHODS 

2.1. Study Area 

The Greater Côa Valley is an area of 312.000 hectares located in the Guarda district in Beira Interior, which 

borders Northern Portugal and Spain. It includes seven municipalities (Figueira de Castelo Rodrigo, Pinhel, 

Vila Nova de Foz Côa, Trancoso, Almeida, Mêda, and Sabugal). It has a mean population density of 22.3 

± 13.6 inhabitants/km2  (INE, 2011), concentrating most population in the capital of the district, Guarda 

(55.5 inhabitants/km2), with much lower densities in the rest of the area (minimum densities found in 

Almeida, 11.7 inhabitants/km2). Côa Valley comprises the Côa river watershed from the Malcata mountain 

ranges in the south and contributes to the Douro River in the north. It is a part of the Iberian Peninsula, 

with Dehesa, Montado, and Sierra landscapes having a natural habitat state due to various ecological 

processes. 

The dominant land covers of Côa  Valley ( are transitional woodland-shrub (23.48 %) and moors and 

heathland (16.48 %) (CLC, 2018). This is the result of the gradual abandonment of marginal agricultural 

regions since the rural exodus of the 1950s (Copernicus, 2018). Agricultural land is the most common form 

of Land use but is covered by natural vegetation under extensive use for livestock production. Vineyards, 

olive, and almond groves are important land uses in the lower Côa, which already benefit from the 

microclimate the Douro canyon provides (“Rewilding Europe,” n.d.). Figure 1 demonstrates the picture of 

the Greater Côa valley in Portugal. Two different sites in the valley are Vale de Madeira (also known as 

Ermo das Águias) with six plots and Vale Carapito with five plots. 

 
Figure 1: Location of the Greater Côa Valley and plots marked in Vale de Madeira (also known as Ermo das Águias) 

and Vale Carapito 

The Côa valley area was abandoned, leading to a unique and novel opportunity for its conservation by 

rewilding the area. The browsing activity by horses and wild goats helps to manage the spread of scrubs 



COMPARISON OF LOW-COST METHODS FOR VEGETATION MAPPINGUSING OBJECT BASED ANALYSIS OF UAV IMAGERY: A CASE STUDY FOR THE GREATER 

COA VALLEY, PORTUGAL  

 

7 

and brooms, which leads to the maintenance of pasture areas and vegetated woodlands, preventing the risk 

of wildfires (DeSilvey and Bartolini, 2019). The Côa Valley is one of the wild areas of Portugal, with more 

than 100,000 hectares of land designated as Natura 2000 zones, with a variety of semi-natural and natural 

habitats (“Rewilding Europe,” n.d.). In the Côa Archaeological Park, over a thousand engravings dating 

back 25,000 years are etched into the rocks of this valley, which is listed as a UNESCO World Heritage Site 

(Thomas, 2019) and also the “Faia Brava Reserve,” the first private protected area in Portugal. 

Climate: This region experiences a Mediterranean climate of hot, dry summers and cold winters. The Côa 

valley has a significant climatic condition as winter is cold and mild compared to hot summers when the 

temperature is above 30°C. The rainfall is evident more during winters than summers. During summer, 

sometimes tributaries may dry up (Zilhão et al., 1997). The landscape with natural vegetation reflects the 

Mediterranean ecosystems. Such ecosystems are abundant with evergreen species compared to deciduous 

ones, and vegetation is characterized by the presence of trees, woody shrubs, and sclerophyllous leaves 

(Joffre and Rambal, 2001). 

Geography and species composition: The Côa river crosses the area from the South (the river source) 

to the North (the river mouth). In the Northern area, the Côa Valley is characterized by a typical 

Mediterranean habitat interspersed with fields of olives, almonds, and cereals. The valley has a mixture of 

oak forests, scattered fields, and rocky heathlands. In Serra da Malcata, in the South, vegetation is dominated 

by dense shrubs, industrial plantations of Pinus spp., eucalyptus, and Douglas fir (Pseudotsuga menziesii (Mirb.) 

Franco), and scattered woodlands of holm oak (Quercus rotundifolia Lam.) and Pyrenean oak trees. Recent 

socio-economic changes led to land abandonment and a continuous rural exodus, creating opportunities 

for landscape restoration. Cork oak (Quercus suber) is also present as one of the dominant species in the area.  

Vale Carapito: A plot (plot number 5) in Vale Carapito was considered for objectives 1 and 2. Vale 

Carapito is present to be in the North of the historic village of Vila Maior, two kilometers from the east 

bank of the Côa River. Vale Carapito displays a diverse natural habitat & different ecological condition (like 

mixed coniferous and hardwood forests, scrubs, and meadows) for plants and animals, surrounded by the 

Alfaiates stream and Cesarão river. There have been fire incidences in the area, which last occurred in 2001 

and 2002 when 15,82 hectares (26% area)  were burned. 

During the 20th century, agriculture used to be the primary 

occupation in the landscape, which has now turned into an 

abandoned area where the rewilding process is evident, as 

various species of oak, alders, and ash tree roots are seen. As the 

rewilding process has improved, the territory can be seen with 

the presence of Sorraia horse and fawn, which used to be in 

abundance. Sorraia horses are similar to wild horses, which used 

to be inhabitants of western Europe. However, this time, they 

are introduced into the valley by the Rewilding Portugal to 

replicate the role of its ancestors in the ecosystem, which helped 

to improve the nutrient cycle and positively impact amphibians, 

reptiles, small birds & insects, and enriching biodiversity. 

Considerable diversity of species is found in the valley, where 

Vertebrates include Pisces, amphibians, reptiles, birds, and 

mammals. Insects include butterflies, moths, scarabs, bees, 

wasps and ants, cicadas, and bed bugs. Among plants, about 21 

species of trees and bushes, ten species of nationally threatened 

species, six species are internationally threatened, and 11 species 

are the Iberian endemic (“Rewilding Europe,” n.d.).  

Figure 2: Sorraia horses introduced in Ermo 

das Águias 
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Ermo das Águias: A plot in Ermo das Águias was considered to study the effects of image acquisition 

season on vegetation classification. Ermo das Águias is the area on the west bank of the Côa river and 

represents an important transition in the valley. The area has gentle slopes that are edged with rivers having 

rugged cliffs and leading to the mouth begin of the Douro River. The fire and grazing greatly impacted the 

area, leading to bushes and a bare rock-dominated landscape. About 272 fire incidences occurred every five 

years between 2000 to 2019, affecting about 9% of the area. The groves of black oak, cork oak, and small 

holm oak are present naturally in the area. The wet meadows recover floristic diversity, which is highly 

suppressed by the grazing and affects the area’s productivity. Griffon vulture, golden eagle, and black stork 

are some emblematic birds found in the region as predators. It is also the first place to introduce Sorraia 

horses, as in Figure 2. As per the first survey, the area was focused on plants and insects, among which five 

species are nationally threatened, eight are internationally threatened, and 6 are Iberian endemic species 

(“Rewilding Europe,” n.d.). Some exact numbers of species are in Table 1. 

Table 1: Number of species found in Vale Carapito and Ermo das Águias 

Communities Number of species in Vale Carapito Number of species in Ermo das Águias 

Vertebrates 147 104 

Insects 162 94 

Plants 164 143 
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2.2. Methodology 

The section includes the various components used for the research, a brief description of the datasets used, 

field data collection, image processing, and different software used for this study. The flowchart (Figure 3) 

shows four major phases; 1. UAV images acquired 2. Field Observations 3. UAV-SfM image processing 4. 

OBIA and data analysis. The sub-sections will explain the workflow followed for the study as shown in 

Figure 3, which includes different processes, and they are listed as follows: 

1. Data and its acquisition 

2. Structure from Motion (SfM) image processing 

3. Vegetation Indices 

4. Object-Based Image Analysis (OBIA) 

5. Variable Importance 

6. Comparison of results 

 

2.2.1.  UAS Image acquisition 

The data used for this study include UAV images acquired by Rewilding Portugal in Ermo das Águias in 

summer, July 2021, and in spring, May 2021, using an RGB camera (DJI Mavic Pro 2). UAV images acquired 

Figure 3: Overall workflow of the study 
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by the Rewilding Portugal were without using GCP and the flight parameters (Annex 1), which led to 

different ground resolution and image quality.  

The UAV data for early spring (or late winter) was collected during the fieldwork in March 2022. The UAV 

data consisted of Multispectral and RGB images acquired between 30th March 2022 to 2nd April 2022 using 

Parrot Sequoia multispectral and RGB camera of DJI Phantom4, respectively. For the study, plot 5 of Ermo 

das Águias and plot 5 of Vale Carapito were considered. 

UAV-RGB and UAV-Multispectral images were acquired with a camera-view angle of 90 degrees, also 

called “nadir.” The study area has almost a flat terrain, so nadir images are recommended (Seifert et al., 

2019). Due to covid restrictions and unavailability of rewilding Portugal team, the data collection was made 

possible in March 2022.  

A test flight was conducted on the first day to adjust different parameters according to the study area for 

the initial preparation. The land was unlevelled, and weather conditions were not favorable; this delayed the 

drone’s flying, and image acquisition was made between 13:31 to 16:47 on March 30, 2022, in Ermo das 

Águias for plot 5, whereas between 13:27 to 15:41 on April 1, 2022, in Vale Carapito for plot5 (Figure 1). 

The weather conditions in Ermo das Águias were cloudy 

and windy due to the season, with continuous changes in 

illumination. To overcome this issue, multiple acquisitions 

were performed in the same area aiming at uniform 

illumination conditions. The weather conditions in Vale 

Carapito were sunny and bright, with scattered clouds 

passing over the study site at high speed. To overcome this 

issue, image acquisition was performed with frequent 

breaks only when illumination was without clouds. The 

flights were carefully observed with the time noted, and 

calibration of parrot sequoia camera was done before and 

after each flight. 

A DJI-Phantom 4 camera was used to acquire UAV-RGB 

images, and a Parrot Sequoia multispectral sensor was used 

to acquire UAV-Multispectral images. The sensor has four 

cameras, each with different spectral bands (Red, Green, Red-edge & 

Near-infrared) to capture the images. The sequoia camera also gives RGB 

imagery simultaneously. The Sequoia has a sunshine sensor which is useful 

to measure the intensity of light and compensate for the exposure as per 

the condition of the sun (“Parrot Sequoia,” n.d.). The Sequoia camera (on 

the bottom) and sunshine sensor (on the top) were mounted on the 

quadcopter DJI Phantom 4, as shown in Figure 5. A parrot sequoia 

calibration plate (Figure 4) was used for radiometric calibration. The 

calibration was done after each flight because of the change in 

illumination.  

2.2.1.1. Flight planning 

Flight planning plays an essential role in acquiring the UAV images of a study area. The flight planning for 

this study was done using UgCS for DJI, which can be operated using a laptop or android phone and is 

compatible with both modes of use. UgCS application was used to create the flight plans (or missions) for 

the acquisition of the images of the study area (“UgCS,” n.d.). The advantage of UgCS was to decide the 

Ground resolution on a prior basis as the UAV maintains a particular flying height throughout the flight. 

The flight parameters are mentioned in Table 2, and the flight plans are in Annex 2. 

Figure 5: DJI Phantom 4 with sequoia camera and 

sunshine sensor in the field. 

Figure 4: Calibration plate (Parrot 

Sequoia) 
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Table 2: Flight parameters used for the UAV image acquisition in the study areas 

Flight Parameters Vale Carapito Ermo das Águias 

Flight speed 4.50m/s 5.00m/s 

Ground resolution 2.50cm 2.50cm 

Forward overlap 80% 80% 

Side overlap 85% 85% 

The drone was connected to an android phone (using the UgCS android application), which was connected 

to the controller. The sequoia camera was connected to different mobile, and the parrot sequoia application 

was used to start and stop the camera. It was also used to capture the images of the calibration plate, which 

is used to calibrate while processing the captured images. A high percentage of front and side overlap was 

used in order to improve accuracy by creating more match points in the images during processing. Also, 

the weather conditions were not ideal for the data acquisition.  

2.2.1.2. RGB images 

The team of Rewilding Portugal acquired RGB images for Ermo das Águias using the RGB camera of 

Mavic Pro 2. The flight resulted in a total of 1082 images (for July 2021) and 870 images (for May 2021) 

covering the area marked by the team. The raw UAV images were in DNG format, which was changed to 

TIF format for processing using the Structure from Motion approach in Pix4D. Plot 5 in Ermo das Águias 

was considered as the study area to assess the seasonality effect on the vegetation classification accuracy. In 

contrast, Vale Carapito (plot 5) will be considered the study for comparing image formats, the significance 

of GCP, and the comparison of the sensor. 

In March 2022, plot 5 of Ermo das Águias and plot 5 of Vale Carapito were considered for the study. The 

DJI Phantom 4 camera was used for the RGB images (as it gives better image quality than Parrot Sequoia). 

The images were collected in the form of raw DNG format and JPEG format. A total of 988 images have 

resulted for plot 5 of Vale Carapito. Whereas for Ermo das Águias 796 images. Multiple flights for the same 

area resulted in a high number of images. The images will be selected during the image processing to 

generate orthomosaic. 

2.2.1.3. Multispectral images 

Parrot Sequoia sensor was mounted on the drone for multispectral imagery. The data acquisition using MS 

sensor was made only in March 2022. The sensor has four cameras (Red, Green, red-edge, NIR), each lens 

resulting in one image and one RGB image (a total of 5images each time). For Vale Carapito, a total of 1744 

images have resulted for plot 5, and for Ermo das Águias, 2564 images. Also, a few images of the calibration 

plate which will be used for radiometric calibration during SfM processing in Pix4D. The images will be 

selected during SfM image processing in Pix4D. 

2.2.2. Ground Control Points (GCPs) 

Ground Control Points (GCPs) are effective for georeferencing and help reduce errors during UAV photogrammetric 

processing of images (Martínez-Carricondo et al., 2018). GCP was not marked in 2021 and was collected during 
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fieldwork for data collection in March 2022. As the number of GCP 

and their distribution influence accuracy (Awasthi et al., 2020), GCPs 

were distributed before the flight, and measurements were taken 

using the Global Navigation Satellite System (GNSS) after the flight 

and re-collected the target marks from the area. The target marks 

were positioned on the ground using wooden pegs, as shown in 

Figure 6.  Around 13 to 15 targets were placed on the ground and 

well-distributed throughout the area. Since the ground was 

unlevelled, targets were placed on each corner and center of the plot, 

aiming to observe the ground level change while measuring altitude 

(Z value) using differential GNSS. All the ground data measurements 

were recorded using GNSS LEICA GS15 by configuring the device 

for the Portuguese network service to use Real-time Kinematic 

(RTK) correction. Differential RTK corrections are gathered at a 

base station (it usually reports the base station location used) and 

transmitted to the rover, which is correcting the signal from the 

satellite in real-time, achieving positional accuracy of <5cm. GCPs 

were stored in WGS84 geographic coordinate system. During the field data collection, mobile SW maps 

and google earth applications were used to mark the targets placed in the actual plot size and to know the 

boundary of the study area.  

2.2.3. Field Observations 

The field observations are essential as they are used for training and validation purposes of the study. For 

the study, land cover and vegetation typology was identified and selected based on the discussion with the 

Rewilding Portugal team. The observations in Ermo das Águias were collected by Rewilding Portugal in 

May and July 2021, whereas in Vale Carapito in May and July 2020. These are used as training samples for 

the classification. Around 187 samples for Vale Carapito and 369 samples(of two seasons) for Ermo das 

Águias were used as a training dataset for seven classes. 

In March 2022, SW maps were used for the field data collection, all the necessary information was recorded, 

and photographs were taken for reference. The points recorded were used as a validation dataset. About 

105 points were collected in March 2022 for seven classes at each site. These validation samples are 

independent of the training samples. The samples are polygons created in ArcMap 10.8, then saved as a 

shapefile. A few additional points were collected for the Ermo das Águias to differentiate between 

deciduous and evergreen trees. Since Ermo das Águias was recorded by the Rewilding Portugal team during 

spring 2021 and summer 2021, the observations during March 2022 helped analyze the same areas for three 

seasons, and the samples were recorded to be used for vegetation classification accuracy of multiple seasons. 

Some photographs were taken of the references. In addition, lichens were the additional class observed in 

the Vale Carapito site as they were found in dominant form throughout plot 5. The samples were collected 

during the field visit and were found in dried form. The species were identified based on the main plant 

life-forms used by Kuchler’s method of description(1967); the criteria used were plant size (height) and 

plant function (deciduous or evergreen) (Kent, 2012). The classes considered for the classification will be 

helpful in future monitoring purposes. 

Land cover and vegetation typology 

The study area was a heterogenous landscape with the presence of horses in the Ermo das Águias plot, 

while in Vale Carapito, there was evidence of grazing animals too. The vegetation typology varied in the 

different sites. The presence of rocks and bare soil was found in a significant part of the study area, so the 

land cover classification was considered for this study. The classes considered for vegetation classification 

Figure 6: Target mark used as GCP in 

the study area 
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were: trees (deciduous or perennial), shrubs, grass, bare soil, bracken, lichens, and rock. The major form of 

vegetation found can be seen in Figure 7 and Figure 8, showing the Vale Carapito and Ermo das Águias. 

Trees found in the area were species of pines and oaks, among which some oaks were deciduous (Figure 7) 

in Vale Carapito and some evergreen(Figure 8) in Ermo das Águias. The lichens were found in dried 

conditions (as shown in Figure 7) because the area suffered from high temperature and low water conditions. 

The dominant shrub in the study area was the white Spanish broom (Cytisus multiflorus), as shown in Figure 

7Figure 8. The shrub was flowering in the early spring season and was dominated in the area. 

2.3. Structure from Motion Image Processing 

 

It generally includes data processing for which UAV-RGB and UAV-MS images were processed. The 

photogrammetric processing of UAV images is the primary step for data processing. It includes the 

generation of orthomosaic, Digital Surface Model (DSM), Digital Terrain Model (DTM), and point clouds. 

2.3.1. Pre-processing 

Before photogrammetric processing, it is essential to check that the images acquired are of good quality. It 

is necessary to remove all the blurry, unrequired, repeated, wrongly captured, or oblique photos before SfM 

processing. The alignment of the pictures, resolution, coordinate system, and extent were checked using 

Figure 7: Deciduous oak trees and dried lichens (in picture1), Evergreen oak trees in an exclusion plot (picture2), and dominant 

white broom shrub (picture3) in the study area (Vale Carapito). 

Figure 8: Evergreen oak tree surrounded by dominant white broom shrub (picture1), the dried form of bracken during 

winters (picture2), shrubs and rocks major land cover in the plot of Ermo das Águias (plot5) 
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ArcMap 10.8.2 software. During pre-processing, raw images (DNG) are converted to multiband TIF images 

using Adobe Photoshop 2020 software. The RGB image’s resolution is 300dpi*300dpi (horizontal and 

vertical resolution), as these are uncompressed images. The images were processed in batches and will be 

used for creating orthomosaics and point clouds. On the other hand, RGB-JPEG images have a resolution 

of 72dpi*72dpi (horizontal and vertical resolution). In comparison, MS images were in TIF format and had 

a resolution of 96dpi*96dpi (horizontal and vertical resolution). 

2.3.2. UAV Data Processing 

Structure from motion is applied for the data processing of UAV-RGB and UAV-MS images. The 

photogrammetric processing was done using Pix4D Mapper software. The SfM processing of UAV images 

is done with the Ground Control Points recorded during the field visit. The GCPs are recorded using GNSS 

LEICA GS15 (Portugal’s number for RTK correction). While creating projects with GCPs, a total of  10 

GCP and four checkpoints were used in each case. The distribution of images and GCP in map view (Pix4D) 

is added in Annex 3. The results of SfM processing in Pix4D are given in Annex 4. 

2.3.3. Orthomosaic generation 

The SfM processing produces orthomosaic, point clouds, DSM, and DTM and involves three process steps 

(“Processing steps - Support,” 2022). JPEG and TIFF images were separately processed using the ‘3D maps’ 

template for RGB images, while for Multispectral images ‘AG Multispectral’ template was used for 

processing. In the first step, key points in the images are extracted and matched; also, the camera parameters 

are optimized. In the initial processing, a full image scale was used for the study; for matching image pairs 

‘Aerial grid’ was selected, and for calibration, targeted number of keypoints was ‘automatic’, calibration 

method was ‘standard’ and camera optimization for internal and external as ‘All’. The processing will use 

overlapping images to identify the matching key points between the 2D images and, as a result, create sparse 

point clouds (Mlambo et al., 2017; Schwind and Starek, 2017). Before proceeding to the second step, GCP 

was imported, and the 3D position of GCP was marked on the images for georeferencing of the project. 

The GCP was used while creating the project and was marked on images to generate orthomosaic, as this 

will help overlap the layers perfectly. The 3D point clouds were generated using bundle block adjustment. 

The end step was to generate orthomosaic and DSM. DSM was generated using inverse distance weighting, 

while DTM was generated using point cloud classification, in which five different point groups are used to 

classify the point clouds, parameters details are shown in Table 3. The classes are Road surface, buildings, 

ground, high vegetation, and human-made objects (“How to generate point cloud classification,” 2022). 

The index calculator was not used to generate the vegetation index because of an unresponsive error of the 

software. So, eCognition was used to generate vegetation indices. 

Table 3: Parameters used for Pix4D processing of RGB images 

Point Cloud and Mesh 

(Point Cloud) 

Image Scale: Original 

Point density: Optimal 

Max number of matches: 3 

Classify point clouds 

Point Cloud and Mesh 

(3D Textured Mesh) 

Generate 3D textured mesh 

Settings: High resolution 

Point Cloud and Mesh 

(Advance) 

Default settings 

DSM, Orthomosaic and Index 

(DSM and Orthomosaic) 

Resolution: Automatic 

DSM filters: Use noise filter and 

surface smoothing (Sharp) 

Raster DSM: Inverse distance 

weighting 

Orthomosaic: GeoTIFF 
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DSM, Orthomosaic and Index 

(Additional outputs) 

Grid DSM: LAS 

Raster DTM: GeoTIFF 

DTM resolution: Automatic 

(5*GSD) 

DSM, Orthomosaic and Index 

(Index calculator) 

Radiometric (for RGB): No 

correction 

Resolution: Automatic 

Downsampling method: 

Gaussian Average 

Multispectral images were processed with almost similar settings as in table 3 but with some changes. In 

Initial processing, calibration method was alternative. Point density was selected low in point cloud and 

mesh, while radiometric calibration was used in the index calculator. 

Orthomosaic created using JPEG and TIFF image format acquired in summer and spring were not 

overlapping each other. This shift was corrected using georeferencing tool manually to use the orthomosaic 

for the study. A similar case can happen in orthomosaics generated with GCP and without GCP. The 

presence of GCP will accurately position the orthomosaic compared to without GCP orthomosaic. So, a 

shift in the orthomosaic may happen. The parameters used for image acquisition by Rewilding Portugal and 

details are added in Annex 1. To understand and answer research question 4, Ermo das Águias was used as 

the study area where three seasons, spring, summer, and winter, were processed using manual tie points to 

overlap the orthomosaic perfectly. Each season’s ground resolution was different due to different flight 

parameters, so each orthomosaic was resampled to 2.5cm. 

2.3.4. UAV point clouds 

UAV-RGB imagery generated the 3-D point clouds using Pix4D mapper software. Two sets of point clouds 

were generated; one was georeferenced with GCP acquired during a field visit, while another point cloud 

was generated without GCP but was georeferenced using the estimated camera positions. The Canopy 

Height Model (CHM) of 3D point clouds of two different conditions was compared using *.las dataset 

format. CHM is generated by subtracting the Digital Terrain Model (which represents elevation of the 

ground) from Digital Surface Model (which shows the elevation of vegetation) (Matese et al., 2016), as 

shown in Figure 9. DTM and CHM were extracted from point clouds using cloudcompare. CHM results 

using cloudcompare will help to understand the importance of GCP in classifying vegetation. 

Cloud compare software was used for the analysis of the point clouds generated. The point clouds generated 

were of the same plot, but the only difference during SfM processing was with and without GCP. We have 

registered point cloud A (georeferenced) and point cloud B (non-georeferenced). The point cloud B was in 

Figure 9: A pictorial depiction of creating the Canopy Height Model (Perko et al., 2011) 
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the local coordinate system, whereas point cloud A was georeferenced earlier with Ground Control Points 

(GCPs). 

The point clouds of both datasets were loaded in CloudCompare to understand the distance between “cloud 

to cloud,” where the point cloud generated using GCP was used as ‘reference,’ and another point cloud was 

‘compared’. Since point clouds were not appropriately registered, the Iterative Closest Point (ICP) algorithm 

was considered to be used for better registration of point clouds. ICP algorithm searches for pairs of nearest 

points in two adjacent scans and further calculates the transformation parameters between the two clouds 

(Rajendra et al., 2014). The root mean square error (RMSE) for fine ICP registration for two-point clouds 

A and B was observed at approximately 1 m.  

ICP resulted in better registration of clouds, but the RMSE was high. Due to the high computational power 

required, a segment was created to generate the CHM to compare the two point clouds. Using the Cloth 

Simulation filtering (CSF) algorithm to determine the ground points in the point clouds resulted in mesh 

(D’Urso et al., 2018), where the mesh is the simulation of ground. The cloth resolution was 2.0; max 

iterations were 500, and the classification threshold was 0.5. Cloth resolution refers to grid size, maximum 

iterations refer to terrain simulations, and classification threshold refers to classifying point clouds into the 

ground and non-ground. The ’cloud to mesh’ parameter was used to understand the importance of GCP 

in generating the Canopy Height Model (CHM) and estimating the vegetation structure’s vertical 

information. The point cloud of the whole plot was not used for the analysis, so a segment was generated 

using a segmentation tool. The segments of the same region were created from the point clouds (with GCP 

& without GCP) in which trees, shrubs, and grasses are visible. The results were generated using the ‘cloud 

to mesh’ distance tool. The results gave a Canopy Height Model of each segment, which was used to 

compare results (“Cloudcompare forum,” n.d.). Figure 10 depicts the flowchart to generate CHM using 

point clouds.  

2.4. Vegetation Indices 

 

Vegetation indices were calculated for better segmentation and classification. Vegetation indices were 

decided based on the literature and were different for RGB images and Multispectral images classification. 

These were calculated using the “layer arithmetics” algorithm, where formulas were inserted for the 

calculation in eCognition software. The indices used are in Table 4 & Table 5, with the reference in Annex 

5. The indices layer was added with 3 RGB and Canopy Height Model (CHM) layers in eCognition for 

RGB image vegetation classification. For MS image vegetation classification, four image layers, CHM and 

indices layer, were used. 

Table 4: Vegetation indices used for RGB imagery in eCognition 

Spectral Vegetation Indices (RGB) Equation 

GLI (Green Leaf Index) (G2-R-B)/ (G2+R+B) 

NGBDI (Normalized Green Blue Difference Index) (G-B)/(G+B) 

RGBVI (Red Green Blue Vegetation Index) (G2-R*B)/(G2+R*B) 

MGVRI (Modified Green Red Vegetation Index) (G2-R2)/ (G2+R2) 

Figure 10: Flowchart of generating segment of generating CHM from point clouds 
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NDSI (Normalized Difference Soil Index) (R-G)/(R+G) 

GRVI (Green-Red Vegetation Index) (G-R)/(G+R) 

 

Table 5: Vegetation indices used for Multispectral imagery in eCognition 

Spectral Vegetation Indices Equation 

GCI (Green chlorophyll Index) ((NIR/G)-1) 

NDVI (Normalized Difference Vegetation Index) (NIR-R)/(NIR+R) 

NDRE (Normalized Difference Red Edge Index) (NIR - RE)/ (NIR + RE) 

MGVRI (Modified Green Red Vegetation Index) (G2-R2)/ (G2+R2) 

SAVI (Soil-Adjusted Vegetation Index) ((NIR-R)/(NIR+R+L)) * (1+L) 

GRVI (Green-Red Vegetation Index) (G-R)/(G+R) 

NDWI (Normalized Difference Water Index) (G-NIR)/(G+NIR) 

 

2.5. Object-Based Image Analysis 

The methodology used for this research mainly focuses on the OBIA (Object-based Image Analysis), which 

has proven significant in various studies (Liu et al., 2020; Makinde et al., 2016; Yang et al., 2022). 

Orthomosaics generated are used for Object-Based Image Analysis (OBIA), which has shown better 

classification results for the vegetation (Prošek and Šímová, 2019b; Yang et al., 2022). As per various studies, 

Object-based Image Analysis has given better results than pixel-based classification for very high-resolution 

imagery (Kamagata et al., 2006; Jing Liu et al., 2015; Makinde et al., 2016). OBIA helps delineate the objects, 

a group of relatively homogeneous pixels. It considers different properties before creating objects which 

are spectral, shape, texture, and spatial. (Johnson and Ma, 2020; Ventura et al., 2018). It involves two steps: 

image segmentation, in which an image is delineated into objects representing different features, and image 

classification, in which objects or segments are classified using their spatial, spectral, size, and shape 

properties (Johnson and Ma, 2020). Software eCognition was used for OBIA.  

2.5.1. Image segmentation 

Image segmentation is an essential task during the classification of various land covers, and it is crucial to 

delineate objects precisely and accurately. Under-segments and over-segments of the objects may lead to 

misclassification of the different vegetation, reducing the classification accuracy. The delineation of the 

different vegetation for high-resolution imagery was processed using the multi-resolution segmentation 

(MRS) algorithm. The segments created by MRS algorithm are based on parameters: weight of the shape, 

compactness, smoothness, scale parameters, & image layers used. MRS is an iterative process in which it 

forms an object until it acquires a threshold value for the object. The main parameter for creating segments 

is the scale parameter, which signifies the amount of spectral variation within objects. For the shape 

parameter, the higher the value, the more it is considered, and the lower the influence of color in the 

segmentation process. In compactness, the higher the value, the more compact the image objects will be. 

The pixels are merged with neighboring pixels, which are homogenous and create objects (Y. Chen et al., 

2021) and are considered a bottom-up approach to aggregate pixels into homogeneous zones (Munyati, 

2018). Segmentation is sensitive to the parameters used (homogeneity criteria) and image layers like CHM 

and vegetation indices. A trial-and-error process was used to determine the value of parameters, and a fine 

segmentation resulted for Vale Carapito (RGB orthomosaic, March 2022) by using; Scale parameter (SP) as 

80, shape as 0.1, and compactness as 0.8, whereas for Ermo das Águias (RGB orthomosaic, March 2022) 

only scale parameter was changed which was 100. It was crucial to eliminate the shadows, so separate 

segments were considered visually, and a new class was added to remove shadows from the final 
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classification. Another new class was artificial objects, under which target marks were segmented. Shadows 

and target marks were removed by the end of the final classification. 

2.5.2. Classification 

After segments are formed, classification is done using training samples, which are saved as a vector file. 

The training samples used are polygons of the different land covers and vegetation typology to be used for 

training the classifier model. A supervised approach is used for classification using the “Random trees” 

algorithm and “sample statistics based” for the source of feature space (Statistics and Assessment, n.d.). 

Before supervised classification, the thematic layer was used to classify sample objects into different land 

cover classes: Bare soil, bracken, grass, rock, shrubs, trees, and lichens. A separate class for shadows and 

target marks was added to carefully remove those segments in classification as it can lead to erroneous 

results. Similar methods were used for RGB and MS orthophoto classification. 

2.5.3. Accuracy assessment 

Samples collected during March 2022 field collection were used for validation and are independent of the 

training samples. The samples are in polygon form and used as a thematic layer in eCognition software. 

After classification, an error matrix of the main seven landcover classes was generated in eCognition using 

accuracy assessment. It resulted in overall accuracy, producer’s & user’s accuracy, and kappa value for the 

main land cover classes. Overall accuracy is generally expressed as a percentage, with 100% accuracy 

meaning all reference sites were correctly classified. Overall accuracy can be calculated by the number of 

correctly classified classes to the total number of reference classes. At the same time, the kappa coefficient 

helps in evaluating the classification accuracy results and ranges between the value -1 to 1, where -1 indicates 

poor results while +1 indicates the significance of the classification accuracy (“Accuracy metrics,” n.d.). 

2.6. Variable importance 

Rstudio was used to determine the variable importance by generating a ggplot. It was important to assess 

which variable has shown more significance (usefulness) in the vegetation classification and not for selecting 

variables. The ggplot resulted in two metrics: Mean Decrease Accuracy and Mean Decrease Gini.  ‘Mean 

Decrease Accuracy’ plots illustrate how much accuracy is lost when a variable is removed from the model, 

as variables are represented in descending importance. The variable is more crucial for a good classification; 

the more the accuracy gets affected. Whereas ‘Mean Decrease Gini’ is a measurement of the contribution 

of each variable to the homogeneity of the nodes and leaves in the final random forest model. It is based 

on Gini purity index. The higher the value, the higher the variable’s importance in the model (Martinez-

Taboada and Redondo, 2020). Variable importance plots were generated to understand which image layer 

plays a more important role in classification using Random Forests. The graph demonstrates the importance 

of each layer in decreasing order for classification accuracy. In variables, standard means ‘Standard 

deviation’ of that image layer. 

2.7. Comparison of results 

All the results of the classification generated are compared to answer the research questions, and the 

comparison is made using the classified maps and the error matrix. The error matrix generated for each 

result was used for the comparison. The methodology used for the vegetation classification in each case 

was the same: to compare the results generated using the same methods and algorithm but for different 

datasets. The comparison shows the effectiveness of the methodology adopted for the vegetation 

classification using the UAV dataset. 
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UAV point clouds 

Point clouds were compared using the cloudcompare by generating Canopy Height Model to compare the 

effect of georeferencing using GCP acquired using GNSS and without GCP. The height of the different 

vegetation and its classification can help understand the comparison in two conditions. The comparison is 

made to understand if there will be an effect on point cloud density and if it will affect the vegetation 

classification results. 

Classification results 

The comparison of vegetation classification results for each question will be visually compared in which 

the same area will be zoomed in and compared with reference images and orthomosaic. While the main 

comparison will be considered using an error matrix. The same training and validation samples were used 

for vegetation classification to compare image format and sensors(RGB camera and Multispectral camera), 

as Vale Carapito (plot5) was the study area. Comparing one season with the combination of three seasons 

has used the same methods but different training and validation samples. This comparison was done in 

Ermo das Águias (plot5) as the data collection by Rewilding Portugal was in 2021, and the area did not 

change much in between the time. So, combining the orthophotos using multi-tie points was feasible and 

was used for vegetation classification. 

Error matrix 

Error matrix was generated in eCognition software as “Accuracy assessment,” in which training and 

validation inputs are used. Two main metrics are considered for the accuracy assessment: overall accuracy 

and kappa value. Overall accuracy represents the number of correctly classified classes to the total number 

of reference classes. Overall accuracy can also be written in the form of a percentage. Kappa value helps 

evaluate the classification accuracy, i.e. more the value, the better the classification. The value ranges from 

-1 to +1. 

2.8. Software used 

A list of software has been used for the study, and they were mainly used for data processing, data analysis 

& interpretation, visualization, and documentation of the work. Table 6 represents the name and the 

purpose. 

Table 6: List of software used and its purpose 

Software Purpose 

Adobe Photoshop 2020 Convert files: DNG (RAW) to TIFF 

ArcMap 10.8.2 Pre-processing, visualization, creating maps 

CloudCompare 2.12. beta Point clouds processing and analysis 

eCognition Developer 10.2 
Object-based Image Analysis (segmentation & 

Random Forest Classification) 

Google Earth Pro 7.3 
Pre-flight planning, site inspection during 

fieldwork 

Mendeley Desktop 1.19.8 Citation and referencing 

Microsoft Excel GCP recorded and data entry 

Pix4D mapper 4.7.5 UAV Image processing 



COMPARISON OF LOW-COST METHODS FOR VEGETATION MAPPINGUSING OBJECT BASED ANALYSIS OF UAV IMAGERY: A CASE STUDY FOR THE GREATER 

COA VALLEY, PORTUGAL  

 

20 

Parrot Sequoia 1.7.1 Camera settings & Radiometric calibration 

QGIS 3.24.0 Visualization 

RStudio 1.4.1106 Variable Importance 

SW maps Field survey and marking points 

UgCS application Flight planning 
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3. RESULTS  

3.1. Structure from Motion processing 

SfM photogrammetric processing of UAV-RGB and UAV-MS images in Pix4D results in orthomosaic, 

DTM, DSM, and point clouds. The orthomosaic of Vale Carapito plot 5 (March 2022) generated using 

RGB and MS images are shown in Figure 11. A total of 682 UAV-RGB images were used for SfM 

processing, 99% of which were calibrated. Different projects were created for RGB images: JPEG and 

TIFF with GCP and JPG without GCP. Each of the project’s results was used to analyze research questions. 

RGB-JPEG and RGB-TIFF were used for the classification and comparison between image formats. RGB-

TIFF and Multispectral were used for classification and comparing the result between sensors. The average 

Ground Sampling Distance (GSD) of RGB-TIFF images was 0.0228m (2.28cm) for an area of 11.95ha. 

Orthomosaics show a perfect overlap, with five or more images for every pixel in most areas. The other 

processing results for JPEG and TIFF images are added in Annex 5. Similarly, the average Ground 

Sampling Distance (GSD) for Multispectral imagery was 0.0554m (5.54cm) for an area of 10.76ha. The 

processing result for Pix4D is added in Annex 4. 

The orthomosaic generated using UAV-RGB JPEG images with and without GCP has resulted in the same 

average Ground Sampling Distance, i.e., 0.028m (2.28cm). Point clouds generated using SfM processing 

for March 2022 using UAV-RGB images in JPEG format have resulted in an average density of 1204.68 

per m3. In comparison, the average density of point clouds for the same images but with GCP resulted 

1143.45 per m3. 

Georeferencing the projects was done using 10 GCP as” 3D GCP,” and four GCP was used as “check 

point.” The mean Root Mean Square Error (RMSE) for JPEG images was 0.042m, and RMSE(X, Y, Z) 

were 0.04m, 0.03m, and 0.05m. The RMSE is fine as the value is almost twice of GSD value. While, for 

TIFF images mean RMSE was 0.029m, and RMSE(X, Y, Z) were 0.03m, 0.02m, and 0.03m. The value is 

Green  NIR  
RGB  

Figure 11: RGB and Multispectral orthomosaic(Green, NIR, Red-edge, Red) for March 2022 in Vale Carapito (plot5) 
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comparatively better than the RMSE for JPEG images. Similarly, GCP was used during the processing of 

Multispectral imageries, for which RMSE was 0.054m. During processing, 10 GCP and four checkpoints 

were used for Multispectral imageries, and the mean RMSE was 0.054m, and RMSE(X, Y, Z) were 0.012m, 

0.02m, and 0.14m. The RMSE for the height value resulted high, which signifies a high difference between 

initial and computed positions of GCP (“Pix4D community,” 2022). It was difficult to mark GCP in 

multispectral images due to coarse resolution and greyscale images, so there can be chances of error. A 

summary of all the processing results is shown in Table 7 for plot 5 of Vale Carapito. 

Table 7: Summary of Structure from Motion results for Vale Carapito plot5 

Features UAV-RGB (JPEG) UAV-RGB (JPEG 

& without  

GCP) 

UAV-RGB(TIFF) UAV-MS 

Number of 

images 

682 

(99% calibrated) 

682 

(99%calibrated) 

682  

(99% calibrated) 

1388  

(100% calibrated) 

Number of 

GCP 

10 0 10 10 

Mean 

Reprojection 

Error (pixel) 

0.145 0.145 0.135 0.231 

GCP mean 

RMSE (m) 

RMSE (X, Y, 

Z) 

0.042m  0.029m 0054m 

0.04 0.03 0.05  0.034 0.024 0.029 0.012 0.019 0.1 

Checkpoint 

RMSE (m) 

(X, Y, Z) 

0.06 0.038 0.1  0.049 0.038 0.08  

Coordinate 

system 

WGS 84/UTM zone 

29N 

WGS 84/UTM 

zone 29N 

WGS 84/UTM zone 

29N 

WGS 84/UTM zone 

29N 

Point Cloud 

average 

density (per 

m3) 

1143.45 1204.68 1069.07 21.57 

 

Ermo das Águias 

The orthomosaic of March 2022 (Figure 12) was generated in Pix4D, and a total of 677 UAV-RGB images 

(TIFF) were used for the SfM processing. The processing resulted in an average Ground Sampling Distance 

of 0.0225m (2.25cm) for an area of 13.14ha. A perfect overlap figure of orthomosaic is generated in which 

most of the pixels have an overlap of more than five images (Annex 5). 
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Georeferencing was done using 9 GCP as “3D GCP” and four GCP as “Check point.” Average Mean 

Square Error was 0.043m while for RMSE (X, Y, Z) were 0.04m, 0.02m, 0.06m. The average point cloud 

density generated was 1135.83 per m3. The RMSE value was fine, and the results are used for the fourth 

research question. 

3.2. Classification of compressed and uncompressed Images format 

The UAV images acquired for the research were in two formats: compressed (JPEG) and uncompressed 

(DNG). The vegetation classification was done with two sets of samples. At first, 119 training samples were 

used, which resulted in poor classification accuracy for JPEG and TIFF images. The JPEG images resulted 

in 59.65% overall accuracy and 0.52 kappa value. TIFF images resulted in 48.82% overall accuracy and 0.38 

kappa value. The table of error matrix is shown in Annex 6. The overall accuracy and kappa value were 

lower in the TIFF images than in JPEG images. About 68 more samples were added to train the model, 

resulting in improved landcover classification. A map shown in Figure 13 represents the vegetation 

classification of Vale Carapito plot 5 using JPEG images (using 187 training points).  

Analyzing the classification results of JPEG images orthomosaic, it can be observed that the classifier 

overestimated lichens at the center of the plot, and bracken has been misclassified comparatively among all 

classes. Trees have been best classified among all the classes, and bracken has the lowest accuracy. Some 

large rocks in the plot were covered with lichens, which led to the wrong classification. 

Figure 12: RGB orthomosaic of Ermo das Águias in winter season with the three different color bands 
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As shown in Table 8, the error matrix improves overall accuracy using 187 training points but not with 

much significant change as seen in TIFF image orthomosaic. The overall accuracy is 62.04%, and the kappa 

value 0.54. Trees and lichens have the highest producer accuracy, while bare soil and trees have the highest 

user accuracy. 

Table 8: Accuracy assessment of the JPEG image classification result by generating error matrix in eCognition software. 

Confusion Matrix (JPEG)  

User 

class 

Grass Bracken Shrubs Rock Trees Bare soil Lichens Sum 

Grass 26 1 3 6 4 4 1 45 

Bracken 1 2 1 0 0 0 0 4 

Shrubs 7 6 41 10 5 0 2 71 

Rock 5 4 8 37 2 5 5 66 

Trees 1 1 5 0 26 0 0 33 

Bare soil 0 0 2 3 0 17 0 22 

Lichens 7 0 0 7 0 0 23 37 

Sum 47 14 60 63 37 26 31  

Accuracy 

Producer 0.56 0.18 0.69 0.59 0.70 0.65 0.74  

User 0.57 0.25 0.57 0.56 0.78 0.77 0.62  

Overall Accuracy: 62.04% 

Kappa: 0.54 

Using 187 training samples, TIFF images orthomosaic resulted in better classification than JPEG images. 

As the classification of other classes improved, but bracken gave the lowest accuracy among all classes. 

Figure 13: Map of Vale Carapito plot 5 representing the vegetation classification of JPEG images 
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TIFF format helps distinguish between the heterogeneous vegetation present in the landscape as it retains 

more information per pixel than compressed JPEG images and has high image quality (Alfio et al., 2020). 

Since the area's visual image classification, as shown in Figure 14 was better than JPEG image classification. 

So, for vegetation classification, using the TIFF format images in a heterogeneous landscape is beneficial. 

Also, the error matrix in which overall accuracy and the kappa value signify the plot’s landcover 

classification results (Table 9) shows better accuracy with TIFF images.  

While in the case of the error matrix generated for TIFF images, orthomosaic resulted in better accuracy 

with more training samples. The overall accuracy improved from 48% to 80.65%, resulting in a kappa 

coefficient of 0.77, as shown in Table 9. Lichens have the highest and bracken have the lowest producer’s 

accuracy, while Trees and Lichens resulted with the highest user’s accuracy and bracken with the lowest 

user’s accuracy. 

Table 9: Accuracy assessment of the TIFF image classification result by generating error matrix in eCognition. 

Confusion Matrix (TIFF)  

User 

class 

Grass Bracken Shrubs Rock Trees Bare soil Lichens Sum 

Grass 12 0 0 0 0 0 1 13 

Bracken 0 2 1 0 0 0 1 4 

Shrubs 2 2 15 2 2 0 0 23 

Rock 1 0 3 17 1 2 0 24 

Trees 0 0 0 0 14 0 0 14 

Bare soil 0 0 0 1 0 8 0 9 

Figure 14: Map of Vale Carapito plot5 representing the vegetation classification of orthomosaic generated using TIFF images 
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Lichens 0 0 0 0 0 0 9 9 

Sum 15 4 19 20 17 10 11  

Accuracy 

Producer 0.8 0.18 0.79 0.85 0.82 0.8 0.9  

User 0.92 0.29 0.65 0.71 1 0.89 1  

Overall Accuracy: 80.65% 

Kappa: 0.77 

The results signify that using TIFF images for the vegetation classification is better than using JPEG images. 

The number of training samples also plays an important role in classification. Figure 15 depicts the effect of 

training points on the compressed and uncompressed images of orthomosaic, especially when RGB images 

are used. 

 

3.3. Classification using Multispectral sensor 

The image layer acquired from the multispectral sensor has helped improve the vegetation’s segmentation 

and classification. The same set of training samples (187 training) was used as used for the previous research 

question. A canopy height model (CHM) generated using UAV-RGB was added during segmentation, as 

during the early spring season, deciduous trees have leaf-off conditions, and the multispectral sensor could 

not detect the deciduous tree structure. In contrast, the CHM of RGB orthomosaic detected the deciduous 

trees in the study area. The classification was visually compared with the UAV-RGB image orthomosaic, 

and multispectral image layers help distinguish the different vegetation types, especially between the lichens 

growing on the rock’s surface. The trees and bare soil were best classified compared to other classes, and 

bracken has the lowest accuracy. Classification of the various vegetation using the multispectral sensor has 

shown significant results compared to RGB images. The classified map is shown in Figure 16, and the error 

matrix is in Table 10. 
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Figure 15: Bar graph with overall accuracy value of two sets of training points 
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The significance of the multispectral sensor has resulted in the classification of the vegetation present in the 

area. The classification has resulted in 85.19% overall accuracy with a 0.83 kappa coefficient. The trees and 

bare soil classes have shown the highest producer’s accuracy while bracken with the lowest producer’s 

accuracy. Similarly, trees and bare soil have the highest user accuracy, and bracken has the lowest user 

accuracy. The error matrix has been tabulated in Table 10. 

Table 10: Accuracy assessment of multispectral image classification result generated using error matrix in eCognition. 

Confusion Matrix (Multispectral) 

User 

class 

Grass Bracken Shrubs Rock Trees Bare soil Lichens Sum 

Grass 9 1 0 1 0 0 0 11 

Bracken 0 2 1 0 0 0 0 3 

Shrubs 1 0 10 0 0 0 0 11 

Rock 1 1 0 7 0 0 1 10 

Trees 0 0 0 0 6 0 0 6 

Bare soil 0 0 0 0 0 6 0 6 

Lichens 0 0 1 0 0 0 6 7 

Sum 11 4 12 8 6 6 7  

Accuracy 

Producer 0.82 0.5 0.83 0.87 1 1 0.86  

User 0.82 0.66 0.90 0.73 1 1 0.85  

Overall Accuracy: 85.19% 

Kappa: 0.83 

Figure 16: Map representing Vale Carapito plot5 vegetation classification of orthomosaic generated using multispectral images. 
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RGB orthomosaic used different vegetation indices during segmentation and classification, while MS 

orthomosaic used different vegetation indices. Each layer is used by random forest classifier during creating 

and classifying objects. To understand the significance of each image layer with vegetation indices in 

classification for RGB orthomosaic and MS orthomosaic, variable importance was generated using R-

studio.  

Figure 17 demonstrates the image layers used for classifying RGB images using OBIA, where the Standard 

deviation & mean of Canopy Height Model has the highest Mean Decrease Accuracy (MDA). At the same 

time, similar is the case in Mean Decrease Gini (MDG). Mean Grey and mean GLI has the lowest value for 

Mean Decrease Accuracy and mean Grey and Standard Deviation of Blue layer have the lowest Mean 

Decrease Gini. 

 
As shown in Figure 18, various vegetation indices were used with UAV-MS image layers for Random Forest 
classification. Mean NDVI has the highest Mean Decrease Accuracy, following the Mean Canopy Height 
Model generated using RGB and MS images. While Mean Canopy Height Model of RGB images has the 

Figure 17: Variable importance plot for UAV-RGB image classification using Random Forests 

 
Figure 18: Variable importance plot for UAV-multispectral image classification using Random Forests 
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highest Mean Decrease Gini following mean NDVI and Mean CHM of MS images. The lowest Mean 
Decrease Accuracy is for the Standard Deviation of GRVI and GCI, whereas the standard deviation of 
NDWI and MGVRI has the lowest Mean Decrease of Gini. 

The results signify the importance of the multispectral camera in classifying different types of vegetation 

compared to the RGB camera. NIR camera helps in identifying different vegetation and can distinguish 

rocks from lichens. NDVI plays a major role in classification also. 

3.4. Significance of Ground Control Points  

Ground Control Points are useful to determine the accurate measurement of X, Y, and Z values of the 

point of interest and to get information about the elevation of the area. They also help improve positional 

accuracy and reconstruction of the 3D model as it measures the value in all three directions with less error. 

The results of the CHM generated using GCPs and without GCPs in Vale Carapito are shown in Figure 19. 

RGB JPEG images are used for DSM and DTM generation (in two different conditions) and DSM-

DTM=CHM. The vegetation classification without accurate CHM is difficult for shrubs and grasses, but 

trees can easily be identified. The orthomosaic generated in both conditions is identical; the only difference 

can be seen in the positional accuracy of the field images and points. In such a landscape, where grasses 

and shrubs are found together, the chances of misclassification may occur, but the dominant life form is 

identifiable in both conditions.  The raster CHM showed a different range of CHM with GCP and without 

GCP. So, to analyze the difference in the results of CHM, point clouds were used for analysis in two 

different conditions. 

Point clouds co-registration of the same plot was not appropriately aligned, and cloud-to-cloud distance 

resulted in a mean distance of 0.20m and a standard deviation of 0.15m, while the range from 0 to 5.08m 

(Annex7). After ICP registration of point clouds resulted in an RMSE of 1.00158m and a transformation 

matrix (Annex7).  

Figure 19: Canopy Height Model generated from DSM & DTM 
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A segment of the plot was used to check the height of the vegetation present, resulting in a different range 

of height for the same vegetation, as shown in Figure 20. Cloud to Mesh distance helps calculate the CHM 

of the vegetation in the segment. The result of Cloud to Mesh(C2M) distance computed for the segment 

resulted as A(point clouds generated using GCP) is from -2.03m to 7.83m. whereas Cloud to Mesh (C2M) 

distance computed for segment B(point clouds generated without using GCP) is from -3.5m to 7.05m.  

The result shows that the range of CHM generated using point clouds for the segment is different in both 

cases and the highest point of the tree in case of georeferenced is higher compared to non-georeferenced. 

The georeferenced point cloud is expected to result in a better registration accuracy than the non-

georeferenced point cloud as the GCP used to have three values which can help in better registration. 

3.5. Classification of tri-seasonal orthomosaic 

The combination of summer, spring, and winter orthomosaic was used for the classification, resulting in 

the form of a classified map, as shown in Figure 21. The vegetation classification in Figure 21 has shown 

high classification accuracy (92.99%). In Ermo das Águias, the area was classified into six major landcover 

classes: bare soil, bracken, grass, rock, shrubs, and trees. Lichens were absent in the area. The tri-seasonal 

orthomosaics have helped classify vegetation more accurately than a single-season orthomosaic. Accuracy 

in classifying the bracken in the area also improved. The trees and grass are easily distinguished in visual 

interpretation. The grass dominates the plot. Also, the trees have been classified quite accurately in the 

classified map. The distribution of the shrubs and rocks is present throughout the plot. The area has some 

exclusion plots demarcated to check the changes in the plot due to grazing done by the horses over time 

compared to the closed area. On the map, bare soil is abundant on the plot’s edges due to vehicle 

movements for monitoring and other purposes. Therefore, it is used as a path to access the plot. 

A 

B 

Figure 20: CHM constructed using Cloud to mesh distance in cloudcompare using point clouds generated a)with GCP and 

b)without GCP 

B 
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Using orthomosaic of three seasons in combination to perform vegetation classification has resulted in the 

best results for the life-form categories. Error matrix was generated using accuracy assessment in 

eCognition. The classification resulted in an overall accuracy of 92.99%, with a kappa value of 0.91, as 

shown in Table 11. The highest producer’s accuracy was shown by bare soil and the lowest of the shrubs, 

while in the case of user’s accuracy highest was for trees and rocks, and the lowest was for the bare soil. 

Table 11: Accuracy assessment of a combination of three seasons image classification in eCognition 

Confusion Matrix (Three-seasons)  

User class Bare soil Shrubs Grass Rock Bracken Trees Sum 

Bare soil 28 3 1 4 0 1 37 

Shrubs 0 45 0 1 0 3 49 

Grass 0 0 42 0 2 0 44 

Rock 0 2 0 56 0 0 58 

Bracken 0 0 0 0 26 2 28 

Trees 0 3 1 0 0 108 112 

Sum 28 53 44 61 28 114  

Accuracy 

Producer 1 0.84 0.95 0.92 0.93 0.95  

User 0.76 0.92 0.95 0.96 0.93 0.96  

Overall Accuracy: 92.99% 

Kappa: 0.911 

 

 

 

Figure 21: Map of Ermo das Águias plot5 representing the classification of combination of three-season using 

UAV-RGB images 
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As the classification involved three orthomosaic and three image layers, CHM led to much computational 

power to run eCognition software. So, GRVI and NDSI were used for each season to analyze the 

importance of vegetation indices for the classification. The variable importance (Figure 22) resulted in the 

case of classification of the combination of three seasons, using UAV-RGB images resulted in the highest 

Mean Decrease Accuracy of the image layer means of blue layer of winter season followed by the mean of 

GRVI of summer season image layer. The standard deviation of the red image layer of the spring season 

has the lowest. In Mean Decrease Gini, the image layer mean of a blue layer of the winter season has the 

highest variable importance, and the Mean of GRVI of the winter season image layer has the lowest. 

 

 
Figure 22: Variable importance plot for the combination of three seasons of UAV-RGB image classification using Random 

Forests. 
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4. DISCUSSION 

4.1. Importance of Image Compression 

Image compression has shown significant consequences in the results using the UAV-RGB dataset for 

processing and classifying RGB orthomosaic. The image format is based on the quantity and the quality of 

the images used. TIFF files are a lossless format, maintaining image information. On the other hand, JPEG 

files can be compressed at various rates (Alfio et al., 2020). JPEG imagery acquired from DJI Phantom4 

was used while DNG format was changed to TIFF. The computational time and storage requirements were 

high when processing TIFF images, but the precision and accuracy were better than in JPEG. GCP helped 

to overlay the orthomosaic perfectly over each other, which can be used to compare the plot visually. There 

was no significant difference in orthomosaic generated with each format, and the vegetation types were 

easily identifiable in both cases. However, RMSE was better in the case of TIFF compared to JPEG. RMSE 

of TIFF for X, Y, Z is comparatively better than RMSE of JPEG, which makes TIFF format to be used 

for classification. Although the point cloud density of JPEG is higher, TIFF has shown better classification 

accuracy with the orthomosaic.  

Vegetation classification with a small number of training samples resulted in poor overall accuracy and 

kappa with TIFF image format orthomosaic compared to JPEG image format orthomosaic. The number 

of training samples was increased (by adding some additional samples); this improved the classification 

accuracy. The classification resulted in TIFF images being classified with better accuracy and kappa value 

than JPEG images, as shown in Table 8 and Table 9. Object-based image analysis was used with random 

forest for classification, which is sensitive to the image quality, the number of training samples, and 

parameters used for the classification (Schwind and Starek, 2017). Image format can be slightly influenced 

by the form of the ground’s surface (terrain of the ground), the sensors and the platform used for the data 

acquisition. The images acquired in the summer of 2021 were in TIFF and JPEG format. The first flight 

did not include raw images, and the whole area was not covered, so the second flight with raw and jpeg 

images was planned. The orthomosaic generated using the images was not properly aligned to each other. 

There was a slight shift in the orthomosaic due to the images saved in the card during acquisition or the 

platform used. 

It also plays importance in the creation of point cloud density which further helps intensify the vertical 

information and 3D structure of the vegetation, which can be used as a baseline for the comparison. 

4.2. Role of GCPs in image classification  

CHM is useful in vegetation classification and helps determine the vegetation structure and plant life forms. 

To understand the importance of GCP, two projects created with JPEG images, one with GCP and the 

other without GCP, resulted in orthomosaic, DSM, and DTM. The orthomosaic was similar but was not 

aligned because orthomosaic with no GCP will use the georeferencing from UAV-RGB images and will 

not be as accurate and precise as GNSS measurements. Also, the results of SfM processing resulted in DSM 

and DTM being used to generate the Canopy Height Model. 

The significance of CHM in vegetation classification was evident in the UAV-RGB and UAV-MS 

classification, in which CHM have shown as an essential variable for improving accuracy (as in Figure 17 

and Figure 18). Some studies show that DTM is affected by the ground points, and GCP helps correct DTM 

& DSM values, which helps achieve better accuracy for CHM (Awasthi et al., 2020; Gindraux et al., 2017). 

Thus, the accurate measurement helps in forming an accurate representation of the area, which can be used 

by the user for future reference or to monitor the changes in the area. 

After generating an orthomosaic with different conditions but the same images resulted in a different range 

of CHM. However, the vegetation classification with the same training samples will give different results 
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due to the shift in data. Training points do not align with the shape of the objects in case of not 

georeferenced orthomosaic. So, Point clouds were used to answer the research question about the 

importance of GCP in determining vegetation structure. Point clouds are one of the results of SfM 

processing and help create a 3D structure of the area or an object. The point clouds density is essential as 

it gives more data about the area and helps in classification. JPEG has resulted in a high point cloud density 

compared to TIFF images point cloud density, which was used for further study. As the manual fine 

registration is not possible for the vegetation, which is not uniform from each side, so fine ICP registration 

was used. The higher RMSE of point cloud registration attributes to the poor alignment between the point 

clouds. Point clouds were useful to identify the presence of different plant life forms, especially trees and 

shrubs. Grasses were small and could not be distinguished properly, although artificial objects like fencing 

and borders having certain heights could show in 3D structure.  

A segment in the plot was used to check if the presence and absence of GCP help in accurate estimation 

of the vegetation structure or height, and the same vegetation was compared. CHM resulted in two 

conditions, giving in a difference of 80cm between the tree's highest point in the segment, as shown in 

Figure 20. The ground data is important for accurate vertical information of the vegetation. Improving the 

vegetation structure's accuracy for comparison in future GCP is important and influences the results of 

photogrammetric processing (Awasthi et al., 2020). 

Point clouds were useful in generating the structure of the trees and shrubs. By using the present point 

cloud data to compare the future conditions of trees and shrubs can help monitor the vegetation change in 

the area. It will help the team understand the changes happening in the area and decide the management 

strategies. So, GCP is essential to compare the changes over a period of time, but if it is necessary to classify 

the area into different landcover for maps, then it can be done without GCP but will not be helpful for 

future comparisons. 

4.3. Effect of VNIR multiple data 

For the study, UAV-RGB and UAV-MS imageries were processed and classified based on the life-form 

classes identified. Different vegetation indices were generated using UAV-RGB images and UAV-MS 

images. Visible and Near-infrared (VNIR) multispectral data is useful for identifying different life-form 

classes. Ashapure et al., (2019) signified the importance of multispectral sensors in accurately estimating 

canopy cover model with respect to RGB-based datasets. NDVI has played an important role in improving 

classification accuracy. 

The RGB orthomosaic was generated using TIFF images with three image layers (Red, Green, and Blue). 

For classification, CHM generated was added as the image layer along with other vegetation indices (Table 

4), which helped improve segmentation and classification. Prošek and Šímová, (2019a) compared the 

multispectral & multispectral with SfM processing, which resulted in a viable method for mapping 

shrubland, which is a similar case to the heterogeneous landscape taken as a study area. The research justifies 

that the fusion of multispectral with SfM has resulted in better results in classifying different classes 

compared to RGB orthomosaic. CHM helps in differentiating the vegetation based on height. The CHM 

of multispectral images was not identifying the presence of deciduous trees. As the images acquired were 

of leaf-off season, the sensor captured images directly on land. In comparison, CHM of RGB imagery 

detected the presence of deciduous trees in the area. 

The classification resulted in an overall accuracy of 80.65% and a 0.77 kappa value as in Table 9. The variable 

importance helped in understanding which image layer has shown the high significance in classifying the 

image layer. CHM has shown the highest importance in Mean Decrease Accuracy and Mean Decrease Gini 

(Figure 17). CHM has played an important role in classifying different vegetation types using OBIA, while 

Mean GLI has the least important role in improving the classification accuracy.  



COMPARISON OF LOW-COST METHODS FOR VEGETATION MAPPINGUSING OBJECT BASED ANALYSIS OF UAV IMAGERY: A CASE STUDY FOR THE GREATER 

COA VALLEY, PORTUGAL  

 

35 

In the case of Multispectral image classification, four different image layers were acquired from four 

different cameras of Parrot Sequoia (Green, Red, NIR, Red-edge). The combination of four image layers 

was used along with CHM generated using MS and RGB images. RGB image of parrot sequoia was not 

used as DJI camera is better. CHM generated from UAV-RGB images was added because the deciduous 

trees in the region were in leaf-off condition, and the sensor could not correctly distinguish the tree structure 

from the ground. The coarse resolution of the sensor made it more difficult. So, in order to distinguish and 

correctly classify the deciduous trees, UAV-RGB generated CHM was added during OBIA in eCognition. 

The vegetation indices used for multispectral imageries classification differed from those used for RGB 

image classification, as shown in Table 5. Vegetation indices generated using multispectral sensors have 

helped improve the classification accuracy, and the NIR image layer has shown significant importance in 

the classification, as seen in the variable importance Figure 18. The variable importance graph of Mean 

Decrease Accuracy has signified mean NDVI’s importance in improving classification accuracy, followed 

by mean CHM using UAV-RGB images and UAV-MS images. While Standard deviation GRVI and GCI 

have minor importance. The error matrix generated resulted in an overall accuracy of 85.19% and a kappa 

value of 0.83 (Table 10). 

The multispectral sensor has dedicated sensors extending to the near-infrared wavelength with different 

spectral resolutions, and calibration of the UAV acquired imageries during SfM processing helps distinguish 

different vegetation present on the ground. Table 10 shows the highest user and producer accuracy of the 

bare soil and trees, in which the NIR image layer and NDVI have shown a high significance. The area has 

a high presence of grass, rocks, and shrubs, and sometimes it is hard to distinguish between the vegetation 

classes based on the height. The spectral value of each vegetation is different, which helps identify the 

different types of vegetation present in the area, especially between bare soil - grass & rock - lichens. The 

presence of lichens is quite correctly classified with multispectral imageries and RGB image classifications, 

but rock classification slightly improved in the case of multispectral classification. The lichens were dried 

and burnt (as sown in Figure 23) due to fire and drought conditions in the region; they looked similar to 

rocks in RGB images. So, the multispectral sensor helped in distinguishing the rock and lichens. 

Further, the classification accuracy of shrubs and bracken improved with the multispectral image 

classification. The different phenological characteristics of plants have been used to distinguish the species 

with the help of multispectral images (Paz-Kagan et al., 2019), and this is evident in the results of the error 

Figure 23: Image showing a) the dried lichens grown on the surface of the rock in Vale Carapito b) Dried lichens on the 

rock surface and a patch of deciduous trees in Vale Carapito 
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matrix of the multispectral image classification Table 10. During winter season, bracken was dried and was 

not easily identifiable from the orthomosaic but shrubs were in flowering condition and was quite evident 

in the images. The segments were easily constructed with multispectral images and resulted in good 

classification accuracy. An image of the area covered with shrubs (white flowers in bloom) from the field 

site is shown in Figure 24. 

 

4.4. Effect of multiple seasons data on vegetation classification 

Various studies have signified the importance of season in improving classification accuracy (Chib, 2021; J. 

Liu et al., 2015; Macintyre et al., 2020). The combination of seasons for the classification has resulted in a 

high accuracy compared to other classifications Table 11. The classification was done using UAV-RGB 

images, and it was evident to observe the changes in the phenology of vegetation present in the area.  

The winter season orthomosaic shows the prominent presence of shrubs as they were flowering and 

perennial trees and deciduous trees difference was easily identifiable. In visual comparison of the 

orthomosaic, there were changes found in the shrubs as there was a time difference of an year between the 

image acquisition. Grass was prominent in the winter and spring orthomosaic. The presence of bracken is 

hard to distinguish in the winter orthomosaic but it was evident in summer and spring orthomosaic. The 

difference in phenology of vegetation can be seen in Figure 25. 

 

Figure 24: Dense patch of white broom shrubs in bloom in Vale Carapito 

Figure 25: Screenshot of three seasons (spring, summer, and winter) covered with shrubs, bracken, grass, and rocks 
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A high overall accuracy of 92.99% was resulted using error matrix and 0.91 kappa value. Grass and trees 

have given the best results, whereas bracken was classified quite accurately and resulted in high accuracy 

(user and producer accuracy = 0.93). Figure 25 shows the change in the colour of bracken in each season, 

and the various seasonal image layer improved its segmentation and classification. The early spring (March 

2022) orthomosaic was useful in distinguishing between deciduous and perennial trees; under canopy 

vegetation for deciduous trees was visible in UAV images. The white broom shrubs were in the blooming 

stage, which helped in distinguishing them easily. The grass was greener compared to summer orthomosaic 

while it was on the growing stage for spring. Whereas it was difficult to distinguish between lichens and 

rock, bracken was hard to identify in RGB orthomosaic. Bracken (yellowish-green in color) was easily 

identified in summer orthomosaic. 

Vegetation indices (NDSI and GRVI) was generated of each season to improve the segmentation and 

classification of the combined imageries. The variable importance in Figure 22 of combined season shows 

the highest importance of Mean Blue image layer of winter while standard deviation of Red image layer of 

spring season as the lowest for Mean Decrease Accuracy. While, mean blue image layer of winter season 

have the highest, and mean GRVI of winter imagery has the lowest Mean Decrease Gini. The significance 

of the March 2022 orthomosaic is evident in classifying the shrubs and trees. Bare soil is quite evident in 

the summer and spring orthomosaic, and the high presence of bare soil on the edges shows the significance 

of each season’s image layer. The CHM of winter imagery was used to segment and classify the orthomosaic, 

but it has shown less significance in the variable importance graph. Each season’s variation in the different 

vegetation improves the classification accuracy (J. Liu et al., 2015).  

During the processing of the OBIA, the orthomosaics of three seasons were not correctly aligned because 

different drone and flight parameters were used for image acquisition, resulting in different ground sampling 

distances. The absolute accuracy of UAV-GPS led to some errors, reflected in the orthomosaics. So, to 

align different orthomosaics decently, multi-tie points were used. The results address the importance of 

GCP in accurately aligning multi seasons images so they can be used for future purposes. 

4.5. Comparison of results 

Comparing the results of TIFF-RGB and JPEG-RGB signifies the importance of the image quality and the 

data stored in each imagery. Uncompressed (TIFF) imagery has given better results with reasonable 

accuracy but requires more processing time, computational power, and storage. So, it depends on the use 

and purpose of the user to decide the image format to be used for vegetation classification. To use the 

results in the future, it is better to use TIFF format images for the vegetation classification and generate 

high-quality results. 

Between UAV-RGB and UAV-MS, classification accuracy improved in the case of multispectral but with 

a 5% difference in overall accuracy, but classification in each class was much better compared to RGB. The 

considerable advantage of multispectral classification was the low effect of shadow during segmentation 

and classification; as in the case of RGB images, the shadows and GCP target marks were segmented as 

objects, which hamper the classification of the vegetation, especially in the case of trees and high shrubs. 

The sensor is useful for identifying the vegetation types at the species level, but to classify vegetation at a 

dominant level, a UAV-RGB camera can be considered sufficient. 

To compare the results of GCP and without GCP, it is evident to use GCP for positional accuracy in results 

and to use the classified maps for future reference. It is difficult to overlay the orthomosaic acquired during 

different time periods and compare with it. GCP-generated vegetation structure determines an accurate 

vegetation structure and CHM. This will be helpful in comparing the change in the vegetation structure 

with the period of time. 

In comparing using single-season orthomosaic, the combination of different season orthomosaic has given 

a better classification and high overall accuracy and kappa value. So, to align multiple seasons orthomosaic 
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for comparison or classification, GCPs are essential. Using single-season orthomosaic for classification has 

resulted in classifying some of the life-form categories to be accurately classified but have misclassified 

between grass, shrubs and bracken, which are found in the area. The combination of the seasons has 

significantly contributed to the classification and is demonstrated in Figure 21. 

4.6. Application of the results 

The results generated from this study are helpful for conservation organizations like Rewilding Portugal. 

Furthermore, the efforts to rewild other areas in Europe are intensifying, for example, Rewilding Europe 

sites. This study compared instruments, platforms, and methods to classify vegetation. These results serve 

as the baseline for vegetation monitoring in the Côa Valley and formalize an efficient, low-cost protocol to 

be used in monitoring other ecosystems. UAV imageries are high-resolution data, and processing them 

requires high computational power and systems. The study was applied on the ground level to understand 

the importance of detailed and accurate imagery for planning, monitoring, and conserving the area. The 

maps generated on the plant life-form categories will help to understand the distribution of the vegetation 

types in the area and to further work on the detailed level for the comparison of types of species present in 

the area.  

Using the same method for the classification and for different dataset have resulted in good accuracy with 

the combination of three-seasons. This can be useful for monitoring, understanding the vegetation 

dynamics of the region, and understanding the heterogeneity landscape in the presence of the grazing 

animals. 

4.7. Limitations in the study 

 

• GCP was only acquired during one season, and it is difficult to combine several images of the same 

area acquired at different times. The GCP helps in overlaying the imageries accurately and precisely, 

which can be used for the comparison and analysis in the future. 

• The number of samples for bracken and bare soil were less compared to other land covers. The 

seasonal change was evident in case of bracken and bare soil. During spring, bare soil have small 

patches in the plot but during summer grass area was dry and looks bare. 

• Due to high computational processing power required in eCognition software Estimation of scale 

parameter (ESP) tool could not be used. Trial and error method was used for segmentation during 

OBIA. 
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5. CONCLUSION AND RECOMMENDATION  

5.1. Conclusions   

The study investigates the low-cost method for the vegetation classification of the area by comparing the 

different sensors, image formats, and seasonality using the same method for classification, OBIA. The study 

has shown that the vegetation classification method is helpful and can be used in various conditions and 

regions. The main aim was to improve the classification of accuracy of the vegetation classification and for 

which TIFF image format (overall 80%) has given a good accuracy compared to JPEG(overall 65%). With 

the increase in training points, classification accuracy improved. This resulted in the random forest classifier 

being sensitive to the number of training points. The classification accuracy of multispectral image 

orthomosaic (overall accuracy 85%) is significantly better than RGB orthomosaic (overall accuracy 80%). 

The presence of visible and near-infrared images helps in better identification and spectrally differentiating 

species for classification, improving the accuracy of the lichens, rock, bare soil, and shrubs. However, it 

depends on the aim with which the classification is to be done because a multispectral sensor can be costly 

in comparison to a UAV-RGB sensor. It is evident that GCP has to be used for the area's classification and 

future purposes. GCP will help properly align multi-season images, which can help achieve the vegetation 

classification. 

The research showed that combining three-season orthomosaic will give the highest classification accuracy 

compared to single-season or multispectral. The overall accuracy was 93%, and TIFF-RGB images were 

used for the classification. If the data can be collected at different seasons and without much cost and 

effort, then a combination of seasons is the best approach for heterogeneous landscape vegetation 

classification. Also, early spring or late winter time has resulted useful in differentiating plant life forms. So, 

for better alignment, GCPs are necessary. In case if one-time data acquisition is done and classifies the 

vegetation, then a multispectral sensor will be helpful. For object-based image analysis (OBIA), eCognition 

is the best tool, but using this software with TIFF image formats for classifications requires high storage 

capacity and a good computational power system. In a nutshell, the research results will be helpful and 

efficient in vegetation monitoring using low-cost methods in other ecosystems for conservation and 

monitoring purposes. 

5.2. Recommendations for further studies 

 

For future studies, GCPs are useful for the comparison of multi-temporal imageries. It will be beneficial to 

fix a few permanent marks in the area, which can be used as GCP to overlay orthomosaic of different times 

or seasons. This will be useful for classification at the species level, which can be an important step to 

improving and understanding the vegetation dynamics of the existing species in the area. For species 

identification, vegetation indices are helpful. So, for vegetation classification, using vegetation indices Jeong 

et al., (2018), suggested the use of calibrated RGB images to generate vegetation indices based on the 

reflectance value. The results of such a study can be new and beneficial for further research. Also,  the 

illumination conditions are dynamic in any study area. So, further study or research with calibration panels 

for RGB images should be used to find the difference in classification accuracy.  

The usefulness of SfM processing is that point clouds can help detect the changes in vegetation 

classification. Point clouds will help generate 3D structures which can easily be used for trees, shrubs or 

artificial objects with height. Cloudcompare software can be considered useful for such comparisons in the 

future, as eCognition is a licensed software while cloudcompare is free and open to access.    
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7. APPENDIX 

Annex 1 

Parameters used for image acquisition in Vale Carapito and Ermo das Águias (used by Rewilding 

Portugal) 

Flight Parameters Vale Carapito Ermo das Águias 

Flying height 150m Between 30-86m 

Flying speed 14m/s 14m/s 

Forward overlap 65% 85% 

Side overlap 65% 65-75% 

Ground sampling distance 3.90cm 2.0cm 

 
The flight in Ermo das Águias covered a grazing area of 312hectares and was sampled into seven plots of 
7hecatres. In comparison, Vale Carapito covered a grazing area of 54 hectares, sampled into five plots. 
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Annex 2: Flight plans of Vale Carapito (Plot 5) and Ermo das Águias (Plot 5) 
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Annex 3 

Distribution of GCP (blue marks) and the images (red dots) in Vale Carapito (map view) 

 

Distribution of GCP (blue marks) and the images (red dots) in Ermo das Águias (map view) 
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Annex 4: 

Overlap of UAV-RGB JPEG, TIFF, and Multispectral images for winter. 

 

 

 

 

 

 

 

 

 

UAV-RGB JPEG 

UAV-MS UAV-RGB TIFF 

UAV-RGB JPEG (without GCP) 
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Summary of quality reports from SfM processing using Pix4D mapper (for Ermo das Águias) 

Features UAV-RGB(TIFF) 

Number of images 677 (100% calibrated) 

Number of GCP 9  

Mean Reprojection 

Error 

0.186 

GCP RMSE (m) 

RMSE (X, Y, Z) 

0.043 

0.04 0.02 0.06 

Checkpoint RMSE (m) 0.12 0.04 0.2 

Coordinate system WGS 84/UTM zone 29N 

Point Cloud average 

density (per m3) 

1135.83 

 

Overlap of UAV-RGB TIFF images computed for each pixel of the orthomosaic. 
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Annex 5: Vegetation indices used for RGB imagery in eCognition 

Spectral Vegetation Indices (RGB) Equation Reference 

GLI (Green Leaf Index) (G2-R-B)/ (G2+R+B) (Lussem et al., 2018) 

NGBDI (Normalized Green Blue 

Difference Index) 

(G-B)/(G+B) (Du and Noguchi, 2017) 

RGBVI (Red Green Blue Vegetation 

Index) 

(G2-R*B)/(G2+R*B) (Bendig et al., 2015; García-

Fernández et al., 2021) 

MGVRI (Modified Green Red 

Vegetation Index) 

(G2-R2)/ (G2+R2) (Bendig et al., 2015) 

NDSI (Normalized Difference Soil 

Index) 

(R-G)/(R+G) (F. Chen et al., 2021) 

GRVI (Green-Red Vegetation Index) (G-R)/(G+R) (Bendig et al., 2015) 

  

Vegetation indices used for MS imagery in eCognition 

Spectral Vegetation Indices Equation Reference 

GCI (Green chlorophyll Index) ((NIR/G)-1)  

NDVI (Normalized Difference 

Vegetation Index) 

(NIR-R)/(NIR+R) (Ashapure et al., 2019; 

Fuentes-Peailillo et al., 2019) 

NDRE (Normalized Difference Red 

edge Index) 

(NIR - RE)/ (NIR + RE) (Macintyre et al., 2020) 

MGVRI (Modified Green Red 

Vegetation Index) 

(G2-R2)/ (G2+R2) (Bendig et al., 2015) 

SAVI (Soil-Adjusted Vegetation 

Index) 

((NIR-R)/(NIR+R+L)) * (1+L) (Huete, 1988) 

GRVI (Green-Red Vegetation Index) (G-R)/(G+R) (García-Fernández et al., 

2021) 

NDWI (Normalized Difference 

Water Index) 

(G-NIR)/(G+NIR) (F. Chen et al., 2021) 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

51 

Annex 6: 

 

Confusion matrix generated with 105 training samples 

Confusion Matrix (JPEG)  

User 

class 

Grass Bracken Shrubs Rock Trees Bare soil Lichens Sum 

Grass 19 2 3 0 1 10 0 35 

Bracken 0 4 2 3 0 0 1 10 

Shrubs 2 10 25 3 6 0 3 49 

Rock 12 6 9 29 0 2 7 65 

Trees 0 1 0 1 39 0 0 41 

Bare soil 0 0 0 0 0 2 0 2 

Lichens 5 0 2 1 0 0 18 26 

Sum 38 23 41 37 46 14 29  

Accuracy 

Producer 0.5 0.18 0.61 0.78 0.85 0.14 0.62  

User 0.54 0.4 0.51 0.44 0.95 1 0.69  

Overall Accuracy: 59.65% 

Kappa: 0.516 

 

Confusion Matrix (TIFF) 

User 

class 

Grass Bracken Shrubs Rock Trees Bare soil Lichens Sum 

Grass 44 7 26 4 14 28 1 124 

Bracken 6 5 9 9 0 0 2 31 

Shrubs 13 14 58 15 14 1 4 119 

Rock 7 5 9 28 1 2 14 66 

Trees 0 2 1 3 63 0 0 69 

Bare soil 0 0 0 1 0 6 1 8 

Lichens 9 0 5 8 3 1 24 50 

Sum 79 33 108 68 95 38 46  

Accuracy 

Producer 0.55 0.15 0.54 0.41 0.66 0.16 0.52  

User 0.35 0.16 0.48 0.42 0.91 0.75 0.48  

Overall Accuracy: 48.82% 

Kappa: 0.383 
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Annex 7 

Representation of the plot in cloudcompare using point clouds(with GCP & without GCP) and the cloud-to-

cloud absolute distance range. 

 

 
 

Residuals after ICP registration 

 

 


