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GLOSSARY

B-mode Brightness mode
cGAN Conditional generative adversarial network
CNN Convolutional neural network
CXR Chest X-ray
DL Deep learning
GAN Generative adversarial network
ICC Intraclass correlation coefficient
ICU Intensive care unit
LSTM Long short-term memory
LUS Lung ultrasound/ultrasonography
M-mode Motion mode
NICU Neonatal intensive care unit
PedLUS Pediatric lung ultrasonography
PICU Pediatric intensive care unit
PLAPS Posterolateral alveolar and/or pleural syndrome
RCNN Recurrent convolutional neural network
RNN Recurrent neural network
TL Transfer learning
US Ultrasound/ultrasonography
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PREFACE

In this master’s thesis, I present the work that I have done during my graduation internship
at the pediatric intensive care unit of the Leiden University Medical Center. To facilitate the
adoption of lung ultrasonography for pediatric intensive care, I have developed deep learning
software aimed at supporting the observer in the assessment of the images. First, the topic will
be introduced, followed by backgrounds on lung pathophysiology, ultrasonography and deep
learning. In the following chapters my research methods and results will be presented and this
thesis will be concluded with an evaluation on the study and future perspectives. I hope you
will enjoy reading my thesis!

Tharanghi Logendran

October 2022

2



CONTENTS

Glossary 1

Preface 2

1 Introduction 5

2 Lung ultrasonography 7
2.1 Healthy lungs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Interstitial disease, consolidation and atelectasis . . . . . . . . . . . . . . . . . . 8

2.2.1 Lung ultrasound score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Pleural effusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Pneumothorax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Deep learning 13
3.1 Training strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Network architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Generative adversarial network . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Recurrent neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Materials and Methods 17
4.1 Inclusion and exclusion criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Data acquisition and annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Video-based score prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.2 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.3 Loss definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.4 Training strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Segmentation mask-based score prediction . . . . . . . . . . . . . . . . . . . . . 19
4.5 Frame-based segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5.2 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5.3 Loss definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5.4 Training strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.6 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Results 24
5.1 Video-based score prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Segmentation mask-based score prediction . . . . . . . . . . . . . . . . . . . . . 25
5.3 Frame-based segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3



6 Discussion 29

7 Aknowledgements 34

References 35

4



1 INTRODUCTION

Critically ill patients in intensive care units (ICU) often suffer from a wide variety of diseases and
complications. These include patients in the pediatric ICU (PICU), who therefore are monitored
and examined per system of the human body and are treated accordingly. Some of the com-
plications of PICU patients affect the respiratory tract: the lungs and tracheobronchial airways
may be severely affected by respiratory infections - either acquired before or during hospital-
ization - but also by fluid imbalance, e.g. with cardiac and kidney failure causing edema[1].
Several studies have even demonstrated a correlation between fluid overload and increased
risk of mortality in critically ill patients[2][3][4]. Therefore monitoring the lungs and pulmonary
function are central components in the PICU.
Diseases of the lungs and chest are frequently diagnosed andmonitored with chest X-ray (CXR)
imaging as a first-line imaging method[5]. However, during CXR imaging, patients are exposed
to ionizing radiation; in a single CXR examination, adults receive an effective dose of approxi-
mately 0.2 mSv. To put this in context, the International Commission on Radiological Protection
recommends a maximum annual dose of 1 mSV per year for the general public[6]. Irradiation
is even more harmful for pediatric patients than patients of other age groups, due to their small
size and highly radiosensitive tissues and organs, hence increasing the risk of developing ma-
lignancies in these tissues[7][8]. A study showed that the risk of developing cancer in infants
receiving a single small dose of radiation is two to three times higher than for the average
population[9]. It is evident that there is a need for a safer, yet reliable lung and chest imaging
method for the PICU population.
An alternative imaging method for CXR is ultrasonography (US). Lung ultrasonography (LUS)
has become a widespread diagnostic tool in PICU’s and neonatal ICU’s (NICU). A study demon-
strated that since the introduction of LUS for respiratory distress diagnosis in a NICU, the num-
ber of CXR examinations decreased with 30% and the radiation dose decreased from 5.54
μGy to 4.47 μGy per infant over a period of 18 months[5]. Moreover, LUS is a quick, easy to
operate, real-time and portable imaging method that can be used as a bedside diagnostic tool.
Nonetheless, one of the major challenges of LUS is that there remains high interobserver
variability[10]. Additionally, sufficient skill in interpreting LUS images and understanding the
clinical implications of the acquired image is attained by adequate practice. A study has shown
that residents and senior physicians without any experience in LUS acquired the required skills
in making the LUS measurements after 25 supervised measurements[11]. The described re-
quired skills consist of recognizing normal aeration, interstitial syndrome, lung consolidation
and alveolar edema. Difficulties in the interpretation of LUS images remain a major limiting
factor in adoption of the imaging method by medical professionals, opposed to the simplicity
and costs of the examinations.
This problem may be overcome with applications in deep learning (DL) for assessment of LUS
images. Multiple studies have shown promising results of DL algorithms for LUS image clas-
sification and detection of LUS image characteristics[12][13][14][15][16][17][18][19]. Because
research in this field has accelerated in the light of follow-up on COVID-19 infection, these mod-
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els have only been trained and validated with adult LUS data. There are rather few studies on
the pathology of the lungs in the pediatric population and pediatric LUS (PedLUS), let alone on
DL algorithms to interpret PedLUS images. It is expected that neural networks similar to those
developed for adult LUS can be trained to interpret PedLUS images to support the assessment
of pediatric physicians. Therefore the goal of this study was to explore and apply applications
of DL for LUS assessment for the pediatric population.

6



2 LUNG ULTRASONOGRAPHY

Ultrasonography (US) is an imaging modality based on the registration of reflections of emit-
ted sound pulses[20]. These reflections occur at transitions between media with different
impedances, and the intensity of those reflections depend on these impedance differences;
the impedance difference is higher for high transitions (hyperechogenicity) and lower for low
transitions (hypoechogenicity). For medical US, commonly used methods are brightness mode
(B-mode) and motion mode (M-mode). In B-mode the strength of the reflection after pulse
emission is displayed as a function of propagation time, used to calculate the distance from the
reflecting structure to the transducer. A collection of reflections with different intensities results
in a grayscale image of the scanned area. M-mode is similar to B-mode, except for that the
reflections in just one direction are displayed as the brightness modulation as a function of time.
As the reflector moves in M-mode, so will the image. The combination of imaging in B-mode
and M-mode during an examination can give detailed anatomical, physiological and functional
information about tissues and structures.
Traditionally, ultrasonography has been considered an unsuitable imaging modality to examine
the thoracic cage, due to the high prevalence of artifacts caused by the ribs, pleurae and aerated
lungs[8][21]. However, as the interpretation of these artifacts could be correlated to specific dis-
ease patterns, LUS proved to be a useful diagnostic tool. Especially in pediatrics, the relatively
unossified thorax of children and the thin subcutaneous tissue form suitable acoustic windows
for PedLUS[8][22].

2.1 Healthy lungs

The first step in examining the lungs with US is the identification of the pleural line, which
appears as a hyperechoic subcostal thin line. The image up to the pleural line is a real image,
showing the tissues of the skin, subcutaneous tissue and muscles. Starting from the pleural
line, the aerated lungs will show artifacts caused by scattering of the ultrasonic waves in air[23].
The pleural line in between two adjacent ribs can be observed as the so-called bat sign as in
Figure 2.1[22]. Moreover, reverberation between the ultrasound probe and strongly reflecting
pleural line will cause the formation of A-lines, which are parallel projections of the pleural
line[15][22]. In well aerated lungs these constant projections are prominently represented, as
the lung parenchyma itself will be hypoechoic. Furthermore, a physiological sign called lung
sliding can be observed, due to the movement of the parietal pleura against the visceral pleura
during inspiration and expiration. This can most evidently be observed when imaging in M-
mode, where lung sliding is represented as the seashore sign as in Figure 2.5a[8]. The pleural
line, accompanying A-lines and lung sliding indicate healthy, well aerated lung tissue in the
examined region.
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Figure 2.1: B-mode LUS image made with a linear probe. The pleural line in between two
adjacent ribs on LUS causes the bat sign[24].

2.2 Interstitial disease, consolidation and atelectasis

The interstitium of the lungs can volumetrically expand due to several causes, such as pul-
monary edema, interstitial lung disease, congestive heart disease and respiratory infections
[16][25][26]. Both increased interstitial fluid and liquid accumulation in the alveoli will cause
the formation of B-lines on LUS, which are vertical artifacts most likely caused by the isola-
tion of a fluid structure in a tetrahedron of air bubbles[27]. The fluid resonates in response to
the ultrasonic pulse, which is detected by the probe and represented as a hyperechoic line[26].
These lines will erase other image characteristics through their path, including A-lines and reach
from the pleural line to the lower edge of the image window, moving with respiration. When
a large number of B-lines occur, eventually they will appear as compact hyperechoic struc-
tures, indicating a near consolidated lung and in further stages, hepatization of the lungs will be
observed[21][22]. In hepatized lungs, the alveoli have been collapsed or are filled with fluids to
the extent that the lung parenchyma will appear as dense tissue, similar to the ultrasonic rep-
resentation of liver tissue. Characteristics for extended lung consolidation are bronchograms
with shred signs; distinctive irregular patterns in the scanned region[28]. The appearance and
severity of the described LUS characteristics can be correlated to the type and severity of dif-
ferent lung pathologies and, together with the clinical presentation of the patient, can provide
valuable information about the condition of the lung tissue.

2.2.1 Lung ultrasound score

The LUS score is a semi-quantitative scoring system for the regional aeration of the lungs[11].
The scoring system is practical for monitoring both intra- and interpatient regional lung aeration
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andmay serve as a quantitative measure when analyzing lung diseases, mechanical ventilation
and weaning. In order to assess the lungs thoroughly, the thorax is divided into twelve regions;
six regions for each hemithorax as in Figure 2.2. Each region is scored from 0 to 3 based on
the degree of pulmonary aeration loss observed with LUS, hence the total LUS score can vary
from 0 to 36. A LUS score 0 indicates healthy, aerated lung parenchyma with A-lines and up
to two B-lines per view, a score 1 moderate loss of aeration with multiple (three or more) well-
separated B-lines per view, score 2 severe loss of aeration with coalescent B-lines, and score
3 complete dense consolidation with or without bronchograms[11][29]. Figure 2.3 illustrates
examples of LUS images for each LUS score. The assessment of a region is based on the view
of that region with the most severe score. Generally, the most severe scores are assigned to
posterolateral regions in supine positioned patients due to gravity. Therefore a crucial area to
include in LUS examinations is the so-called posterolateral alveolar and/or pleural syndromes
(PLAPS) point[30], shown in Figure 2.4.

Figure 2.2: Twelve regions of the thorax to be scored on LUS[29]. Each hemithorax is
subdivided into six regions. For each explored region, the most severe finding in that region is
reported. ANT = anterior; INF = inferior; LAT = lateral; POST = posterior; SUP = superior.
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(a) (b)

(c) (d)

Figure 2.3: Examples of LUS images with (a) score 0, (b) score 1, (c) score 2 and (d) score
3[21]. Image (a) and (b) show examples of A-lines, image (b) containing some B-lines. Image
(c) is an example of coalescent B-lines and image (d) depicts an example of the shred sign

caused by consolidations.
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Figure 2.4: Location of the PLAPS point, where the incidence of interstitial fluid,
consolidations and pleural effusion is high. Modified from [30].

2.3 Pleural effusion

Besides lung aeration assessment, LUS is also a suitable method to evaluate the presence
and severity of pleural effusion. Similar to interstitial and intra-alveolar fluids, effusion can best
be evaluated at the PLAPS point in supine positioned patients. The appearance of effusion
depends on its nature: most transudates and some exudates are anechoic, hence reflections
in this anechoic space strongly suggest the presence of exudates. Echogenic effusions are
often due to hemothorax or empyema and are sometimes presented with septations within the
effusion[31]. The ability to evaluate pleural effusion volumes and to differentiate the consistency
of effusions, make LUS a valuable tool in the PICU.

2.4 Pneumothorax

In healthy lungs, the movement of the pleurae can be observed as lung sliding. Absence of
lung sliding in the examined area may indicate detachment of the lung from the thoracic cage
in the examined area, hence the indication of pneumothorax[21]. The lung point is a specific
sign for pneumothorax, indicating the location where the attached part of the lung transitions
into the detached part, although the lung point may be missing in severe pneumothorax. More-
over, when imaging in M-mode, the so-called barcode or stratosphere sign as in Figure 2.5b is
present instead of the seashore sign, caused by the absence of dynamic lung sliding[22][32].
Furthermore, B-lines are absent, as these are characteristic for pleura-lung boundaries. Fi-
nally, no lung pulse can be observed with pneumothorax, which is the rhythmic movement of
the pleurae with cardiac oscillations[5]. The lung pulse is usually masked by lung sliding, but
can be observed when there is little or no sliding whilst the lung is attached to the thoracic
cage[8][33].

There are many features in LUS images that can be measured and analyzed to evaluate the

11



(a)

(b)

Figure 2.5: M-mode images showing a (a) seashore sign and (b) barcode sign, the latter
caused by pneumothorax.

condition and aeration of lung tissue. However, LUS is not a widely used imaging method yet,
due to the extensive experience that is required to be able interpret the images. Therefore,
to assist the observer in the interpretation of LUS images, the application of DL for automatic
LUS assessment has been investigated in this study. In the next chapter, DL will be elaborated
upon in more depth, illustrating potential applications for LUS image interpretation.
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3 DEEP LEARNING

Deep learning refers to a computer approach to learn and optimize a task based on a certain
set of features[34]. The goal of DL is to find an approximation of the underlying correlation
of a presented problem, such as a classification, recognition, or segmentation task, based on
the provided inputs and desired outputs. When a new input is presented, the model is able to
predict an output in the form of the probability for each possible output category[35]. Regarding
the assessment of LUS images, there are multiple predictions that can be made from the input,
which can either be an image or a video. The output prediction can be a classification task
to predict LUS scores, or the detection or segmentation of pathological artifacts. The error
between the output probabilities and the desired pattern of probabilities is evaluated with a loss
function that is aimed to reduce this error.
Deep neural network training consists of iterations of presenting training data to the model,
which consists of inputs and accompanying outputs. During the training process, the model
tries to predict outputs and compares these predicted outputs to the desired outputs. These
predicted outputs are evaluated with the loss function, after which internal weights are adjusted
in order to minimize the loss[36]. The extent to which weights are adjusted is determined by the
learning rate[37]. An optimal learning rate must be found, as a low learning rate may take the
algorithm too long for optimization and a high learning rate may result in a sub-optimal set of
weights or an unstable training process. The learning rate is often decayed during the training
process with an optimizer to avoid these challenges[38].
One iteration of presenting all training data to the model is called an epoch[38]. After a set
amount of epochs, the network is tested with new, unseen test data and the ability to classify
the input data can be evaluated. The intention is for the model to ’learn’ patterns that are gen-
eralizable, meaning it will perform well on unseen test data. When this fails, overfitting occurs;
a common problem in the training process[38]. This problem tends to occur when the number
of free parameters, e.g. when the amount of weight connections, is too large compared to the
size of the training data, as it memorized nuances of the data but fails to recognize significant
patterns for unseen test data[38]. Overfitting can be prevented by limiting the amount of epochs
in the training stage until the variation of error becomes sufficiently small[39]. Another method
is to enlarge the data set, but due to limitations in data collection this is often not realizable.
A commonly used solution for this problem is data augmentation, which is the application of
transformations to the available data set. In the case of image data, this can include rotations,
zooming, shifting, flipping and applying color space transformations to the images[40][41][42].
Applying these transformations in some cases may prevent overfitting and improve the test
accuracy[43].

3.1 Training strategies

DL network training can either be supervised, unsupervised or semi-supervised[44]. In super-
vised learning all training data is labeled, meaning that for each training input a desired output
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is determined. During unsupervised learning, the model learns important features to discover
undefined, unknown relationships or structures within the input data. Semi-supervised learning
is a combination of the two where the network is trained with partially labeled data. One of
the major advantages of semi-supervised and unsupervised learning is that there is little or no
need for the time consuming process of labeling data. However, unsupervised learning is a
very complex process requiring the network to sort data without manual intervention[45]. In the
context of medical imaging and LUS image assessment, an advantage of supervised learning
is that observers can set clear class or segmentation boundaries, based on medically defined
classes and definitions, rather than technical definitions. With unsupervised learning the model
is trained to find patterns and connections in the data by itself, which is not preferable in the
interpretation of LUS measurements.

3.2 Network architectures

3.2.1 Convolutional neural network

A popular type of deep learning network is the convolutional neural network (CNN), which is
designed to process spatially dependent grid-structured inputs making this architecture well
suited to process 2D data, such as images. Images have spatial dependencies, as pixel values
are strongly correlated to the values of surrounding pixels. A defining characteristic of CNNs is
the convolution operation, which is an operation where a filter is shifted over the input values
of the image pixels and the dot product of those is computed with each shift[38][46]. These
shifts are continued until the whole image is covered and a so-called feature map is computed.
CNNs learn to detect different features of the images using tens to hundreds of hidden layers
applying convolutions, increasing the complexity of the learned image features with each hidden
layer[45]. An important aspect of CNNs is that feature detection is not spatially dependent,
because the images are analyzed regionally for different features[47].
There are multiple studies on the use of CNNs for LUS interpretation. Panicker et al.[16] de-
scribed a model based on a U-net architecture for segmentation of A-lines, reduction in the
pleural thickness and single or multiple B-lines to a coalescent appearance. In a comparable
study[19] an Inception v2 based CNN was developed to identify B-lines, merged B-lines, lack
of lung sliding, consolidations and pleural effusion. They collected data as videos which were
used for training as sequential temporal and individual frames. Roy et al.[12] also collected
both images and videos that were labeled according to a LUS scoring system. Their feature
detection was performed with a U-net baseline model and they have implemented a spatial
transformer network to localize pathological artifacts. Besides feature detection, video-level
grading was used to predict a LUS score for the entire video. Another similar model has been
designed and trained for the detection of B-lines, which was able to classify images as contain-
ing and not containing B-lines, then localize B-lines in images where they are present[15]. La
Salvia et al.[14] used class activation mapping to highlight the parts that were decisive for the
classification task. They used transfer learning (TL) on four different networks to make COVID
diagnoses based on LUS images. In TL, the learned features of a pre-trained model on one
problem are used for a new, similar problem using a partially related or unrelated dataset to
overcome the obstacle of insufficient training data[45].

3.2.2 Generative adversarial network

Another common DL network is the generative adversarial network (GAN), which is designed
for image-to-image translations. The model consists of a generator model, to generate new
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plausible synthetic images that are similar to the desired outputs, and a discriminator model
that is presented both real desired outputs and generated outputs, after which it classifies those
images as real or generated. The discriminator is updated directly, while the generator model
is updated through the discriminator. The models are therefore trained simultaneously, as the
generator tries to better ’fool’ the discriminator and the discriminator tries to better identify the
fake images[48]. After each iteration, a discriminator loss and generator loss are defined which
both should be minimized during training. A schematic representation of a GAN is provided in
Figure 3.1.

Figure 3.1: Schematic overview of a GAN[49]. The generator attempts to generate an output,
similar to the desired output. The discriminator tries to distinguish generated outputs from the

actual desired outputs.

There have been few studies on the use of GANs for thoracic image generation. Loey et al. and
Ali et al. have proposed a GAN to generate CXR images to increase their database, which they
have used to train a CNN to detect COVID-19 related features[50][51]. In another study a GAN
was used to generate data to classify LUS images as healthy, bacterial pneumonia, COVID-
19 infection or fake[52]. In this case, the generated image is supposed to be classified fake.
The output of the generator may also be useful to create outputs containing clinical features
of interests, such as B-lines and consolidations. Focusing on this generating aspect of GANs,
the model could be trained to generate plausible segmentation masks for LUS images that can
assist the physician in the interpretation of the images.

3.2.3 Recurrent neural network

When having to process inputs of variable lengths, recurrent neural networks (RNNs) are a
useful type of neural network, where previous outputs are weighed in together with current
inputs[53]. RNNs are commonly used for sequential data and in the case of videos, temporal
data. They are distinguished by their ’memory’ as they use information from prior inputs to
influence the current input and output[54]. In the context of LUS, RNNsmay be valuable models
for video classification, as features from LUS videos contributing to the LUS score are dynamic
and are not present in every frame of the video. Therefore the entire sequence of frames should
be considered in assigning a LUS score to a video.
To our knowledge there are no studies on LUS classification using RNNs. Two studies describe
something similar, where a hybrid structure using a CNN and a long short-termmemory (LSTM),
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a neural network similar to an RNN, was used[13][55]. First the data was passed through the
CNN part of the network, after which it was passed through the LSTM to perform the final
predictions based on the joint weight vectors generated from both parts.
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4 MATERIALS AND METHODS

In this proof of concept study we aimed to explore whether LUS can become a more accessible
technique to use in daily practice at the PICU and to reduce the influence of interobserver
variability in LUS assessment. Therefore we have designed two DL models: one for video-
based classification into LUS scores and one for frame-based segmentation of clinical features
in LUS images. Both the clinical features and LUS score predictions were expected to assist
physicians in the interpretation of the LUS measurements in terms of aeration of the lungs.

4.1 Inclusion and exclusion criteria

PedLUS data was collected from 33 PICU patients from the Leiden University Medical Center
between January andMay 2022. The age of the population at the PICU varies from 0 to 18 years
old, which was the age group of the study population. There are no significant contraindications
for LUS and patients were not differentiated by underlying pathologies.

4.2 Data acquisition and annotation

A total of 506 videos of 4 seconds each was collected. In previous studies, probe selection was
based on patient sizes, which sometimes resulted in either having to train separate networks
for each probe or having to apply image modifications due to pluriformity of the data[13][16].
In this study, all data was collected with two different linear probes between 3-20 MHz with a
standard mid-range ultrasound scanner (Venue GO, GE Healthcare, Chicago, IL, USA) which
were also used based on the size of the patient. As image sizes were the same for both probes,
the data has not been distinguished by the used probe.
In order to image the lungs completely, the thorax was divided into twelve different scanning
areas as in Figure 2.2. Each region was completely scanned, after which the most severe
observed LUS score in that area was assigned to that region. Prior to the study we have
concluded that the LUS score definitions lack in the assessment of small consolidations in
regions that are generally well aerated, hence we have defined the LUS scores as in Table
4.1 when labeling data for this study. Videos that only showed areas with pneumothorax were
excluded, as the tissue underneath cannot be assessed with US. All LUS videos were assigned
a LUS score by at least two independent observers until consensus was reached.

Table 4.1: LUS score definitions in this study.

LUS score B-lines Consolidations
0 No significant B-lines (0-2 lines) Non
1 Separate B-lines (< 3 lines) Small subpleural consolidations (appear as ’pinheads’)
2 Coalescent B-lines Bigger consolidations with < 50% loss of aerated parenchyma
3 - Loss of > 50% aerated parenchyma
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In cases where no LUS score could be assigned due to poor image quality or ambiguity in the
image, the video was labeled ’indeterminable’ (ID). However, there were little videos that could
be classified as ID. As we believe that the ability to identify uninformative videos labeled as
ID is important, 20 arm US videos were collected. These videos clearly do not contain LUS
features and therefore are uninformative, a method that is proven to be effective in previous
work[18]. Figure 4.1 depicts examples of arm US frames. From all collected videos, 800 frames
were randomly picked for the detection of clinical features, which were manually semantically
labeled using Label Studio data labeling software[56]. All software in this study has been written
in Python version 3.10.0 in PyCharm IDE (JetBrains s.r.o., Prague, Czech Republic) and can
be found at https://github.com/TharanghiLogendran/LUS_assessment.

Figure 4.1: Examples of arm US frames used in this study, labeled as ’indeterminable’.

4.3 Video-based score prediction

LUS videos each consist of approximately 180 frames, containing spatial information, and the
sequence of those frames contain temporal information. Both aspects are considered useful
in classifying the videos into LUS scores, as features from LUS videos contributing to the LUS
score are dynamic and are not present in every frame of the video. The proposed model has
a hybrid architecture that consists of a CNN for processing spatial information and recurrent
layers for processing temporal information, resulting in a recurrent convolutional neural network
(RCNN).

4.3.1 Problem definition

Let X be the input space and Y the set of possible scores, so Y = {ID, 0, 1, 2, 3}. During
training, we have a training set S = {(xn, yn)}N

n =1 where xn ∈ X and yn ∈ Y . As the input
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consists of videos - sequences of frames - we can state that xn = (x1, x2, ..., xT ). For each
input video x we want to find the probability p(y|n) for having score y.

4.3.2 Model definition

As the reproducibility of previous work was an elaborate and time consuming process, we
have chosen to write all code and train networks from scratch. We are interested in learning
and mapping X → Y . RNNs handle the sequences by having a recurrent hidden state whose
activation at each time step is dependent on that of the previous step. Given a sequence xn,
the proposed RCNN updates its recurrent hidden state ht by

ht =

{
0, t = 0
ϕ(ht−1, xt), otherwise

(4.1)

and the probability for score y is defined as

p(y|x1...xT ) = softmax(Whyht + by) (4.2)

with weights W and biases b to be learned.

4.3.3 Loss definition

The sparse categorical loss function is defined as

Loss = −
n∑

i=1

yilog(pi) (4.3)

where yi is the true score and pi is the probability for the ith class for n classes[57]. In sparse
categorical cross-entropy, labels are integer encoded, so in this case for the LUS scores Y =
{1, 2, 3, 4, 5}. The aim was to minimize the loss.

4.3.4 Training strategy

From all videos, 75% was used for training, 25% for testing. From each video of approximately
180 frames, 80 frames were extracted to reduce computing time, prevent overfitting and to
reassure every sequence was of the same length. The frames were standardized to a fixed
image size 224x224 pixels. The frames have been pre-processed by extracting meaningful
features from the frames with an Inception v3 base model[58]. The outputs from the CNN were
then passed through the RNN. The videos were also augmented to enlarge the data set and
to expose the model to different aspects of the training data, by flipping them horizontally and
rotating them up to 30◦. Each video was augmented four times, which led an increase by a
factor 5. The network was trained on a GeForce GTX 1080 Ti 11 GB GPU (nVidia, Santa Clara,
CA, USA) and after the training process the best performing model was saved.

4.4 Segmentation mask-based score prediction

RNNs are relatively complex models and to test whether this complexity is required to classify
LUS images, we have implemented a simple logistic regression model to perform a similar clas-
sification task. Therefore, pathological artifacts, including B-lines, consolidations and atelecta-
sis, have been manually segmented from 464 individual LUS frames that have been randomly
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selected from all collected videos. The pixel counts of the created segmentation masks have
been correlated to the LUS scores that have been assigned to the individual frames. As the
segmentation masks for score 0 and ID would be identical using this method, ID was excluded
from the classification categories. The model was trained with 75% of all data, 25% was kept
for testing.

4.5 Frame-based segmentation

For the semantic segmentation of clinical features, individual frames have been segmented by
a GAN. These segmentation masks included A-lines, B-lines, consolidations and atelectasis.
Two networks were trained simultaneously: one that generated images and one that discrimi-
nated real images from generated images[59].

4.5.1 Problem definition

Let x = IRi×j be the input image and y be the output segmentationmask. The image dimensions
are here denoted as ixj. In this case, for semantic segmentation we distinguish two different
scores assigned to pixels, denoted as Y = {0, 1}i×j , as pixels classification is binary: they
are either part of the clinical features, so the segmentation mask, or the background. During
training we again have a training set S = {(xn, yn)}N

n =1 where xn ∈ X and yn ∈ Y .

4.5.2 Model definition

The aim was to learn and map X → Y . First an initial input xar was provided to the generator
G, which is a real input in domain A. This input consists of random noise sampled from a
prior distribution p(z) to set initial weights. The generated output of G in domain B is xbg and is
expected to be similar to the real sample xbr that is drawn from the real data distribution pr(x).
We have provided the generator the additional information that the input is an image, so that
we expect generated outputs with image properties. This type of GAN is also referred to as
conditional GAN (cGAN) which’s generation process can be expressed as xg = G(z, c)[59]. An
overview of the data flow through the GAN is depicted in Figure 4.2
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Figure 4.2: Data flow in a GAN. First an initial input is passed through the generator, which
simulates an output xg similar to xr. The discriminator outputs a probability of the input being

real or fake. Modified from [59].

The function learned by G can be denoted as

xg = G(z; θg) (4.4)

parameterized by θg. Next in the data flow of the GAN, the input to discriminator D is either a
real or generated sample. The output of D is y1 and is a single value indicating the probability
of the input being a real or fake sample. The function learned by D, parameterized by θd, is
denoted as

y1 = D(x; θd) (4.5)

The generated samples from G form a distribution pg(x), which is desired to be an approxima-
tion of pr(x) after successful training. The objective of D is to differentiate xg and xr, whereas
G is trained to fool D as much as possible. In the training process, information is back prop-
agated from D to G, so G adapts its parameters in order to improve the output images to fool
D. The training objectives of D and G can be expressed as

LGAN
D = max

D
IExr∼pr(x)[logD(xr)] + IExg∼pg(x)[log(1−D(xg))],

LGAN
G = min

G
IExg∼pg(x)[log(1−D(xg))].

(4.6)

The desired outcome after training is that samples formed by G approximate the real data
distribution pr(x)[59].
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4.5.3 Loss definition

The binary cross-entropy loss function is defined as

Loss = −
n∑

i=1

yilog(pi) = −[ylog(p) + (1− y)log(1− p)] (4.7)

where yi is the true score and pi is the probability for the ith class[57]. In this case Y = {0, 1},
as pixel classification is binary (either part of the segmentation mask or background). The aim
was to minimize the loss.

4.5.4 Training strategy

Segmentation masks for 800 randomly selected frames from all collected videos were created.
For the frame-based segmentation, frames were re-scaled to an image size of 256x512 pixels.
From all data, 80% was used for training and 20% was kept for testing. Performance was
evaluated after every 100 training batches on a A40 48GB GPU (nVidia, Santa Clara, CA,
USA).
An overview of all options and hyperparameters for training the RCNN and GAN is shown in
Table 4.2.

Table 4.2: Options and hyperparameters for model training.

RCNN classification GAN segmentation
Initial learning rate 0.001 0.0002
Batch size 64 64
Epochs 120 120
Optimizer Adam Adam
Loss function Sparse categorical cross-entropy Binary cross-entropy

4.6 Performance evaluation

The performance of the RCNN was evaluated on sensitivity, specificity, accuracy, precision and
F1-scores for each output class. These evaluation parameters are determined by true positive
(TP), true negative (TN), false positive (FP) and false negative (FN) predictions of the model.

Sensitivity =
TP

TP + FN
(4.8)

Specificity =
TN

TN + FP
(4.9)

Accuracy =
TP + TN

TP + FP + FN + TN
(4.10)

Precision =
TP

TP + FP
(4.11)

F1− score = 2 ∗ Precision ∗ Sensitivity
Precision+ Sensitivity

(4.12)

22



The performance of the GAN was evaluated on Dice similarity coefficients (DSC) and mean of
squared errors (MSE). Both metrics are defined by the true image x and the predicted image
y.

DSC =
2|x ∩ y|
|x|+ |y|

(4.13)

MSE =
1

n

n∑
i=1

(y − x)2 (4.14)
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5 RESULTS

Table 5.1 provides an overview of demographic variables of the study population.

Table 5.1: Demographic variables of the study population.

Variable Number (mean ± SD)
Females 7
Males 26
Age at first examination (months) 27.1 ± 57.6
LUS examinations per patient 3 ± 3

5.1 Video-based score prediction

Figure 5.1 provides an overview of the total amount of videos used for both training and testing.
These include collected and augmented videos.

Figure 5.1: Total number of videos for each class, including lower arm ultrasounds and
augmented videos, which are randomly flipped or rotated up to 30◦.
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The results of the LUS video classification by the RCNN are presented in Figure 5.2 and Table
5.2.

Figure 5.2: Confusion matrix for the classification performance of the RCNN.

Table 5.2: LUS video classification results for each class.

LUS score Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%)

Indeterminable 69 99 98 79 73
Score 0 19 87 65 41 26
Score 1 86 45 60 48 61
Score 2 13 96 83 39 19
Score 3 56 95 91 60 58
Average 49 84 79 53 47

5.2 Segmentation mask-based score prediction

The data distribution of the data used for the logistic regression model is presented in Figure
5.3. The results of the classification using this model are presented in Figure 5.4 and Table 5.3.
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Figure 5.3: Incidence of each LUS score in the data containing segmentation masks used for
the logistic regression model.

Figure 5.4: Confusion matrix for the classification performance with logistic regression.
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Table 5.3: LUS video classification results for each class using a logistic regression model.

LUS score Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%)

Score 0 41 100 75 100 58
Score 1 100 26 51 41 58
Score 2 0 100 84 - -
Score 3 0 100 91 - -
Average 35 82 75 - -

5.3 Frame-based segmentation

Figure 5.5 shows the generator loss after each training batch. Table 5.4 shows the segmen-
tation performance of the two best performing models. Examples of LUS frames, the desired
segmentation masks and segmentation masks generated by the best performing model are
depicted in Figure 5.6.

Figure 5.5: Generator loss as a function of the batch number. After every 100 batches the
model was saved.

Table 5.4: LUS frame-based segmentation performance.

Saved model DSC (mean ± SD) MSE (mean ± SD) Generator loss
model_000900 0.9695 ± 0.0291 0.0251 ± 0.0253 1.795
model_001200 0.9632 ± 0.0291 0.0303 ± 0.0261 1.932
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(a) Individual LUS frames. (b) Expected segmentation
masks.

(c) Generated segmentation
masks.

Figure 5.6: Examples of (a) individual LUS frames, (b) the desired segmentation masks and
(c) segmentation masks generated by the GAN (model_000900).
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6 DISCUSSION

In this study we proposed a RCNN that classifies PedLUS videos into LUS scores and a GAN
that segments A-lines, B-lines, consolidation and atelectasis from individual PedLUS frames.
The predictions made by the models are aimed to assist physicians in their interpretation of
LUS images to give them an impression of the regional aeration of the lungs. The aim was to
facilitate the substitution of chest X-ray imaging by lung ultrasonography in pediatric intensive
care.
The classification results in Table 5.2 and Figure 5.2 show that the model classifies most videos
as having score 1. This resulted in a high sensitivity for that score: many videos labeled with
score 1 were also predicted to have score 1, but the specificity was rather low, hence the model
was not able to properly indicate when a video did not have a score 1. For scores 0, 2 and
3 it is the opposite; the model is able to predict when the video does not have one of those
scores, but it has more difficulties in making the right prediction when the video does have one
of those scores (ergo the sensitivity is low). For scores 0 and 2 the sensitivity (19% and 13%
respectively) is considered insufficient for clinical use. Remarkably, for indeterminable videos
both the sensitivity and specificity are relatively high. In fact, all outcome measures are high
for ID; the results imply that the model is best at predicting when the class is not ID and good
at predicting when it is ID. An explanation for these high results compared to the other classes
may be the immense difference between arm US and LUS, which is more than between LUS
classes. Although this method was described before with good results[18], it is questionable
whether using arm US videos labeled as ID is a valid method for training the model. The reason
ID was chosen to be one of the classes in the first place, was that it is desirable that the model
is able to recognize images of poor quality. This could be caused by e.g. poor contact between
the tissue and probe, by movement of the patient during the measurement or by imaging below
the diaphragm. Although arm US videos contain some features similar to LUS images, such
as bone and subcutaneous tissue, they are still very different from LUS videos and the validity
may increase if the ID videos were more realistic to actual indeterminable videos during a
LUS examination. This may also explain why the model performs high on ID videos, despite
the relatively little amount of data. Based on the skewed data distribution, the expectation
would be that the model would perform best on score 1 and second best at predicting score
0. However, it performs second best at predicting ID. It makes sense not to force the model to
make a prediction in one of the four LUS scores and so to include ID, but as the model is only
an assisting tool and will (for now) not be used as a diagnostic tool, excluding ID as a class
should be considered.
Results from previous studies are divergent; Khan et al.[60] found the biggest classification
errors in score 3 predicted as 2, 0 predicted as 2 and 2 predicted as 3. The agreement between
their model and clinical experts was approximately 50%. Another study[61] showed that the
accuracy for predicting score 3 was highest, followed by 1, 0 and 2. Roy et al.[12] demonstrated
a weighted sensitivity of 49% ± 18, F1-score of 46 % ± 21 and precision of 55% ± 27. These
are very similar to the average results of the current study. Considering their confusion matrices
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they generally showed overestimation of the LUS scores. Dastider et al.[13] trained separate
networks for a linear probe and a convex probe. The linear probe achieved the highest results
with an average accuracy of 79%, sensitivity of 79%, specificity of 90% and F1-score of 79%.
Regarding the accuracy and specificity it is very similar to the results of this study.
A major limitation in labeling the videos, was that we have noticed that the traditional LUS
scoring system, varying from 0 to 3, may not be sufficient for our assessment. We have noticed
that a broad range of aeration loss could be classified as a score 1; according to our definitions
for each score in this study, no significant B-lines (0 to 2 lines) are defined as a score 0, whereas
coalescent B-lines and/or large consolidations with less than 50% loss of aeration are defined
as a score 2. That implies that everything in between is defined as a score 1, which turned out to
be much. The wide variety in class score 1 is depicted in Figure 6.1. This can also be observed
in the data distribution for the video-based classification; the amount of videos classified as
a score 1 is disproportionate to the other scores. This may explain the high sensitivity for
score 1, as statistically the network may predict most videos as score 1 and be correct. When
considering Figure 5.2 relatively many videos having score 0 are predicted as score 1, while we
noticed during labeling that most ambiguity was between score 1 and 2. A possible explanation
may be variation in image characteristics, as a result of differences in gain and lack of gel use.
Therefore, if we would score the images again, we could introduce score 1a and score 1b to
take out these nuances in the score 1 classified images. A score 1b could then be assigned
to images which do not apply for a score 2, but tend to. If these new scores are not to be
introduced, it is recommended to collect more data of the other classes and reconsider the
scoring method as in Table 4.1.

(a) (b) (c)

Figure 6.1: Examples of the wide variety in videos that have been labeled as score 1 by
clinical experts. Frame (a) was labeled with score 1 because of subpleural consolidations

without B-lines, (b) because of multiple B-lines and (c) because of the near coalescent B-lines
(which were not coalescent enough for score 2).

Another possibility to improve classification results, would be to cluster classes based on tech-
nical similarities in the data. A suggestion is to group score 0 and score 1a images together,
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and score 1b and 2. Therefore the amount of classes would be reduced to 3 instead of 4.
Not only could this improve the performance of the model, clinically it would also make more
sense as the classes could then be correlated to clinical implications or actions more. A score
0 and 1a do not differ regarding clinical implications, while a score 1b and 2 could be an indica-
tion to start with or increase diuretics therapy. A score 3 requires consideration of the cause -
consolidations or atelectasis - and the severity of the affected regions to effectuate treatment.
Another suggestion for future research is to investigate different classification methods as Roy
et al.[12]. They first made frame by frame predictions, after which they either scored the entire
video based on the maximal frame-level score, or the average frame-level score. They have
described that the former strongly predicts towards higher scores, while the latter performs well
on score 0 and poorly on all other scores. Applying similar methods require more elaborate
network designs that are beyond the scope of this thesis.
Considering the results of the logistic regression model, we can conclude that a basic method
does not suffice for the classification of LUS images, considering sensitivities and specificities
of 0 and 100%. It is evident that the pixel count of manually segmented pathological features
of LUS frames are not a good predictor for the LUS score. From the results in Figure 5.4 and
Table 5.3 we can conclude that the model is able to predict when the frame does not have a
score 0, 2 and 3, but has difficulties in predicting not having score 1. Again the opposite also
counts, so the model can often predict a score 1 correctly. However, there are a lot of remarks
to this method. First of all, the pixel count of segmentation masks was chosen as a feature
to predict LUS scores by lack of an alternative, but we have not corrected for the extent of rib
shadows or thickness of tissue above the pleurae. Therefore the absolute pixel count is by
definition not a reliable feature. Also the data distribution was not equal and may have affected
model training. Thereby it has demonstrated that the use of an RNN is more suitable for LUS
score prediction than a simple logistic regression model.
Asmentioned before, LUS is a skill that should be trained and therefore it is only understandable
that there is a certain learning curve in both making images and scoring them. Therefore there
is a possibility that there was a high intra-observer variability in the assessment of images.
Additionally, we have not done any structural measurement or correction for the interobserver
variability. All videos were labeled after consensus between at least two independent observers
was reached, but we have no measurements of the independent scoring and variability. It is
a possibility that the interobserver variability is already high, which makes it challenging for a
deep learning network to find a generalizable pattern in the data. For example, Kumar et al.[10]
demonstrated an interobserver reliability of 79% when determining the total B-line count per
scan and 56% for lateral consolidations and 86% for posterior consolidations. The interobserver
reliability was lowest for bilateral consolidations (28%).
Another point of discussion is the validity of data augmentation. Augmentation prevents the
network from learning irrelevant features, such as the black space on each side of the image
or the mark at the bottom indication the lung region. By flipping and rotating the image, these
features are changed constantly and we prevent that the model tries to find a pattern in those
features. Bright features such as A-lines and B-lines stay bright and therefore hopefully the
models picks up those features. Previous work has shown that augmentation may improve
model performance[42][43]. Although both flipping and rotation show different aspects of the
dataset, the model is translationally invariant. Therefore it is recommended to not apply data
augmentation to the dataset in future studies.
The results of the frame-based segmentation are high; average DSC’s of 96% and 97% and
MSE’s of 0.03 of the two last saved models imply a high similarity between the desired output
segmentationmasks and themasks generated by the GAN. Another study[41] demonstrated an
average DSC between 78% and 86% using transfer learning methods on pre-trained networks.
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This is in accordance with other work with DSC’s between 64% and 75%[12] and between
75% and 90%[62]. Compared to previous studies, we have found higher agreements between
the output and desired segmentation masks. This could be explained by a large part of the
segmentation masks being uninformative black space with several bright pixels. Even if the
model fails to localize multiple B-lines, which clinically would have implications, the DSC would
still be rather high. An alternative may be to not localize clinical features by segmentation, but
by object detection with bounding boxes. In that case the amount of clinical features would
be detected, rather than the amount of pixels per frame. As the LUS score is dependent on
B-line counts, feature extraction is a common method in studies on DL for LUS assessment.
However, B-lines vary in thickness and studies have shown that the underlying pathologies
can be distinguished by B-line shapes[25]. For the B-line detection, semantic segmentation
was applied. However, with this method each input frame only has one segmentation mask.
Therefore the segmentation masks include all features: A-lines, B-lines and consolidations.
Labeling with bounding boxes and training the model with that data may be a good method
to distinguish the features. Although, B-line appearances are heterogeneous based on the
etiology: B-lines generated by a fibrotic or inflammatory lung have a different appearance from
those generated by cardiogenic edema and therefore B-line detection only is not sufficient and
the appearance should be analyzed[25].
A disadvantage of frame-based segmentation, is that individual frames are a lot less informative
than dynamic videos. When labeling the images, there was often doubt about clinical features,
which would have been less in dynamic images. The images have been labeled conservatively,
meaning that when in doubt features were not segmented. This was often the case for B-lines
and small subpleural consolidations. To the contrary, A-lines were rather easy to segment, as
they occur at specific distances from the previous lines. Therefore the model may have been
trained very well on A-lines, but worse on B-lines. Despite the relatively easy labeling of A-lines,
it seems that the model is able to predict the location and measurements of B-lines better. This
can also be observed in Figure 5.6, where the model seems to generate segmentation masks
with B-lines well, while it does not show any A-lines. As most studies have focused on the
automatic segmentation of B-lines, there is no explanation described in literature. Whether or
not to include A-lines in the segmentation masks should be considered. As the presence of
many A-lines suggests well aerated lung parenchyma or pneumothorax, they provide valuable
information. However, it would be more consistent to only include pathological features in the
segmentation masks.
Also in labeling the segmentation masks we have no results for the interobserver variablity.
A study[63] demonstrated the intraclass correlation coefficient (ICC) for clinical experts and a
neural network when counting B-lines from LUS images. The agreement between their visual
and automatic assessment was 79%, with an ICC among clinical experts between 62%-0.99%.
For the automatic system the ICC was 49%-83%..
Initially we tried to label the images for the semantic labeling with different automatic segmenta-
tion methods, among which threshold-based, watershed and active contours segmentation, as
can bee seen in Figure 6.2. However, it was difficult to apply the algorithms to all LUS images,
as they were very heterogeneous and the clinical features were not evenly prominent in all
images; some images had clear A- and/or B-lines, while in others the whole image was bright
and features were difficult to extract. Moreover, the shadows of the ribs reduced the images to
small regions with useful clinical information, which complicated segmentation. We found that
the efforts and time necessary to automatically segment the images were not proportionate to
the results, compared with manual labeling. Therefore we have made the choice to manually
label all images.
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(a) (b)

(c) (d)

Figure 6.2: Attempts to automatic segmentation of (a) a test frame, using (b) Otsu’s threshold
method, (c) watershed segmentation and (d) active contours.

Although the average results of the RCNN are very similar to the results of previous studies,
the poor sensitivities in predicting score 0 and 2 make that the model is not ready to be used in
practice yet. When the model will be used to predict scores, chances are high that the model
will score the video as LUS score 1 or ID. It is recommended to first improve the model with
aforementioned suggestions and then to introduce the model as a assisting rather than a deci-
sive tool in clinical practice. This implies that the clinician should have moderate understanding
of LUS interpretation and that the model can be used for confirmation or an additional control.
The GAN that was developed for this thesis seems to be capable of segmenting important
features from independent frames and with the aforementioned improvements, it is expected
that the model can be used for both clinical implementation and education of unexperienced
ultrasonographists. The model is able to localize important features from the frames and may
provide valuable information for lung aeration assessment.
When both models have achieved performances that are sufficient for clinical implementation,
LUS can more easily be used by multiple clinical professionals and hopefully the amount of
CXR examinations can be reduced.
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