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Voorwoord 
Na iets meer dan een jaar lang mijn afstudeerstage gelopen te hebben op de Neonatale Intensive 
Care Unit, is nu dan eindelijk het moment gekomen voor mij om mijn werk te presenteren en af 
te studeren. Dit markeert voor mij het einde van zeven mooie studiejaren en het begin van een 
nieuwe levensfase. Ondanks dat ik met veel plezier terugkijk op de afgelopen jaren en ik 
persoonlijk ontzettend veel gegroeid ben, kijk ik erg uit naar deze nieuwe periode en ben ik 
benieuwd wat de toekomst mij zal gaan brengen.  
 
Het onderzoek waarop ik afstudeer gaat over de mogelijkheid van het aansturen van een 
ventilator bij neonaten aan de niet-invasieve beademing door middel van transcutaan gemeten 
diafragma elektromyografie. Dit onderzoek is tot stand gekomen wegens de behoefte vanuit de 
kliniek om deze patiëntengroep op geheel niet-invasieve wijze zo goed mogelijk te kunnen 
ondersteunen in hun ademhaling. Het uitvoeren van dit onderzoek was niet mogelijk geweest 
zonder de hulp van mijn begeleiders.  
 
Ik wil daarom graag beginnen met het bedanken van mijn begeleiders, die mij allen dit afgelopen 
jaar zo goed geholpen en ondersteund hebben. Jeroen, bedankt voor alle klinische inzichten die 
je mij gegeven hebt en voor mij er regelmatig op wijzen dat ik soms wel wat positiever en trotser 
mocht zijn op mijzelf en op mijn werk. Frans, jou wil ik graag bedanken voor je scherpe 
opmerkingen die mij er toe gezet hebben om altijd kritisch naar mijn eigen werk te blijven 
kijken. Ook in het algemeen bedankt voor je inzet en de ruime tijd die je altijd genomen hebt om 
mij verder te helpen. Ruud, jij bent natuurlijk het meeste betrokken geweest bij mijn onderzoek, 
en ik heb ontzettend veel aan jou gehad het afgelopen jaar. Bedankt dat je altijd voor mij klaar 
stond, erg fijn met mij meedacht en mij altijd gesteund hebt. Ik heb ook een erg mooie tijd in 
Italië gehad, waarbij ik het leuk vond dat we elkaar toen wat beter hebben leren kennen. Ook 
jou, Anouk, wil ik erg graag bedanken. Tijdens de wekelijkse TG-meetings kwam jij vaak met 
goede adviezen en andere invalshoeken die zeker terug te vinden zijn in mijn eindresultaat. Ook 
wist ik dat ik altijd op jouw hulp kon rekenen. Annelies, ik ben ontzettend blij geweest met jou 
als mijn procesbegeleider. Ik kan soms een wat nuchter persoon zijn, wat niet altijd een goede 
combinatie is met procesbegeleiding, maar jij hebt mij daarin altijd in mijn waarde gelaten. Toch 
heb je mij de juiste vragen weten te stellen, waardoor ik onder jouw begeleiding erg veel over 
mijzelf geleerd heb.  
 
Ten slotte wil ik graag mijn familie en vrienden bedanken. In het bijzonder mijn ouders, 
huisgenoten en iedereen bij wie ik mijn ei kwijt kon: dank jullie wel voor het aanhoren van al 
mijn verhalen, successen en frustraties van het afgelopen jaar. Ik kon hiervoor altijd bij jullie 
terecht, en dat heeft mij zonder meer erg goed gedaan.  
 
Amber van Elburg 
 
Leiden, oktober 2022 
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Abstract 
Introduction. Delivering respiratory support to preterm infants is often life-saving due to a 
premature respiratory system. Non-invasive respiratory support is preferred, as invasive 
mechanical ventilation is associated with long-term detrimental outcome. The most advanced 
form of non-invasive support is nasal intermittent positive pressure ventilation (nIPPV). 
However, the inflations from nIPPV are often not synchronized with the infants own inspiration, 
because a technique which is both non-invasive and reliable is unavailable. Recently, 
transcutaneous diaphragm electromyography (tc-dEMG) has been suggested as a novel method 
to establish reliable and non-invasive inspiratory triggering, which was further investigated in 
this study.  
 
Method. A triggering algorithm based on tc-dEMG was developed in Simulink. The algorithm 
was designed to reduce noise and detect inspiratory efforts in real-time. After simulation testing, 
the algorithm was integrated into a hardware prototype, which was used in a bench set-up that 
converted the triggers into inflations by a custom-made ventilator. To determine the algorithm 
performance, the results were compared with a reference study using non-synchronized nIPPV. 
The amount of matching and extra triggers, and the amount of unsupported inspirations were 
compared between the two settings. Lastly, the quality of the matched triggers was assessed by 
determining the amount of synchronous, early and late triggers and calculating the trigger delay.  
 
Results. The algorithm was tested using 2-minute epochs from pre-recorded tc-dEMG 
measurements of 15 (preterm) subjects. The percentage of matching and extra triggers, and 
unsupported inspirations was respectively 93.4% (IQR 71.2 – 96.7), 6.6% (IQR 3.3 – 28.8) and 
7.1% (IQR 2.1 – 9.7). All performance indicators were better compared to the reference study, 
which was only significant for the percentage of unsupported inspirations (7.1 % vs. 22%, p < 
0.05). For all subjects, most matching triggers were categorized as late, 84.9% (IQR 70.5 – 92.8). 
The trigger delay was estimated at ~404 ms, which mostly consisted of the delay introduced by 
the time needed to detect an inspiratory effort based on the tc-dEMG signal, which was 341 ms 
(IQR 315 – 374). Once the inspiration was detected, the prototype was able to successfully 
trigger the ventilator in the bench set-up.  
 
Conclusion. This study showed for the first time that a dEMG-based triggering algorithm is 
capable of real-time extraction of inspiratory triggers and subsequent triggering of the 
ventilator. However, the inspiratory triggers were given relatively late. Future research should 
focus on further reduction of the trigger delay and testing of the algorithm in various bench and 
clinical settings.  
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1. Introduction 
The Neonatal Intensive Care Unit (NICU) is the primary care center for critically ill newborns 
that require specialized treatment. The patients are admitted for a variety of clinical indications, 
such as extreme (<28 weeks gestational age (GA)) or very premature (≥28 and < 32 weeks GA) 
birth, congenital or genetic disorders, complications during birth or a combination of factors. 
Delivering respiratory support to patients admitted to the NICU is often crucial for their survival. 
This mainly applies to premature infants, but also to term infants with other morbidities. The 
primary goal of providing respiratory support in the NICU is to compensate for impaired lung 
function and deficient control of breathing. In successfully doing so, a sufficient level of gas 
exchange is maintained and the work of breathing (WOB) is reduced [1]. Respiratory support 
can be divided into invasive mechanical ventilation (MV) and non-invasive respiratory support. 
Invasive MV is defined as respiratory support for which inflations are administered with an 
endotracheal tube (ETT) that passes the vocal cords. Non-invasive respiratory support is 
preferred, since invasive MV is a risk factor for developing the chronic lung disease 
bronchopulmonary dysplasia (BPD), which is associated with impaired neurological outcome 
[1]. Therefore, invasive MV is predominantly reserved for infants who failed with non-invasive 
forms of respiratory support, which is the case if the gas exchange and WOB are not improved 
sufficiently [2]. Three common modalities of non-invasive respiratory support are high flow 
nasal cannula (HFNC), nasal continuous positive airway pressure (nCPAP) and nasal 
intermittent positive pressure ventilation (nIPPV). HFNC transmits an air flow to the patient, 
typically at a higher flow than the patient is able to generate. nCPAP transmits continuous 
airway pressure to the infant which prevents airway collapse during expiration. nIPPV is the 
most supportive mode of non-invasive respiratory support, as it provides superimposed 
inflations on top of a positive end-expiratory pressure (PEEP) with a set peak inflation pressure 
(PIP) and rate [3]. nIPPV is indicated when nCPAP provides insufficient support, e.g. due to a low 
inspiratory drive of the infant, resulting in periods of apnea and subsequently desaturations and 
possibly bradycardia [4].  
 
Over the past decades, improving non-invasive respiratory support has been a major topic of 
investigation. Part of this research is focused on providing synchronized nIPPV (s-nIPPV), i.e. 
delivering PIP based on the own inspiratory effort of the infant. Currently the pressure inflations 
during nIPPV are not synchronized with the infants own breathing effort, which results in a 
certain level of patient-ventilator asynchrony (PVA). The PIP and rate is set by the treating 
physician, which indirectly determines the degree of PVA. A recent study by de Waal et al. 
investigated PVA, by calculating the asynchrony index (AI) during nIPPV: a percentage of 
asynchronous inflations with respect to the total amount of inflations. With an acceptable 
margin of 33% timing difference to distinct synchronous from asynchronous inflations, they 
found an inspiratory AI of 0.68 ± 0.05 and an expiratory AI (start cycling off) of 0.67 ± 0.07. 
Additionally, a substantial amount of inspiratory efforts were not supported at all, and also extra 
inflations were given [5]. 
 

Synchronization non-invasive respiratory support 
It is hypothesized that synchronization leads to more effective respiratory support, partly 
because the infants inspiratory effort will improve the upper airway patency prior to an inflation 
[3]. A number of studies have investigated the short-term effects of s-nIPPV compared to nIPPV 
in infants. In these studies it was found that for s-nIPPV the WOB and spontaneous RR 
decreased, the gas exchange improved and there was a reduction in PIP, fraction of inspired 
oxygen (FiO2) and frequency and length of apnea episodes (along with a reduced amount of 
bradycardia and desaturations) [6]–[10]. Furthermore, from studies on adults and children on 
invasive MV it was found that non-synchronized invasive MV can lead to rapid weakness of 
respiratory muscles and in extension to ventilator-induced diaphragm dysfunction (VIDD) [11]–
[13]. For children (median age 3 months) the observed VIDD (measured through diaphragm 
atrophy) was even more extensive compared to adults, possibly because young children (≤1 
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year) have less resistance to diaphragmatic fatigue due to a different composition of muscle fiber 
types [13], [14]. Using synchronized invasive MV and therefore utilizing spontaneous 
inspiratory efforts, was able to reduce VIDD in adults [15]. Therefore, if s-nIPPV is also beneficial 
for diaphragm function for infants, it might lead to a lower incidence of invasive MV, potentially 
reducing the development of BPD and therefore improving the long term outcome of infants 
who require respiratory support.  
 
Synchronization in (premature) infants is more challenging compared to delivering 
synchronized respiratory support to older children and adults. Infants have a higher and more 
variable respiratory rate (RR), and in case of premature born infants, frequent periods of apnea 
[16]–[18]. As a result, in order to provide synchronization breath cycling must continuously be 
adapted to the current state of neonatal breathing. Also, due to short inspiratory times (Ti), there 
is only a small window available in which to detect an inspiratory effort and to subsequently 
administer a supporting inflation. Furthermore, infants have small tidal volumes (TV), causing 
these to be more difficult to detect [19]. Finally, masks to deliver non-invasive ventilation to 
infants typically have flow leaks. For adults and children these leaks can be limited (e.g. by use of 
a tight-fitting oronasal mask), but for infants the masks often have a suboptimal fit, as they can 
not be secured as tightly due to the accompanied risk of nasal trauma [20]. Also, infants have a 
more heterogenous facial anatomy which can cause air leaks when using generic masks [21], 
[22]. In case of a flow-based triggering modality, this limits the accuracy of spontaneous breath 
detection [23], [24].  
 
So far three methods have been applied to accomplish s-nIPPV on infants: based on (1) 
abdominal wall pressure, (2) flow and (3) the electrical activity of the diaphragm. For abdominal 
wall pressure-based s-nIPPV a Graseby capsule (GC) is used, which is a pneumatic sensor 
attached to the abdominal wall of the infant. By detecting expansion of the abdomen through 
pressure differences, the GC is able to detect spontaneous inspirations of the infant. This signal 
can be used as a trigger for a ventilator inflation [6], [7], [25]. Studies have indicated that the 
accuracy of the GC is arguable, since not all initiated breaths are detected. Also, GC-based 
triggering is relatively late since the inspiration is detected only after chest expansion [26], [27]. 
Finally, using the GC only inspirations and not expirations can be synchronized with the 
respiratory support [5]. The second method, flow-based s-nIPPV, is achieved with a 
pneumotachograph or flow sensor. When the infant initiates a breath, an inspiratory flow is 
generated which is detected by the sensor. At a set threshold of inspiratory flow, an inspiratory 
trigger is placed which can activate a supportive ventilator inflation. The primary disadvantage 
of this type of s-nIPPV is the flow leaks that occur regularly during nIPPV. Furthermore, like 
pressure-based s-nIPPV, the detection of inspirations is relatively late using flow-based 
triggering. The third and currently last available technique is based on diaphragm 
electromyography (dEMG) [10], [28]. The basic concept behind using dEMG for synchronizing 
relies on the role the diaphragm plays as the primary respiratory muscle for inspiration and 
active expiration in infants [29]. dEMG can be measured transesophageal (te-dEMG), 
intramuscular (im-dEMG) and transcutaneous (tc-dEMG). However, for synchronization 
purposes, only te-dEMG has been applied so far. For this method a specific nasogastric tube is 
inserted into the stomach to measure the te-dEMG, which is used to synchronize the breathing 
effort with the inflations [30], [31]. The trigger mechanism differs from the forementioned 
pressure- and flow-based synchronization mechanisms. An inflation is activated directly and 
linearly proportional to the dEMG, attempting to create PIP that correspond to the neural 
respiratory drive of the infant. The mechanical inflation is terminated at a 30% decrease of the 
dEMG peak activity. To prevent overinflation of the lungs, the administered PIP is limited in case 
of disproportionate large dEMG values. This trigger mechanism establishes that the infant is in 
control of the RR, inspiratory and expiratory time, and the magnitude of the mechanical 
inflations [19], [32]–[35]. A downside of using te-dEMG, is that the technique is invasive, 
expensive and not available with all ventilator distributors [27]. Also, the dEMG signal typically 
contains a large amount of noise and therefore requires processing. Specifically for the neonatal 
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population, due to high and irregular heart rates (HR) and RR’s, obtaining interpretable data in a 
real-time setting can thus be challenging. However, the detection of inspirations using dEMG is 
relatively early compared to the two prior methods, as physiologically the diaphragm 
contraction precedes inspiratory flow and thorax expansion [36]. Also, loss of efficacy due to 
flow leaks during flow-based synchronization will not be a factor using dEMG.  
 
Although dEMG-based synchronization has multiple advantages over the other existing 
modalities, it is not preferred in its current form, using te-dEMG. As it is also possible to measure 
the diaphragm activity through tc-dEMG, this can be considered as a potential new method for 
synchronization. Unlike te-dEMG, tc-dEMG is non-invasive, relatively cheap and easily available. 
Tc-dEMG is measured by placing surface electrodes on the skin. The obtained signal requires 
several processing steps, after which inspiratory efforts can be detected. However, whether it is 
possible to use tc-dEMG to reliably detect inspiratory efforts in infants in a real-time setting is 
yet unknown.  
 

1.1 Rationale 
The hypothesized benefits of s-nIPPV over nIPPV for infants advocate further investigation into 
providing s-nIPPV. However, the clinical potential of current methods available for 
synchronization are limited, either in accuracy or in availability. Therefore, it is relevant to 
investigate the potential of tc-dEMG to be used to synchronize non-invasive respiratory support.  
 
The main challenge that can be expected when considering tc-dEMG as a modality for 
synchronization, is to obtain an interpretable inspiratory signal within an as short as possible 
timeframe. The raw tc-dEMG signal contains a large amount of noise, especially for the neonatal 
population due to cardiac interference (with high and irregular HR’s) and possible movement 
artifacts (due to nursing, discomfort, etc.). In order to obtain an interpretable signal, multiple 
processing steps are indicated. However, when doing so in a real-time setting, the processing 
options are limited as processing induces a relevant time delay. Delay in processing the signal 
will inevitably result into a delayed detection of inspiratory efforts, and thus slower triggering. 
As infants have high RR’s and therefore short Ti’s, it is crucial to minimize this trigger delay in 
order to aim for administration of inflations during inspirations. In order to promote the swift 
placement of triggers after the start of an inspiratory effort, the aim was to maximally reduce the 
amount and complexity of processing operations, and therefore diminishing the delay as much 
as possible. In this phase of the study, the goal is not yet to attain a delay under a set value, but 
rather to obtain insight in the different processing operations and the delay they induce, and to 
provide guidance for future studies to further improve processing and reduce the delay to a level 
that is acceptable for clinical use. 
 
In this thesis, the possibilities of tc-dEMG as a synchronization modality will be explored by 
developing a triggering algorithm using digital signal processing. In this algorithm it is 
attempted to perform a series of processing steps to the tc-dEMG input signal with the primary 
aim to extract inspiratory triggers from this signal in real-time, which can subsequently be used 
to activate a ventilator to administer inflations to the patient. In order to evaluate whether the 
algorithm is capable of this, it will be assessed how many inspiratory triggers correspond to an 
inspiratory effort (matching triggers), how many extra triggers are given and how many triggers 
are missing (i.e. unsupported inspiratory efforts). Another focus point is how the matched 
triggers are placed with respect to the inspiratory efforts. This can be analysed by categorizing 
the placement of each matched trigger as synchronous, early or late. Ultimately, from these 
results the trigger delay can be evaluated, which is defined as: the time between the raw dEMG 
signal being acquired and the start of a mechanical inflation. 
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1.2 Research questions 
The primary aim of this thesis is to develop an algorithm that is capable of real-time extraction 
of inspiratory triggers from a tc-dEMG signal, and for it to be tested in a bench set-up in which 
the algorithm can activate a ventilator. The performance of this algorithm is evaluated by 
analysing the amount of matching and extra triggers, and the unsupported inspiratory efforts. As 
a secondary outcome, the quality of the inspiratory triggers is assessed, by further categorizing 
all matching triggers into synchronous, early and late placement, and by calculating the trigger 
delay.  
 
Therefore, the primary research question is: 
 

- Is it possible to trigger the ventilator during non-invasive ventilation, using a triggering 
algorithm based on transcutaneous electromyography of the diaphragm in (preterm) 
infants? 

 
The secondary research question is: 
 

- What is the quality of triggering based on transcutaneous electromyography of the 
diaphragm, i.e. of the matching triggers how many are synchronous, early and late and 
what is the median trigger delay? 

 

1.3 Outline of thesis 
The research questions described above are answered in this thesis report. In the next chapter a 
clinical and a technical background will be given. The clinical background will provide insight 
into respiratory challenges for the neonatal population, and current respiratory support 
modalities that are available. In the technical background the basics of designing a (real-time) 
algorithm are discussed and how this applies to a triggering application. Chapter 3 contains the 
methods, divided into two parts. In the first phase of the methods the software algorithm will be 
developed and tested through simulations. In the second phase of the methods the software will 
be integrated into a hardware prototype, which will be tested in a bench set-up. In chapter 4 the 
results are described, which will be discussed in chapter 5. Chapter 6 consists of the 
recommendations and future perspectives of this study. And finally, the conclusion is given in 
chapter 7.  
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2. Background 
To ensure understanding of the aims, approach and challenges of this thesis, a clinical and 

technical background is provided.  

2.1 Clinical Background 

2.1.1 Fetal respiratory development and physiology 
The differentiation of the respiratory system commences as early as day twenty-two of gestation 
and continues into early childhood. During this timeframe the lungs and respiratory tree 
undergo different stages of development, in chronological order: the embryonic, 
pseudoglandular, canalicular, saccular and alveolar stage. Each stage is characterized by the next 
phase in the differentiation process that begins with the respiratory diverticulum and ends with 
mature alveoli [37]. In the embryonic stage (day 22 – week 6 GA) the trachea and three 
generations of bronchi are formed, already distinctly marking the individual lung lobes. This 
process continues into the pseudoglandular stage (week 6 – week 16 GA) in which the 
respiratory tree is branched further, resulting in the formation of terminal bronchioles. In the 
canalicular stage (week 16 – week 28 GA) the terminal bronchioles divide into multiple 
respiratory bronchioles. Also, respiratory vasculature starts developing and the mesenchyme is 
thinning, which both mark the first critical steps towards enabling gas exchange, although still 
very limited [38], [39]. The increased vascularization also stimulates the differentiation of lung 
epithelium into specialized cells, such as type I and II pneumocytes. The next phase is the 
saccular stage (week 28 – week 36 GA), in which the respiratory bronchioles are subdividing 
into terminal sacs and the lung epithelium is thinning further. The alveolar stage (week 36 GA – 
8 years of life) is the last phase of lung development, in which the terminal sacs differentiate into 
mature alveoli [37]. Further growth of the lungs after early childhood is only established by 
increasing alveolar size [39].  
 
Simultaneously with lung formation during the pseudoglandular stage, the pleuroperitoneal 
cavity is closed. This marks the formation of the diaphragm (i.e. the primary respiratory muscle), 
as myoblasts within the pleuroperitoneal fold later differentiate into diaphragm myofibers. At 
the same time, phrenic nerve cells migrate towards the diaphragm-precursor myoblasts to 
establish innervation of the muscle [40]. During further development of the diaphragm, it starts 
performing regular contractions, known to be fetal breathing movements. Although the 
mechanism and reason behind fetal breathing is not yet quite understood, it is assumed to serve 
as a preparation for breathing in later extrauterine life [18]. After birth, the composition of the 
diaphragmatic muscle fibers is altered. Whereas the infants respiratory muscles mainly contain 
type 2 muscle fibers, during later life (≥1 year) this shifts to a majority of type 1 muscle fibers. 
Type 1 muscle fibers have higher endurance compared to type 2 fibers, and are therefore more 
resistant to fatigue [14], [41].  
 
The main purpose of the respiratory system is establishing gas exchange and to regulate the pH, 
through inhalation and exhalation [42]. Through diffusion O2 and CO2 are exchanged across the 
alveolocapillary membrane [43]. The alveolocapillary surface is lined with type I and II 
pneumocytes. Type I pneumocytes cover approximately 95% of the alveolar surface and are 
characterized as extremely thin, stretched out cells, resulting in a very thin barrier fit for 
diffusion-based gas exchange [44]–[46]. Type II pneumocytes, accounting for the remaining 5% 
of alveolar surface coverage, have a vital role in the synthesis and secretion of pulmonary 
surfactant. Surfactant is a mixture of proteins and lipids that reduces the surface tension, to 
prevent respiratory airways from collapsing and therefore reduces the airway resistance [47], 
[48]. According to Laplace’s Law for spheres (often used to describe the alveolar mechanism, see 
Eq. 2.1), increasing surface tension (𝛾) results into an increased pressure across the spherical 
barrier (∆𝑃), which means that an increased pressure is required to open the spherical structure 
and for it to be kept open. It also states that spheres with a small radius (𝑟) are more prone to 
collapse (i.e. even further increases the necessary ΔP) [49]. The surfactant synthesis and 



 

10 
 

secretion begins at approximately 22 weeks of gestation, and further develops with GA, until 
approximately 35 weeks. 
 

∆𝑃 =  
2𝛾

𝑟
     Eq. 2.1 

 
The regulation of breathing is executed by the central nervous system through chemoreceptors 
and mechanoreceptors. Central and peripheral chemoreceptors constantly provide information 
to the brainstem regarding blood homeostasis, in order to adapt breathing to the metabolic 
condition. Furthermore, the mechanoreceptors in the lungs and airways play an important part 
in detecting pulmonary mechanics, such as stretch of the lungs, and thereby prevent 
overinflation [50]. Breathing regulation is accomplished through control of the respiratory 
muscles. The respiratory muscles are divided into three categories: inspiratory muscles, 
expiratory muscles and accessory respiration muscles. The most important inspiratory muscle is 
the diaphragm, as it accounts for approximately 70-80% of the inspiration effort in normal tidal 
breathing [29], [51]. During inspiration, the diaphragm contracts and flattens into the abdominal 
cavity. As a results of the increased thoracic cavity, the intra-thoracic pressure decreases which 
causes air to flow into the lungs. This process is reversed for expiration [29]. Furthermore, it has 
been described that the diaphragm also plays a part during expiration in healthy premature and 
term infants. During expiration the diaphragm upholds post-inspiratory activity, possibly to 
maintain/elevate end-expiratory lung volume [52], [53]. The external intercostal muscles help 
expanding the ribcage during inspiration, whereas the internal intercostal muscles decrease the 
ribcage size during expiration. The abdominal muscles mainly function to assist expiration, but 
can also assists inspiration during cycles of active expiration through storing elastic recoil 
energy in the chest wall during expiration, which assists chest wall expansion at the next 
inspiration. Finally, the accessory respiration muscles are those which help expand the rib cage 
during increased ventilatory demands, by assisting inspiration. The muscles surrounding the 
upper airways are also considered as accessory respiration muscles, as they manage air flow 
patency within the airways [51].  
 
The respiratory muscles and supporting structures differ for infants compared to adults, which 
can complicate neonatal breathing. One of these differences is the anatomy of the respiratory 
tract including the relatively large head size of infants, which results into an anatomic dead 
space approximately 50% greater per unit body weight compared to older children and adults. It 
is suggested that the relatively large dead space limits the respiratory reserve capacity of 
infants, as TV’s must sufficiently exceed dead space volume to enable gas exchange [54]. 
Furthermore, the (upper) airway structures in infants have higher compliance and smaller 
diameters compared to older children and adults, which results in higher airway resistance and 
in higher susceptibility for collapse during forceful inspiration. The lung compliance of especially 
preterm infants is typically low due to surfactant deficiency, whereas the thorax still has high 
compliance as it consists mainly from cartilage tissue [55]. Due to the high thoracic compliance, 
it is less capable of counteracting collapse of the low compliant lung [56]. As a result, preterm 
infants tend to have a lower functional residual capacity (FRC). Techniques to increase FRC are 
post-inspiratory activity of the inspiratory muscles, increasing RR with short expiratory times 
and expiratory laryngeal breaking [57]. Expiratory breaking is an interruption of expiratory 
flow, mainly accomplished through closure of the glottis, which is often realized by crying [18], 
[58]. Furthermore, the infant thorax has horizontal orientated ribs, which makes it more difficult 
for infants to increase thoracic size using the intercostal muscles. Therefore, infant inspiratory 
efforts are less efficient and mostly reliant on the use of the diaphragmatic muscle [55]. Finally, 
infants are more prone to fatigue of the inspiratory muscles, as these muscles consist of mostly 
type 2 muscle fibers [14], [41].  
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2.1.2 Impairment of neonatal breathing 
In addition to physiological difficulties of neonatal breathing, there are a variety of factors that 
can lead to impairment of neonatal breathing, e.g. in case of premature birth. One of the factors 
that can obstruct normal breathing, is insufficient surfactant production. This is the case for 
premature born infants, due to immature type II pneumocytes [59]. In addition, the 
development of their respiratory system is still in either the canalicular or saccular phase, which 
means that the alveoli have not yet been developed or are only beginning to develop. As a result, 
the respiratory tissue that is fit for gas exchange is limited. Therefore, preterm infants are at risk 
of developing infant respiratory distress syndrome (iRDS), a risk that is inversely proportional 
to the GA. Infants suffering from iRDS can be treated with exogenous surfactant therapy and 
with various forms of respiratory support, primarily intended to reduce the infants’ WOB and 
increase oxygenation [59], [60]. iRDS is a risk factor for BPD, especially in combination with 
clinical factors as lung inflammation, treatment-induced oxygen injury, and prolonged use of 
(invasive) respiratory support [61].  
 
A common condition among preterm infants is apnea of prematurity (AOP). AOP is defined as a 
cessation of breathing in infants < 37 weeks of gestation for ≥ 20 seconds, or ≥ 10 seconds if 
accompanied with a period of desaturation (SpO2 < 80%) and bradycardia (< 80/min) [62]. 
Frequent hypoxic events are associated with retinopathy of prematurity, impaired growth, 
cardiorespiratory instability and poor neurological outcome in later life [63], [64]. There are 
three types of AOP: central, obstructive and mixed apnea, from which the latter is most 
prevalent. Central apnea in preterm infants can be caused due to an immature chemoreceptor 
response to arterial blood gas values and/or an insufficient respiratory drive [65]–[68]. Also, 
both term and preterm infants have an elevated apnoeic threshold, the level of PCO2 under 
which breathing ceases, which can result in frequent episodes of apnea [16], [69], [70]. 
Obstructive breathing can be caused by occlusion of the (upper) airways, e.g. due to immaturity 
of pharyngeal and laryngeal muscles [67]. AOP can be treated with respiratory support, 
pharmaceuticals and/or prone positioning.  
 

2.1.3 Respiratory support 
Understanding neonatal lung development and physiology, it is not surprising that infants 
admitted to the NICU are often in need of respiratory assistance. There are several forms of 
respiratory support available, which are foremost divided into invasive MV and non-invasive 
support. 
 

Non-invasive respiratory support 
Non-invasive ventilation is administered to the patient through either a nasal mask or nasal 
prongs. Inflations can also be delivered through a facemask, but this is mostly reserved for acute 
settings, e.g. directly after birth. In general, there are four types of non-invasive ventilation: 
HFNC, low flow nasal cannula (LFNC), nCPAP and nIPPV.  
 
With HFNC therapy an adjustable, heated and humidified air flow with supplemented oxygen 
(FiO2 0.21-1 at 2-12 L/min) is administered to the patient. HFNC can lead to reduced nasal 
resistance and dead space, washout of the upper airways, recruitment of collapsed alveolar 
regions and an increase of the FRC [71]. Furthermore, due to the heating and humidity of the 
airflow, mucosal injury can be prevented, the clearance of mucus secretions is aided, and 
bronchoconstriction is reduced [71]. LFNC administers an air flow up to 2 L/min, which is 
standard not heated and humidified [71], [72]. nCPAP is the most frequent used non-invasive 
modality in respiratory care at the NICU. It submits a continuous distending pressure to the 
airways, thereby setting a certain level of PEEP. Due to the PEEP, CPAP aids in increasing the 
FRC, stenting of the airways, preventing alveolar collapse, and lowering the WOB. Finally, nIPPV 
is the most supportive non-invasive respiratory support modality. nIPPV combines nCPAP with 
a set of superimposed inflations at a fixed PIP and rate.  
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Invasive respiratory support 

Invasive MV is a form of respiratory support where mechanical inflations are administered to 
the patient through an ETT [73]. Invasive MV is only applied to infants who fail with non-
invasive forms of respiratory support, as invasive MV is associated with increased risk of VILI, 
and by extension BPD. When intubation is deemed necessary, treatment strategies will be in 
large part focused on extubation as quickly as possible. The most common indications for 
invasive MV are increased WOB, persistent AOP, sepsis, necrotizing enterocolitis or surgery for 
which general anaesthesia is required [73], [74].  
 
A common type of invasive MV is conventional mechanical ventilation (CMV) [73]. CMV is 
divided into pressure controlled ventilation (PCV) and volume controlled ventilation (VCV). 
During PCV a mechanical inflation is administered to the patient through a fixed PIP on top of a 
pre-set PEEP. As a result, the TV that is given using PCV is variable and depends on the 
pulmonary dynamics of the infant. VCV, on the other hand, regulates the TV, allowing the 
administered pressure to variate [1]. Another common type of invasive MV at the NICU is high 
frequency oscillatory ventilation (HFOV). During HFOV small TV’s are delivered at a high 
frequency (typically between 6-15 Hz for infants), superimposed on a continuous distending 
pressure. Due to the small TV’s, HFOV is a lung-protective form of invasive MV [75].  
 

Synchronization of respiratory support 

In case of non-invasive respiratory support, only nIPPV can potentially be synchronized with the 
patients breathing, as it is the only modality that operates with inflations. However, in current 
clinical practice nIPPV is not yet synchronized [5], [76].  
 
For CMV and HFOV, only CMV is eligible for synchronization. Both types of CMV can be 
synchronized with the patient’s own breathing effort. Several studies have reported that 
synchronization of CMV leads to improved oxygenation, lower administered levels of PIP and 
shorter duration of mechanical ventilation [77]–[81]. The most common method to provide 
synchronization is detecting the inspiratory effort of the patient through measuring the flow at 
the airway opening. If a certain threshold level, set by the clinician, is reached, an inspiratory 
effort will be supported with a mechanical inflation, either through PCV or VCV. Disadvantages 
of flow-based triggering on invasive MV is that the flow sensor adds to dead space volume. Also, 
the accuracy might be impacted through ETT leak, or accumulation of condensation resulting in 
auto triggering. Another method to synchronize is through detection of airway pressure. As the 
PEEP decreases to a certain threshold, an inspiration is detected and subsequently supported. 
For this method, no flow sensor is required and therefore no additional dead space volume is 
needed. However, in order for the infant to decrease PEEP below a reliable threshold, an 
increased WOB is required. Another synchronization modality for CMV in infants is neurally 
adjusted ventilatory assist (NAVA), which uses te-dEMG to synchronize [1]. 
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2.2 Technical background 
To our knowledge, this is the first study to investigate synchronization based on tc-dEMG. 
Therefore, in this thesis a triggering algorithm was created using digital signal processing (DSP). 
As a guideline for the development, a pre-existing offline tc-dEMG processing algorithm was 
used, which was developed earlier within this department [4]. A flowchart of the basic 
processing steps from this algorithm can be found in Appendix A. In this section a background is 
given in basic DSP system design and how this applies to designing a tc-dEMG based triggering 
algorithm and prototype.  
 

2.2.1 Introduction to DSP system design 
DSP is performing a series of analyses and/or modifications to digital data, which can be stored, 
transmitted and extracted. This can be done offline or in real-time. Offline DSP is performed with 
pre-recorded data stored in digital form, whereas real-time DSP systems run on either live 
recorded data or on pre-recorded data transmitted in a real-time fashion (e.g. in a simulation 
setting) [82].  
 
Designing a DSP system is a step-by-step process in which software and hardware can be 
integrated into a hardware prototype, see Figure 2.1. The first step is to define the project by 
considering the aimed application to be build and specifying the type of input data and desired 
output data (i.e. based on the operational needs of the user). This determines the kind of 
processing that needs to be performed and is therefore essential for the next step: detailed 
(software) design. The type of software language to be used highly depends on the kind of 
processing operations and the system requirements (e.g. whether or not the system is meant to 
run in real-time). In general, for DSP system design the high-level language tool C/C++ is often 
used, as it is easy-to-handle and good transferrable to most hardware DSP processers using a C-

Figure 2.1: Simplified DSP design flow, divided into three phases: (A) project definition, (B) 
detailed design and (C) project testing and integration. Image adapted from Real-Time Digital 
Signal Processing: Fundamentals, Implementations and Applications [82]. 
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code compiler. The developed algorithm can be tested using a simulator which generates and 
saves the simulation output, from which the system behaviour can be analysed. If the model 
performance is deemed adequate, the algorithm can be implemented through conversion in a 
hardware prototype. For hardware prototyping, nucleo circuit boards (a type of 
microcontrollers) are a useful tool. The software algorithm can be uploaded on this dedicated 
hardware, which contains the necessary components (e.g. memory) fit for the application to be 
run. Requirements for the nucleo board and its integrated DSP processor can include: sufficient 
processing speed and efficiency of data flow (especially for real-time applications), sufficient 
random-access memory (RAM), power consumption (in case of portable devices), connectivity 
(e.g. Bluetooth, LAN, etc.) and ease of software-hardware integration. After the appropriate 
hardware is chosen, the software algorithm is integrated with the hardware into a prototype 
which can be subsequently tested, e.g. using a bench set-up. During this process, verification and 
validation of the system should be repeatedly carried out, i.e. ensuring that the system 
requirements and operational needs of the user are still conformed. After finalizing this process 
(i.e. the desired output data is obtained from the hardware prototype), the model can be 
integrated with its target hardware. [82] 
 
In the following paragraphs (2.2.2-2.2.4) the global steps from Figure 2.1 to develop a DSP 
system will be evaluated for the application of a tc-dEMG based triggering algorithm.  
 

2.2.2 Project definition 
In order to evaluate the possibility of using tc-dEMG recorded data to trigger a ventilator, a DSP 
application must be designed that is able to do so. The goal is to obtain inspiratory triggers from 
the input signal.   
 
The first choice to consider is the operating mechanism of the application to be build. For an 
inspiratory triggering application it is possible to aim for real-time triggering (i.e. a trigger is 
placed to support the current inspiratory effort) or for prediction-based triggering (i.e. a trigger 
is predicted and placed to support the next inspiratory effort(s)). Infants typically have high and 
irregular RR’s, which makes it difficult to select the most suitable mechanism. The high RR’s 
advocate for a prediction-based triggering model, as the accompanying short Ti’s provide a 
challenge to real-time triggering, since there is little time available for extracting inspiratory 
triggers. However, as infants also have an irregular RR, a prediction-based model is likely to be 
less accurate compared to a real-time triggering modality. Another factor to be taken into 
consideration when selecting a method of triggering, are the characteristics of the input signal 
(tc-dEMG). Tc-dEMG is known to be a noisy signal that needs a considerable amount of 
processing in order to be interpretable for breath detection, thus potentially favouring 
prediction-based triggering. On the other hand, a valuable advantage of diaphragm-activity 
based triggering compared to methods as flow- or pressure-based triggering, is that it 
potentially enables earlier breath detection. This factor makes it highly relevant to look into the 
real-time triggering potential of tc-dEMG, as this could potentially set tc-dEMG based triggering 
apart from the other available neonatal triggering modalities.  
 
The system requirements of a real-time tc-dEMG based triggering algorithm can be determined 
by evaluating the input data and deciding on the desired output. In this first phase of developing 
the algorithm, the input data will be originating from pre-recorded measurements in the 
neonatal population. In clinical practice, tc-dEMG is commonly measured by placing two 
electrodes bilaterally on the costo-abdominal margin on the midclavicular line and one 
reference electrode at the sternum, see Figure 2.2 [83]. Using this electrode configuration, the 
output of the dEMG device are two unipolar raw tc-dEMG signals. Therefore, these traces should 
be considered as the input to the DSP system. The output of the system should be defined based 
on its purpose. In this particular case of a triggering algorithm, the output signal must be capable 
of activating a ventilator (or simulator) to administer inflations. This can be accomplished 
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through a binary output signal, in which the start of inspiratory efforts (i.e. inspiratory triggers) 
are defined.  
 

 
Figure 2.2: Positioning of dEMG electrodes. The upper (red) reference electrode is placed on the 
sternum. The lower (green) electrodes are placed bilaterally on the costo-abdominal margin on 
the midclavicular line. Adapted from van Leuteren et al. (2021) [4].  

 

2.2.3 Detailed design 
When choosing the appropriate software tools to develop the algorithm, the specific 
requirements for the triggering algorithm should be taken into account, as well as consideration 
of the developmental phase of the project. Inherent to the chosen applications operating 
mechanism, the triggering system must be able to operate in real-time. Therefore, a 
computationally efficient software language is indicated to limit time delay. With regard to the 
developmental phase, it is preferred to use a high-level software language, as they are relatively 
easy to write, test (e.g. through simulation) and improve/adapt. Also, the ease of software-
hardware integration should be taken into account, for later hardware prototyping. The high-
level language C/C++ complies with these conditions. However, the C-compiled code can be 
inefficient in both processing speed and memory usage. The alternative is to use assembly 
language (a symbolic programming language that closely resembles binary machine language), 
which is highly complicated and time consuming and therefore not recommended during first 
phase DSP system design. Therefore, although potentially inefficient, C is generally deemed most 
suitable.  
 
The selected software will be the primary tool to develop the tc-dEMG based triggering 
algorithm. There are several steps within the algorithm: (1) obtaining the input data, (2) data 
processing, and (3) obtaining the output data. An additional factor to consider for this specific 
algorithm, is incorporating adaptivity of the system (i.e. a system that can cope with the variable 
respiratory conditions that are characteristic to the neonatal population).  
 

1. Obtaining the input data 

The first challenge to face when real-time processing tc-dEMG data, is how to obtain the input 
data as tc-dEMG data typically contains a considerable amount of (environmental/cardiac) 
noise. Apart from reducing the noise through processing, it is key to reduce the different sources 
of noise as much as possible during recording of the data. The sources of noise can be divided 
into four categories: (1) power supply interference, (2) subject related, (3) use of electrodes and 
(4) amplifier settings. The noise originating from power supply interference is often easily dealt 
with, either by changing the experimental set-up to protect the measurement equipment from 
electrical interference (e.g. shielding the cables and/or using high common-mode-rejection-ratio 
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(CMRR) for the amplifier) or by using an appropriate filter during pre-processing of the signal. 
Subject related noise cannot always be prevented, neither can it be reduced using plain filtering 
techniques. Forms of subject related noise are the skin-electrode interface, signal strength 
reduction due to patient anatomy (e.g. subcutaneous tissue), electrode placement, motion 
artifacts and cross-talk (i.e. picking up activity from adjacent muscles to the muscle of interest). 
Especially the two latter types of subject related noise are a challenge for tc-dEMG recordings of 
infants. Motion artifacts occur during infant movements and kangaroo care. Not only do these 
motions potentially cause an unusable signal, they also might affect the skin-electrode interface. 
The most prominent example of cross-talk while conducting tc-dEMG is cardiac interference. 
Since the cardiac signal is considerably larger in amplitude compared to the diaphragm activity, 
elimination of the cardiac interference is essential [84]. Particularly when studying (premature) 
infants, this is challenging in a real-time setting, due to an often high and variable HR. 
Furthermore, the type of electrode used can affect the amount of recorded noise. Not only the 
choice of electrodes is important (type, material, size), also the electrode configuration has an 
impact. A bipolar derivation (two unipolar electrodes subtracted from each other) is preferred 
over a unipolar derivation, since noise is often present in both leads and is therefore chiefly 
eliminated in the subtraction. Motion artifacts and cross-talk can be further reduced by using a 
double differential tc-dEMG instead of single differential. However this method is challenging on 
infants since the space for additional electrodes is limited [85]. Finally, noise can be originating 
from the amplifier. The amplifier noise can be reduced by setting the appropriate gain, CMRR 
and sample frequency (𝑓𝑠) (to prevent aliasing). Also, each amplifier has inherent noise which 
presents itself as stochastic noise [86].  
 

2. Data processing 

After obtaining the input signal, certain processing steps must be performed to obtain a signal 
from which respiratory information can be extracted. In case of designing a real-time DSP 
system, controlling the processing time becomes considerably more important compared to its 
offline counterpart. A real-time DSP system receives data at a certain sampling frequency (𝑓𝑠), 
from which follows the sampling period (𝑇𝑠), see Eq. 2.2. To ensure that each sample is 
processed prior to receiving the next sample, the system is restricted to a processing time within 
𝑇𝑠 at which the input data is sent. This is defined in Eq. 2.3, in which 𝑡𝑝 is processing time and 𝑡𝑜 

is the duration of input/output (I/O) operations of the hardware device (time it takes to receive 
input data and transmit the resultant output data).  
 

𝑇𝑠 =  
1

𝑓𝑠
     Eq. 2.2 

 
𝑇𝑠 > 𝑡𝑝 + 𝑡𝑜    Eq. 2.3 

 
To illustrate, an input signal at 500 Hz has a sampling period of 2 ms, and therefore the system 
requires a maximal 𝑡𝑝 of 2 − 𝑡𝑜 ms in order to permit real-time operations. Increasing the 𝑓𝑠 will 

only further reduce 𝑇𝑠 and therefore the amount of time available for processing. As the 𝑡𝑝 can 

only be reduced to a certain extent, the bandwidth of the input signal (i.e. the maximum 
frequency component in the signal, 𝑓𝑚𝑎𝑥) is also limited. The 𝑓𝑚𝑎𝑥 is already bounded to the 
Nyquist–Shannon sampling theorem in order to prevent signal aliasing, see Eq. 2.4. For real-time 
applications this results in an additional restriction, taking into account the minimal 𝑡𝑝 and 𝑡𝑜, 

see Eq. 2.5 [82].  
 

𝑓𝑚𝑎𝑥 ≤
𝑓𝑠

2
    Eq. 2.4 

 

𝑓𝑚𝑎𝑥 ≤
𝑓𝑠

2
<

1

2(𝑡𝑝+𝑡𝑜)
   Eq. 2.5 
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Depending on the type of input signal, the minimal bandwidth at which no information is lost 
should be evaluated, so the maximum time for processing can be determined. An additional 
option to increase time for processing is to relatively reduce the 𝑡𝑜 by implementing a block-by-
block processing approach, instead of sample-by-sample. Using block processing, input samples 
are first placed in memory buffers, which are processed after the block is full. In this case, 
processing of a block must be completed prior to the arrival of the next block of samples. Block 
processing does pose an additional time delay between the input and output, proportional to the 
block size.  
 
Processing time must not be confused with processing delay. Whereas, processing time refers to 
the time needed to make a mathematical computation, processing delay is the delay induced by 
the nature of the computation (e.g. signal time shifting due to filtering). The main processing 
operations that need to be performed on a raw tc-dEMG signal for triggering purposes, include 
baseline correction and removing of cardiac interference [4]. For these processing operations, a 
trade-off must be made between the quality of processing and an acceptable level of both 
processing time and processing delay, which is further evaluated below.  
 
Baseline correction 
The tc-dEMG signal contains a baseline offset, which is a continuously present low frequency 
noise that causes the baseline to deviate from zero. The baseline offset can be corrected through 
high-pass filtering. However, as filtering requires a certain amount of processing time and 
additionally induces a processing delay, it is important to choose the correct filter and its 
settings accordingly. Filters can be categorized into causal and non-causal filters. A filter is 
causal if the output is only dependent on present and past inputs, whereas an non-causal filter 
also takes into account future inputs. In real-time applications, only causal filters can be used. 
The amount of passed inputs used in the filter is determined by the order of the filter, 𝑃. A 𝑃𝑡ℎ 
order filter has 𝑃 + 1 coefficients, as the present input is also taken into account. The higher the 
order of the filter, the sharper the magnitude response transition. However, increasing the order 
of the filter also increases the processing delay that is induced on the output signal with respect 
to the input, as the filter response is affected by a higher amount of past inputs. Furthermore, 
filters are also divided into finite impulse response (FIR) filters and infinite impulse response 
(IIR) filters. Generally, IIR filters need fewer coefficients to achieve a similar magnitude response 
transition as FIR filters, and therefore can be computationally more efficient and result in 
smaller processing delays. This makes IIR filtering useful for real-time applications. The filter 
impulse response using an IIR filter, 𝑧(𝑛), is a function of the P+1 current and passed inputs 
(𝑥(𝑛 − 𝑗), 𝑗 = 0 … 𝑃) and the Q passed outputs (𝑧(𝑛 − 𝑖), 𝑖 = 1 … 𝑄), in which 𝑏𝑗 and 𝑎𝑗 are the 

filter coefficients, see Eq. 2.6. [87] 
 

𝑧(𝑛) =  
1

𝑎0
(∑ 𝑏𝑗𝑥(𝑛 − 𝑗) − ∑ 𝑎𝑖𝑧(𝑛 − 𝑖)𝑄

𝑖=1
𝑃
𝑗=0 ) Eq. 2.6 

 
Removing cardiac interference 
The cardiac interference highly distorts the tc-dEMG signal and therefore must be removed to 
allow interpretation of the signal. In a review by van Leuteren et al. (2019) multiple methods to 
reduce cardiac interference are described, being: frequency domain filtering, adaptive filtering, 
QRS-gating, template subtraction, independent component analysis and wavelet analysis. The 
methods are compared by analysing the characteristics processing time, processing delay, 
adaptivity to changing signal characteristics and real-time feasibility, the latter being 
fundamental for triggering purposes. In this review, only the methods frequency domain 
filtering, QRS-gating and template subtraction were described to be feasible in real-time 
processing, as no future input is required for processing, nor are these techniques depending on 
larger amounts of (past) data [86]. 
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- Frequency domain filtering: a traditional method for cardiac interference removal is 
applying high-pass filtering (HPF). The cardiac interference is located in the frequency 
components up to 100 Hz, which overlaps with the EMG signal’s frequency band. HPF is 
often applied with a cut-off frequency between 20-60 Hz, which can therefore result into 
EMG signal attenuation of the lower frequency components. This leads to loss of EMG 
information, whilst higher ECG frequency components remain [88]. Another factor to 
consider is that HPF is not an adaptable algorithm, i.e. not suitable for signals with a 
(highly) variable HR. On the other hand, HPF is a low computational technique [86], [89]. 
HPF can be applied to real-time signal processing provided a causal filter is used.  

 
- QRS-gating: the gating method is focused on eliminating the QRS-complexes from the 

dEMG signal. The R-peaks are detected and a gate is placed around it, e.g. with a width of 
100 ms [90]. As the QRS-complex commences prior to detection of the R-peak, the input 
signal must be delayed in order for the gate to align with the complex. All EMG data 
within the gates is deleted, as to remove the QRS-complexes. The gates are filled 
afterwards. There are multiple ways to do so, two of them being: replacing all data 
within the gates with a constant value (either zeros or the mean of a previous segment), 
or filling the gates with a copy of the previous segment [86]. In contrast to frequency 
domain filtering, QRS-gating is an adaptive algorithm, as the detection of R-peaks is 
unrelated to the HR. However, this method does induce a considerable processing delay 
(due to alignment of the gates) and has a higher computational cost compared to HPF 
[86], [90]. 

 
- Template subtraction: the concept of template subtraction is to detect multiple QRS-

peaks, place a gate around them, and average the gates to create a template of a QRS-
complex. Subsequently, if a R-peak is detected, the accompanying QRS-complex is 
eliminated by subtraction of the QRS-template [91]. The QRS-template can either be 
standardized or continuously updated based on a number of past QRS-complexes, in 
order to make the method more adaptive. The computation time of template subtraction 
method is higher compared to the previous methods, and also the induced processing 
delay is at least equal or higher compared to the gating technique [86]. Moreover, this 
technique requires some start-up time before actual QRS removal can be performed.  

 
When comparing the different methods of removing cardiac interference for the neonatal 
population, it is particularly important to take into account the loss of information and the 
processing time and delay that the method will inflict upon the input signal. Infants typically 
have a very high (and irregular) HR compared to adults and older children, which makes the 
process of detecting and removing cardiac interference using QRS-gating more challenging as a 
higher proportion of the signal is discarded. In theory, template subtraction should result in less 
data loss. However, QRS-gating is executed under the assumption that the removed EMG data is 
redundant due to the cardiac interference [92]. HPF is generally a debatable method as much 
information of interest is lost due to the overlap in the removed frequencies and the dEMG 
signal. Furthermore, in the context of a triggering algorithm, it is imported that the processing 
time and delay is minimized as much as possible, especially considering the high RR of infants. In 
this regard, QRS-gating is superior to template subtraction as it induces less processing time and 
possibly also less processing delay. For HPF the induced processing delay increases with the 
filter order, which must be set high in order to sufficiently reduce the cardiac interference [93]. 
Therefore, considering above characteristics QRS-gating is currently considered most useful for 
real-time cardiac interference removal in the neonatal population 
 

3. Obtaining the output data 
In the pre-existing offline tc-dEMG processing algorithm, the respiratory information is 
extracted from the respiratory waveform, see Figure 2.3 (lower graph). The respiratory 
waveform can be constructed by rectification of the so-far processed signal, followed by 
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computation of the moving average (MA) with a window length around 0.25-0.5 seconds. From 
this waveform, the start of inspiratory efforts can be detected. As the processing delay of a MA is 
½ times the window length, implementing the moving average in a real-time application will 
introduce an unacceptable long processing delay, especially considering the relatively short Ti of 
infants. Therefore, in the development of a tc-dEMG based triggering algorithm, ideally the signal 
is processed such to avoid the necessity of performing a MA. As (most) inspiratory efforts can be 
visually located from the signal prior to computing the MA, see Figure 2.3 (upper graph), the 
possibility of extracting inspiratory triggers from the pre-MA signal were explored in this thesis.  
 
 

 
Figure 2.3: Upper graph: an example of a processed dEMG (pre-MA signal). Lower graph: an 
example of the corresponding respiratory waveform (MA signal).  

Adaptivity of the algorithm 
Both the clinical and environmental conditions of infants are known to be variable, which highly 
advocates for an adaptive triggering algorithm. During these variable conditions, it is important 
to maintain proper placement of inspiratory triggers. A way to accomplish this, is to make the 
algorithm adaptive by allowing system parameters that are affected by changing conditions to 
be variable over time. In order to do so, input data should be continuously saved for a certain 
past extent of time, upon which the adaptive system parameters can be continuously updated.  
 

Selecting DPS processor 

After the development of the algorithm, the appropriate hardware is selected. The choice of the 
hardware DSP processor can be based on its processing speed, efficiency of data flow, RAM 
capacity and characteristics of its I/O operations. The RAM capacity is particular important for 
realizing the adaptivity of the algorithm. During the stage of prototype testing, past data that 
must be saved in order to create an adaptive algorithm, will be saved on the hardware device. 
Therefore, implementation of this technique will rely on the RAM capacity of the chosen 
hardware processor, i.e. the amount of available computer memory. As a result, there is an upper 
bound to the amount of past data that can be continuously saved, coupled to the RAM capacity. 
On the other hand, there is also a lower bound to the amount of past data needed to obtain 
useful system parameters. Therefore, to make the algorithm adaptive, it is important to consider 
the amount of past data needed and choose the hardware accordingly. Furthermore, the 
duration of I/O operations is specific to the hardware device, and preferably as short as possible 
for real-time DSP systems. Generally, STM32 nucleo development boards are accessible and 
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easy-to-use devices with a large variety in specifications to fit the requirements of a specific DSP 
system and are therefore deemed suitable for first phase prototype development.  
 

2.2.4 Project testing and integration 
The resultant prototype can be tested, e.g. by using a bench set-up. From the bench set-up the 
output data can be recorded and saved, in order to evaluate whether it coincides with the 
previously determined desired output format. Next, the performance of the system can be 
determined by further analysis of the obtained output. In order to do so, performance measures 
must be formulated, that are specific to the developed application. For a newly developed 
triggering algorithm, it is relevant to evaluate whether it is capable of placing the triggers based 
on the inspiratory efforts and to further evaluate the quality of the placed triggers.  
 

Ability of triggering 
In order to demonstrate that the algorithm is capable of placing inspiratory triggers, it can be 
defined that it must perform better compared to random placement of triggering. The 
performance can be indicated by the amount of matching and extra triggers, and the amount of 
unsupported inspirations. In a previous study executed in this department, the PVA in preterm 
infants on nIPPV was analysed (and therefore the administered inflations were random). This 
study will be considered as the reference study for random placement of triggering. It can be 
stated that the triggering algorithm is capable of extracting inspiratory triggers if its 
performance is better compared to the nIPPV performance from the reference study. This is the 
case if ≥1 of these performance indicators is significantly better, as long as none of these factors 
perform significantly worse. 
 

Quality of triggering 

In addition to determining whether the triggering algorithm is capable of extracting inspiratory 
triggers, it can be assessed how these triggers are placed with respect to the inspiratory efforts. 
It is only relevant to evaluate this for the triggers that were categorized as matching, as 
algorithm enhancement will be focused on improving the placement of only these triggers. To 
this end, the NeuroSync Index can be used, which was established by Sinderby et al. (2013) to 
classify PVA during CMV [94]. This index defines a negative inspiratory window (-100% at the 
end of the previous inspiration till 0% at the start of the current inspiration) and a positive 
inspiratory window (0% at start current inspiration till +100% at end current inspiration), see 
Figure 2.4. Sinderby defined the start of an inspiration at the onset of the dEMG and the end of 
an inspiration at 30% decrease in peak dEMG. The latter definition is slightly modified to fit the 
neonatal population, as they tend to have dEMG baseline activity above 0 mV. Therefore, the end 
of an inspiration was defined at 30% decrease in dEMG amplitude instead (measured from start 
inspiration till peak activity). Using these inspiratory windows, it can be determined for all 
matching triggers whether it is synchronous (placed within ±33%) or dyssynchronous (placed 
in -100% till -33% of the negative window, or placed in +33% till +100% of the positive 
window).  
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Figure 2.4: Definition of the negative and positive inspiratory window, in which the start of an 
inspiration is defined at the onset of dEMG activity, and the end of an inspiration at 30% 
decrease of dEMG amplitude (from onset till peak activity). A trigger is considered matching 
when placed within the green plane (±33% of inspiratory window). Derived from Sinderby et al. 
(2013) [94]. 

The quality of the triggers can be further evaluated by obtaining the trigger delay. The trigger 
delay is defined from the start of an inspiratory effort to the administration of an inflation, and 
can be divided into five different components: 
 

- Transmission  
- Computation 
- Detection 
- Ventilation 
- Mechanical delay 

 
The transmission delay is the duration between obtaining real-time data from a dedicated dEMG 
device till the moment the recording is received by the algorithm. This type of delay is 
dependent on the communication protocol between the dEMG device and the selected hardware 
for the prototype. The computation delay is the amount of time it takes to convert the raw input 
signal into the processed dEMG. Next, the detection delay is defined as the duration to detect the 
start of an inspiratory effort, and is fully dependent on the developed software. The ventilation 
delay is the time it takes for the output signal of the algorithm to activate the ventilator, and the 
subsequential mechanical delay is the amount of time it takes for the inflation pressure to start 
building, measured at the airway opening.  
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3. Methods  
The primary aim of this thesis was to evaluate whether inspiratory triggers can be extracted 
from tc-dEMG data, for which an algorithm was developed using DSP. An overview of the 
algorithm development is given in Appendix B, though the implementation of Figure 2.1. Second, 
we evaluated the performance of the algorithm by assessing the quality of the inspiratory 
triggers. 
 
The methods section is divided into two phases. In phase I the development of the tc-dEMG 
based triggering algorithm is described. The algorithm was tested through simulations, in which 
the ability of the algorithm to place inspiratory triggers was assessed, along with the quality of 
triggering. After the developmental phase, the algorithm was integrated into a hardware 
prototype and a bench set-up was created, which will be outlined in phase II of the methods. 
From the bench set-up the algorithm was further tested, by assessing the hardware-dependent 
components of trigger delay.  
 

3.1 Phase I: Software 
The tc-dEMG based triggering algorithm was developed using Simulink as primary software tool, 
supported by MATLAB (version R2021b, The Mathworks Inc, Natick, MA), as it is an easy-to-
handle, high-level language that can be automatically converted to C/C++ code for later 
prototype building. The algorithm was developed using pre-recorded tc-dEMG input data from 
(premature) infants.  
 

3.1.1 Description of dataset 
The available input data of the algorithm originated from a completed study within the NICU in 
the Amsterdam UMC, where the potential of diaphragm activity as a predictor of extubation 
failure was investigated in infants and children. In this study, patients in the NICU and paediatric 
intensive care unit (PICU) were included if they received invasive MV for longer than 24 hours, 
had a GA above 26 weeks and were deemed eligible for extubation. In total, the data of 147 
subjects was analysed. The dEMG data was recorded using the Porti signal amplifier (TMSi, 
Oldenzaal, The Netherlands), at a sampling frequency of 1024 Hz through a Polybench (Applied 
Biosignals, Weener, Germany) software application. A bilateral configuration was used: two 
electrodes on the costo-abdominal margin on the midclavicular line, and one reference electrode 
on the sternum. The recordings were started approximately 15 minutes prior to extubation and 
stopped 180 minutes after. After extubation, the patients received either no respiratory support 
or a form of non-invasive respiratory support (LFNC, HFNC, nCPAP or nIPPV) [95].  
 
For the purposes of the current study, which investigates triggering in the neonatal population, 
only the data obtained from the NICU was used. Due to a limited amount of time, only a small 
selection of subjects was made. As the GA was expected to be of influence on the quality of 
triggering (due to typically higher and more irregular RR’s of extreme and very premature 
infants), a selection of the data was made by arbitrarily selecting 4 subjects from 4 age 
categories, concerning the GA at the time of measurement: (1) 26 till 29 weeks, (2) 29 till 33 
weeks, (3) 33 till 37 weeks and (4) from 37 weeks. This led to a total of 16 included subjects. For 
each subject a 3-minute time epoch was manually selected from the data period after the 
extubation procedure. The time epoch was selected in a period with the absence of artifactual 
data (based on visual inspection). The amount of artifacts within the time epoch was observed 
by processing the signal into a respiratory waveform (computation of the MA). Finally, the raw 
tc-dEMG data was downsampled from 1024 to 500 Hz. The selected data was used as training 
set to develop the triggering algorithm.  
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3.1.2 Development of algorithm 
The algorithm comprised of different components, given in an overview in Figure 3.1, which are 
further described in this section.  

 
 

 
 

 
  

Figure 3.1: Overview of the model components and data flow of the tc-dEMG based 
triggering algorithm. 
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Pre-processing of the data 

The several processing steps are broken down below. 
 

- Obtaining bipolar derivation: the two unipolar tc-dEMG traces, 𝐸𝑀𝐺𝑢𝑛𝑖,1−2 were loaded 
and subtracted from each other in order to derive the bipolar derivation, see Eq. 3.1.  

 
𝐸𝑀𝐺𝑏𝑖 = 𝐸𝑀𝐺𝑢𝑛𝑖,1 − 𝐸𝑀𝐺𝑢𝑛𝑖,2  Eq. 3.1 

 
- Baseline correction: in order to perform baseline correction, the signal was high-pass 

filtered using a causal, 2nd-order IIR (Butterworth) filter with a cut-off frequency of 40 
Hz. The cut-off frequency was experimentally determined. 

 
- QRS-gating: in order to reduce cardiac interference in the signal, the QRS-gating method 

was applied. First, the R-peaks were detected using a Stateflow function called 
PeakFollower, specifically designed for this purpose within the department of 
paediatrics of Medical Spectrum Twente (MST), Enschede. A detailed explanation of the 
PeakFollower can be found in the accompanying master’s thesis [96]. In short, the 
PeakFollower detects R-peaks by tracing rising segments of the input signal. The 
moment the input signal converts from rising into descending state, a peak is detected. 
The PeakFollower will descend at a fixed pace (determined by a time constant) until it 
encounters the input signal again in rising state and the next peak can be detected. The 
PeakFollower needs four sources of input: 

 
1. Input signal; 
2. State of the input signal: rising or descending; 
3. Maximum value: a value at which the PeakFollower starts descending, even 

though the input signal is still in rising state. This is to prevent the 
PeakFollower from tracing artifacts, causing delay to the start of the 
descending state and therefore risk of missing the next R-peak(s); 

4. Time constant: determines the pace of the descending state (set to 2/𝑓𝑠).  
 

The output of the PeakFollower is the detected R-peaks, given as a series of pulses. These 
pulses are prolonged to 100 ms, in order to enclose the QRS-complexes.  
 

- Reducing P- and T-tops: the gates will remove the QRS-complexes, but they do not reduce 
cardiac interference from P- and T-tops. Using separate gates to remove this interference 
will not only induce more processing delay, it will also result in more removed data and 
therefore more loss of information. The P- and T-tops often have much less signal power 
compared to QRS-complexes and therefore can be reduced using additional filtering. A 
high-pass causal 2nd-order IIR (Butterworth) filter was used. The cut-off frequency was 
experimentally determined at 100 Hz.  

 
 

- Aligning QRS-gates: the starting point of the QRS-gates will perfectly align with the R-
peaks. To enclose the QRS-complexes with the gates, the input signal was delayed half 
the length of the QRS-gates, 𝐿𝑔𝑎𝑡𝑒. However, since prior to alignment an additional high-

pass filter was imposed on the signal to reduce P- and T-tops, the input signal was 
already partially delayed with the delay of the filter, 𝜏𝐻𝐹 . Therefore, the delay to use for 
proper alignment, 𝜏𝑎𝑙𝑖𝑔𝑛, is given in Eq. 3.2. With the described filter settings, the 𝜏𝐻𝐹 

was 5 𝑚𝑠, which resulted in a 𝜏𝑎𝑙𝑖𝑔𝑛 of 45 𝑚𝑠.  

 

𝜏𝑎𝑙𝑖𝑔𝑛 =
𝐿𝑔𝑎𝑡𝑒

2
− 𝜏𝐻𝐹   Eq. 3.2 
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- Filling the gates: the gates are filled using a copy of the previous segment, by replacing 
each ith sample within the gate, 𝑥𝑔𝑎𝑡𝑒(𝑖) (see Eq. 3.3). 

 
𝑥𝑔𝑎𝑡𝑒(𝑖) = 𝑥(𝑖 − 𝐿𝑔𝑎𝑡𝑒)   Eq. 3.3 

 

- Rectification of the signal: the last pre-processing step is to rectify the signal, using full-
wave rectification, see Eq. 3.4. 

 
𝑥(𝑖) = |𝑥(𝑖)|    Eq. 3.4 

 

Extracting inspiratory triggers 

In contrast to the pre-existing offline processing algorithm, no MA was computed in order to 
reduce the processing delay. Therefore, the inspiratory triggers were extracted from the pre-MA 
signal, in a two-step process: 
 

- Comparison to the threshold: a threshold value (ThEMG) was set for the pre-MA signal. If 
the pre-MA signal was higher than the given threshold, an inspiratory trigger was placed. 
How the ThEMG was determined is described in the next subsection.  

 
- Incorporating trigger-block: in order to prevent triggers being placed too quickly in 

succession, after each trigger a ‘trigger-block’ period was instituted. No triggers could be 
placed within this ‘refractory’ period. This was meant to decrease the amount of double 
triggering and triggering during the expiration period. The trigger-block length is 
defined based on the RR of the subject, or rather time of a respiratory cycle, Tcycle. The 
Tcycle is calculated from the RR, in which the RR is defined as breaths per minute and Tcycle 
is defined as the duration of a single respiratory cycle (given in seconds), see Eq. 3.5. 
Next, the trigger-block period is calculated using a timing factor, 𝑘, see Eq. 3.6. For this 
algorithm the timing factor was set to 0.6, which means that a consecutive inspiratory 
effort could not be detected within 0.6*Tcycle seconds after the start of the previous effort. 

 

𝑇𝑐𝑦𝑐𝑙𝑒 =  
60

𝑅𝑅
    Eq. 3.5 

 
𝑇𝑏𝑙𝑜𝑐𝑘 = 𝑘𝑇𝑐𝑦𝑐𝑙𝑒   Eq. 3.6 

 

Incorporating adaptivity 
Within the developed algorithm there are several system parameters that are dependent on the 
input signal, e.g. patient-specific and/or environmental dependent. To correct for this, the 
algorithm must be either manually tuned to the input signal or it must be made adaptive. The 
latter is preferred, not in the least because patient-specific and environment circumstances can 
also change within a recording. Making parameters adaptive can be done by saving past input 
data, on which the parameters are continuously updated. The length of the data segment (Tseg) to 
be saved for this purpose, depends on the parameters to be calculated and on the internal 
memory of the hardware prototype device. As the parameters are calculated on a segment of 
past data, the processing does not act in real-time. Instead, the calculations are only executed 
every Tseg seconds.  
 
For the algorithm developed during this thesis, three system parameters were made adaptive, 
Tcycle, ThEMG and the maximum value needed for the PeakFollower. The Tcycle is not only very 
dependent on the subject, it is also known to be highly variable over time, specifically for the 
neonatal population. ThEMG can depend on the subject, e.g. the level of diaphragm activation, but 
also on electrode configuration. The last variable, the moving maximum, depends on the signal 
strength of the cardiac interference (R-peaks in particular) and is therefore also dependent on 
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the subject and electrode configuration. The remaining system parameters (given in an overview 
in Appendix C) are also possibly dependent per subject and within a measurement and could 
benefit from being made adaptive. However, based on the dependencies of the forementioned 
system parameters, it was hypothesized that these three would benefit most from an adaptive 
approach and were therefore singled-out in order to reduce the model’s complexity in the first 
phase of algorithm development. This was done using a non-real-time component of the model 
using the following methods: 
 

- Tcycle: for each segment of past data of length Tseg, the processing steps were executed as 
described for the real-time component, with the addition that also the MA was 
computed, using a window length of 500 ms. From the resultant respiratory waveform, 
the amount of inspirations (Nins) was calculated by continuous computation of the slope 
with an experimentally determined time interval of ∆𝑡 = 0.25𝑠, and subsequently 
counting the zero-crossings. After the detection of an individual inspiration, the count 
was blocked for a certain period, to reduce double-detected inspirations. This detection-
block period was set to 𝑡 = 0.75 𝑠, such that the maximal RR to detect was 80/min, 
which can be considered as a sufficient upper bound. Finally, Tcycle was calculated using 
Eq. 3.7. 

 

𝑇𝑐𝑦𝑐𝑙𝑒 =  
𝑇𝑠𝑒𝑔

𝑁𝑖𝑛𝑠
     Eq. 3.7 

 
In case of an apnea, Nres decreases which causes the Tcycle to continuously increase. To 
prevent this, a maximum Tcycle value of 2 seconds was instituted.  

 
- ThEMG: the ThEMG was calculated through a MATLAB-function within Simulink. It used the 

pre-MA signal and the amount of detected inspirations, based on the calculation of Tcycle 
described above. Within the MATLAB function, the ThEMG was found using an iterative 
algorithm called the bisection method. This method used an initial value of ThEMG to 
calculate the amount of detected inspirations. This amount was then compared to the 
previously calculated amount of detected inspirations. Based on the performance with 
the set ThEMG, the algorithm corrected the ThEMG and thus converged towards a value for 
which the amount of found inspirations corresponded to the prior calculated amount. 
This is explained in further detail in Appendix D.  

 
- Maximum value (for PeakFollower): the maximum value was calculated by computing the 

moving average with a window length of 1 second (i.e. likely to minimal contain 1 QRS-
complex for the neonatal population), and subsequently taking its mean over Tseg. 

 
As the parameters were calculated over a period of Tseg seconds, this signified that during the 
first Tseg seconds of input data, the system parameter values were not yet initialized and 
therefore not available for analysis. A Tseg of 60 seconds was used for developing this algorithm.  
 

3.1.3 Data acquisition: Simulink simulations 
After development of the algorithm and prior to converting it to a hardware prototype, it was 
tested through simulations within Simulink. The algorithm was first tested for the primary 
outcome: whether it was capable of extracting inspiratory triggers from the tc-dEMG signal. 
Furthermore, as a secondary outcome, the quality of triggering was determined.   
 

Primary outcome: extraction of inspiratory triggers 
For each subject, the 3 minute time-epoch was sent as input through the Simulink simulation. 
First the inspiratory characteristics were determined by creating a positive and negative 
inspiratory window for each spontaneous inspiration. The inspiratory windows were created 
based on the respiratory waveform (i.e. MA) of the processed input signal, on which the start 
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and end of inspiratory efforts were automatically detected. From this, per subject the following 
inspiratory characteristics were determined: the total amount of inspirations, the RR (total 
amount of inspirations divided by the amount of minutes in the time-epoch), the median Ti 
(median length of the positive inspiratory windows) and the median Tcycle (median length of the 
total inspiratory windows).  
 
Furthermore, in order to assess whether the algorithm was capable of extracting inspiratory 
triggers from the tc-dEMG signal, the triggering characteristic were determined per subject. The 
inspiratory triggers were categorized into matching and extra triggers. The extra triggers were 
further divided into double and auto triggers. This distinction is only made in order to provide 
more intel in the algorithm’s performance, as it not clinically relevant. For the categorization of 
the triggers, first all auto triggers were manually determined, as developing an automated 
algorithm for this purpose was not considered time-efficient within this thesis. The triggers 
were superimposed on the processed input signal, i.e. the signal the triggers were determined on 
using a certain ThEMG. An auto trigger was defined as a trigger that was placed due to a distortion 
of the processed input signal, distinctly unrelated to an inspiratory effort (e.g. a P-top). Next, the 
triggers were automatically (using MATLAB) further categorized using the defined inspiratory 
windows. Triggers that were not already categorized as an auto trigger, were considered to be 
matching if it was the first placed trigger within an inspiratory window, or considered to be a 
double trigger if it was placed as ≥2nd trigger in the inspiratory window. Finally, all unsupported 
inspirations were counted, that is to say, the amount of inspiratory windows in which no trigger 
was placed.  
 
In order to state that the algorithm was capable of extracting inspiratory triggers, we used three 
performance indicators: the percentage matching and extra triggers (with respect to the total 
amount of triggers), and the percentage of unsupported inspirations (with respect to the total 
amount of inspirations). These percentages were determined per subject. In the reference study, 
in which these indicators were determined for nIPPV, the matching and extra inflations were 
respectively 86% and 14% of all inflations, and 22% of all inspirations were unsupported. It was 
stated that ≥1 of these performance indicators of the algorithm had to be better compared to the 
previous study, while none of them performed worse. If that was demonstrated, the algorithms 
performance was better compared to nIPPV from the reference study, and therefore proven 
capable of extracting inspiratory triggers.  
 

Secondary outcome: Quality of triggering 

The quality of triggering was assessed by classifying all triggers that were matched to an 
inspiration in a synchronous, late or early trigger. The trigger was categorized as synchronous to 
an inspiration if placed within ±33% of the inspiratory window or categorized as 
dyssynchronous to an inspiration if placed within -100% till -33% (early trigger), or placed 
within +33% till +100% (late trigger). From this the AI was calculated, see Eq. 3.8. The amount 
and percentage of auto and double triggers and unsupported inspirations per subject was given 
separately. 
 

𝐴𝐼 =  
𝑑𝑦𝑠𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 𝑖𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑠
  Eq. 3.8 

 
Next, all matching triggers were used to obtain the median detection delay per subject, which 
was the only delay that could be determined from the Simulink simulations, as the remaining 
delays were dependent on the hardware integration.  
 

3.1.4 Statistical analysis 
The statistical analysis of the baseline characteristics of the study population were performed 
using MATLAB. Categorical features (sex, respiratory support modality) were described with its 
number and percentage of occurrence. The discrete features (age and weight at birth and 
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inclusion) were checked for a Gaussian distribution, i.e. normality. If a Gaussian distribution was 
confirmed, the feature was described with its mean and standard deviation. Otherwise, the 
feature was described with its median value and interquartile range.  
 
For the evaluation of the primary research question, it was assessed whether the algorithm 
performed significantly better than random triggering, based on the amount of matching and 
extra triggers and amount of unsupported inspirations compared to the previous study using 
conventional nIPPV. For each subject the percentage of the matching and extra triggers and 
percentage of the unsupported inspirations was calculated. Subsequently, the one-sample 
Wilcoxon signed rank test was executed to compare the values with the reference study, 
assuming a non-normal distribution. A p-value of < 0.05 was considered statistically significant.  
 

3.2 Phase II: Hardware prototype 
After the development of the algorithm and the first phase of testing through simulations, the 
algorithm was converted to a hardware prototype. The prototype was fundamental for creating 
a bench set-up in which the algorithm could be more extensively tested in relation to the 
additional hardware components (i.e. ventilator/simulator and test lung).  
 

3.2.1 Description of dataset 
The input data used for the bench set-up originated from the same dataset used for the Simulink 
simulations. The same 3-minute epochs from all 16 subjects were included in the dataset for 
bench testing.  
 

3.2.2 Development of hardware prototype 
For the purposes of developing the hardware prototype, a research collaboration was set up 
with the TechRes Lab from the Politecnico University. This biomedical engineering Lab is 
experienced with the development of new techniques in the field of respiratory diagnostics and 
mechanical ventilation. For the first-phase prototyping of this study, we relied on the experience 
and available equipment available within this laboratory. For the hardware prototype a nucleo 
board (NUCLEO-F746ZG, STMicroelectronics, Geneva, Switzerland) was used. This nucleo board 
contains a general purpose digital signal processor, which is known for its flexibility, high speed, 
low power consumption/good energy efficiency and low costs [82]. Furthermore, the board was 
compatible with STM32CubeIDE, the required program to integrate software with hardware. 
The first step to software-hardware integration was rearranging the Simulink algorithm into a 
framework from which the code could be converted to C/C++. The framework consisted of a 
box-structure, where the input and output variable busses were defined outside and the 
analysing code was placed inside. The contents of the box was subsequently converted to C-code 
using the embedded coder in MATLAB. To ensure optimal computation speed of the resultant 
code, the code was generated using the ‘maximum execution speed’ setting. Next, the code was 
uploaded into the program STM32CubeIDE, from which it was run onto the nucleo board. 
 

3.2.3 Data acquisition: Bench set-up 
The final phase was to test the hardware prototype in a bench set-up. In the bench set-up, the 
prototype was connected to a custom-made ventilator which administered inflations to a test 
lung.  
 

Bench set-up design 

The bench set-up roughly consisted of the following components (see Figure 3.2): 
 

1. Hardware prototype running the dEMG based triggering algorithm (nucleo board) 
2. The custom-made ventilator, called the SAFER (Safe and Effective Respiratory Support) 

was used, which was designed at the TechRes Lab (Politecnico University, Milan, Italy) 
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3. A ventilator nucleo board 
4. A pressure sensor 
5. Two different sized test lungs. For preterm subjects (GA <37 weeks) a test lung with a 

resistance (R) of 59 cmH2O/L/s and a compliance (C) of 1 ml/cmH2O was used. For 
term subjects (GA ≥37 weeks) the R and C of the test lung were respectively 30 
cmH2O/L/s and 1 ml/cmH2O. 

6. Two laptops with an installed interface to extract the output data from the nucleo boards 
(both the prototype and ventilator nucleo board).  

 
 

 
Figure 3.2: Schematic overview of the components and data flow of the bench set-up. 

The nucleo board that contains the tc-dEMG based triggering algorithm was connected to a 
laptop which recorded and saved the output of the prototype. The prototype output (i.e. the 
inspiratory triggers) was also sent towards the ventilator simulator, which was capable of 
administering inflations accordingly. These inflations were given to a test lung, depending on the 
GA of the subject corresponding to the input data. A pressure sensor was placed in front of the 
test lung, where it measured the lung inflations (at the airway opening). The output of both the 
ventilator simulator and the pressure sensor was sent to the ventilators nucleo board, that was 
connected to a second laptop to record and save the outputs.  
 

Primary outcome: extraction of inspiratory triggers 

The primary aim of the bench set-up was to evaluate whether the hardware prototype was 
capable of inducing inflations from the ventilator. In order to do so, for each subject the input 
data was sent to the prototype and it was assessed whether this resulted in a set of inflations by 
the SAFER. Additionally to the two raw unipolar channels, also the corresponding time epoch of 
inspiratory triggers as determined by the Simulink simulations was sent as input to the 
prototype. These Simulink triggers were sent along in order to evaluate whether the placement 
of inspiratory triggers corresponded to the real-time placed triggers. This was determined by 
analysing whether there was a corresponding real-time trigger for each Simulink trigger and if 
so, whether the time difference between corresponding triggers was fixed or not. If this was 
both the case, it could be stated that the prototype’s behaviour was equal to the Simulink 
algorithm. It was then assumed that the fixed time shift present between corresponding triggers 
could be attributed to the computation time of the algorithm. However, if there was no 
corresponding Simulink trigger for each real-time trigger, this indicated that the prototype 
behaviour deviated from the Simulink simulations, and the computation time could not be 
determined. 
 

Secondary outcome: quality of triggering 

After evaluating whether the prototype was capable of inducing inflations, and how they were 
delivered with respect to the triggers generated by the Simulink simulations, the different types 
of delay were assessed. Whereas for the Simulink simulations only the detection delay could be 
observed, a bench set-up gives the opportunity to assess all types of delay. In order to 
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experimentally derive the transmission delay, the input data must be obtained in real-time with 
a dedicated EMG device, instead of using pre-recorded data. In this phase of the study we only 
used pre-recorded data and therefore did not experimentally asses this type of delay. The 
computation delay could be assessed in case of a constant time difference between the Simulink 
and prototype induced triggers, where the amount of time difference corresponded to the 
computation delay. In this case, it could also be expected that the detection delay from the bench 
set-up was equal to the delay found in the Simulink simulations, as the triggers were identical. 
However, in case of a different pattern of triggering in Simulink compared to prototype induced 
triggering, both the computation and detection delay can not be obtained from the bench set-up. 
The ventilation delay was assessed by comparing the trigger placement with the onset of 
pressure in the ventilator inflations. The mechanical inflation was the duration between onset of 
ventilator pressure and onset of pressure measured in the (simulated) airway opening. Finally, 
the trigger delay was evaluated by summation of all delays described above.  
 

3.2.4 Statistical analysis 
The baseline characteristics of the study population for the bench set-up were described using 
the same approach as for the Simulink simulations. No further statistics were performed in 
phase II. 
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4. Results 
4.1 Description of the datasets 

Simulink simulations 
For the Simulink simulation testing phase, a total of 16 subjects were selected from the pre-
existing database from Van Leuteren et al. (2021) [95]. One subject (from the GA category 26 till 
29 weeks) was excluded from the final results, on account of persistently present cardiac 
interference after processing. Therefore, an amount of 15 subjects was included in the analysis. 
The baseline characteristics of the study population are given in Table 4.1. In Appendix E the 
characteristics are given per subject. 
 

Bench set-up 
For the bench set-up only 9 out of 16 subjects were used, due to a lack of time. From each age 
category of the study population for the Simulink simulations, three subjects were included, 
except for the category of GA 26 till 29 weeks, from which only one subject was included. The 
baseline characteristics of the study populations for the bench set-up are also given in Table 4.1.  
  
Table 4.1: Baseline characteristics of the study population for the Simulink simulations (n=15) 
and for the bench set-up (n=9). The data is presented as the amount (percentage) or the median 
(interquartile range) of all subjects.  

Baseline characteristics Simulation (n = 15) Bench set-up 2 (n = 9) 
Sex   
   Male (n, %) 13 (86.7%) 7 (77.8%) 
   Female (n, %) 2 (13.3%) 2 (22.2%) 
GA at birth (weeks) 31.7 (26.1 – 37.0) 33.6 (26.3 – 38.0) 
GA at inclusion (weeks) 33.1 (29.6 – 37.6)* 34.1 (31.3 – 38.4) 
Weight at birth (g) 1365 (783 – 2679) 1365 (883 – 3184) 
Weight at inclusion (g) 1365 (854 – 2730) 1365 (1008 – 3170) 
Support after extubation   
   No support (n, %) 2 (13.3%) 2 (22.2%) 
   LFNC (n, %) 1 (6.7%) 1 (11.1%) 
   HFNC (n, %) 2 (13.3%) 1 (11.1%) 
   nCPAP (n, %) 7 (46.7%) 5 (55.6%) 
   nIPPV (n, %) 3 (20.0%) 0 (0.0%) 
* 1 subject included with GA at inclusion of 25.9 (outside of inclusion criteria). 
GA, gestational age; HFNC, high flow nasal cannula; LFNC, low flow nasal cannula; nCPAP, nasal 
continuous positive airway pressure; nIPPV, nasal intermitted positive pressure ventilation. 

 

4.2 Development of the algorithm and hardware prototype 

Development of the algorithm 

A schematic overview of the developed algorithm is given in Figure 4.1. The algorithm was 
developed based on the pre-recorded dEMG data, and subdivided into an adaptive model and a 
triggering model. Each model consisted of multiple components, which are described in further 
detail in Appendix D. The adaptive model ran every Tseg seconds which was set to 60 (i.e. 1 
minute). The first minute of output data was not relevant for analysis, as no initialization 
parameters were used during this period. As a result, from each 3 minute time-epoch of input 
data, only 2 minutes were available for analysis. In the adaptive model the system parameters 
‘ThEMG’, ‘Tcycle’ and ‘moving maximum’ were updated each Tseg and subsequently served as input 
data to the triggering model. In the triggering model the inspiratory triggers were extracted, 
which was the main output of the algorithm. In contrary to the adaptive model, the triggering 
model was meant to run in real-time and as such designed to induce as little processing delay as 
possible. The only components of the triggering model that were certain to induce a delay were 
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two high-pass filters (both ~5 ms delay) and the QRS-gating to reduce the cardiac interference 
(~45 ms), which accounted to a total estimated delay of ~55 ms within the triggering model. In 
Figure 4.2 the estimation of the processing delay of the triggering model is given per component.   
 

 
 

 

  

Figure 4.1: The developed Simulink algorithm. Top: overview of the total algorithm. Bottom left 
(blue): the expanded adaptive model. Bottom right (orange): the expanded triggering model. 
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Figure 4.2: Estimated processing delay (ED) of the individual components of the triggering 
model. Summed ED ≈ 55 ms.  
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Development of the hardware prototype 

During the integration of the, to C-code converted, Simulink algorithm with the hardware 
prototype, the RAM of the selected nucleo board proved to be insufficient. In order to overcome 
this issue it was investigated which components of the algorithm could potentially be reduced in 
amount of RAM it uses. This concerned those functions for which there had to be a built-up of 
samples in order to compute the output, i.e. high-order filters, window functions and buffers. 
The most prominent users of the RAM capacity were the buffer functions in the adaptive model, 
which required more RAM proportional to the length of Tseg. It was attempted to reduce the 
required RAM by reducing the Tseg, which led to a maximal Tseg of 8 seconds. Under these 
conditions the algorithm was able to be transitioned to a hardware prototype. During first test 
measurements it was found that the processing time per sample exceeded the 2 ms, which at a fs 
of 500 Hz violated the real-time restriction presented in the technical background (see Eq. 2.3). 
It was hypothesized that the processing time could be reduced by altering the way the adaptive 
model was integrated into the algorithm. Within the available time for prototyping, this was not 
managed. In order to make the transition to a hardware prototype, the adaptive model was 
removed from the algorithm. The missing variable system parameters were replaced by 
constant values, that were determined in advance per subject using the Simulink algorithm. The 
constant values were computed with a Tseg of 3 minutes, in order to obtain parameter values that 
best represented the complete data epoch. Since the obtained triggers from the bench set-up 
were later compared with the Simulink triggers, the Simulink model was also run with a Tseg of 
180 seconds for this purpose.  
 

4.3 Data acquisition: Simulink simulations 

Primary outcome: extraction of inspiratory triggers 

Per subject, the inspiration and triggering characteristics for the Simulink simulations are 
presented in Table 4.2. The performance indicators (percentage of matching and extra triggers 
and unsupported inspirations) were compared to the performance of the reference study. All 
performance indicators were better compared to the reference study, by comparing the median 
performance indicators among all subjects with the reference value. This was only found to be 
significant for the percentage of unsupported inspirations (with a p < 0.05).  
 
Table 4.2: Primary outcome for the Simulink simulations. The inspiration and triggering 
characteristics are determined per subject. The data is presented as the median (interquartile 
range) of all subjects.  

Primary outcomes Simulation (n = 15) 
Inspiration characteristics  
  Inspirations (n)1 106 (81 – 119) 
  RR (breaths/min) 54 (41 – 60) 
  Ti (ms) 670 (653 – 913) 
  Tcycle (ms) 1010 (975 – 1413) 
Triggering characteristics  
  Triggers (n)2 108 (100 – 123) 
  Trigger ratio 1.0 (1.0 – 1.2) 
  Unsupported inspirations (%) 7.1 (2.1 – 9.7)* 
  Matching triggers (%) 93.4 (71.2 – 96.7)** 
  Extra triggers (%) 6.6 (3.3 – 28.8)*** 
    Double triggers (%)   6.6 (3.1 – 16.3) 
    Auto triggers (%)   0.0 (0.0 – 1.4) 
1Total number of inspirations analysed: 1507, 2Total number of triggers analysed: 1620 
*Sig. less from 22%, with p < 0.05, **Not sig. more from 86%, with p ≥ 0.05, ***Not sig. less from 14%, with 
p ≥ 0.05 
RR, respiratory rate; Tcycle, time of respiratory cycle; Ti, inspiratory time. 
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In Figure 4.3 the percentage of unsupported inspirations per subject are visualized with respect 
to the total amount of inspirations, as a function of the RR. There was no visible relation with the 
RR. In Figure 4.4 the percentage of categorized triggers are visualized with respect to the total 
amount of placed triggers, also as a function of the RR. There were relatively more matching 
triggers and less double triggers for an increasing RR. For 8 out of 15 subjects there were no 
manually detected auto triggers, which indicated that all triggers were placed due to an 
inspiratory effort (either as matching or double trigger). For the remainder subjects (n=7), it 
was found that the auto triggers were all placed due to remaining cardiac activity from P-tops. 
There was no visible correlation between the amount of auto triggers and the RR. 
 

 
Figure 4.3: Percentage of unsupported inspirations with respect to the total amount of 
inspirations. Given per subject as a function of the respiratory rate (RR). A reference plane is 
added at 22% in order to compare the number of unsupported inspirations with the reference 
study. 

 
Figure 4.4: The categorization of all triggers in matching, double and auto triggers. Given per 
subject as a function of the respiratory rate (RR). A reference bar is added divided into 86% 
+14%, in order to compare the number of matched and extra triggers (double and auto triggers 
combined) with the reference study.  
*1 trigger was not able to be categorized, as it could not be assigned to an inspiratory window. 
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Secondary outcome: Quality of triggering 

Per subject, the triggering categories, the AI and the detection delay are given in Table 4.3. In 
Figure 4.5 an overview is given of the categorization of all matching triggers into synchronous, 
early and late triggers, as a function of the RR per subject. For all subjects most matching 
triggers were categorized as late within the inspiratory window, an effect that increased with a 
rising RR.  
 
Table 4.3: Secondary outcome of the Simulink simulations. The trigger categories and detection 
delay are determined per subject. The data is presented as the median (interquartile range) of 
all subjects. 

Secondary outcomes Simulation (n = 15) 
Trigger categories  
  Synchronous (%)   12.5 (5.2 – 15.4) 
  Early (%)   5.1 (1.2 – 13.2) 
  Late (%)   84.9 (70.5 – 92.8) 
AI 0.85 (0.78 – 0.90) 
Detection delay  
  (ms) 341 (315 – 374) 
  (% of Ti) 49.6 (43.5 – 55.9) 
AI, asynchrony index; Ti, inspiratory time. 

 

 
Figure 4.5: The division of all matching triggers into synchronized (±33% of inspiratory 
window), early (-100%- -33% of inspiratory window) and late (+33%- +100% of inspiratory 
window). Given per subject as a function of the respiratory rate (RR).  

The detection delay was relatively constant for subjects with a different RR. This is visualized in 
Figure 4.6, per subject as a function of the RR. When determining the detection delay with 
respect to the Ti, the percentual delay increased with a higher RR, see Figure 4.7. In this figure 
the subjects are divided into categories based on their GA at inclusion, which shows that the 
percentual detection delay is generally lower for subjects with a higher GA at inclusion.  
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Figure 4.6: The median detection delay (expressed in ms), given per subject as a function of the 
respiratory rate (RR). Given with the interquartile ranges (IQR).  

 
Figure 4.7: The median detection delay (expressed as a percentage of the inspiratory time (Ti)), 
given per subject as a function of the respiratory rate (RR). Divided into four categories based on 
the gestational age (GA) at inclusion. 

 

4.4 Data acquisition: Bench set-up 

Bench set-up design 

The bench set-up was assembled in the TechRes Lab from the Politecnico University in Milan 
(Italy). The set-up is shown in Figure 4.8, in which the different components are indicated. Both 
nucleo boards (the hardware prototype and the ventilator nucleo board) were connected to a 
laptop. On both laptops an electron interface (JAVA based) was installed which was used to 
record and save the data. In case of the hardware prototype, the laptop was also supposed to 
serve as the transmitter of the input data. Due to technical difficulties, the transmission speed of 
the input data from the laptop to the prototype did not match real-time requirements. In order 
to ensure testing of the prototype in a real-time setting, for each included subject, 1 minute of 
the time-epoch was loaded onto the prototype. Using this construction, it was possible to 
process the input data in real-time.  
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Figure 4.8: A picture taken of the bench set-up as constructed at the TechRes Lab. 

Primary outcome: extraction of inspiratory triggers 

All test measurements using the bench set-up resulted in a set of inflations given by the SAFER. 
For each subject the inspiratory triggers resultant from the hardware prototype deviated from 
the triggers of the Simulink simulations (see Figure 4.9 for an example), as there was no 
corresponding Simulink trigger for each real-time trigger. 

 
Figure 4.9: Example comparison of inspiratory triggers (length 0.3 sec) from the Simulink 
algorithm and the hardware prototype. The black arrow indicates a real-time trigger for which 
there is no corresponding Simulink trigger. 

Secondary outcome: quality of triggering 

As the triggers resultant from the hardware prototype did not match with those from the 
Simulink simulations, both the computation and detection delay could not be obtained from the 
bench set-up. Only the ventilation and mechanical delay were determined in this testing phase. 
Both delays were constant among all subjects and within the measurements. The ventilation and 
mechanical delay respectively amounted to approximately 8 and 0 ms. The mechanical delay 
could therefore be considered negligible. In Figure 4.10 an example is given that visualizes two 
inspiratory triggers, and the resultant pressure from the ventilator and measured pressure at 
the airway opening.  
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Figure 4.10: Example illustration of placement of inspiratory triggers, pressure signal from the 
ventilator and the measured pressure at the airway opening.   

The trigger delay consisted of the transmission, computation, detection, mechanical and 
ventilation delay. Since the transmission and computation delay could not be obtained from the 
Simulink simulations/bench set-up, their values were estimated. The transmission delay is 
dependent on the properties of the chosen dEMG-device (e.g. wired or wireless connection). It is 
assumed that the transmission delay of an dEMG-device with a wired connection is negligible, 
which led to an estimation of the transmission delay at 0 ms. For the computation delay (which 
consists of the processing time and processing delay), the processing delay was estimated at 
minimal 55 ms based on the nature of the operations within the triggering model, see Figure 4.2. 
The processing time could not be estimated. Therefore, the hypothetical minimal trigger delay of 
the algorithm is estimated at 404 ms, see Figure 4.11.  

 
Figure 4.11: Distribution of delays components with respect to the trigger delay. Based on 
estimated (transmission and computation delay) and determined (detection, mechanical and 
ventilation delay) values. Timepoints; A: recording of patient data/receiving of patient data by 
the algorithm; B: processed data; C: detected inspiratory effort (placed trigger); D: receiving of 
trigger by ventilator/administration of inflation.  
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5. Discussion  
To our knowledge, this is the first study in which the potential of tc-dEMG based inspiratory 
triggering was investigated by means of algorithm development, prototyping and testing. It was 
found that the algorithm was capable of extracting inspiratory triggers from the tc-dEMG signal, 
and subsequently triggering a ventilator. Although capable of triggering, the placed triggers 
were relatively late with respect to the onset of inspiratory efforts. The trigger delay was 
estimated at ~404 ms, which mostly consisted of the detection delay (~341 ms).  
 

5.1 Interpretation of results 

5.1.1 Primary outcome: extraction of inspiratory triggers 
The results from the Simulink simulations showed that the developed triggering model was 
capable of extracting inspiratory triggers from tc-dEMG data, by comparing it to the reference 
study which investigated conventional nIPPV [5]. This comparison showed that the algorithm 
had a significantly lower percentage of unsupported inspirations with respect to the total 
amount of inspirations and was therefore capable of supporting more inspirations as would be 
the case for random triggering. This was strengthened in combination with the observation that 
the algorithm had less extra placed triggers in comparison with the inflations from the reference 
study, as this excludes the theory that a higher amount of inspirations were supported simply 
due to an excess of placed triggers. Finally, the algorithm also had a higher percentage of 
matching triggers compared to the matching inflations from the reference study. Although the 
latter two comparisons were not found to be significant, these results suggest that the developed 
algorithm had a better performance compared to random administration of inflations based on 
the defined criteria in this study. As a result, it was stated that tc-dEMG is capable of extracting 
inspiratory triggers and is therefore a potentially promising future triggering modality.  
 
The amount of unsupported inspirations, matching and extra triggers were all visualized per 
subject as a function of the RR, in order to further investigate the algorithm performance for 
different RR’s. There seemed to be no correlation between the percentage of unsupported 
inspirations and the RR, which indicated that the algorithm was adaptive to subjects with 
different RR. However, it was shown that subjects with a higher RR had relatively more matched 
triggers and less double triggers. A possible explanation for this phenomenon is that the subjects 
with a lower RR had more variation in their Ti compared to the subjects with a higher RR. A 
more variable RR leads to a less effective use of the trigger-block period in the model, as it is not 
fitting for respiratory intervals that deviate from the average. Therefore, double triggering can 
be more prevalent for these subjects, which also inherently decreases the percentage of 
matching triggers. As irregular breathing patterns are associated with prematurity (due to the 
immaturity of the brainstem) [97], it was expected that the model performance would 
deteriorate with decreasing GA. However, this correlation was not found in the current study.  
 
The found presence of remaining P-top activity can be attributed to the limitations imposed on 
processing in order to minimize the processing delay. The amount of auto triggering in some 
infants, which was in all cases exclusively caused by P-top activity, indicates that it is relevant to 
investigate how to further attenuate P-top-activity, while considering its effect on the delay (e.g. 
by optimizing current filtering settings). Furthermore, it was not surprising that all auto triggers 
were placed due to cardiac interference and none due to other artifacts, since the data segments 
were selected based on the absence of artifactual data. However, it is expected that more 
representative data segments will contain a variety of artifacts (e.g. due to infant movements, 
clinical procedures, kangaroo care), and will therefore cause more auto triggering or possibly 
obstruct triggering altogether. In previous studies by Kraaijenga et al (2014), Van Leuteren et al. 
(2021) and Scholten et al. (2022) it was found that approximately 20-40% of dEMG data cannot 
be analysed due to presence of artifacts [101]–[103].  
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From the bench set-up it was confirmed that the hardware prototype was also able to extract 
triggers from the tc-dEMG signal and could subsequently activate a custom-made ventilator to 
administer inflations. However, the placement of the real-time obtained triggers was different 
compared to the triggers derived from Simulink. The cause for the difference in triggering of the 
hardware prototype can potentially be attributed to the alternative way of data transmission 
that was used in the bench set-up.  
 
An important sidenote from the Simulink simulations is that the median Ti found in the 
measurements was found to be remarkable long (with a Ti/Tcycle ratio of 0.66), using the set 
definitions for inspiration and expiration. Generally, the Ti comprises of approximately one third 
to half of the Tcycle for (preterm) infants, when based on flow-measurements [98]. For the 
purposes of this study, it is highly relevant to consider the flow-based definition of Ti (as 
opposed to an alternative dEMG-based Ti-definition), as the aim is to administer inflations 
within the window of spontaneously generated inwards flow by the patient. A possible 
explanation for the divergent obtained values is that the classification of the positive and 
negative window used in this study was not suitable for neonatal tc-dEMG data. In literature an 
alternative method to classify the end of inspiration in neonatal dEMG data was found. Studies 
by Beck et al. (2011) and Gibu et al. (2017), who both investigated neural breathing in preterm 
infants, used peak dEMG to define the end of an inspiration, instead of 30% decrease of dEMG 
amplitude [8], [99], which is potentially more suitable.  
 

5.1.2 Secondary outcome: quality of triggering 
As a secondary outcome, the quality of the matched triggers was assessed. It was found that for 
all subjects most matching triggers were categorized as late within the inspiratory window, an 
effect that increased with a rising RR. This correlation was expected since subjects with a higher 
RR generally have a shorter Ti and are therefore more prone to late triggering due to the trigger-
block period. The high amount of late triggers resulted in an inspiratory AI with a median of 0.85 
among all subjects. This was considerably higher compared to the reference study, in which an 
inspiratory AI of 0.68 was found [5]. An AI of 0.68 confirms the ‘randomness’ of triggering for 
nIPPV (since an inflation was only considered synchronous within 33% of the total inspiratory 
window), whereas the high AI of this study showed that the triggering was not arbitrary. 
Instead, it indicates that most triggers were the result of an inspiratory effort, although the 
detection of these efforts tended to be late.  
 
The observation that the found triggers were late within the inspiratory window was confirmed 
by the found detection delay, which had a median of 341 ms among all subjects. The detection 
delay was visualized per subject as a function of the RR, which showed that the delay was 
relatively constant for different RR’s. This was unexpected, as it was hypothesized that the tc-
dEMG signal would vary for different RR’s, e.g. by a more abrupt onset of inspiratory effort for 
subjects with higher RR. In order to further investigate what potentially influenced the detection 
delay, it was evaluated if there was a correlation between the percentual detection delay with 
respect to the Ti and the GA at inclusion. For each GA category, the percentual detection delay 
increased with an increasing RR. This was expected, since the Ti decreases with a higher RR, 
whereas it was found that the absolute value of detection delay remained relatively constant, 
thus leading to a relatively long detection delay. The other correlation that was found, was that 
for subjects with a lower GA at inclusion, the percentual detection delay was generally higher. 
This can potentially be attributed to a more irregular RR for the younger subjects, and therefore 
less accurate triggering. Another explanation is that the data of the younger subjects contained 
more noise, causing the triggering threshold to be placed higher, and therefore inspiratory 
efforts to be detected slower. Important to realize is that the percentual detection delays with 
respect to the Ti found in this study are subject to change, as it is expected that the Ti was 
incorrectly determined and therefore consistently overestimated.  
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The hypothetical minimum trigger delay of the algorithm when using the entire setup was 
estimated at 404 ms, which consisted in large part of the detection delay. In order to place this 
found delay in the perspective of clinical feasibility, it must be compared to the Ti of the study 
population. The median Ti in this study was expected to be inaccurate due to an unlikely high 
value of 670 ms. The variable Tcycle was much less susceptible to incorrect determination, as it 
was simply defined from onset of one inspiratory effort till the next. Therefore, the found values 
for Tcycle are more reliable and can be used to estimate the Ti of this study population by taking 
one third or half of this value. This leads to an estimation of a median Ti of approximately 333 to 
505 ms. In order to be clinically feasible, the trigger delay should be a maximum of 33% of the Ti, 
when considering Sinderby’s definition of synchronous inflations. This leads to an upper limit of 
approximately 110 to 165 ms of the trigger delay, which is much less than the estimated trigger 
delay found in this study. Therefore, it is essential that future studies focus on reduction of the 
trigger delay.  
 

5.2 Previous studies 
As this is the first study into the potential of tc-dEMG as a modality for inspiratory triggering, it 
cannot be compared to previous studies. However, there are studies that have investigated the 
trigger delay of (NIV-)NAVA, which is also based on electrical diaphragm activity and is 
therefore the most suitable triggering modality to use for comparison. Each study defined the 
trigger delay between the onset of dEMG and the onset of inflation, and it varied between the 35 
and 125 ms [8], [21], [100]. Therefore, the delay obtained with NAVA is considerably lower 
compared to the trigger delay found in this study. This can be explained by the differences in 
processing mechanism of both techniques. For NAVA a number of seven electrode pairs are 
placed on a transesophageal tube, from which continuously the closest pair to the center of the 
electrically active region of the diaphragm is selected (as the diaphragm moves with respect to 
the electrodes during a respiratory cycle). Next, the electrode pair caudal and cephalad from the 
closest pair are subtracted from each other, which highly reduces the signal-to-noise ratio [101]. 
This technique allows for obtaining a dEMG signal that is not only retrieved from an optimised 
position with respect to the diaphragm, but also a signal that contains a considerably less noise 
compared to a transcutaneous obtained signal. This eases the establishment of fast triggering. 
However, when comparing both trigger delays, it is important to consider that tc-dEMG based 
triggering is yet at a very early stage of development compared to the (NIV-)NAVA technique.  
 

5.3 Study strengths and limitations 
This is the first study in which real-time inspiratory triggering based on tc-dEMG was 
investigated. This was not only investigated through a simulation model that was able to 
perform real-time simulations, but also a bench set-up was constructed in which the algorithm 
was able to be tested as a hardware prototype in an actual real-time fashion. This study is 
therefore fit to serve as a starting point for future research into this field and it provides a 
reference to which further advancements in tc-dEMG based triggering can be compared. Also, 
whereas studies on (NIV-)NAVA only documented the overall trigger delay, this study narrowly 
investigated the separate delay components. This allowed for better understanding of the delay 
origin and provided concrete leads for further improvements and reduction of the trigger delay.  
 
There are also several limitations that should be taken into consideration when interpreting the 
results. First, the data epochs used for this study were selected based on the absence of signal 
artifacts. By excluding artifacts from the analysis, it was not assessed how the algorithm 
responds to this type of data. It is expected that this would have led to an underestimation of the 
amount of auto triggers. The auto triggers that were present, were identified manually, as it was 
not deemed feasible to implement a method of automatic auto trigger classification within the 
timeframe of this study. However, this made the detection of auto triggers vulnerable to 
subjectivity. Also, for analysis of the results, the definition of the inspiratory window was not 
focussed on the neonatal population. Instead, the definition was adopted from Sinderby et al. 
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(2013) [94]. The resultant values of the Ti, which directly follow from the definition of the 
positive inspiratory window, were unlikely high, which suggest this definition is unsuitable for 
neonatal data.  
 
For the bench set-up it was not managed to transmit the pre-recorded input data from the 
laptop towards the hardware prototype in real-time. Therefore, instead of transmitting the input 
data via a laptop, the data was loaded onto the nucleo board. This solution was limited, as it 
required RAM capacity from the nucleo board to load the input data. As a result, per subject only 
1 minute of input data could be used for the bench set-up. Also, the alternative approach of data 
transmission might have impacted the prototype’s behaviour, potentially explaining the 
difference between the prototype and Simulink triggers. More recently, it was managed establish 
real-time transmission of pre-recorded data to the prototype. However, as this is still ongoing 
research, it was not incorporated in the results of this study.  
 
Finally, we were not able to assess al components of the trigger delay. We only performed 
measurements with pre-recorded data and therefore did not determine the transmission delay. 
Ongoing research is currently focussing on the connection of a wireless (Bluetooth-based) dEMG 
device from Demcon macawi respiratory systems (Demcon, Enschede, the Netherlands) with the 
prototype, from which in a later phase the transmission delay can be assessed. However, for this 
study the transmission delay was estimated based on the assumption that for a wired dEMG 
device this type of delay is negligible. The computation delay was assessed by theoretically 
estimating the processing delay of the triggering model (i.e. the real-time component of the 
algorithm). However, as there is no full intel on how the Simulink operations are executed, it is 
possible that the true computation delay is longer.  
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6. Recommendations and future perspectives 
After completing the first-ever study into tc-dEMG based triggering, it is relevant to discuss the 
recommendations and future perspectives for tc-dEMG based triggering.  
 

6.1 Reduction of the trigger delay 
The main recommendation and essential for potential future use of dEMG-based triggering is to 
reduce the trigger delay. For future enhancement of the algorithm, it is recommended to review 
the used triggering mechanism. In this study a real-time triggering mechanism was used, for 
which both the capability and the delay were determined. Whereas the algorithm did prove to be 
capable of extracting inspiratory triggers, the trigger delay was still too high in order to be 
clinical feasible, with a hypothetical minimal delay of 404 ms. The detection delay made up the 
largest part of the trigger delay, and is therefore most important to reduce in future studies. 
Whether this can be accomplished through enhancement of the used triggering method in 
Simulink, is uncertain. The detection delay can mostly be contributed to the considerable 
amount of noise that the processed dEMG signal still contains, which hampers the detection of 
inspiratory efforts close to their onset. Overcoming this problem would either require more 
intensive and efficient pre-processing or to make the transition of real-time threshold-based 
triggering to prediction-based triggering.  
 
Reducing the detection delay through implementing more extensive Simulink-based pre-
processing methods, is expected to be challenging as this will likely further increase the 
computation delay. In this study it was found that in order to be clinical feasible, the trigger 
delay should be limited to approximately 110 to 165 ms. This signifies that the detection delay 
must be reduced to approximately 50 to 105 ms (considering the remainder delay components 
at a fixed value of ~60 ms). Whether real-time triggering using Simulink could reduce the 
detection delay to such a level is uncertain.  
 
Another option to consider is using a different mechanism of trigging, called prediction-based 
triggering. By using this mechanism, in which the goal is to support the next inspiration instead 
of the current, it is possible to ‘escape’ the detection delay. This can be accomplished by 
predicting the position of the subsequent inspiration(s), based on the prior measured dEMG 
data. There are multiple ways imaginable to establish prediction-based triggering, e.g. by 
predicting the start of an inspiratory effort based on the start of the previous inspiratory effort 
or based on the end of the previous inspiratory effort. The latter method, although possibly 
better capable of making correct predictions, also provides less time to predict the next 
inspiration, and therefore might still introduce a small detection delay. The downside of 
implementing prediction-based triggering in infants, is that it can be challenging to accurately 
predict the start of inspiratory efforts, as the RR is known to be (highly) variable for this 
population. However, even with a certain number of inaccurate predictions, prediction-based 
triggering could potentially still result in lower PVA compared to non-synchronized ventilation. 
Considering the delay-challenge that is faced using real-time triggering, it is recommended to 
investigate whether prediction-based triggering can match the capability of real-time triggering 
and whether it can improve the trigger quality. For this alternative triggering mechanism, it is 
interesting to consider using machine learning (ML). ML is a type of artificial intelligence, that 
has the ability to learn from data and to improve its operating mechanism accordingly [102]. 
Therefore, it is potentially better capable of making correct predictions compared to a Simulink-
based approach. 
 

6.2 Further enhancement of the algorithm 
The algorithm developed in this study was primarily focussed on the detection of inspiratory 
efforts. However, in order to establish a triggering mechanism (either real-time or prediction-
based) that is feasible for clinical implementation, there are additional triggering functionalities 



 

48 
 

that should be implemented, such as a back-up rate. A back-up rate is crucial to implement 
within the algorithm, as it can be used as a safety net when the detection of inspiratory efforts is 
disrupted. The back-up rate can be activated in situations when there are no detection of 
inspiratory efforts for a certain amount of time, e.g. during periods of apnea. Also for periods of 
artifactual data (e.g. movement artifacts or persistent P-top activity) it is relevant to switch over 
to a back-up rate, as the placed triggers are no longer reliable. A method to assess for these 
periods of artifactual data, is by continuously evaluating the amount of disruptions in the signal 
and subsequently define a ‘noise level/disruption factor’. The disruption factor can e.g. be 
defined by analysing the frequency characteristics of the signal. In case the disruption factor 
rises above a pre-set threshold value, the data is considered artifactual and the back-up rate will 
be activated. After implementation of the back-up rate and disruption factor into the algorithm, 
it can be assessed how the algorithm performs on realistic neonatal dEMG input (i.e. data that is 
not pre-selected on the absence of artifacts).   
 
Another option for algorithm enhancement is to incorporate proportional assist (creating a PIP 
that corresponds to the neural respiratory drive based on dEMG activity) and synchronization 
on expiration, as is already implemented for NAVA.  
 

6.3 Optimization of system parameters 
The value for Tseg of the adaptive model was determined at 60 seconds for this study. The 
parameters were repeatedly determined over Tseg seconds of data and this value was 
subsequently used for the next Tseg seconds of data. This did signify that the currently used 
parameter values were always slightly outdated as they were determined over the previous 
minute of data. Therefore, in case of a stand-alone deviation in the data, the currently used 
system parameters would not account for it, and the currently calculated system parameters will 
not be accurate for the next segment of data. This would advocate for instituting a longer Tseg 
such that stand-alone deviations will be averaged out. However, with a longer Tseg the model will 
lack flexibility to keep track of short and fast fluctuations in Tcycle. Therefore, it is advised to 
experimentally investigate what the most fitting definition of Tseg is. During this assessment, it 
can also be considered to make Tseg dependent per subject, e.g. based on the general trend of 
variability in the measured data. Also, on a more general note, it is recommended for future 
studies to investigate which system parameters will benefit from being made adaptive (e.g. by 
assessing their variability within a measurement).  
 
Also the definition of the trigger-block period is eligible for optimalization. In this study it was 
stated that the trigger-block period was directly proportional to the length of Tcycle. However, for 
subjects with a higher RR the Ti is relatively longer with respect to the Tcycle. Therefore, it can be 
argued that for subjects with a higher RR a relatively longer trigger-block period is required 
compared to subjects with a lower RR. Also, the irregularity of the RR will influence the 
effectiveness of the trigger-block period, which should also be taken into account for the 
definition of the timing factor. Another method to define the trigger-block period is by placing 
the condition that the dEMG activity must have lowered below a threshold for a certain amount 
of time after placement of the last trigger before a new trigger can be placed. It is advised to 
experimentally compare different definitions of the trigger-block period in order to assess what 
is most effective.  
 

6.4 Future perspectives 
The results from this study showed that it is possible to extract inspiratory triggers from a 
neonatal tc-dEMG signal in real-time. Although the capability of triggering was confirmed, the 
results also indicated that the quality of triggering was not yet up to standard in order to be 
clinically feasible. After further improvements of the algorithm, the next steps to be followed in 
this line of research are described below (see Appendix F for an overview).   
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After enhancement of the algorithm, the new prototype can be connected to a dedicated dEMG 
device in order to execute test runs with real-time obtained dEMG data. If the connection is 
successfully made, this also opens the door to further testing in a setting that more closely 
resembles the clinical environment. For example, the wireless dEMG device can be used to 
measure data from a patient admitted to the NICU, while being connected to the prototype 
which in turn activates a dummy ventilator (that is not yet connected to the patient). By doing 
so, it is possible to evaluate the performance of the prototype in a real-life setting, and it can be 
assessed whether tc-dEMG based triggering is clinical feasible by evaluating the trigger accuracy 
and delay. The only aspect that is not accounted for in this measurement, is the patient-
ventilator interaction.  
 
The final step is to perform a clinical trial, in which it can be evaluated whether providing s-
nIPPV has clinical value over nIPPV, e.g. by performing a cross-over trial. Both triggering 
modalities can be compared by assessing the PVA and clinical parameters such as WOB, gas 
exchange, and frequency and duration of periods of apnea (and accompanied desaturations and 
bradycardia). Also, the patient-ventilator interaction for s-nIPPV can be assessed, by evaluating 
whether the respiratory pattern of the infant is influenced by the administration of the 
inflations. Eventually, the ultimate aim of the clinical trial should be to assess whether tc-dEMG 
based s-nIPPV positively influences the short- (e.g. incidence of apnea periods or intubation 
prevention) and long-term (e.g. amount of ventilator days) clinical outcome of the target 
population.  
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7. Conclusion 
The primary aim of this study was to evaluate whether it is possible to trigger a ventilator 
during non-invasive ventilation based on tc-dEMG data for the neonatal population. To that end, 
a tc-dEMG based triggering algorithm was developed and converted to a hardware prototype, 
which was tested in Simulink simulations and a bench set-up. The results showed that the 
algorithm was capable of real-time ventilator triggering. However, the triggers were given 
relatively late, mostly due to the delay introduced by the time needed to detect an inspiratory 
effort based on a tc-dEMG signal.  
 
In conclusion, our study shows that dEMG-based ventilator triggering is technically feasible and 
shows potential as a new triggering modality in order to synchronize nIPPV in infants. However, 
future research is required to further reduce the triggering delay and to test the algorithm in 
various clinical settings.  
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Appendix 
A. Flowchart pre-existing offline dEMG processing algorithm 
 

 
Figure A.1: Flowchart of processing steps from the pre-existing tc-dEMG based algorithm. From 
Van Leuteren et al. (2021) [4]. 
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B. DSP design applied to tc-dEMG based triggering algorithm 

 
Figure B.1: Simplified DSP design flow applied to the tc-dEMG based triggering algorithm. 
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C. System parameter values 
In the table below an overview is given of all used system parameter values in the algorithm, and 
how they were determined. For more information on each parameter value, see the 
corresponding component in Appendix D. 
 
Table C.1: System parameter values used in this thesis. 

System parameters per component Value/setting Determined how 
Pre-processing   
Baseline correction   
  High-pass filter (Hz) 40 (2nd order) Experimental 
Creating pulse train   
  Time constant (ms) 2 Experimental 
  Moving maximum (adaptive model)   
    Window length (s) 2 Reasoning 
  Moving maximum (triggering model) Adaptive Dependent per subject 

(/within measurement) 
  Pulse length (ms) 100 Literature [90] 
Aligning pulse train   
  High-pass filter (P- and T-tops) (Hz) 100 (2nd order) Experimental 
  Delay (ms) 5 Determined 
Filling gates   
  Delay (ms) 45 Reasoning 
Creating respiratory waveform   
  Window length (ms) 500 Based on pre-existing 

offline tc-dEMG algorithm 
Finding respiratory rate   
Breath detection using respiratory waveform   
  Delay (ms) 250 Experimental 
  Hit-crossing Only rising 

crossings 
N.A. 

  Pulse length (1) (ms) 750 Max. RR to detect = 80 
  Pulse length (2) (samples) 1 N.A. 
Calculating Tcycle   
  Tseg (s) 60 Reasoning 
  Maximum Tcycle (s) 2 Reasoning 
Extracting inspiratory triggers   
  Tcycle Adaptive Dependent per subject/ 

within measurement 
  ThEMG Adaptive Dependent per subject 

(/within measurement) 
  Constant (1) 1 N.A. 
  Constant (2) 0 N.A. 
  Trigger block factor 0.6 Reasoning 
Single trigger   
  Pulse length (1) N.A. N.A. 
  Pulse length (2) (samples) 1 N.A. 
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D. Detailed description of Simulink algorithm 

Overview 
 

 
Figure D.1: Overview of Simulink algorithm, consisting of two models: the adaptive model and 
the triggering model. 

 
Input: Raw dEMG channels 1 and 2. 
 
Adaptive model: Model that buffers data over 𝑇𝑠𝑒𝑔 seconds and determines three variables 

from the data (ThEMG, Tcycle and moving maximum). These variables are sent to the triggering 
model where they are used for real-time triggering. Since these variables are calculated over the 
past 𝑇𝑠𝑒𝑔 seconds, they are always slightly outdated. However, under the assumption that these 

variables are relatively constant over short periods of time, it is expected that this will not be a 
large issue.  
 
Triggering model: This is the real-time triggering model, in which triggers are extracted from 
the processed dEMG signal. It has as input the raw input and the variables from the adaptive 
model.  
 
Output: The derived inspiratory triggers, processed in a binary signal and therefore suitable to 
activate a ventilator.  
 

Adaptive model 
 

 
Figure D.2: The expanded adaptive model, consisting of three components: pre-processing, 
finding respiratory rate, and finding threshold for triggering. 
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Figure D.3: Expanded subcomponent pre-processing (from the adaptive model). 



 

66 
 

  

Figure D.4: Expanded components finding respiratory rate and finding threshold for triggering 
(from the adaptive model). 
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MATLAB function to calculate ThEMG 

 
function trigger_threshold = fcn(det_breaths, rect_EMG, Ttot) 
 

nr_det_breaths = sum(det_breaths); %number of detected breaths in resp. waveform 
(for comparison) 
 

%Initialize variables 
a = 0; 
b = max(rect_EMG); 
tol = 0; 
nr_triggers_rect = 0; 
diff = nr_det_breaths - nr_triggers_rect; 
th = 0; %initializing th 
it = 0; 
k_block = 0.6; %trigger block factor 
 

%Bisection method 
while abs(diff) > tol 
th = (a+b)/2; %calculate new threshold to try on data 
it = it+1; %count iterations 
%get triggers with set threshold 
trigger_array = zeros(length(rect_EMG),1); 
rect_EMG_use = rect_EMG; 
for i = 1:length(rect_EMG_use) 
%give pulse if rect_EMG is higher than threshold. Assign all 
%consecutive rect_EMG samples within Tcycle*k_block to zero so there will 
%be no additional trigger within Tcycle*k_block 
if rect_EMG_use(i) > th && i <=length(rect_EMG_use)-(round(Ttot*k_block)) 
trigger_array(i) = 1; 
rect_EMG_use(i:i+(round(Ttot*k_block))) = 0; %block new pulses for Tcycle*k_block 
ms 
%same as before. Only this describes the case at the end of the 
%rect_EMG signal. 
elseif rect_EMG_use(i) > th && i > length(rect_EMG_use)-(round(Ttot*k_block)) 
trigger_array(i) = 1; 
rect_EMG_use(i:end) = 0; 
else 
trigger_array(i) = 0; 
end 
end 
nr_triggers_rect = sum(trigger_array); 
  diff = nr_det_breaths - nr_triggers_rect; %calculate difference between nr. of 
found 
  %triggers and nr. of detected breaths through Simulink 
   
  if sign(diff) == 1 %if nr_det_breaths > nr_triggers_rect 
    b = th; 
  else %if nr_det_breaths < nr_triggers_rect 
    a = th; 
  end 
   
  if it == 20 %stop after 20 iterations 
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    break 
  end 
end 
 

%Minimalize threshold further (on the condition that the amount of triggers does 
not 
%increase 
condition = nr_triggers_rect; 
nr_triggers_rect2 = condition; 
th2 = 0; 
 

while nr_triggers_rect2 == condition 
  th2 = th - 0.01; %keep trying to decrease threshold with 0.01 
  
  %get triggers 

 
 
 
Pre-processing 
Goal: to derive the respiratory waveform from which the adaptable system parameters can be 
determined, that will subsequently serve as input for the triggering model.  
 
Loading data 
Subtraction of the raw dEMG channels, to obtain the bipolar derivation of the dEMG signal. 
 
Filtering 
The baseline was corrected using a 2nd-order high-pass filter, which is of the lowest possible 
order and therefore induces as little delay as possible. The accompanied cut-off frequency (40 
Hz) was experimentally determined, based on this filter order.  
 
Creating pulse train 
This subblock is all about detecting the QRS-pulses. For this we used the peakfollower (stateflow 
chart). How this Stateflow chart detects QRS-pulses, is explained in detail in the accompanying 
master’s thesis [96]. The PeakFollower needs 4 inputs: 

- dEMG signal: 
o The so-far processed dEMG signal. 

- Increase detection: 
o This input equals the dEMG signal when it increases, and it equals zero when the 

dEMG signal decreases. This is accomplished by continuously calculating the 
running difference. If the running difference is positive (and therefore the signal 
is rising), the dEMG signal is passed. If the running difference is negative, zeros 
are passed through.  

- Max value: 
o The maximum value (for which the PeakFollower starts descending, even though 

the dEMG signal is still in rising state) is obtained by calculation of the moving 
maximum. The moving maximum is obtained over 2 seconds (as it will contain at 
least >1 QRS-peaks). The aim is to find the average amplitude of the QRS-peaks. 
In order to do so, a large window is applied to average out the effect of artefacts. 
As a large window is used (and therefore imposes a large delay), it is 
inconvenient to calculate the moving maximum in the triggering model (which is 
supposed to run in real-time). Therefore, the moving average is computed in the 
adaptive model and the mean is taken over 𝑇𝑠𝑒𝑔 seconds (advice is to take the 

median for future use, but this was not yet implemented in this thesis). 
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- Time constant: 
o The time constant determines the rate at which the PeakFollower descends and 

was experimentally determined at 2 ms using the training set.  
 
The PeakFollower has 1 output: 

- Gating: 
o This is an array of pulses, in which for each detected QRS-complex a pulse is 

given. These pulses are prolonged to the length of the QRS-gates, which is set to 
100 ms, based on described QRS-gates in literature. 

 
Align pulse train 
The so-far processed dEMG signal must be aligned to the QRS-gates (as these start at the R-
peak). In order to align the R-peaks to the middle of the QRS-gates, the dEMG signal should be 
delayed half the gate length, so 50 ms. First a high-pass filter is applied, in order to attenuate P- 
and T-tops. This filter also inherently induces a delay, which was minimized by using a 2nd-order 
filter, with an experimentally determined cut-off frequency of 100 Hz. The delay of this filter was 
determined at 5 ms (by computation of the cross-correlation between the pre- and post-filtered 
signal). Therefore, the dEMG signal only has to be delayed an additional 45 ms.  
Sidenote: As the dEMG signal has to be delayed with 50 ms anyway, it is possible to further 
advance filtering of P- and T-tops, as the filter delay can be up to 50 ms without this affecting the 
trigger delay.  
 
Filling gates 
All data within the QRS-gates is removed by replacing it with the data segment prior to the QRS-
gate. This is accomplished by replacing all samples within the QRS-gate with the sample 100 ms 
earlier. 
 
Rectify signal 
As dEMG activity cannot be negative, the absolute value is taken (full-wave rectification).  
 
Create respiratory waveform 
The respiratory waveform is obtained by calculating the moving average. The window length 
was 500 ms (adopted from the pre-existing offline tc-dEMG algorithm), and therefore the 
imposed delay was 250 ms. However, as the adaptive model does not run in real-time, this was 
not an issue.  
 
Finding respiratory rate 
Goal: to find the average time of a respiratory cycle (inspiration + expiration), Tcycle. Also, the 
number of inspirations per 𝑇𝑠𝑒𝑔 seconds was computed. 

 
Breath detection using respiratory waveform 
The slope of the respiratory waveform is calculated by subtracting from each sample, the sample 
250 ms (fs/4) earlier. This value of 250 ms was experimentally determined based on the 
available training data. It was found long enough to further smoothen the respiratory waveform 
and to align it around a baseline of zero, yet not so long that inspiratory efforts would be 
overlooked. Next, the signal is passed through the ‘hit-crossing’-block. This block detects all 
positive zero-crossings, and therefore aims to detect (or count) all inspirations. For each positive 
zero-crossing a pulse is given. Often it is the case, especially for noisier signals, that there are 
multiple zero-crossings belonging to a single inspiration. In order to cope with this, the subblock 
‘single trigger’ is implemented. 
 
Single trigger 
In order to prevent pulses given quick in succession, a detection-block period is implemented by 
first prolonged the pulses to 750 ms. If there are multiple pulses within 750 ms, all ≥2 pulses 
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within this period will be absorbed into the first pulse. Next, all prolonged pulses are shortened 
to 1 single sample. The absorbed pulses are not recovered in the process, resulting in only the 
first pulses within 750 ms to remain. The detection-block period was fixated on a value of 750 
ms, as this meant that the maximum RR to be detected was 80/minute, which was deemed 
sufficient for this population. 
 
Calculating Tcycle 
The value for 𝑇𝑠𝑒𝑔 determines over which period the adaptive parameters are determined. In 

this study a value of 60 seconds was chosen, assuming that this period would be sufficient to 
reliably determine the parameter values. However, it was not experimentally backed-up 
whether this was indeed the case and whether this segment length allowed for enough 
adaptivity within the model. All pulses are buffered for 𝑇𝑠𝑒𝑔 seconds and subsequently summed. 

The summation will equal the amount of detected breaths within 𝑇𝑠𝑒𝑔 seconds. Now, the Tcycle 

can be computed, by dividing 𝑇𝑠𝑒𝑔 by the amount of breaths. In case of apnea, no breaths are 

detected and the resultant Tcycle will be very large. In order to prevent this, a maximum value 
for Tcycle is set, at 2 seconds (assuming a minimal RR of 30, and therefore at least once every 2 
seconds an inflation must be administered). The obtained Tcycle is first passed through the 
‘switch’-block. If it is longer than 2 seconds, Tcycle is set at 2 seconds.  
 
Finding dEMG threshold for triggering 
Goal: to calculate the optimal dEMG threshold to detect breaths in the final processed dEMG 
(pre-MA) signal. 
 
In order to do so, the final processed dEMG signal and the detected inspirations are buffered for 
𝑇𝑠𝑒𝑔 seconds. Next, the ThEMG is calculated by using these buffered single and the computed 

Tcycle (which is a single value and therefore has no use in buffering).  
 
MATLAB threshold function 
The goal is to find the minimum threshold for which the amount of given triggers on the 
processed dEMG signal equals the amount of detected breaths using the respiratory waveform. 
For this, we use the bisection method, here broken down into steps: 

1. The threshold is calculated through the following formula:  

𝑇ℎ =  
𝑎 + 𝑏

2
 

For the initial value a is the minimum value (0) and b is the maximum value of the dEMG 
signal.  

2. The amount of triggers using this threshold is calculated and compared to the detected 
inspirations using the respiratory waveform. 

3. If (compared to these detected inspirations) too few triggers were given, the current 
threshold is too high. In the threshold formula b is replaced with the current threshold 
value and you return to step 1. 

4. If too many triggers were given, the current threshold is too low. In the threshold 
formula a is replaced with the current threshold value and you return to step 1.  

5. If the amount of triggers equal the detected breaths, you exit the loop with the current 
threshold.  

 
In order to make sure the obtained threshold value is the minimum value for which the amount 
of triggers equal the detected breaths, an additional loop is created to minimize the threshold. In 
each iteration the threshold is lowered by 0.01 and the amount of triggers is recalculated. As 
long as the amount of triggers does not increase, the loop is repeated until the lowest possible 
threshold (with 0.01 accuracy) is found. The output of the function is the ThEMG.  
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Triggering model 
 

 
Figure D.5: Expanded triggering model, consisting of two components pre-processing and 
extracting inspiratory triggers. 

 
 
 
 
  

Figure D.6: Expanded subcomponent extracting inspiratory triggers (from the triggering model). 
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Pre-processing 
Goal: to process the raw dEMG signal such that it is fit for triggering of inspirations, with as little 
delay as possible. In general the pre-processing in the triggering model equals the pre-
processing from the adaptive model. The only two differences are that the moving maximum is 
not calculated, but extracted from the adaptive model (in order to save time) and that the 
respiratory waveform is not computed.  
 
Extracting inspiratory triggers 
Goal: to extract the inspiratory triggers from the processed dEMG signal, using a threshold value.  
 
The inspiratory triggers are given when the processed dEMG signal is higher compared to the 
given ThEMG.  
 
Single trigger 
To prevent a multitude of pulses for a single inspiration, the ‘Single trigger’ method is used 
again, explained in Adaptive model/Finding respiratory rate /Breath detection using respiratory 
waveform. However, now the pulses are first prolonged for 0.6*Tcycle. This is the amount of 
time new pulses are ‘blocked’. With a value of 0.6 it was clinically reasoned that if the subject 
would switch from a RR of 30-40 to a RR of 50-60, it would be possible to detect the subsequent 
inspirations without any induced delay due to the trigger-block period. 
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E. Description of dataset per subject 
 
Table E.1: Baseline characteristics for study population of Simulink simulations. Sorted on GA at 
inclusion. 

Subject 
number  

Sex GA at 
birth 

GA at 
inclusion 

Weight 
at birth 

Weight at 
inclusion 

Support after extubation 

GA 26 - 28 
1 F 25+1 25+6 775 660 nIPPV 6/8, RR 40, FiO2 0.34 
2 M 26+1 28+0 600 665 CPAP PEEP 8, FiO2 1 
3 M 27+3 28+3 805 805 CPAP PEEP 8, FiO2 0.5 

4* M 26+0 28+6 850 900 CPAP PEEP 8, FiO2 0.3 
GA 29-32 

5 M 26+1 29+3 960 1000 CPAP PEEP 6, FiO2 0.3 
6 M 26+2 30+1 970 1235 CPAP PEEP 10, FiO2 0.5 
7 M 24+6 31+4 650 1010 CPAP PEEP 10, FiO2 0.5 
8 M 30+6 32+1 1790 1695 HFNC 6 L/min, FiO2 0.21 

GA 33-36 
9 M 31+5 33+1 2050 2050 nIPPV** 6/-, FiO2 0.41 

10 M 31+5 33+3 550 526 CPAP PEEP 5, FiO2 0.44 
11  M 33+4 34+1 1365 1365 HFNC 6 L/min, FiO2 0.21 

12  M 35+1 35+4 2293 2293 No support 

GA 37+ 

13 F 37+5 38+1 3470 3470 LFNC 2 L/min, FiO2 0.21 

14 M 38+4 39+1 3088 3070 No support 

15 M 40+3 41+1 2808 2875 nIPPV** 6/-, FiO2 0.4 

16 M 41+3 42+5 5200 5490 CPAP PEEP 6, FiO2 0.43 
*Categorized as an outlier 
**RR and PIP unknown 
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F. Steps to follow for future research into tc-dEMG based triggering 
 

 
Figure F.1: Recommended timeline of steps to follow for future research. 
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