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The following pages show the core of the research, presented as a separate paper.
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A study into the kinematic and the dynamics of tail-supported climbing in
robotics and birds

Nart Pistorius, n.pistorius@student.utwente.nl
University of Twente 2022, Electrical Engineering, Dept. RaM

Abstract— This work explores the dynamics of actively using
a tail for climbing a vertical surface. In nature, woodpeck-
ers, woodcreepers and treecreepers climb vertical tree trunks
suspended by their feet and supported by their tail. Videos
of these climbing birds are analysed. In general, the stride
is initiated by the body pitching forward while simultaneously
moving towards the trunk and accelerating up before lifting off.
A 2D planar rigid body model is presented and the trajectory
for the minimal cost of transport is determined by solving a
constrained nonlinear problem. The limiting factors and driving
parameters of this legged locomotion gait are investigated. The
locomotion efficiency reduces when the jump height and jump
time approach the ballistic limit. This work gives a first step
towards understanding the role of tail support in climbing
dynamics.

Keywords: Tail-supported climbing, bio-inspired, Cost of
Transport, optimisation, legged locomotion, climbing robots

I. INTRODUCTION

Energy efficiency is a primary concern for mobile robots.
For example, small aerial robots are limited by short mission
time because of high energy usage [1], [2]. To extend the
mission time a robot could perch on a surface as biological
flyers do [3]. Beyond perching, biological flyers are capable
of manoeuvring on the surface to explore, inspect and forage.
The multiple modes of operation, with flying mode, touch
down followed by surface locomotion mode, to take off
and go fly again, are an inspiration for robot design toward
better energy utilisation depending on the given task [2].
This work focuses on vertical surface locomotion. The style
of movement of this mode is inspired by climbing birds in
trees which use their tail actively in a jumping locomotion
strategy [4] [5].

Many small-bodied birds of the order Passeriformes, also
known as perching birds, are capable of climbing and/or
clinging to some extent. However, there is a group that
is considered specialists in tree trunk climbing, existing
of woodpeckers (of order Piciformes and family Picidae),
woodcreepers (of order Passeriformes and family Furnari-
idae), nuthatches (of order Passeriformes and family Sat-
tidae) and treecreepers (of order Passeriformes and family
Certhidae) [4].

Within this group, there are different climbing gaits and
skills. The woodpeckers, woodcreepers and treecreepers are
only reported to climb upwards by means of jumping, with
the aid of tail [6] [5]. Whereas nuthatches are reported to be
able to locomote by walking [7] and jumping/hopping [8]
up- and downwards without tail support on vertical substrates
[9]. The woodpeckers, woodcreepers and treecreepers have
morphological adaptations for climbing, for example, they

are equipped with stiffened tail feathers, long curved claws
and strong leg-flexor muscles [6] [5] [10] [11].

The locomotion gait of a treecreeper is studied in depth by
Norberg [6] and exists of 2 distinct phases, the power stroke
(propulsive stroke), and the floating phase (recovery stroke).
In the first phase, the bird is slipping closer to the trunk by
rotating around the hip joint and at the same time possibly
pulling the hip slightly towards the trunk by the legs. In the
second phase, the bird is in free flight before reattaching and
hanging still again.

The tree trunk climbing birds outperform current state-of-
the-art climbing robots in many ways, like climbing velocity
and manoeuvrability. However, as the field of robotics re-
search has made advancements, climbing robots have become
faster, lighter, smaller and more efficient. Two essential
aspects in this field are attachment strategy (magnetic, pneu-
matic, mechanical, chemical and hybrid) and locomotion
strategy (wheeled, tracked, walking and hybrid) [12].

Various locomotion strategies for climbing robots have
been studied and developed with a tail. The tail is mostly
used to compensate for pitch-back moments produced by
having a center of mass some distance out from the wall
[13].

Locomotion strategies based on multiple side-way arms
are studied, e.g. the four-legged robot of [14] inspired by
a gecko, or the six-legged RiSE robot [15] inspired by a
gecko and cockroach. The climbing gait of these robots is
limited by the number of feet that can be detached while
climbing, Which is a disadvantage for the flexibility and
manoeuvrability of the robot. Furthermore, there are robots
that use 2 arms in front to drag themselves up, pulling up
with 1 arm before reaching out with the other arm higher
up [16] [13]. Also, there are robots vertically climbing with
horizontal movement of CoM (swinging). They are hanging
on 2 points. The robot of [17] has 2 2-DOF arms, by
sequentially changing the pivot point of the pendulum, the
swing changes. The ROCR robot [18] has fixed arms, the
robot climbs by actively swinging the CoM/tail.

A shortcoming of these robots is that they can not manoeu-
vre large gaps, high hurdles, a forest or a single tree, which
does not seem to be a problem for the tree trunk climbing
birds. By having a jumping locomotion strategy, it allows
the birds to move quickly and easily over rough surfaces.
Hence, the jumping locomotion is more agile compared to
other locomotion strategies.

Agile jumping locomotion on ground level with a standstill
between each stride is inefficient because all potential energy
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is dissipated by each standstill. Therefore a continuous hop-
ping motion with energy storage in a spring is more energy
efficient. But in vertical climbing the halt between each stride
is no disadvantage since the kinetic energy has all been
converted into potential energy by the end of the floating
phase, i.e. it has all been used for progression upwards along
the trunk. [6].

The energy efficiency of locomotion is frequently quan-
tified by the cost of transport (CoT), this is the amount of
energy used per distance travelled, sometimes also referred
to as specific resistance [19]. The CoT is a dimensionless
quantity, therefore allowing comparison between animal and
robotic transportation, and different transportation modes,
jumping, flying and walking. In previous research, the CoT is
used for selecting gaits for economical locomotion of legged
robots [20]. Humans for example tend to choose speeds [21]
and step length [22] to minimise CoT.

This work investigates the kinematics and dynamics of
tail-supported climbing. Therefore the governing dynamics
of tail-supported climbing are analysed to investigate poten-
tial adoptation for robotic climbers. The relation between
energy efficiency, stride length and stride time is explored.
The influence of parameters like damping and holding torque
are covered. To investigate the benefits of tail-supported
climbing, a comparison is made for climbing without tail-
support.

To explore the benefits of tail-supported climbing, videos
of climbing birds are analysed and used to obtain the
governing kinematics. The method used for this is explained
in section II-A. Next, to investigate if we can learn from
the kinematics, a model is established and the method of
modelling is covered in section II-B. Followed by section
II-C, explaining the method used to determine the optimal
trajectory for a minimal cost of transport. The results of the
kinematics of video are presented in section III-A, followed
by results of optimal trajectory for the model given in section
II-C. The results are compared and discussed in section IV.
This work is concluded with conclusion in section V.

II. METHODS

A. Video analysis

To study the kinematics, we analyse videos of tree trunk
climbers, treecreepers and woodpeckers. We consider these
movements as the ground truth. Birds are evolved for mul-
tiple things. But they are successful at jumping climbing,
since they use it to forage.

First various videos are collected, next to extract the
information the steps are executed.

1) Video collection & Materials: Videos of climbing
woodpeckers and treecreepers (tab I) are obtained via
YouTube, The Macaulay Library at the Cornell Lab of
Ornithology, written literature and self-recorded. The se-
lected videos meet two main requirements. First, the bird
is climbing on a vertical substrate. The second is that
the perspective is ’en profil’. The collection exists of 8
individual birds and 13 jumps, some birds jump multiple
times in one video. The videos obtained via YouTube and

Fig. 1: Climbing gait against time, (a) with the position at
start time, (b) position rotated and translated at acceleration
phase, (c) position at free-flying phase and (d) position at
end of stride (treecreeper [6])

MacaulayLibrary predominately have a frame rate of 30 Hz.
Since the majority of the birds complete a cycle within 0.5 s,
only at most 15 frames are captured of the cycle in these
videos. The frame rate of the self-recorded video with a
high-speed (Phantom VEO 710L, 12x zoom lens) camera
is 400 Hz [23].

2) Position tracking: Video frames are stabilised such that
the background is static in the image frame, does not zoom
in or out, rotate and translate (similarity transformation).
Implemented with MATLAB’s video processing toolbox,
feature points are detected in the first frame in a selected
region in the image frame (background) with minimum
eigenvalue algorithm [33]. The detected points are tracked in
the subsequent frames. Based on matching points between
the first and following frames geometric transformation is
estimated and applied to the frame such that is stabilised.

For every frame, an ellipse (with the same dimensions for
every frame) is fitted (by eye) on top of the bird’s body. The
positions and orientations (x,y,φ ) of the ellipse are saved.

The positions and orientations of the bird in image frame
coordinates are scaled to SI units using the length from the
bill-tip to the tail-tip for the particular species. The lengths
of species are given by a range tab. I. The jump height and
jump time can be estimated to determine the jump velocity.

To investigate if the birds climb with a common gait we
normalise the positions (x,y) with the jump height ∆y. The
normalisation is implemented because the characteristics of
the jumps, like jump height, position in time and initial-
and end position, are varying between jumps of the same
individual, other individuals of the same species and between
species. The variations could be based on what the bird is
doing, the dimensions of the bird and the local environment.
By normalising the positions and taking the average over the
positions we can determine the trend in the climbing gait.
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TABLE I: Birds used for video analysis

Number Species Number of jumps Frame rate Bill-tip length Mass
1 Hairy woodpecker [24] 1 30 Hz 18-26cm 40-95g [25]
2-5 Pileated woodpecker [26] 4 30 Hz 40-49cm 250-350g [27]
6 Pileated woodpecker [28] 2 30 Hz 40-49cm 250-350g
7-9 Pileated woodpecker [29] 3 30 Hz 40-49cm 250-350g
10 Brown creeper [30] 1 50 Hz 12-14cm 5-10g [31]
11 Spotted woodpecker [32] 1 30 Hz 22–23cm 70–90g [?]
12 Treecreeper Norberg [6] 1 80 Hz 12cm 9g [6]
13 Spotted Woodpecker [23] 1 400 Hz 22–23cm 70–90g [32]

To be able to take the average, the positions are linearly
interpolated such the number of samples is the same.

3) Inverse dynamics: We can find the velocity by nu-
merically differentiating the position, and by differentiating
once again to obtain the acceleration. By estimating the mass
matrix (by taking an ellipsoid with certain dimensions), and
applying inverse dynamics, the net forces can be determined
[34]. If the bird is only in contact with the surface at one
point, for example when only the feet are in contact with the
surface and treating both feet as 1 contact (since they are a
symmetrical and synchronous contact), then all net forces are
counteracted by the surface contact force at the contact point.
If the bird is in contact with the feet and the tail, considering
this as 2 contacts, then we would not accurately obtain the
contact forces. By not knowing the contact forces, we would
do not know the forces acting on the body. We could only
know the net forces.

4) Sources of noise: Some sources of noise are identified
here to be aware of the uncertainties in the measurement
results. The errors and uncertainties in the measurement of
the position and orientation in the video are introduced by
the ellipse not being accurate as mass estimation, human eye
error of placing the ellipse at the right location, the tree not
being vertical, the bird not jumping strictly vertically but also
sideways around the tree, the error due to camera calibration
and the camera perspective. Yet these noise sources are
relatively small compared to the scaling range with the length
reported I.

5) Ballistic limit: The results of the measurements (jump
height and jump time) are expected to be below the ballistic
limit [35]. This limit is given by an object with initial
upward velocity v0 decelerated by gravity g. The velocity
as a function of time of this object is

ẏ(t) = ẏ0 −gt, (1)

resulting in the height y as function of time

y(t) = ẏ0t − 1
2

gt2 + y0. (2)

The height is maximum for ẏ = 0, yielding v0 = gt, hence
the jump height should be limited by ∆y ≤ (1/2)g∆t2.

If the bird would go from standstill to vertical velocity ẏ0
instantaneously, the maximum jump height is given ∆y. But
creating instantaneous velocity is not likely, since the mass is
not zero. Thus the jump height should be below the ballistic
limit.

Other forms of vertical locomotion, climbing, running
uphill, flapping flight, drones are not subject to the ballistic
limit, because flapping flight and drones are able to propel
while flying. And continuous climbing and running uphill
does not come to standstill before the next cycle and does
not have a flying phase.

B. Model

To study the dynamics of tail-supported climbing in
robotics a model is established. An overview of the mod-
elling choices is given next, followed by a method used to
model the rigid body dynamics, the contact forces and the
non-elastic impact.

1) Overview of modelling: The robot is modelled as a 2D
planar rigid body robot in contact with a rigid wall. There
is no elasticity modelled at all, not at the joints and not at
interaction with the vertical surface. The legs are modelled
as 1 leg since the legs are moving synchronously. The head
is not considered in this model. The legs of the robot are
able to span a 2D plane, to restrict the radius of the plane
it is chosen to model the legs by 2 leg segments with 2
rotational joints, as shown in fig. 2. There is not a rotational
actuated joint located in the foot (as an ankle joint). The foot
can rotate but is not actuated. This has 2 reasons, first, the
ankle joint in nature, specifically for the treecreeper, does
not seem to be able to produce significant power, since the
legs are thin. The second reason is that the robot does not
need an ankle joint to be able to climb. The tail is modelled
as a body attached to a rotational joint. Another reason to
use all rotational joints is that it is practical to use in a
robotic hardware implementation. The contact between foot
and surface is modelled as one-point contact.

2) Equations of motion: The main body is described as
a floating base, where x, y and φ are the position and
orientation of the main body, αA is the hip joint angle, αB is
the knee joint angle and αC is the tail joint angle. The states
q, q̇ ∈ Rn can be written in generalised coordinates as

q =
[
x y φ αA αB αC

]⊤

q̇ =
[
ẋ ẏ φ̇ α̇A α̇B α̇C

]⊤
.

(3)

The hip, knee and tail actuators produce torques τA, τB
and τC which are directly coupled to the rigid body. There
is not a spring modelled in between the motor and the rigid
body (to make a series elastic actuation SEA) for the main
reason for simplicity. Furthermore, this would increase the
amount of states, and also just create a force, and it could
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introduce unwanted oscillatory behaviour. The control forces
u ∈ Rn in generalised coordinates are

u =
[
0 0 0 τA τB τC

]⊤−dq̇ (4)

where d is damping in the joints making the system is not
energy conservative, yielding that a positive net work must
be performed by the actuators over the course of a stride. Air
resistance is neglected. At all joints the damping r is chosen
to be identical

d =
[
0 0 0 r r r

]⊤ (5)

Fig. 2: 2D rigid planar model

The equations of motion of the system (derived from
Euler-Lagrange, see appendix) with contact eq. (6) and
without contact eq. (7) are

M(q)q̈ = fcg(q̇,q)+u+J⊤(q)λ (6)
M(q)q̈ = fcg(q̇,q)+u (7)

where fcg is the Coriolis and gravitational forces, u is the
input forces eq. (4), J⊤(q) is the contact Jacobian eq. (8)
and λ is the contact forces eq. (10).

a) Contact forces: The foot contact is constrained in x
and y with no slipping and sliding, the tail contact is only
constrained in x, allowing the tail to slide over the surface in
y-direction. Hence when the tail or foot are in contact with
the surface, the contact velocity ṙ and acceleration r̈ should
be zero

ṙ =




ẋfoot
ẏfoot
ẋtail


=

∂r
∂q

∂q
∂ t

= Jq̇ = 0 (8)

r̈ = Jq̈+ J̇q̇ = 0 (9)

By substituting eq. (6) into eq. (9), the contact forces can
be expressed as (dependence of q is left out for readability)

λ =
(

JM−1J⊤
)−1 (

−JM−1 (fcg +u
)
− J̇q̇

)
. (10)

3) Impact: When contact is made, velocities change in-
stantaneously as a consequence of the zero velocity at the
point of contact ṙ right after collision at t+

J(q+)⊤q̇+ = 0. (11)

Assuming that position is approximately the same just
before and just after impact q− ≈ q+ (because t− ≈ t+),
the contact forces can be computed by integrating eq. (6),
yielding

M(q)q̇+−M(q)q̇− = J(q)⊤
∫ t+

t−
λ (t)dt (12)

Left multiplying eq. (12) by M−1(q), subsequently left
multiplication by J⊤(q) and substitution with eq. (11) results
in

−
(

J⊤M−1J
)−1

J⊤(q)q̇− =
∫ t+

t−
λ (t)dt (13)

Substituting eq. (13) back into eq. (12) allows the expres-
sion to be written without the integral, leaving the velocity
after impact expressed explicitly by the velocity before
impact

q̇+ =
(

I−M−1J⊤
(

JM−1J⊤
)

J
)

q̇− (14)

In order to handle the discontinuity and the change of
equations of motion eq. (6), the integration interval must be
divided into predefined stages. In section II-C is explained
which method is used to do this.

4) Parameters: In nature, the tree trunk climbing birds
vary in mass. The treecreeper with 9 g [6] to the larger
woodpeckers with 350 g [27] are all able to climb. The
total mass is chosen as 9 g, to be similar to the treecreeper.
Assuming that the main body is a homogeneous ellipsoid that
is 0.77 % of total mass, and semi axis a and b estimated by
Norberg [6], the moment of inertia is jb = 1/5mb(a2 +b2).
The moment of inertia of a leg segment is chosen as a rod
rotating around center jleg = 1/12mlegl2

leg and for the tail
jtail = 1/12mtaill2

tail. Length of legs and tail are chosen to
be comparable with data of a treecreeper. The damping is
chosen to make the system unconservative.

The contact forces of the foot are unconstrained. The
contact force of the tail is constrained to be positive.

C. Optimisation

The optimisation aims to find the control inputs to travel
from the start point to the endpoint with the minimal objec-
tive function. This trajectory optimisation is transcribed with
the dynamics and control input into a non-linear program
(NLP) and solved with a numerical optimisation algorithm.

1) Objective function: The cost of transport is a mea-
sure of efficiency at a certain velocity allowing comparison
between horizontal transportation modes and transportation
of animals [19]. To quantify the price of speed [19], it is
the work done normalised by the distance ∆y travelled and
the weight of the system. For pure vertical transportation,
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TABLE II: Model parameters

Parameter Symbol Value
Total mass m0 9.1×10−3 kg
Mass body mb = 0.75m0 6.8×10−3 kg
Mass leg mleg = 0.1m0 9.1×10−4 kg
Mass tail mtail = 0.05m0 4.55×10−3 kg
Moment of inertia body jb = 1/5mb(a2 +b2) 3.74×10−7 kgm−2

Moment of inertia leg jleg = 1/12mlegl2
leg 7.58×10−9 kgm−2

Moment of inertia tail jtail = 1/12mtaill2
tail 6.06×10−8 kgm−2

Length leg lleg 1×10−2 m
Length tail ltail 4×10−2 m
Length body semi-axis a 7×10−3 m
Length body semi-axis b 15×10−3 m
Max torque τmax 2.3×10−1 Nm−1

Damping r 1×10−4 Nsm−1 rad−1

Max power Pmax 0.5 W
Max horizontal force tail λtail,x ≥ 1×10−6 N

this cost of transport can also have another interpretation in
climbing transport, it is the energy put into the system over
the energy gained by height ∆y

CCoT =
W

mg∆y
(15)

The absolute mechanical work done summed over all
actuators is given by integrating the torque of the actuator
times the joint velocity of the actuator

W =
∫ tend

t0
∑

i=A,B,C
|τiq̇i|dt (16)

2) Control: The control inputs τi(t) are an open-loop
excitation law as a function of time comparable to the spinal
reflexes found in animals [36]. Closed loop control law,
inputs dependent on states τ((q̇),q, t), is not considered
because it would unnecessarily complicate the control action.
The open-loop excitation is parameterised as a piece-wise
constant function. Other parameterizations defining the ex-
citation function like the coefficient of polynomials, splines,
Taylor series or Fourier series all constrain the system.

3) Discretisation: The discretisation of the optimisation
can be implemented in different ways. For the same rea-
soning as [37] (see appendix), we choose to use a direct
orthogonal collocation method for discretisation.

With direct collocation, constraint violations can be ex-
pressed analytically. Intermediate states are defined by a
polynomial of degree d, which ensures that the solution is
smooth. At the bounds of segments, continuity is enforced.
Increasing accuracy is achieved by either increasing the
number of segments or the order of the polynomial [38].
A third degree polynomial d = 3 is chosen, such that the
state q can be accurately estimated with a constant control
input u. Differentiating a constant twice results in a cubic
function.

Solving a multi-phase problem can be considered as
solving multiple single-phase problems in parallel. The key
difference is that the boundary constraints between any
two phases can be connected, thus coupling the trajectory
segments.

Total trajectory exists of N stages, the n-th stage is divided
into M(n) segments. Considering 3 stages, stage 1 as the
contact stage to accelerate upwards eq. (6), at lift off the
contact forces become zero. Entering stage 2, the free-flying
stage, the equation of motion is eq. (7). At reattachment,
there is a plastic collision given by eq. (14), followed by
stage 3, which is contact again eq. (6).

For the n-th stage the time step is h(n). The time steps h(n)
is a decision variable of the optimisation problem to allow
the stage transitions to take place in a time period. The total
time of one stride is constrained to the time steps multiplied
by the number of segments ∆t = ∑n h(n)M(n). For all stages
we choose to use ten segments M(n) = 10. For details and
illustrations see appendix.

The objective function has discontinuous derivatives be-
cause of the absolute value function. In this case the absolute
work done by actuators |τiq̇i|. This discontinuity can be
bypassed by rewriting the objective function with slack
variables [38], expressing the absolute terms in positive s+

and negative s− components and constrain these components
to be positive and the positive minus the negative equal to
the work.

min |τiq̇i| → min s+i + s−i
subject to s+i − s−i = τiq̇i

s+i ≥ 0
s−i ≥ 0

(17)

Introducing slack variables requires more decision vari-
ables, consequently increasing optimisation time, but without
losing accuracy. Where this would be the case if an approx-
imation is used for the absolute value function.

With this, we can set up a search for an optimal motion for
a minimal objective function C to be a constraint nonlinear
optimisation problem

min(C)

h1, . . . ,hn,q1, . . . ,qN , q̇1, . . . , q̇N ,

τ1 . . .τN ,s1, . . . ,sN

(18)

where states q, q̇ are subject to equality constraints on the
equation of motion of eq. 6, eq. 7 depending on the stage.

4) Constraints: Besides that in the optimisation the de-
cision variables are constrained by the system dynamics
in an equality constraint, they are also equality constraint
by the initial and end position. The initial position q1 is
set approximately the same as the initial position of the
treecreeper of Norberg. The initial position and final position
are constrained to be exactly the same plus a jump height.
The initial and final velocities are constrained to zero q̇ = 0.

During the flying stage, the contact point of the foot and
the tail are constrained to not go through the vertical surface,
i.e. the position should be positive because the vertical
surface is located at x = 0.

Futhermore, the decision variable τ are constraint by
maximal torque τmax and the power, described by slack
variable s, is constraint to maximal power Pmax (tab. II).
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The optimisation is implemented in MATLAB calling
the open-source nonlinear optimisation tool CasADi [39].
For solving the problem an open-source primal-dual interior
point method solver is used, IPOPT [40]. For the solver, a
maximum number of 2000 iterations is set.

D. Variations

To investigate the influence of parameters and objective
function on the dynamics of climbing we will vary them.
First, we will study the results for one set of parameters,
the nominal parameters. These parameters are based on the
parameters of treecreeper [6]. The jump height and jump
time will be set to the jump height ∆y =66 mm and jump
time ∆t =0.1375 s reported by Norberg [6]. We will present
the results of the work done by the individual actuators and
the potential energy gained.

1) Jump height: To investigate if the cost of transport is
dependent on jump height and if there is an optimal climbing
height given the model and parameters, the jump height is
varied.

2) Damping variation: The system is not conservative due
to damping. If there would be no damping/dissipation, all
trajectories would have the same cost. We will investigate
the role of the damping by varying it.

3) Variation objective function: The objective function
will be extended to take into account thermal loss due to
static holding torque. In robotic and biological systems the
generation of mechanical work is accompanied by additional
thermal losses. For example, with static force, with no
mechanical flow but with mechanical effort, there is energy
lost to the thermal domain. To take this into account, an
additional term Ploss is introduced in the objective function.
Torque relates linearly to current τ ∝ i, for DC motors heat
loss relates quadratic with current Ploss = (1/R)i2 resulting
in cost/objective function

CCoT+τ2 = CoT+Eloss

= CoT+
1
R

∫ tend

t0
∑

i=A,B,C
τ2

i dt (19)

E. Modified model: Without tail

To investigate what the benefits are of tail support, we
create a model without a tail. Without the tail and only
actuators at the hip and the knee the model will not be able to
climb. An additional actuator is required at the ankle. Until
now we assumed that the ankle joint was not actuated and
was without damping, in other words a free hinge point. The
model is adjusted accordingly. Let us consider the ankle joint
angle αD, and torque τD, then the states become,

q =
[
x y φ αA αB αD

]⊤ (20)

and the control wrench becomes

u =
[
0 0 0 τA τB τD

]⊤−dq̇ (21)

where damping d is chosen the same as for all other joints
as described in eq. 5.

The foot is now modelled as a body with mass and inertia.
For convenience, these parameters are chosen equal to the
mass and inertia of the tail. The rigid body of the foot is not
allowed to translate and rotate, yielding the contact constraint
can be described by

ṙ =




ẋfoot
ẏfoot
α̇foot


= 0. (22)

With this, the contact wrench is λ =[
λfoot,x, λfoot,y, λfoot,α

]⊤.
The equation of motion of this modified model is described

with the same method as in previous sections, with the
impact and contact force expressions.

III. RESULTS

The next section is structured as follows. First, the results
of the video data are presented. Second, the results of the
optimisation are presented.

A. Results nature - video

In fig. 3 the positions and orientations are shown for all 13
jumps of the 8 individual birds normalised with jump height
and set out against relative time. The grey lines indicate the
individual jumps. The red line indicates the trajectory of the
treecreeper of Norberg [6]. The blue line is the average of the
position and orientation of all the birds (grey and red lines).
The x-position all start at 0.2 for illustration purposes, such
that the surface is located at x =0. All birds move towards
(fig. 3 b1) the trunk in the initial phase of the stride. The
final y position of all birds is equal to one since all are
normalised by their jump height. All rotate (fig. 3 b3) in the
positive direction (counterclockwise) with the head towards
the trunk with the average peaking at 15◦. The floating phase,
the phase where the bird does not have contact with the
surface, starts on average at 52 % of total time, and ends at
81 %. We observed that the tail is lifted off the bark before
the feet in all videos. After the floating phase, the feet and
tail make contact with the bark at approximately the same
time. In sub-figure b4) the time without contact is determined
by the feet not having contact with the tree trunk.

In fig. 4 the stride height is shown against jump time for
all 13 jumps. The error bars in the x direction indicate the
video’s frame rate. The error bar in the y direction indicates
the range in the length scaling. The length of the bird species
is reported as a range, see tab. I. The error bar in the
horizontal direction for the spotted woodpecker in orange
is small (1/400 Hz) as that one is captured with the high-
speed camera resulting in more accuracy regarding positions
in time. It can be observed that all measurements fall within
the ballistic limit. The pileated woodpecker 1 is the fastest
with a velocity of 1.4 ms−1 in the videos considered.

B. Results optimisation

The results of the optimisation will be presented in this
section. First work done per actuator is shown for a fixed
stride height and stride time for the nominal parameters.
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Fig. 3: Processed bird video data: (a) Position x against y
normalised by jump height. (b1) position x normalised by
jump height against relative time (b2) position y normalised
by jump height against relative time (b3) orientation φ
against relative time. (b4) Time without contact. All 13 jumps
are grey lines (of 8 individual birds), average is the blue line,
treecreeper of Norberg [6] is red line.

Fig. 4: Processed bird video data: Jump height ∆y in m
against jump time ∆t in s for individual birds some with mul-
tiple jumps, with ballistic limit given by ymax = 1/2(gt2

max),
where error bars in x direction indicate fps and error bars in
y direction range of length scaling, see tab. I.

Followed by solutions for variation of damping. Next, the
results of jump height variations are shown. The result of the
modified objective function is presented. Finally, the result
of the modified model is shown. Note that throughout the
presented results the trajectory of the nominal solution is
always shown with a dark blue solid line and the trajectory
of the treecreeper (of Norberg [6]) is always shown with a
red line with markers. Specifically, the treecreeper trajectory
is shown because the parameters for the model are based on
the treecreeper.

For nominal parameters and objective function, the trajec-

tory, kinetic and potential energy, and work done per actuator
are shown in fig. 5. On the right side the total work of all
actuators, work done per actuator and the gained potential
energy are shown against time. The shaded area indicates
the time the model is not in contact with the surface, i.e. the
model is free-flying. In the first phase, the actuators A (hip)
and C (tail) are delivering most of the mechanical work. This
work is partly stored in the kinetic and the potential energy
and partly dissipated in the damping. The actuator B is not
delivering work in the first phase, since the angle αB is not
changing, but actuator B is delivering torque in this phase.
However, just before the lift-off, actuator B is delivering
work. Just after the lift-off, all actuators are delivering work.
This work is mostly dissipated in the damping. At the start
of the flying phase, the lower leg is pulled towards the main
body, thereby the model gains kinetic energy. During the
flying phase, there is a gradual increase in potential energy
and a gradual decrease in kinetic energy. The power per
actuator for the first phase is reaching the maximal power
constraint Pmax. The torques required for this solution are not
approaching the maximal torque constraint τmax.

Fig. 5: Results of optimisation: Left figure is the trajectory
shown, right figure is the work done per actuator shown (A
is hip joint, B is knee joint, C is tail joint (fig. 2)) for jump
height ∆y =66 mm with total time of ∆t =0.1375 s

The results of the effect of the damping on the optimal
trajectory are shown next. The optimal solution for varying
damping for jump height ∆y =66 mm with a total time of
∆t =0.1375 s is shown in fig. 6. The positions (x,y) and
the orientations (φ ) of the main body are displayed. In sub-
figure (a), the positions (x,y) are displayed, with the model
visualised for the initial position. For larger damping than
r =2× 10−4 Nsm−1 rad−1 the optimisation converges to an
infeasible solution, there can not be enough power delivered
due to power constraints on the actuators. The dark blue line
indicates the trajectory for the nominal parameters, which is
corresponding to the energies and work plotted in fig. 5. The
position of the main body rotates around the foot contact
point in the first phase for the nominal damping solution.
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The lift-off position in x direction is slightly (1 mm) smaller
compared to the initial position. For a larger damping value,
the trajectory is almost identical. For a smaller damping
value, the x position of the main body is deviating less from
its initial position. The x positions of the optimisation are
initially away from the surface and then towards the surface,
where the Treecreeper is directly moving towards the surface.
The lift-off position in x direction of the Treecreeper is
40 mm closer to the surface compared to the initial position.

Fig. 6: Results of optimisation: Varying damping for jump
height ∆y =66 mm and total time ∆t =0.1375 s. Blue lines
are nominal case damping, red lines are less damping, yellow
lines are more damping, purple lines are Norberg Treecreeper
[6] positions. Position (x,y) and orientation φ of main body
(a) position x vs y, (b1) x position, (b2) y position, (b3)
orientation angle φ and (b4) time without contact.

The percentage of work done by actuators A (hip joint),
B (knee joint) and C (tail joint) of the total work done at
the end of the stride for the various damping values is given
in tab. III. One could observe a trend that for an increase in
damping the actuator B has to deliver more work. The cost
of transport for the solutions is also shown in the table. The
cost of transport increases for a large damping value and vice
versa.

The results for a range of jump height ∆y for fixed total
time ∆t =0.14 s are shown in fig. 7. All the trajectories,
kinetic and potential energy, and work done per actuator are
shown in fig. 7a. The data is all plotted in one plot to show
that the optimisation finds approximately the same solution.
The cost of transport given the jump height is shown in fig.
7b. For the given jump heights the minimal cost of transport
is at ∆y=83 mm. For jump heights of ∆y=98 mm, the solver
cannot find a feasible solution within 2000 iterations. The
ballistic limit, given the jump time ∆t =0.14 s, is at a jump
height of ∆ymax =96.1 mm.

In fig. 8 the trajectories are shown for objective function
cost of transport CCoT and cost of transport summed with
torque squared CCoT+τ2 of eq. 19 with a weight factor 10000
(R =1×10−4). The resulting cost of transport is given in tab.

(a) Left figure are the trajectories shown, right figure is
the work done per actuator shown
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(b) Cost of transport (CoT) against jump height ∆y

Fig. 7: Results of optimisation: Varying of jump height ∆y
for fixed total time ∆t =0.14 s, the ballistic limit here is
∆ymax =0.0961 m

III. The cost of transport is 1.5 times larger for the modified
objective function than for the unmodified one. The main
body moves towards the surface for this modified objective
function CCoT+τ during the first phase, whereas this is not
the case for the unmodified one CCoT. The peak torque over
all actuators for the cost of transport as objective function
is 0.0408 Nm and for the modified objective function is
0.0093 Nm.

a) Modified model: Without tail: The trajectories of the
modified model without a tail but with actuated ankle are
shown in fig. 9 indicated with yellow lines. The objective
function used to find the trajectory for this modified model
is the cost of transport CCoT. The main body moves towards
the surface directly. The lift-off position in x is 6 mm closer
to the surface than the initial position. The orientation of the
main body decreases more gradually than for the model with
a tail.

The work done per actuator and the cost of transport is
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Fig. 8: Results of optimisation: For objective function CCoT+τ
(torque squared) eq. 19) left figure is the trajectory shown,
right figure is the work done per actuator shown (A is hip
joint, B is knee joint, C is tail joint (fig. 2)) for jump height
∆y =66 mm with total time of ∆t =0.1375 s.

shown in tab. III. The cost of transport for this modified
model without a tail is approximately 2 times larger than for
the nominal model with a tail. More than half of the total
work for the modified model is done by the actuator D (ankle
joint).

Fig. 9: Results of optimisation: Without tail, but with ankle
for jump height ∆y =66 mm with total time of ∆t =0.1375 s.

IV. DISCUSSION

In the following section, we will discuss the trajectories
for the variations of the optimisation and compare them with
the trajectory of the treecreeper.

A. Trajectories/gait

1) Positions: In nature, the main body of all the birds
moves closer to the tree (fig. 3 b1) in the initial phase of the

movement. One reason for this could be to shorten the lever
arm from the contact point to the hip joint, implying that
the (muscular) torque about the hip joint can be reduced
for the same force on the surface τ = ℓ × F . Another
reason for moving closer could be to have some margin for
reattachment. Such that the tree is well in reach of the feet
for reattachment. Or to allow the bird to push slightly away
from the tree before a full standstill. It could also be that the
bird moves closer to the tree to realise a longer path over
which the muscles can exert a force while in contact with
the surface.

For the model with nominal parameters and cost of
transport as objective function fig. 5 the main body rotates
around the foot as a hinge point, gaining kinetic energy in
the first phase of the stride. Next, the main body flies freely
only vertically upwards. This gait/trajectory is expected since
keeping the knee joint B almost static saves mechanical
work. Most actuator work is done in the first stage of the
stride, which is expected since the robotic model should
accelerate sufficiently to fly and reattach again.

By taking into account the static holding torque, in this
case adding the torque squared in the objective function fig.
8 resulted in a trajectory that is more comparable to that
one of the treecreeper, by slipping closer to the trunk in
the first phase of the stride. The modified objective function
lays a cost on the delivered torques. This better matching
trajectory between the model with the modified objective
function and treecreeper could mean that for the nominal
objective function, the model is generating unnatural torques.
This trajectory required more mechanical work (tab. III) than
the trajectory optimised for only the cost of transport. This
could be caused by that the total torque is less but acting over
a longer time period and thereby delivering more mechanical
work.

2) Orientation: Besides all birds moving towards the tree,
all birds perform a rotation of the body with respect to the
initial orientation in the positive direction (head towards the
tree) fig. 3 b2) in initial part of stride. A reason for this could
be to counteract the backward pitch caused by the torque on
the hip joint moving the legs backwards relative to the body.

For the model for both objective functions, the main body
also rotates in the positive direction in the first phase. The
maximal orientation angle is approximately the same as the
treecreeper. The model starts rotating in backward direction
after lift-off, this applies to the treecreeper. Both are rotating
backwards in the flight phase. There is a difference in the
progression of the orientation in time. The orientation of the
model decreases faster after lift-off. The treecreeper rotates
backwards more gradually. The models shows sharp negative
rotation because the actuator A (hip joint) is producing large
positive torque.

3) Contact time/phases: The time without contact (flying
phase) is longer for the model 72 % than for the treecreeper
36 %. A shorter flying phase implies that feet need to
be displaced faster to the new contact point. A shorter
acceleration phase implies that the main body needs faster
acceleration, such that enough kinetic energy is stored to
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TABLE III: Results optimisation for variations for fixed ∆y =66 mm and total time ∆t =0.1375 s

Variation damping fig.6 Variation objective fig.8 Variation model fig.9
Nominal

Damping r [Nsm−1 rad−1] r =1×10−5 r =1×10−4 r =2×10−4 r =1×10−4 r =1×10−4

Objective function CCoT CCoT CCoT CCoT+τ2 CCoT
Model With tail With tail With tail With tail Without tail

Work done by actuator A 52 % 40 % 39 % 40 % 10 %
Work done by actuator B 14 % 18 % 27 % 23 % 36 %

Work done by actuator C or D 34 % 42 % 34 % 37 % 54 %
CoT 1.95 1.53 2.81 2.42 3.15

travel the vertical distance. Faster acceleration requires larger
maximal power because in a shorter time the system requires
the same amount of energy.

B. Damping

The trajectory is determined by the unconservative model
due to damping at the joints. For smaller damping than the
nominal damping, the trajectory is slightly different but has
the same characteristic, of rotating around the foot contact.
For larger damping, the trajectory is almost identical. A
reason for the same trajectory could be that the damping is
modelled in parallel with the actuator. Yielding that scaling
the damping would only scale the torques required. But it
could also be that the optimisation solver finds another local
minimum solution due to numerical inaccuracy.

We neglected the resistance between the tail tip and the
surface. This could influence the results, since having a
resistance at the tail tip would penalise the movement of
tail tip over the surface.

Another dissipative element we neglected is air drag.
Air drag increases quadratically with velocity. For small
velocities, the drag would be neglectable. However, for larger
velocities, it would be larger and dissipate more energy. This
could influence the optimal climbing velocity, by shifting the
optimal climbing velocity down.

C. Energetic behaviour

The kinetic energy summed over all rigid bodies (orange
line fig. 5) increases initially, decreases and increases again
before lift-off. The increase in the sum of kinetic energies
just before lift-off is mainly caused by an increase in the
translational kinetic energy of the mass of the lower leg.
This energy increases due to an increase in velocity.

During the free-flying phase, the kinetic energy decreases
quadratically, which is as expected for a free-flying object.

D. Jump height & Optimal velocity

The larger and heavier birds tend to jump higher and faster
than the smaller lighter birds as can be seen in fig. 4. The
larger birds are faster climbers than the smaller birds by
looking at individual jumps. A reason for this could be that
the larger and heavier birds have more powerful muscles
allowing faster acceleration, thus more velocity.

The pileated woodpecker 3 in fig. 4 jump consecutively
lower and slower than pileated woodpecker 1. This illustrates
the argument that the bird is choosing stride length and stride
time, hence velocity, given a task.

For variations in jump height ∆y in fig. 7 the cost of
transport decreases for an increase in jump height and
because the jump time ∆t is fixed, an increase in velocity. In
other words, it is more efficient to jump higher. The reason
for this can be seen in fig. 7a, for the jumps with less height
gain, the main body overshoots the height, i.e. first falls down
a small bit before reattachment. In fig. 7a it can be seen that
the higher the jump is, the higher the total work required
is. The trajectories are for the first stage approximately the
same, for all jump heights, the main body is rotating around
the foot contact point.

E. Model

For the model without a tail, but with an actuated ankle,
we can see that the trajectory is different from the one with a
tail. Both with the cost of transport as the objective function.
The main body moves towards the surface, and the lift-off
x-position is closer to the surface than the initial position.
The reason for this could be that the torque required at the
ankle joint D is reduced when the lever arm to the main body
decreases. This could suggest that the tail of the bird is not
as powerful as the other joints.

The power delivered by joint D is prominent as expected
because there is no tail meaning that the main body is
predominately lifted by the ankle joint.

The not entirely matching trajectory between the model
and the birds can have various reasons. The muscles are
modelled as pure torque actuators with torque and power
constraints, however, this may be oversimplified. For exam-
ple, positive muscle work is considered cheaper than negative
work [6]. Another reason for the mismatch could be that the
torque bandwidth is unlimited, allowing an infinite change
in torque. Furthermore, the mismatch could be caused by
allowing unlimited contact force for the foot. The foot is
allowed to pull and push on the surface with unlimited force.
However, the contact force of a claw with a surface is limited
[41]. This could influence the trajectory. Also, the mismatch
in trajectory could be coming from the kinematic relations.
The joint location with both the tail and hip joint at the same
location may not be representable for the birds. Having the
joints located in the body at a different location would change
the kinematic relations and therefore change the dynamics.

V. CONCLUSION

To study tail-supported climbing, videos of birds are
analysed, a model is created and the optimal trajectories are
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determined by minimising an objective function. The kine-
matic gait (trajectory) of the climbing birds is comparable for
a variety of species with different masses and dimensions.
The larger and heavier birds tend to have a higher climbing
velocity because they jump higher. The trajectory of the
model for minimal mechanical work is not matching with
the trajectories of the birds. This work shows that for the
specific assumptions and parameters tail supported climbing
without actuated ankle joint has a better cost of transport than
without tail but with actuated ankle joint. This indicates that
tail-supported climbing could be more efficient.

This research shows that tail-supported climbing is rel-
evant for the dynamic case and that it would be very
interesting to do future research.

In future work, it would be beneficial to measure the
contact forces of the birds. For the model it would be
interesting to displace the location of joints within the body.
Also, it would be interesting to constrain the contact force
and/or implement a claw contact model. Furthermore, it
would be valuable to investigate the influence of introducing
a fourth phase where only the foot is in contact with the
surface and already tail is lost contact. Moreover, it would
be suited to create a prototype to validate the model and
optimisation. Additionally, it would be relevant to investigate
the influence of the scaling of dimensions and mass with
climbing velocity, because the larger/heavier birds jump with
higher velocity.
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A Model

This appendix covers the modelling background in more detail. The Euler-Lagrange formula-
tion is used to obtain the equation of motion of the model. The model is a 2D planar model,
with linear velocity in vx and vy and rotational velocity ω.

The states of the model are defined by q and q̇. These states are kinematic relations between
the rigid bodies. The linear velocity vx and vy and rotational velocity ω of the i -th rigid body
are described as function of q and q̇.

A.1 Model Euler-Lagrange

The total kinetic energy of the system is equal to sum over the kinetic energies of all the rigid
bodies

T = 1

2

∑
i

mi (v2
x + v2

y )+ 1

2

∑
i

Iiω
2 (A.1)

where the i -th rigid body has mass mi and inertia Ii .

The total potential energy is equal to the sum of all potential energies of the rigid bodies

V =∑
i

mi g yi (A.2)

where g is gravity and yi the height of the rigid body.

The Lagrangian of the system is given by the total kinetic energy minus the total potential en-
ergy

L (q̇,q) = T −V (A.3)

The Euler-Lagrange equation of motion is given by

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (A.4)

∂

∂q̇

∂L

∂q̇
q̈+ ∂

∂q

∂L

∂q̇
q̇− ∂L

∂q
= 0 (A.5)

The mass matrix is expressed as

M(q) = ∂

∂q̇

∂L

∂q̇
(A.6)

The Coriolis and gravitational forces are expressed as

fcg(q̇,q) = ∂L

∂q
− ∂

∂q

∂L

∂q̇
q̇ (A.7)

The equation of motion can be expressed as

M(q)q̈ = fcg(q̇,q)+u (A.8)

where u is the input force.
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B Optimisation

B.1 Transcription

In single shooting, the equation of motion can be integrated (with Euler, or Runge-Kutta) over
the whole trajectory. Events are detected and processed along the way. Due to the integration
from start to end (single shoot), mapping between control, dynamics, costs and constraints can
be highly non-linear, which degrades the convergence behaviour of the optimisation. This can
be improved by dividing the integration into segments that are evaluated separately, multiple
shooting. By re-starting the integration, the mapping is less non-linear, which improves the
performance of the optimisation. Although the size of the optimisation is increased by addi-
tional constraints to ensure continuity between the segments [1].

If the lengths of the segments are equal to the step-size of the numerical integration, integra-
tion becomes unnecessary, and the constraint violations can be expressed analytically. With
direct collocation this is done and intermediate states are defined by a polynomial of degree d ,
which ensures that the solution is smooth. At the bounds of segments, continuity is enforced.
Increasing accuracy is achieved by either increasing the number of segments or the order of the
polynomial [2]

B.2 Multiphase

Many trajectory optimization problems have a sequence of continuous-motion phases sepa-
rated by discrete jumps. The gait of legged locomotion has a discontinuity at each foot strike
on the ground. Solving a multiphase problem can be considered as solving multiple single-
phase problems in parallel. The key difference is that the boundary constraints between any
two phases can be connected, thus coupling the trajectory segments. In B.1 an overview is
displayed with the stages and stage transitions.

Multistage Trajectory

Stage 1

k k +1 k +2k -1

Stage 2

Lift off Collision

Stage 3

N=3 stages

Mn segments

k-th interval

n-th stage

j-th collocation

......

j=1 j=2 j=3

d=3 collocation points

Figure B.1: Scheme showing multiphase optimization transcribtion
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B.3 Collocation

In direct collocation, intermediate states are defined at collocation points as variables. The
collocation points τ are a fraction of step size hk . The time points are

tk, j = tk−1 +hkτ j for k = 0, ...,nk −1 and j = 0, ...,d (B.1)

where τ is given at d collocation points. The amount of points is equal to degree of the polyno-
mials. We choose the time points for Legendre collocation points (example for d = 3)

τ= [
0.0 0.1127 0.500 0.8872

]
(B.2)

For each control interval we define Lagrange polynomial basis.

L j (τ) =
d∏

r=0,r ̸= j

(τ−τr )

(τ j −τr )
(B.3)

We use Legendre polynomial coefficients because they have same variable bounds as the pro-
files themselves.

The Lagrangian basis satisfies

L j (τr ) =
{

1, if j = r

0, otherwise
(B.4)

The estimate of the state as a linear combination of basis functions can be described by

x̃k (t ) =
d∑

r=0
Lr

(
t − tk

hk

)
xk,r (B.5)

We can write the state estimations the time derivative at each collocation point

˜̇xk
(
tk, j

)= 1

hk

d∑
r=0

L̇r
(
τ j

)
xk,r

def= 1

hk

d∑
r=0

Cr, j xk,r

(B.6)

The state at end of the control interval is

x̃k+1,0 =
d∑

r=0
Lr (1)xk,r

def=
d∑

r=0
Dr xk,r

(B.7)

The collocation equations need to be satisfied for every state at every collocation point

hk f
(
tk, j , xk, j ,uk

)− d∑
r=0

Cr, j xk,r = 0, k = 0, . . . ,nk −1, j = 1, . . . ,d (B.8)

The continuity equation has to be satisfied on every control interval

xk+1,0 −
d∑

r=0
Dr xk,r = 0, k = 0, . . . ,nk −1 (B.9)
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B.4 Pseudocode

The transcription of 1 phase is described in pseudocode in 1. It describes the implementation
of the collocation scheme used. Where Xk are the states at control interval, Uk is control over
the control interval, Sk are the slack variables, Xk j are the states at the collocation points.

Algorithm 1 Collocation transcription of non-linear constrained optimisation

Xk ▷ Initial state variable
for k = 0 : N −1 do ▷

Uk ▷New control variable
for j = 1 : d do ▷ Create collocation points

Xk j ▷New state variable at collocation points
Sk j ▷New slack variable

end for
Xk,end = D(1)Xk ▷ Loop over collocation points
for j = 1 : d do

xp ←C (1, j +1)Xk ▷ State derivative at collocation point
for r = 1 : d do

xp ← xp +Cr+1, j+1Xk j (r )
end for
f ← f (Xk j ,Uk ) ▷ Append collocation equation state
q j ← f (Xk j ,Uk ) ▷ Append collocation equation quadrature
h f −xp = 0 ▷ equality constrain
Xk,end ← Xk,end +D j+1Xk j ▷ Add contribution to end state
J ← J +B j+1q j h ▷ Add contribution to quadrature function

end for
Xk ▷New state variable at end of interval
Xk,end −Xk = 0 ▷ equality constrain

end for

Robotics and Mechatronics Nart Pistorius



18
A study into the kinematics and the dynamics

of tail-supported climbing in robotics and birds

Bibliography

[1] M. Kelly, “An introduction to trajectory optimization: How to do your own direct colloca-
tion,” SIAM Review, vol. 59, no. 4, pp. 849–904, 2017.

[2] J. T. Betts, Practical methods for optimal control and estimation using nonlinear program-
ming. SIAM, 2010.

Nart Pistorius University of Twente


	Acknowledgement
	Contents
	1 Paper
	A Model
	A.1 Model Euler-Lagrange

	B Optimisation
	B.1 Transcription
	B.2 Multiphase
	B.3 Collocation
	B.4 Pseudocode

	Bibliography

