
MODELING, SIMULATION AND CONTROL OF A
SET-UP BUILT TO STUDY FLAPPING MOTION

G.H.M. (Gijs) van Rhijn

MSC ASSIGNMENT

Committee:
prof. dr. ir. S. Stramigioli

dr. ir. F. Califano
ir. R.S.M. Sneep

dr. ing. G. Englebienne
dr. E. Mocanu

October, 2022

048RaM2022
Robotics and Mechatronics

EEMCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

2 Modeling, simulation and control of a setup build to study flapping motion

<G.H.M. van Rhijn> University of Twente

3

Abstract

As part of the Portwings project, the Robotics and Mechatronics group at the University of
Twente developed a 2 degree of freedom flapping wing setup that is designed to be placed in
a windtunnel. This setup is capable of providing real time force and torque information using
an advanced sensor. Each axis is independently actuated using electronic motors. The goal of
this setup is to deepen the understanding of the unsteady dynamics of flapping flight, which is
currently not well understood.

With the creation of such a setup, the question remains how to control each axis to produce an
efficient flapping behaviour. This report explores techniques that can be used to optimise such
flapping behaviour in a model free way, using experience directly from the windtunnel setup.

Initial attempts at optimisation are made using an actor critic approach from reinforcement
learning; here, problems are identified pertaining to reward sparsity, and effective ways encode
policy constraints such that it produces a stable and flapping motion.

This inspires a redefinition of the policy in terms of the Fourier decomposition of a flapping
trajectory; which automatically encodes the need of a periodic motion, and takes our problem
away from the formal reinforcement learning definition and towards a conceptually simpler
model free parameter optimisation. Optimisation over this policy is done using the actor critic
structure from the original reinforcement learning problem. Experimentally it is shown that
this algorithm works for simple reward functions, but that it struggles to optimise over more
complicated rewards.

Robotics and Mechatronics <G.H.M. van Rhijn>

4 Modeling, simulation and control of a setup build to study flapping motion

Acknowledgement

First, I would like to express my gratitude to Dr. Federico Califano for giving me the chance to
work as part of the Portwings project, and to Prof. Stefano Stramigioli for acting as the chair of
my assessment committee.

This project would not have been possible without the regular advice and feedback from my
supervisors Dr. Federico Califano and Ir. Riccardo Sneep; their expertise helped me to under-
stand and to grow.

Furthermore, I would like to thank my external committee members Dr. Gwenn Englebienne
and Dr. Elena Mocanu for their time and expertise.

Lastly, I want to thank my family and friends for their advice, love and support during this
process.

<G.H.M. van Rhijn> University of Twente

5

Contents

1 Introduction 1
1.1 Research questions . 1
1.2 Defining optimality . 2
1.3 Structure of the report . 2

2 Optimal control 3
2.1 Techniques . 3
2.2 Applying optimal control to the setup . 4

3 (Physiscal) Experimental setup 5
3.1 Full setup . 5
3.2 Placeholder setup . 6

3.2.1 Controlling axis (q1) . 7
3.2.2 Controlling axis (q2) . 7
3.2.3 Available sensor data . 7

3.3 Digital model placeholder setup . 7

4 Part 1: Reinforcement learning 9
4.1 Introduction . 9
4.2 Background . 9

4.2.1 The reinforcement learning problem . 9
4.2.2 The Markov property . 10
4.2.3 State of the art . 10
4.2.4 Reward function design . 11

4.3 Method . 11
4.3.1 Digital environment model . 13
4.3.2 Reward function design . 13

4.4 Results . 14
4.5 Discussion . 15
4.6 Conclusion . 15

5 Part 2: Fourier decomposition of the trajectory 17
5.1 Introduction . 17
5.2 Background . 18

5.2.1 Action definition . 18
5.2.2 The new optimisation algorithm . 18
5.2.3 Fundamental limitations due to controller design 20

5.3 Method . 21
5.3.1 Experiment 1: Fitting the action to a trajectory shape 21
5.3.2 Experiment 2: Minimising the energy use on a physical setup 22
5.3.3 Experiment 3: Optimising over a ratio . 24

5.4 Results . 26
5.4.1 Fitting the action to a trajectory shape . 26

Robotics and Mechatronics <G.H.M. van Rhijn>

6 Modeling, simulation and control of a setup build to study flapping motion

5.4.2 Minimising the energy use on a physical setup 28
5.4.3 Optimising over a ratio . 30

5.5 Discussion . 32
5.5.1 Fitting to a trajectory shape . 32
5.5.2 Minimising the energy use on a physical setup 32
5.5.3 Optimising over a ratio . 32

5.6 Conclusion . 34
5.6.1 Fitting to a trajectory shape . 34
5.6.2 Minimising the energy use on a physical setup 34
5.6.3 Optimising over a ratio . 34

6 General discussion 35

7 General conclusion 36

8 Future work 37

A Appendix: Extra runs fourier parameter optimisation 38
A.1 Runs with a lower noise scalar . 38
A.2 Runs with a lower policy learning rate . 38
A.3 Runs with higher noise and smaller batch size . 39

B Appendix: Mathematical model setup 40
B.1 The coordinate system . 40
B.2 The I matrix and centre of gravities . 40
B.3 The M matrix . 41

B.3.1 Determining J . 41
B.3.2 Determining Ad 1

0 . 42
B.3.3 Determining Ad 2

0 . 42
B.4 The C matrix . 43
B.5 The G vector . 43

C Appendix: raw data from experiment energy minimisation 44

Bibliography 45

<G.H.M. van Rhijn> University of Twente

1

1 Introduction

After developing a working flapping autonomous drone, the Robotics and Mechatronics (RaM)
research group at the University of Twente (UT) now aims to deepen our understanding of
flapping flight in the form of the Portwings project [6]. Currently the unsteady aerodynamics of
flapping flight are not well understood. The project aims to create a ’much deeper structured
understanding of flapping flight’ through the use of port-Hamiltonian modelling techniques to
model these dynamics, and to do finetuning and verification of these models by way of experi-
ment.

Part of the Portwing’s projects efforts to improve our understanding of flapping flight is the
development of a wind tunnel setup capable of 2 degrees of freedom (DoF) flapping behaviour.
The setup provides real-time feedback through a 6 dimensional force sensor at the base of the
wing.

Each axis of the setup can be actuated independently through the use of two separate electric
motors. A controller is needed to ensure useful, stable flapping behaviour. This report aims
to explore the question how to optimise flapping flight on this setup, either through directly
learning a useful feedback law on the motor torques, or by means of trajectory optimisation in
combination with a state feedback controller.

Currently, there is no known best way to optimise a problem of this type. Therefore, the report
will take on an exploratory character. It will explore and discuss the merits and limitations of
various techniques, both in theory and by way of simulation and experiments.

It is important to note that full understanding of the aerodynamics of flapping flight remains a
unsolved problem and an active field of research; therefore this report will focus on model free
techniques that allow the use of the actual, physical setup for the optimisation.

1.1 Research questions

The main research question designates the focus of this report to be on the optimisation of flap-
ping behaviour; where an optimal flap is considered to: generate desired dynamic effect, and
to do so in an energy efficient manner. This energy efficiency is considered by the researchers
to be a fundamental part of what what it means for a flap to be optimal.

Furthermore, the research question includes the need to take advantage of the physical flap-
ping setup. The motivation behind this being the lack of current understanding of the aerody-
namics of flapping flight, in combination with the unique opportunity to learn from real – not
modelled – dynamics.

Main question:

• How can we optimise a flapping motion in terms of the energy efficient generation of
desired effects, while taking advantage of a physical flapping setup?

The 2 sub-questions refer to 2 possible techniques that could be used to solve the optimisation
problem of the main question. The report is divided into 2 parts, one for each question, with
a unifying discussion and conclusion at the end. The motivation to ask the second question
comes from the research done on the first; which makes it not only advisable to read the two
parts of the report in order, but it also shows the exploratory nature of the project.

Sub questions:

• Can we use continuous reinforcement learning techniques to directly learn a state
feedback policy that solves the optimisation problem?

Robotics and Mechatronics <G.H.M. van Rhijn>

2 Modeling, simulation and control of a setup build to study flapping motion

• Can we repurpose the actor critic architecture from reinforcement learning to opti-
mise over Fourier coefficients representing a flapping trajectory?

1.2 Defining optimality

As indicated by the main research question, the optimality of the flapping behaviour is defined
to be in terms of the energy efficient generation of desired effects. This is mathematically ex-
pressed in terms of a ratio between the quantity of desired effects generated during a flapping
period, and the energy used during that same period:∫

<T> h(t)d t∫
<T> p(t)d t

= H

E
(1.1)

In this equation the desired effects at a point in time are indicated by h(t), while p(t) indicates
the power usage. The expression < T > indicates that the integral is defined over a single period
of the flapping motion, which means that it can only be calculated after the entire period has
finished

An alternative way to quantify the energy efficient generation of effects during a flapping period
would be to use a subtraction where the energy use is subtracted from the desired effects:

αH −βE (1.2)

But the meaning of it is not clear, and the optimum can be easily changed by a linear change of
unit choice. For this reason, the Equation 1.2 is not used, instead the reward solely focuses on
optimising directly over Equation 1.1

1.3 Structure of the report

The report is divided into 2 parts:

The first part (Chapter 4), which refers to the first sub-question and explores the possibility of
using reinforcement learning to solve the optimisation problem. Here problems are identified
that pertain to the sparsity of the reward, and the difficulties of learning flapping behaviour
purely through the experience of a state feedback controller that controls the motor torques of
the setup.

The second part (Chapter 5), which tries to solve the problems identified in the first part
through a redefinition of the policy using the Fourier decomposition of the trajectory, and the
resulting optimisation algorithm. This is a exploration of the second sub-question.

Before the two sub-questions are explored there is a short chapter on the feasibility of using
optimal control to help solve the optimisation problem (Chapter 2). The information from this
chapter is not used in the rest of the report, but it is left in anyway as it fits the exploratory
character of the report.

Additionally there is a chapter describing the setup, a placeholder setup that is used during the
experiments because the final setup was not available yet, and a digital model of the place-
holder setup (Chapter 3).

Finally, Chapter 6 discusses the results of the whole report, Chapter 7 provides an overall con-
clusion, and Chapter 8 gives an overview of different insights and alternative approaches in
literature that could help solve some of the problems encountered in the report. It also pro-
vides the reader with a final conclusion.

<G.H.M. van Rhijn> University of Twente

3

2 Optimal control

Before taking a look at the model free techniques in chapters 4 and 5, this chapter will quickly
discuss the possibility of using optimal control techniques to gain insight into the optimisation
problem. Optimal control techniques are model based. This means that they will require the
use of a dynamic model for optimisation, and cannot take direct advantage of a real setup. The
information in this chapter is not needed to understand the rest of the report as it was decided
not to continue with these techniques. Instead this chapter was kept in as it fits the exploratory
nature of the report, and it could be informative to subsequent research.

2.1 Techniques

Optimal control as a discipline differs from traditional control by attempting to find a (globally)
optimal solution as defined by some cost/reward function. The cost functions used in optimal
control is often expected to be of the form:

J (u) =
∫ T

0
L(x(t),u(t))d t +K (x(T)) (2.1)

Here, the L represents the running cost, which is dependent on the states x(t), and inputs u(t)
from the initial time t = 0 till the final time t = T . The final state of the setup is penalised using
the terminal cost K (x(T)), which is dependent on the final state x(T). Setup states throughout
the trajectory are constrained by the system dynamics, generally expressed as a set of ordinary
differential equations (Equation 2.2), and input limits (Equation 2.3): [24, 9]

ẋ = f (x(t),u(t)), x(0) = x0 (2.2)

u : [0,T] →U (2.3)

Classic optimal control theory makes it possible to find an analytical, guaranteed globally op-
timal solution to a problem [24]; however, results in classical optimal control theory can be
difficult to apply in practice, and the classes of problems that have reliable solution methods
are limited.

Analytical techniques in optimal control include the Euler Lagrange equation and Pontryagins
minimum principle, which try to find an optimum via the use of necessary conditions; and
dynamic programming: effectively running through a problem backwards and keeping track
of the most optimal trajectory from each state till the end point [24].

Instead, numerical methods where devised that aim to take advantage of the results from opti-
mal control theory, but make it easier to find something close to an optimal solution [18, 12, 9].
Numerical methods can try to directly solve the problems mentioned above (indirect methods
and numerical dynamic programming), but what is generally a more successful approach is to
discretize the dynamics and reformulate the problem into a non-linear programming problem
[12, 9]; which can be solved using specialised numerical solvers. This family of approaches is
often referred to as "direct methods", while Euler Lagrange and Pontryagin based methods are
referred to as "indirect methods".

While the non-linear programming and indirect solution methods result in global, state feed-
back solutions to the problem, direct solution methods only provide a single optimal trajectory,
specific to it’s initial conditions.

Robotics and Mechatronics <G.H.M. van Rhijn>

4 Modeling, simulation and control of a setup build to study flapping motion

2.2 Applying optimal control to the setup

When applying these techniques to the optimisation problems in this report, a few limitations
can be identified:

Firstly, optimal control theory is designed to optimise over a known cost function and a known
set of setup dynamics; therefore, the setup dynamics have to be expressed analytically dur-
ing the problem formulation. Flapping wing dynamics are not easily transcribed into simple
mathematical relations, which is one of the reasons the physical setup exists. Optimal con-
trol techniques do not allow us to take direct advantage of the physical setup, and it’s real time
sensor data.

Secondly, the most commonly used optimal control techniques – the direct methods – do not
result in a globally defined solution to the problem, which makes it not straightforward to
translate them to a full control law that is implementable on the real setup.

These difficulties with applying optimal control techniques to the optimisation problem of
this report have lead to the decision to not use them in the experiments. Instead, the focus is
on the use of model free optimisation techniques, see Chapter 4 and 5.

<G.H.M. van Rhijn> University of Twente

5

3 (Physiscal) Experimental setup

3.1 Full setup

This report was started to take advantage of a flapping wing setup currently in development at
the Robotics and Mechatronics (RaM) department of the University of Twente (shown in Figure
3.1). This setup is designed to be used as a research platform for flapping flight. Therefore it is
equipped with advanced sensors and designed to be placed into a wind tunnel. The setup has
2 independently actuated degrees of freedom (DoF) denoted by q1 and q2. (Figure 3.2)

Figure 3.1: Image of the full flapping wing setup with a small red test wing attached.

Each axis is independently connected to electric motors via a cable drive. These cable drives
allow the motors to be placed away from the wing during operation; which is specifically use-
ful for placement of the setup in the windtunnel. They do however introduce elasticity to the
actuation mechanism. The output torques of the motors are the input of the system.

Each motor is directly connected to a rotatory encoder providing angle measurements of the
motor axle. Angle measurement of the wing axle on the other side of the cable drive are not
available. Velocity measurements are not available at all, but could be estimated based on the
position measurements if required.

Measurements from the wing are available through a 6 DoF sensor placed in between the wing
and the rotating axis; providing us with the full wrench from the wing on to the frame. These
measurements together with the position measurements from the rotary encoders, constitute
the full measurable available state information. Other state variables can be estimated from
the available measurements, ex. motor velocity, or are simply unavailable, ex. the infinitely
dimensional aerodynamic states.

Robotics and Mechatronics <G.H.M. van Rhijn>

6 Modeling, simulation and control of a setup build to study flapping motion

Figure 3.2: The q1 (green) and q2 (yellow) rotational axes on the setup.

3.2 Placeholder setup

As of the writing of this report, the full setup is not yet fully functional. Preliminary tests of an
optimisation technique can be done using a digital physics simulation. More comprehensive
validation of the optimisation technique should be done on a physical setup. For that reason a
simpler temporary placeholder setup was constructed (Figure 3.3). This setup is not designed
to be used in a windtunnel.

This placeholder setup was constructed to have the same 2 DoF as the original. A Nema 17
servo motor [1] controls axis q1, and a DFRobot DSS-M15S servo motor [3] controls axis q2.
Both motors are controller by a Mechaduino micro controlled [1].

The wing is a flat sheet of plastic that is 220 cm wide by 200 cm high.

Figure 3.3: Image of the placeholder flapping wing setup surrounded by a protection cardboard cage.

<G.H.M. van Rhijn> University of Twente

CHAPTER 3. (PHYSISCAL) EXPERIMENTAL SETUP 7

3.2.1 Controlling axis (q1)

For the experiments in Chapter 5, both axes of the setup need to be equipped with a controller
that is able to follow the trajectories. Using the opensource code library provided with the
Mechaduino, it is possible to implement a PIDF (F stands for low pass filter) controller on the
Nema stepper motor attached to q1. This library uses the current motor position to estimate
the stepper motor input needed to create the torque that is demanded by the controller.

For the purposes of this setup, operational limits are set to [−180◦,+180◦]. The non-linear ef-
fects of gravity were cancelled out using position information, linearizing the system. The angle
is controlled using of a PIDF controller. The gravity compensation functionality is not native to
the Mechaduino and had to be added manually.

Due to the required conversion between the desired controller torque and the stepper motor
input, the unit of the control value is not clear, nor is it known if it relates linearly to the output
torque of the motor; therefore both the PIDF controller and the gravity compensation where
implemented by inspection.

3.2.2 Controlling axis (q2)

For the experiments in Chapter 5, both axes of the setup need to be equipped with a controller
that is able to follow the trajectories. Controlling q2 using the servo motor is straight forward.
The servo motor has a [−135◦,+135◦] range, allowing it to easily move between a fully open
and fully closed wing position. The servo is installed in such a way that the 0◦ angle is placed
exactly in between the open an closed wing position. Setting the servo angle is done using the
standard Arduino Servo library [5].

3.2.3 Available sensor data

The placeholder setup does not possess a force sensor; instead, the state information is limited
to the motor positions (both q1 and q2), and the output signal of the control algorithm for q1.
Again, this output has no known unit, nor is it known how linear its relation is to the actual
output torque.

To construct the reward function the motor torque of q1 has to be used, as no other data is
available.

3.3 Digital model placeholder setup

To help with testing and evaluation, a digital model of the placeholder setup was created.

The mathematical geometry of the model is discussed in Appendix B. In essence, the setup
is a 2 DoF manipulator with an actuator on each joint. Unlike the full setup, the motors are
attached directly to the joints; therefore, no series elastic actuation was modelled.

Each motor is modelled as a single torque source controlled by a feedback controller. The con-
troller on axis q1 uses a combination of gravity compensation and PID control just like the real
setup. Reward functions are calculated using the output of this controller, again to mimic the
real setup.

The motor controller on q2 is modelled as a PID controller. No gravity compensation is needed
on this axis. The data from this axis is not used for for reward function calculations as no data
from this axis is available from the real placeholder setup.

The inertias of the axis are modelled as homogeneous masses of approximately the same
shape and size of their real life counterparts. The total weight of each intertia is the same as the
real component.

Robotics and Mechatronics <G.H.M. van Rhijn>

8 Modeling, simulation and control of a setup build to study flapping motion

Wing dynamics are not easily modelled and it’s not completely obvious what (aero)dynamic
effects are present on the flat rectangular wing of the placeholder setup. The placeholder setup
is not designed to be used in a windtunnel, which might limit the complicated aerodynamic
effects present at the wing. The same can be said for the simple wing shape (flat plate) and the
lack of flexibility in the wing.

To avoid unsubstantiated guesses about wing dynamics, they where only modelled as a damp-
ing force. The equation used for this is an approximation of the force on a flat plate moving
though the air at a given velocity. Since the velocity of the wing is not the same at every point,
the equation was integrated to work with a given angular velocity. Lastly, the width of the wing
was multiplied by the absolute value of the cosine of q2 to model the effects of the wing angle:

|Fdr ag | = q2
1 ·
ρ ·CD ·q2 ·Wwi ng

2
· |cos(q2)| ·

∫ l

0
r 2 ·dr

= q2
1 ·
ρ ·CD ·q2 ·Wwi ng

6
· |cos(q2)| · l 3

(3.1)

Here ρ represents the air density, CD the drag constant, Wwi ng the width of the wing, and l the
length.

Simulation is done using the Scipy integrate ODE function [4] in a python environment.
This function allows for the numerical integration of ordinary differential equations (ODEs) in
state space form.

<G.H.M. van Rhijn> University of Twente

9

4 Part 1: Reinforcement learning

4.1 Introduction

In this part of the report the feasibility of using reinforcement learning for solving the proposed
optimisation problem will be discussed. First, a summary will be given of the basic reinforce-
ment learning problem definition based on the book by Sutton and Barto [29]. Then, current
literature on using reinforcement learning for unmanned areal vehicle (UAV) control will be
discussed with regards to the optimisation problem of this report. Next, the challenges of de-
signing a reward function will be discussed, and it is proposed that a direct implementation of
the learning algorithm on the problem is unlikely to result in success. This is corroborated by
means of an experiment using the deep deterministic policy gradient algorithm (DDPG). The
discussion will analyse the results of the experiment, and suggest an alternative task definition
which will lead to the optimisation algorithm discussed in part 2 of the report.

4.2 Background

4.2.1 The reinforcement learning problem

Reinforcement learning aims to learn how to interact with an environment in a model free
way [29]. Figure 4.1 shows the basic model for interaction between the agent (the element that
makes decisions and tries to learn from them) and the environment (the element that the agent
interacts with).

Figure 4.1: Basic schematic of the interaction between the reinforcement learning agent and its envi-
ronment.

The agent takes the position of a state feedback controller that controls the environment in
discrete steps. The probability of taking a certain action given a state is called the policy
π(At |St). After each interaction the environment returns a reward and a new state. This leads
to a chronological sequence of states, actions, and rewards: S0, A0,R1,S1, A1,R2, ... (where the
subscripts indicate the discrete time-step).

Optimisation of the policy is done by maximising the expected future reward: Gt = Rt+1 +
γRt+2 +γ2Rt+3 + ..., where 0 ≤ γ ≤ 1 is called the discount rate and represents the balance be-
tween short term and long term gains. Reinforcement learning tasks can be defined to continue
indefinitely (the sequence of states, actions and rewards never ends), at which point γ < 1 to
avoid Gt becoming infinitely large. The tasks can also be defined to be finite (episodic), which
is where the sequence of actions, states, and rewards is stopped at some point, and the decision

Robotics and Mechatronics <G.H.M. van Rhijn>

10 Modeling, simulation and control of a setup build to study flapping motion

process is restarted from some initial position (think for example of a game of chess that ends
after check mate). These finite length decision processes are called episodes.

4.2.2 The Markov property

The reinforcement learning update rules assume it is useful to keep track of a value function per
state/action pair. Underlying this assumption is the idea that the states provided to the agent
are Markov. A state being Markov is defined as the probability of a future state and reward being
only dependent on the current state and action, not on any past states/actions [29, Chapter 3].
This ensures the environment provides the agent with the full information to form an optimal
policy. In reality, this assumption is often not satisfied and exact proofs of convergence are
replaced with empirical conclusions and intuition. This is also the case for the problem of this
report due to the infinite dimensional nature of the flapping wing dynamics involved.

4.2.3 State of the art

Using a reinforcement learning agent as a controller for the physical flapping wing setup re-
quires the algorithm to be able to deal with a continuous state and action space. Currently there
are 4 commonly used reinforcement learning algorithms that are used for continuous control:
TRPO[25], PPO[26], DDPG[22], and SAC[15]: TRPO and PPO can only learn from experience
gained under the current policy (on-policy), which makes them potentially less sample effi-
cient. They are also limited to non-deterministic policies. Nevertheless, research shows them
to be successful at attitude control for UAVs, specifically with training done in a time efficient
simulation environment [20, 10].

On the other hand, DDPG and SAC are off-policy algorithms which allows them to learn from
past experience stored in a replay buffer, making them more sample efficient and arguably
more suitable for training on a physical setup. This idea is also entertained in the conclusion
of [10]. DDPG and SAC also allow for the use of a deterministic policy, which is desirable with
regards to the predictability of the control law, and they are used successfully in the control of
UAVs [16, 30].

DDPG and SAC uses an actor critic architecture for learning a successful policy. As the name
suggests, the actor critic architecture divides the learning algorithm into two parts: the actor,
which represents the map from the current state to an action (for DDPG this is a neural net-
work); and the critic (again a neural net) which estimates the future expected reward given the
current state and the chosen action.

The critic is trained using supervised learning updates. The target values for these updates
have to represent an estimate of the future expected reward given the current state and action.
These can be estimated using the Bellmann equation [22, Chapter 2] [15, Chapter 4.2]; which
can estimate the future expected reward for a state action pair using past experience and the
current critic. Note how the future expected reward changes every-time the policy changes.
This makes the target values for the critic network non-stationary, making the training process
of the critic network less sample efficient and possibly less stable.

The actor is updated by sampling past states, and calculating the gradient of the Q network
output over the network parameters of the actor (π) in those states. This results in a estimate of
the gradient of the expected future reward over actor network parameters. The actor network
can then be updated in the direction of the greater expected future reward. This gradient is
called the policy gradient.

The state of the art in the control of UAVs mostly focuses on the control on quadcopters
or fixed wing aircraft. Here control tends to focus on achieving a given attitude, or following
a given trajectory. Reward function design tends to use the some combination of the error

<G.H.M. van Rhijn> University of Twente

CHAPTER 4. PART 1: REINFORCEMENT LEARNING 11

between the desired attitude/trajectory and the current setup state of the drone, with extra
punishments to encourage smooth controller outputs and energy efficiency. This gives rise
to naturally dense rewards, that allow small improvements in performance to be directly ex-
pressed: desirable qualities for reinforcement learning problems [23] [29, Chapter 17.4]. On
the other hand, the addition of punishments for undesirable effects makes the meaning of a
optimal policy harder to interpret.

No research on the model free optimisation of flapping behaviour was found by the author.
Differences can be identified between optimising quadcopter or fixed wing flight, and flapping
behaviour: firstly the physical setup does not directly represent a full bird in flight, so optimi-
sation cannot be done in terms of trajectory or attitude control. Instead optimisation has to
focus on the generation of specific aerodynamic effects that can be generated in a wind tunnel.
These effects, if well chosen, could then be used to obtain actual flapping flight. Secondly, flap-
ping flight is inherently periodic and not constant in its generation of effects, and requires the
prioritisation of long term rewards over short term rewards. When the reward is expressed in
terms of the sparsely defined ratio discussed in Section 1.2, both the need for periodicity and
the need for prioritisation of long term effects is not directly communicated to the reinforce-
ment learning agent.

4.2.4 Reward function design

In [23] and [29, Chapter 3.2 and 17.4] reward function design for reinforcement learning agents
is discussed. [29, Chapter 3.2] describes the primary purpose of the reward function as describ-
ing what the engineer wants the reinforcement learning agent to achieve. In this respect the
ratio function discussed in 1.2 looks to be well defined. However, the existence of this reward
function is very sparse; it only exists after finishing a full flapping motion. Reward sparsity is
identified as a problem for learning complex tasks [23] and [29, Chapter 17.4]. A sparsely re-
turned reward can cause problems with convergence or unexpected behaviour of the actor.
Furthermore, for the ratio reward discussed in Section 1.2 the return of a reward is not guaran-
teed and dependent on the behaviour of the algorithm – if the policy is unstable for example,
no reward will ever be returned. This can cause what [29, Chapter 17.4] refers to as the "plateau
problem", where the reinforcement learning agent has periods of training time where its be-
haviour does not lead to any reward.

One solution to the plateau problem – and a way to reduce reward sparsity in general – is to
add extra rewards that are supposed to guide the learning algorithm to the optimal policy, with-
out actually affecting the definition of the optimal policy, but all the while providing a useful
heuristic to the learning algorithm to help with convergence. In our case, this is done by the
way of returning negative rewards (punishments) whenever the policy does not produce a full
flapping motion, as described in Section 4.3.2.

4.3 Method

This experiment aims to test the feasibility of training a continuous reinforcement learning
agent as a torque feedback law, using the ratio reward function as described in 1.2. The ex-
periment uses the standard DDPG algorithm for learning. The torque output of the motors
are defined to be the output of the DDPG agent. In turn, the current position and velocity of
the setup are the input of the agent. This gives the DDPG agent the role of a state feedback
controller, see Figure 4.2.

Robotics and Mechatronics <G.H.M. van Rhijn>

12 Modeling, simulation and control of a setup build to study flapping motion

Figure 4.2: The learning scheme of the DDPG algorithm in this experiment. The actor acts as a state
feedback controller and the critic provides the policy gradient for learning.

In this experiment, training will be done on a digital dynamic model. The wing- and aerody-
namics are not modelled (details in Section 3.3). The reason for this is twofold: Designing an
accurate, and reasonably fast running, aerodynamic model of a flapping wing is not feasible,
and testing the effects of these dynamics on the Reinforcement learning algorithm is not the
point of this experiment. Instead the point is to test the reward function.

The hyperparameters for the DDPG algorithm are mimicked from the recommendations
in the original paper [22] (see Table 4.1). The task is defined episodic, and each episode is
ended after a random amount of time (varies linearly between 1 and 10 seconds) to prevent
the policy from adapting to a specific end time. The experiment is ran for 100,000 timesteps of
0.02 seconds each. Based on the results in the original DDPG paper, we would expect this to be
enough timesteps for improvement to show.

Parameter Value Parameter Value
Mass pendulum (kg) 1.0 Learning rate critic 1e-3
Length pendulum (m) 1.0 Learning rate policy 1e-4
Max torque (Nm) 20 Discount rate 0.99
Initial q1 (rad) 0 Batch size 64
Step size (s) 0.02 target network update rate 0.001
episode lenght (s) 1-10 theta noise 0.15
total number of steps 100,000 sigma noise 0.2
amplitude treshhold (rad) 0.1 scale noise 3

Layer sizes critic 400, 300
Layer sizes actor 400, 300

Table 4.1: Model- and hyperparameters of the experiment. The hyperparameters are based upon the
recommendations in the original DDPG paper [22].

<G.H.M. van Rhijn> University of Twente

CHAPTER 4. PART 1: REINFORCEMENT LEARNING 13

4.3.1 Digital environment model

The point of this experiment is to test the feasibility of training the reinforcement learning agent
using the ratio reward function; therefore the aerodynamic effects of the wing are left out of
the digital model. This removes the effects of axis q2. Therefore this axis is removed from the
model. This results in a 1 DoF pendulum model, see Figure 4.3. The mass of the system is
represented as a point mass at the end of the pendulum arm.

Figure 4.3: Geometry of the pendulum model. Setup mass is modelled as a point mass (M). The stable
equilibrium point is at q1 = 0.

Although this model is greatly simplified from the real setup and misses some fundamental
dynamics, it contains all the functionality necessary to test the reward function.

While the dynamic effects of the wing are not included in the dynamics model, It is still
necessary to define a heuristic for the numerator of the reward function. This is done by in-
tegrating the cube of the angular velocity of q1, multiplied by its original sign. This does not
represent any real thrust or lift values but – intuitively – it encourages a wing flap with a fast
stroke in the positive direction and a slow stroke in the negative direction, creating a clear
optimal policy to work towards and making any final policy easier to interpret.

The energy use is computed by integrating over the input power; which is defined as the angular
velocity times the input torque. Since there is no way to recuperate energy on the current setup,
the power is defined to always be equal or greater than zero.

Practically, the physics are simulated in Python using the Scipy ODE integrator [4]. This library
allows the integration of ODEs in state space form. The policy is called at 50hz. For the full list
of DDPG hyper-parameters and model constants, see Table 4.1

4.3.2 Reward function design

Whenever the policy completes a swinging motion with an amplitude of at least 0.1 radian
away from the stable equilibrium point (also the starting point of an episode), a reward is
returned that is proportional to the ’heuristic’ over energy. (as mentioned in Section 4.3.1 the
heuristic is defined as the integral of the cube of q̇1 multiplied by its original sign). For every
timestep where no flapping period is completed, the reward remains 0. In order to avoid unsta-
ble policies, a reward (punishment) of −10 is returned for every timestep where the pendulum
is more than half a rotation away from the stable equilibrium; this is the out of bounds (OoB)
punishment.

Robotics and Mechatronics <G.H.M. van Rhijn>

14 Modeling, simulation and control of a setup build to study flapping motion

Some form of guiding punishment is useful to guide the learning algorithm to the set of
policies that the ratio is defined over, thus preventing the ’plateau problem’. This section pro-
poses two different ways of defining such a reward (Figure 4.4); both of which will be tested in
the experiment.

One where a punishment (negative reward) is given at the end of an episode. This punishment
is the absolute value of the distance that the trajectory missed the threshold with (set to 0.1
rad for this experiment). If the policy produces a reward during the episode no punishment is
given, so the punishment should not interfere with the optimal policy in any way. (Figure 4.4a)

The second punishment design is given during the episode, in the form of a negative reward
in every timestep where the threshold has not been reached yet. To avoid overly large punish-
ments – and thus large interferences with the optimal policy – it is defined as 0.01 times the
current distance from the non-reached threshold. (Figure 4.4b)

(a) Illustration of giving a punishment at the end of each
unsuccessful episode. The red curly bracket indicates
the magnitude of the punishment, which is only given
when the episode ends.

(b) Illustration of giving a punishment during each
timestep where the thresholds have not been reached.
The red regions indicate the timesteps where a punish-
ment would be given for not yet reaching that specific
threshold. The green stars indicate the points where the
normal reward is returned (end of one flapping period).

Figure 4.4: The two different punishment designs.

4.4 Results

Figure 4.5 shows the total reward after each training episode for the full training process. Train-
ing was done for 100,000 timesteps, with 50 timesteps per second, and between 1 and 10 sec-
onds per episode.

Negative total rewards can be the result of: the OoB punishments, the ’guiding’ punishment
that is supposed to encourage periodicity of the trajecotry, or a negative numerator of the re-
ward ratio.

Positive total rewards are the results of a positive numerator of the reward ratio, also indicating
that the trajectory manages to finish a full flap at least once.

(a) Giving a punishment at the end of each unsuccessful
episode. Zoomed in graphs of the rewards per episode.

(b) Giving a punishment during each timestep where the
thresholds have not been reached. Zoomed in graphs of
the rewards per episode.

Figure 4.5: Zoomed in graph of the rewards per episode for both punishment designs.

<G.H.M. van Rhijn> University of Twente

CHAPTER 4. PART 1: REINFORCEMENT LEARNING 15

4.5 Discussion

None of the punishment designs discussed in Section 4.3.2 results in a stable increase of the
rewards per episode. In graph 4.5b ("punishment per timestep") performance starts out well
with a big peak, but degrades over time. The "punishment at the end of the episode approach"
(4.5a) barely shows any positive rewards at all.

For both punishment designs, the final episode does not obtain a periodic movement pro-
ducing final policy, as visible by the negative rewards in the last episodes of the performance
graphs.

It is possible that an increase in training time is needed to realise an improvement in per-
formance; specifically considering the sparsity of the reward function (even for periodic
motions, rewards are only returned sporadically). Currently training takes about half an hour,
so a significant increase in training steps would be possible, and would have improved the
interpretability of the results. The original DDPG paper runs its experiments for 1 million
steps.

All experiments in the DDPG paper [22] do show that a clear improvement should generally be
visible after 100,000 time steps, which was the original motivation for capping the training time
to this number. The plots in Figure 4.5 show no such improvement. In fact, plot 4.5b shows
a decrease in performance over time. So it seems unlikely that the policy would improve with
more timesteps.

The 50hz control frequency was deemed high enough to allow for a stable control law on
the pendulum; specifically because of the stable nature of the pendulum dynamics. The learn-
ing performance shows some positive rewards corresponding to stable control laws, indicating
that this is indeed the case. But, no experiments where run to test the influence of this control
frequency. Further experiments could have provided extra insight.

The learning algorithm is tasked to simultaneously learn a control law and a periodic tra-
jectory, while also generating desired aerodynamic effects. This combination of tasks is not
often seen in successful literature, and could very well be part of the reason why performance
is bad; especially when one considers that a big part of controller design is stability guarantees
– rewards for which are not directly encoded in the reward function – and that the rewards are
very sparse. The punishments are designed to help with this by preventing the plateau prob-
lem, reducing reward sparsity, and introducing more specific rewards to encourage periodic
trajectories; but convergence is clearly still difficult.

4.6 Conclusion

This experiment implemented a DDPG agent directly on the motor torques of a simple pendu-
lum setup, with the aim of learning a periodic motion that optimises desired effects over energy.
The DDPG algorithm was not able to successfully converge to a stable policy. It could be that
hyperparameter choices or lack of training time are the reason for this lack of performance.
However, the experiments in the original DDPG paper show that these parameter choices are
successful for solving other reinforcement learning problems.

A bigger problem seems to be the fundamental complexity of the optimisation task, in combi-
nation with the sparse rewards. Even with the punishments to guide the algorithm, the reward
ratio still has to convey a lot of information about the very low level policy with very few re-
wards.

Robotics and Mechatronics <G.H.M. van Rhijn>

16 Modeling, simulation and control of a setup build to study flapping motion

The next chapter of this report tries to solve these problems directly by simplifying the task that
the agent has to learn. More specifically, it redesigns the task definition in such a way that the
agent isn’t responsible for ensuring the stability and periodicity of the policy.

<G.H.M. van Rhijn> University of Twente

17

5 Part 2: Fourier decomposition of the trajectory

5.1 Introduction

Part 1 of the report explored the possibility of using reinforcement learning for the optimisa-
tion of a flapping policy. Difficulties were identified with the sparsity of the ratio function in
combination with reinforcement learning. Furthermore, it was speculated that the need for
the policy to both act as a stable torque feedback controller, and generate periodic trajectories,
all while producing the desired dynamic effects, resulted in a very difficult to optimise over task
definition for the reinforcement learning agent.

This led to a reevaluation of the policy definition, with the goal to reduce the complexity of the
task for the reinforcement learning agent. This new policy should: separate trajectory design
from controller design, naturally encode the need for periodicity, and reduce the problem of
reward sparsity.

Periodicity of the trajectory can naturally be enforced by defining the action in terms of the
Fourier decomposition of the trajectory. Using this definition a single action will define the
entire flapping behaviour of the agent, the agent will not act as a state feedback controller
anymore. Instead, the state feedback controller will become part of the plant. The controller
will be engineered by a human to be able to follow the demands of the trajectories that are
generated by the learning algorithm. This action definition separates the trajectory design
from the controller design in a way that naturally constrains the trajectories to be periodic. It
completely removes the need for the agent to worry about stability, albeit at the cost of not
being able to optimise the controller behaviour for the task. It also removes the problem of
reward sparsity by defining the entire trajectory in terms of a single action; therefore ensuring
the return of a reward after each action. Of course, in the process of doing this the problem
is removed from the realm of reinforcement learning – where subsequent actions are able to
affect each other – and into the realm of a conceptually simpler black box parameter optimisa-
tion problem.

In this chapter 3, separate experiments will be carried out: the first experiment uses the
trajectory to optimise purely over the trajectory shape, no dynamics involved; the second
experiment aims to test the ability of the algorithm to optimise over real setup dynamics, and
does so by asking it to minimise the energy usage of the flapping policy; the third experiment
actually attempts to optimise over a ratio that represent the energy efficiency of a flap. The
details of experiments can be found in the method section of this chapter (5.3).

Robotics and Mechatronics <G.H.M. van Rhijn>

18 Modeling, simulation and control of a setup build to study flapping motion

5.2 Background

5.2.1 Action definition

As mentioned, the action will be defined in terms of the Fourier series decomposition of a pe-
riodic trajectory [27, Chapter 4]:

x(t) =
∞∑

n=−∞
cn exp(i

2nπt

T
); x ∈C (5.1)

Here cn represents the Fourier coefficients of the periodic function x(t), T is the fundamental
period of x(t), and i is the imaginary unit. The Dirichlet conditions tell us that any feasible
periodic trajectory could be represented in such a way.

For real valued periodic signals Equation 5.1 can be simplified to Equation:

x(t) = a0 +
∞∑

n=1

[
an cos(

2nπt

T
)+bn sin(

2nπt

T
)

]
; x, an ,bn ∈R (5.2)

Here an and bn are real valued scalars.

A trajectory on the flapping setup is defined as a real valued periodic signal that represents the
angles of each of the DoFs over time:

q(t) =
[

q1(t)
q2(t)

]
∈R2; where: q(t) = q(t +kT), k = 1,2, ... (5.3)

This way the full flapping trajectory on the 2 DoF setup can be approximated using:

q j (t) = a j ,0 +
m j∑

n=1

[
a j ,n cos(

2nπt

T
)+b j ,n sin(

2nπt

T
)

]
(5.4)

Here j indicates the axis. Note how the period T is not dependent on J , this ensures that the
trajectories on both axes have the same period. Each axis is approximated using a finite number
of coefficients m j .

The action is defined in terms of the fundamental frequency of the flapping motion, and the
separate an and bn coefficients for each axis:

a = [
a1,0 a1,1 b1,1 ... a2,0 a2,1 b2,1 ... f

]T

|a1,n |, |b1,n | ≤ max1

|a2,n |, |b2,n | ≤ max2

fmi n ≤ f ≤ fmax

(5.5)

Each of the values in the action is bounded to a desired range.

5.2.2 The new optimisation algorithm

Using this definition, a single action defines the total flapping behaviour of the agent. Therefore
the actor is not defined by a policy anymore; there is no map from state to action anymore.
Instead, the actor becomes the unconnected vector of parameters defined by Equation 5.5.

The state feedback behaviour will be provided by the motor controller, which follows the tra-
jectory defined by the Fourier coefficients which are provided by the action, see Figure 5.1.

<G.H.M. van Rhijn> University of Twente

CHAPTER 5. PART 2: FOURIER DECOMPOSITION OF THE TRAJECTORY 19

Figure 5.1: New learning scheme.

Changing the task definition ins this way fundamentally changes the definition of the actor and
the critic.

The actor used to be a map from a state to a reward. Because a single action now defines the
whole trajectory – and thus the whole flapping behaviour – the idea of a state is not relevant
anymore. So the definition of the actor is changed from a map from state to action, to a vector
of parameters that define the action and therefore also the trajectory (Equation 5.5). The actor
is still updated using a gradient, which will still be estimated using the critic.

The critic used to be an estimate of the map between state and action, and expected future
reward. It has now become a map from action to reward:

Former critic: C : st , at → Jt ;

Current critic: C : a → r
(5.6)

Symbols s, a, and r represent the state, action, and reward respectively, and J represents the
future expected reward.

The reason for this change is the fact that a single action now defines the full flapping be-
haviour. So the idea of a state that influences the choice of action becomes irrelevant. For the
same reason, the idea of a future expected reward becomes irrelevant; there is no sequence of
states, actions, and rewards that can influence each other. So our critic stops having to estimate
a total future expected reward, and can instead predict a single reward given an action.

Therefore the critic network update targets do not have to be determined by the Bellman equa-
tion anymore. So the received reward can be used directly as a target to train the critic network.
Due to the lack of future action choices affecting the results from the current action choice, the
learning process of the Q network becomes stationary, and theoretically much more stable.

The critic is still used to estimate the gradient that is used to update the actor. But the gradient
calculation can be greatly simplified:

∇ar ≈ E[∇θµQ(a|θµ)∇θa a
]

(5.7)

In this equation θµ represents the parameter vector of the Q network (neural network repre-
senting the critic), and θa represents the parameters of the action.

Robotics and Mechatronics <G.H.M. van Rhijn>

20 Modeling, simulation and control of a setup build to study flapping motion

The final algorithm becomes a much simplified version of the actor-critic algorithm used be-
fore (DDPG [22]). The Q function is still represented by a neural network of the same basic
design as in [22], but with the extra input for the state removed. The actor is represented by a
single layer neural network with a constant input. This way, the build in Adam implementa-
tion of Pytorch [2] can be used to optimise the parameters. The outputs of the actor network
are filtered through a tanh layer and multiplied by the maximum values for each coefficient, as
defined in Equation 5.5. Pseudocode for the lagorithm can be found in Algorithm 1.

Algorithm 1 Actor-critic optimisation algorithm for Fourier coefficients.

Randomly initialise critic network Q(a|θQ)
Randomly initialise actor network µ(s|θµ).
initialise replay buffer R
while epi sode ≤ max_epi sodes do

select action with noise: a =µ(s|θµ)+N
execute action and observe reward: r
store the state action and reward (s, a,r) in R

randomly select training batch B from R
Update Q(a|θQ) by minimising MSE between its prediction and the rB

Update µ(a|θµ) using ∇θµ J ≈ 1
N

∑N
i [∇aQ(a|θQ)|a=µ(1|θµ)∇θµµ(s|θµ)|s=1]

end while

5.2.3 Fundamental limitations due to controller design

The research in [7], [11], And [13] discus the effects of controller design on plant dynamics and
the cancelling effect feedback control has on compliance in a system. They suggest a heavy
reliance of biological systems on feed-forward control to maintain the desired compliance of
their actuators. For example, the ability of a human to carefully and precisely lift a heavy object.

It is suggested that this feed-forward behaviour is constantly adjusted to the environment and
to the task. Intuitively, one would expect a bird to do the same during flight: constantly ad-
justing its control strategy to the current environmental conditions to achieve optimal perfor-
mance. This suggests that controller design, including the balance between feedback and feed-
forward, is an important part of optimising a flapping policy. In the current learning structure
the actor is not able to adjust the controller; this limits the optimisation to the given controller
which is in no way guaranteed to be optimal for flapping flight. The flexibility of the wing will
of course not be altered by the controller design. Therefore the optimal policy should still be
able to take advantage of some of the effects caused by flexibility.

<G.H.M. van Rhijn> University of Twente

CHAPTER 5. PART 2: FOURIER DECOMPOSITION OF THE TRAJECTORY 21

5.3 Method

This section outlines the method of three separate experiments: the first experiment uses the
trajectory to optimise purely over the trajectory shape, no dynamics involved (5.3.1); the sec-
ond experiment aims to test the ability of the algorithm to optimise over real setup dynamics,
and does so by asking it to minimise the energy usage of the flapping policy (5.3.2); the third
experiment actually attempts to optimise over a ratio that represent the energy efficiency of a
flap (5.3.3).

Unfortunately, the real setup was not yet usable at the time of the experiments; therefore a
placeholder setup had to be constructed (Section 3.2). This placeholder setup has no dedicated
force sensor, so the data that is available for evaluation is limited to the control value of the
build in position controller.

In addition, a simplified digital model of the placeholder setup was made. This model has the
same geometry, and in- and outputs as the real setup; but with a simple aerodynamics model
(Section 3.3).

5.3.1 Experiment 1: Fitting the action to a trajectory shape

This experiment aims to test the ability of the actor critic architecture to optimise the parame-
ters of the action to approximate a known periodic shape; specifically a square wave is used as
the target function. This is the first test to test the validity of the algorithm discussed in Section
5.2.2.

The optimisation algorithm is as described in section 5.2.2. The trajectory that is generated by
the policy is optimised directly over the shape of the goal trajectory; so no setup dynamics are
taken into account. The algorithm is given full control over all parameters of the action, except
for the fundamental frequency: separate experiments are done with and without the funda-
mental frequency being a changeable parameter. The maximum values of each parameter can
be found in Table 5.1.

Parameter Value Parameter Value
Learning rate critic 1e-2 Layer sizes Q 300, 500, 300
Learning rate policy 5e-3 amplitude limits coefficients 85 degrees
Batch size 512 amplitude limit DC coefficient 85 degrees
Buffer Size 1,500 number of coefficients 5
number of episodes 1,500
number of random policies 500

Table 5.1: Hyperparameter values of the optimisation algorithm.

The reward function is defined as the energy of the difference between the square wave signal
and the current trajectory (Equation 5.8), which should always be minimised by the correct
Fourier coefficients of a signal, given the set of orthogonal basis functions [27, Chaper 3.2].
As the basis functions of a Fourier decomposition of a periodic trajectory wouldn’t be defined
without the fundamental frequency, this frequency is set to be a constant value instead of being
chosen by the learning agent; however, since we are interested in evaluating the algorithm’s
ability to optimise over all parameters of the action, additional experiments are done with the
fundamental frequency as a changeable action parameter.

reward =−
∫
<TS>

|S(t)−P (t)|2d t (5.8)

Robotics and Mechatronics <G.H.M. van Rhijn>

22 Modeling, simulation and control of a setup build to study flapping motion

In Equation 5.8 S(t) represents the square wave, P (t) the trajectory determined by the policy,
and the symbol < TS > indicates that the integral is over a single period of the square wave (the
region we want to approximate).

5.3.2 Experiment 2: Minimising the energy use on a physical setup

This section aims to explore the feasibility the Fourier parameter based optimisation approach
by optimising over a reward function that is derived from setup dynamics. Tests will be done
on the real placeholder setup and on the simulated placeholder setup.

The reward function

The goal of these experiments is to test the ability of the algorithm to optimise over a reward
function that’s defined on the sensor data of a real setup; that way, the rewards will be influ-
enced by the full setup dynamics, including but not limited to: the trajectory determined by
the actor, the controller dynamics, the physical behaviour of the setup, sensor noise etc.

Because these experiments are meant to be a proof of concept of training the policy on the real
setup – and not a full solution to the optimisation problem – the reward function is defined in a
uncomplicated way: the negative value of the total energy consumed by the system during one
period.

Sensor data on the available setup is limited to the desired torque output of the controller on
axis q1; therefore, no direct energy measurement is available on the real setup, see discussion
in section 3.2.3. Instead power consumption is estimated using the absolute value of the afore-
mentioned control value. This value is then numerically integrated using a simple Riemann
sum to get an very rough estimate of the total energy usage over one period.

This energy estimate does not aim to be an accurate estimate of the real energy usage of the
setup, although it does seem reasonable to suggest that it is in some way proportional to the
real energy usage. Instead it represents a simple reward function, that is based on real setup dy-
namics, and results in a predictable optimal policy: a policy with as little movement as possible.
In other words, a policy with it’s amplitudes approaching 0 as training progresses.

The learning scheme

For this experiment the simplified actor-critic algorithm discussed in Section 5.2.2 is used.

The DC coefficient of axis q1 is set to zero to force the trajectory to always centre around
the stable equilibrium, the other limits are set to be reasonable with respect to the physiscal
limits of the setup, see Table 5.3.

The size, hyperparameters, and optimiser of the algorithm are based on the recommenda-
tions in the DDPG paper [22]. Since each timestep requires the setup to perform en entire
flapping episode, the time needed per timestep is quite large; therefore the network is only
trained for 1300 episodes. This takes about 4 to 5 hours of training time on the real setup,
which most of which is taken up by the execution time of the policy. Which is a convenient
amount of time, as it takes up a single morning/afternoon (specifically because the setup had
to be supervised during execution for safety reasons). The learning rates and batch size are
increased to accommodate the decrease in the number of steps. This is possible due to the
simplified nature of the problem compared to full reinforcement learning.

Lastly, the training process is started with five hundred randomly generated actions. These
actions are used for the initial exploration and training of the critic network. Preliminary tests
have shown it improves convergence on this problem.

<G.H.M. van Rhijn> University of Twente

CHAPTER 5. PART 2: FOURIER DECOMPOSITION OF THE TRAJECTORY 23

Parameter Value Parameter Value
Learning rate critic 1e-2 Layer sizes Q 400, 300, 300
Learning rate policy 5e-3 amplitude limits coefficients q1 90 degrees
Batch size 1,000 amplitude limits coefficients q2 20 degrees
Buffer Size 5,000 amplitude limit DC coefficient

q1

0 degrees

number of episodes 1,300 amplitude limit DC coefficient
q2

20 degrees

number of random policies 500 number of coefficients q1 7
minimum punishment (simula-
tion/ real)

70/ 70 number of coefficients q2 7

punishment scalar (simulation/
real)

4/ 10

reward scalar (simulation/ real) 5/ 1
noise scalar (multiplied by out-
put limits)

0.3

Table 5.2: Hyperparameter values of the optimisation algorithm.

As mentioned, each timestep is now defined as a full episode. Here an episode should be at
least a full flapping period to allow to proper calculation of the reward ratio. To prevent the
inclusion of transient effects, both the setup and the simulation are run with half a period head
start before storing reward data; thus requiring 1.5 period to be executed per episode.

Out of bounds punishments

To protect the setup from physical harm, there is a limit to the maximum amplitude that the
trajectory can take. This limit is set to 180 degrees away from the equilibrium for q1 and 90
degrees away from the 0 degree point of q2. (0 degrees on q2 is defined as the point in between
a fully opened and a fully closed wing angle).

Punishments are given for Out of Bounds (OoB) trajectories; furthermore, OoB trajectories are
not executed and evaluated to prevent damage to the setup. The punishment consists of a
proportional and constant part. For the proportional part (Figure 5.2), the number of degrees
that a trajectory is out of bounds is multiplied by the punishment scalar and subtracted from
the reward (which is always 0 since the trajectory won’t be executed if a boundary is crossed).
This makes the punishments proportional to the violation, providing a gradient for the learning
algorithm to follow.

To avoid the creation of new minima at the border between valid and invalid trajectories, a
constant term is added to the punishment. More specifically, in this experiment the theoretical
maximum reward is 0 for a trajectory with no energy consumption. Additionally, if no constant
punishment was added to the proportional part, the theoretical minimum punishment would
be arbitrarily close to 0 (for a arbitrarily small violation of the setup limits); in other words arbi-
trarily close to the theoretical optimal reward. This could result in the optimisation algorithm
moving towards the "wrong" optimum; namely one created by the OoB punishment design and
not by the value function we are actually interested in.

Robotics and Mechatronics <G.H.M. van Rhijn>

24 Modeling, simulation and control of a setup build to study flapping motion

Figure 5.2: Illustration of the proportional element of the OoB punishments on q1.

5.3.3 Experiment 3: Optimising over a ratio

Experiment tests the capability of the algorithm to optimise over actual setup dynamics us-
ing a simple reward function. This section aims to explore the optimisation of the parameters
over a ratio; where the denominator represents some energy measurement and the numerator
represents a goal or heuristic that we want to maximise as energy-efficiently as possible.

In this experiment multiple runs will be done: first with similar maximum Fourier coefficient
values as in the energy minimisation experiment (I), and a second set of runs with the max-
imum values reduced (II). The purpose of this second set of experiments is to evaluate the
learning performance without running out of bounds, thus avoiding the punishments.

No experiments are done on the physical setup due to unsatisfactory results when training
on the digital setup (see coming sections); instead it was opted to do more experiments in
simulation with the goal to create more insight into the lack of performance.

The reward function and out of bounds punishments

Just as in the energy minimisation experiment, the reward function design is severely limited
by the lack of sensor data available on the setup. The numerator of the reward function ratio
will be defined in terms of a integral over the controller output of axis q1; thus the numerator
will be directional, promoting torque output in one direction and discouraging it in the other.
The aim of this is to promote a non-symmetrical flapping motion.

The denominator will be defined in terms of an energy estimate. In this case, the square of the
controller output was used. This makes for an non-directional value that scales differently to
the numerator, and should theoretically scale up as energy usage increases.

r ew ar d =
∫

T u ·d t∫
T u2 ·d t

(5.9)

Equation 5.9 shows the reward function for this experiment. Here, u represents the controller
output of q1 and T represents one period of the flapping trajectory.

<G.H.M. van Rhijn> University of Twente

CHAPTER 5. PART 2: FOURIER DECOMPOSITION OF THE TRAJECTORY 25

Punishments given for out of bound (OoB) trajectories are defined in the same way as in
the energy minimisation experiment (Section 5.3.2): a combination of a linear part to provide
a gradient for the algorithm to follow, and a constant part to prevent the formation of local op-
tima. Unlike in the energy minimisation experiment, the maximum reward in this experiment
can exceed 0. The optimum policy, and its accompanying maximum reward, are unknown.

Hyperparameter values

Hyperparameter values are largely the same as in the energy minimisation experiment (Section
5.3.2). The reward value scalar is set to 3 in order to increase the rewards size to a reasonable
range (between -1 and 1). This range is smaller than in the energy minimisation experiment.
To compensate for the smaller magnitude of the policy gradient as a result, the policy learning
rate is increased.

The number of coefficients per axis is decreased from 7 to 4. This creates a lower dimensional
parameter space to optimise over.

Parameter Value Parameter Value
Learning rate critic 1e-2 Layer sizes Q 400, 300, 300
Learning rate policy 1.5e-1 amplitude limits coefficients q1

(I/II)
90/40 degrees

Batch size 1,000 amplitude limits coefficients q2

(I/II)
20/40 degrees

Buffer Size 6,000 amplitude limit DC coefficient
q1

0 degrees

number of episodes 6,000 amplitude limit DC coefficient
q2

20 degrees

number of random policies 500 maximum frequency 1hz
minimum punishment (simu-
lation)

1 minimum frequency 0.25hz

punishment scalar (simula-
tion/ real)

0.0025 number of coefficients q1 4

reward scalar (simulation/ real) 3 number of coefficients q2 4
noise scalar (multiplied by out-
put limits)

0.3

Table 5.3: Hyperparameter values of the optimisation algorithm.

Robotics and Mechatronics <G.H.M. van Rhijn>

26 Modeling, simulation and control of a setup build to study flapping motion

5.4 Results

5.4.1 Fitting the action to a trajectory shape

This section shows the results of the experiments that aim to fit the trajectory to a square wave.
The first part shows the results of the experiment with a constant fundamental frequency; the
second part shows the results with the fundamental frequency as part of the action.

Results with a constant fundamental frequency

Figure 5.3 shows the rewards during training for the experiment with a constant (non-
changeable by the agent) fundamental frequency. Figure 5.3a shows the original data, and
Figure 5.3b shows the data filtered using a low pass filter to uncover a general trend line.

(a) Rewards during training.
(b) Rewards during training; filtered using uniform con-
volution of 30 samples wide.

Figure 5.3: The rewards during the training episode.

Figure 5.4 shows the trajectory generated by the learning algorithm in red, and the square wave
it is trying to approximate in green. The blue area indicates the exact region over which the
reward in Equation 5.8 is calculated. Figure 5.4a shows the best trajectory that was achieved
during the entire training session, Figure 5.4b shows the last trajectory achieved during train-
ing.

(a) Best action. (b) Last action.

Figure 5.4: The best and last action compared to the square wave. Reward is calculated for 0 ≤ t ≤ 2π
(blue area).

Results with a changeable fundamental frequency

Evaluation over a single period:

<G.H.M. van Rhijn> University of Twente

CHAPTER 5. PART 2: FOURIER DECOMPOSITION OF THE TRAJECTORY 27

Figure 5.5 shows the rewards during training for the experiment with a non-constant funda-
mental frequency (the agent determines the frequency of the trajectory). Figure 5.5a shows the
original data, and Figure 5.5b shows the data filtered using a low pass filter to uncover a general
trend line. Simulation time was increased of 6000 to get the reasonable performance.

(a) Rewards during training.
(b) Rewards during training; filtered using uniform con-
volution of 30 samples wide.

Figure 5.5: The rewards during the training episode. The fundamental frequency is set by the actor. The
reward is calculated for 0 ≤ t ≤ 2π.

Figure 5.6 shows the trajectory generated by the learning algorithm in red, and the square wave
it is trying to approximate in green. The blue area indicates the exact region over which the
reward in Equation 5.8 is calculated. Figure 5.4a shows the best trajectory that was achieved
during the entire training session, Figure 5.4b shows the last trajectory achieved during train-
ing. The approximation is close within the region that is used to calculate the reward, but inac-
curate outside. The fundamental frequency does not match the frequency of the square wave
at all.

(a) Best action. (b) Last action.

Figure 5.6: The best and last action compared to the square wave. The fundamental frequency is set by
the actor. The reward is calculated for 0 ≤ t ≤ 2π (blue area).

Evaluation over two periods:
Figure 5.7 shows the rewards during training for the experiment with a non-constant funda-
mental frequency (the agent determines the frequency of the trajectory), but with a larger re-
gion over which the reward is calculated (2 periods: −2π≤ t ≤ 2π) to encourage correct period-
icity of the action. Figure 5.7a shows the original data, and Figure 5.7b shows the data filtered
using a low pass filter to uncover a general trend line.

Robotics and Mechatronics <G.H.M. van Rhijn>

28 Modeling, simulation and control of a setup build to study flapping motion

(a) Rewards during training.
(b) Rewards during training; filtered using uniform con-
volution of 30 samples wide.

Figure 5.7: The rewards during the training episode. The fundamental frequency is set by the actor. The
reward is calculated for −2π≤ t ≤ 2π.

Figure 5.8 shows the trajectory generated by the learning algorithm in red, and the square wave
it is trying to approximate in green. The blue area indicates the exact region over which the
reward in Equation 5.8 is calculated. Figure 5.8a shows the best trajectory that was achieved
during the entire training session, Figure 5.8b shows the last trajectory achieved during train-
ing.

(a) Best action. (b) Last action.

Figure 5.8: The best and last action compared to the square wave. The fundamental frequency is set by
the actor. The reward is calculated for −2π≤ t ≤ 2π (blue area).

5.4.2 Minimising the energy use on a physical setup

Running the optimisation algorithm three times results in the reward function progression seen
in Figure 5.9. There is a difference between the magnitude of the reward values in simulation
and on the real setup. This was partly fixed by using a constant reward scalar.

<G.H.M. van Rhijn> University of Twente

CHAPTER 5. PART 2: FOURIER DECOMPOSITION OF THE TRAJECTORY 29

(a) Digital setup. (b) Real setup.

Figure 5.9: Reward function during training on both real and simulated setup – 3 runs each. Yellow area
is where the policy is completely randomised. (Filtered using uniform convolution of 30 samples wide
to improve visibility, original data in Appendix C).

Intuitively, the optimal policy for this experiment minimises amplitudes of the Fourier param-
eters. Figure 5.10 shows the average value of the amplitude of the Fourier parameters over time.

(a) Digital setup. (b) Real setup.

Figure 5.10: Average of the absolute value of the amplitudes of each episodes action during training on
both real and simulated setup – 3 runs each. Yellow area is where the policy is completely randomised.
(Filtered using uniform convolution of 30 samples wide to improve visibility, original data in Appendix
C).

Figure 5.11 shows the best performing and last trajectory obtained during run 3. Here the re-
sulting trajectory is shown from adding up the Fourier coefficients determined by the action.
This trajectory given as reference signal the controllers on setup, resulting in its execution. The
orange line indicates the angle of q1 (the up and down flapping angle), while the brown line
indicates q2 (the wing angle).

Robotics and Mechatronics <G.H.M. van Rhijn>

30 Modeling, simulation and control of a setup build to study flapping motion

(a) Digital setup. (b) Real setup.

Figure 5.11: Reference signals resulting from the actions of the best episodes of the 3rd training run with
both the simulated and real setup.

5.4.3 Optimising over a ratio

Figure 5.12 shows the runs with the large maximum Fourier parameters (I).

(a) Rewards during training.
(b) rewards during training, data filtered with low-pass
(uniform convolution of 30 samples wide).

Figure 5.12: The rewards during the training episode, simulated plant. large Fourier coefficient maxi-
mum (I). Yellow area indicates where the policy is completely randomised.

Figure 5.13 shows three runs with smaller Fourier coefficient maximums, making it less likely
for the action to be out of bounds. Multiple runs where done to get a better general idea of
the performance of the algorithm. 2 of the runs where stopped prematurely due to a complete
disappearance of both the Q network gradients and the policy gradients.

Performance of run two and three (red and green) shows almost no improvement after the first
500 random policies and all the network gradients disappear. The first run (blue) does show
some nice improvement only for performance to stagnate and the gradients to disappear as
well. The highest performance in each training run is achieved during the first 500 episodes
which use completely random policies for exploration purposes, so algorithm performance is
worse than random.

<G.H.M. van Rhijn> University of Twente

CHAPTER 5. PART 2: FOURIER DECOMPOSITION OF THE TRAJECTORY 31

(a) Rewards during training. (b) rewards during training, data filter with low-pass.

Figure 5.13: The rewards during the training episode, simulated plant. Small coefficient maximum (II).
Run 1.2 and 1.3 where cut short after the policy gradient disappeared. Yellow area indicates where the
policy is completely randomised.

In order to gain a better understanding of algorithm performance, multiple additional opti-
misation runs where performed with alternative hyperparameter choices: runs with a lower
exploration noise levels, runs with higher noise levels, runs with a lower policy learning rate,
and runs with a smaller batch size and higher noise. Most of these runs perform similar or
worse to the runs with the original hyperparameters. The results of these runs can be found in
Appendix A. The runs with higher exploration noise are an exception to this as they performed
better than the original experiment. These runs use maximum noise values of 0.8 times the
maximum parameter values; the rest of the hyperparameters are the same as in the runs from
Figure 5.13. As in previous experiments, the scalar of the noise values is decreased linearly dur-
ing training, until the noise reaches a value of 0 in the last episode. The performance of these
runs can be found in Figure 5.14.

(a) Unfiltered rewards during training.
(b) reward data filtered with low-pass (uniform convolu-
tion of 30 samples).

Figure 5.14: The rewards during training for all three runs with higher noise values.

Two of the three runs quickly get stuck during training: run 2 gets stuck at the minimum pun-
ishment; Run 3 gets stuck around a reward of 0.25. Both of these loose their policy and critic
gradients quickly after getting stuck.

Run 1 shows steady improvement during training but does not ever reach the performance that
is achieved by chance during the 500 random policies at the start of the training session. The
policy gradient of this run has not disappeared at the end of training.

Robotics and Mechatronics <G.H.M. van Rhijn>

32 Modeling, simulation and control of a setup build to study flapping motion

5.5 Discussion

5.5.1 Fitting to a trajectory shape

The aim of this experiment is to test the ability of the actor critic architecture to optimise the
parameters of the action to approximate a known periodic shape.

With the fundamental frequency of the action set to match the fundamental frequency of the
square wave, performance of the algorithm is very stable. The approximation fits the square-
wave well considering the number of basis coefficients used. Not much time was spend opti-
mising the parameters, so it is possible that faster convergence can be achieved

With the fundamental frequency as part of the action, convergence becomes much slower;
however, the algorithm is still able to optimise the function. When the reward is calculated
over a single period of the square wave, this results in a good approximation in that period,
and bad approximation in the following periods. Evaluating the action over two periods of the
squarewave fixes this problem; but the final approximation still isn’t as good as with a fixed
fundamental frequency. finding the correct fundamental frequency made the task quite a bit
more difficult to optimise. It is not clear if this is generally true, or just a characteristic of this
optimisation problem.

5.5.2 Minimising the energy use on a physical setup

Figure 5.9 shows the algorithm moving nicely towards the highest possible reward after com-
pleting the 500 random policies at the start of each training session. Interestingly, the simulated
setup does not perform as cleanly as the real setup. This could indicate a more difficult to tra-
verse reward function in simulation versus the real setup, likely due to modelling errors.

Also interesting to note that maximum amplitude of the last action in simulation was quite
high (Figure 5.11a) even though the reward function design was expected to encourage the
amplitude of the trajectory to go to 0. Nonetheless, Figure 5.9a shows a nice improvement
during training. Indicating that the algorithm did move toward some sort of (local) minimum,
even if it is not in the way that was expected. It is possible that the single large peak in the
trajectory of 5.11a is quite energy efficient under the simulated physics.

Overall, the reward functions do show a pretty stable improvement in rewards. This shows that
the optimisation algorithm works for simple problems, and that the algorithm can learn from
data collected on a real setup.

5.5.3 Optimising over a ratio

Figure 5.12 only shows a single run of the learning algorithm. This run was done in simulation
only because slow convergence caused the need for many training steps, which wasn’t feasable
on the real setup. In addition, because of unsatisfactory performance more time was spend
on additional hyperparameter tuning (See Appendix A). The highest performance is achieved
during the first 500 episodes which use completely random policies for exploration purposes.

Afterwards, the algorithm spends most of its time stuck at the minimum reward; It seems to
have difficulties navigating the reward function, it is not able to consistently increase the re-
ward from the minimum punishment.

The runs with smaller maximum Fourier coefficient values (Figure 5.13) tend to get stuck and
loose their gradients. The cause for this could be many: There could be problems with the
reward function design, including the OoB punishments; There could also be problems with
Q function convergence and its ability to estimate the gradient. This could be caused by the
hyperparameter choices or the network design, however the network is very similar to that
in the DDPG paper, where theoretically more complicated reinforcement learning problems
where solved, so it is less likely that this is the problem; Lastly, the number of training steps is

<G.H.M. van Rhijn> University of Twente

CHAPTER 5. PART 2: FOURIER DECOMPOSITION OF THE TRAJECTORY 33

not very large – although still four times as large as the energy minimisation experiment – so
it is possible that an improvement in performance could be seen after even more steps. The
reason for not increasing learning time is that, based on the energy minimisation experiment,
learning time on the real setup would already take a full 24 hours.

As the gradients disappear it seems unlikely that more training time would improve perfor-
mance. Hyper-parameter choices could be part of the reason for bad performance; therefore,
some more runs were performed with: less exploration noise, more noise, a smaller learning
rate, and a combination of a smaller batch size and a higher noise level. These runs can be
found in appendix A, except for the run with higher exploration noise which can be found in
Figure 5.14. Higher noise levels improve performance a bit (0.9 final reward), but again per-
forms worse than the best of the randomly picked policies at the start of the training sessions
(1.4, 1.1, and 1.6 respectively for run 1, 2 and 3). Higher exploration noise also seems to prevent
the disappearance of the policy gradient.

An interesting note about the runs with higher noise levels (Figure 5.14), is that the second
run (red) converges to a value of -1, which is the least severe OoB punishment; apparently, the
maximum Fourier parameter values were not set quite small enough to completely prevent
going OoB. It converges to this value from a initial higher reward value and then stays there for
the rest of training. It is not quite clear why the algorithm has a tendency to converge to this
reward value; if the cause was a local minimum one would not expect the algorithm to move
there from a higher initial reward.

Lastly it is good to note the potential variability of the magnitude and the gradient of any
ratio function; potentially making things difficult for a gradient descent algorithm in the form
of local optima or significant changes in gradient magnitude.

Robotics and Mechatronics <G.H.M. van Rhijn>

34 Modeling, simulation and control of a setup build to study flapping motion

5.6 Conclusion

5.6.1 Fitting to a trajectory shape

The experiments show that the actor-critic architecture can be used to optimise the action pa-
rameters over a black box reward function. Including the fundamental frequency in the action
makes optimisation more difficult, but it is not clear whether this is a characteristic of the spe-
cific experiment, or of the optimisation algorithm and action definition in a more general sense.
The sample efficiency of the algorithm is not very high.

5.6.2 Minimising the energy use on a physical setup

This experiment shows that the algorithm can be used to optimise the behaviour of the real
setup, albeit with a simple task definition.

5.6.3 Optimising over a ratio

The goal of this experiment was to test the algorithms ability to optimise over a reward function
defined in term of a ratio where the denominator represents energy use, and the numerator
represents a heuristic designed to lead to asymmetrical flapping behaviour.

This experiment does not lead to great results: the algorithm has a tendency to get stuck in
the transition region between valid and invalid trajectories. When the OoB punishments are
avoided the algorithm shows some convergence, but performance is worse than just taking
random guesses.

<G.H.M. van Rhijn> University of Twente

35

6 General discussion

The first section of the report (Chapter 4) explores the first sub question of the report: "Can
we use continuous reinforcement learning techniques to directly learn a state feedback policy
that the solves optimisation problem?". This is done through the direct implementation of the
DDPG algorithm on the motor torques of a simplified setup model (pendulum).

In the theoretical background of the experiment various difficulties are identified with this op-
timisation problem. These are the sparsity of the reward and the risk of the plateau problem,
and the complexity of the task definition (stability, periodicity, and aerodynamics).

The experimental results show that these difficulties are indeed a problem, and that designing
a additional reward to guide the algorithm is not straight forward (the punishment). More ex-
periments could have been done to explore the influence of parameter choices and learning
time.

From these results, the report directly moves towards an alternative action definition that takes
us away from the reinforcement learning problem and removes many of the aforementioned
difficulties. Alternative ways to solve the previously identified problems are not discussed (see
future works for a suggestion). So the chapter answers the question in so far that uncovers
some significant difficulties with applying reinforcement learning to the setup, and suggests
that moving away from the reinforcement learning framework is desirable for our optimisation
problem. But it does not manage to exhaustively answer the question whether reinforcement
learning could be used to successfully learn a state feedback policy.

The second section of the report (Chapter 5) tries to answer the second sub question of
the report: "Can we repurpose the actor critic architecture from reinforcement learning to
optimise over Fourier coefficients representing a flapping trajectory?". It does this in the way
of various experiments designed to test the validity of the new optimisation method.

Experimental results show the ability of this architecture to optimise the trajectory shape to a
predetermined shape, and the ability to optimise a simple reward function over setup dynam-
ics; albeit in with less sample efficiency than hoped.

Optimisation over a ratio between a ’desired effect’ and a energy estimate does not go well,
with algorithm performance being worse than a equivalent number of random guesses, and
with the OoB punishments stopping learning. In addition, even without the OoB punishments
the algorithm often gets stuck during learning.

Performance of the algorithm might be different for different ratios, specifically different defini-
tions of the numerator value. The current value does not directly represent interesting dynamic
effects because it was designed to work on the placeholder setup.

In a more general sense, the use of gradient based optimisation methods for a reward func-
tion defined in terms of a ratio could be problematic due to the possibility of large magnitude
changes of the ratio. It is possible that this is part of what causes the algorithm to stop improv-
ing after a set number of training steps. Of course the actor critic algorithm architecture does
not have to be used to optimise the Fourier coefficient values, and the need to train a full neural
network to estimate the gradient used for optimisation is not very efficient.

Therefore, the use of the actor critic architecture to optimise the Fourier coefficients over a
ratio does not seem especially effective. But that does not take away the benefits of this action
definition in terms of how it simplifies the optimisation problem as compared to reinforcement
learning, and the guarantees it gives on periodicity and stability.

Robotics and Mechatronics <G.H.M. van Rhijn>

36 Modeling, simulation and control of a setup build to study flapping motion

7 General conclusion

In an attempt to optimise the energy efficiency of a flapping policy, various techniques where
discussed: numerical optimal control techniques such as shooting and direct collocation tech-
niques; reinforcement learning techniques, specifically DDPG; and a simplification of the actor
critic method where the policy is defined in terms of Fourier coefficients describing a trajectory.

All of these techniques where discussed with the concept of a ratio between a desired effects
and energy as a reward function. This reward function gives a direct representation of the en-
ergy efficiency of the flapping. This reward function design does however present challenges in
the form of reward existence/sparsity and variability of the reward magnitude.

Potential difficulties where encountered regarding using reinforcement learning to directly
learn a joint-torque state-feedback law on the flapping setup; specifically, the potential non-
existence of the chosen reward function, in combination with the sparsity of the reward func-
tion for scenarios where it does exist, makes the problem diffic ult. It was attempted to solve
the non-existence of the reward by adding a "punishment" function, but this still did not lead
to good convergence of the problem.

This lack of performance was theorised to stem from the complexity of the task that the re-
inforcement learning agent is asked to learn; namely the combination of controller stability,
periodic trajectory generation, and the generation of the desired effects. Which is a combina-
tion of sub-tasks not often seen in successful literature, and of which the reward function offers
very little guidance, even with the additional punishments added to the reward.

Simplifying the task definition using Fourier decomposition of the flapping trajectory solves
most of these problems. The actor critic architecture can be used to optimise the action pa-
rameter vector over a black box reward function. This is shown in the trajectory shape fitting
experiment and the energy minimisation experiment. The algorithm also works in combi-
nation with the real setup (again the energy minimisation experiment). However, it does not
seem to be very sample efficient in its optimisation.

Optimising over the ratio function – where the denominator represents energy use, and the nu-
merator represents a heuristic designed to lead to asymmetrical flapping behaviour – does not
lead to great results. The algorithm has a tendency to get stuck in the transition region between
valid and invalid trajectories. When the OoB punishments are avoided the algorithm shows
some convergence, but performance is worse than just taking random guesses. It is possible
that another black box parameter optimisation technique can achieve better performance.

<G.H.M. van Rhijn> University of Twente

37

8 Future work

This report discusses two possible techniques for optimising the flapping behaviour of the
wind-tunnel setup, each represented by one of the sub-research questions. This section on
possible future work will be split along the same lines.

The first technique that was discussed is reinforcement learning for optimisation, with the
agent directly controlling the motor torques. This task could be simplified by separating
controller and trajectory design just like the Fourier decomposition technique. For example
by making the agent output trajectory waypoints or velocities instead of motor torques, and
having those executed using a human designed controller. Periodicity of the trajectory can be
encouraged by using a human designed state machine in the policy network [17], which has in
the past been shown to be successful in walking robots [21].

Further work in reinforcement learning could also look at ways to increase reward density. This
could be done by defining the reward in terms of a sum of desired and undesired effects. In
Section 1.2 this was said to not be a good representation of the actual energy efficiency of the
flap. But as [21] shows, a reward function of this type can still be used to indirectly encourage
improvement of the energy efficiency of a policy. Another option would be to somehow define
the energy consumption to be a constant, thus keeping the numerator of the reward ratio
constant and allowing the ratio to be split into a sum of ratios with the same numerators; for
example by defining the episode to end at once a finite energy buffer is depleted.

The second technique that was discussed uses Fourier series decomposition to define a
periodic flapping trajectory. Instead of repurposing the actor critic method from reinforce-
ment learning, optimisation could be done using known black box parameter optimisation
techniques such as Bayesian optimisation [8, 19, 14]. This avoid the use of a gradient for opti-
misation – which could be beneficial when using a ratio as a reward function – and it prevents
the need to train neural networks; which is known to not be a very sample efficient task.

Robotics and Mechatronics <G.H.M. van Rhijn>

38 Modeling, simulation and control of a setup build to study flapping motion

A Appendix: Extra runs fourier parameter optimisation

In this appendix, data from extra runs of the Fourier parameter optimisation algorithm from
Section 5.4.3 are shown and briefly discussed; Runs are done with a lower noise scalar, with a
lower policy learning rate, and with a smaller batch size and higher noise.

A.1 Runs with a lower noise scalar

The runs in Section 5.4.3 use a maximum noise value 0.3 times the maximum parameter value.
This value worked well in the earlier experiments where the goal is to minimise per episode
energy.

Runs in this section use maximum noise values of 0.1 times the maximum parameter values.
As in previous experiments, the scalar of the noise values is decreased linearly during training,
until is reaches a value of 0 in the last episode.

Other hyperparameters are kept the same as in Section 5.4.3 (Specifically the runs with low
maximum Fourier coefficient values). The small maximum values of the Fourier coefficients
ensure that the policy never reaches a OoB state; Therefore, the effects of punishment design
can be removed.

(a) Unfiltered rewards during training.
(b) reward data filtered with low-pass (uniform convolu-
tion of 30 samples).

Figure A.1: The rewards during training for all three runs with a lower noise scalar.

None of the 3 runs shows noticeable improvement during training, see Figure A.1. Instead they
get stuck in a local optimum soon after finishing the 500 random actions at the start of the
episode.

During the periods of stagnation, the gradient of both the Q network and the actor almost com-
pletely disappear. Since any new data-points for training Q during this period are based on the
current action plus noise, it seems reasonable to assume that these new data-points stop pro-
viding novel information about the value function after a certain time of stagnation.

A.2 Runs with a lower policy learning rate

The policy learning rate in Section A.1 is quite high to compensate for lower reward values
compared previous experiments. Here, 3 runs are shown with their learning rates decreased
from 0.15 to 0.001.

<G.H.M. van Rhijn> University of Twente

APPENDIX A. APPENDIX: EXTRA RUNS FOURIER PARAMETER OPTIMISATION 39

(a) Unfiltered rewards during training.
(b) reward data filtered with low-pass (uniform convolu-
tion of 30 samples).

Figure A.2: The rewards during training for all three runs with a smaller policy learning rate.

The overall story is similar to previous experiments. The second and third run quickly get stuck
and loose their gradients. Run 1 does show improvement, and doesn’t lose its critic nor policy
gradient, but does not match the random policies in performance. (The best episode in the
first run obtains a reward of 1.4 and takes place during the original 500 random policies).

A.3 Runs with higher noise and smaller batch size

Runs in this section use a noise scalar of 0.8 (same as in Section ??). In addition the batch size
is reduced to 64 to match to original DDPG paper.

(a) Rewards during training.
(b) rewards during training, data filtered with low-pass
(uniform convolution of 30 samples).

Figure A.3: The rewards during the training episode, simulated plant; Small batch size and high noise.

Again, the story is similar to previous experiments. The runs do show some improvement, but
the best performance is far under the performance generated by just trying random policies.

Robotics and Mechatronics <G.H.M. van Rhijn>

40 Modeling, simulation and control of a setup build to study flapping motion

B Appendix: Mathematical model setup

This appendix will outline the mathematics used to model the dynamics of the simple place-
holder setup; Section 3.2 and 3.3. The model is fitted to the structure of the "robot equation"
[28]:

M(q)q̈ +C (q, q̇)q̇ +G(q) = τT (B.1)

Here, the three matrices in this equation represent the inertial, coriolis, and damping effects re-
spectively; the q represent the state vector with q1 and q2; and τ represents the motor torques.

B.1 The coordinate system

The system consists of 3 coordinate frames, the world frame ψ0, the body fixed frame of the
first rotational axis ψ1 and the body fixed frame of the second rotational axisψ2 . Each of these
axis has a angle q associated with it. The rotation of the first axis is around the x axis of ψ0, file
the rotation of the second axis is around the z axis of ψ1, see Figure B.1.

Figure B.1: Geometry of the system in the y-z plane. The x axis of ψ0 points towards the viewer.

B.2 The I matrix and centre of gravities

All subsequent calculations need information about the inertia matrix of each axis or the posi-
tion of its centre of gravity.

The inertia matrix can be calculated by integrating over the full mass in in its attached coor-
dinate frame. For the purposes of this model, both intertias are approximated by simple rect-
angular shapes with homogeneous mass (expressed in meters and kilograms). The total mass
and sizes are based on measurements from the real setup. for the wing, this means integrating
over a 2 dimensional flat plate; For the servo this means integrating over a off-centre box. This
results in the following I matrices:

<G.H.M. van Rhijn> University of Twente

APPENDIX B. APPENDIX: MATHEMATICAL MODEL SETUP 41

Iser vo,ψ1

3e−5 0 0 0 −0.0004 0
0 0.0002 0 0.0004 0 0
0 0 0.0002 0 0 0
0 −0.0004 0 0.1 0 0.1

0.0004 0 0 0 0.1 0
0 0 0 0 0 0.1

 (B.2)

Iwi ng ,ψ2 =

0.003 0 0 0 −0.02 0
0 0.002 0 0.02 0 0
0 0 0.0005 0 0 0
0 0.02 0 0.1 0 0.1

0.02 0 0 0 0.1 0
0 0 0 0 0 0.1

 (B.3)

Now the positions of the centres of gravity in both coordinate frames (again according to our
simplified masses):

P 1
g =

0
0

0.004
1

 (B.4)

P 2
g =

0
0
0
1

 (B.5)

B.3 The M matrix

The M matrix of the system is a sum of M1 and M2:

Mi (q) = J T
i (q)Ad T

H i
0
I i AdH i

0
Ji (q) (B.6)

Here, the J matrix represents the geometric jacobian of the system and the Ad represents th
adjoint matrix.

B.3.1 Determining J

The Jacobian of the system can be found by inspection. The first column is simple as it is a
simple rotation around the x axis:

J1(q) =

1 0
0 0
0 0
0 0
0 0
0 0

 (B.7)

The second column of the Jacobian is a bit more complicated as the position of the rotational
axis is determined by q1. Note that the rotational axis of q2 always intersects with the origin of
ψ0; therefore the bottom three values of the second column are all 0.

Robotics and Mechatronics <G.H.M. van Rhijn>

42 Modeling, simulation and control of a setup build to study flapping motion

J (q) =

1 0
0 −si n(q1)
0 cos(q1)
0 0
0 0
0 0

 (B.8)

B.3.2 Determining Ad 1
0

To calculate the Adjoint of ψ1 matrix, we first need H 1
0 , Since the only movement is a rotation

around the x axis, it can be written down by inspection:

H 1
0 (q) =

1 0 0 0
0 c1 s1 0
0 −s1 c1 0
0 0 0 1

 (B.9)

The formulla for the Adjoint is:

Ad
H j

i
=

[
R j

i o

p̃ j
i R j

i R j
i

]
(B.10)

This gives us:

AdH 1
0

(q) =

1 0 0 0 0 0
0 c1 s1 0 0 0
0 −s1 c1 0 0 0
0 0 0 1 0 0
0 0 0 0 c1 s1

0 0 0 0 −s1 c1

 (B.11)

Multiplying this with J1 gives us J1 back, this makes sense as x axis of both theψ0 andψ1 always
overlap:

Ad
H j

i
(q)J1(q) =

1 0
0 0
0 0
0 0
0 0
0 0

 (B.12)

B.3.3 Determining Ad 2
0

Ad 2
0 is a bit more complicated. Finding R2

0 can be done using R2
0 = R2

1R1
0 :

R2
0 = R2

1R1
0 =

 c2 s2 0
−s2 c2 0

0 0 1

1 0 0
0 c1 s1

0 −s1 c1

=
 c2 c1s2 s1s2

−s2 c1c2 s1c2

0 −s1 c1

 (B.13)

P 2
0 can be found by inspection. d represents the distance between the two coordinate frames

(see Figure B.1). P 2
0 can be described as follows; the coordinates of the base of ψ0 in ψ2. Since

ψ2 is always oriented towards the origin of ψ0 with its z axis (fig. B.1), P 2
0 becomes a constant:

p2
0 =

 0
0
−d

 (B.14)

<G.H.M. van Rhijn> University of Twente

APPENDIX B. APPENDIX: MATHEMATICAL MODEL SETUP 43

Using this information the Adjoint matrix can be constructed and multiplied with the Jacobian.
This is written out as it does not provide any insight.

B.4 The C matrix

The C matrix can be calculated straight from the M matrix using:

Ci , j (q, q̇) = Γi , j ,k q̇k (B.15)

Γi , j ,k := 1

2
(
∂Mi j

∂qk
+ ∂Mi k

∂q j
− ∂Mk j

∂qi
) (B.16)

The K represents the index of the coordinate vector q =
[

q1

q2

]
. Again, the full matrix is not

written out here as it is not very insightfull.

B.5 The G vector

The G matrix is the derivative of the potential energy over the generalised coordinates:

G = ∂V

∂q
(B.17)

The potential energy can be described as the sum of the potential energy of each rigid body:

V (q) =V1(q)+V2(q) (B.18)

Here, the potential energy for each frame is calculated from the previously calculated values as:

Vi (q) = mi g (0 0 1 0)H 0
i (q)P i

g (B.19)

Converting H i
0 to H 0

i is done using:

H 0
i = (H i

0)−1 =
[

(R i
0)T −(R i

0)T oi
0[

0 0 0
]

1

]
,

for: H i
0 =

[
R i

o oi
0[

0 0 0
]

1

] (B.20)

Robotics and Mechatronics <G.H.M. van Rhijn>

44 Modeling, simulation and control of a setup build to study flapping motion

C Appendix: raw data from experiment energy
minimisation

(a) Digital setup. (b) Real setup.

Figure C.1: Raw reward data from Section 5.4.2.

(a) Digital setup. (b) Real setup.

Figure C.2: Raw reward data from Section 5.4.2.

<G.H.M. van Rhijn> University of Twente

45

Bibliography
[1] (2016), Mechaduino - Powerful open-source industrial servo motor. by Tropical Labs

— Kickstarter., https://www.kickstarter.com/projects/tropicallabs/
mechaduino-powerful-open-source-industrial-servo-m [Accessed: Au-
gust 2022].

[2] (publication date unknown), Adam — PyTorch 1.12 documentation, https:
//pytorch.org/docs/stable/generated/torch.optim.Adam.html [Ac-
cessed: August 2022].

[3] (publication date unknown), DFRobot DSS-M15S servo, https://www.dfrobot.
com/product-1709.html [Accessed: August 2022].

[4] (publication date unknown), scipy.integrate.ode — SciPy v1.8.1 Manual, https://
docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.
ode.html [Accessed: August 2022].

[5] (publication date unknown), Servo - Arduino Reference, https://www.arduino.cc/
reference/en/libraries/servo/ [Accessed: August 2022].

[6] (publication date unknown), The portwings project, http://http://www.
portwings.eu/.

[7] Angelini, F., C. Della Santina, M. Garabini, M. Bianchi and A. Bicchi (2020), Control ar-
chitecture for human-like motion with applications to articulated soft robots, Frontiers in
Robotics and AI, p. 117.

[8] Bergstra, J., R. Bardenet, Y. Bengio and B. Kégl (2011), Algorithms for hyper-parameter
optimization, Advances in neural information processing systems, vol. 24.

[9] Betts, J. (2001), Practical methods for optimal control using nonlinear programming, ser,
Advances in Design and Control. Philadelphia, PA: Society for Industrial and Applied Math-
ematics (SIAM), vol. 3.

[10] Bøhn, E., E. M. Coates, S. Moe and T. A. Johansen (2019), Deep reinforcement learning atti-
tude control of fixed-wing uavs using proximal policy optimization, in 2019 International
Conference on Unmanned Aircraft Systems (ICUAS), IEEE, pp. 523–533.

[11] Della Santina, C., M. Bianchi, G. Grioli, F. Angelini, M. Catalano, M. Garabini and A. Bicchi
(2017), Controlling soft robots: balancing feedback and feedforward elements, vol. 24,
no.3, pp. 75–83.

[12] Diehl, M., H. G. Bock, H. Diedam and P.-B. Wieber (2006), Fast direct multiple shoot-
ing algorithms for optimal robot control, in Fast motions in biomechanics and robotics,
Springer, pp. 65–93.

[13] Emken, J. L., R. Benitez, A. Sideris, J. E. Bobrow and D. J. Reinkensmeyer (2007), Motor
adaptation as a greedy optimization of error and effort, vol. 97, no.6, pp. 3997–4006.

[14] Frazier, P. I. (2018), A tutorial on Bayesian optimization, arXiv preprint arXiv:1807.02811.

[15] Haarnoja, T., A. Zhou, P. Abbeel and S. Levine (2018), Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor, in International con-
ference on machine learning, PMLR, pp. 1861–1870.

[16] Hwangbo, J., I. Sa, R. Siegwart and M. Hutter (2017), Control of a quadrotor with reinforce-
ment learning, vol. 2, no.4, pp. 2096–2103.

[17] Iscen, A., K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani and V. Vanhoucke
(2018), Policies modulating trajectory generators, in Conference on Robot Learning, PMLR,
pp. 916–926.

Robotics and Mechatronics <G.H.M. van Rhijn>

https://www.kickstarter.com/projects/tropicallabs/mechaduino-powerful-open-source-industrial-servo-m
https://www.kickstarter.com/projects/tropicallabs/mechaduino-powerful-open-source-industrial-servo-m
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://www.dfrobot.com/product-1709.html
https://www.dfrobot.com/product-1709.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
https://www.arduino.cc/reference/en/libraries/servo/
https://www.arduino.cc/reference/en/libraries/servo/
http://http://www.portwings.eu/
http://http://www.portwings.eu/

46 Modeling, simulation and control of a setup build to study flapping motion

[18] Kelly, M. P. (2017), Transcription methods for trajectory optimization: a beginners tutorial,
arXiv preprint arXiv:1707.00284.

[19] Knysh, P. and Y. Korkolis (2016), Blackbox: A procedure for parallel optimization of expen-
sive black-box functions, arXiv preprint arXiv:1605.00998.

[20] Koch, W., R. Mancuso, R. West and A. Bestavros (2019), Reinforcement learning for UAV
attitude control, vol. 3, no.2, pp. 1–21.

[21] Lee, J., J. Hwangbo, L. Wellhausen, V. Koltun and M. Hutter (2020), Learning quadrupedal
locomotion over challenging terrain, vol. 5, no.47, p. eabc5986.

[22] Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver and D. Wier-
stra (2015), Continuous control with deep reinforcement learning, arXiv preprint
arXiv:1509.02971.

[23] Matheron, G., N. Perrin and O. Sigaud (2019), The problem with DDPG: under-
standing failures in deterministic environments with sparse rewards, arXiv preprint
arXiv:1911.11679.

[24] Meinsma, G. and A. v. d. Schaft (2020), Calculus of Optimal Control (lecture notes), Faculty
of electrical engineering mathematics, and computer science, University of Twente.

[25] Schulman, J., S. Levine, P. Abbeel, M. Jordan and P. Moritz (2015), Trust region policy opti-
mization, in International conference on machine learning, PMLR, pp. 1889–1897.

[26] Schulman, J., F. Wolski, P. Dhariwal, A. Radford and O. Klimov (2017), Proximal policy op-
timization algorithms, arXiv preprint arXiv:1707.06347.

[27] Soliman, S. S. and M. D. Srinath (1998), Continuous and Discrete Signals and Systems, Pear-
son, ISBN 9780135184738.

[28] Stramigioli, S. (2020), Lecture slides on Modern Robotics.

[29] Sutton, R. S. and A. G. Barto (2018), Reinforcement learning: An introduction, MIT press.

[30] Tang, C. and Y.-C. Lai (2020), Deep reinforcement learning automatic landing control of
fixed-wing aircraft using deep deterministic policy gradient, in 2020 International Confer-
ence on Unmanned Aircraft Systems (ICUAS), IEEE, pp. 1–9.

<G.H.M. van Rhijn> University of Twente

	Abstract
	Acknowledgement
	1 Introduction
	1.1 Research questions
	1.2 Defining optimality
	1.3 Structure of the report

	2 Optimal control
	2.1 Techniques
	2.2 Applying optimal control to the setup

	3 (Physiscal) Experimental setup
	3.1 Full setup
	3.2 Placeholder setup
	3.2.1 Controlling axis (q1)
	3.2.2 Controlling axis (q2)
	3.2.3 Available sensor data

	3.3 Digital model placeholder setup

	4 Part 1: Reinforcement learning
	4.1 Introduction
	4.2 Background
	4.2.1 The reinforcement learning problem
	4.2.2 The Markov property
	4.2.3 State of the art
	4.2.4 Reward function design

	4.3 Method
	4.3.1 Digital environment model
	4.3.2 Reward function design

	4.4 Results
	4.5 Discussion
	4.6 Conclusion

	5 Part 2: Fourier decomposition of the trajectory
	5.1 Introduction
	5.2 Background
	5.2.1 Action definition
	5.2.2 The new optimisation algorithm
	5.2.3 Fundamental limitations due to controller design

	5.3 Method
	5.3.1 Experiment 1: Fitting the action to a trajectory shape
	5.3.2 Experiment 2: Minimising the energy use on a physical setup
	5.3.3 Experiment 3: Optimising over a ratio

	5.4 Results
	5.4.1 Fitting the action to a trajectory shape
	5.4.2 Minimising the energy use on a physical setup
	5.4.3 Optimising over a ratio

	5.5 Discussion
	5.5.1 Fitting to a trajectory shape
	5.5.2 Minimising the energy use on a physical setup
	5.5.3 Optimising over a ratio

	5.6 Conclusion
	5.6.1 Fitting to a trajectory shape
	5.6.2 Minimising the energy use on a physical setup
	5.6.3 Optimising over a ratio

	6 General discussion
	7 General conclusion
	8 Future work
	A Appendix: Extra runs fourier parameter optimisation
	A.1 Runs with a lower noise scalar
	A.2 Runs with a lower policy learning rate
	A.3 Runs with higher noise and smaller batch size

	B Appendix: Mathematical model setup
	B.1 The coordinate system
	B.2 The I matrix and centre of gravities
	B.3 The M matrix
	B.3.1 Determining J
	B.3.2 Determining Ad01
	B.3.3 Determining Ad02

	B.4 The C matrix
	B.5 The G vector

	C Appendix: raw data from experiment energy minimisation
	Bibliography

