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Executive Summary

The auditing profession is an increasingly complex one. One of the main tasks of an

auditor is to ensure that the financial statements produced by organisations meet legal

standards. Financial statements can be considered a summary of business transactions

that are encapsulated in business process, and therefore, monitoring or inspecting these

processes can help validate the credibility of these statements. Given the advancements

in the current technological space, the financial information of most organisations are

captured by some form of information system.

Process mining seeks to leverage the data recorded in these systems in the form of event

logs or audit trails. For this reason, process mining as an analytical tool for auditing

has gained traction in the auditing community. However, despite the growing interest,

the use cases for process mining, especially for predictive audit are fairly limited in

practice. This study acknowledges this gap and demonstrates a practical use case of

classifying anomalous traces in audit logs.

To guide the research process, the Design Science Research Methodology (DSRM) has

been chosen as an appropriate research methodology. According to DSRM, the entry

point for this research is the identification of a body of research, namely, Predictive

Business Process Monitoring (PBPM) which is based on the continuous generation of

predictions from the analysis of past execution traces. Following the identification of

this research domain, the use case for predictive audit is formulated. As part of the

design & development phase of the DSRM, a procedural method (the artefact) is de-

veloped which incorporates elements from both traditional data science pipelines as

well as the generic approach adopted in PBPM literature.

The use of this procedural method is demonstrated by classifying anomalous traces

in a loan application process, wherein the classification task is formulated as a next

activity prediction problem which is a supervised multi-class classification problem.

Accordingly, seven representative classifiers have been chosen from PBPM literature

: Random Forest (RF), Extreme Gradient Boosting (XGBOOST), Multinomial Lo-

gistic Regression (MLR), Support Vector Machines (SVM), Long Short Term Memory
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(LSTM) and Bidirectional Long Short Term Memory (BI-LSTM). The performances of

the classifiers are evaluated using confusion matrices. Based on the confusion matrices,

the precision, recall and f1-score of each classifier is also computed. Additionally, the

classifiers are evaluated across four different configurations to understand the effects of

hyperparameter tuning and class weighting for class imbalance on the base models.

The findings indicate that RF performs the best across all configurations achieving an

f1-score of 0.69 for detecting the minority class (the anomalous class). Additionally,

the experiments also indicate that some models are more sensitive to hyperparameter

tuning than others such as XGBOOST, CNN, BI-LSTM and LSTM with a 6-7% in-

crease in f1-scores from their respective base models. In general, all the models have a

better performance when both hyperparameter tuning and class weighting are applied

together.

This research has relevance for both predictive audit and PBPM research domains.

In this research, a procedural method is developed that demonstrates how predictive

audit can be enabled in practice through a practical use case. This is especially impor-

tant considering that the adoption of advanced data and analytics in audit has been

generally low. This study serves as a first step towards that acceptance.
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Chapter 1

Introduction

This chapter introduces the research and provides a general overview for the entire

thesis. In Section 1.1, the problem is identified and motivated. Section 1.2 provides

some background information to the concepts introduced in Section 1.1. In Section 1.3,

the research methodology that is used to carry out the research is described. Following

this, the research objectives and research questions are outlined in Section 1.4. The

contributions of the research are presented in Section 1.5. Finally, the entire structure

of the thesis is illustrated in Section 1.6

1.1 Problem Identification

1.1.1 Problem Context

The auditing profession is a highly complex one with the role of helping organisations

achieve their business objectives, manage their risk and improve their business perfor-

mance. The auditor’s responsibility is to ensure that financial statements produced

meet legal standards. More concretely, for activities listed in the financial report, audi-

tors identify and assess any risks which could have a significant impact on the financial

position or financial performance, and also the internal controls that the organisation

has put in place to mitigate those risks [6]. Considering that financial statements are

essentially a summary of business transactions that are encapsulated in business pro-

cesses of an organisation, it makes sense why monitoring business processes that form

the very basis of financial statements can be used as a credibility check for financial

statements. For this very reason, process mining, in particular, as an analytic method

has sparked interest in the auditing community. Process mining was specifically de-

veloped to monitor and improve business processes. Even large external audit firms

including the Big Four, have embarked on the process mining journey either through

their own in-house tools or commercially available tools.

1
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1.1.2 Problem Statement

When researchers made ”a case for process mining in audit” (see Section 1.2.2), one

of the main motivations stated was ”process mining analyses the entire population of

data and not just a sample” which was aimed at tackling the main drawback of the

traditional audit methodology in the first place (see Section 1.2.1). However, the web-

site of a large audit firm to-date states, ”audits are based on selective testing only” [6].

Clearly, this drawback has not yet been fully mitigated in practice. This could mean

that process mining is not fully leveraged in the audit profession. Moreover, for years,

researchers have advocated for predictive audit or more forward looking approaches to

audit (see Section 1.2.1). Currently, process mining in audit is conducted by analysing

event logs through a process mining visualization tool. The use of event logs can go

beyond this and can enable predictive audit.

Predictive Business Process Monitoring (PBPM) is a growing discipline that has the

potential to address these two problems. It combines elements from both process

mining and advanced analytical methods such as machine learning and deep learning.

This combinative approach can enable predictive audit. To this end, this research will

focus on developing a procedural method that demonstrates how machine learning and

deep learning approaches employed in PBPM literature can be applied to a practical

audit use case - classifying anomalous activities in an audit log. An intuition for this

will be introduced in Section 1.2.3.

1.2 Background

1.2.1 Predictive Audit

Predictive audit is an approach for performing continuous auditing that applies predic-

tion methodology to the audit [1]. It utilises historical and/or current data to predict

potential future outcomes. Then, methods such data mining and machine learning can

be leveraged to create a predictive model. Consequently, the generated predictive mod-

els can classify processes or sets of processes that may deviate from predefined control

flows. An illustration of how such a model could be created is depicted in Figure 1.1.

Results of such an audit could be used to identify discrepancies in transactions and

those transactions may be further investigated by auditors. The biggest advantage

of this approach lies in the continuity. Since, this approach enables auditing to be

done more frequently or continuously rather than the traditional monthly, quarterly

or annual audits, the time lag between the event and the time of associated assurance

could be avoided. Moreover, this approach involves acting on the entire transaction

2
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Figure 1.1: Predictive Model Formulation adapted from [1]

Table 1.1: The main components of an event log.

Components Description

Case

It is represented by a CASEID which refers to a unique case or process instance.

For e.g. sales order number, purchase order number or a order line identifiation

number.

Activity
Every case or process instance consists of a series of occurring process steps

which are referred to as activities.

Timestamp The actual time when each process step has been executed.

population rather than a few representative samples [1].

1.2.2 Process Mining for Audit

Process mining is a technique of analysing data recorded by an organisation’s informa-

tion system. The data is recorded in the form of event logs or audit trails, which are

defined as a ”chronological record of computer system activities which are saved to a

file on the system which can later be reviewed by the system administrator to identify

users actions on the system or processes which occurred on the system” [7]. Table 1.1

shows the necessary components of an event log. An event log can optionally include

other information such as a resource i.e., the person or party responsible for performing

the activity, cost information, etc.

Process mining enables the monitoring of business process that form the basis of fi-

nancial statements by ensuring the processes are under control from an efficiency and

compliance point of view [8]. In order to better understand how a business process is

linked to the financial statements, let’s consider an example of a purchase-to-pay pro-

cess borrowed from [8] illustrated in Figure 1.2. This process has a certain control-flow

which has to be adhered to, for instance, second approval of purchase order follows

first approval of purchase order. With the help of process mining, control-flows of core

business processes within an organisation can be audited to determine if the financial

3



J Cutinha CHAPTER 1. INTRODUCTION

Figure 1.2: Purchase-to-pay process linked to the financial statement [1]

statements recorded are valid. Just like financial processes, operational and manage-

ment processes can also be audited [8].

Another benefit of process mining is that it can leverage all the data recorded by the in-

formation system which, given the advancements in current information systems, have

the potential to recreate the entire business process as it occurred in the past. This

allows the auditor to make use of the entire transaction population rather than a few

representative samples. However, the most important benefit that process mining has

to offer for the auditing profession is that the auditor is no longer restricted to data

entered by the auditee, but possesses an independent view about the circumstances

under which the auditee made those entries. For a long time, the auditor had to rely

on the transactions coming from entries made by the employees of the auditee, and

the auditor had no way of independently verifying who made those ledger entries and

when they did so [9].

In sum, the key sources of value of process mining in audit can be formulated as

follows [9]:

• Process mining analyses the entire population of data and not just a sample;

4
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• The data captured by event logs are independent of the actions of the auditee

whose behaviour is the subject of the audit;

• Process mining allows the auditor to conduct analyses not possible with existing

audit tools, such as discovering the ways in which business processes are actually

being carried out in practice;

• Process mining allows for more effective ways of conducting the required walk-

throughs of processes and conducting analytic procedures.

1.2.3 Using Predictive Business Process Monitoring for Clas-

sifying Anomalous Traces

In predictive audit, historical knowledge of processes is used to predict risks, control

trends, level and flows, and other parameters of the business process [1]. This is nat-

urally facilitated by process mining in that past activities of processes can be used to

determine if a new activity in a process is being executed wrongly and can consequently

be marked as erroneous in realtime. If we consider the purchase-to-pay example in sec-

tion 1.2.2, a predictive model can learn from previous processes, for instance, that

second approval of purchase order follows first approval of purchase order. If any other

activity follows first approval of purchase order, it is seen as an irregular observation

and can be marked as faulty or anomalous.

Predictive Business Process Monitoring (PBPM), first introduced by [10] as a frame-

work, is now a growing body of research based on the continuous generation of pre-

dictions and recommendations based on the analysis of past execution traces. In par-

ticular, event logs are exploited to predict the outcome of each case given its current

(incomplete) execution trace and given a set of traces of previously completed cases.The

predictions often depend on the sequence of activities executed in a given case, but can

also depend on the values of data attributes after each activity execution in a case, pro-

vided such information is available. Concerning the creation of the prediction model,

PBPM literature distinguishes between two kinds of prediction models according to

its process awareness. A predictive model is process-aware if it exploits an explicit

representation of the process model to make the prediction (e.g., an annotated tran-

sition system, or a stochastic Petri net [11]. Instead, a non-process-aware predictive

model does not make use of an explicit representation of a process model and is usually

some form of machine learning or deep learning model. The outcome of the prediction

may be the fulfillment of a compliance rule, a performance objective (e.g., maximum

allowed cycle time) or business goal, or any other characteristic of a case that can be

determined upon its completion [12].
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1.2.3.1 How is an anomaly classified?

In this research, anomaly classification is formulated as a next activity prediction prob-

lem. In next activity prediction, a classifier is trained on an independent set of features

as input where the unique activities in the previous trace executions are considered

labels during training. This essentially makes next activity prediction a multi-class

classification problem. Upon testing, the trained model emits a probability for every

activity to follow a particular incomplete trace of events, and the activity with the high-

est probability is marked as the predicted value. Activities with the least probabilities

of following an incomplete trace is considered irregular and marked as anomalous.

1.3 Research Methodology

This research makes use of the Design Science Research Methodology (DSRM) pro-

posed by [2]. An adaptation of the DSRM for this research is depicted in Figure 1.3.

Although the process is structured in a sequential order, the authors posit that a re-

searcher can start from any of the entry points depicted in Figure 1.3. This research

takes a design and development centered approach. According to the authors, such

an approach results from the ”existence of an artifact that has not yet been formally

thought through as a solution for the explicit problem domain in which it will be

used” [2]. The idea for the artefact could have emerged from another research domain,

used to solve a different problem or may have appeared as an analogy. The application

of the DSRM to this research is explained below:

Design centered solution. In this research, a procedural method is developed

that is inspired by the methods employed in the PBPM research domain. So in

this sense, an idea appearing from one research domain (PBPM) has been used

to develop a solution for a problem identified in another (predictive audit).

Problem identification and motivation. In section 1.1.2, two problems were

identified (1) process mining is not leveraged everywhere in audit practice; (2)

lack of predictive audit use cases.

Objectives of a solution. Based on the problems identified, the objective of

the solution is to address the two problems by developing a procedural method

that demonstrates how process mining can be carried out in a predictive manner

through a practical use case for audit.
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Figure 1.3: Design Science Research Methodology for this research adapted from [2]

Design and development. In this research, a procedural method is developed

which utilises machine learning and deep learning models adopted from PBPM

literature. In this research, this is referred to as the artefact.

Demonstration. To demonstrate the use of the solution to the specified prob-

lem, a practical audit use case is defined namely, classifying anomalous activity

in a loan application process.

Evaluation. To evaluate the performance of the developed models, certain eval-

uation measures will be used.

Communication. Finally, the results are communicated through this thesis

document.

1.4 Research Goal & Research Questions

The goal for the research is formulated as follows:

RG: To develop a procedural method that utilises machine learning approaches

obtained from PBPM literature to classify anomalous traces in audit logs

Since classifying anomalies is formulated as a next activity prediction problem (see

section 1.2.3.1), the following research questions are formulated accordingly to achieve

the defined research goal:

7
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RQ1: What is PBPM and what machine learning and deep learning algorithms

have been used for next activity prediction in PBPM literature?

RQ2: How can these methods be classified?

RQ3: What evaluation measures exist in PBPM literature for next activity

prediction?

RQ4: How do the methods identified in RQ1 perform when evaluated using the

measures identified in RQ3?

1.5 Research Relevance

1.5.1 Scientific Relevance

This research has relevance for both predictive audit and PBPM research domains. For

the former, this research contributes by developing a procedural method that demon-

strates how predictive audit can be enabled in practice. This is especially important

because even though predictive audit as a concept, or any form of advanced data an-

alytics for that matter, was introduced in audit research more than ten years ago, its

acceptance has been low in the audit profession [13] [14]. Additionally, this is reflected

in the recent call for papers for big data and analytics in modern audit engagements [15].

For the domain of PBPM, this research contributes by an empirical review of next ac-

tivity prediction methods (see Chapter 2). So far this has only been done for remaining

time prediction [16] and binary outcome prediction [17].

1.5.2 Practical Relevance

Through a practical use case, this research demonstrates how process mining mitigates

the problem of selective testing and uses all the data available in information systems

to make an analysis. Moreover, it goes one step further and demonstrates how process

mining can be leveraged in a predictive manner. Currently, process mining is carried out

retrospectively and hopefully, this research provides inspiration for unique applications

of process mining for the audit profession.

1.6 Thesis Structure

The structure of the thesis is depicted in Figure 1.2
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Table 1.2: Thesis Structure

Thesis Chapter Description DSRM Mapping Research Questions

Chapter 1

An overview of the entire research including

motivating the problem, choosing the

research methodology, formulating the

research objective, research questions

& research relevance

Steps 1 & 2

Chapter 2

The theoretical basis for the solution used

to address the problems outlined in the

problem statement

Step 3 RQs 1, 2 & 3

Chapter 3
Experiment/Artefact demonstration, evaluation and

overview of results
Step 4, 5 & 6 RQ 4

Chapter 4 Discussion of results & study limitations Step 6 All

Chapter 5 Conclusions & future work Step 6 All

9



Chapter 2

Literature Review

In this chapter, the main aim is to find answers to research questions 1, 2 & 3 defined

in Section 1.4. For this, a Systematic Literature Review (SLR) has been conducted

according to the guidelines presented by [3]. According to the authors, all reviews

can be conducted following eight steps: (1) formulating the research problem; (2) de-

veloping and validating the review protocol; (3) searching the literature; (4) screening

for inclusion; (5) assessing quality; (6) extracting data; (7) analyzing and synthesizing

data; (8) reporting the findings. The steps are illustrated in Figure 2.1 :

Figure 2.1: Process of SLR [3]
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2.1 Formulating the Problem

According to [3], this step involves defining the research questions that will guide

the literature review process since literature reviews are essentially research inquiries.

This literature review is aimed at answering the first three research questions defined

in Section 1.4

RQ1: What is PBPM and what machine learning and deep learning algorithms

have been used for next activity prediction in PBPM literature?

RQ2: How can these methods be classified?

RQ3: What evaluation measure exist in PBPM literature for next activity pre-

diction?

2.2 Develop and Validate the Research Protocol

The review protocol should describe all the elements of the review, including the pur-

pose of the study, research questions, inclusion criteria, search strategies, quality as-

sessment criteria and screening procedures, strategies for data extraction, synthesis,

and reporting [3]. These components will be discussed in the following sections, and

so, a separate review protocol is not created.

2.3 Search the Literature

2.3.1 Channels for Literature Search

The following electronic databases are used to carry out the literature review:

• Scopus

• Web of Science

• IEEE

• ACM

2.3.2 Search Terms

The search terms used to initiate the SLR are ’business process’, ”monitoring” and

”prediction”.
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2.3.3 Sampling Strategy

The purpose of this review is to first gain an initial understanding of the domain

of predictive business process monitoring, before delving deeper into the literature

pertaining to the defined research questions. Therefore, a broader search string is

defined to reflect this:

TITLE-ABS-KEY ( ”business process” AND ”monitoring” AND ”prediction” )

Following this, the papers are scanned to only include literature relevant to the research

questions defined. Furthermore, reports and theses, referred to as gray literature by

[3], are excluded from the review. Additional criteria for inclusion and exclusion are

outlined in the following sections.

2.4 Screen for Inclusion

2.4.1 Inclusion Criteria

Only papers satisfying the following inclusion criteria are included in this review:

• The articles should be fully published and written in English;

• The articles should belong to the disciplines of Computer Science, Decision Sci-

ence, Engineering, Mathematics and Business Management;

• The articles should be academic in nature (e.g., articles, conference papers, book

chapters and review articles);

• Only articles that are openly accessible or can be accessible through the university

VPN are included;

• The title and abstract of the articles should contain the search terms defined in

Section 2.3.2.

2.4.2 Exclusion Criteria

In addition to the inclusion criteria, the initial search results are subjected to the

following exclusion criteria:

• The abstracts of articles that concern theoretical developments (e.g., frameworks,

methodologies, taxonomies and untested prototypes) are excluded to only account

for fully developed prediction algorithms that are evaluated;

• Studies that do not include business process execution logs or event logs are

excluded.
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2.5 Assess Quality

Articles satisfying all the inclusion and exclusion criteria are downloaded for further

assessment. All the sources are managed through the reference management software

Zotero. In order to refine the full-text articles and to prepare the final pool of studies

for data extraction and analysis, the following criteria are defined:

• All duplicates are removed;

• Studies that are similar to each other i.e., are written by the same authors and

have similar titles either indicate extensions to previous work or are a complete

version of a prior incomplete version. These articles are carefully examined to

avoid redundancy;

• The articles should concern a prediction problem and provide a solution for the

same. Articles providing only an analysis (e.g., visualization) and not a prediction

are removed;

• Studies where the developed prediction algorithms are not evaluated or validated

are removed;

• Studies where the developed prediction algorithms are not properly documented

i.e., the underlying concepts are not explained are removed;

• Literature reviews are archived separately. The purpose of this is to ensure that

all the existing concepts of predictive business process monitoring are roughly

covered, This not only builds on existing reviews, but makes this review more

exhaustive.

2.6 Extracting data

At this stage, all the papers are considered relevant and are downloaded for reading.

It is important to note that, even at this point, the literature is quite broad. This

is deliberate to first outline the general concepts. Following this, only the papers

pertaining to the research questions defined in 2.1 will be considered.

2.7 Analyzing and Synthesizing Data

The final papers are categorized according to the steps in figures 2.3 & 2.4. An overview

of the classification can be seen in Table 2.1.
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2.8 Report Findings

Figure 2.2: Prima diagram visualizing the screening process [3]

2.8.1 Predictive Business Process Monitoring (PBPM)

According to [18], predictive business process monitoring refers to a ”family of online

process monitoring methods that seek to predict as early as possible the outcome of

a case given its current (incomplete) execution trace and given a set of previously

completed cases”. Here, the outcome can be any attribute that can be predicted given

an event log. Some of the different types of outcomes studied in literature are next

activity [19] [20] [21] [22], remaining time [19] [23] [24] and risk [25] [26].

Based on the final value of prediction - numerical or categorical, all predictions

addressed in literature can be broadly classified either as regression or classification
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problems. In this thesis, the focus will only be on next activity prediction which is

essentially a classification problem where the outcome to be predicted is categorical in

nature. Furthermore, some studies focus on the prediction of a sequence of activities or

so-called ”suffixes”, for instance, the study by [27] which will not be addressed in this

thesis. In addition to the kind of prediction problem, another kind of classification can

be deduced depending on whether or not studies make use of explicit representations

of processes such as petri nets, instance graphs etc. for prediction, and can accordingly

be classified as ”process-aware” or ”non-process aware” [28]. The focus of this thesis

will be the latter since studies addressing classification problems largely fall under this

category [28].

2.8.2 Preliminaries

The following definitions and notations have been borrowed from [29]

Definition 2.8.1 (Event Log, Event, Trace). An event log L contains events. An event

e is a tuple e = ⟨c, a, t, r, (d1, v1), ..., (dm, vm)⟩, where c is the case id, a is the activity to

which the task recorded by this event belongs, t is the timestamp at which the event has

been recorded, r is the resource that executed the task and (d1, v1), ..., (dm, vm), with

m ≥ 0 are other domain specific attribute or context specific attributes and their values.

The universe of all events is denoted by E .The sequence of events generated in a given

case forms a trace σ = ⟨e1, ..., en⟩, where ∀i ∈ [1, n], ei ∈ E and ∀i, j ∈ [1, n], ei.c = ej.c,

i.e., all events of a trace belong to the same case, and ∀i ∈ [1, n− 1], ei.t ≤ ei+1.t, i.e.,

events in a trace can be ordered in time using the timestamp attribute. The universe

of all traces is denoted by S.

Definition 2.8.2 (Prefix). The prefix function Pl(σ) is used to extract the prefix logs

L∗. Given a trace σ = ⟨e1, ..., en⟩ and a positive integer l ≤ n, Pl(σ) = ⟨e1, ..., el⟩.
For an event log L, its prefix log L∗ is the event log that contains all prefixes of

L, i.e., L∗ = {Pl(σ) : σ ∈ S, 1 ≤ l ≤ |σ|}. For example, for a sequence σ1 =

⟨a, b, c, d⟩, P3(σ1) = ⟨a, b, c⟩, and L∗ = {⟨a⟩, ⟨a, b⟩, ⟨a, b, c⟩, ⟨a, b, c, d⟩}

Definition 2.8.3 (Prefix Bucket). A prefix bucketing BN of size N is a partition of

the prefixes P in N subsets, that is, BN(P ) = {Bi}i=1...N with
⋃

i Bi = P and
⋂
Bi = ∅

Definition 2.8.4 (Labeling Function). A labeling function y : S −→ Y is a function

mapping a trace σ ∈ S (or any prefix derived from it) to its class label y(σ) ∈ Y , with

Y being the domain of the class labels.

Definition 2.8.5 (Sequence Encoder). A sequence or trace encoder f : S −→ X1 ×
... × XP is a function that takes a (partial) trace σ and transforms it into a feature

vector in a D-dimensional vector space X1 × ... × XD with Xd ⊆ R, 1 ≤ d ≤ D being

the domain of the d-th feature.
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Definition 2.8.6 (Classifier). A process outcome classifier poc is defined by a label

predictor function lp that assigns a class label to a feature vector, i.e, lp : X1×...XP −→
Y

2.8.3 General Workflow for PBPM

Figures 2.3 and 2.4 from [4] depict the general workflow of predictive business process

monitoring.

The process typically consists of two phases: the offline phase and the online phase.

In the offline phase, case prefixes from the event log are extracted to create a prefix

log (see section 2.8.2), and this generally serves as input data. The prefix log would

essentially be an historical log with incomplete traces rather than fully complete traces.

Since the final prediction would be made on (incomplete) running traces, the approach

of using a prefix log seems intuitive. The second step in the offline phase is prefix

bucketing, where similar prefixes are grouped together in buckets. Each prefix bucket

is then encoded into feature vectors and a classifier is trained for each prefix bucket. In

some studies, prefix bucketing is not adopted, and a classifier is trained on the entire

prefix log.

In the online phase, the model generated in the offline phase is applied on the encoded

running trace. If prefix bucketing is used to train the classifier in the offline stage, then

given the running trace and buckets of historical prefixes, the running trace is matched

to the appropriate bucket and then encoded. Finally, the model trained in the offline

phase provides a prediction for the running trace.

Figure 2.3: Predictive business process monitoring workflow (offline) [4]
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Figure 2.4: Predictive business process monitoring workflow (online) [4]

Just like [4], the papers surveyed in this review are classified based on the approaches

taken while undertaking the steps depicted in figures 2.3 & 2.4. Table 2.1 gives an

overview of the classification of papers.

2.8.3.1 Prefix Extraction

Most of the studies use a prefix log (see section 2.8.2) as input data rather than the

entire event log. Given that at runtime (online phase), the prediction model is supposed

to generate a prediction based on an incomplete trace, it is only natural that the model

be trained on similar data during the offline phase. Prefix extraction is approached

differently in the papers surveyed for this review. Some studies use all possible prefixes,

while others use prefixes only up to a certain length. The reason for this is that the

large number of prefixes greatly slows down the training process. Another noticeable

observation is that in deep learning approaches, prefixes of different sizes are converted

to a fixed length because the input vector has to be of the same size. For this, a fixed

length is defined, for instance, length of the largest trace [20], or average length of all

the traces [30]. Any prefix trace smaller than this is padded with zeros [31] [32] [33],

while larger prefixes are broken down into smaller ones with minimum length 2.

2.8.3.2 Prefix Bucketing

Two main approaches to prefix bucketing have been noticed in the surveyed literature.

One approach is clustering where each bucket represents a cluster that is formed by

applying a clustering algorithm and a classifier is trained on each bucket or cluster.

At runtime, the running trace is matched to the cluster based on similarity and the

corresponding classifier is used. The other approach is prefix-length buckets where each

bucket contains prefixes of a specific length, and a classifier is trained on each bucket.

In studies where no bucketing approach is applied, all prefix traces are placed in a

single bucket on which the classifier is trained on.
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2.8.3.3 Sequence Encoding

In order to train a classifier, all the prefixes need to be encoded into a feature vector.

Each trace in a log consists of a sequence of events indicating its control-flow. More-

over, each event in a trace is also supported with additional attributes such as the

timestamp of the activity or the resource who carried out the activity corresponding to

a particular event. In this setting, the attributes that remain the same throughout the

case are referred to as static attributes, while the attributes that change throughout

the case are referred to as dynamic attributes [5], Normally, features that account for

the control-flow of events in a case are commonly referred to as control-flow features,

while the features that correspond to the attributes of an event in a case form the

”data-payload” corresponding to an event. In the most simple and straightforward

encodings, only the control-flow of events in a trace are encoded as features, excluding

the data payload associated with an event.

Two such encoding schemes identified by [5] that only consider control-flow features

are boolean encoding and frequency-based encoding. In boolean encoding, a prefix Pi

is represented through a feature vector gi = (gi1, gi2,..gih), where if gij corresponds to

the event class e, then gij = 0 if e is not present in σi and gij = 1 is e is present in Pi.

This technique is also commonly referred to as ”one-hot encoding” in many papers.

Frequency-based encoding, instead of boolean values, represents the control flow in a

case with the frequency of each event class in the case [5]. In Table 2.1, an encoding

technique is categorized as ”agg” or aggregation if it uses some sort of aggregation

based encoding other than boolean or frequency encoding and doesn’t consider the

control-flow of events. Sometimes, each unique event class is represented as a categor-

ical variable. In Table 2.1, such an encoding technique is represented as ’categorical’.

This can also be seen as a form of aggregate encoding

While the above two encoding techniques utilise information from all the events in a

trace, there is still information loss since the order of events is not considered. Simple

index encoding [5], on the other hand, takes into account the order in which the event

occurs in a sequence. Each feature corresponds to a position in the sequence and the

values of each feature are the event classes.

None of the aforementioned techniques consider the data payload associated with each

event or the evolution of the data payload throughout the sequence (data-flow). Tech-

niques such as index latest payload encoding and index-based encoding, the latter being

developed by [5], additionally consider the corresponding data payload. In index latest

payload encoding (or just latest payload when the flow is not considered), the data

payload associated only with the last event in the sequence is considered, while in
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index-based encoding, the attributes associated with all the events in the sequence are

considered. This allows for the feature vector to account for the evolution of attributes

corresponding to an event throughout the sequence. The different forms of sequence

encoding as visualized in [5] are depicted in Figure 2.5.

(a) Boolean encoding (b) Frequency-based encoding

(c) Index latest payload encoding (d) Simple index encoding

(e) Index-based encoding

Figure 2.5: Different forms of sequence encoding [5]

2.8.3.4 Classification Algorithms in PBPM literature

Decision Treess (DTs) and their ensembles

A DT is a tree-structured classification model, that as the name suggests, uses a tree-

like structure to display predictions based on series of feature splits. It is one of the

oldest and most popular technique for learning discriminatory models and dates back to

the early work of [34]. DTs are learned in a top-down fashion, with an algorithm known

as Top-Down Induction of Decision Trees (TDIDT), recursive partitioning, or divide-

and-conquer learning [35]. In the beginning, the entire training sample is considered

a root node, after which the algorithm selects the best attribute to be the root node

for the first split. For this, the impurity of each attribute is calculated. This is the

degree to which the attribute contains examples that belong to a single class. Common

impurity measures include entropy and the Gini index:

Entropy(S) = −
∑c

i=1
|Si|
|S| . log2

(
|Si|
|S|

)

Gini(S) = 1−
∑c

i=1

(
|Si|
|S|

)2
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where S is the set of training examples, and Si is the set of training examples that

belong to class ci. For a two class problem, when the different classes are equally dis-

tributed in the training sample, then the impurity or entropy is maximum at 1 and

when the sample has examples of a single class, the impurity is 0.

A good attribute divides the dataset into subsets that are as pure as possible, ideally

into homogeneous subsets i.e., subsets containing training examples from the same

class. So, to determine the best attribute for the root node, the attribute is selected

that provides the highest decrease in average impurity, also known as the gain [35]:

Gain(S,A) = Impurity(S)−
∑

t
|St|
|S| .Impurity(St)

where St is value of the attribute A and |St| depicts the number of occurrences of a

particular value of attribute A.

After the first split, the procedure is applied recursively to each of the resulting sam-

ples. If a set contains only examples from the same class, or if no further splitting

is possible, the corresponding node in the tree is turned into a leaf node and labeled

with the respective class. Otherwise, an interior node is added and associated with the

best splitting attribute for the corresponding set using the steps described above. Thus

the original training sample is successively partitioned into non-overlapping, smaller

samples until each set only contains examples of the same class or a pure node [35].

Although, DTs are quite popular for classification problems, they are quite prone to

overfitting in the form of overly complex trees and do not generalise well on test data.

This led to the development of several ensemble models with decision trees as base

learners. The ensemble approach relies on combining a large number of relatively weak

simple models to obtain a stronger ensemble prediction. Bagging and boosting are two

common techniques to build ensembles. Bagging, also commonly known as bootstrap

aggregation uses random samples of the original training sample with replacement and

several weak models are trained in parallel on these random samples independently.

The majority of those predictions is determined as the final output prediction. Boost-

ing is similar to bagging in that several weak learners are aggregated to obtain a strong

learner. But unlike bagging, weak learners are trained sequentially in an adaptive way,

wherein each weak learner added focuses on the examples that the previous weak learn-

ers predicted incorrectly. Two popular ensembles using decision trees found in PBPM

literature are RF (bagging), proposed by [36] and XGBOOST, proposed by [37].

Random Forest (RF)
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In this approach, first a bootstrapped dataset is created from the original training

dataset by sampling N training examples at random with replacement, where N is

the total number of training examples in the training dataset. This new bootstrapped

dataset will be the new training set for growing the tree. Unlike DTs, RF does not

use all the input attributes to determine the root node. Instead, if there are M input

attributes, a number m << M attributes are selected at random out of M and the best

split on these m attributes is used to split the node [38]. In this way, bootstrapping and

selection of random subset of input attributes is done multiple times inducing multiple

trees. Once the forest is trained in this manner, a new example to be classified is

run across all trees. Each tree give a classification for the new test example which is

recorded as a vote. The votes from all the trees are combined and the class for which

maximum votes are counted is declared as the class of the new example. This is also

known as majority voting [38]

.

Extreme Gradient Boosting (XGBOOST)

The explanations in this section have been derived from the original paper [37]. XG-

BOOST is an adaption of gradient boosting. In normal gradient boosting, for a given

training dataset with n examples and m features D = (xi, yi)(|D| = n, xi ∈ Rm, yi ∈ R),
a tree ensemble model uses K additive functions to predict the output :

ŷi =
∑K

k=1 fk(xi), fk ∈ F

where ŷi is the predicted value and F = f(x) = wq(x)(q : Rm −→ T,w ∈ RT ) is the

space of regression trees, where each fk corresponds to an independent tree structure

with q leaf nodes and leaf weights w. The main feature of gradient boosting is that

the model is trained in an additive manner. Formally, let ŷi
(t) be the prediction of the

i-th instance at the t-th iteration, we add a new model such that the following loss is

minimised during training:

L(t) =
∑n

i=1 l(yi, ŷi
(t−1) + ft(xi))

where ft(xi) is the new model, or in this case, tree to be added.

For XGBOOST, the authors posit that while focusing on only minimising training

loss, one can fit the model very close to the training data and achieve a high training

accuracy, the model becomes complex and doesn’t generalise well on new data. To

counteract this, the authors add a regularisation term Ω(f) = γT+ 1
2
λw2 that penalises

the complexity of the model and helps smooth the final weights to prevent overfitting.

The aim of XGBOOST is to then minimise this regularised objective:

L(t) =
∑n

i=1 l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft)
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Since loss functions can get quite complex and cannot be solved simply by, for instance,

gradient descent, the authors use second order Taylor approximations to approximate

the loss function. Based on this, a scoring function is derived to measure the quality

of a tree. This measure behaves analogously to impurity measures in decision trees.

For brevity, an in-depth derivation of the scoring function is not included here and the

interested reader can have a look at the original paper [37]

Decision trees and their ensembles have been widely explored in PBPM literature. In

particular, XGBOOST has been found to perform better than the former in many

studies [39] [40]

Multinomial Logistic Regression (MLR)

MLR is a generalis ation of logistic regression to multi-class classification problems. In

logistic regression, which is a binary classifier, the output is a probability that a given

example belongs to a positive class:

P (y = 1|x) = fw(x) =
1

1+e(−wT x)
≡ σ(wTx)

and the probability of not belonging to that class can be inferred:

P (y = 0|x) = 1− P (y = 1|x) = 1− fw(x)

where fw(x) is a function of the input feature x and some model parameters or weights

wT

The expression wTx comes from linear regression, where given linear function fw(x) =

wTx, the goal is to generate a prediction. This is done by finding optimal values for the

weights wT such that the loss function is minimized. However, the outputs of linear

regression are not probabilities i.e ŷ /∈ [0, 1]. This is the reason that logistic regression

makes use of the sigmoid function σ(z) ≡ 1
1+e−z

. After using the sigmoid function, the

output of wTx falls in the range [0, 1]. The goal of logistic regression is then to find

wT such that the following loss function is minimized:

L = −
∑

i(y
i log(fw(x))) + (1− yi) log(1− fw(x

i)))

The derivation of the loss function can be found in [41]

For multi-class classification, the binary classifier is adapted to output a vector of

probabilities for each class rather than a single class and can be represented as :
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fw(x) =



P (y = 1|x;w)
P (y = 2|x;w)

.

.

.

P (y = K|x;w)


Like with the binary classifier, the outputs need to be positive and the probabilities in

the range [0, 1]. For this purpose, the softmax function is used in place of the sigmoid

function that converts a vector of K real numbers into a probability distribution of K

possible outcomes. The probability of belonging to a particular class k is:

P (y = k|x;W ) = eW
T
k x∑K

j=1 e
WT

j
x

where K is the total number of classes and W for a single input is a 1 × K matrix.

The loss function to be minimised can be adapted from the binary classifier to the

following:

L = −
[∑m

i=1(1− yi) log(1− fw(x
i)) + yi log fw(x

i)
]

= −
[∑m

i=1

∑K
k=0 1(y

1 = k) logP (yi = k|xi;w)
]

= −

[∑m
i=1

∑K
k=0 1(y

1 = k) log ew
T
k xm∑K

j=1 e
wT
j

xm

]

Then, the model parameters are continuously adapted until the training loss cannot

be further minimised and the optimal model parameter values are found.

Support Vector Machines (SVM)

Classification using SVM can be illustrated by using a simple example wherein there

are two linearly separable classes in d-dimensional space. Given a set of training data

in d-dimensional space, the goal is to find an optimal hyperplane that runs between

both classes, with all cases of a class located to one side of the separating hyperplane.

Additionally, the distance between the hyperplane and the observations closest to the

hyperplane (support vectors) referred to as the margin needs to be maximised.
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Figure 2.6: Classification using SVM

If we consider a random point X represented by a vector in Figure 2.6, and we need to

determine whether the point lies on the left or right side of the plane (depicted by the

black line in Figure), then

X⃗ · w⃗ = c, when the point lies on the plane,

X⃗ · w⃗ > c for the positive samples

X⃗ · w⃗ < c for the negative samples

where w⃗ is perpendicular to the plane and c is the distance of w⃗ from the origin to the

plane. Based on this, a decision rule can be defined as follows:

X⃗ · w⃗ − c ≥ 0 or,

X⃗ · w⃗ + b ≥ 0, substituting −c as b

Hence, a point is considered positive if X⃗ · w⃗ + b > 0 and a negative point otherwise.

The next step is to maximize the margin or the distance between the support vectors

(indicated by dotted lines in Figure 2.6). The equation for the points that lie on the

either sides of the dotted lines can be defined as W⃗ · X⃗+b ≥ +1 for positive points and

W⃗ · X⃗ + b ≤ −1 for negative points. The two equations can be combined as follows:

yi(w⃗ · X⃗ + b)− 1 ≥ 0 (2.1)

The support vectors of the two classes lie on the dotted lines which are parallel to the

hyperplane and are defined by w⃗ · X⃗ + b = ±1. The margin between the two dotted

lines is given by 2
∥w∥ and is subject to maximisation. This can also be formulated by

the following constrained optimisation problem:
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min{1
2
∥w⃗∥2}

subject to the inequality constraints of 2.1.

In the real world, however, the classes are almost never perfectly linearly separable,

and the constraints of 2.1 cannot be satisfied. To deal with such cases using only linear

separating boundaries, so-called slack variables ξni=1 are introduced that indicate the

distance the classified point is from the hyperplane [42]. The constraint of 2.1 then

becomes:

yi(w⃗ · X⃗ + b) > 1− ξi (2.2)

In case of outliers, the above constraint can easily be met, so a penalty term C
∑r

i=1 ξi

is added to penalise solutions for which ξi are very large. The constant C controls the

magnitude of the penalty associated with training samples that lie on the wrong side

of the decision boundary [42]. With the addition of the penalty term, the optimisation

problem becomes:

min

[
∥w⃗∥2
2

+ C
∑n

i=1 ξi

]
subject to the constraints of 2.2. The first part of the term aims to maximize the mar-

gin,while the second part seeks to penalize the cases located on the incorrect side of

the decision boundary with C controlling the relative balance of these two competing

objectives.

This basic approach can also be extended to allow for non-linear decision surfaces. In

this, the input data may be mapped onto a high-dimensional space through some non-

linear mapping that has the effect of spreading the distribution of the data points in a

way that enables the fitting of a linear hyperplane. More formally, an input data point

X can be represented as Φ(X) in the high dimensional space. This is achieved through

the use of kernels (functions that map lower dimensional inputs to a higher dimension).

While there are several approaches to extend this problem to a multi-class classification

problem, the one-versus-one strategy is employed in this study. In this approach the

multi-class classification is split into several binary classification problems. In this, a

series of classifiers are applied to each pair of classes. Therefore, this method requires
C(C−1)

2
classifiers to be applied to each pair of classes, where C is the number of classes.

Each binary classifier may predict one class label and the input is predicted to belong

to the class with the maximum number of votes.
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Recurrent Neural Networks (RNN) 1

Deep Neural Networkss (DNNs) have been used for a variety of applications and have

especially revolutionised the field of natural language processing. RNNs and CNNs

are two main kinds of DNN architectures that have been widely explored [43]. RNNs

were particularly developed for sequence modeling tasks, e.g., predicting the next word

from a sentence (a sequence of words). Therefore, its use for next activity prediction

in PBPM literature is quite intuitive - a prefix can be considered as a sequence of

events from which the next activity has to be predicted. Figure 2.7 depicts a simple

representation of a RNN adapted from [44].

Figure 2.7: Neurons with recurrence

The way in which RNNs differentiate from regular neural networks is that the network’s

output predictions are not only a function of the input at a particular time step, but

also the past memory of the cell state. This is depicted in Figure 2.7 through the arrow

going to itself which indicates that the output of the previous timestep is fed to the

next layer. In order to have a more clear representation, an ’unrolled’ form of the RNN

is used (Figure 2.7). At each timestep t, the hidden states and outputs are:

ht = tanh(W T
hhht−1 +Wxhxt + bh)

ŷt = σ(W T
hyht + by)

where W T
xh,W

T
hh and W T

hy are the weights or parameters of the model. For the forward

propagation, each layer is propagated through one time step at a time. The difference

between the output yt and the target ŷt is represented by the loss function that has to

minimised across all T time steps:

∂L
∂W

=
∑T

t=1
∂Lt

∂W

Learning with RNNs, has long been considered to be difficult [45]. When an input is

passed to the network at time t and the loss is calculated at time T . The tying of

1In addition the academic sources used in this section, the information is also inspired from other

sources: Colah’s blog, Madu Sanjevi’s post on Medium and Nir Arbel’s post on Medium
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weights across time steps means that the recurrent edge at a hidden node h always has

the same weight. Therefore, the contribution of the input at time t to the output at

time T will either explode or approach zero, exponentially fast, as T − t grows large.

Hence, the derivative of the loss function with respect to the input will either explode

or vanish. This is known as the vanishing and exploding gradient problem. Which of

the two occur depends on the weights of the recurrent edges and the activation func-

tion that is used in the hidden node (see Figure 2.8 for an overview of some popular

activation functions). For instance, given a sigmoid function, one can imagine the van-

ishing gradient problem, while with the Rectified Linear Unit (ReLU), one can image

the opposite.

Figure 2.8: Some popular activation functions 2

Long Short Term Memory (LSTM)

LSTMs are a special kind of RNN that are designed to deal with the problems addressed

in RNN. Each memory cell contains a node with a self-connected recurrent edge of

fixed weight one, ensuring that the gradient can pass across many time steps without

vanishing or exploding [45]. In standard RNNs, the repeating module has a simple

structure with a single tanh activation function (Figure 2.7). LSTMs have a similar

chain like structure, but the repeating module has a different structure. Figure 2.9

shows the structure of a LSTM.

2Image from : https://datawow.io/blogs/interns-explain-basic-neural-network
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Figure 2.9: A LSTM structure

The gates in Figure 2.9 have the ability to remove or add information to the cell state,

carefully regulated by structures called gates. Gates are a distinctive feature of LSTMs.

It is a gate in the sense that if its value is zero, then flow from the other node is cut off.

If the value of the gate is one, all the flow is passed through. This is captured by the

sigmoid funtion. Formally, the different components of the LSTM can be represented

as :

ft = σ(Wfht−1 +Wfxt + bf )

it = σ(Wiht−1 +Wixt + bi)

C̃t = tanh(WCHt−1 +WCxt + bC)

Ct = ftCt−1 + itC̃t

Ot = σ(WOht−1 +WOxt + bO)

ht = Ottanh(Ct)

The forget gate given by ft controls what information in the cell state to forget. Sim-

ilarly, the input gate it and the input node C̃t control what new information will be

added to the cell state given the new input information. The update from the old cell

state Ct−1 to the new cell state Ct is reflected by multiplying the old by ft, to forget

the information if needed and then adding it to itC̃t which is the new information.

The final output Ot is first run through a sigmoid layer to determine what parts of

the current cell to keep and then run through the tanh activation function so that the

output of each cell has the same range as the hidden units [45]. The value ht ultimately

produced by a memory cell is the value of the internal state Ct multiplied by the value

of the output gate Ot.

In terms of the forward pass, the LSTM can learn when to let activation into the in-

ternal cell state. As long as the input gate takes values zero, no activation can get

in. Similarly, the output gate learns when to let the value out. When both gates are

closed, the activation is trapped in the memory cell, neither growing nor shrinking,

nor affecting the output at intermediate time steps [45]. Because each memory cell
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contains a node with a self-connected recurrent edge of constant weight, the error as

well as the gradient during backward pass can flow across time steps without vanishing

or exploding. This edge is often called the constant error carousel [45]. As a result of

all these mechanisms, the LSTM has shown superior ability to learn long-range depen-

dencies as compared to simple RNNs [45].

Bidirectional Long Short Term Memory (BI-LSTM)

Another popular variation of the RNN that is used is the BI-LSTM which is illustrated

in Figure 2.10. In this architecture, there are two layers of hidden nodes. Both hidden

layers are connected to the input and the output. The first hidden layer has recurrent

connections from the past time steps just as in the regular LSTM. In the additional

second layer, the direction of recurrent connections is flipped. As a result, not only

past information, but also future sequence information is passed [45]. Formally, this is

represented as:

ht = σ(Whxxt +Whhht−1 + bh)

zt = σ(Wxz +Wzzzt+1 + bz)

ŷt = σ(Whyht +Wzyzt + by)

Figure 2.10: A BI-LSTM structure

The use of the LSTM variant of RNNs is quite popular in PBPM. This is often at-

tributed to their natural ability in delivering consistently high accuracy in the natural

sequence modelling of a trace. While some authors use just the ”vanilla” LSTM archi-

tectures [19], others use different extensions of it. For instance, in [20], the authors use
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a BI-LSTM since they are forward and backward LSTMs that can exploit control-flow

information from two directions of sequences. In [22], the authors use a time-aware

LSTM architecture inspired by the work of [46] to account for the irregularities in the

elapsed time between events. [40] combine BI-LSTMs with an attention mechanism

where different attention weights are assigned for the different features of inputs. This

is done to only account for the critical events and their attributes and minimise the

influence of non-critical events or attributes. [47] use a cost sensitive LSTM model

(CS-LSTM) to account for class imbalance in the data. In [48], the authors introduce

a hierarchical attention mechanism network (HAM-Net) where they use two layers of

the attention mechanism, hierarchically, on top of BI-LSTM.

Convolutional Neural Networks (CNN)

Another class of DNNs is the CNN which have shown remarkable performance in a

variety of applications with its roots in image recognition. The CNN architecture com-

prises of three layers- convolutional layers, pooling layers and fully-connected layers.

Figure 2.11 depicts a CNN architecture with three convolutional and pooling layers

(hidden layers) and the fully-connected layers. The dimensions for each of the images

are based on the experiments conducted in this study and will be discussed in Chapter

3. In this section, just the architecture and the working of the CNN is introduced. The

detailed explanation of how traces are processed to form images for this study will be

elaborated in Chapter 3.

Figure 2.11: A CNN architecture

The first layer in the CNN is the convolutional layer and the parameters in this layer

are centered around the use of learnable kernels. These kernels are small in spatial
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dimensionality, but spread along the entirety of the depth of the input [49]. This

kernels are essentially filters and depending upon the type of the kernel, different

features from the image can be extracted 3. The type of kernel that will be selected

is determined during learning during the training process and typically multiple filters

are used within each convolutional layer, for e.g., 32, 64, 128 etc. (see Figure 2.11).

As the filter glides across the spatial dimensionality of the input, the scalar product is

calculated for each value in the kernel to produce a feature map and then run through

an activation function to produce an activation map [49]. This is visualized in Figure

2.124.

Figure 2.12: A pictorial representation of a convolutional operation with stride 2

Just like other neural networks, CNN has parameters that can be optimized through

hyperparameter tuning. These parameters are the depth (number of filters), the stride

(the amount of movement of each filter across the image) and zero padding (padding

the border of the input with zeros to not affect the dimensionality of the output.)

The second layer is the pooling layer whose main aim is to gradually reduce the di-

mensionality of the representation. The pooling layer is applied to each activation map

produced by the convolutional layer. The most common form of pooling is called max-

pooling, wherein the kernel glides across each activation map performing the ’MAX’

operation analogous to the element-wise multiplication operation that is performed in

the convolutional layer. This scales the activation map down to a portion of the origi-

nal size [49]

3One can have a look at the different kind of filters and the resulting convolved images here
4https://www.cosmos.esa.int/web/machine-learning-group/convolutional-neural-networks-

introduction
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The last layer is the fully-connected layer which is obtained by flattening the last

pooling layer (see Figure 2.11). The connections here are very similar to the ones in

traditional neural networks.

The use of CNNs for PBPM has been gaining momentum recently . [21] proposed the

application of the CNN architecture to image-like representations. For every trace

in the event log, for every prefix trace in this trace, a 2D image is generated. In

this approach, the imagery rows represent the consecutive indices of the events in the

prefix trace and the imagery columns represent the distinct activities of the activity

domain. Every cell in this imagery is a 2-dimensional vector including the sequence of

activities (encoded using frequency encoding) and the corresponding time attributes,

respectively. [50] differs from [21] in that they do not adopt any complex preliminary

data engineering step. Instead, they directly extract a hierarchy of representation for

the process traces by computing dilated convolutions directly on event sequences.

2.8.3.5 Evaluation Measures

The most commonly used evaluation measure in the reviewed literature is accuracy,

where accuracy = TP+TN
TP+FP+TN+FN

, where TP , TN , FP and FN refer to true positive,

true negative, false positive and false negative, respectively. Accuracy represents the

ratio of correctly classified process instances to the total number of process instances.

Some papers use precision and recall as evaluation measures. Next activity prediction is

a multi-class classification problem, and so precision and recall can be defined for each

of the classes. So, precision = TP
TP+FP

is the number of correct predictions of a class

out of all the predictions for that particular class. On the other hand, recall = TP
TP+TN

is the number of correct predictions of a class out of the total number of instances

that actually carry that particular class value. Some studies go one step further and

calculate the f1-score of the methods where f1-score is precision×recall
precision+recall

.

Area under the curve (AUC) is another common evaluation measure adopted by differ-

ent studies. In order to calculate this, a receiver operator characteristic (ROC) curve

needs to be created which plots the true positive rate (TPR) against the false positive

rate (FPR) at various threshold values. Each prediction represents one point in the

ROC space. The best possible prediction method would yield a point in the upper left

corner resulting in a perfect classification. On the other hand, a random guess would

be a point along a diagonal line. Analogous to calculations of precision and recall, this

measure is also typically used for binary classification problems but can be extended

to multi-class classification problems as well. In this case, the class to be predicted is

considered the positive class while the rest are considered negative classes.
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Another typical evaluation measure that is used in studies is the mean absolute er-

ror (MAE) which is the arithmetic mean of the prediction errors which is given by

MAE = 1
n

∑n
i=1 |yi − ŷi|, where yi is the actual value while ŷi is the predicted value.

While these measures are widely used, some uncommon measures are also adopted

in some studies. For instance, [51] use the kappa coefficient which measures the de-

gree of agreement between the true values and the predicted values. This is given by,

κ = po−pe
1−Pe

, where po is the observed agreement (or observed prediction), and pe is the

expected agreement (or expected prediction) . In [52], the Brier score is used as an

evaluation measure which is the mean square difference between the true classes and

the predicted probability. It is given by BS = 1
2n

∑n
i=1

∑k=1
K (Cik − pik)

2, where n is

the number of observations, K is the number of classes, Cik = {0, 1} the indicator of

class k for observation i, and pik is the predicted probability of the observation i to

belong to class k [53]. [54], Matthews Correlation Coefficient (MCC) is proposed as an

accuracy metric. It is given by MCC = (TP×TN)−(FP×FN)√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

.

A very popular evaluation measure unique to predictive business process monitoring is

measuring the earliness of predictions. To do this, a classifier is applied to a subset of

prefix traces with each length until the prediction of a an ongoing case with different

lengths reaches an acceptable level of accuracy [5] [40]
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Table 2.1: Classification of papers based on the steps in figures 2.3 & 2.4 (RQ2)

Study
Prefix

Extraction
Trace Bucketing Sequence Encoding Classifier Evaluation

Control flow Data Payload

[20]
Prefix length

(3-8)
Prefix length Boolean None Bi-LSTM

Accuracy

& F-1 Score

[21] All prefixes None Frequency Index CNN Precision & Recall

[19] All prefixes None Index Agg LSTM MAE

[22] All prefixes None Index Agg LSTM MAE

[51] All prefixes Clustering Agg Agg RF Kappa coefficient

[55] All prefixes Prefix length Index Index RF & LR
Precision, Recall &

F-Score

[56] Prefix length Prefix length Boolean None GAN MAE

[57] All prefixes Clustering Boolean
Index latest

payload
Decision tree AUC

[58] None None Index, Categorical Index, Categorical ANN MAE

[40] All prefixes Prefix length Boolean None Att-Bi-LSTM AUC

[30] All prefixes None Categorical Categorical LSTM F-Score



Table 2.1 (continued)

Study
Prefix

Extraction
Trace Bucketing Sequence Encoding Classifier Evaluation

Control flow Data Payload

[39] All prefixes None & Prefix length Index, Frequency Index latest payload XGBoost AUC

[48] All prefixes None Boolean None Ham-Net Accuracy

[47] All prefixes None Boolean None CS-LSTM Accuracy

[50] All prefixes None Index Agg CNN Accuracy

[59] All prefixes None
Frequency, Simple

index & Index

Frequency, Simple

index & Index
RF Accuracy & AUC

[54] None Defined checkpoints Boolean None RNN
Matthews Corr-

elation Coefficient

[5]
Prefix length

(2-20)
Prefix length Index Index RF AUC Score

[27]
Prefix lengths of

gaps (3,5 & 10)
Clustering Frequency Latest payload DT & RF Accuracy

[52] All prefixes None Categorical Index CNN
Brier Score

& Accuracy



Chapter 3

Classifying Anomalous Traces

In this chapter, the procedural method (the artefact) that is developed for the exper-

iments is introduced (Section 3.4). Its use is then demonstrated step-by-step for the

chosen use case of anomaly classification.

3.1 Machine Learning Objective

In this work, the task of classifying anomalous activities is formulated as a supervised

multi-class classification problem (as introduced in section 1.2.3.1). For every activity

in an event log, the aim of the trained classifier is to emit a probability for each of the

unique activities observed in the event log to happen next. If the actual activity or the

ground truth has a very low probability of occurring according to the prediction, then

it is classified as an anomaly. This is illustrated in Figure 3.1

3.2 Choice of Classification Algorithms

This study makes use of classification algorithms identified in literature to determine

anomalous activity. Therefore, before anything, it is important to choose the classifiers

that will be used for the experiments since most of the data preparation is heavily reliant

on this. Based on the systematic review conducted (see chapter 2), RF, XGBOOST,

Figure 3.1: Process of classifying an anomalous activity
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Python Libraries/ Frameworks Description

NumPy
Popular python library for large multi-dimensional

array and matrix processing

Pandas

Popular python library that is used for data analysis.

In this study, it is primarily used for building and

manipulating dataframes needed for creating

classical machine learning models

Scikit-learn

Popular machine learning library for classical

machine learning algorithms. In this study, it is used

to implement RF, XGBOOST, MLR and SVM and the

tuning of their parameters. It is also used for data

analysis and for visualising the evaluation metrics

TensorFlow

It is a popular open source library especially for

developing deep learning models. It is specially

used for computations involving tensors

Keras

It is a high-level neural networks API that runs on

top of TensorFlow. It is used in this study to build the

deep learning models as well as to tune the models through

KerasTuner

Table 3.1: Python libraries and frameworks used in this study

SVM, MLR, LSTM, BI-LSTM and CNN are selected for the experiments because of

their wide adoption in PBPM literature for a variety of use cases.

3.3 Technical Details

All the experiments have been carried out in python using Google Colab with GPU en-

abled. The different frameworks and libraries used for the experiments are summarised

in Figure 3.1

3.4 Procedural Method

In this section, the procedural method is described. Every large machine learning

project follows a generic pipeline that includes data acquisition, data preparation,

training and evaluation [60]. This project is not any different and adheres to a similar

structure, but differs in the way each step is implemented. At a more granular level, the

experimental setup closely resembles the general workflow adopted in PBPM literature

(see section 2.8.3). The setup is visualised in Figure 3.2 .
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Figure 3.2: Experimental approach for this study

3.4.1 Model Development

In this section all the steps leading onto the development of the classification model

from acquiring the data to training the model is elaborated.

3.4.1.1 Data Acquisition

Acquiring data is the first step and foundation for any machine learning project. In

the next two subsections, the event log used for training is described along with some

visualisation to provided the reader with some insight into the underlying data.

3.4.1.1.1 Obtain Training Log

The event log used for this research pertains to a loan application process and has

been taken from [61]. This particular event log has been chosen since it represents a

financial process and can realistically be part of an audit.

3.4.1.1.2 Explore Data

The best way to visualise an event log is through a process map that captures the un-

derlying process that the event log represents. Figure 3.3 depicts the loan application

process which is generated using the process mining visualisation tool Disco. Addition-

ally, a basic description of the training log is provided in Table 3.2. Unlike traditional

machine learning projects, the data does not consist of external features or variables.

The features are the activities themselves, wherein previous activities are used as input

features to generate a prediction for the next activity. Of course, external information

can also be used as input, however, the data used here does not contain any external

information.

For any classification problem, it is necessary to visualise the distribution of classes in
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Figure 3.3: Loan application process visualized using Disco

Description of training log

# Unique Cases 5000

# Events 62324

# Unique Activities 18

Table 3.2: Description of training log
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Figure 3.4: Class distribution

the data. Most machine learning algorithms assume that data is equally distributed.

So in case of a class imbalance, the machine learning classifier tends to be more biased

towards the majority class, causing bad classification of the minority class. The problem

addressed in this study is a multi-class classification problem, where the classes are the

unique activities observed in the event log. The distribution of the classes can be

seen in Figure 3.4. From the figure, it is evident that all the classes are not equally

distributed. The mechanisms for dealing with class imbalance will discussed in Section

3.4.1.2.3

3.4.1.2 Data Preparation

In the related subsections, all the steps undertaken for preparing the data for training

are described in detail.

3.4.1.2.1 Generate prefix log

The first step in the data preparation phase is converting the training event log to a

prefix log. The event log is converted to a prefix log because during testing, the classifier

is supposed to generate an prediction based on an incomplete trace (see Section 2.8.3.1).

An example of how a case in an event log is converted to a prefix is illustrated in Table

3.3.

After creating a prefix log, many studies use clustering approaches to bucket similar
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Case ID Activity

1 Activity 1

1 Activity 2

1 Activity 3

(a) A single case with three events

⇒

Case ID Prefix No Activity

1 1 Activity 1

1 2 Activity 1

1 2 Activity 2

1 3 Activity 1

1 3 Activity 2

1 3 Activity 3

(b) Prefixes of the case in 3.3a

Table 3.3: An example of converting a single case in an event log to prefixes

prefixes for training (see Table 2.1). However, this is not done for two reasons that

were observed during experimentation:

• A bucket may have too few traces to train a meaningful classifier. This is usually

tackled by creating a minimum bucket size threshold [62]. If the number of trace

prefixes in a bucket is less than the threshold, the classifier is not trained on

that bucket, rather, the prefix is mapped to the label that is predominant in

that bucket. However, in this study, upon experimentation, it is observed that

the classifier does not train rather ’memorises’ the training data, even in buckets

with sufficient traces. This is probably due to the fact that the traces in a bucket

are quite similar to each other.

• Because a bucket may have similar traces, there is a very high possibility of

contradictions (cases where matching prefixes have different labels). The perfor-

mance of classifiers can be negatively impacted by the presence of such contra-

dictions. The PhD work of [63] addresses this in detail.

Therefore, in this study, a single classifier is trained on all the prefixes of the training

data.

3.4.1.2.2 Encode Prefix Log

The next step in the data preparation phase is encoding the prefix log. Machine learn-

ing algorithms do not support textual attributes, and therefore, such attributes need to

be converted to a numerical format before they can be fed to a machine learning model.

Different methods exist for this in literature (see Section 2.8.3.3). However, the type of

encoding to be used depends on the chosen algorithm. For example, tensor encoding is

popular for deep learning models because it supports vector and matrix operations that

can be efficiently computed given modern GPU architectures. But, such sparse data

representations deter the performance of, for instance, a RF model. Taking this into
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Figure 3.5: Tensor encoding of a prefix log

consideration, depending on the type of classification model, the encoding technique is

adopted accordingly. For all deep learning models (LSTM, BI-LSTM and CNN) used

in this study, tensor encoding is used and for all other models (RF, XGBOOST, SVM,

and MLR), frequency encoding is used.

Tensor Encoding

The features of the prefix log are essentially all the unique activities that are observed

in the event log. Since, past activities are used as input to predict a next activity, it

can be beneficial for the sequence of all the activities within a case to be maintained.

For deep learning models (RNNs and CNNs), this can be achieved with the help of

tensors which can be simplistically thought of as generalised matrices (in this case,

generalised to three dimensions). Figure 3.5 illustrates the tensor encoding of a prefix

log.

Each prefix in the prefix log can be thought of as a two dimensional m×n matrix where

m is the number of features or unique activities that are observed in the training log

and n is the length of the largest trace observed in the training log (45 in this study).

For prefixes that have lengths less than the largest trace, remaining entries are padded

with zeroes. Thus, each prefix matrix has the same length. The third dimension, then,

just depicts the collection of prefixes in the prefix log. So each input to a DNN model

is a prefix matrix. This is illustrated in Figure 3.5

For CNNs in particular, a special kind of preprocessing is required. CNNs are usually

used for image classification where the inputs to the model are images. So, here, the

prefixes need to be converted to images. An image can be considered as a w × h × 3

matrix, where w and h are the width and height of the image and the third dimension

depicts the three colour channels red, green and blue. Each value in the w × h grid
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Case ID Activity

1 Activity 1

1 Activity 2

1 Activity 3

(a) A single case with three events

⇒

Case ID Prefix No Act Act Act

1 1 1 0 0

1 2 1 1 0

1 3 1 1 1

(b) Encoding 3.4a using frequency encoding

Table 3.4: An example of encoding a singe case using frequency encoding

depicts the pixel intensity. This can be generalised to this study as follows: Each pre-

fix is converted to a (m × m × 1) where m is the largest trace observed in the event

log, and because this particular use case doesn’t require different channels, the third

dimension is set to 1. The encoding here is similar to that shown in Figure 3.5. The

entire CNN architecture for the base CNN architecture can be visualised in Figure 2.11.

Frequency Encoding

For the models used in these experiments that are not DNNs i.e., RF, XGBOOST, MLR

and SVM, tensor encodings are not supported by the python libraries that implement

them. This can be counteracted by representing each prefix as a 1 × 45 vector (45

is the length of the largest prefix). However, these sparse representations can lead to

poor prediction accuracies. For this reason, frequency encoding (see Section 2.8.3.3) is

used. Table 3.4 illustrates frequency encoding for a single sample case.

3.4.1.2.3 Dealing with Class Imbalance

From Figure 3.4, it can be seen that all the activities are not evenly distributed. A

consequence of this while testing is that a class occurring more frequently during train-

ing is predicted because the model is not able to accurately learn the characteristics of

the training examples of a less frequent class. There are two main approaches to deal

with class imbalances (1) resampling data; (2) creating penalised models. Resampling

is carried out by either oversampling by adding copies of instances from the under-

represented class or undersampling by deleting instances from the over-represented

class. The problem with this method is that it changes the original underlying infor-

mation. For this reason, in this study, the technique of penalised classification is used.

In this method, an additional cost on the model is imposed for making classification mis-

takes on the minority class during training. For the classification models implemented

in scikit-learn, this method is implemented through the class weight parameter

by setting it to balanced. The balanced class weighting was introduced by [64] and it

works by assigning a smaller error to smaller weight values and larger error values to
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larger weights. The class weights are determined using the following formula:

cw = n
k×nc

where the class weight for a particular class is cW , n is the total number of training

examples, k is the total number of classes and nc is the number of training examples

of the class whose weight needs to be determined.

For the deep learning models, the same formula is implemented using a customised loss

function that is used during training

3.4.1.3 Training

3.4.1.3.1 Tune Hyperparameters

When building a machine learning model, one is presented with the dilemma of how

to define a model architecture to fit a specific use case. A classification algorithm on

its own is generic and can not always be used as-is for all use cases. The process of

hyperparameter tuning can be thought of as instantiating a generic model for a spe-

cific use case. We often do not know beforehand what model parameters (e.g., trees in

RFs or number of neurons in LSTMs) will produce optimal results for our data. We

would like our model to learn and explore different possibilities. When training, our

model can plug in different values and the values that optimises the loss function best

is picked. There are several approaches for hyperparameter tuning. For this study, the

two most common methods, namely grid search and random search are considered.

Grid Search

Grid search is the most intuitive and basic way to carry out hyperparameter tuning. In

this approach, during training, a model is built for each possible combination of all the

hyperparameter values provided. Each model is evaluated and the configuration that

produces the best results is chosen. Clearly, the major drawback with this approach

is its exhaustiveness which is extremely inefficient. For most data sets, only a few

hyperparameters play a major role in optimising the model score. Grid search has the

tendency of exploring even unimportant parameters.

Random Search

Random search, as the name suggests, randomly samples from a set of hyperparameter

values. The strategy in random search is an exploratory one as opposed to grid search’s

greedy one. However, this approach is far from perfect. There is a possibility that an
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optimal configuration may never have the chance to get explored.

Combining Random Search & Grid Search

In this study, an attempt is made to utilise the strengths of both methods by combining

the exploratory and greedy nature of random search and grid search respectively. First

random search is carried out to narrow the set of hyperparameters through random

sampling. Then, grid search is performed on this narrowed down set of parameters.The

hyperparameter search space considered for the experiments is summarised in Table

3.5.
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Classification Algorithm Configurable parameters for tuning
Set of values considered during

experimentation

RF
max depth: the maximum depth of the tree. A greater value

can lead to overfitting

[10, 20, 30, 40, 50, 60,70. 80, 90,

100, None]

min samples split: the minimum number of observations in a

given node required to split it
[1, 2, 5, 10, 15, 25, 50, 75, 100, 200]

max features: maximum features provided to each tree [sqrt(n features), log2(n features)]

bootstrap: method for sampling (with or without sampling) [True, False]

min samples leaf: minimum number of samples that should be

present in the leaf node after splitting a node
[1, 2, 5, 10, 15, 25, 50, 75, 100, 200]

n estimators: number of trees in our ensemble [100, 200, 300, 400, 500]

XGBOOST booster: the type of booster to use gbtree

eta: the learning rate that determines the step size at each iteration

as the model optimizes toward the objective
[0.01, 0.03, 0.05, 0.1, 0.15, 0.2, 0.3]

max depth: the maximum depth of the tree. A greater value can

lead to overfitting
[3, 5, 7, 10]

n estimators: number of tree in our ensemble [100, 200, 300, 400, 500]

colsample bytree: represents the fraction of columns to be randomly

sampled for each tree
[0.2, 0.4, 0,6, 0.8, 1]

subsample: represents the fraction of observations to be samples for

each tree
[0.2, 0.4, 0,6, 0.8, 1]

alpha: L1 regularization on the weights [0, 0.5, 1, 1.5, 2, 3, 4, 4.5]

lambda: L2 regularization on the weights [0, 0.5, 1, 1.5, 2, 3, 4, 4.5]



Table 3.5 continued from previous page

gamma: the minimum loss reduction required to make a split. It is

another regularization parameter
[0, 0.1, 0.3, 0.4, 0.5, 0.6]

SVM

c: decides the penalty for each misclassified point. A smaller value

of c allows for a bigger margin for points to

be misclassified

[0.1, 1, 10, 100]

kernel: a method to spread the data points across N\-
dimenional space

[linear, polynomial, RBF, sigmoid]

gamma: influences how far the data points will be from the

hyperplane
[1, 0.1, 0.01, 0.001]

MLR solver: algorithm to use in the optimization problem [newton-cg, lbfgs, sag, saga]

penalty : the type of regularization to use [None, L1, L2, elasticnet (both L1&L2)]

c: controls penalty strength [100, 10, 1, 0.1, 0.01

LSTM layers: number of hidden layers [1, 2, 3]

units: number of neurons in a layer [32 - 512 with step size of 32]

learning rate: determines how quickly parameter in the network are

updated
[0.01, 0.001, 0.0001]

activation: a method to introduce non-linearity to models [tanh, sigmoid, relu]

dropout: a layer to prevent overfitting by bypassing randomly

selected neurons.
[0-0.5 with step size of 0.05]

kernel initializer: method for random initialization of weights
[uniform, lecun uniform, glorot normal,

glorot uniform, he normal, he uniform]

BILSTM layers: number of hidden layers [1, 1,2 ]

units: number of neurons in a layer [32 - 512 with step size of 32]



Table 3.5 continued from previous page

learning rate: determines how quickly parameter in the network are

updated
[0.01, 0.001, 0.0001]

activation: a method to introduce non-linearity to models [tanh, sigmoid, relu]

dropout: a layer to prevent overfitting by bypassing randomly

selected neurons.
[0-0.5 with step size of 0.05]

kernel initializer: method for random initialization of weights
[uniform, lecun uniform, glorot normal,

glorot uniform, he normal, he uniform]

CNN layers: number of convolutional layers [2, 3]

filters:number of filters in each convolutional layer [32, 64, 128]

learning rate: determines how quickly parameter in the

network are updated
[0.01, 0.001, 0.0001]

activation: a method to introduce non-linearity

to models
[tanh, sigmoid, relu]

kernel initializer: method for random initialization of weights
[uniform, lecun uniform, glorot normal,

glorot uniform, he normal, he uniform]

Table 3.5: Hyperparameter search space used for the experiments
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3.4.1.3.2 Model Validation

A well-known fundamental problem in machine learning is overfitting, a process where

a model tries to fit the training data perfectly, memorising even the tiny fluctuations

and noise in the data. As a result, it is not able to generalise on new, unseen data.

It is impossible to know when exactly a model is overfitting without testing it out on

data that is not used for training. Cross-validation is commonly used for this purpose.

It is a technique for evaluating machine learning models by training several models on

subsets of the available input data and evaluating them on the complementary subset

of the data.

In this study, during the tuning process, cross-validation is already carried out through

the GridSearchCV and RandomSearchCV implementations from the scikitlearn li-

brary. In these implementations, stratified k-fold is used which is a variation of k-fold

where each subset contains approximately the same percentage of samples of each tar-

get class as the complete set. Empirically, the value of k used is found to be between

5 and 10. In this study, 10 fold validation i.e., k = 10 is used.

3.4.1.3.3 Select best model

After the training process is completed, for each classification algorithm, we would like

to save the model which performed the best during training so that we that we can

later retrieve it and apply it to generate predictions on the test data. For deep learn-

ing models based on neural networks that are implemented through the tensorflow

library, this is possible through the ModelCheckpoint function that allows one to con-

tinually save the model both during and at the end of training. The model is stored in

a HDF5 format, an open source file format that supports large, complex, heterogeneous

data. For models that are implemented through the scikit-learn library, pickle

is used. The pickle module in python implements the algorithm for serialising and

de-serialising data structures in python.

3.4.2 Post Model Development

In the following subsections, the steps to evaluate the models developed in the previous

phase are described.

3.4.2.1 Data Acquisition

In the following subsection, the process of acquiring the test data to evaluate the models

developed in the previous phase is described.
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Description of testing log

# Unique Cases 5000

# Events 58785

# Unique Activities 18

# Anomalous events 1140

Table 3.6: Description of testing log

3.4.2.1.1 Obtain Testing Log

The event log used for testing has also taken from [61], and is similar to the training

data, but infrequent events have been injected randomly to convert them to anomalous

logs for evaluation. A description of the testing log can be visualised in Table 3.6. For

testing, the testing log is converted to a prefix log and each prefix or incomplete trace

is sent to the classifier one at a time to generate a prediction.

3.4.2.2 Data Preparation

Just like the training step in the model development phase, the test data also needs to

be transformed before it is fed into a classifier. This is explained in the next subsection.

3.4.2.2.1 Encode Test Data

The process for encoding the test data is similar to one adopted to prepare the data

for training. Each incoming prefix or incomplete trace generated from the test prefix

log is encoded and then sent to the classifier.

3.4.2.3 Evaluation

3.4.2.3.1 Retrieve Best Model

In order to evaluate the performance of the classifiers on the test data, the best model

for each classifier is retrieved. This is the model that performed the best during the

training process.

3.4.2.3.2 Classify Test Data

For a given activity in the test data, each classifier produces a probability for every

activity that follows next and the activity with the maximum probability is predicted

as the next activity.
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3.4.2.3.2.1 Threshold for determining anomalies

There is no fixed threshold value that one can apply to determine anomalies. This

value is determined upon experimentation. It could also be determined from domain

knowledge - knowing how frequently or infrequently an activity occurs in reality. In

this study, the threshold is derived experimentally. For each activity in the test set, a

set of top three most probable next activities are determined. If the ground truth or

the observed next activity are not in this set, it is determined an anomaly.

3.4.2.3.3 Evaluate Performance

In this section, the steps for measuring the performance of the classifiers is described.

To understand the effects of hyperparameter tuning and class weighting, four different

configurations of each classifier are evaluated: (1) base model; (2) base model with

hyperparameter tuning only; (3) base model with class weighting only; (4) base model

with both hyperparameter tuning and class weighting. For RF, XGBOOST, MLR

and SVM, the base model is the model which is not tuned or class-weighted and uses

the default hyperparameter configuration from python’s scikit-learn library. For

LSTM, BI-LSTM and CNN, the base model refers to the model configurations used

by [19], [20] and [21], respectively. The tuned models refer to best models for each

classifier with the optimal hyperparameter configuration that were determined during

training. The class-weighted models are those that account for class imbalance (see

section 3.4.1.2.3). Table 3.7 shows the default parameters as well as the optimal pa-

rameters obtained after tuning.

Choice of Evaluation Metrics

Even though accuracy and f1-score are mostly adopted as evaluation measures in PBPM

literature (see Table 2.1), the confusion matrix is chosen for evaluation as it gives a

better depiction of the performance of the classifier, especially considering that the

proportion of anomalies in the data with respect to the non-anomalous events is quite

low. Based on the confusion matrix, the precision, recall and f1-score for each class is

also computed.
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Classification Algorithm Parameters Default Parameters
Optimal Parameter for tuning

without class weights

Optimal Parameters for tuning

with class weights

RF max depth: None 60 60

min samples split 2 2 2

max features sqrt(n features) sqrt(n features) sqrt(n features)

bootstrap TRUE TRUE TRUE

min samples leaf 1 5 5

n estimators 100 500 500

XGBOOST eta 0.3 0.3 0.3

max depth 6 4 6

n estimators 100 100 200

colsample bytree 1 0.6 0.5

subsample 1 0.8 0.5

alpha 0 0 0

lambda 1 1 1

gamma 0 1 0

SVM c 1 0.001 1

kernel function Linear Linear Linear

penalty L2 L2 L2

MLR solver lbfgs newton-cg newton-cg

penalty L2 L2 L2

1 0.1 0.1

LSTM layers 2 2 2

units layer 1 100 160 196

units layer 2 100 160 196



Table 3.7 continued from previous page

learning rate 0.002 0.0001 0.0001

activation tanh tanh tanh

dropout 0.2 0.05 0.05

kernel initializer glorot uniform he normal he uniform

BI-LSTM layers 1 2 2

units layer 1 100 288 237

learning rate 0.002 0.002 0.002

activation tanh relu relu

dropout 0.2 0.2 0.2

kernel initializer glorot uniform he normal he normal

CNN layers 3 2 2

filters layer 1 32 48 80

filters layer 2 64 48 48

filters layer 3 128 - -

kernel size layer 1 2 2 2

kernel size layer 2 4 8 8

kernel size layer 3 8 - -

learning rate 0.002 0.01 0.001

activation relu relu relu

kernel initializer glorot uniform he normal he uniform

Table 3.7: Optimal hyperparmeters
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3.5 Results

In this section, only an overview of the results is provided. The results are discussed

in Chapter 4

3.5.1 RF

(a) Base model (b) With hyperparameter tun-

ing

(c) With class weighting (d) With hyperparameter tun-

ing & class weighting

Figure 3.6: Confusion Matrices for RF

Base Model

Precision Recall f1-score

Not Anomalous 0.98 1.00 1.00

Anomalous 0.94 0.54 0.69

Base Model with Hyperparameter Tuning

Precision Recall f1-score

Not Anomalous 0.98 1.00 1.00

Anomalous 0.94 0.55 0.69

Base Model with Class Weighting

Precision Recall f1-score

Not Anomalous 0.98 1.00 1.00

Anomalous 0.94 0.55 0.69

Base Model with Hyperparameter Tuning & Class Weighting

Precision Recall f1-score

Not Anomalous 0.98 1.00 1.00

Anomlaous 0.94 0.55 0.69

Table 3.8: Precision, recall & f1-score for each class for RF
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3.5.2 XGBOOST

(a) Base model (b) With hyperparameter tun-

ing

(c) With class weighting (d) With hyperparameter tun-

ing & class weighting

Figure 3.7: Confusion Matrices for XGBOOST

Base Model

Precision Recall f1-score

Not Anomalous 0.98 1.00 1.00

Anomalous 0.82 0.41 0.55

Base Model with Hyperparameter Tuning

Precision Recall f1-score

Not Anomalous 0.98 1.00 1.00

Anomalous 0.84 0.50 0.60

Base Model with Class Weighting

Precision Recall f1-score

Not Anomalous 0.98 1.00 1.00

Anomalous 0.81 0.41 0.54

Base Model with Hyperparameter Tuning & Class Weighting

Precision Recall f1-score

Not Anomalous 0.98 1.00 1.00

Anomlaous 0.78 0.52 0.62

Table 3.9: Precision, recall & f1-score for each class for XGBOOST
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3.5.3 MLR

(a) Base model (b) With hyperparameter tun-

ing

(c) With class weighting (d) With hyperparameter tun-

ing & class weighting

Figure 3.8: Confusion Matrices for MLR

Base Model

Precision Recall f1-score

Not Anomalous 1.00 0.99 1.00

Anomalous 0.74 0.55 0.63

Base Model with Hyperparameter Tuning

Precision Recall f1-score

Not Anomalous 1.00 1.00 1.00

Anomalous 0.74 0.56 0.64

Base Model with Class Weighting

Precision Recall f1-score

Not Anomalous 1.00 1.00 1.00

Anomalous 0.77 0.55 0.64

Base Model with Hyperparameter Tuning & Class Weighting

Precision Recall f1-score

Not Anomalous 1.00 1.00 1.00

Anomlaous 0.77 0.56 0.65

Table 3.10: Precsion, recall & f1-score for each class for MLR
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3.5.4 SVM

(a) Base model (b) With hyperparameter tun-

ing

(c) With class weighting (d) With hyperparameter tun-

ing & class weighting

Figure 3.9: Confusion Matrices for SVM

Base Model

Precision Recall f1-score

Not Anomalous 1.00 0.99 1.00

Anomalous 0.73 0.52 0.61

Base Model with Hyperparameter Tuning

Precision Recall f1-score

Not Anomalous 1.00 1.00 1.00

Anomalous 0.73 0.52 0.61

Base Model with Class Weighting

Precision Recall f1-score

Not Anomalous 1.00 1.00 1.00

Anomalous 0.73 0.53 0.61

Base Model with Hyperparameter Tuning & Class Weighting

Precision Recall f1-score

Not Anomalous 1.00 1.00 1.00

Anomlaous 0.80 0.51 0.62

Table 3.11: Precison, recall & f1-score for each class for SVM
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3.5.5 LSTM

(a) Base model (b) With hyperparameter tun-

ing

(c) With class weighting (d) With hyperparameter tun-

ing & class weighting

Figure 3.10: Confusion Matrices for LSTM Machines

Base Model

Precision Recall f1-score

Not Anomalous 1.00 0.99 1.00

Anomalous 0.62 0.36 0.46

Base Model with Hyperparameter Tuning

Precision Recall f1-score

Not Anomalous 1.00 1.00 1.00

Anomalous 0.67 0.40 0.50

Base Model with Class Weighting

Precision Recall f1-score

Not Anomalous 1.00 1.00 1.00

Anomalous 0.58 0.39 0.47

Base Model with Hyperparameter Tuning & Class Weighting

Precision Recall f1-score

Not Anomalous 1.00 1.00 1.00

Anomlaous 0.65 0.43 0.52

Table 3.12: Precison, recall & f1-score for each class for LSTM
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3.5.6 BI-LSTM

(a) Base model (b) With hyperparameter tun-

ing

(c) With class weighting (d) With hyperparameter tun-

ing & class weighting

Figure 3.11: Confusion Matrices for BI-LSTM

Base Model

Precision Recall f1-score

Not Anomalous 0.97 0.99 0.98

Anomalous 0.62 0.31 0.41

Base Model with Hyperparameter Tuning

Precision Recall f1-score

Not Anomalous 0.98 0.99 0.98

Anomalous 0.59 0.37 0.44

Base Model with Class Weighting

Precision Recall f1-score

Not Anomalous 0.98 0.99 0.98

Anomalous 0.62 0.37 0.46

Base Model with Hyperparameter Tuning & Class Weighting

Precision Recall f1-score

Not Anomalous 0.98 0.99 0.98

Anomlaous 0.60 0.40 0.48

Table 3.13: Precison, recall & f1-score for each class for BI-LSTM
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3.5.7 CNN

(a) Base model (b) With hyperparameter tun-

ing

(c) With class weighting (d) With hyperparameter tun-

ing & class weighting

Figure 3.12: Confusion Matrices for CNN

Base Model

Precision Recall f1-score

Not Anomalous 0.97 0.99 0.98

Anomalous 0.64 0.37 0.47

Base Model with Hyperparameter Tuning

Precision Recall f1-score

Not Anomalous 0.98 0.99 0.98

Anomalous 0.64 0.38 0.48

Base Model with Class Weighting

Precision Recall f1-score

Not Anomalous 0.98 0.99 0.98

Anomalous 0.66 0.37 0.40

Base Model with Hyperparameter Tuning & Class Weighting

Precision Recall f1-score

Not Anomalous 0.98 0.99 0.98

Anomlaous 0.64 0.47 0.54

Table 3.14: Precison, recall & f1-score for each class for CNN
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Chapter 4

Discussion & Study Limitations

4.1 Understanding Model Performance

With respect to the majority class i.e. non-anomalous activities, all the classifiers

produce similar results. However, for the problem of anomaly detection, it is more

interesting to compare the classifiers based on the minority class. It can be seen

from the results that the performance of the classifiers on the minority class is not

nearly as good as it is for the majority class. This is precisely why a metric such

as accuracy wasn’t chosen for evaluation as it skews the results towards the majority

class. Moreover, it may be tempting to mainly consider precision since it is generally

more valuable to minimize the number of false negatives in a problem of anomaly

classification where one would like the maximum number of anomalies to be detected.

However, having a large number of false positives also isn’t desirable. Therefore, some

sort of trade-off between precision and recall is preferred. The f1-score, being the

harmonic mean of the two, gives us a better picture of how the model performs with

respect to both these aspects. Based on the f1-score, RF performs the best across all

four configurations (see Figure 4.1). The performance of classifiers for the experiments

in this study can be ranked according the performance of the optimal configuration

(with tuning and class weighting) as follows: RF > MLR > SVM > XGBOOST >

CNN > LSTM > BI-LSTM. In general, the models perform poorly in terms of recall

and have a better precision score (see Figures 4.2 & 4.3). The effects of tuning and

class weighting, the two main techniques applied to the base models in this study, will

be discussed in the next two subsections.
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Figure 4.1: f1-score of the classifiers across the four different configurations

Figure 4.2: Precision of the classifiers across the four different configurations
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Figure 4.3: Recall of the classifiers across the four different configurations

4.1.1 Effect of Hyperparameter Tuning

From the results, it can be observed that some models are more sensitive to tuning

than others, for instance, XGBOOST, LSTM, BI-LSTM and CNN. Along with class

weighting, tuning results in an increase of 7%, 6%, 7% and 7% in f1-score, respectively

(see figures 3.9, 3.12, 3.13 & 3.14, respectively). The performance of other models

do not increase significantly with tuning. For RF, the performance is unaffected with

tuning. This means that the default configurations in scikit-learn are quite robust

and work well as-is for this study. The same can be said about the default configurations

of MLR. The SVM classifier is very sensitive to the kernel choice and the value of

c. In this study, only the linear and polynomial kernels were considered suitable.

Another observation is that, in this study, tuning tries to improve the balance between

precision and recall. In other words, it is trying to improve the f1-score. Of course, if

specified, tuning can be configured to optimise only precision or only recall. However,

as mentioned earlier, a balance between the two is generally preferred. Another main

thing to consider when tuning is time and availability of computational resources (good

GPU). Tuning for classical machine learning models such as RF, XGBOOST, MLR

and SVM can take several hours, while tuning DNNs can take days. Therefore, it is

certainly not recommended to exhaustively tune models. This also has implications

for model choice. For this particular study, RF performs relatively well under default

parameter configurations and training a RF takes only a few minutes.

4.1.2 Effect of Class Weighting

The goal with class weighting is to penalise misclassifications of the minority class, so

that false negatives can be minimised, in other words improving the precision score of
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the minority class. However, from the results of this study, it is observed that class

weighting improves precision of some models and recall in others. But in general, class

weighting improves the f1-score of all the models. Along with tuning, the benefits of

class weighting is more evident with improvements in both precision, recall and the

overall f1-score.

4.2 Influence of Process Structure

Processes that are subjected to audit are rather structured, for instance, purchase-

to-pay, in that they follow a set of agreed-upon requirements. Typically, the set of

requirements can also be modelled using some form of process modelling notation, for

instance, Business Process Model Notation (BPMN). A process audit, then, evaluates

the series of steps that have taken place in reality against the set of agreed upon

requirements. The experiments in this study are also centered around such a structured

process. For such kind of processes, a machine learning model could be trained on

similar past process executions to perform automated process audits by learning normal

and abnormal behaviour. The same cannot be said for unstructured processes with

several different process variations. In such cases, a machine learning model may

interpret this as noise and not be able to learn the underlying behaviour, consequently

leading to a deteriorating model performance.

4.3 Study Limitations

4.3.1 Incorporating Additional Attributes

In this research, only previous activities were considered as input features for the

classifier in order to determine whether or not the following activity is anomalous.

Normally, an event log contains other information such as the time when the activity

was conducted or the resource that conducted the activity. Including these additional

attributes could influence the performance of the classifier. One could argue that

resource information could be particularly interesting for anomaly detection. However,

the event log used in this study did not include this information. Although these

attributes could serve as valuable input for a machine learning model, it comes with one

caveat - the curse of dimensionality. Nevertheless, in such scenarios, feature selection

methods could be used to determine useful attributes.
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4.3.2 Model Deployment for Audit in the Real World

Model deployment for a real-world audit scenario i.e. integrating the models developed

into an existing production environment is out of the scope of this study. Deploying

models is one of the most difficult processes of gaining business insights from ma-

chine learning. Before a model can be productionised, a lot of coordination is required

between data scientists, software engineers and business professionals. Even after a

model is successfully launched into a production environment, several other aspects

need to considered such as model serving (how the model will be used, for instance,

through front-end applications), model performance monitoring and model re-training.

This could mean different things for internal and external audit. For instance, con-

stantly monitoring the performance of models on live data and retraining would be

more relevant for internal audit than for external audit since external auditors audit

past transactions. On the other hand, for external audit, deployment of machine learn-

ing models could facilitate automated process audits. In addition to model deployment

challenges, the audit profession is also faced with other challenges such as the training

and expertise of auditors, as well as challenges associated with data (data availability,

reliability and integrity). This study is merely a first step towards practically realising

predictive audit scenarios.

4.3.3 Embedding Predictive Process Mining in Audit

This study provides an example of how predictive process mining can be leveraged for

both internal and external audit. All recorded business transactions can be utilised

to automatically detect deviations. In this manner processes and their internal re-

lated controls can be monitored to determine control deficiencies in financial controls.

Even though these benefits are significant for the audit profession, more work needs

to be done in terms of conceptually situating predictive process mining in financial

statement audits such that they also meet the requirements of contemporary audit

standards. Another limitation to consider is that the benefits of process mining are

bound to the business transactions that have been recorded in some sort of information

system. Unrecorded transactions outside the system cannot be inspected through pro-

cess mining techniques. Additionally, considering how strict audit requirements are,

the use of algorithms need to meet certain quality criteria. It is, therefore, not surpris-

ing that algorithms need to produce extremely low misclassification rates. For audit,

it is preferable to have zero false negatives, and maybe a few false positives so that

violations or fradulent transactions may not go undetected. However, in this study, a

state of ’zero false negatives’ is not achieved. Additionally, the algorithms in this study

have high false positive rates. This is also generally the case in practice, where in an

attempt to achieve zero false negatives, algorithms produce high false positives [65].
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Based on this, it is uncertain if process mining will be leveraged in a predictive manner

on an operational level in audit.
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Chapter 5

Conclusions & Future Work

In the audit profession, one of the main tasks of an auditor is ensuring that the finan-

cial reports produced are accurate and reliable. Since financial reports are essentially

outcomes of underlying business processes, monitoring these processes becomes cru-

cial. Due to this, the audit community both in research and practice have taken taken

interest in process mining and its use cases for audit.

Before conducting this research, the DSRM was chosen as the research methodology

to guide the entire research process. The starting point for this research according to

the DSRM was the discovery of a research domain, namely PBPM for which, initially,

an explicit problem statement could not be determined. Following the identification

of this research domain, the use case for predictive audit was formulated, namely clas-

sifying anomalous traces in audit logs. This use case would address two problems in

audit research and practice that were identified during the first step of the DSRM:

(1) process mining is not leveraged fully in audit; and (2) lack of predictive audit use

cases. The solution (artefact) would fulfill the objectives set out in the second step

of the DSRM by demonstrating how process mining can be leveraged in a predictive

manner for a practical audit use case.

As part of the third phase of the DSRM, a procedural method (the artefact) was to

be developed which would incorporate elements from both traditional data science

pipelines as well as the generic approach adopted in PBPM literature. The use of this

procedural method would then be demonstrated by classifying anomalous traces in a

loan application process in phase four. This resulted in the formulation of the research

goal for this study:

RG: To develop a procedural method that utilises machine learning approaches

obtained from PBPM literature to classify anomalous traces in audit logs

In this study, the task of classifying anomalies was formulated as a next activity pre-
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diction problem (a supervised multi-class classification problem), and so the research

questions to achieve the defined research goal were defined accordingly:

RQ: What is PBPM and what machine learning and deep learning algorithms

have been used for next activity prediction in PBPM literature?

To answer this question, a systematic literature review was conducted to first get a

broad understanding of the domain of PBPM and then delve deeper into the machine

learning and deep learning algorithms used for next activity prediction. During the

literature analysis, a noticeable observation was that all studies in this domain adopted

a structured process which broadly consisted of two phases - an offline and online

phase, with each phase consisting of several sequential processing steps in between.

The studies differed not only in terms of algorithms used, but also in the way these

steps were conducted. Therefore, there was a need to classify the studies in this domain

before a specific implementation could be chosen for this study. Accordingly, the next

research question was formulated:

SRQ2: How can these methods be classified?

As mentioned earlier, the experiments conducted in PBPM literature consisted of an

online and offline phase . These phases included three main steps, namely, prefix

extraction, prefix bucketing and sequence encoding and the studies differed in the way

these steps were carried out. Therefore, in addition to classifying the papers based on

only the algorithms used, these three steps are also used as the basis for classification.

Usually after processing and training an algorithm, the algorithm needs to be evaluated

on the basis of some performance metric. Therefore, the third research question was

formulated as follows:

SRQ3: What evaluation measures exist in PBPM literature for next activity

prediction?

This research question is linked to the previous one. In addition to classifying papers

based on processing mechanisms and algorithms used, the papers were also classified

on evaluation measures adopted. The classified papers are summarized in Table 2.1.

Finally, the main contributions of this work were addressed by RQ4 and aimed to apply

the theoretical foundations obtained from the answers to RQ1, RQ2 and RQ3 to the

use case defined for this study as part of the fourth and fifth step of the DSRM

SRQ4: How do the methods identified in RQ1 perform when evaluated using

the measures identified in RQ3?
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For this task, seven representative algorithms from PBPM literature were chosen,

namely RF, XGBOOST, MLR, SVM, LSTM, BI-LSTM and CNN. Depending on

the nature of the algorithms, data processing steps were performed accordingly. Ad-

ditionally, class weighting and tuning were adopted to deal with class imbalance and

training performance respectively. Finally, the trained classifiers were evaluated across

four configurations (base, with tuning, with class weighting, and with both tuning and

class weighting) using confusion matrices. The confusion matrices were used to com-

pute the precision, recall and f1-scores of each class. The RF classifier performed the

best across all configurations with the general performance ranking of all classifiers as

follows: RF > MLR > SVM > XGBOOST > CNN > LSTM > BI-LSTM. In general

it was observed that all classifiers performed the best with tuning and class weighting

together. It was also observed that the classifiers had a better precision score that

recall across both classes in all configurations.

Recommendations for future work

Based on this study, several directions for future work can be explored:

• It would be interesting to explore the effects of other features in addition to

activities on the performance of the classifier;

• It can be argued that the RF classifier performs the best because it is an ensemble

model and so for future work, ensembles of different models could be investigated;

• Another direction for future work could be researching how predictive analytical

methods such as the one proposed in this study could be embedded in contem-

porary audit procedures.
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