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ABSTRACT  

This paper has investigated chlorophyll-a light absorption coefficient in lake Naivasha as a proxy to 
estimate the phytoplankton biomass using MERIS full resolution (FR) data (300 m) and empirical 
algorithms. An increase in the phytoplankton content of water bodies contributes to a profound 
degradation in water quality that can have adverse ecological and human health effects through production 
of toxins in the presence of cyanobacterias or mechanical damage to marine environment. Since such algal 
bloom events are sporadic in time and isolated in space, traditional field based measurement and 
monitoring methods for detecting blooms of phytoplankton are costly and time consuming, delaying 
management decisions. Remote sensing technique which utilizes the optical properties (absorption and 
reflectance) of blue-green algal pigments (chlorophyll a and phycocyanin) can provide rapid detection of 
algal blooms. The water leaving reflectance from MERIS FR products were derived using an image based 
processing (by comparing with the in-situ reflectance) for estimating and correcting atmospheric noise 
recorded by the sensor. Coupled with physical and bio-chemical data from lakes, remote sensing can 
provide an efficient method for tracking algal bloom occurrence and their distribution in time and space 
for long-term management strategies. 
A total of about 169 in-situ radiometric and about137 absorbance spectra were collected during one cruise 
from 17th of September 2010 to 03rd October 2010 in the two physically interconnected but optically 
different lakes; the Crescent Island lagoon and the main Lake Naivasha using a Trios RAMSESARC 
radiance sensor (7° field of view, 320–950 nm), and a Trios RAMSES-ACC-VIS irradiance sensors. 
Ground truth samples were analyzed for pigment absorption coefficients immediately after sampling using 
the RD2000 Spectrophotometer.  
An atmospheric correction was implemented on the MERIS imagery data and validated using in-situ 
hyperspectaral water leaving reflectance (WLR) spectra measured on Lake Naivasha. The R2 and RMSE 
values between the atmospherically corrected satellite derived WLR and in-situ measured values in the 
NIR was 0.746 and 0.117 respectively. 
Previously published empirical spectral algorithms for the detection of chl-a by Gitelson (2008), Shen et al. 
(2010), and FLH baseline methods by Gower et al. (2004), were applied to the in-situ phytoplankton 
absorption coefficient, Trios-reflectance and MERIS derived reflectance spectra divided into calibration 
and validation dataset. To account for weak FLH signal at around 685nm due to the higher chlorophyll 
content of lake Naivasha, a similar technique known as Maximum Chlorophyll index (MCI) Gower et al.  
(2005) was analyzed using the 709 nm band peak in the Trios and MERIS reflectance spectrum.  Spectral 
measurements with concurrent analytical laboratory data were analyzed using statistical least square 
regressions for the determination of best fit coefficients. Algorithm accuracy was tested through a least 
squares regression by r2 and RMSE. Results show that three band algorithm of chl-a absorption 
coefficients prediction yielded coefficients of determination as high as 0.84, RMSE 0.058, for an 
aggregated dataset (n=42). The SCI and MCI empirical algorithms for the estimation of chl-a absorption 
coefficients resulted in a poor correlation with the in-situ absorption coefficients. A weak polynomial 
quadratic relationship was found between the SCI and MCI algorithms against the in-situ absorption 
coefficient (n=42) which is inadequate for characterizing the highly dynamic phytoplankton distribution of 
lake Naivasha. Although no improvement could be achieved for the poor correlation between the MCI 
index value and in-situ phytoplankton coefficient, the underperformance of the SCI algorithm showed an 
increase in the correlation coefficient for stations with SCI index and light absorption values of less than 
0.0123sr-1 and 0.02m-1 respectively which is a lower value for lake Naivasha. Result obtained suggests that 
the three band algorithm is more robust and accurate and was used for mapping the phytoplankton 
absorption in lake Naivasha.  
 

Keywords: Phytoplankton Biomass; Chlorophyll-a absorption; remote sensing; MERIS; Lake Naivasha. 



ii 

ACKNOWLEDGEMENTS 

I would first like to thank the European Space Agency ESA, for providing us MERIS FR level 1b data of 
lake Naivasha as part of the MERIS validation processes.  
I am very grateful to my supervisors, Dr.Ir. C.M.M. Chirs Mannaerts and Dr.Ir. Mhd. Suhyb Salama for 
their endless guidance, patience, and faith in me. Though it was evident that they were often concerned 
about the direction in which I was headed, they entertained my every hair brained idea and whim. I am 
certain that my success as a graduate student has been primarily based on my relationship with them which 
has far exceeded all of my expectations.  
I must also thank to a number of people and organizations who contributed immensely to the successful 
completion of this study.   
Special thanks to Dr. D. M. Harper from University of Leicester, UK for his invaluable contribution in 
this research for allowing us use his complete and well equipped laboratory in Naivasha with out any limit. 
Dr. D. M. Harper is grateful not only for his bio-optical laboratory but also for the many scientific 
researches he has done in the lake. 
I would also like to thank Mrs. Sarah Higgins a farmer and environmentalist in Naivasha for her support 
and encouragement for the work by allowing us to use her Yatch beach gate during entire work period.  
I would also like to thank to all who have contributed in some way or the other in this research. Many 
thanks must also go to Mr. Ruben laboratory technician in the Dr. D. M. Harper laboratory for his 
friendly encouragement and support in the work. I am also very thankful to my friend Mr. Micheal 
Ghebru for being my support system, my mentor and confidant during my hard times. Also many thanks 
to Ms. Eleni Eyob for the free assistance she gave me in collecting data on the lake from the boat.  
I am very grateful to my family, relatives and friends back home for their endless love, encouragement and 
support, and tolerance in actively listening to my endless rants about remote sensing of chlorophyll-a, a 
topic in which they have never heard of and likely little interest. Special thanks to my parents who have 
faith in my every decision and who recognize and willingly acknowledge that the outcome won’t always be 
brilliant.  
I would also like to thank the WREM department staffs and students of 2009 of the faculty of the Geo-
Information Sciences and Earth Observation of the University of Twente for their good spirit, 
understanding, and tolerance on those days when things were looking less than favourable.  
At last but not least the Royal Government of Netherlands must be thanked for allowing me to join the 
2009 WREM Msc. Course in ITC and for funding this project through the Netherlands Fellowships 
Programme (NFP). 

 



iii 

TABLE OF CONTENTS 

Abstract .............................................................................................................................................. i 

Acknowledgements .......................................................................................................................... ii 

Table of contents ............................................................................................................................. iii 

List of figures .................................................................................................................................... iv 

List of tables ...................................................................................................................................... v 

List of abbreviations ......................................................................................................................... vi 

1. INTRODUCTION .................................................................................................................... 1 

1.1. Research Problem ......................................................................................................................... 2 

1.2. Research Objectives ...................................................................................................................... 3 

1.3. Research Questions ....................................................................................................................... 3 

1.4. Research Hypothesis ..................................................................................................................... 3 

1.5. Thesis Outline ............................................................................................................................... 3 

2. LITRATURE REVIEW ............................................................................................................. 5 

2.1. Phytoplankton Bloom Distribution in Lake Naivasha .................................................................. 5 

2.2. Background on Remote Sensing water Quality ............................................................................ 5 

2.3. Background on Model Types ........................................................................................................ 6 

3. STUDY AREA MATERIALS and METHODOLOGY ............................................................ 9 

3.1. Study Area Description ................................................................................................................. 9 

3.2. Sampling and Radiometric Measurement Points Distribution ................................................... 10 

3.3. Description of  Materials Used .................................................................................................... 11 

3.3.1. In-Situ Datasets ........................................................................................................................... 11 

3.3.2. Remote sensing Datasets ............................................................................................................ 11 

3.4. Methodology ............................................................................................................................... 13 

3.4.1. Data Collection ............................................................................................................................ 14 

3.4.2. Data Processing ........................................................................................................................... 15 

4. DATA ANALYSIS METHOD ................................................................................................ 21 

4.1. Spectral Analysis ......................................................................................................................... 21 

4.2. Summary of Spectral Reflectance Features Observed ................................................................. 21 

4.3. Empirical Algorithms used ......................................................................................................... 24 

4.3.1.Three Band Algorithm ................................................................................................................. 24 

4.3.2. Synthetic Chlorophyll Index…………………………………………………………..26 

4.3.3. Fluorescence Line Height .......................................................................................................... 28 

4.4. Algorithm Calibration and Validation ......................................................................................... 30 

4.5. Measuring Algorithm Accuracy and Robustness ........................................................................ 32 

5. RESULTS AND DISCUSSION .............................................................................................. 32 

6. CONCLUSSION AND RECCOMMENDATION ................................................................ 39 

List of references ............................................................................................................................. 40 

 

 

 



iv 

LIST OF FIGURES 

Figure 1. Location map and field measurement ponits distribution. .................................................................... 9 

Figure 2. Malewa and Gilgl flood plains, Crescent Island logoon  and Main lake water condition. .............. 10 

Figure 3. Schematic representation of the general methodology. ....................................................................... 13 

Figure 4. Comparison between in-situ and MERIS derived reflectance spectra. ............................................. 19 

Figure 5. Shows spectral features in the reflectance of Trios-sensor measured from lake Naivasha. ........... 22 

Figure 6. In situ absorption and corresponding reflectance spectra (left and right) ........................................ 23 

Figure 7. Schematic representation of SCI algorithm. .......................................................................................... 28 

Figure 8. Water reflectance spectra for chlorophyll a concentrations of 0.1, 3, 30 and 300 mgm-3, ............. 29 

Figure 9 Schematic representation of MCI algorithm. .......................................................................................... 30 

Figure 10 . Model Calibration with in-situ measured  absorption coeffcient. ................................................... 31 

Figure 11. Validation of the three models against in-situ measured a-phy ........................................................ 33 

Figure 12. In-situ absorption coefficient and model index values ...................................................................... 36 

Figure 13 Phytoplankton absorption maps for the 20th, 23rd and 26th of September 2010 ......................... 37 

 

 



v 

LIST OF TABLES 

Table 1 List of empirical algorithms employed to derive chl-a from lake Naivasha. ......................................... 8 

Table 2 Statistical summary of averaged in-situ measurements .......................................................................... 11 

Table 3 Summary of earth observation data used in the study. .......................................................................... 12 

Table 4 Characteristics of MERIS data in Lake Naivasha ................................................................................... 12 

Table 5 Samples Collected, processed and retained .............................................................................................. 14 

Table 6. Calibratoin summary of the three models . ............................................................................................. 32 

Table 7 Performance summary of the three band algorithm. ............................................................................. 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



vi 

LIST OF ABBREVIATIONS  

Term                                                                                       Description  
AOP                                                                              Apparent optical properties  
aphy(λ)                                                                             Absorption by phytoplankton 
adg(λ)                                                                              Absorption by gelbistof and detritus 
achl-a*                                                                               Chlorophyll-a Specific Absorption Coefficient 
CDOM                                                                           Coloured dissolved organic matters  
C2P                                                                                 Case-2 Regional Processor 
C2R                                                                                 Case-2 Regional  
[Chl-a]                                                                             Chlorophyll-a concentration 
Chl-a                                                                               Chlorophyll-a 
CZCS                                                                              Coastal Zone Colour Scanner 
ENVISAT                                                                       Environmental Satellite 
EO                                                                                  Earth observation  
IOCCG                                                                           International Ocean Colour Coordinating Group  
IOP                                                                                 Inherent optical properties  
MODIS                                                                           Moderate Resolution Imaging Spectrometer 
MERIS                                                                            Medium Resolution Imaging Spectrometer 
NIR                                                                                 Near-InfraRed  
NAP                                                                                Non-Algal Particle 
OC3M                                                                             Ocean Chlorophyll 3 MODIS 
Rrs                                                                                   Remote Sensing Reflectance 
RS                                                                                    Remote sensing 
RTE                                                                                 Radiative Transfer Equation 
SCI                                                                                  Synthetic Chlorophyll index 
SSC                                                                                  Suspended Sediment concentration 
TSS                                                                                  Total Suspended Sediment 
SeaWiFS                                                                          Sea-viewing Wide Field-of-view Sensor 
SPM                                                                                 Suspended particulate matters   
TOA                                                                                Top of atmosphere  
WLR                                                                                Water leaving reflectance 



 

1 

1. INTRODUCTION 

Algal blooms can result in ecological, social and economic depreciation to lakes and reservoirs by 
producing surface scum, unpleasant taste and odour to drinking water (from production of metabolites) 
and possible adverse effects to human health from blue-green algal toxins. These microscopic organisms 
that live both in fresh and salty water environments are collectively termed as phytoplankton. Derived 
from the Greek words phyto (plant) and plankton (made to wander or drift), phytoplankton are wandering 
plants. Like land plants, phytoplankton have chlorophyll to capture sunlight, and use photosynthesis to 
turn it into chemical energy by consuming carbon dioxide and releasing oxygen. Blooms of phytoplankton 
can cover hundreds of square kilometres in oceans and lakes and are easily visible in satellite images 
depending on their pigment concentrations. The growth and abundance of phytoplankton depends on 
temperature, light, and nutrient   concentrations and is often associated with eutrophication (Vos et al., 
2003). Eutrophication is the process of nutrient enrichment in water bodies, particularly from 
phosphorous and nitrogen (Janssen & Carpenter, 1999). Eutrophication is a natural process, though 
anthropogenic activity can facilitate it through nutrient enrichment. An increased amount of carbon 
dioxide, sunlight, and nutrients due to either natural or anthropogenic processes may lead to 
phytoplankton blooming in aquatic environments. Intense phytoplankton blooms are causing significant 
and increasing financial losses to aquaculture (Anderson, 2005) resulting in poor aquatic ecosystem 
conditions. Fish kills can result from anoxia: as algal blooms die off, cell decay leads to oxygen depletion. 
Human health concerns stem from potential for toxin production by some blue-green algal species. In 
order to mitigate the impacts, it is very essential to detect, monitor and predict the development and 
dynamics of phytoplankton biomass in time and space. The conventional ship-based field measurement 
and analysis techniques are very limited  both in spatial and temporal coverage (Ahn & Shanmugam, 
2006). Remote sensing (RS) techniques, which utilizes the optical properties of blue-green algal blooms 
(chlorophyll-a and phycocyanin) can provide data and tools to estimate the phytoplankton biomass with 
synoptic swath and high temporal frequency. 
Chlorophyll-a as a pigment present in most phytoplankton species, is a major indicator of phytoplankton 
biomass (Doxaran et al., 2006; Moses et al., 2009) commonly monitored from RS to assess the eutrophic 
status of water bodies. Some phytoplankton groups however contain accessory pigments specific to a 
smaller group of phytoplankton such as the phycocyanin pigments in cyanobacteria. From heron the term, 
Chlorophyll-a (Chl-a) will be used as the measure of phytoplankton biomass.  
Predicting the locations and timing of algal blooms using traditional sampling techniques is difficult, if not 
impossible, due to high variability of conditions in which blooms can form and produce toxins (Schalles et 
al., 1998). Current methods consist of field sample collection, laboratory analysis, and identification and 
enumeration of phytoplankton, which can take days to weeks. These methods are neither timely nor cost 
efficient for drinking water mangers since blooms can be as ephemeral as a few days. Because some 
phytoplankton pigments are optically active and their properties can be measured using spectroscopy, 
researchers have evaluated the utility of field  spectral response patterns for determining concentrations of 
both chlorophyll a and phycocyanin pigments in lake waters (Mittenzwey et al., 1992; Simis et al., 2005). 
Researchers have developed models based on variability of spectral response gathered by medium to high 
resolution spectroradiometers (spectral range approximately 300 to 1100 nm) for sites with differing algal 
density. Since the optical properties of nuisance algal blooms have been discerned in field reflectance 
spectra, these remote sensing techniques can be extended to airborne and space borne satellite imaging 
systems to map chlorophyll-a and phycocyanin concentrations and, therefore, phytoplankton distribution 
in inland lakes and reservoirs. 
Most approaches for remote estimation of phytoplankton biomass are based on the absorption of sunlight 
by algal pigments in the presence of light scattering by algal cells and non-algal particles. Quantification of 
Chl-a from RS data in open ocean waters can be fully characterized from the blue and green spectral 
regions (Dekker., 2003; Gons et al., 2002). These blue-green spectral region however fail at estimating chl-
a in strongly absorbing turbid waters (Dall'Olmo & Gitelson, 2005a; Gitelson et al., 2008; Gitelson et al., 
2007; Gons, 1999) due the presence of other optically active water constituents. Quantitative estimation of 
chl-a in turbid  productive waters, is carried out by either combinations of reflectance bands (usually band 
ratios) that exploit the NIR to red  spectral region (Dekker et al., 1991) or algorithms that use the Chl-a 
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fluorescence emission at 685 nm (Dall'Olmo & Gitelson, 2005a; Gower et al., 2004). Many authors have 
found that the pigment concentration is well correlated to their spectral ratios (Dall'Olmo & Gitelson, 
2005a; Dekker et al., 1991; Gons, 1999). The ratio of reflectance near 705 nm to the reflectance near 675 
nm is proved useful for retrieval of chl-a concentration [Chl-a] in eutrophic water (Dekker et al., 1991; 
Gons, 1999). Despite the very low fluorescence signal even in high chl-a concentration areas, the sun 
induced chlorophyll fluorescence also termed as chlorophyll Fluorescence Line Height “FLH” (Zhao et 
al., 2008) centred at ~ 685nm may be well correlated to changes in chl-a concentrations and is  important 
indicator of phytoplankton blooming. Dall'Olmo & Gitelson (2005a) have found that the assumptions of 
constant specific chl-a absorption coefficient and chl-a fluorescence quantum yield up on which such 
algorithms are based can be significant sources of errors for remote estimation of [Chl-a]. Comparing 
relations between FLH and [Chl-a] (Gilerson et al., 2007) have  found that the variability of fluorescence 
magnitude in coastal waters can best be attributed to attenuation effects by water constituents, rather than 
to the differences in fluorescence quantum yield. 
Assessment of the contribution of chl-a to remote sensing requires applications of ocean colour sensors 
with high spatial and temporal resolution. Compared to NASA’s wide-swath water colour sensors now in 
orbit (SeaWiFS and MODIS), the European Space Agency’s (ESA) MERIS instrument on board 
ENVISAT has the advantages of more precise band placement for measurement of chl-a. The fine spatial 
resolution (300m for all bands) and high radiometric resolution of MERIS data is suitable in determining 
the signal contributions from dissolved organic matter and detritus materials in the visible (VIS) and near 
infrared (NIR) spectrum influencing estimation of chl-a. Moreover spectral band configuration of MERIS 
allows detecting the absorption features caused by phycocyanin (present primarily in cyanobacteria) by 
their characteristic spectral feature in the MERIS band 6 near 630 nm (Kutser et al., 2006) provided that 
they are present at detectable concentrations. Cyanobacterial blooms are attracting the attention of 
environmental agencies and water authorities since they can present a wide range amenity and hazards to 
human health and animals (Reinart & Kutser, 2006).  
The main focus of this study is empirical quantification and mapping of chl-a absorption to study the 
distribution of phytoplankton biomass in lake Naivasha from the Medium Resolution Imaging 
Spectrometer “MERIS” and in situ measurements. 

1.1.  Research Problem  

Lake Naivasha is the only inland freshwater lake in Kenya. The outstanding aesthetic scenery and 
recreational potential makes it well known for boating, water-skiing sports, fishing, game viewing and bird 
watching. Moreover, the lake is one of biggest source of economic income in Kenya through tourism and 
the flourishing horticulture and floriculture agricultural activities around the lake. Besides, the lake is also 
the main source of drinking water supply and hydro-electric power generation (Becht & Harper, 2002) for 
the town of Nakuru. Apart from the above economic significance, the lake has undergone profound 
degradation in both quality and quantity (Ballot et al., 2009) which has lead to changes in phytoplankton 
distribution and decrease in the number of tourists visiting the lake (Mironga, 2006). Economic 
development and natural ecological and environmental changes around lake Naivasha have resulted in 
ecosystem damage in the lake. Recent incidents of mass fish dye-off are manifestations of change in the 
lake’s water quality. 
The water quality degradation which could be attributed to large quantity sediment inflow from Malewa 
and Gilgil Rivers (Figure 2a), reduced water inflows in low rainfall years or polluting inflows from 
Naivasha town or from the intensive flower enterprises adjacent to the lake are posing potential threats to 
the lake’s water quality and need detailed investigation and deliberate interventions to ensure it does not 
deteriorate.  In order that the economic values are maintained and the natural ecological environment of 
the lake is sustained to reduce its hazard on human and animal health, it’s of paramount importance that 
the quality of the water in the lake doesn’t deteriorate below acceptable standards.  
The need on understanding the water quality statues to improve the management practices and the lack of 
reliable and detailed remote sensing based water quality prediction and monitoring techniques are among 
the major problems that triggered this study.  
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1.2. Research Objectives 

Understanding the chl-a absorption in time and space in lake Naivasha will help in the monitoring and 
prediction of the phytoplankton distribution to preserve the natural ecological environment and sustain 
the economic developments of the lake. 
The main objectives of this research are therefore: (1) Investigate the potential of empirical algorithms to 
estimate chl-a absorption coefficients in lake Naivasha from the in-situ hyperspectral reflectance and 
absorbance spectra and remote sensing MERIS reflectance spectra. (2) Compare the performance of the 
three band algorithm by Gitelson (2008), the Synthetic Chlorophyll Index (SCI) empirical algorithm by 
Shen et al (2010) and the FLH/MCI base line method algorithm by Gower et al. (2004);(2005) to find best 
model that can accurately estimate and map the variability of phytoplankton distribution in lake Naivasha 
from MERIS data. (3) Analyze the sensitivity of the proposed model to the spectral locations of the 
MERIS bands used and validate it using in-situ measurement datasets and address the potential sources of 
error that limit the utility of the method for this application.  

1.3. Research Questions 

 The main research questions that could be answered in this research are: 
1. Are empirical algorithms suitable for estimating the chlorophyll-a absorption coefficient of lake 

Naivasha from in-situ hyperspectral reflectance, spectrophotometric chl-a absorption and MERIS 
data? 

2. Which of the three empirical algorithms employed best characterizes the optical property of Lake 
Naivasha?  

3. What is the spatial distribution of phytoplankton in Lake Naivasha?  

1.4. Research Hypothesis 

Hypothesis of interest is in optically turbid inland lakes empirical algorithms band combinations or colour 
ratios are more accurate at estimating chl-a absorption coefficients from in-situ absorption and reflectance 
spectra and MERIS data. 

1.5. Thesis Outline 

This thesis document is generally structured into chapters as: Chapter one will introduce a brief literature 

review, followed by research problem definition, research objectives, questions and hypothesis. In chapter 

two the basic thesis concept based on the existing literature will be presented. Chapter three will describe 

the study area, materials and research methodology used. Chapter four is data analysis method describing 

the models used in analysing the data to address the research questions and objectives. Chapter five will 

present the results and discussions of the research. Chapter six will be the conclusions and 

recommendations of the thesis.  
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2. LITRATURE REVIEW 

2.1. Phytoplankton Bloom Distribution in Lake Naivasha  

Several previous studies have demonstrated that the spatial and temporal distribution of the aquatic flora 

of lake Naivasha has been constrained by two ecosystem-level processes (Harper, 1992). Over the last 

three decades, the ecology of lake Naiavasha has been subjected to dramatic changes, caused by excessive 

use of water and catchments area by man (Ballot et al., 2009). Harper (1992) has shown that the natural 

water level fluctuation and the consequence of herbivory linked to competition between rooted and 

phytoplankton communities is the factor affecting the ecosystem of the lake. The water-level fluctuations 

as a consequence of irregular rainfall patterns linked to continental scale climatic events (Harper, 1992)  

have also influenced the phytoplankton composition and distribution in lake Naivasha. 

Hubble & Harper (2002a) used nutrient enrichment studies to investigate the controlling factors for 

primary production in lake Naivasha and found that nitrogen is more limiting than phosphorus and no 

persistent vertical stratification of phytoplankton has been observed in the lake due to  continuous vertical 

circulation of the water  by wind and convection. 

In his investigation of the spatial and temporal patterns of the wet land plant communities in lake 

Naivasha in relation to the controlling factors (Harper et al., 1995) found that over the past decades the 

dominant communities include: the emergent swamp dominated by Cyperus species; floating raft 

dominated by the aliens Salvinia molesta and Eichhornia crassipes; the floating leaved plants represented only 

by Nymphaea caerulea; and the submerged angiosperms consisting of three species of Potamogetons - P. 

Pectinatus,  P. schweinfurthii, P. octandrus  together with Najas pectinata . 

Concentration of phytoplankton increased progressively since 1982 as a result of nutrient increase caused 

by a decline in water level and papyrus swamp clearance for agriculture (Harper, 1992). The dominant 

phytoplankton community in Lake Naivasha are Cyanobacteria, Chlorophyceae, and Bacillariophyceae, 

though (Ballot et al., 2009) observed a shift in the dominance of coccoid cyanobacteria towards 

dominance of Chlorophyceae  in the  phytoplankton community. Ballot et al (2009) also found that 

throughout 2002/2003, the Chlorophyceae was the most abundant group and a maximum phytoplankton 

biomass of 56.6 mg l-1 was recorded during a bloom of Botryococcus terribilis in September 2002. 

Eutrophication, salinisation and heavy metal contamination in lake Naivasha is mainly controlled by the 

inflowing rivers enriched in nutrient from catchment areas (Everard & Harper, 2002). Lake Naivasha has  

one major  inflowing river (Malewa) and a number of smaller  seasonal rivers (Gilgil, and Karati) (Ballot et 

al., 2009) as the main sources of water with out any visible surface outlet though an underground outflow 

through seepage is suggested to keep  it fresh (Becht & Harper, 2002). 

This high variability of phytoplankton composition and distribution is causing major ecological and social 

impacts in lake Naivasha through either displacement of indigenous species, habitat alteration, oxygen 

depletion in the bottom waters and aquaculture (fishes) mortality by poisoning or altering the food-web 

dynamics. It is therefore crucial to monitor the water quality in time and space based on remote sensing 

which provides synoptic spatial and temporal coverage.  

2.2. Background on Remote Sensing water Quality 

Monitoring chl-a distribution over water bodies by conventional (surface) means is hard since they are 

sporadic in time and isolated in space (Gower et al., 2005; J. Gower et al., 2005)). As a major indicator of 

phytoplankton biomass, monitoring chl-a distribution over water bodies needs modern technique of 

remote sensing with a wide-swath and high resolution ocean colour sensors that gives near-daily coverage. 

The first such measurements were made with the Coastal Zone Colour Scanner (CZCS) which operated 

between 1978 and 1986 and the pigment concentrations from this sensor  were related to the sum of chl-a 

and phaeophytin-a by an empirical spectral-ratio. With improved spectral and radiometric resolution, the 

SeaWiFS sensor began producing global maps of chlorophyll-a concentration in September 1997, which 
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were followed later by MODIS on board the Terra and Aqua platforms and MERIS a multispectral 

instrument on board ENVISAT for satellite based studies of oceans and continental water bodies. It is 

therefore important to develop means of obtaining meaningful information from the optical signals 

recorded by these satellites over water bodies. 

Remote sensing allows the collection of information on water quality without having a direct contact with 

the water body under investigation. Down welling irradiant energy provided by a source such as the sun, is 

transmitted along a pathway through the atmosphere, reflected off of a target, back into the atmosphere, 

and then recorded by a sensor. In aquatic systems, the total recorded radiance is a function of path, 

surface, volumetric, and bottom radiance (Dekker et al., 1991). Path radiance is the result of atmospheric 

scattering and is classified as noise because it does not contain information on the target water body. 

Surface radiance describes the top few millimetres of water, the boundary layer between the atmosphere 

and the water. Volumetric radiance penetrates the boundary layer and provides information about the 

material suspended in the water column. Bottom radiance passes through the water column and reflects 

off of bottom sediments. Display of spectral reflectance as a function of wavelength can be used to 

identify the properties and condition of the target water feature because any optically active water 

constituents will attenuate or augment the original radiance signal along the spectrum. Since any optically 

active particle suspended in the water column will affect the irradiance signal, reflectance spectra can be 

used to estimate productivity, as measured using chl-a concentration. Green algae contain the pigment chl-

a which has two absorption maxima at approximately 440 and 675 nm which are commonly exploited in 

monitoring oceans and inland water bodies respectively. Ocean mapping of chl-a using space borne 

systems has produced promising results for monitoring productivity. Ocean colour sensors with the 

necessary spectral bands for detecting phytoplankton pigments, including MODIS, SeaWIFS and MERIS, 

however, these sensors have a coarse spatial resolution that makes them less favourable for mapping 

small, inland water bodies. Optically complex inland water bodies, commonly classified as case-II waters 

are characterized by high concentrations of suspended material, dissolved organic matter, and detritus 

materials from terrestrial influence. The presence of elevated levels of chl-a and other accessory pigments 

in inland waters is typically an indicator of high productivity and potentially harmful blue-green algal 

blooms. Freshwater blue-green algae have an accessory pigment to chl-a, the biloprotein phycocyanin. 

This accessory pigment allows cyanobacteria to have an additional absorption maximum in the red portion 

of the spectrum at approximately 620 nm (Gons et al., 1992; Jupp et al., 1994; Kutser et al., 2006; 

Metsamaa et al., 2006) commonly utilized for mapping phycocianin pigments in cianobacteria. Greater 

variability in the optically active constituents of inland waters also requires increased spectral resolution of 

sensors. 

2.3. Background on Model Types 

Since increased algal density causes an increase in both the absorption and scattering coefficients seen in 

the spectra, many previous investigations have used chl-a absorption as a proxy in measuring productivity 

in both case I and II water systems. Different optical models are developed for estimating the chl-a 

content of water bodies from reflectance spectra obtained by remote sensing.  Reflectance features for 

algorithm development are chosen based on the properties of constituent of interest and optical models to 

be used in estimating water constituent of interest. Morel and Gordon (1980) described three methods for 

algorithm derivation: 

i. Empirical method – Relationships between spectral reflectance values, Rrs(λ), and    laboratory measured 

constituent concentrations collected simultaneously are developed  using statistical methods. 

ii. Semi-empirical method – Models are based on known spectral features and previously discovered 

empirical relationships are employed. Measured inherent optical properties (IOP) of the water column are 

included to derive absorption coefficients for optically active constituents. 

iii. Analytical method – The inherent and apparent optical properties are measured and included in the 

model as specific absorption and backscatter coefficients. Constituent concentrations are determined 
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using the reflectance, absorption, and backscatter coefficients. Bio-optical models are constructed based 

on the biophysical characteristics of a system using radiative transfer equations with the purpose of 

separating the total radiance into its basic components (Dekker et al., 1991). 

 

Remote sensing reflectance (Rrs) at a specific wavelength (λ) is obtained using the ratio of up-welling 

radiance above the waters surface Lu(0+,λ) to the down-welling irradiance Ed(0+,λ) provided by the sun 

as measured at a nadir viewing angle as: 

(0 , )
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=  ………………………………………………………………………………….Equation 1  

Statistically significant relationships between above-water remote sensing reflectance Rrs (0+, λ) and 

constituent concentrations, such as correlation between changes in reflectance with change in constituent 

concentration as a function of wavelength, are sought and used in algorithm derivation. The following 

(Gordon et al., 1975) model described the relationship between the inherent optical properties (IOPs), 

properties of a specific medium independent of a light source, and apparent optical properties (AOPs), 

properties that are a combination of the IOPs and the light field in which they are measured, is used in 

development of bio-optical models for homogeneous water bodies with the equation: 
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Where:    

Rrs (0-, λ)  = subsurface reflectance at a specified depth and wavelength  

f = experimental factor dependent on the light field (sun angle) and volume scattering function (VSF) 

(Morel & Gentili, 1991) 

bb (λ) =  backscatter coefficient (attenuation caused by deflection of energy at certain angles) 

a(λ) =  absorption coefficient (efficiency of a material at absorbing energy) 

Subsurface irradiance R(0-, λ) is related to above surface reflectance Rrs(0+, λ) by the inclusion of an 

empirical factor Q, which is the ratio of subsurface down-welling irradiance Ed(0-,λ) to subsurface up-

welling irradiance Eu(0-, λ). Specifically the ratio f: Q accounts for the geometry of light exiting the water 

body on the remote sensing reflectance measured above the water surface. With inclusion of the ratio f :Q, 

Rrs(0+, λ) is written as: 
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λ

λ λ
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∞  + 
………………………………….…………………………...Equation 3 

The bio-optical modelling technique requires the inclusion of total absorption, scattering, and backscatter 

coefficients. In the radiative transfer model for case II waters, total absorption and backscattering 

coefficients for three optically active constituents of natural water bodies are: 

( ) ( ) ( ) ( ) ( )w phy �AP CDOMa a a a aλ λ λ λ λ= + + + …………………………………………………..Equation 4 

( ) ( ) ( ) ( ) ( )w phy �AP CDOMbb bb bb bb bbλ λ λ λ λ= + + + ……………………………………………Equation 5 

Where: 

aw(λ), bbw(λ) = absorption and backscatter coefficients for pure water at wavelength (λ) (Pope & Fry, 

1997) 

aphy(λ), bbphy(λ) = absorption and backscatter coefficients for phytoplankton at wavelength (λ) 

aNAP(λ), bbNAP(λ) = absorption and backscatter coefficients for none algal particles at wavelength (λ) 

aCDOM(λ), bbCDOM(λ) = absorption and backscattering coefficient for coloured dissolved organic matter at 

wavelength (λ) 
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According to Beer’s Law, it is assumed that absorption and scattering properties of a water body are a 

linear function of the concentration of its constituents. The absorption coefficient for the optically active 

constituent of interest divided by the specific absorption coefficient, a *(λ), absorption per unit path length 

and mass concentration, can yield pigment concentration (Gons, 1999): 

This research has compared the following three empirical algorithms to assess a best fit model for the 

prediction of phytoplankton absorption coefficients in Lake Naivasha using MERIS data (Table 1). 

The three band algorithm by Gitelson et al (2008); Synthetic Chlorophyll Index(SCI) by Shen et.al .(2010) 

and the Fluorescence Line Height (FLH) baseline method by Gower et al. (2004) and in a similar 

technique as the FLH; the Maximum Chlorophyll Index (MCI) by Gower et al. (2005) were analyzed 

against the in-situ spectrophotometric absorption, Trios reflectance and MERIS derived reflectance using 

least squared regression techniques.  
Chlorophyll a empirical algorithms                                                                                publication by  

( )1 11 ( 2) ( 3) ( 1)rs rs rs chlaR R R aλ λ λ λ− − − × ∞   …………………………...…………..….(Gitelson et al., 2008) 
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Table 1 List of empirical algorithms employed to derive chl-a from lake Naivasha. 
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3. STUDY AREA MATERIALS AND METHODOLOGY 

3.1. Study Area Description 

 

Lake Naivasha is fresh water lake situated in the eastern Rift Valley of Kenya at a latitude of 0o5’South 

and 36o20’East longitude. It is an enclosed basin located at about 80kms SE of the capital Nairobi and has 

an altitude of approximately 1890m. Rainfall is bimodal with peaks in April and October (Hubble & 

Harper, 2002b), but shows inter annual irregularity and annual evapotranspiration exceeds rainfall (Harper 

et al., 1990). The average annual rainfall is around 680 mm in two rainy seasons which is normally 

exceeded by the annual evapotranspiration that results in instability the lake size. Though fluctuation in 

lake level (Harper et al., 1995) with in flows is evident, lake Naivasha is the second largest fresh water lake 

in Kenya with an average surface area of 160 km2 (~16 X 10 km) and is accessible by all weather roads 

within the area.  

 

Figure 1. Location map and field measurement ponits distribution.   

LC 

SL 

HP 

MB 

MR 

NB 



ESTIMATING CHLOROPHYLL-A ABSORPTION COEFFICIENT AS A PROXY OF PHYTOPLANKTON BIO-MASS FROM MERIS DATA, LAKE NAIVASHA, KENYA 

 

10 

Study area in sub-regions (bottom) the Crescent Island lagoon indicated (S0_4) in the east, the lake 

centre(LC) stations indicated in (Blue), the Safariland Bay (SL)stations indicated (Green) in the south and 

southeast part of the lake, the Hippo-pint stations indicated in (white) southwest of the lake, the Mennel’s 

bay (Yellow) in the west and northwest, the Malewa river mouth (MR) indicated (Red) in the north, the 

Naivasha town Bay (NB) indicated in (Pink) in the northeast part of the lake. Location naming adopted 

from (Harper et al., 1995).                  

 

Lake Naivasha, is mainly fed by three inflowing rivers (Malewa, Gilgil and Karati) with out any visible 

surface outlet though an underground outflows is suggested (Becht & Harper, 2002) which keeps the lake 

fresh. River Malewa which begins in the western slopes of the Aberdares ranges in central Kenya is the 

dominant river flowing south through highly manipulated small and large-scale farms before making its 

entry into the lake on the northern shores. This rivers are generally believed to play an important role in 

the quality of the lake by carrying large amount of sediments and other nutrients which influences its area, 

limnology and hence its productivity (Becht & Harper, 2002).   

  

a                                                           b.                                                  c.  

Figure 2. Malewa and Gilgl flood plains, Crescent Island logoon  and Main lake water condition.  

(a)  Landsat image of northern shore of lake Naivasha indicating the Malewa and Gilgle river flood plains. 

Sediment inflows in lake Naivasha are believed to be from the catchments of these rivers. (b and c) 

indicate particulate matter content difference in Crescent Island and main lake Naivasha. Photo (b) taken 

on a pier at Crescent Island lagoon and photo (c)  taken on a pier at the center of the main lake on the 20th 

of September 2010.  

3.2.   Sampling and Radiometric Measurement  Distribution   

 

Data were collected from the main lake Naivasha and the Crescent island lagoon during one cruise in 2010 

(from September 17 through October 03). A total of about 170 stations were sampled and measured for 

optical signals both from the Crescent Island and the main lake. Measurements of water constituents from 

the main lake were grouped into sub-regions based on their geographic locations and possible range of 

optical variations (Figure 1) for the purpose spatial analysis. 14 stations were collected from the Mennell’s 

Bay located north of the Hippo-point; 8-stations were collected from the Malewa river mouth or the 

North Swamp; 19- Stations were collected from the Safari-land Bay close to the flower farm; 5-stations 

were collected from the Naivasha Town Bay. Additional radiometric measurements were also collected 

from some of the above regions during the satellite overpass time for the purpose of obtaining more 

match-up date measurements (Table 5)The sampling locations were chosen to cover as wide range of 

optical conditions as possible. The sampled water body was relatively shallow (average depth between 3-6 

m), with relatively small surface areas (160 m2). A total of about 137 contemporaneous absorption spectra 

were measured from the stations measured for radiometric signals.  
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3.3. Description of  Materials Used 

To retrieve the phytoplankton absorption coefficient of Lake Naivasha and assess the accuracy and 

performance of the algorithms used in predicting chl-a absorption, two independent datasets; an in-situ 

radiometric and laboratory datasets and MERIS data containing spectral optical properties of the water 

column were used. 

3.3.1. In-Situ Datasets 

 

The in-situ datasets were collected on one cruise in Lake Naivasha during the field work carried out from 

the 17th of September to the 3rd of October 2010.  This dataset was divided into calibration and 

validation datasets for algorithm calibration and validation. Radiometric measurements with reliable 

contemporaneous analytical data were selected and used in the model calibration and validation purposes.  

The second dataset contains five MERIS match up date data taken on September 2010 during our field 

period. Two of these satellite images are partial affected by cloud cover while the rest three images are free 

of cloud (Table 3). Due to frequent cloud development in the area especially during afternoon periods, all 

in-situ radiometric measurements were collected before noon from 09:00 to 12:00 a.m. This measurement 

time agree with the satellite overpass time over lake Naivasha (Table 4) and concurrently water samples 

were collected from each station and immediately analyzed in the lab for phytoplankton absorption 

coefficients. A total of about 172 stations were measured for above and below water radiometric signals 

and contemporaneous 137 stations were sampled for water and analyzed for phytoplankton pigment 

absorption using a spectrophotometer. Radiometric measurement from three stations complexly erratic 

and only 169 stations were processed. The first day spectrophotometric absorption measurements were 

also highly affected by measurement errors and spectra from only 127 stations were processed (Table 5).  

Each measurement station was geo-located using a GARMIN GPS devise for mapping purposes. The 

radiometric measurements were carried out from a ship using radiance and irradiance sensors mounted on 

a hand held 2m black metal bar.  

 

Table 2. Statistical summary of averaged in-situ measurements 

The above table shows the in-situ absorption coefficients of phytoplankton (aphy) at the specified 

wavelengths, number of samples used, absorptions by CDOM, NAP and SPM concentrations for the 

aggregate dataset in lake Naivasha and sechi-disc depth values in the main lake Naivasha.  

3.3.2. Remote sensing Datasets 

For the present study, a multispectral instrument the MEdium Resolution Imaging Spectrometer (MERIS) 

on board the ENVIronmental SATellite (ENVISAT) platform was used. MERIS is a push broom imaging 

spectrometer operating in the visible and near-infrared (VNIR) spectral range from 400 to 900 nm. It has 

a wide field of view (FOV) of 68.5° around nadir, which leads to a swath width of 1150 km at an altitude 

of 800 km. Ground sampling distance of MERIS is about 300 m for full spatial resolution (FR) data and 

about 1.2 km for reduced spatial resolution (RR) data. One of the major the advantages of MERIS is its 

band placement and sensitivity to the most important optically-active water constituents. For example, 

retrieval of yellow substances (coloured dissolved organic matter and detritus) (412.5 nm), chlorophyll 

Statistical 

Phytoplankton Absorption 

Coefficients (m-1) 

Number 

of 

aCDOM 

(440nm) 

aNAP 

(440) SPM 

Sechi 

Disc  

parameter 440nm 560nm 620nm 665nm Samples m-1 m-1 mg/m-3 Depth(m) 

Mean 2.28 0.16 0.09 0.15  2.68 5.55 33.95 
0.39 

Max 3.28 0.27 0.18 0.30 137 3.92 14.93 101.25 0.51 

Min 1.06 0.024 3x10-4 0.01  0.92 0.00 1.00 0.27 

Stdev 0.48 0.048 0.04 0.05  0.64 2.94 16.87 0.10 
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absorption (442.5, 490, and 665 nm), turbidity (510, 620 nm), red tides (510 nm), and chlorophyll 

fluorescence (665, 681, and 709 nm) are applications used with MERIS. 

Due to the frequent cloud cover, it was difficult to obtain a serious of cloud free images of the area over a 

longer period of time. Available cloud free MERIS Level 1b images of the study area were downloaded 

from the ESA archive on request (Table 3). This data archive hosted by the European Space Agency is 

readily accessible and available on request on the internet. The MERIS scenes were downloaded using the 

EOLISA Viewer   tool available at http://earth.esa.int/EOLi/EOLi.html.  

Level-1b MERIS (FR) data covering lake Naivasha were ordered from the European space Agency after 

the necessary visualization using the Earth Link (EOLI) viewer from the ESA web site for quality prior to 

ordering. Five full resolution (FR) MERIS scenes of lake Naivasha acquired on the field measurement 

period September 17th, 20th, 23rd,  26th and 29th of 2010 (Table 4) were downloaded from the ESA archive 

and due to in-situ data validity and cloud coverage the 17th and 29th images were excluded from match-up 

date validation processes.  

These TOA radiances were processed and converted to remote sensing reflectance (Rrs) to be used as 

inputs in to the models to retrieve the absorption coefficients of phytoplankton. This reflectance signal 

however contain significant atmospheric noises due to the absorption and scattering of the light by the 

atmospheric gasses and dust particles, images were corrected for this noise before any further analysis is 

carrying out.  

Satellite data  

No.                Date acquired                  Platform                Sensor       Resolution                Cloud cover 

1.                  September 20th /2010        ENVISAT            MERIS             FR                        0%  

1.                  September 23rd /2010        ENVISAT            MERIS             FR                        0%  

1.                  September 26th /2010        ENVISAT             MERIS            FR                        0%           . 

Table 3. Summary of earth observation data used in the study. 

 

General characteristics of MERIS FR images over lake Naivasha; over-pass time, viewing and illumination 

angles, and weather conditions as observed during field work are: 

    Date                                   17/09/10           20/09/10        23/09/10         26/09/10         29/09/10  .    

Satellite over pass        

Time (UTC)                          07:18:54              07:24:34          07:30:15              07:35:53          07:41:32        

 Sun zenith                            32.70 deg           31.00 deg         29.28 deg            27.56 deg        25.90 deg     

Sun azimuth                          84.50 deg           86.62 deg         88.79 deg            91.19 deg        93.94 deg 

View zenith                          31.16 deg            20.95 deg         08.96 deg            04.10 deg        16.72 deg    

View azimuth                       102.53 deg          102.49 deg       102.47 deg          282.45 deg       105.3 deg  . 

Weather conditions: No visible clouds were over on the images of 20th, 23rd, and 26th but the image on the 

29th September 2010 has partially cover and was not used for mapping.  

Wind, wave height a few cm 

Local time is UTC+3                                                                                                                                 . 

Table 4. Characteristics of MERIS data in lake Naivasha. 
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3.4. Methodology 

 

A field campaign was carried out from September 17th to October 3rd of 2010 on lake Naivasha. Ground 

truth water samples were collected simultaneously with field spectral measurements for analytical 

investigations (Table 2). This study was designed to establish relationships between field spectra and algal 

pigment absorption which is directly related to chl-a concentration while also assessing the influence of 

additional water quality parameters on the robustness of these relationships.  

Detailed descriptions of the analytical methods and data processing used for the treatment of the 

measured variables are presented below. To study the spatial characteristics of the lake, the measured 

spectra were analyzed in sub-regions based on the prevailing optical variations, geographic locations, 

natural and anthropogenic influences as:  

For the purpose of spatial investigations the lake was analysed by dividing the main lake measurement 

stations into sub regions as: Hippo Point (HP) stations, Malewa River mouth (MR) stations close to the 

main inflow, the Safari land Bay (SL) close to the flower farm, the Mennell’s Bay (MN), the Naivasha town 

Bay, and Crescent Island lagoon (Cr) a partially separated crater within the main lake (Figure 1). Sub-

region naming is adopted from (Harper et al., 1995). The following flow chart is the general methodology 

followed in this research: 

 

  

Figure 3. Schematic representation of the general methodology. 

The above flow chart shows the general research methodology followed. Dashed lines indicate steps on 

the application of the method to remote sensing data.   
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3.4.1. Data Collection 

A field campaign was carried out from September 17th through October 3rd 2010. A 9 to 13 measurement 

stations per day were sampled and measured for radiometric signals covering the lake in every fourth day. 

All the measurements and sampling tasks were scheduled out before noon to take advantage of the 

satellite overpass time 10:18 to 10:41a.m (Table 4) and also to avoid the interferences in illumination 

conditions due to the frequent cloud appearances in the afternoon.  Water samples were collected at 5-10 

cm depth below the water surface to the extent possible, with primary limiting factors being to sample at 

the same level through out the measurement period. Although most of the measurements were carried out 

under clear sky conditions, some measurements were taken under diverse range of illumination and 

weather conditions whereby cloud and wind developments could have interfered and affected the 

readings.  

The measured IOPs and optical measurements used as an input for the empirical algorithm were from 90 

sampling sites. Measurements from 47 stations were excluded from farther analysis due to several errors 

introduced in the chl-a extraction and Rrs(λ) spectra measurements. The possible source of errors could 

be instrument accuracy, errors in pigment extraction, movement of the boat while taking optical 

measurement, cloud spot, aquatic suspended vegetations, measurement errors, sun glint, water surface 

roughness, shallow depth and foam. 

 
Measurement Type Samples 

Collected 
Samples 
Analyzed 

Samples 
Processed 

Samples 
Retained 

Samples 
Used 

Radiometric Measurement 172 172 169 169 90 

Spectrophotometric 137 137 127 90 90 

Table 5. Samples Collected, processed and retained  

3.4.1.1. Laboratory Measurements 

 

Measurement of chl-a requires its extraction from planktonic cells, which involves filtering the water as 

the first step, then extracting the filter with an appropriate solvent. Once the extracts are obtained, chl-a is 

measured using spectrophotometric or fluoremetric procedures. In this research water samples were 

collected few (5 to 10) centimetres below the surface using sample bottles properly rapped with aluminium 

foil to minimize chl-a degradation upon interaction with direct sunlight and temperature. Depending on 

the amount of suspended particulate matter and filtration capacity of the filters used, 100 to 350 ml of 

water from samples to be analysed for chl-a absorption were filtered through 0.7 µm pore size Whatman 

GF/F filter with an appropriate vacuum pressure according to (IOCCG Ocean optics Protocol Revision 5 

Volume V). The chlorophyll pigment retained on the filters was extracted through grinding in 90% 

acetone in a glass homogeniser vessel with a pestle. To remove particles of diameters between 0.22 µm 

and 0.7 µm the extract was allowed to be filtered  again through a 0.22 µm Millipore cellulose acetate 

membrane filter (Aminot & Rey, 2000) before measuring its absorbance in a spectrophotometer. There 

are several techniques of pigment extraction for spectrophotometric absorbance measurements. This 

method uses 90% acetone as the extraction solvent because of its efficiency for most types of algae 

(Binding et al., 2004). In Chl-a extraction using acetone solution, grinding of the filters is recommended 

instead of sonicating or soaking over night (Aminot & Rey, 2000). After extraction samples were 

centrifuged for about 10 minutes to avoid the transfer of any suspended particles from the filtrate to the 

optical cuvette. Centrifuged extracts were then carefully transferred to a 1cm length optical Cuvette to 

measure chl-a absorbance (optical density) at selected wave lengths. The pestle was then carefully rinsed 

using 5 ml of the buffer solution before each next sample is put on to it for extraction. 
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3.4.1.2. Radiometric Measurements 

Radiometric (radiance and irradiance) measurements, above and below water surface were carried out 

from 17th of September to 3rd of October 2010 using hand held spectro-radiometers mounted on 2m black 

metal bar from a boat. A Trios RAMSESARC radiance sensor (7° field of view, 318–951 nm), and a Trios 

RAMSES-ACC-VIS irradiance sensors were used to measure the radiance and irradiance signals in the lake 

according to the NASA protocol of optical measurements. The radiance sensor was pointed downward to 

measure the above water up welling radiance Lu(λ) at nadir. The tip of the radiance sensor was kept just 

above the water surface on the sunny side of the boat with the 2m black pole. Though most 

measurements were carried out on the absence of waves, some measurements taken during windy 

conditions were affected by waves of moderate sizes. Some measurements taken towards noon were also 

impacted by specular reflection off the surface of the water.  The down-welling irradiance Ed(λ) was 

measured simultaneously as the radiance by the irradiance sensor mounted on the same metal bar pointing 

upwards to collect the total incoming radiation from the sun. The variations in illumination conditions 

between measurements were considered negligible during the short time taken to collect one measurement 

(~ 10 seconds) and the data recorded by the irradiance sensor is considered representative of the overall 

down-welling irradiance. However, this second sensor failed after some days of measurement, and the 

down- welling irradiance measurement was continued indirectly by the radiance sensor and a Spectralon 

reference panel. The radiance signals recorded from the white reflectance panel were then converted to 

irradiance by multiplying by (π) and dividing by reflectance efficiency of the reflectance panel  0.99 to 

correct the bidirectional reflectance effect (Doxaran et al., 2006). The radiance and irradiance signals from 

both sensors were pre-processed and quality checked before computing the water leaving reflectance 

which was used in retrieving water quality parameter of interest. Radiometric data concurrent to MERIS 

overpass times was used for match up date validation purposes of the model.  

3.4.2. Data Processing 

3.4.2.1. Phytoplankton Absorption Coefficient 

 Phytoplankton absorption is often inferred from measurements on cells retained on glass fiber filters or 

from measurements in suspension provided that the concentration of the phytoplankton in the water 

column allows such a determination. The measurement of algal biomass is important in aquatic studies, 

which is most commonly estimated from determinations of chl-a. The most frequently used methods of 

chl-a determination from freshwater algae involve spectrophotometric analysis at selected wavelengths of 

the pigments in suspension on different solvents. The optical density (absorbance) measurements need to 

be converted to absorption coefficient prior to its implementation on the empirical algorithms for 

calibration and validation purposes. The measured spectral absorbance was converted to the spectral 

absorption coefficient following (Binding et al., 2004; Mitchell et al., 2002) which is one of the inherent 

optical properties that influence the reflectance of aquatic systems.  

The phytoplankton absorption coefficient aphy (λ) in units of m-1 was parameterized from the absorbance 

as: 

2.303
( ) [[ ( ) ( )] ]

f

phy sl bl null

f

A
a OD OD OD

V
λ λ λ= − −  ……………………………………….Equation 6 

Where: ODsl (λ) is the measured optical density of the sample filtered, ODbl (λ) is the optical density of a 

blank solution, and ODnull is a null wavelength residual correction from the infrared where particle 

absorption is minimal. For spectrophotometers with automatic base line correction and a flat reference 

filter base line there is no need to subtract for ODbl(λ) (Pope & Fry, 1997). In order to conform to the 

convention used throughout the ocean optics protocols, it is necessary to convert the OD measurements 

to the base-e representation of absorbance, i.e. to multiply by 2.303. 

To correct for residual offsets in the sample filtrate relative to the reference, and for scattering losses due 

to particle loading, it is assumed that a null absorption wavelength in the infrared can be characterized by 
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− ×
=

the  750 nm null absorption wavelength, though recent reports indicate that this wavelength is too short 

for some waters (Pope & Fry, 1997). 

The ODbl(λ) was dropped for the automatic baseline correction DR2000 spectrophotometer used and 

(Eqn.6) was rewritten as:  

2.303
( ) [ ( ) ]

f

phy sl null

f

A
a OD OD

V
λ λ= − ……………………………………………………...Equation 7 

Where: 

The ODnull is the optical density for the null wavelength absorption (750nm, in this case) 

Af is the surface area in m2 of the filter from which sample is extracted.  

Vf is volume of water filtered in millilitre. 

In this research the whattman GF/F used was 55 mm in diameter with a sample extraction diameter of 35 

mm.The sample extraction surface area as computed from the measured filter diameter containing the 

pigment of interest was approximately equal to 0.000962 m2. 

3.4.2.2. Radiometric processing 

 

Field radiometric (radiance and irradiance) measurements were carefully analysed visually for noises prior 

to any processing. Stations with value above and below 95% confidence interval were considered as 

measurements affected by either specular surface reflection or cloud and were excluded from analysis. The 

above water up-welling radiance was then normalised to the down-welling irradiance above water to derive 

the remote sensing reflectance (Eqn.1) to be used in the analysis and validation of the remote sensing data 

after atmospheric correction. 

 
……………………………………………………………..…Equation 8 

 

Where: 

 F is surface Fresnel reflectance (air-water interface specular reflection coefficient for radiance). 

Lsky is sky radiance (radiance contributed into the sensor from the surrounding). Considering low wind 

speed (less than 2m/sec) and calm water surface roughness during measurement period, the factor (F x 

Lsky) was negligible and hence, up welling water radiance and down welling irradiance was used to derive 

remote sensing reflectance using the relation in (Eqn.1): 
For some measurements of down welling irradiance were carried out indirectly using the radiance sensor 

and a spectralon reflector ( )(λRL ),  after RAMSES-ACC-VIS sensor was failed to transfer data to the 

logger, the down-welling irradiance was derived through the following relation (Lee et al., 2007): 

 
……………………………………………………...……………………Equation 9 

 

 
…………………………...…………………………..Equation 10 

 

Where: 

RR is the reflectance of the diffuse reflector (0.99) (Doxaran et al., 2006). Considering the negligible water 

surface reflectance due to the calmness of the lake water surface, Rrs (λ) can be computed as follows: 

 
……………………………………...……………………………Equation 11 
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3.4.2.3. Atmospheric Correction 

 

The first step in ocean colour remote sensing is the derivation of the water-leaving radiance Lw (λ) at a 

wavelength λ through atmospheric correction (Gordon et al., 1983).This process converts the top of 

atmosphere (TOA) radiance into water leaving reflectance by normalization of illumination conditions and 

removal of atmospheric effects (Guanter et al., 2010). The accuracy of the information obtained from 

ocean colour sensors hence largely depends on the accuracy of the atmospheric correction model used to 

estimate the atmospheric contribution on the radiance leaving the water surface. Atmospheric path signal 

due to air molecules, aerosols, and the air-sea interface accounts to more than 90% of the total signal 

recorded at the top of the atmosphere (TOA) (Ahn & Shanmugam, 2006; Siegel et al., 2000). These signals 

are noises to the radiance leaving the water column and should be corrected with a correct atmospheric 

correction scheme.  

Unlike the open ocean (clear) waters, the water leaving radiance in NIR spectral region in turbid inland 

lakes can not be assumed zero (Moore et al., 1999). The non-negligible value of water leaving reflectance 

at the NIR has been accounted by many authors Salama & Shen (2010), Siegel et al.(2000) and Vermote et 

al.(2002). Salama & Shen, (2010) have recently estimated successfully the backscattering and aerosol 

reflectance in the NIR simultaneously which will improve the accuracy of the retrieved pigment 

concentration. There are different atmospheric correction methods developed for estimating the aerosol 

concentration, a major component in the atmosphere influencing the estimation of constituent of interest. 

In this research, ignoring direct sun glint as most of the measurements were collected before noon and 

assuming that the sea surface is flat for low wind speed conditions, the total radiance Lt (θ0, θ, Ф0,Ф) 

recorded at the sensor level where θ0,θ, are the sun and sensor zenith angles respectively and the Ф0,Ф are 

the relative azimuth angle is combination of different constituents. Dropping the viewing geometry for 

brevity, this term can be divided into its components as:  

 ( ) ( ) ( ) [ ( ) ( )]t r a v sfc wL L L T L Lλ λ λ λ λ= + + + ………………………………………..…....Equation 12 

Where: Lr is radiance resulting from scattering by air molecules(Raleigh scattering) in the absence of 

aerosols, La is the contribution from aerosol scattering in the absence of air, Lsfc is the contribution from 

the surface, Tv is the viewing diffuse transmittance of the atmosphere and Lw is the desired water leaving 

radiance. 

Converting the radiance to reflectance as: 

0 0

( )
( )

( ) cos( )

t
t

L
Rrs

E

π λ
λ

λ θ
=  …………………………………………………………………………..Equation 13 

Where: E0 is the extraterrestrial solar irradiance and θ0 is the solar zenith angle. 

Similarly the total reflectance Rrst(λ) at the sensor can be written as: 

( ) ( )[ ( ) ( ) ( ) ( ) ( )]t g v sfc path v wRrs T T Rrs Rrs T Rrsλ λ λ λ λ λ λ= + + ......………………….……….Equation 14 

Where: Tg(λ) and Tv(λ) are the gaseous and viewing diffuse -transmittance from the ocean to the sensor 

respectively. The subscripts in the equation represent the contribution from atmospheric path path, surface 

sfc, and water w. 

Rrs(λ), the portion of the light that enters the water body, absorbed and scattered back to the sensor by 

the water constituents and the water column is the quantity required in ocean colour remote sensing that 

can be related to the physical property of the water body.  

Rrssfc(λ), the contribution from the surface of the water body is considered very small (at low wind speeds) 

conditions and hence is dropped. 

Due to the presence of the atmosphere, a considerable amount of the incident radiation Rrspath(λ), is 

attenuated or scattered back to the sensor without reaching the water body which is undesired signal 

recorded together with the water leaving reflectance by the sensor. 
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(Eqn.14) can be farther simplified with above assumptions as: 

( ) ( )[ ( ) ( ) ( )]t g path v wRrs T Rrs T Rrsλ λ λ λ λ= + …………………………………………………...Equation 15 

Where: Tg and Tv are the gaseous and viewing diffuse transmittance, Rrspath and Rrsw are the reflectance 

contributions from the atmosphere and water respectively. 

The water leaving reflectance (WLR) Rrsw can be extracted from total received reflectance at the sensor 

(Eqn.15) as:  

( ) ( )
( )

( )

t path

w

v

Rrs Rrs
Rrs

T

λ λ
λ

λ

−
= ……………………………..…………………………..................Equation 16 

The Rrspath(λ) and Tv(λ) values for the MERIS images where concurrent in-situ measurements were 

available were estimated using micro-soft excel solver program at the minimum RMSE values between the 

in-situ measured water leaving reflectance and MERIS (Table 6). Comparison of the averaged corrected 

MERIS reflectance and the contemporaneous averaged in-situ reflectance measurement for the 20th, 23rd 

and 26th of September 2010 showed good correlation resulting in r2 and RMSE values of 0.885, 0.988, 

0.964  and 0.009236, 0.002583, 0.007 respectively in the NIR spectral region (Figure 4). 
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Figure 4. Comparison between in-situ and MERIS derived reflectance spectra. 

The above plots show worst and best results of the correction method comparing in-situ remote sensing 

reflectance and MERIS derived reflectance spectra on the 20th, 23rd, and 26th of September 2010 taken in 

different stations. The comparison was done excluding stations 0 and 1 of each date where signal was 

constantly affected by the adjacent land pixels. 
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4. DATA  ANALYSIS METHODS 

4.1. Spectral Analysis 

 

The relationship between field spectral responses and analytically measured phytoplankton pigment 

absorption coefficients, aphy was determined by the application and optimization of the previously 

developed algorithms (Table 1). Least squared regression technique was applied to relate the in situ chl-a 

absorption coefficient and the model result and determine the best fitting coefficient for the models. The 

strength of the relationship between the empirical algorithm and analytically measured pigment absorption 

coefficients were evaluated using the r2 and RMSE from the least-squares regression analysis. Coefficients 

derived using regression analysis were applied to the remote sensing dataset MERIS to retrieve and map 

phytoplankton absorption coefficients for lake Naivasha. A model that proved a strong relationship 

between model index values obtained from each algorithm against and analytically measured 

phytoplankton pigment absorption coefficient was used to map the phytoplankton absorption coefficient 

of the lake for visualisation. 

4.2. Summary of Spectral Reflectance Features Observed 

 

Three optically active components affect the features found in the spectral reflectance curve of freshwater: 

phytoplankton pigments, particulate matter, and yellow substances. Several previous researches have 

identified some of the sources of the features found in the curve (Figure 5) of field reflectance spectra 

from lake Naivahsa. The absorption feature found at approximately 440 nm (Figure 5a), is attributed to 

absorption by chl-a (Gitelson et al., 1999). This feature is used in ocean colour models to estimate the chl-

a content in deep ocean waters although this spectral region is not recommended to inland waters due to 

the presence of dissolved organic matter and suspended sediment significantly affecting the signal. An 

additional absorption feature within the range of 450 and 525 nm (Figure 5b) is caused by presence of 

carotenoids (Gitelson et al., 1999; Gitelson et al., 1995; Rowan, 1989; Yacobi et al., 1995). Carotenoids are 

a class of yellow to red pigments that include carotenes and xanthophylls. The spectral range of 550 to 600 

nm (Figure 5c) contains the green peak, mostly due to minimal absorption by phytoplankton pigments 

and, thus, maximum scattering by algal cells (Dekker et al., 1991; Gitelson, 1992; Gitelson et al., 1995). It 

has been suggested that a shift in this peak toward longer wavelengths is a result of absorption of the 

shorter wavelengths by carotenoids, indicating an increased carotenoid concentration. A shift in the green 

peak toward shorter wavelengths (540 nm) is caused by absorption of the longer wavelengths by 

phycocyanin, a pigment found in cyanobacteria, indicating an increase in phycocyanin concentration 

(Gitelson et al., 1999; Schalles et al., 1998). The subsequent trough, within the range of 620 and 630 nm 

(Figure 5d), is the result of absorption by phycocyanin (Schalles et al., 1998). The minor reflectance peak 

at approximately 650 nm (Figure 5e) is attributed to backscattering from dissolved organic matter 

(Gitelson, 1992). This feature is also known to be affected by phycocyanin concentration because it is the 

location of the phycocyanin fluorescence emission maximum (Ahn et al., 1992). The trough feature at 

approximately 675 nm is the chlorophyll a absorption maximum (Figure 5f) (Han & Rundquist, 1997). 

The reflectance peak in the NIR portion of the spectrum, within the range of 698 and 712 nm (Figure 5g), 

is the result of scattering from algal cells, pigment and particulate matter in combination with water. The 

location and height of this peak is a function of chl-a concentration. Peak shifts toward longer 

wavelengths and increase in height are indications of increased chl-a concentration (Dekker et al., 1991; 

Gitelson, 1992; Han & Rundquist, 1997; Mittenzwey et al., 1992; Schalles et al., 1998). Reflectance features 

at wavelengths longer than 750 nm are attributed to organic and non-organic suspended matter 

concentrations (Han et al., 1994). 
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Figure 5. Shows spectral features in the reflectance of Trios-sensor measured from lake Naivasha. 

 The spectrum from Crescent Island lagoon are shown at the bottom the upper reflectance are from the main lake  
collected on September 17th through October 3rd, 2010. 
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 Figure 6. In situ absorption and corresponding reflectance spectra (left and right) 

(a, b) absorption and reflectance spectra from Crescent Island (c, d) are absorption and reflectance spectra from the 
lake centre. (e, f) absorption and reflectance spectra from the Safariland bay. (g, h) Hippo-point absorption and 
reflectance spectra. (i, j) The Menneli’s bay absorption and reflectance spectra. (k, l) absorption and reflectance 
spectra from the Malewa inlet.  
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Many factors contribute to the variation in the reflectance peak in the blue and green spectral regions 

including the coloured dissolved organic matter, none algal particulate matter and suspended sediments. 

The reflectance spectra in the red and NIR spectral regions however are less affected by the above 

mentioned water constituents and are often exploited for chl-a information. 

The spectral reflectance values from the Crescent Island lagoon stations (Figure 5) are low ranging from 

0.0039sr-1 to 0.008sr-1. The averaged minimum red spectral reflectance in the main lake however, was 

0.012sr-1, though a lower value of 0.005 sr-1is recorded in the lake centre as well. This minimum 

reflectance values however were not as low as for the Crescent Island lagoon spectra 0.0039 sr-1. 

Variability of spectral reflectance features could manifest high variability in scattering and in CDOM and 

NAP absorption between samples (Gitelson et al., 2008). The minimum reflectance in the crescent Island 

lagoon was associated with maximum chl-a absorption.  

The Malewa river inlet absorption and reflectance spectra shows distinct spectral feature different from 

the other regions. The red spectrophotometric absorption peak around 665 nm for this region is almost 

indistinguishable (Figure 6k) indicating minimum chl-a absorption or maximum back scattering by 

suspended sediments (Gitelson, 1992). These stations are at the inlet of the most influential river in lake 

Naivasha, Malewa which feeds sediments and other nutrients to the lake. Moreover in the in situ 

reflectance spectra measured with the Trios-RAMSAS in this region showed high variability in the 

reflectance magnitude due to reflectance enhancement by increased suspended sediment concentration 

levels (Gitelson et al., 1993). The Hippo-Point stations (Figure 6g) showed the least variability in the 

height of the reflectance spectra between the stations indicating relatively stable water constituent. The 

Menneli’s and Safariland bay stations also indicate spectral variability even though not as pronounced as in 

the Malewa stations. The increase in reflectance height in each of the sub-regions was associated with an 

increase in the phytoplankton absorption coefficient measured. These variations could also be observed in 

the absorption maps produced by the three band model (Figure 13).  

4.3.  Empirical Algorithms used   

4.3.1. Three Band Algorithm 

Accurate assessment of phytoplankton absorption coefficients in turbid inland waters by means of remote 

sensing chl-a is challenging due to the optical complexity of case 2 waters (Gitelson et al., 2008). Different 

bio-optical modelling has been pursued for water quality assessment to eliminate the need for gathering 

water samples to provide statistical analysis linking phytoplankton concentration to reflectance, thus 

improving the accuracy of algorithms extended to air and space-borne systems (Randolph et al., 2007, 

submitted). However, both semi-empirical and bio-optical models require the specific absorption 

coefficients for algal pigments to be known or to be constant. Unfortunately, the specific absorption 

coefficient of chl-a is highly variable (Dall'Olmo & Gitelson, 2005b) suggested that certain spectral regions 

are highly affected by the variability in the chl-a specific absorption coefficient (a*
chl-a) and chl-a 

fluorescence quantum yield (η), the efficiency at which a cell will emit absorbed light (photons emitted: 

photons absorbed), introducing high error to the prediction of chl-a from remote sensing reflectance. To 

resolve this issue, Dall’Olmo and Gitelson (2006) suggested a band tuning method, reducing the 

requirement for parameterization of the optical properties of natural water constituents by selecting bands 

that are least affected by a*
chl-a and η. Based on the hypothesis that bands used in a semi-empirical model 

for determination of chl-a concentration can be tuned to reduce the sensitivity of the model to variation in 

the phytoplankton specific absorption coefficient and chlorophyll a fluorescence quantum yield, 

Dall’Olmo and Gitelson (2005b) presented the following three-band algorithm for chl-a estimation, 

reducing the standard error of estimation to less than 30%. 

According to (Randolph et al., 2007, submitted) the three band model by Dall’Olmo and Gitelson (2005b) 

can be developed as: 
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( )1 1( 1) 1 ( 2) ( 3)chla rs rs rsa R R Rλ α λ λ λ β− −  ∝ − × +   ………………………………...……....…Equation 17 

Where: 

α and β are the fitting coefficients 

Rrs (λ1) = reflectance value at wavelength location λ1 most sensitive to pigment absorption (chlorophyll a 

or phycocyanin), but also affected by particulate material induced scattering and absorption of accessory 

pigments. 

Rrs (λ2) = reflectance value at wavelength location λ2 that is least sensitive to absorption by the pigment 

of interest and is most sensitive to absorption by other constituents (correcting for the absorption by 

other pigments at λ1) 

Rrs (λ3) = reflectance value at wavelength location λ3 least affected by absorption of all pigments and 

therefore used to quantify scattering by water molecules. 

The above three-band optical model for obtaining the phytoplankton absorption coefficient (by utilizing 

the band in the red and NIR region of the spectrum, which is proportional to chl-a absorption) in natural 

waters requires the selection of three specific wavelength locations based on the sensitivity of that 

wavelength region on the  properties of constituent of  interest: 

( 1) ( 1, 2, 3)phya m bλ χ λ λ λ= +  ………………………….………………………………………... Equation 18 

Where: 

 ( 1)phya λ  = phytoplankton absorption coefficient at λ1. 

m    = coefficient obtained from regression analysis. 

χ    = model index values obtained from the reflectance to assess the absorption of a pigment of interest. 

b        = coefficient obtained from regression analysis 

The first band location (λ1) is selected as the spectral feature most sensitive to chlorophyll a pigment 

absorption: 

( )1 ( 1) ( 1) ( 1)
1 chla TD w b

rs

b

a a a bQ
R

f b

λ λ λ
λ− + + +

∝ ………………………….………………...…Equation 19 

Where: 

Rrs-1 = the reciprocal of the remote sensing reflectance function as defined by Gordon et al.(1975) (Eqn.1) 

(λ1) = spectral region chosen as most sensitive to chl-a absorption 

aChla = chlorophyll a absorption coefficient at the specified wavelength location.  

aTD = total absorption coefficient for the non-algal particles (tripton) and coloured dissolved organic 

matter (aCDOM) combined (sometimes called aNAP). 

aw(λ1) = pure water absorption coefficient at the specified wavelength location 

bb = total backscattering coefficient 

f : Q = a function of the sun and viewing angles 

The second spectral region is selected as the wavelength where absorption of non-algal particles and 

CDOM is equal to the absorption of the first spectral region and absorption by chl-a is minimal. Because 

the absorption efficiency of CDOM and NAP decreases as wavelength increases, λ2 is chosen to be > 700 

nm.  

Tuning for λ2 is written as: 

( )1 1 ( 1) ( 1) ( 2)
1 ( 2) chla w w

rs rs

b

a a aQ
R R

f b

λ λ λ
λ λ− − + −

− ∝ ……………………….................................Equation 20 

Where: 

aChla (λ1)  = chlorophyll a absorption coefficient at the specified wavelength location 
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aw(λ1)  = pure water absorption coefficient at the specified wavelength locations 

Wavelength location λ3 is selected according to the location least affected by absorption of all pigments, 

therefore absorption at λ3 can be attributed solely to that of pure water and can be used to quantify 

scattering by water molecules. Reflectance at λ3 is proportional to the product of f: Q ratio and total 

backscattering, (Eqn.20) written as: 

( )1 1( 1) 1 ( 2) ( 3)
chla rs rs rs

a R R Rλ λ λ λ− − ∝ − ×  …………………………………………...………Equation 21 

The following steps are employed for adoption of the initial spectral regions: 

(1) Tuning of λ1 by use of the initial band locations λ2=710 nm and λ3=750 nm and a moving location 

for λ1 between 400 and 800 nm, thus: 

( )1 1( 1) 400 1 800 (710) (750)chla rs rs rsa R R Rλ λ− − ∝ < < − ×   regressed against chl-a absorption coefficients in 

the wavelength range (400 to 800nm) to obtain the lowest standard error of estimation. 

(2) Tuning of λ2 by use of the tuned λ1 location (from step 1) and initial λ3=750 nm and a moving 

location for λ2 between 700 and 750 nm, thus: 

( )1 1( 1) 1 (700 2 750) (750)chla rs rs rsa R R Rλ λ λ− − ∝ − < < ×   regressed against Chl-a absorption coefficient to 

obtain the lowest standard error of estimation. 

 (3) Tuning of λ3 by use of the tuned λ1 and λ2 locations and a moving location for λ3 between 730 and 

750 nm, thus:  

( )1 1( 1) 1 ( 2) (730 3 750)chla rs rs rsa R R Rλ λ λ λ− − ∝ − × < <   regressed against chl-a absorption coefficients to 

obtain the lowest standard error of estimation. 

(4) Verification of location λ1 by use of a tuned λ2 and λ3 and a moving λ1 regressed against Ch-a 

absorption coefficients to obtain the lowest standard error of estimation, giving the final algorithm 

indicated in (Eqn.17): 

Dall’Olmo and Gitelson (2006) suggest that, although the tuning technique and coefficients used in this 

model are dependent on the optical composition of the water on which it was built, the large range of 

constituent concentrations and optical properties included in the model derivation suggest that it could be 

extended to similar systems. The phytoplankton absorption coefficient could be obtained by utilizing a 

band in the red region which is proportional to chl-a concentration in natural waters. Reflectance values at 

wavelength location λ2 could be tuned to that is least sensitive to absorption by phycocyanin and 

potentially most sensitive to absorption by other constituents (correcting for the absorption by other 

pigments at λ1). 

 Similarly in order to find optimal positions of λ1, λ2 and λ3 and the width of each band in the three band 

model, the model was tuned according to the optical property of the water in Lake Naivasha. The final 

values of band widths were selected at the minimum RMSE between the measured and derived aphy as:  

Band1 660 through 670 nm, band2 700 through 730 nm and band3 was selected between 740 and 760 nm. 

4.3.2. Synthetic Chlorophyll Index 

Although the current generation of the satellite ocean colour sensors have large number of wave bands in 

the visible spectral range, it is still difficult to develop retrieval algorithms using remote sensing signals 

(Shen et al., 2010) because the water constituents vary independently. Reflectance spectrum of water 

bodies with high suspended sediment concentration levels is enhanced due to high back scattering by the 

sediments resulting in an invalid flag or overestimation of chl-a from remote sensing (Morel & Bélanger, 

2006). To improve the accuracy of MERIS chl-a estimates in such turbid lakes, (Shen et al., 2010) devised 

an algorithm (Synthetic Chlorophyll Index, SCI)  for extracting chlorophyll information by minimizing the 

sediment influence on the remote sensing reflectance spectrum. This algorithm takes the variability of 

spectral reflectance features of chl-a and the sediments into account synthetically by introducing two 

parameters Hchl and H∆ for the SCI. The Hchl is the height of the red chl-a absorption dip in the spectrum 

of MERIS while H∆ is the is the absorption feature around 620nm introduced due to suspended sediments 

or other accessory pigments.  
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( ) ( ) ( )( ) ( )2 1
1 3 1

3 1

2chcl rs rs rs rsH R R R R
λ λ

λ λ λ λ
λ λ

 −
= + − − − 

………………………………………..….Equation 22 

( ) ( ) ( )( )2 4
4 3 4

3 4

( 2) [ ]
rs rs rs rs

H R R R R
λ λ

λ λ λ λ
λ λ∆

−
= − + −

−
………...……………………………Equation 23 

Where:  λ1, λ2, λ3 and λ4 are MERIS bands 620nm, 665nm, 681nm and 560 nm respectively. These 

parameters can be simplified according to their weighted sum as: 

 [0.74 (681) 0.26 (620)] (665)chl rs rs rsH R R R= + − …………………………..…………………Equation 24
 

(620) 0.5[ (560) (681)]rs rs rsH R R R∆ = − + ………………………………….…………..……..…Equation 25 

Hchl and H∆ are less than zero if and only if Rrs(665) is greater than [0.74Rrs(681)+0.26Rrs(620)] and 

Rrs(620) is less than [0.5(Rrs(560)+Rrs(681))] respectively. Shen et al.(2010) has demonstrated that Rrs at 

665nm is generally below the baseline connecting the Rrs at 620nm and Rrs at 680nm leading to positive 

Hchl values. Negative Hchl are interpreted as the lack of chl-a or presence of high SSC. 

This band positions upon which the model was originally developed resulted in a negative value of Hchl for 

all the spectra due to the dynamic nature of the peak and dip positions of the in-situ Trios reflectance 

measurement. The dip and peak at 665nm and 680nm of the MERIS spectrum up on which the model 

was initially set corresponds to the peak and dip at 676 nm and 706 nm respectively in the Trios spectra. 

To account for this effect the dynamic nature of the peak and dip positions were taken into consideration 

and the model was calibrated by taking the local peaks and dips near 560nm, 626nm, 676nm and 706nm 

for λ4, λ1, λ2 and λ3  respectively (Figure 7). 

The SCI index was computed as a difference of the above parameters and was used in retrieving 

phytoplankton absorption coefficient. 

chl
SCI H H∆= −  ……………………………………………………………….…………………Equation 26  

The in-situ spectrophotometric chl-a absorption values, and the Hchl and H∆ parameters, were used 

determine the fitting coefficients on the SCI algorithm by a linear regression and the modified algorithm 

was applied to MERIS data retrieval chl-a information.                                    
2

1 2 3[ ] [ ]chla chlaSCI C Cα α α= + +
……………………………………….…...………….…..…........Equation 27 

Since Chl-a concentration is a function of its absorption; the above expression can be rewritten as: 
2

1 2 3[ ( )] [ ( )]phy phySCI a aα λ α λ α= + + ………………………………..……………….………….Equation 28 

Where: α1, α2, α3 in SCI are fitting coefficients and aphy(λ) is phytoplankton absorption coefficient at the 

specified wavelength. After determining the fitting constants from the field radiometric and 

spectrophtometric measurements, chl-a absorption was validated against an independent in-situ dataset 

and MERIS match up data.   
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Figure 7. Schematic representation of SCI algorithm. 

It can be seen from the above figure the spectral positions of the peaks and dips used in the SCI model. 

Wavelengths 560nm, 626nm, 676 nm and 706 nm indicated by (λ4, λ1, λ2, and λ3) are from the Trios-

sensor which were applied in the model calibration.  

4.3.3. Fluorescence Line Height 

During daytime, phytoplankton assemblages in the surface waters emit low but detectable levels of 

chlorophyll fluorescence around 683 nm (Laney et al., 2005). Remote sensing of solar-induced 

phytoplankton chlorophyll fluorescence emission around 683 nm has had recurring study over the past 

several decades (Hoge et al., 2003). Although natural chlorophyll fluorescence is affected by complex 

physiological processes, its variability in natural phytoplankton assemblages is not random. Systematic 

changes are often associated with physical features like up welling eddies, frontal circulation features and 

meandering jets (Abbott et al., 2000). The Moderate Resolution Imaging Spectroradiometer MODIS 

sensor on the Terra spacecraft launched on 17th December 1999 was the first satellite realization of the 

chlorophyll fluorescence line height FLH method. The European Space Agency’s Medium Resolution 

Imaging Spectrometer, or MERIS, carries similar technology, as does NASA’s MODIS, recently launched 

4th May 2002 aboard the Aqua spacecraft. In this research the FLH base line method is computed from 

an in-situ spectrophotometer and hyperspectral data and validated with concurrent MERIS data for 

phytoplankton chlorophyll fluorescence line height retrievals from remote sensing.  

Chlorophyll fluorescence, as introduced by Lorenzen (1966), is commonly used as an indicator for 

phytoplankton biomass, despite the poor relationship between the Chl a concentration and the amount of 

fluorescence emitted. The amount of fluorescence emitted is, besides on the Chl-a concentration, 

dependent on the photosynthetic available radiation (PAR), the absorptive properties of the 

phytoplankton, the extent to which the emitted fluorescence is reabsorbed, and the fluorescence yield 

(Babin et al., 1996). Algorithms have been developed to estimate surface ocean chlorophyll from remotely 

sensed natural fluorescence (IOCCG 1999; Hoge et al., 2003) such algorithms may be particularly useful in 

Case II waters, where the presence of non-phytoplankton scatterers and absorbers degrade the standard 

radiance reflectance algorithms for chlorophyll.  

Fluorescence line height (FLH) calculated as the reflectance in band 8 (681 nm) above a baseline formed 

by linear interpolation between the reflectance in bands 7 (665 nm) and 9 (709 nm) (linear baseline 

algorithm, (Gower et al. 2004). This signal is a measure of the fluorescence of chl-a, which is stimulated by 

sun- and skylight and is emitted as a roughly Gaussian shaped spectral feature centred at 685 nm. The 

fluorescence is an indicator of chl-a concentration, but with variation in specific fluorescence with species, 
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increasing saturation for pigment concentrations in the range 1–30 mgm-3, and loss of the FLH signal at 

higher concentrations (Gower et al., 2005) (Figure 8). 

In his study of chl-a fluorescence (Gower et al., 2005), found that water reflectance is high at wavelengths 

shorter than 500 nm for chl-a concentration of less than 1 mgm-3 (blue water), but drops as chl-a 

concentration increases, giving a peak near 560 nm (green water). Chl-a fluorescence produces a narrower 

peak at 685 nm for chl-a concentration up to about 30 mgm-3, but above this concentration the absorption 

by water and chl-a pigments combine to shift the peak to longer wavelengths (706 nm at 300 mgm-3) 

(Figure 8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Water reflectance spectra for chlorophyll a concentrations of 0.1, 3, 30 and 300 mgm-3,  

showing the fluorescence peak at 685nm for lower chlorophyll concentrations and the peak in the 
wavelength range 700–710nm for chlorophyll a concentrations above about 100 mgm-3. Black horizontal 
bars on the spectrum for chlorophyll a concentrations = 300mgm-3 show how the positions and widths of 
spectral bands in the MERIS baseline band-set allow this peak to be detected, and its height measured 
adopted from (Gower et al., 2005). 

Computation of the chl-a fluorescence from the reflectance spectra measured in lake Naivasha at bands 7, 

8, and 9 using the FLH base line method ended up in a negative result due to loss of the fluorescence peak 

around 685 nm which could be related to its higher chl-a concentration level (Gower et al., 2005). This can 

be elaborated from the in-situ reflectance spectra measured in lake Naivasha, where the peak has shifted 

towards longer wave length (~706 nm) as a result of the absorption by increased chl-a concentration level 

and water. 

 

The FLH derived from the TRIOS sensors above-water reflectance measurements was calculated as: 

[ ]7 9 9 8

8 9

9 7

( ( ) ( ) ( )
( ) ( )

[ ]

Rrs B Rrs B B B
FLH Rrs B Rrs B

B B

− × −
= − −

−
……………………..…… Equation 29 

Where: Rrs (B7), Rrs (B8), Rrs (B9) are the remote sensing reflectance at MERIS bands 7, 8, and 9. 

The FLH index values obtained from the (Eqn.29) were negative for all the spectra indicating a lose or 

shift of the FLH signal around 685 nm.  

Similar to the FLH technique the chl-a information was computed according to the Trios spectral feature 

from lake Naivasha.  
To account for the low FLH signal and shift of the peak to wards longer wavelength, the chl-a 

information was computed from reflectance at band 9 (709nm) above that base line connecting bands 8 
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and 10 at (681nm  and 753 nm) which is referred to as the Maximum Chlorophyll Index (MCI) in MERIS 

documents. 

The MCI algorithm (Figure 9) computed in a similar way as the FLH, but using bands 8, 9 and 10 (681, 

709 and 753 nm) of the water leaving reflectance from Trios sensor. This computation gives a Maximum 

Chlorophyll Index (MCI) which will tend to be negative where FLH is high and a reflectance peak occurs 

near 685 nm, but positive where the reflectance peak has shifted to longer wavelengths, up to about 705 

nm. The 709 nm band of MERIS is centred at a slightly longer wavelength than the peak in the Trios (706 

nm), but covers the range 704–714 nm.  

The empirical MCI method used in this study relies on three independent measurements: one near the 

maximum of Chl-a fluorescence emission (683–685 nm) which is band 9 (708.329nm) and two reference 

bands 8 and 10 (680.821nm and 753.371nm) to define a ‘baseline’ below the peak.  

 

[ ]8 10 10 9

9 10

10 8

( ( ) ( ) ( )
( ) ( )

[ ]

Rrs B Rrs B B B
MCI Rrs B Rrs B

B B

− × −
= − −

−
………………………...…Equation 30 

The MCI index value was then regressed against the red in-situ chl-a absorption coefficient to determine 
the best coefficient for the determination of phytoplankton absorption coefficient of lake Naivasha and a 
weak quadratic polynomial relation ( 
Figure 10d) was established between the index value and the in-situ absorption coefficients as: 

 
2[ ( )] [ ( )]phy phyMCI a aα λ β λ γ= + + ……………………………………………………………..Equation 31 

 

Figure 9 Schematic representation of MCI algorithm. 

The above figure shows the relative transmittance of MERIS bands 8, 9, and 10 labelled B8, B9, B10. The 

baseline for MCI measurement is established by a straight line between the reflectance observed in bands 

8 and 10. MCI is the reflectance within band 9 that is above the baseline value.  

4.3.4. Algorithm Calibration and Validation   

Datasets with concurrent radiometric and laboratory measurement were divided into calibration and 

validation datasets and algorithms were calibrated using statistical least square regression method. 

Calibration datasets are chosen every other station for fair distribution of values. Out of the 137 

measurements only 90 stations were selected for analysis due to error and noises introduced in the 
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measurement from various sources. Model calibration was done with half of this dataset (48 stations) for 

both models and were validated with rest of the measurement (42 station) Having well distributed 

calibration dataset of wider value range helps in validating against an independent dataset with good 

coefficient of determination. Satellite data validation were performed with in situ data collected within 

± 2–3 hr of the satellite overpass (Bailey & Werdell, 2006). This however has led us to very few matching 

data pairs due to frequent cloud cover, measurement delays or other inconveniences. In this research the 

match-up date validation was done with 20 stations from three MERIS match-up date images (Table 3) 

for measurements within the above stated range of over pass time offsets. The statistical summary of the 

calibration and validation results of the models is presented in (Table 7).   

The SCI and MCI algorithms were tested to use bands of maximum and minimum reflectance and 

absorption that correspond to algal optical properties, while the 3Band model was tested at wavelength 

band ranges instead of single band values to improve algorithm performance. 

The maximum and minimum reflectance values of the selected bands were used within the specified 

ranges given in (Table 4) Regression plots of algorithm index values against analytically measured chl-a  

absorption coefficient were analyzed to develop the best fit coefficients to predict chl-a absorption for 

lake Naivasha (Figure 10). The coefficient of determination and root mean square error (RMSE) were 

calculated for each model (Table 6). 

 

 
Figure 10 . Model Calibration with in-situ measured  absorption coeffcient.  

(a) 3B model calibration plot computed from Trios reflectance at bands 7, 9, and 10 and in-situ absorption 

coefficients. (b) 3B calibration for the combined (calibration and validation) datasets (n=90) against in-situ 

chl-a absorption coefficients (c) SCI model calibration plot computed from Trios reflectance at bands 5, 6, 



ESTIMATING CHLOROPHYLL-A ABSORPTION COEFFICIENT AS A PROXY OF PHYTOPLANKTON BIO-MASS FROM MERIS DATA, LAKE NAIVASHA, KENYA 

 

32 

7 and 8 and in-situ absorption coefficients. (d) MCI model calibration plot computed from Trios 

reflectance at bands 8, 9, 10 and in-situ absorption coefficients.  
Correlation of the in-situ phytoplankton absorption with the SCI index value  revealed a weak  quatratic 
polynomial function with a cofficient of determination and RMSE of 0.21 and 0.111. Similarly the MCI 
algorithm resuted in a weak polynomial quadratic function with a cofficient of determination and RMSE 
of 0.18 and 0.146 respectively (Table 6).  

4.4. Measuring Algorithm Accuracy and Robustness 

 

The algorithms’ accuracy in predicting phytoplankton absorption coefficients in lake Naivasha was tested 

through a least-squares regression. The coefficients, and their corresponding RMSE and r2  values     

(Table 6) obtained from the linear least-squares regression analysis of measured versus estimated 

absorptions of phytoplankton pigments describe the algorithms’ fit. Overall model performance was 

reported using the root-mean-square error (RMSE) of the estimated phytoplankton absorption: 

2

1

( )

( 2)

n

i i

i

Y X

RMSE
n

=

−
=

−

∑
……………………………….………………..………………..Equation 28 

Where: 

Yi= estimated concentration of pigment i 

Xi= measured concentration of pigment i 

n = number of observations 

To test the robustness of the algorithms, the data was divided into two sets, including a calibration and 

validation datasets (n=48 and n=42) respectively. Analyzed sampling sites were divided into half by 

selecting every other sampling site, resulting in the calibration dataset and the remaining data was used for 

validation. Chl-a absorption, was then derived for the validation dataset by the application of the 

regression equation obtained from the linear least-squares regression of the index value from each model 

and the measured chl-a absorption from the calibration dataset. 

 

Model Calibration Summary 

Model n       r2     RMSE          Equation 

3B 48         0.747      0.04208          Y = 0.804X+0.051 

SCI 48         0.206      0.11126          Y = -0.0363X2+0.110X+0.004 

MCI 48         0.183      0.14607          Y = -0.167X2+0. 039X+0.006 

Table 6. Calibratoin summary of the three models . 
Least squared linear regression of model index values derived from the insitue measured Trios reflectance 
and the in-stue spectrophotometric chl-a absortion coefficient. 
Validation of the calibrated algorithms was done using an independent data-set (the Trios and MERIS 
reflectanc n=42) from the lake and the best fitting coefficients obtained from the calibration equations 
were used to derive back the chl-a absorption coefficient measured in-situ and the derived absorption 
coefficients were reggrssed against  the in-situ measured chl-a absorption coefficent to evaluate the 
algorithm performance and accuracy using r2 and RMSE values (Table 7). Only the 3B model showed a 
strong linear relationship for an agreggate dataset (n=42) of in-situ measured absorption coefficents 
whereas both the SCI and MCI algorithms couldn’t hold for the aggregate dataset (n=42). It was found 
that the SCI algorithm fails at validating against stations with SCI index values above 0.0123sr-1 and chl-a 
absorption of greater than 0.2m-1  and were validated against half of the independent dataset though the  
poor perfomance is  still not improved (Table 7). Similarly the MCI algorithm was validated only for 
stations with index values of beween 0.0061 sr-1 to 0.0083sr-1.  
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Trios RAMSAS- Validation Performance MERIS Validation Performance 

Model n r2 RMSE Equation n r2 RMSE Equation 

3B 42 0.838 0.058 Y=1.094X-0.070 20 0.642 0.648551 Y=14.48X-0.923 

SCI 19 0.486 0.139 Y = 0.116X-0.006 
MCI 19 0.213 0.151 Y= 0.010X+0.0003 

Table 7 Performance summary of the three algorithms.  

Performance summary of models at estimating chl-a absorption coefficient of lake Naivasha from in-situ 

Trios-sensor and MERIS data. Included are the number of samples used in the validation (n), the linear 

equation of the validation plot, r2 and RMSE for both the in-situ and MERIS validation.   

 
Due to their poor performance the SCI and MCI models were not validated for MERIS and only the 3B 
model showed a strong linear relationship  both for the Trios and MERIS derived reflectance spectra and 
hence from herefater only the results of 3B will be shown and discuss though the resulats of SCI and MCI 
will be shown for compariso 

Figure 11. Validation results of the three models against in-situ measured a-phy plotted to the same scale. 
(a, b) 3B validation of chl-a absorption estimation from in-situTrios and remote sensing (MERIS) dataset 
(n= 42 and n=19) for the Trios and MERIS respectively. (c) Shows the SCI validation result of estimation 
of chl-a absorption  versus in situ mesured ch-a absorption for stations with SCI index values of less than 
0.0123sr-1(n=19). (d) Shows the MCI validation result of estimation of chl-a absorption  versus in situ 
mesured ch-a absorption for stations with MCI index values between 0.0061 sr-1 to 0.0083sr-1 (n=19). 
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5.     RESULTS AND DISCUSSIONS 

The in-situ chl-a absorption data from lake Naivasha showed a large variation in the magnitude and 

position of the red spectral absorption coefficient near 665nm. The highest and lowest chl-a absorption 

coefficients were measured in the Crescent Island lagoon and Malewa river inlet respectively. The in-situ 

spectrophotometric absorption coefficient measurement also showed variation in the position of the red 

absorption peak between 680nm and 710nm with a corresponding increase in peak magnitude. The 

magnitude of absorption for spectra with peak position at 680 nm varied from 0.1662 to 0.4021 per meter 

and the absorption peak of spectra with peak position at 710nm varied from 0.2727 to 1.1817 per meter 

(Table 2) The increase in the peak height was accompanied by a shift in the peak position towards longer 

wavelength which could be related to an increase in chlorophyll concentration (Gitelson, 1992). In his 

experiment in turbid in land and coastal water bodies, Gitelson (1992) found that the peak position for 

chl-a  concentration of less than 3 mg/m3 was observed at 680 - 683nm and it shifted to a longer wave 

length reaching 715nm for chl-a concentration of more than 100 mg/m3. 

Comparison of model out puts suggest that the three band algorithm, compared to the SCI and MCI 

algorithms, is more efficient at accounting the small variability in chl-a pigment absorption coefficients, 

likely because it utilizes information about the NIR feature as a whole, rather than only in a single band. 

Model performance was evaluated by comparing the model outputs from the in-situ Trios-sensor and 

MERIS water leaving reflectance with the in-situ measured chl-a absorption coefficient. The three band 

model showed a strong linear relationship with higher coefficient of determination and low RMSE values.  

The coefficient of determination and RMSE value of 3B model as indicated in (Table 7) was (0.838, 

0.057786 and 0.642, 0.64855) for an aggregate dataset of 42 and 19 for the Trios and MERIS sensors 

respectively. To test robustness and accuracy of models at estimating chl-a, validation of the calibrated 

algorithms was performed using an independent data-set (the Trios and MERIS reflectance n=42) and the 

best fit coefficients obtained from the calibration equations were used to derive back the chl-a absorption 

coefficient measured in-situ. The derived chl-a absorption coefficients were regressed against the in-situ 

measured chl-a absorption coefficient to evaluate the algorithm performance and accuracy using r2 and 

RMSE values (Table 7). Only the 3B model showed a strong linear relationship for an aggregate dataset 

(n=42) between in-situ measured absorption coefficients and derived chl-a absorption, whereas the SCI 

and MCI algorithms couldn’t hold for the aggregate dataset (n=42). It was found that the SCI algorithm 

fails at validating against stations with SCI index values above 0.0123sr-1 and chl-a absorption of greater 

than 0.2 m-1 and were validated against half of the independent dataset though the poor performance is 

still not improved (Table 7). Similarly the MCI algorithm was validated only for stations with index values 

of between 0.0061 sr-1 to 0.0083sr-1.  

Despite the fact that the SCI model was developed and tested for extracting chl-a information in highly 

turbid water bodies containing high SSC level (> 100 mgm-3) by taking in to account the variability of 

spectral reflectance features and sediment synthetically, it was found to under-perform at characterizing 

chl-a information of lake Naivasha. The poor performance of this model at estimating chl-a absorption in 

lake Naivasha could be attributed to the higher chl-a content. The SSC level of Lake Naivasha is not more 

than 100 mgm-3 (Kebede, 2011) which is not as high as the model was initially tested. This could be 

elaborated by the fact that the model is failing at estimating chl-a for stations with index value of greater 

than 0.0123 sr-1which is a lower value for the lake. The higher SCI index value is due to high Hchl value 

(Eqn.22) obtained from reflectance enhancement at 706 nm from Trios sensor due to high backscattering 

from algal cells and suspended sediments which is beyond the predictive power of the model. Farther 

analysis and mapping of chl-a was done using the modified and accurate 3B algorithm by Gitelson et, al. 

after fixing the fitting coefficients for the prediction of chl-a absorption in the lake. 
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Model residual analysis have showed that the three band  model was associated with an overestimation of 

chl-a absorption in all of the sub-regions analyzed resulting in a negative residual whereas results the MCI 

and SCI were associated with underestimation of phytoplankton absorption coefficients resulting in a 

positive residual.     

Model out puts of higher chl-a absorption in the Crescent Island lagoon was in agreement with the in-situ 

absorption measurement, though higher levels of suspended detritus material and floating green to greyish 

rafts of phytoplankton and leafed plants were observed in the main lake. This can be attributed to the 

physiological condition of the phytoplankton communities present in both lakes in which the bloom in the 

Crescent Island lagoon is more active than the counterpart in the main lake. When a bloom event is at its 

verge of development the algal cells start disintegrating decreasing the photosynthetic activity and much of 

the absorbed light will be re-emitted as fluorescence instead of being utilized for photosynthesis. Generally 

speaking, the more efficiently the phytoplankton utilizes the absorbed light for photosynthesis, the less of 

the absorbed light is re-emitted as fluorescence and hence higher chl-a absorption coefficient readings.  

In attempt to investigate the spatial distribution of phytoplankton in the lake, the data was analyzed by 

dividing the main lake stations into five sub-regions based on geographic locations. Model results of 

absorption coefficient have showed spatial variations in the phytoplankton absorption coefficient which is 

also evident from the in-situ chl-a absorption coefficient measurements (Figure 12). The lowest chl-a 

absorption value was recorded at the Malewa river inlet due to high light inhibiting suspended sediment 

load from the river which was evident from the minimum sechi disc depth value of 0.22m. 

Long term temporal variations of phytoplankton distribution could be analyzed with help of this 

algorithm provided that images of the lake for the required period of time are available.  Previous studies 

based on physical and biological investigations have demonstrated that there is temporal variation of 

phytoplankton in lake Naivasha. Progressive increase of phytoplankton distribution has been reported by 

(Harper, 1992) as a result of nutrient increase caused by a decline in water level and papyrus swamp 

clearance for agriculture.  

This comparison gives an understanding of the application of empirical algorithms of chl-a absorption and 

fluorescence on optically turbid inland lakes. The accuracy of the resulting calibration and validation of the 

chl-a absorption for both models was compromised by errors in deriving the level 2 product, especially 

those introduced by atmospheric correction and the laboratory spectrophtometric measurement which 

was consistently affected by chl-a degradation products. 

Absorption maps were produced by the three band model revealed the variation in the phytoplankton 

distribution and can be applied in monitoring Lake Naivasha in space and time to some degree of success. 

It can be observed from map that the chl-a absorption increases from north to the south and east as the 

SSC level decreases offshore of the Malewa river mouth because of the increase in the amount of sunlight 

penetrating the water away from the river mouth.     

 

 

 

 

 

 

 

 

 

 

 
                               Figure 12. Averaged in-situ absorption coefficient at 665 nm. 
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Mapping of chl-a in lake Naivasha is strongly influenced by the floating leafed plants (such as Hyacines) 

which keeps on changing places consistently depending on the wind direction. The application of the best 

performing algorithm to MERIS data has however enabled us to assess the ecological status of lake 

Naivasha to some degree of accuracy. Phytoplankton absorption maps of the three cloud free images 

taken on 20th, 23rd, and 26th of September 2010 were produced using the three band empirical algorithm 

(Figure 13) and from the three maps it can generally be observed that higher level of chl-a is in the  

Figure 13. Phytoplankton absorption maps for the 20th, 23rd and 26th of September 2010 

The maps indicated are Phytoplankton absorption maps for the 20th, 23rd and 26th of September 2010 

computed from the three band model using reflectance in bands 8, 9, and 10. Clouds and land are masked 

to grey using a threshold in band 13 (865 nm). 

Crescent island lagoon, the Hippo point and Lake-Centre (red colour) and the lowest values of chl-a 

absorption are shown in (blue) on the northern part of the Mennl’e Bay and the Safariland Bay on the 20th 

and 26th of September 2010 maps. The map on the 23rd of September 2010 also shows lowest value of 

phytoplankton absorption on the northern part of the Mennel’s Bay (blue) though a higher absorption 

value is mapped on the Safariland bay. This difference could be attributed to the influence of northerly 

wind blowing from the safariland towards Malewa inlet to collect floating rafts which gave it high chl-a 

absorption value (red) on the 20th of September 2010. This in turn has left the safariland Bay to lowest chl-

a absorption value on the same date.  
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6. CONCLUSSION AND RECOMMENDATION 

The study proved that the Meduim Resolution Imaging Spectrometer (MERIS) is a very useful tool for 

studying the distribution of chl-a absorption in a relatively smaller water body such as lake Naivasha. In 

this work, the three band model by the Gitelson et al; the SCI model and the FLH/MCI algorithms were 

analyzed for extracting chl-a information in lake Naivasha. Comparison of the three analyzed models 

revealed that the three band model has a strong linear relationship with the in-situ measured chl-a 

absorption with high coefficient of determination and low RMSE. It is found that high chl-a level of the 

lake is beyond the predictive power of the SCI and FLH algorithms. The SCI algorithm initially designed 

for turbid waters with high SSC was found unfit to retrieve the lake’s chl-a level. Despite the high 

suspended particulate matter observed in the main lake, its found that the chl-a absorption was higher in 

the Crescent Island lagoon than in the main lake which was also confirmed by the 3B model. The 

regression analysis of the model results versus in-situ absorption data reveals that both the SCI and 

FLH/MCI are in adequate at estimating chl-a from lake Naivasha.  

The correlation of index values of the above model with in-situ data provided the basis for the 

development of retrieval equations and constants for estimating and mapping chl-a absorption coefficient 

in Lake Naivasha with some degrees of success. However, the use of satellite remote sensing for mapping 

chl-a absorption coefficients in lake Naivasha is limited by the presence of cloud cover. Despite these 

problems, satellite data are still preferable over field measurements if one aims to follow the temporal and 

spatial variation of phytoplankton in the area. 

The investigation of temporal variation of the phytoplankton distribution of lake Naivasha,  is constrained 

by  the availability of short period remote sensing images which intern is mainly controlled by the frequent 

cloud  cover in the area.   

Comparison of the available satellite data with the in-situ hyperspectral and the laboratory data reveal 

underlying problems: (i) Comparing data at different spatial and short temporal scales was difficult. In this 

study, it is observed that a reasonable agreement between measured and model out puts is obtained for the 

aggregate dataset at a larger spatial scales rather than at shorter spatial and temporal (per every four days) 

scales where the differences were large and models performed poorly (ii) In situ data suffer from poor 

reproducibility, related to the natural variability at small spatial scales (patchiness).  

The development of new spectral algorithms to account for pigment absorption had varying success in 

which the 3B model is set with new coefficients of estimating the chl-a content of the lake from RS. The 

strong correlation of chl-a prediction achieved with 3B model, revealed that empirical algorithms can be 

used to estimate chl-a information in lake Naivasha accurately. 

Though there is a need for comprehensive ground-truth data, the use of remote sensing to monitor algal 

blooms is beneficial to water managers. Once a comprehensive spectral library is established and validated, 

models are easily applicable and can rapidly assess pigment concentrations in lake Naivasha.  
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APPENDIX 

MERIS 

wavelength 

20-Sep-10 23-Sep-10 26-Sep-10 

RMSE rho path Tv RMSE rho path Tv RMSE rho path Tv 

412.6910 0.00181 0.04237 1.00000 0.00109 0.04360 1.00000 0.00244 0.04690 0.53833 

442.5590 0.00168 0.03266 1.00000 0.00116 0.03366 1.00000 0.00232 0.03517 0.73705 

489.8820 0.00161 0.02140 1.00000 0.00139 0.02265 1.00000 0.00220 0.02136 1.00000 

509.8190 0.00159 0.01722 1.00000 0.00155 0.01872 1.00000 0.00207 0.02297 0.62951 

559.6940 0.00174 0.00880 1.00000 0.00209 0.01137 1.00000 0.00192 0.02041 0.52423 

619.6010 0.00172 0.00574 1.00000 0.00264 0.00748 1.00000 0.00194 0.00651 1.00000 

664.5731 0.00181 0.00523 1.00000 0.00268 0.00690 1.00000 0.00185 0.00598 1.00000 

680.8210 0.00186 0.00501 1.00000 0.00260 0.00634 1.00000 0.00195 0.00581 1.00000 

708.3290 0.00244 0.00353 1.00000 0.00276 0.00600 1.00000 0.00236 0.00423 1.00000 

753.3710 0.00223 0.00553 1.00000 0.00171 0.00772 1.00000 0.00551 0.00787 1.00000 

778.4091 0.00222 0.00490 1.00000 0.00176 0.00722 1.00000 0.00583 0.00741 1.00000 

864.8760 0.00188 0.00431 1.00000 0.00115 0.00635 1.00000 0.00674 0.00715 1.00000 

884.9444 0.00177 0.00391 1.00000 0.00099 0.00592 1.00000 0.00694 0.00690 1.00000 

900.0001 0.00165 0.00130 1.00000 0.00076 0.00332 1.00000 0.00491 0.00389 1.00000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


