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Management summary

Research background

DELMIA, a subsidiary of Dassault Systèmes, is a company focusing on various optimization problems

in many fields, such as supply chain planning, sales and operation planning, logistics planning,

workforce scheduling and workforce scheduling. Their platform DELMIA Quintiq 6.0 (in the year

of 2022) is the latest version of software for solving optimization problems. There are some built-

in metaheuristics in the software for addressing the problems. When using a metaheuristic, it is

necessary to determine the value of parameters before running the model, such as the number of

neighborhoods, the length of running time, or the times of iterations. For some metaheuristics, there

are multiple parameters for which different values and their combinations will affect the performance

of these metaheuristics.

The easiest way to determine the parameter values is just to set the values according to the user’s

experience. The user can set the parameter values he/she thinks to be sensible and effective for the

metaheuristic. But this does not always work since a conjecture based on experience is not always

reliable. Another way of setting parameter values is to do some pilot tests. For determining the

parameter values, the optimization process is divided into two stages. First, we run some pilot tests

for the metaheuristic with different parameter value settings, and then we compare the results from

different settings and select the one that gives the metaheuristic the best performance. Then in

the second stage, which is the formal training and optimization process, we use the metaheuristic

with the selected value setting. However, the pilot-test method may take a long time before we can

use the metaheuristic with the selected parameter values, so it may not be feasible for the situation

that a solution is needed within a limited optimization time. Therefore, DELMIA needs a method

to readily determine the value of metaheuristic parameters, without pilot tests in advance, whereby

the appropriate parameter values can be selected while the optimization process is running. Such

a method selects the effective parameter values while the metaheuristic is running without wasting

time on pilot tests, and has better effectiveness than conjecture by experience.

In this paper, we design an online learning method to select the proper combination of parame-

ters to give the running metaheuristic a good performance without pilot tests. The method runs

simultaneously with the metaheuristic and learns about the attributes of different parameters and

their values, named as Dynamic parameter value tuning method (DPTP). As mentioned above, the

advantage of this method is that it needs no pilot test. This cuts down on running time for users

and gives a good selection of parameter values. Existing parameter-control methods mostly handle

the situation where there is only one parameter, while DPTP can manage multiple parameters at

the same time. We provide “presets”, which are alternative combinations of parameter values, for

DPTP so that it can dynamically select different value settings and apply the selected values to the

metaheuristic.

DPTP method

Before using DPTP, users need to provide it with sets of parameter values, i.e. presets, as mentioned

above, to be selected by DPTP. These presets can be generated randomly from their value ranges.



DPTP gives each preset a selection probability. DPTP selects one preset in each epoch based on the

selection probabilities of these alternative presets, and gives some feedback about the improvements

of the benchmark function value obtained by using the selected preset, compared to the value before

it is used, which can be seen as the effectiveness of the selected preset. The feedback therefore

determines the update of the selection probabilities. In summary, better performance can give a

higher probability to a preset, so that it is more likely to be selected in the future. By this means,

DPTP selects different parameter values from the provided presets at different stages based on the

feedback when the metaheuristic is running, instead of using fixed parameter values. Currently, many

of the parameter-control methods use the similar process of collecting feedback, and the feedback

determines the effectiveness assessment of the parameter values.

Research approach

In order to use a metaheuristic in an optimization problem with one or more parameters, users can

generate parameter values based on their previous experience or making conjectures, and then the

fixed set of values is used throughout the entire run. Thus, a bad choice of values affects the entire

optimization process and gives the metaheuristic a relatively poor performance. DPTP has a better

impact on the performance of metaheuristics than the average performance of using a fixed set of

values, where ”better than average” means that DPTP performs better than or equal to at least half

of the presets it uses. Otherwise, it makes no sense to use DPTP to optimize the parameter values,

for we are more likely to get better performance by randomly selecting parameter values rather than

by using DPTP.

To validate DPTP, we compare the results of DPTP with those of fixed values. Both of these adjust

the parameter values of a metaheuristic, coral reef optimization (CRO) in our research. It is a genetic

metaheuristic starting with an initial solution and evolving through biologically inspired operators

such as mutation, crossover and selection. We use this method because it has 6 parameters, a

relatively large number, ensuring that the value assignment and the interactions between different

parameters are sufficiently complex. The effectiveness of DPTP can be tested in a convincing way

using such a metaheuristic method with so many parameters.

In the validation experiments, we first set up some presets and then run CRO multiple times for

each preset, to check which presets are “good” presets that give CRO good performance, and which

are “bad” presets otherwise. Next, we run CRO by using DPTP and compare the results with the

previous results using fixed presets to check if DPTP’s performance is better than at least half of

the fixed presets.

For generality, we measure the performance of different experiment settings using seven benchmark

functions that have already been widely used to test the metaheuristics. Thus, the complexity and

the reliability of these functions are guaranteed. In addition, all of these benchmark functions are

for minimization problems.

Experiment results and conclusion

After the experiments and the data analysis, Table.I presents the overview of the comparison between

DPTP and the fixed presets measured by the 7 different benchmark functions. The numbers of fixed-



presets that DPTP outperforms in the context of each benchmark function are listed in the table.

BM function C23 C24 C25 C26 C27 C28 C29

No. of winning 8 4 1 5 8 8 10

Table I: The number of presets that DPTP is better than or

equal to, as measured by different benchmark functions

In the experiments, we provide 10 presets to DPTP. From the results, we can see that for 5 out of

7 benchmark functions, DPTP outperforms at least half of the fixed presets. Thus, the research

indicates that DPTP has an above-average performance compared to the fixed presets for most of

the benchmark functions. It implies that we can use DPTP on metaheuristics as an option for

adjusting the parameter values.

Since DPTP gains above-average performance in most of the cases for the basis algorithm in this

paper, it is validated to be a promising direction for parameter control of metaheuristic algorithms.

However, it still has some limitations. DELMIA continues the research on DPTP after this paper is

completed, focusing on why DPTP fails in some cases, and how to improve it to make it work better

in these cases. Additionally, they will build the algorithm into their QUINTIQ platform to apply it

to more types of real optimization problems in their business, so that the generality of DPTP can

be further validated.
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1 Introduction

1.1 Company introduction

In 1981, a subsidiary of Dassault Aviation 3DS was formed to develop and sell its surface design

software, CATIA. 3DS was the precursor of Dassault Systèmes, which later became known not

only for the software for aerospace industry, but also for a wider range of more complex industrial

software, e.g., urban planning, energy transition, and healthcare, etc. (What we are, 2021). In

addition to its 3D design software such as CATIA and SolidWorks, the company has launched more

products for different areas: ENOVIA for product data management and collaboration, DELMIA

for manufacturing and global operations, and Simulia for real world simulation (Dassault Systèmes

- Wikipedia, 2016). Some products and service that 3DS provides are presented in the Figure.0.

Figure 0: Some products and services 3DS provides

Source: Dassault systèmes website,

https://www.3ds.com/products-services/

As a subsidiary of Dassault systèmes, DELMIA, which the research topic of this paper is from,

provides customers with solutions for modeling and optimizing their business activities. Its solutions

are widely used in logistics, manufacturing, and inventory management processes. As its website

notes, “the solutions are used to plan and optimize complex production value networks, optimize

intricate logistics operations, and plan and schedule large, geographically diverse workforces. Key

capabilities include predictive and prescriptive data analytics, forecasting, what-if scenario planning,

collaborative decision-making, disruption handling and production scheduling” (Delmia Quintiq –

Dassault systèmes, 2022).
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1.2 Research background

For addressing modeling, simulation, and optimization of real-world problems powered by its own

platform named DELMIA Quintiq, many built-in heuristics and metaheuristics are used. By using

the metaheuristics, we often need to set up the parameter values, such as the initial temperature and

the cooling factor of simulated annealing (SA), the number of neighborhoods in many methods, or

the mutation factor of genetic algorithms, etc. The problems in the real world are so complex that

even trivial changes in the parameters of these solutions can make a large difference. At present,

most parameters of metaheuristic algorithms are set manually. In such a condition, the setting of

parameter values needs to be carefully considered for ensuring that the optimization algorithms

perform well. This is why a tuning method is needed to select and apply appropriate parameter

values for these algorithms, and it is not supposed to take a long time to do that before or during the

optimization algorithm run when the computational budget and time are limited. Thus, we come up

with an online learning method that selects the provided parameter value combinations to give the

running metaheuristic good performance. The method runs simultaneously with the metaheuristic

and learn about the attributes of different parameters and their values, which is named Dynamic

parameter value tuning method (DPTP). It is an adaptive parameter control method that adjust the

parameter values according to the running feedback as you can see in Section.3.4.

The rest of the paper is organized as follows. In Section 2, we describe the problem in more details

and give a definition of the problem. In Section 3, we review some previous work and papers that

could help us understand the problem better, and inspire us about how the tuning algorithm should

be designed. Section 4 presents the methodology of DPTP. Section 5 introduces how the experiments

are conducted and how the result data are organized and analyzed. Section 6 presents the experiment

results and analyzes the result data by both visualization and mathematical hypothesis test. Finally,

In Section 7, we draw the conclusions from the data and the analysis and have a discussion about

the work that can be done in the future to improve DPTP.

2 Research problem

In this section, we introduce the problem we try to solve in this paper, specifying why we need

DPTP for solving such problems. In Section.2.1, a general description of how DPTP is supposed

to solve parameter-tuning problems is presented, and we make the distinction between the two

important terminologies ”basis algorithm” and ”tuning algorithm” used in this paper. In Section.2.2,

a definition of the parameter-tuning problem and the research questions are given. The purpose of

the research in this paper is looking for a method to solve the problem and answering the research

questions.

2.1 General description

For optimization problems, the solving methods can be simply classified into two categories: exact

methods, and approximate methods. The former always give the global optimal solution if there

is one, maximizing or minimizing the objected function, but they can take long time for solving a

problem. Typically, we use big O notation to measure the time complexity of an algorithm, formatted

as O(n), O(n log n), O(2n) . . . , etc. The big O notation means the upper bound for an algorithm’s

2



running time in the size of the input n for the algorithm. If the running time of an algorithm is upper

bounded by a polynomial expression, i.e., T (n) = O(nk), it is said to have a polynomial running

time (Wikipedia contributors, 2022b). Differently, the approximate methods give “good enough”

solution in limited time, but the solution may not be the global optimality. Exact methods are quite

intuitive: build models, create objective functions and constraints, and solve them. However, in the

real world, most of the optimization problems are NP-hard problems (Talbi, 2009) that cannot be

solved in polynomial time by exact methods. Therefore, heuristic methods are raised to solve such

problems, given that the solving time is limited in many situations. They can give good solutions

in polynomial time, but the solutions are not guaranteed to be global optimal solutions.

Heuristics and metaheuristics are two types of approximate methods. A heuristic method generally

starts from an initial solution, and improves the solution through iterations. The metaheuristics, on

the other hand, are less likely to fall into local optimum compared to heuristics. Some parameters are

involved in the running of heuristics or metaheuristics, for example, the cooling factor in simulated

annealing, the mutation rate in genetic algorithms, or number of neighbors in a large neighborhood

search (LNS). These parameters greatly affect the performance of the meta-heuristics.

Usually, the values of these parameters can be set manually. The values can be determined by pilot

tests, in which we try different parameter values and observe which values give the algorithm good

performance before we formally run the algorithm, and we use the good values in the latter formal

runs. Also, we can also set parameter values by leveraging experience of some experts of the problem

or the algorithm, since they may know which values are suitable for the algorithm. However, pilot

tests can take a long time to get useful information about the impact and extent of parameters on

the algorithm performance before we can use it to solve problems, and experts’ experience is not

always that reliable or accurate. Moreover, it is even more difficult to tune them manually when the

number of parameters is large, as they could be interactive.

As mentioned above, the tuning method DPTP in this paper optimizes the parameter values of

heuristic or meta-heuristic algorithms. In an optimization process, there are basically two kinds of

algorithms involved: one is used for tuning the parameter values, which is itself a meta-heuristic

presented in this paper, and its parameter values are tuned to get better performance for a specific

optimization problem. For the purpose of distinguishing, we name the former algorithm as “tuning

algorithm” or “tuning method”, and the latter one as “basis algorithm” or “basis method”

hereafter.

2.2 Problem definition and research questions

In this section, we give the problem definition and the research questions. Define P as an NP-hard

problem, and there is a meta-heuristic method (the basis method) M for solving it. Define S as the

set of parameters for M, and pi ∈ S is a parameter of M, where pi ∈ R and i ∈ Z+. We are looking

for a method M′ (the tuning method) to select appropriate parameter values for M from among

some sets of provided values, a matrix C :
λ11, . . . , λ1i
...

. . .
...

λj1, . . . , λji

 ,
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where j ∈ Z+ is the number of sets of alternative values provided for M′. We name an alternative

set of parameter values V = {λ1, λ2, . . . , λi} as a preset hereafter in this paper, where λi is the

provided value in the preset for parameter pi. In the above matrix C , λji is the value for parameter

pi of M in preset j.

Assume that the result of a solution for P is evaluated by minimizing a fitness value f , which is

the value of a benchmark function used for measuring the algorithm M. Among all the available

presets, M can get the smallest fitness value f∗ on average when values from preset V∗ are applied

to it in the same unit running time. In other words, V∗ is the best choice among all the provided

presets. The goal of the tuning method M′ is then to select presets and apply them to M so that

the average fitness value of the resulting solutions is as close to f∗ as possible, given that users do

not know which preset results in good or bad performance for M.

Since the research problem is clarified, we accordingly need to address the following research ques-

tions in the research:

RQ How to design an algorithm to select parameter values for a metaheuristic when it

is running, so that the metaheuristic can gain above-average performance, compared

to only applying a fixed preset to the metaheuristic?

In RQ, the word “dynamically” means that we do not always use the same parameter values for the

whole run. Sometimes the tuning algorithm can change the parameter values, as long as it believes

that such a change can improve the performance of the metaheuristic it is working on. Moreover,

“above-average” means the method proposed in this paper, DPTP, is expected to gain performance

that is not worse than at least half of the presets it is using, compared to the results by fixedly using

each of its preset. We want the results by using DPTP to converge as much as possible to these

best presets. For example, if we provide 10 presets to DPTP, then we can get the results from using

DPTP, and 10 groups of results from using only one fixed preset from each of the provided preset.

The results of using DPTP should not be worse than at least 5 groups of fixed-preset results if we

assess DPTP as an effective method. Otherwise, it is meaningless to use DPTP to optimize the

parameter values, for arbitrary selecting of any preset is expected to be better than using DPTP.

Section.4 introduces the processes and steps of using DPTP.

During the experiment, we use 7 widely used benchmark functions to measuring the performance

of using either DPTP or fixed parameter. More about the benchmark functions can be found in

Section.5.1 The result data (benchmark function values) are exported for analysis in Section.6.

In order to answer the research question, we decompose it into a list of sub-questions:

1. Since we tend to let the tuning algorithm, DPTP, to determine the parameter values without

any pilot test or pre-knowledge about the metaheuristic, based on what criteria should it make

decisions about the parameter values?

2. Once we determine the criteria and method based on which DPTP makes decisions about

selecting presets, how to collect the data about the performance of DPTP as well as fixed

values, and how should we use these data to improve DPTP’s selection making?

3. How to design and execute experiments and data analysis to validate that the metaheuris-

tic using the tuning method gains above-average performance, compared to only using fixed

4



parameter values during the running?

4. How does DPTP affect the performance of the metaheuristics compared to using only fixed

presets, according to the experiment data?

5. If DPTP has a satisfactory above-average effectiveness, what is its behavior like with regarding

to the selection of presets?

2.3 Section summary

In this section, we give a general description about the problem we are trying to solve for building

an intuitive concept of the problem. After that we give a definition of the problem and the research

question. The general description helps us understand what the problem is and why it needs to be

solved. The research question is the pivot of this paper, as all the research and the designing are

organized based on it. For a better understanding about the research question, it is decomposed

into some sub-questions. The main research question can be answered by separately solving the

sub-questions. This section gives an insight of the guide for the research, for all the research topics

in this paper are based on the research question.

3 Literature review

To solve the problem and answer the RQ and its sub-questions, first, we need some knowledge

about the optimization problems and methods that are widely used to solve such problems to see

if there is any existing method, or if we can get any inspiration from the previous work. Since

the problem we work on is an optimization problem, so first Section.3.1 explains the conception

of optimization problems, and why approximate methods are acceptable for solving such problems.

Section.3.2, 3.3 review some literatures about two types of frequently used approximate methods,

heuristics and metaheuristics respectively. We can get some basic conceptions about these methods,

and understand how different parameter values influence the performance of them. What’s more,

we need to design a method of adjusting parameter values, so Section.3.4 reviews literatures about

parameter tuning and parameter control methods, which are two types of parameter adjustment

method. Since we do not use any pilot test before the basis algorithm is formally run, and we adjust

the parameter values during the running time, we are sure that the method we use is a parameter

control method, for which the definition can be found in the last subsection. Therefore, we care

more about the knowledge of parameter control methods, and this section also gives a summary of

the steps of parameter control methods, that can be used in our method design. Section.3.5 reviews

some literatures about the online and offline learning methods, and introduces how these methods

can help us solve problems. We adjust the parameter values while the algorithm is running, and

we use the feedback to improve the decision-making, so the method we design is an online learning

method according to literatures reviewed in this section, and we can also learn how to design and

use it in this section.
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3.1 Optimization problem

Optimization problems are from a wide range of fields involving decision-making, whether in science,

engineering or economics. Optimization can be evaluated by objective functions or performance

indices (Chong & Zak, 2004). Generally, the globally optimal solution or alternative is expected

by users for an optimization process, and some exact methods e.g. linear programming can be

used to gain the exact optimal solution. However, most optimization problems in the real world

are NP-hard problems that take non-polynomial time to solve (Talbi, 2009), so in practice, most

optimization problems can accept good but not guaranteed to be the optimal solutions. In such

cases, the approximate methods such as heuristics and metaheuristics can be used to obtain “good

enough” solutions for many optimization problems.

3.2 Heuristics

Different from the exact methods, heuristic methods are able to obtain a good solution (not nec-

essarily optimal) for a given optimization problem while the time for obtaining such a solution is

acceptable compared to the exact methods (Reeves, 1993). The basic steps of a heuristic method

include identifying certain characteristics of a problem, creating an initial solution, and searching

locally or globally through specific methods (Salcedo-Sanz, 2016).

In general, heuristics can be divided into two categories: the constructive algorithm and the local

search algorithms (Michiels et al., 2007). As the name implies, constructive algorithms create a

solution from scratch by taking some designed steps, and in each of these steps the solution is

extended from the previous step (Ahuja et al., 2002). Such extensions from the previous step can be

performed by adding basic components of the solution, the values of the solution, or in the reverse

order, reducing components, etc.

One of the simplest constructive algorithms is the greedy algorithm. A greedy algorithm is an opti-

mization method in which the most promising alternative solution is chosen in each step. Choosing

only the most promising alternative in each step leads to a local optimality in most of the cases

(Michalewicz & Fogel, 2013). Take the travel salesman problem (TSP) as an example: given a set

of cities, and the travel cost (distance) between each two cities, a salesman needs to travel each city

precisely once, and go back to the starting city finally at a total cost as low as possible. Intuitively,

there is a “brute solution” of the TSP exact solution that enumerates all the possible routing per-

mutations, with a complexity of O(n!) (Abdulkarim & Alshammari, 2015) given the input size n,

which is even worse than polynomial time complexity. However, according to the greedy algorithm,

starting from the starting city, the unvisited city to which has the lowest cost from the current city

is always chosen to be the next city to travel. This greedy algorithm has a complexity of O(n2).

It is dramatically reduced compared with the one of the exact method, with the cost of losing the

guarantee of global optimality.

Greedy algorithms are often used as a method to build an initial solution for an optimization

problem, but they can be very far from the global optimality. In order to get closer to optimality,

the local search algorithms are adopted to improve it. In a local search, a “neighborhood” for the

current solution is expected to be specified. The neighborhood here is a set of solutions that can

be “reached” by the current solution. In other words, it is “close” to the current solution (Johnson
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et al., 1988). Also, for the example of TSP, a frequently used neighborhood is a solution that has

only two edges different from the current solution. With such neighborhoods, the current solution

is repeatedly replaced by its neighborhood solutions, if the neighborhood solutions lead to a better

objective function until some point, e.g. long enough running time, or low enough cost, etc., is

reached. This method of looking for neighborhoods in a local search is called ”two-opt” swap.

Some popular heuristic methods include local search, divide and conquer, branch and bound, dy-

namic programming, and cut and plane, etc. (Desale et al., 2015). Aarts et al. (2003) presents a lot

of applications of heuristic methods in optimization problems such as traveling salesman problem,

vehicle routing problem, and machine scheduling problem, etc. Heuristics are widely used in solving

many classical optimization problems.

3.3 Metaheuristics

Although heuristic methods can effectively solve NP-hard problems and give good solutions, it is

easy to fall into some local optimality. One of the advantages of meta-heuristic algorithms is that

they are more flexible than heuristics and can jump out of local optimality since they are able

to cover a larger range of alternative solutions during the same running time compared to other

methods (Hansen et al., 2010). It is used in numerous areas such as engineering, machine learning

and data mining, systematic modeling, and planning problems etc. (Talbi, 2009). So far, there

is no commonly accepted definition for metaheuristics. According to Osman & Laporte (1996), a

metaheuristic is an “iterative generation process” that allows its subclass heuristics to exploit the

solution space through a number of learning processes in order to find more promising directions in

the search for a good solution. Stützle (1999) defines metaheuristic as an advanced strategy that

guides the underlying heuristics to improve its performance. During the execution of metaheuristics,

a worse movement can be allowed, or a new starting solution can be generated in order to escape from

a local optima. Furthermore, metaheuristics do not use randomness blindly compared to traditional

heuristics.

Metaheuristic algorithms include ant colony optimization, evolutionary algorithm, genetic algorithm,

scatter search, simulated annealing, tabu search, guided local search, hill climbing, iterated local

search, stochastic algorithm, etc.(Desale et al., 2015; Pirlot, 1996). All of these methods improve

the heuristic methods by either reducing the computational time or improving the solution quality

(making the final solution closer to local or global optimality in the same running time).

3.4 Parameter tuning v.s. parameter control

Most metaheuristics are inspired by natural laws such as physics and biology and usually have

parameters that users can set. Parameter values have a very strong effect on metaheuristics because

they are in charge of the process of heuristics (Huang et al., 2019). Different parameter values

bring different behavior to the metaheuristic algorithm, such as the speed of convergence to local

optimality and the probability of accepting inferior solutions. Therefore, it is very important to set

the parameters of the metaheuristic algorithm carefully in order to improve the performance of the

algorithm. Parameter setting problem of metaheuristic algorithm can be divided into parameter

tuning and parameter control (Huang et al., 2019; Skakov & Malysh, 2018).
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The parameter tuning is also called offline tuning. In this case, the parameter values are set before

running the algorithm and remain the same for the duration of the run. The tuning result outputs

the best set of parameter values as a result. The main drawback of parameter tuning is that it is

very time-consuming. To find the best value, many pilot tests are needed to fine-tune the parameters

before running the metaheuristic algorithm (Skakov & Malysh, 2018). Then, after the running of the

metaheuristic, if the results are not good enough, the tuning parameters are run until a satisfactory

solution is found.

Parameter controls are also called online tuning, in which parameter values can be changed during

metaheuristic processes. It requires appropriate initial values and good control strategies during the

run. So in such a case, the tuning algorithm is executed in the meantime with the basis algorithm,

getting feedback from the performance of the basis algorithm and taking corresponding control

strategies (Aleti & Moser, 2016; Hoos, 2011).

Since parameter tuning methods lack the flexibility and ability to update parameter values and are

time-consuming (Sun & Lu, 2019), as noted above in the process of metaheuristics, the focus of this

paper is parameter control methods. The research for parameter control methods mainly focuses on

evolutionary algorithms, which are a major metaheuristic class (Maier et al., 2019), and the basis

algorithm used in this paper is also a genetic algorithm. Parameter control methods can be divided

into three categories: deterministic parameter control, adaptive parameter control, and self-adaptive

parameter control (Aleti & Moser, 2016; Hinterding et al., 1997):

• Deterministic parameter control Deterministic parameter control methods update pa-

rameter values through some deterministic rules, such as a fixed schedule or a fixed formula

with the number of iterations as variables (Sun & Lu, 2019). The feedback from the execu-

tion process of the parameter-control algorithm does not matter to the deterministic control

process.

• Adaptive parameter control

Adaptive parameter control uses the feedback of the adaptive algorithm to determine the

direction or magnitude of the parameter updating strategy or to determine the optimization

direction by changing the coefficient of the target function (Hinterding et al., 1997). In the

adaptive parameter control method, feedback collection, effect assessment, quality attribution,

and parameter update strategies should be considered and applied in these four different steps

(Aleti & Moser, 2016):

– Feedback collection

Feedback collection is a distinguishing feature of adaptive control methods. The feedback

from running is collected and then affects the parameter value correspondingly. However,

for deterministic parameter control methods, the feedback is not considered; for self-

adaptive parameter control methods, the feedback is implicit and does not need to be

collected.

– Effect assessment

With the output of optimization with different values of parameters, we can assess the

effect of different values on the performance of an optimizing algorithm.

8



– Quality attribution

Quality indicators are defined for all alternative parameter values to determine which

values are the most successful ones.

– Parameter update

Parameter updates should strike a balance between using high-quality parameters and

exploring new values in order to escape the trap of local optimization.

• Self-adaptive parameter control

Self-adaptive parameter control is a combination of finding optimal parameters and finding

optimal solutions. In this method, parameter values are usually encoded with the solution

genotype, that is, they evolve in parallel with the solution (Aleti & Moser, 2016). Adaptive

parameter control method is especially suitable for evolutionary problems with continuous pa-

rameter values. When a genetic algorithm is applied for discrete optimization, its performance

is not as good as the adaptive parameter control method (Thierens, 2005).

As for specific algorithms for parameter tuning, there has already been some work done about

parameter control and tuning. Bartz-Beielstein (2010) and Bartz-Beielstein et al. (2010) presented an

R package for automatically tuning of parameters of optimization algorithms using SPOT algorithm.

Arcuri & Fraser (2011) demonstrated search-based software engineering (SBSE) technique can be

effective for parameter tuning problems of genetic algorithms.

DPTP, the method we design in this paper, turns out to be a parameter control method, since it

adjust parameter values while the basis algorithm is running. Hereafter in this paper, both the

words “parameter control” and “parameter tuning” mean the “parameter control” in this section.

3.5 Online & offline optimization

Optimization problems, like the parametric problems that we are trying to solve in this article, are

usually solved online or offline, or by combining the two methods. In the above Section.3.4, we

learned about parameter tuning (offline) and parameter control (online). Offline approaches assume

that all information about the optimization problem is known and provide a solution before any

uncertainty about the optimization problem is identified. Therefore, offline optimization usually

requires a lot of computation cost (De Filippo et al., 2021). As for online approaches, information

or data about the problem is often not available a priori (Van Hentenryck et al., 2010). Since online

approaches can take feedback from periodic results of the optimization problem and adjust the

solution according to them, uncertainty in the optimization can be handled dynamically. However,

online methods tend to have strict time constraints, as the results of optimization problems often

need to be obtained in a short period of time when implementing online methods. For example, when

it comes to work shift scheduling, workers can be arranged to some time slots days or even weeks in

advance by offline planning, and when the schedule is needed, it is already there. Therefore, offline

approaches usually have plenty of time to plan everything. However, the uncertainty can arise once

any worker on the schedule takes unexpected sick leave, making it challenging for online approaches

to create a feasible schedule in a short time.
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In many real-world problems, online and offline approaches actually combine to solve problems

(De Filippo et al., 2021). In many cases, information about uncertainty in a problem is available

before it is revealed. As in the previous example, we can use the ienssegeenformation we have offline

to plan a shift schedule plan and dynamically replan if any uncertainties are exposed. Combining

online and offline can improve each other’s performance. In addition, Bemporad et al. (2002) and

Pannocchia et al. (2007) demonstrate that offline methods can be used to determine the status and

control laws of online optimization. Ravey et al. (2011) uses offline optimization to develop control

rules for online optimization and then uses online optimization for real-time energy management.

In summary, the use of online or offline methods can be quite flexible, and the boundary between

them can be very vague. The combination use is considered to be a good choice in many cases.

3.6 Section summary

From the literature review in this section, an introduction to optimization problems is made, as

well as the method about how to solve them with heuristic and metaheuristic algorithms. We

also learn how parameter values affect the performance of metaheuristic algorithms. In addition,

the literature review in this section provides some ideas about how to adjust the parameter values

before or while a metaheuristic is running. This section gives us an insight about the guideline of

designing the method: since we do not want any pilot tests before the running, the algorithm we

design in this paper should be an online parameter control method; moreover, the literature review

in this section also gives the steps of online parameter control, based on which we can design our

own online-learning method.

4 Methodology

This section introduces the dynamic parameter tuning method with presets (DPTP) from aspects of

preset setting, tuning method setting and validation setting. From a review of the previous work

in the Section.3, we have not found any existing methods that can solve our problem properly.

However, it gives us some good inspirations and insights about how to use online-learning ideas to

get feedback and improve the process. Considering that we do not want any pilot tests before the

formal run of the basis algorithm, we need to adjust the parameter values during the run, which

is obviously an online-learning method. It takes feedback from the running process of the basis

algorithm, and adjust parameter values of the basis algorithm accordingly while the basis algorithm

is running. On the other hand, DPTP also has some features of the offline method. Some optional

sets of values are needed before the basis algorithm is run. By using DPTP, users do not have to

worry about how to set parameter values, for the algorithm does it work in a more sensible way

based on the feedback of different parameter values.

This section is organized as follows: Section.4.1 introduces an important conception for DPTP in

this paper, the preset. It illustrates the data structure of a preset, and how it is generated and

selected when it is used in DPTP. Section.4.2 specifies how the probabilities of different presets are

updated according to the feedback from the running process. This is the most important part for

DPTP method. To make it clear, the pseudocode of DPTP and its relative algorithms are given in

this section. For consistency, the same notations from the Section.2.2 are used hereafter.
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4.1 Preset setting

As mentioned above, DPTP is an online method with some offline settings before running. We

need to provide some so-called presets as alternatives to DPTP so that DPTP can set parameter

values from them. This section illustrates the use of presets in DPTP. Section.4.1.1 describes the

data structure of presets, i.e. how they are composed. Section.4.1.2 specifies how we determine the

number of presets as the input of DPTP, and how it affects the result of DPTP. Next, Section.4.1.3

describes how to generate parameter values for a preset and gives the pseudocode of the algorithm.

Finally, Section.4.1.4 introduces how to select a preset by probability.

4.1.1 Preset data structure

In DPTP method, a preset is a set, or combination of parameter values, as described in Section.2.2.

It can be seen as an alternative that users provide for DPTP. For tuning a basis algorithm M that

is used for optimizing problem P , the DPTP, which we noted as M′, helps M select appropriate

parameter values with a bunch of predefined presets C as input.

In order to define a preset Vj , where j ∈ Z+ is the number of presets we provide to DPTP as the

input, values for parameters of M are needed first. Users should determine which parameters of M

they want to tune with DPTP. When a parameter pi is determined to be tuned, there should be a

corresponding value of it in Vj .

Theoretically, all the parameters that are used for the basis algorithm can be added to a preset,

because in most cases we do not know in advance how these parameters affect M’s performance

without pilot tests. This is one of the advantages of DPTP that users do not have to know much

about parameter attributes, influences on M’s performance and even interactions among multiple

parameters.

When DPTP is running with the basis algorithm, it always selects different presets periodically and

assign the values from the selected preset to basis algorithm M’s parameters. For the matter of

selection, each preset should have a probability attribute ψj , by which DPTP selector selects the

preset applied to M, so that ψj meets:

j∑
n=1

ψn = 1, j ∈ Z+

where j is the number of provided presets to DPTP. How presets are selected by DPTP is presented

in Section.4.1.4.

Finally, each preset should have a name or index for recording feedback and giving rewards or

punishments. All the provided presets constitute an input set C for DPTP, and the selection of the

preset whose value is used will be based on the input set. Figure.0 shows the data structure of a

DPTP input.

4.1.2 Determine the number of presets

For using DPTP, we need to provide pre-defined presets. If we give DPTP more presets, then it

has more options, and it is more likely that presets that can strongly boost the basis algorithm

is included in these presets. However, more presets mean DPTP need longer running time to get
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CPreset 1

Name: V1

Probability: prob1

values:

{λ11, . . . , λ1i}

Preset 2

Name: V2

Probability: prob2

values:

{λ21, . . . , λ2i}

... ...

Figure 0: Data structure of the presets input of DPTP

enough feedback. When making decisions about the number of presets, these pros and cons should

be carefully considered. Since M itself is a metaheuristic, it keeps looking for new neighborhood

iteration by iteration. DPTP selects the preset to be applied in each iteration, and updates the

probabilities of presets in every r iterations based on how many improvements are obtained per unit

of time by using a particular preset, in which we name r the “cycle length”. Therefore, between

any two probability updates, each preset should first have the opportunity to be selected, and then

have a long enough run time for DPTP to collect enough data to be able to reliably assess the effect

of the preset to M’s performance while minimizing the randomness as much as possible.

For the above reasons, when determining the number of presets j and the value of the cycle length

r, the larger r is, the greater j should be, and vice versa. They should be proportionally associated,

i.e. r ∝ j.

Besides, we should see that more presets provide more options for DPTP. If we had unlimited time

and computing capacity, we would try as many presets as we can and set a very long cycle length.

However, in the real world, larger j means fewer updates of preset probability of a preset during

the same cycle length r. To maintain the balance between the depth and width, we should choose

appropriate values of j and r.

4.1.3 Values of parameters in presets

DPTP assumes that users know little or nothing about the effects of parameters on the basis al-

gorithm M. This is also an advantage of DPTP: you do not have to spend a lot of time studying

parameter values or completing time-consuming pilot tests. The generating of parameter values can

be quite random: we generate values for parameters by random numbers in some ranges for these

parameters, and all we need to provide are these different ranges, and the values in presets can

be randomly generated from each parameter’s range. This is easier than precisely determining a

particular value for each of them.

A good idea for setting the parameter range is that users can always turn to experienced experts

with knowledge of the problem for a reliable range. Though we assume that users have little or

even no knowledge about the basis method M and the parameters’ influence on it, some suggestions
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from experts who know it well can effectively narrow the scope, and give more accurate values for

parameters. Otherwise, the range should be as wide as possible, and wider range means that we

should have more presets provided, so larger j as well.

After the range for a parameter is provided, we can simply use a random number generated from the

range as the value of the parameter. Algorithm.1 presents the pseudocode of generating j presets

and implies that the probability for each preset is initialized by 1
j .

Algorithm 1: Generate presets

Input:

number of presets j

set S composed of all parameters pj to be tuned

map R of range for all the parameters in S
Output: set C composed of j presets

C ← {};
for ← 1 to j do

V ← {} ; /* empty preset */

foreach p ∈ S do

p.value← a random value from range R[p];

V.values[p]← p.value;

end

V.prob← 1
j ;

V.name←name defined by the user;

C .append(V);
end

return C ;

4.1.4 Preset selection

The selection of presets depends on the probability of presets. In other words, presets with larger

probabilities are more likely to be selected, and vice versa. DPTP dynamically updates preset

probabilities for basis algorithm M based on the feedback, or performance from running iterations.

Algorithm.2 presets the process of selecting a preset by probability.

4.2 Updating probabilities

DPTP updates preset probabilities dynamically, and the preset probabilities are not fixed at the

initialization value. Obviously, we want the more promising presets (i.e., more improvements per

unit of time, or less time spent using them to get the same improvements) to have a better chance

of being selected and used. We update the probabilities for every r iterations to collect enough data

about the improvements obtained by using the provided presets.

In order to update the probability, we need to provide data on improvements and the time or

duration of the improvements. Since a preset can be selected multiple times, we collect this data

in each preset list or array. All the lists are combined in a map M as the input for updating the
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Algorithm 2: Presets selection

Input: set of presets C

Output: selected preset Vselected
cumProb← {} ; /* an empty map for storing cumulative probabilities */

tempSum← 0.0;

rand← a random value from range (0, 1);

lastProb← 0.0 ; /* the cumulative probability of last preset */

foreach V ∈ C do

tempSum += V.prob;
cumProb[V.name]← tempSum;

if lastProb < rand <= cumProb[V.name] then
Vselected ← V;
return Vselected

end

lastProb← tempSum;

end

error: NoPresetSelected

probabilities. The key of M is the name of a preset V and the corresponding value is a list of

improvements obtained by using V every time when V is selected. If preset V is selected and used

for τ times, it is easy to know that the length of the list M [V.name] is equal to the τ since we add

the feedback data into M for τ times, i.e., τ = length(M [V.name]).

The data structure of map M is presented in Figure.0. In addition, of M , we also need a map D

for collecting the duration costed for getting these improvements with the same data structure as

M , but the value of D is a list of duration values instead.

MPreset 1

Key: V1.name

improvements:

{δ11, δ12, . . . }

Preset 2

Key: V2.name

imporovements:

{δ21, δ22, . . . }

... ...

Figure 0: Data structure of M for updating preset

probabilities

The pseudocode for updating the probabilities is given in Algorithm.3. It is executed for each r

iterations.

As a result, M uses different parameter values in each of its iteration from different presets selected
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Algorithm 3: Update preset probabilities

Input:

map M of improvements

map D of durations

cycle length r

effect factor β

Output: void, the algorithm changes preset probabilities in place

W ← 0 ; /* Total weight, for calculating weight of each probability */

foreach preset Vj do

∆j ← 0 ; /* Total improvements Vj gets in last r iterations */

Tj ← 0 ; /* Total time Vj spends in last r iterations */

for k := 1 to τj do /* τj is the length of M [Vj ] and D [λj ] */

∆j += M [Vj ][k];
Tj += D [Vj ][k];

end

W +=
∆j

Tj
;

end

if W != 0 then /* If no improvements was made in last r iterations, i.e.

W == 0, the updating is skipped */

foreach preset Vj do

ωj ← 0 ; /* Weight of preset Vj */

if Vj is used in last r iterations then

ωj ← ∆j

Tj
;

probj ← β ∗ probj + (1− β)ωj

W ;

end

end

normalize all probj so that
∑

j probj = 1;

end
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by DPTP M′, according to the probabilities of these presets. For each r iterations in M, the preset

probabilities are updated.

From Algorithm.3, we can also see that for those presets that were not used in the previous r

iteration, we are simply giving them a 0 weight in the current update. However, this may not be the

situation we want. Imagine a promising preset that was not selected due to randomness in the last r

iteration, so it weighs 0. However, if it had been chosen, it could have produced good results. More

specifically speaking, we should only give a low weight to a preset just for the poor performance of it,

rather than any other factors. Therefore, we want to keep the probability unchanged until next time

we get any feedback of using the preset. By this way, we improve the Algorithm.3 by adding some

mechanism that protects the unselected presets in the previous r iterations. We can simply keep

their probabilities unchanged, and only update the probabilities of the selected and used presets,

see Algorithm.4.

Algorithm.4 ensures that the probabilities of unselected presets remain the same, while the summa-

tion of all probj is still 1. Algorithm.5 gives the pseudocode of DPTP, and the flowchart of DPTP

is given in figure.0.

4.3 Section summary

This section illustrates the DPTP method in detail. To use DPTP, we first need to prepare some

presets, which are combinations of the parameter values, as the input to DPTP. These presets can

be generated by random values within the ranges of the parameters. If the range of a parameter is

not known, we can just set a range for it by experience and then generate values from the range.

Though this is still like making conjesture, but making a conjesture about a range is easier than

making one about an exact value. After the presets are generated and provided to DPTP, DPTP

selects a preset based on the selection probabilities, and applies the values from the selected preset

to the basis algorithm until the next time when another preset is selected. Through such a selection-

and-application process, the basis algorithm uses dynamically selected parameter values by DPTP

rather than fixed values. The probability of a preset is determined by the improvements the basis

algorithm gains in the unit time when the preset is used by the basis algorithm. In other words,

the presets that help the basis algorithm achieve more improvements per unit of time get higher

probabilities allocated by DPTP, so that they have higher probabilities to be selected.

5 Experiments and evaluation

In this section, we specify the system for evaluating the effectiveness of DPTP, and how we design

experiments for the evaluation. Before we start designing the experiments, the first thing we need

is the criteria to measure the optimization results, with which we can compare the effectiveness

of different parameter settings (using DPTP or using fixed values). Section.5.1 introduces some

benchmark functions for measuring the optimization results, which are used in CEC, an authoritative

evolutionary-computation conference held every year. These functions are used for evaluating the

optimization algorithms submitted by experts who take part in the conference. Thus, we can trust

the reliability of these functions for evaluating DPTP as well. Next, we also need a metaheuristic

algorithm on which DPTP can work, so that we can see how the effectiveness of DPTP is when it
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Algorithm 4: Update preset probabilities with protection for unselected

Input:

cycle length r

effect factor β

map M of improvements

map D of durations

set U of unselected presets in last r iterations

set S of selected presets in last r iterations

Output: void, the algorithm changes preset probabilities in place

W ← 0 ; /* Total weight, for calculating weight of each probability */

foreach preset Vj do

∆j ← 0 ; /* Total improvements Vj gets in last r iterations */

Tj ← 0 ; /* Total time Vj spends in last r iterations */

for k := 1 to τj do /* τj is the length of M [Vj ] and D [λj ] */

∆j += M [Vj ][k];
Tj += D [Vj ][k];

end

W +=
∆j

Tj
;

end

if W != 0 then /* If no improvements was made in last r iterations, i.e.

W == 0, the updating is skipped */

R← 1−
∑

j probj , j ∈ U ;

foreach preset Vj , j ∈ S do

ωj ← 0 ; /* Weight of preset Vj */

if Vj is used in last r iterations then

ωj ← ∆j

Tj
;

probj ← β ∗ probj + (1− β)ωj

W ;

end

end

normalize all probj , j ∈ S so that
∑

j∈S probj = 1;

foreach preset Vj , j ∈ S do
probj ← R ∗ probj

end

end
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Algorithm 5: DPTP

Input:

cycle length r

map M of improvements

Output: void, the algorithm changes preset probabilities in place

C ← Algorithm.1Generate presets ;

assign values from C to parameters of the basis algorithm M ;

epoch← 0 ;

while stop criteria not met do

if epoch% r == 0 and epoch != 0 then /* Skip the first epoch */

Algorithm.4 update probabilities ; /* The update is executed in place */

end

Vselected ← Algorithm.2 ; /* select a preset for current epoch */

assign values from Vselected to parameters of M ;

//...basis algorithm runs and collects feedback data...//;

epoch += 1;

end

works on the algorithm. We name such an algorithm as “basis algorithm”. Section.5.2 describes the

basis algorithm we use in this paper, the Coral Reef Optimzaition algorithm (CRO). It is a genetic

algorithm with 6 parameters to be tuned. Section.5.3 specifies the setup and steps of experiments.

Finally, 5.4 illustrates how we process and analyze the result data obtained from the experiments.

5.1 Performance measure

For exact algorithms, the only focus is the time efficiency when they are evaluated, since they always

give the optimal solution if there is one, and we want to obtain the best solution with a time cost

as short as possible. As for heuristics, it’s a different story: consider not only time efficiency, but

also the quality of the solution. How fast we get the solution and how close it is to optimality are

both important for evaluating the heuristic (Rardin & Uzsoy, 2001).

To measure the performance of DPTP, we use the benchmark function from IEEE congress on

evolutionary computation (CEC). It is a world-class conference for researchers and experts of evo-

lutionary computation from all around the world. Liang et al. (2013) summarized and explained all

the benchmark functions for testing the algorithms submitted to CEC in the year of 2014. All the

functions are for minimization problems, i.e. the smaller benchmark function an experiment can

obtain during the same running time, the better the experiment result is thought to be. In addition,

these benchmark functions also provide us with the emulated situation of solving real problems,

since for real problems, we first convert them into all kinds of objective functions. With different

benchmark functions as the objective functions of the optimization, the optimization method can be

deemed as if it is solving many kinds of real problems. In this way, the generality of the validation

is ensured.

According to Liang et al. (2013), the benchmark functions presented by them are classified to three
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Figure 0: The flowchart of DPTP

types: basic functions, hybrid functions, and composition functions, in which hybrid functions are

composed of basic functions:

F (x) = g1(M1z1) + g2(M2z2) + · · ·+ gN (MNzN ) + F ∗(x)

, where F (x) is the hybrid function, gi(x) is the i
th basic function used for constructing the hybrid
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function, N is the total number of basic functions.

Similarly, composition functions are composed of basic functions or hybrid functions:

F (x) =

N∑
i=1

{ω∗
i [λigi(x) + biasi]}+ F ∗

, where λi is used for controlling the height of each gi(x), biasi defines which local optimum is the

global optimum (the local optimum with the smallest bias is the global optimum), and ωi is the

normalized weight of gi(x).

The composition functions are more complicated so that they create challenging test conditions for

algorithms, and they also maintain the continuity around the local or global optimum. Thus, in this

paper, We prefer using composition functions as the benchmark functions to measure the experiment

results. On the other hand, among all the composition functions provided by Liang et al. (2013),

functions C23 to C28 have more appropriate function value ranges, according to the results of some

pilot test, while the value range of function C30 is too wide (around 10−4− 107) for both presenting

in a plot and analyzing mathematically. Therefore, we choose benchmark functions C23 to C29 to

measure the experiment results, so that the benchmark function values measures the effectiveness of

different optimization settings. Figure.0 presents 3D and contour maps of the benchmark functions

C23 to C28 (The maps for function C29 is not given in the source paper, but it is still used as a

benchmark function in this paper). We can see that many of them have a huge amount of local

optimalities that ensure the complexity of the validation.

5.2 Basis algorithm

Optimization algorithms with many parameters are more difficult to deal with than algorithms with

fewer parameters, because more parameters mean more combinations and more possible interactions

among different parameters. Therefore, we prefer to test DPTP with basis algorithm with more

parameters to make the results more convincing.

Salcedo-Sanz et al. (2014) introduces a genetic metaheuristic algorithm, the coral reefs optimization

algorithm (CRO). Like other genetic algorithms, it involves crossover and mutation. It has 6 pa-

rameters, so the number of parameters is not so few. Considering the interactions, assuming there is

interaction between each 2 parameters, there are at most
(
6
2

)
= 15 pairs of interactions among these

parameters to be considered. It is sufficiently complicated if we want to set proper parameter values

manually. So CRO is a good choice as the basis algorithm for testing DPTP. Since CRO algorithm is

not the focus of this paper and we only care about its parameters, no more knowledge about CRO is

presented here in this section. More detailed descriptions about CRO can be found in Appendix.A.

Table.1 below lists the parameters that need to be adjusted in CRO while it is running. We make

presets for these values and then provide the generated presets to DPTP.

The code for all the basis algorithms and the benchmark functions used in this paper is from a

GitHub repository metaheuristics created by Nguyen et al. (2018, 2019).

For generality, it is always good that DPTP can be used in more basis algorithms. But because of

the time limitation, we only use one basis algorithm in this paper, with 7 benchmark functions.
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(a) C23 3D map (b) C23 contour map (c) C24 3D map (d) C24 contour map

(e) C25 3D map (f) C25 contour map (g) C26 3D map (h) C26 contour map

(i) C27 3D map (j) C27 contour map (k) C28 3D map (l) C28 contour map

Figure 0: 3D and contour map of benchmark functions C23 -

C28

Source: Problem Definitions and Evaluation Criteria for the

CEC 2014 Special Session and Competition on Single Objective

Real-Parameter Numerical Optimization, Liang et al. (2013)

Parameter Meaning Range

ρ0 Initialized rate of free to occupied squares [0.0, 1.0]

Fb Rate of broadcast spawner to existing corals [0.0, 1.0]

Fa Fraction of corals that duplicate themselves to those who

settle in a different part of the reef

[0.0, 1.0]

Fd Fraction of the worse health corals on the reef that will be

deprecated

[0.0, 1.0]

Pd Probability of depredation [0.0, 1.0]

k Number of attempts for a larva to set on the reef Z

Table 1: Parameters of CRO algorithm

5.3 Experiment setup

This section illustrates how we make preparation before the experiments start, and the experi-

ment steps we should follow. Section.5.3.1 introduces why and how we control the randomness for

all the experiment groups. Section.5.3.2 specifies the steps of our experiments. As described by
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Section.5.3.2, we first run the experiment by using DPTP, and then use the presets generated by

Algorithm.5 for the following experiments groups. Section.5.3.3 presents these presets generated and

used in the experiments.

5.3.1 Randomness control

All the experiments use the same random seed, also known as the common random numbers (CRNs).

It gives all setting systems the same experimental condition so that a fairer comparison environment

(Goldsman et al., 1998). Besides, using the same random seed in the experiments of using DPTP

ensures that each time DPTP generates the same presets. Additionally, in order to keep a consis-

tent running experiment environment for all experiments, all the experiments are conducted on a

Macbook Air with Apple M1 chip and 16GB RAM.

5.3.2 Experiment steps

For evaluation of DPTP, the result data, which are the benchmark function values, from the basis

algorithm obtained by using DPTP is compared to the data obtained by using fixed parameter values

in the basis algorithm. For the ease of description, we name the former data the “DPTP results”,

and the latter the “fixed-parameter results”. From the comparison between them, we can see

if one of them is significantly larger or smaller than the other. Since all the benchmark functions

are for minimal problems, if the DPTP results are significantly smaller than the fixed-parameter

results, we say that the DPTP results is better than the fixed-parameter results, so DPTP performs

better than the fixed values used in the basis algorithm, and vice versa. On the other hand, if they

are not significantly different from each other, it indicates that DPTP has the same effectiveness

with the fixed parameter values used in the basis algorithm. In the experiments, after we get the

experiment data, we repeat the above comparison comparing DPTP results with different fixed-

parameter results of using preset 1, 2, . . . , etc., to see if DPTP can compete with any of these fixed

values.

In total, we provide 10 randomly-generated presets for DPTP, so there are 11 setups of experiments:

one with DPTP and others with 10 fixed presets, for adjusting the parameter values of the basis

algorithm. As for the cycle length r for DPTP, we set it to a value of 30, i.e. preset probabilities

are updated for every 30 iterations. Since these 10 presets are also randomly generated, the results

obtained from using different fixed presets are compared as well to see which presets are good for

the basis algorithm and which are poorer. We want the results of DPTP to be as close to good

presets as possible.

Following the above illustration, we perform the experiments of using DPTP first, since it randomly

generates presets that are used in the following experiments of using these fixed presets. As for

ranges of generating presets, we use the same range from Table.1, except that the parameter k will

use a range of k ∈ [1, 15], and k is integer. Thus, for other parameters, we use the maximum range

of values that they can have to make the experimental settings as random as possible. Of course, as

mentioned above, if a user can have a narrower range when generating presets, that could be better.

In order to reduce randomness in the experiments, each group of experiment is run 5 times, and

each run lasts for 10 minutes. The results of the 5 runs are averaged for subsequent analysis. In
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each run, the basis algorithm runs iteration by iteration, just like other metaheuristics do. In each

iteration, the algorithm looks for a new neighbor by an operator, and generates some data about the

improvements or the performance of the newly used neighbor. As for logging data, for all runs, the

fitness values of the benchmark functions are logged in each iteration. In different runs, the number

of observations may not be identical, because the number of iterations of a run can be affected by

many factors, such as the quality of the initial solution and neighborhoods. We’ll give a way of

processing the data to deal with the different numbers of observations in different runs, for the ease

of analysis in the Section.5.4.1.

In summary, the steps of the experiments are as follows:

1. Determine ranges for parameter values as input for DPTP.

2. Run the basis algorithm using DPTP for 5 times, and 10 minutes for each run. The reason

why we set 10 minutes as the running time is that 10 minutes are enough for the experiment

results to converge from some pilot runs. This is the first experiment setup we run. While the

basis algorithm is running, log the selected presets for each iteration, the fitness values after

each iteration and the time iteration takes.

3. Run the following 10 experiments with using 10 fixed presets in the basis algorithm. For

each preset, run 5 times and 10 minutes for each run, just like the above setup using DPTP.

Similarly, while the basis algorithm is running, log the selected presets for each iteration, the

fitness values after each iteration and the time iteration takes.

4. The data we get from the above setups are logged iteration by iteration. As we illustrated

above, in different runs, the number of observations may not be identical, and this is not

convenient for data analysis. Thus, we should convert results from being logged by iterations

to the data logged by seconds (600 seconds in each run), and then make the average of 5 runs

for each setup of experiments as the output data to be analyzed.

5.3.3 Presets for experiments

As mentioned above, the presets are generated by the first group of experiments using DPTP, and

these presets are used for the next 10 groups of experiments using fixed presets. Table.2 lists the

presets generated from the first group of experiments, and these presets are used in the whole process

of experiments in this paper.

5.4 Processing of data

This section gives an illustration about how to process and analyze the data from the experiment

results. Though we set a run time of 10 minutes following the setting from Section.5.3.2, different

groups can have different numbers of observations (i.e., benchmark function values we get at different

moments) from experiments. For the convenience of analysis, Section.5.4.1 introduces how to convert

data with different number of observations into that with the same number of observations. Next,

we want to examine whether data from DPTP groups are significantly different from the data from

fixed-preset groups, so that we know whether DPTP is effective for tuning the parameter values.

For this purpose, we use Hypothesis test. Section.5.4.2 simply introduces the steps of hypothesis
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Preset ρ0 Fb Fa Pd k

0 0.6669 0.1029 0.4241 0.4764 8

1 0.1626 0.7618 0.7678 0.3473 6

2 0.6326 0.2232 0.1210 0.9659 10

3 0.1964 0.2798 0.2790 0.5339 1

4 0.2875 0.8130 0.4783 0.6252 15

5 0.0291 0.4424 0.8045 0.5007 8

6 0.7230 0.5721 0.8537 0.4813 1

7 0.0425 0.9829 0.3522 0.2382 14

8 0.7245 0.6713 0.3028 0.6728 13

9 0.9035 0.8572 0.7358 0.3787 1

Table 2: Presets used in experiments

test, and how we set the null hypothesis (H0) and the alternative hypothesis (H1) for it. As for the

test method used for hypothesis test, since the observations are definitely not normally distributed

(they get smaller and smaller as the time goes), non-parametric test fits for such a situation in the

hypothesis test. Thus, we introduce two non-parametric test methods in Section.5.4.3: Wilcoxon

signed-rank test and Wilcoxon rank-sum test that can be used for analyzing the experiment data,

and finally we select Wilcoxon rank-sum test as the test method in this paper test after compare

these two methods.

5.4.1 Preprocessing

The number of iterations in different rounds of experiments are unpredictable. They differ from

each other for the reason of randomness, or the setting of parameter values. However, in order to

conduct analysis of data, we do need data from different group in the same shape, i.e. with same

number of observations. Therefore, we have to preprocess the data before we do the analysis. Since

each group of experiments are run for 5 x 10 minutes, for data from each round, we have to convert

the data logged by iteration to the one by seconds.

Each time when the fitness value is updated, the time point is also logged. We can simply take

the fitness value at second 1, 2, . . . , 600, if there’s a corresponding fitness value right at the time

point. But if there’s no fitness value logged, which means there was an iteration going on when the

experiment was run and no fitness value was logged at the time point, we go one step back and

take the fitness value from the nearest last iteration. In such a way, the data from iterations of each

group experiment is ”stretched” to 600 observations, and it is easier to be analyzed and compared

to results from other rounds or experiments.

5.4.2 Hypothesis test

Hypothesis test (HT) is a mathematical technique for testing if the data at hand sufficiently support

a predefined hypothesis (Wikipedia contributors, 2022a). First we need to provide a null hypothesis

H0 and an alternative hypothesis H1. H1 is the hypothesis we want to prove statistically, and we

look for proof of it from the data we have. If there’s no sufficient proof from the data, we reject H1
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and accept H0. In this paper, after we have all the data we need from the experiments, we want

to compare the benchmark function values from every experiment group and test if the data from

DPTP are significantly different from the data from the bad presets, and whether the results of

DPTP are equal to the good presets. As defined in RQ, for gaining an above-average performance,

DPTP should be at least equal to or better than half of the fixed presets. In such a case, the null

hypothesis is defined as: F̄DPTP ≤ F̄ . It means that DPTP is the at least as good as a fixed preset.

Meanwhile, we can define the alternative hypothesis as F̄DPTP > F̄ , which means DPTP is worse

than one of the fixed preset. F̄ is the average data from the experiments of fixed presets, and the

average data are obtained after being preprocessed by the steps depicted in Section.5.4.1. Thus, our

hypothesis test is a right-side one-tailed test. When we compare the results from DPTP with those

from the good presets, we want to test if their results are the same (or very close to each other),

and when we compare the results from DPTP with those from the bad presets, we want to test if

DPTP performs better than the bad presets.

For the right-side one-tailed test, we reject H0 and accept H1 if p − value ≤ α, while for the two-

sided test, we reject H0 if p− value ≥ α, where α is the significance level. Figure.2 presents such a

rejection case in right-side one-tailed test. Usually the value of the significance level α is 0.05.

Figure 2: Right-side one-tailed hypothesis test when the

p-value is in the rejection region

The hypothesis test given above lead to another question: how should we determine which presets

are good or bad presets? In order to classify the presets into good or bad classes, we can firstly

classify by simply visualizing the benchmark function values from DPTP and fixed-preset groups.

Then, we roughly classify the fixed presets of which the data are close to or better than DPTP to

the good-preset class. Otherwise, the presets are classified to bad-preset class. The visualization

of the results and the classification process are presented in Section.6.2. Since this is only a rough

classification, we can also use the hypothesis test to test if they are significantly good or bad presets,

so we know that how many presets that DPTP is better than or equal to to gain an above-average

performance defined by RQ.

As for the test method, we should consider both of the attributes of the data distribution and the

number of groups we want to compare, as noted by Eftimov et al. (2017). If we assume that the
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data follow some specific distribution (usually normal distribution), then we perform a parametric

test by using the sample mean and the sample variance. But if we don’t assume that the data follow

any distributions, we can perform a non-parametric test by using the ranking method as used in the

Wilcoxon signed-rank test (Saha et al., 2016; Bui et al., 2018; Van Veldhuizen & Lamont, 2000) for

the two-sample test and Friedmen test (Elmazi et al., 2015; Ahmed et al., 2020; Faramarzi et al.,

2020; Mousavirad & Ebrahimpour-Komleh, 2017) for the multiple-sample (more than two) test.

Since our data are obviously not normally distributed (the benchmark function values decrease as

the run goes), and we want to compare the results of DPTP to the 10 fixed presets, or in other

words, we want to perform 10 two-sample tests of DPTP to each of the 10 fixed presets. The data

from DPTP and the fixed presets are independent of each other. Therefore, We need to select a

non-parametric test method for unpaired data samples.

5.4.3 Non-parametric test

For the hypothesis test, a test method is needed. For observations that follow the normal distribution,

or some other specific distributions, t-test is a widely used test method. However, like in our research,

the parameter and distribution of the experiment results may not follow a specific distribution, and

the parameters of the distribution is unknown to use. In such a case, we can use nonparametric

tests. Non-parametric tests are often used when the assumption of parametric tests are violated

(Pearce & Derrick, 2019). Wilcoxon signed-rank test and rank-sum tests are two methods of the

nonparametric test.

Wilcoxon signed-rank test As Conover (2007) noted, Wilcoxon signed-rank test is “a non-

parametric statistical hypothesis test used either to test the location of a population based on a

sample of data, or to compare the locations of two populations using two matched samples”. It was

introduced by Wilcoxon (1946). For paired-sample test, our data consists of paired samples:

(XDPTP1, X(1,1)), (XDPTP2, X(1,2)), . . . , (XDPTPn, X(m,n)),

where m is the index of preset m, and n is the index of n’th observation. In our case, m ∈
{0, 1, . . . , 9}, and n ∈ {0, 1, . . . , 599}. We can convert the paired two-sample test to one sample

test by replacing the n paired observations with Dn = XDPTPn − X(m,n). We rank the absolute

value of Dn and compute the sum of the rank of the positive differences t+ and the sum of negative

differences t−. Then the test statistic is the smaller number between t+ and t−:

t = min(t+, t−).

For small size of observations, the distribution of the statistic can be looked up from a table. For

larger samples, the distribution of the normalized statistic Z = t−t̄√
V ar(t)

is approximately a normal

distribution, so we can use the distribution of the Z to perform the test. According to Pratt &

Gibbons (1981), if there are n samples, the mean of the sum of the sample rank is:

µ = E(t+) = E(t−) =
n(n+ 1)

4
,

and the variance of the sum of the rank for either positive or negative differences is:

V ar(t+) = V ar(t−) =
n(n+ 1)(2n+ 1)

24
.
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Thus, the rejection region for our right-side one-tailed test is:

Z =


t−n(n+1)

4√
n(n+1)(2n+1)

24

> −Z1−α/2, if t = t+,

t−n(n+1)
4√

n(n+1)(2n+1)
24

< Z1−α/2, if t = t−,

where Z1−α/2 is the right-side critical value, and α is the significant level.

Wilcoxon rank-sum test For non-paired samples, there’s another non-parametric test method,

the Wilcoxon rank-sum test that can be used. Altinbas & Akkaya (2017), Moussa et al. (2018),

Abdollahzadeh et al. (2021) and Pholdee & Bureerat (2018) used the method to test the effect of

different metaheuristics.

In our research, we test the samples from DPTP and a fixed-preset, noted as XDPTP and X(m,n)

respectively, where m is the index of preset m, and n is the index of n’th observation. As described

by Pratt & Gibbons (1981), In order to carry out the Wilcoxon rank-sum test, we first combine all

the 2n observations into one group, but we still keep track of which observations are from which

sample. Then we rank the observations by their magnitudes, in the case of our research, the fitness

value. In this way, we can assign the rank 1, 2, . . . , 2n to all observations. Next we calculate the

sum of assigned ranks of observations from each sample. Here we note RDPTP as the rank sum of

observations from the DPTP sample, and Rm as the rank sum of observations from the sample of

preset m. Either RDPTP or Rm is called the Wilcoxon rank-sum test statistic. It is easy to know

that

RDPTP +Rm = 1 + 2 + · · ·+ 2n = 2n(2n+ 1)/2

In our case, if the two samples are from the same population, or in other words, they have no

significant difference, then we have

E(RDPTP ) = E(Rm)

And the statistic of Wilcoxon rank-sum test is

R =

2n∑
1

kIk

where

Ik =

1, if the observation with rank k is from the DPTP sample

0, if the observation with rank k is from the preset m sample.

The mean and variance of the statistic are given by

E(R) = n(2n+ 1)/2

var(R) = [n2/(2n− 1)][(4n2 − 1)/12] = n2(2n+ 1)/12

Similar to Wilcoxon signed-rank test, when the sample number n is large, the statistic R approxi-

mately follows a normal distribution.

Since our samples are unpaired and independent of each other, we use the Wilcoxon rank-sum test

to validate the experiment results with a significance level of α = 0.05. As mentioned before, a

right-side one-tailed test is needed for the research.

27



5.5 Section summary

We design experiments in this section for validation of DPTP. First, we need to select the basis algo-

rithm that DPTP works on to adjust its parameter values. Secondly, we also need some benchmark

functions to measure the optimization results. We use the coral reefs optimization (CRO) algorithm

as the basis algorithm, for it has up to 6 parameters to be set. The number of parameters in CRO

is not that small, and there might also exist interactions between different parameters. As for the

benchmark functions, we use 7 functions that are widely used to measure the optimization results

of metaheuristics. Each of these functions have a huge amount of local optimalities. Therefore, the

complexity and the generality of the validation are both ensured.

In the experiments, we compare the results achieved by using DPTP to the results achieved by

fixedly using each presets that we provided to DPTP. After all the experiments, we process the

result data by using both graphical and mathematical methods to check if DPTP has an above-

average performance compared to the fixed presets.

6 Results and Analysis

This section presents the experiment results and the analysis results for the validation of significance.

For validation, we use multiple benchmark functions that can be found in Section.5.1. Section.6.1

presents the results from all experiments groups. The initial and final benchmark function values

(which are also named as “fitness values” or “fitness”), and the improvements during the experiment

can be found in this part. For there is a huge amount of data from the experiments, we only present

the average-value summaries for data from each benchmark function in tables. The raw data can

be found in Appendix.B. In Section.6.2, the fitness values obtained by time obtained from different

benchmark functions are presented graphically, so that we can have a qualitative conclusion from

the figures. Then in Section.6.3, the test results are presented and mathematically validates whether

the results from groups using DPTP are significantly same with those using good presets.

As mentioned in Section.5.4.2, we use different types of hypothesis tests for different results of DPTP

and fixed-preset groups: for the data from fixed-preset groups that are not as good as the DPTP

group, we want to testify that DPTP groups perform better than them. Thus, for comparing these

fixed-preset group to the DPTP group, we use one-tailed test; for those fixed-preset groups that are

close to or better than DPTP groups, we want to testify that these groups are significantly the same

as DPTP groups, so here we use two-tailed tests. For recognizing the good and bad fixed-preset

groups, in Section.6.2, we present the optimization results graphically, and then we roughly classify

the fixed-preset groups into two categories according to the figures. Next in Section.6.3, we use the

categorization to compare DPTP groups with the fixed-preset groups by different hypothesis test

method.

6.1 Improvement results

Table.3 presents the data of all the experiment groups, and we can see the initial fitness, final fitness

and the improvements from all groups using different experiment settings and benchmark functions.

As mentioned in Section.5.3.2, all the results are average values of 5 rounds with the identical setup
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from their own groups.

Table 3: Improvements by using DPTP and fixed presets of all

benchmark functions

Benchmark

function

Experi.

setup

Initial

fitness

Final

fitness

Improvements Improvement

percentage

C23

DPTP 26992.13 2693.673 24298.46 90.02%

Preset 0 25789.55 2756.774 23032.78 89.31%

Preset 1 26236.34 2676.916 23559.42 89.80%

Preset 2 27330.98 2737.67 24593.31 89.98%

Preset 3 25465.2 2735.844 22729.35 89.26%

Preset 4 25977.27 2678.884 23298.38 89.69%

Preset 5 25361.18 2702.239 22658.95 89.34%

Preset 6 26466.49 2695.999 23770.49 89.81%

Preset 7 26699.03 2767.44 23931.59 89.63%

Preset 8 26699.03 2767.44 23931.59 89.63%

Preset 9 27365.9 2695.156 24670.75 90.15%

C24

DPTP 41321.11 20639.41 20681.7 50.05%

Preset 0 41543.73 21680.46 19863.27 47.81%

Preset 1 41117.98 19592.93 21525.04 52.35%

Preset 2 41557.57 21347.44 20210.13 48.63%

Preset 3 41312.02 20930.71 20381.31 49.34%

Preset 4 40669.04 19755.83 20913.2 51.42%

Preset 5 41373.19 19990.72 21382.47 51.68%

Preset 6 41055.92 19605.2 21450.72 52.25%

Preset 7 41092.94 21357.93 19735.02 48.03%

Preset 8 40650.55 20069.71 20580.84 50.63%

Preset 9 40413.35 20360.37 20052.98 49.62%

C25

DPTP 7360.97 3843.79 3517.18 47.78%

Preset 0 7349.66 3765.728 3583.933 48.76%

Preset 1 7301.543 3807.63 3493.913 47.85%

Preset 2 7236.729 3782.24 3454.489 47.74%

Preset 3 7296.342 3794.346 3501.996 48.00%

Preset 4 7384.173 3817.764 3566.41 48.30%

Preset 5 7389.313 3766.736 3622.577 49.02%

Preset 6 7507.889 3783.694 3724.196 49.60%

Preset 7 7239.824 3967.741 3272.083 45.20%

Preset 8 7078.604 3789.462 3289.143 46.47%

Preset 9 7255.945 3799.114 3456.832 47.64%

C26

DPTP 24366.9 13030.68 11336.22 46.52%

Preset 0 24233.22 14123.02 10110.2 41.72%

Preset 1 24091.92 12402.09 11689.83 48.52%

Continued on next page
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Table 3 – continued from previous page

Benchmark

function

Experi.

setup

Initial

fitness

Final

fitness

Improvements Improvement

percentage

Preset 2 24616.94 14049.56 10567.38 42.93%

Preset 3 24021.75 13447.69 10574.06 44.02%

Preset 4 24349.25 12634.16 11715.09 48.11%

Preset 5 24494.97 12632.68 11862.29 48.43%

Preset 6 24542.86 12623.4 11919.45 48.57%

Preset 7 24095.84 13085.9 11009.94 45.69%

Preset 8 24124.98 12615.13 11509.85 47.71%

Preset 9 24381.49 13221.99 11159.5 45.77%

C27

DPTP 31438.39 6162.619 25275.78 80.40%

Preset 0 30640.95 6850.563 23790.39 77.64%

Preset 1 30993.41 5960.878 25032.53 80.77%

Preset 2 32075.56 6617.573 25457.98 79.37%

Preset 3 30950.79 6491.126 24459.66 79.03%

Preset 4 31417.76 6020.921 25396.84 80.84%

Preset 5 31178.97 6159.164 25019.81 80.25%

Preset 6 32115.1 6308.458 25806.64 80.36%

Preset 7 32114.26 6909.51 25204.75 78.48%

Preset 8 32165.41 6103.089 26062.33 81.03%

Preset 9 30801.36 6167.412 24633.94 79.98%

C28

DPTP 71525.71 31925.55 39600.17 55.36%

Preset 0 71547.2 32907.68 38639.52 54.01%

Preset 1 71262.71 30594.4 40668.31 57.07%

Preset 2 71202.56 33488.04 37714.52 52.97%

Preset 3 70795.6 32601.11 38194.48 53.95%

Preset 4 72282.05 31888.56 40393.49 55.88%

Preset 5 70051.37 30923.74 39127.63 55.86%

Preset 6 71704.23 32607.32 39096.92 54.53%

Preset 7 71038.72 35871.09 35167.63 49.50%

Preset 8 72001.26 32081.35 39919.91 55.44%

Preset 9 71196.85 32868.23 38328.61 53.83%

C29

DPTP 71525.95 31477.07 40048.88 55.99%

Preset 0 70889.64 33387.96 37501.68 52.90%

Preset 1 71010.44 32237.18 38773.26 54.60%

Preset 2 70795.75 33466.33 37329.43 52.73%

Preset 3 70541.41 32506.64 38034.76 53.92%

Preset 4 70786.24 31812.70 38973.54 55.06%

Preset 5 71272.63 31988.74 39283.89 55.12%

Preset 6 71589.63 32272.45 39317.18 54.92%

Preset 7 71316.45 36282.94 35033.51 49.12%

Continued on next page
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Table 3 – continued from previous page

Benchmark

function

Experi.

setup

Initial

fitness

Final

fitness

Improvements Improvement

percentage

Preset 8 71003.53 31419.18 39584.35 55.75%

Preset 9 72292.95 33845.07 38447.87 53.18%

From the last column “Improvement percentage” of Table.3, we can see the improvements, comparing

the final optimization results with the initial ones, in percentage with different setups (using DPTP

tuner or a fixed-preset), measured by all 7 benchmark functions. The improvement percentage

values from fixed-preset groups that are lower than the those obtained by using DPTP have been

highlighted, so that we can clearly see with the same benchmark function, how many of them are less

than the DPTP improvements. Remember that in research question RQ, we want DPTP to gain

above-average results. For validating this, we need to check if the DPTP result is at least superior

to half of the fixed-preset results measured by the same benchmark function. For this purpose, from

the benchmark function C23 to C29, we respectively have 9, 5, 4, 5, 5, 6, 10 fixed-preset results that

are less than the DPTP result under the same benchmark function. For all the benchmark functions

except C25, the DPTP result is superior to at least half of the fixed-preset results. Therefore,

according to the data in Table.3, DPTP is up to the standard of above-average level set by the

research question RQ, considering DPTP results are better than fixed-preset results under most of

the benchmark functions.

However, we should also notice that for benchmark functions C24, C26, C27, C28, the advantage

of DPTP is not that obvious over the fixed-preset groups. The numbers of fixed-preset results that

DPTP is superior to in these groups are just over the threshold, half of the fixed presets. In addition,

for each benchmark function, the differences of improvements among different setups are not that

large. By subtracting the lowest percentage from the highest percentage measured by each same

benchmark function, we get ranges of 0.89%, 4.54%, 4.40%, 6.85%, 3.39%, 4.1%, 6.87%. In such a

condition, it is harder to tell whether DPTP results are significantly better than fixed-preset results

since they are very close to each other. Thus, for drawing more solid conclusions, we need the

hypothesis test to significantly validate the relationship among these results.

6.2 Graphical presentation of optimization results

This section graphically presents data from experiments using different benchmark functions C23-

C29 in the following subsections. We visualize the results in figures after preprocess the results

by following the steps in Section.5.4.1. In these figures, x-axes stand for the running time while

y-axes stand for the benchmark function values (also named as fitness values). The figures show the

optimization results as the running time goes. Since we have in total 11 setups (using DPTP and

10 fixed presets) for each benchmark function, plotting all the results in the same figure will make

it blur and confusing. So for data from each benchmark function group, we use some subplots to

compare the results from the DPTP setup and the fixed-preset setup so that they can be observed

clearly. After we plot the figures, the presets used in each benchmark function group are roughly
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categorized to good- or bad-preset categorizations, according to the plotted figures, so that we can

compare the results by using DPTP to those by using fixed presets, and examine the effectiveness of

DPTP, as noted by Section.5.3.2. A summary of categorization of good and bad presets for all the

benchmark function groups can be found in Section.6.2.8, so that we can have a general conclusion

of the good and bad presets measured by all the benchmark functions. Buy such a summary, we

know how many presets the DPTP is better than or equal to so that a general impression of the

DPTP’s effectiveness is formed.

6.2.1 Benchmark function C23

(a) DPTP vs. Preset 0, 1 (b) DPTP vs. Preset 2, 3

(c) DPTP vs. Preset 4, 5, 6 (d) DPTP vs. Preset 7, 8, 9

Figure 3: Experiment results from groups using DPTP vs.

using fixed presets, benchmark function C23

Figure.3 compares the optimization results from DPTP and fixed-preset groups, measured by bench-

mark function C23. We can roughly see from the figures that DPTP results are close to the results

from presets 1, 4, 5, 6, 8 and 9, and better than results from presets 0, 2, 3, 7. According to this we

classify the former as good presets, and the latter as bad presets.
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6.2.2 Benchmark function C24

(a) DPTP vs. Preset 0, 1 (b) DPTP vs. Preset 2, 3

(c) DPTP vs. Preset 4, 5, 6 (d) DPTP vs. Preset 7, 8, 9

Figure 3: Experiment results from groups using DPTP vs.

using fixed presets, benchmark function C24

Figure.3 compares the optimization results from DPTP and fixed-preset groups, measured by bench-

mark function C23. We can see that DPTP results are close to or worse than the results from presets

1, 4, 5, 6, 8 and 9, and better than results from presets 0, 2, 3, 7. According to this we classify the

former as good presets, and the latter as bad presets.

6.2.3 Benchmark function C25

Figure.3 compares the optimization results from DPTP and fixed-preset groups, measured by bench-

mark function C23. We can see that DPTP results are close to or worse than the results from presets

0, 1, 2, 3, 4, 5, 6, 8 and 9, and better than results from presets 7. According to this we classify the

former as good presets, and the latter as bad presets.
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(a) DPTP vs. Preset 0, 1 (b) DPTP vs. Preset 2, 3

(c) DPTP vs. Preset 4, 5, 6 (d) DPTP vs. Preset 7, 8, 9

Figure 3: Experiment results from groups using DPTP vs.

using fixed presets, benchmark function C25

6.2.4 Benchmark function C26

Figure.3 compares the optimization results from DPTP and fixed-preset groups, measured by bench-

mark function C23. We can see that DPTP results are close to or worse than the results from presets

1, 4, 5, 6, 7, 8, and 9, and better than results from presets 0, 2, and 3. According to this we classify

the former as good presets, and the latter as bad presets.

6.2.5 Benchmark function C27

Figure.3 compares the optimization results from DPTP and fixed-preset groups, measured by bench-

mark function C23. We can see that DPTP results are close to or worse than the results from presets

1, 4, 5, 6, 8 and 9, and better than results from presets 0, 2, 3 and 7. According to this we classify

the former as good presets, and the latter as bad presets.
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(a) DPTP vs. Preset 0, 1 (b) DPTP vs. Preset 2, 3

(c) DPTP vs. Preset 4, 5, 6 (d) DPTP vs. Preset 7, 8, 9

Figure 3: Experiment results from groups using DPTP vs.

using fixed presets, benchmark function C26

6.2.6 Benchmark function C28

Figure.3 compares the optimization results from DPTP and fixed-preset groups, measured by bench-

mark function C23. We can see that DPTP results are close to or worse than the results from presets

1, 4, 5 and 8, and better than results from presets 0, 2, 3, 6, 7 and 9. According to this we classify

the former as good presets, and the latter as bad presets.

6.2.7 Benchmark function C29

Figure.3 compares the optimization results from DPTP and fixed-preset groups, measured by bench-

mark function C23. We can see that DPTP results are close to or worse than the results from presets

1, 4, and 8, and better than results from presets 0, 2, 3, 5, 6, 7 and 9. According to this we classify

the former as good presets, and the latter as bad presets.
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(a) DPTP vs. Preset 0, 1 (b) DPTP vs. Preset 2, 3

(c) DPTP vs. Preset 4, 5, 6 (d) DPTP vs. Preset 7, 8, 9

Figure 3: Experiment results from groups using DPTP vs.

using fixed presets, benchmark function C27

6.2.8 Summary of categorization

Table.4 lists a summary of good and bad presets for all the benchmark functions. From the table,

we can see that from the benchmark function C23 to C29, we have respectively 6, 6, 9, 7, 6, 4, 3

good presets, and 4, 4, 1, 3, 4, 6, 7 bad presets.

From the number of bad presets which we estimate are not as good as DPTP, it is hard to say that

DPTP has an above-average performance. Compared to the presets, DPTP is better than some

presets which we categorize as bad presets, but the condition about the presets that are categorized

as good presets is hard to determine for now. We have no idea about if these good presets are close

to or better than DPTP because many of their lines are twisted with the DPTP lines in the figures.

Since such a categorization is just a rough estimation from the figures, it is not surprising that some

categorizations are different from the test results so that the hypothesis H0 is rejected. What we

should care about is whether DPTP gains results that are equal to or better than at least half of the

fixed presets, as the research question RQ marks. If so, we can say that the DPTP is an effective
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(a) DPTP vs. Preset 0, 1 (b) DPTP vs. Preset 2, 3

(c) DPTP vs. Preset 4, 5, 6 (d) DPTP vs. Preset 7, 8, 9

Figure 3: Experiment results from groups using DPTP vs.

using fixed presets, benchmark function C28

C23 C24 C25 C26 C27 C28 C29

Good

presets

1, 4, 5, 6,

8, 9

1, 4, 5, 6,

8, 9

0, 1, 2, 3,

4, 5, 6, 8,

9

1, 4, 5, 6,

7, 8, 9

1, 4, 5, 6,

8, 9

1, 4, 5, 8 1, 4, 8

Bad pre-

sets

0, 2, 3, 7 0, 2, 3, 7 7 0, 2, 3 0, 2, 3, 7 0, 2, 3, 6,

7, 9

0, 2, 3,

5, 6, 7, 9

Table 4: Good and bad presets recognized by figures for

different test methods

method for the parameter control.
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(a) DPTP vs. Preset 0, 1 (b) DPTP vs. Preset 2, 3

(c) DPTP vs. Preset 4, 5, 6 (d) DPTP vs. Preset 7, 8, 9

Figure 3: Experiment results from groups using DPTP vs.

using fixed presets, benchmark function C29

6.3 Test results and probability analysis

As described in Section 5.4.2 and 5.4.3, we compare the results from DPTP with presets by a right-

side one-tailed test. The test results are presented in Section.6.3.1. We use the significance level α

= 0.05, so when the p-value less than 0.05: p − value > α = 0.05 we accept H0. Otherwise, we

reject H0.

In addition, we are also interested in the selection behavior of DPTP. Will DPTP select and use

good presets more than bad presets? Whether DPTP gives good presets higher probabilities after a

period of learning from the feedback and selects them more, or there can be other cases? After the

good and bad presets are validated by the hypothesis test, we can compare the probabilities DPTP

assigned to the presets to find answers. In Section.6.3.2, we collect the average probabilities of each

preset when an experiment is terminated to see how the probabilities are distributed after DPTP

learns from the whole process of experiment running.
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6.3.1 Test results

Table.5 shows the p-values of the right-side one-tailed test comparing DPTP with different fixed

presets. The columns of the table are for different benchmark functions, and the rows of the table

are for different presets. The p-values that are smaller than the significance level α = 0.05 are

highlighted, meaning that in these cases the null hypothesis H0 : F̄DPTP ≤ F̄ is rejected, and we

accept the alternative hypothesis H1 : F̄DPTP > F̄ .

C23 C24 C25 C26 C27 C28 C29

Preset 0 1.00 1.00 0.00 1.00 1.00 1.00 1.00

Preset 1 0.17E-03 0.00 0.00 0.00 7.81E-06 0.00 1.00

Preset 2 1.00 1.00 0.00 1.00 1.00 1.00 1.00

Preset 3 1.00 1.00 1.45E-07 1.00 1.00 1.00 1.00

Preset 4 1.06E-06 0.00 8.18E-12 0.00 0.19E-03 0.33 1.00

Preset 5 0.92 0.00 0.00 0.00 0.31 3.17E-12 1.00

Preset 6 0.84 0.00 0.00 0.00 1.00 1.00 1.00

Preset 7 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Preset 8 0.08 0.00 0.00 0.00 0.09 0.99 0.21

Preset 9 0.59 8.23E-06 0.00 1.00 0.75 1.00 1.00

Table 5: Bad presets, p values of two-tailed test for the whole

process

In the table, we can see that we have p-values that are larger than the significance level 0.05 in most

of the cells (44 / 70), which means the null hypothesis F̄DPTP > F̄ is accepted. This indicates that

DPTP gains the above-average performance in most cases.

On the other hand, for different benchmark functions, the results of DPTP v.s. fixed presets are

quite different. For some benchmark functions, such as C23, C28 and C29, DPTP is having an

above average performance since it is overwhelming most of the fixed presets measured by these

functions. But for benchmark function C24 and C25, DPTP didn’t have the above-average perfor-

mance. Figure.0 shows us the differences among these benchmark functions, i.e. they have different

shapes and local optimalities. Combining with the test result, we can see that the basis problem or

the benchmark functions with different optimalities may also affect the performance of DPTP.

In addition, the test results show a high consistency with our figures for the experiment results in

Section.6.2. Though some curve lines are illegible because they are too close to each other, we can

still see some curve lines that are obviously better worse than DPTP. For example, we can clearly

see that the curve line for preset 7 measured by C25 in Figure.3, Preset 0 by C28 in Figure.3, and

preset 7 & 8 measured by C29 in Figure.3, etc., are worse than the results of DPTP, and we can

see that in these cases, the null hypothesis is accepted by test results. Similarly, good presets like

preset 1 measured by C24 in Figure.3 and preset 1 & 4 measured by C26 in Figure.3 are better than

DPTP. In such cases, the null hypothesis is rejected, indicating that DPTP is significantly worse

than them.

From the test results, Table.6 and Figure.6 give a summary of numbers that presets DPTP is equal
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to or better than for each benchmark function. The numbers from different benchmark function

groups show how effective DPTP is. If there are at least half of the presets, 5 out of 10 here, that

are not as good as DPTP, we say that DPTP has gained an above-average performance.

C23 C24 C25 C26 C27 C28 C29

No. of winning 8 4 1 5 8 8 10

Table 6: The number of presets that DPTP is better than or

equal to for each benchmark function

Figure 6: Number of presets DPTP overwhelms measured by

different benchmark functions

Table.6 and Figure.6 show that for most of the benchmark functions, DPTP has an above-average

performance defined by the research question RQ. This result is consistent with the observation from

figures in Section.6.2, since we can see the lines representing DPTP are mostly on the bottom part

of the figures compare to other lines representing fixed presets, indicating that DPTP always gives

the basis algorithm quite low fitness values for most of the benchmark functions. As for benchmark

functions C25 and C26, where DPTP does not have an above-average performance, the curve lines

representing DPTP in Figure.3 and Figure.3, we can hardly tell the gap between DPTP and the

good presets except preset 1 measured by C24. The curve lines of DPTP and most good presets

in these two figures are just jammed together to show an illegible picture. This indicates that the

differences between DPTP and the good presets are not that large.

6.3.2 Preset selection Probabilities

The probabilities of presets are what DPTP selects presets by. The higher the probability of a

preset is, the more likely the preset is selected. In this section we make a qualitative analysis of the

selection probabilities. As described in Section.5.3.2, we repeat an experiment with the same setup
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and measured by the same benchmark function for 5 times and use the average data obtained from

these experiments. The probability values we use in this section are also the average results from

the 5 repeated runs. Besides, we only use the probabilities from the last updates in each run to

make the analysis, since such probabilities are assigned by DPTP after learning from the feedback of

the whole process. Since their values are determined by more feedback information, they are more

representative of how the presets are selected and used by DPTP during the whole run. Table.7

presents the average final probabilities of each preset measured by different benchmark functions. In

order to make the analysis, we need to make sure that the good or bad presets we use are truly good

or bad. If we think a preset is good, but it is actually bad preset, and it has a low final probability,

the situation really causes some confusion for us.

C23 C24 C25 C26 C27 C28 C29

Preset 0 0.0732 0.0547 0.0209 0.1625 0.0802 0.0732 0.0394

Preset 1 0.0759 0.0742 0.0905 0.1049 0.0490 0.0759 0.2596

Preset 2 0.1142 0.0127 0.3087 0.1514 0.1049 0.1142 0.0926

Preset 3 0.0555 0.0274 0.0927 0.1232 0.0951 0.0555 0.0372

Preset 4 0.1024 0.0965 0.0735 0.0488 0.1026 0.1024 0.1816

Preset 5 0.1641 0.1707 0.0473 0.0607 0.0951 0.1641 0.0878

Preset 6 0.0745 0.0797 0.0683 0.0363 0.1271 0.0745 0.0382

Preset 7 0.0736 0.1289 0.2544 0.1701 0.1350 0.0736 0.0412

Preset 8 0.0574 0.1152 0.0169 0.0518 0.1078 0.0574 0.1687

Preset 9 0.2092 0.2400 0.0267 0.0904 0.1032 0.2092 0.0538

Table 7: The average final probabilities updated by DPTP.

Probabilities of the bad presets are highlighted.

Since DPTP shows good performance in both Section.6.2 and 6.3.1, graphically and mathemati-

cally, it makes sense that we expect DPTP gives higher probabilities to good presets, and lower

probabilities to bad presets, so that it selects and uses more good presets. However, we can see

from Table.7 that the bad presets do not always get the lowest probabilities in the final stages of

an experiment run. Moreover, some bad-preset probabilities even rank very high among all the 10

presets, e.g., preset 2 has the third-highest probability for benchmark function C23, preset 7 has the

highest probability for benchmark function C25, and preset 0 has the second-highest probability for

benchmark function C26, etc. In other words, there is inconsistency between the good performance

of DPTP and some high probabilities of bad presets can be guessed, implying that the good perfor-

mance and the good feedback from the running time is not merely the result of always selecting the

good presets, or the good presets might not always be the good presets.

We are not going further to study the reasons for such inconsistency in this paper for DPTP has

been validated to be an effective method for parameter control after all. But we can make some

conjectures about the possible reasons. First, we cannot ignore the existence of the randomness. If

DPTP happens to select a bad presets at the end of the run, and the bad preset happens to have

even a little improvement, then the probability of the preset will have a quite large weight, since in

the final stage of a run, any improvement is harder to get compared to the initial stage of a run.
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Actually, it is not that easy to ignore the problem that the randomness affects much more of the

weights and the probabilities of presets at the end of an experiment run. In DPTP, the updating

of preset probabilities is based on the improvements and the time costs. However, if we run the

model long enough, then in the final stages of the running, improvement would be very hard to

obtain. In this condition, any improvement can lead to a relative high probability to the preset that

is used in that iteration. For example, if we have 3 presets, in which preset 1, 2, 3 are respectively

the best, medium, and the worst presets, with the probabilities of 0.9, 0.05 and 0.05. Assume that

between two updates of probabilities, we try all the presets, and only the worst preset, preset 3 get

some improvement, say 1, in unit time. Then we update the probabilities by Algorithm.4, and the

probabilities are 0.81, 0.045 and 0.145 (take the value of the effect factor β = 0.9). Bad presets can

get higher probabilities by such randomness, which is something we don’t want.

On the other hand, it might not be the best strategy to always use the good presets for optimization.

It is well known that in many optimization problems, if we always make the choice that seems to

be the best at the moment, we may get a local optimality finally. Thus, in order to find out the

global optimality, we need to make some decisions that seems not to be the best at the moment to

jump out of the trap of the local optimality. From the intricate maps of benchmark functions in

Figure.0, we have already seen the complexity of them. So we guess that using bad presets can help

us to jump out of the local optimality of these benchmark functions. If so, DPTP is smarter than

we think since it knows more about the problem from the feedback of running time.

6.4 Section summary

In this section, we first list the numerical data of the improvements obtained by subtracting the initial

optimization values from the final ones in each experiment. Numerical results show that measured

by 5 out of 7 benchmark functions, DPTP has the same or more improvements compared to at least

half of the fixed presets. In the graphs plotted based on the numerical data, we can also roughly

see that measured by 5 out of 7 benchmark functions, DPTP is better than or equal to the fixed

presets, while in other cases, DPTP performs worse than over half of the fixed presets. However,

with either the numerical or graphical method, the comparison is just a rough estimation. Therefore,

we perform the hypothesis test and present the results in Section.6.3 by using the Wilcoxon rank-

sum test method. The test results significantly validate that measured by 5 our of 7 benchmark

functions, DPTP is better than or equal to the fixed presets. Thus, we can conclude that in most of

the cases, DPTP is more likely to have an above-average performance, according to the test results

from Section.6.3.1.

7 Conclusion and discussion

In this paper, we design an algorithm, DPTP, to tune the parameters of metaheuristics while it is

running according to the feedback from the running time. This section draws some conclusions from

the test results in Section.6. These conclusions are given in Section.7.1. In addition, we also find

some possible improvements that can be done in the future for the algorithm and limitations in the

research that deserve to be discussed. These are presented in Section.7.2.
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7.1 Conclusion

The experiment data and the test results show that DPTP has a very good performance: it out-

performs most of the fixed presets and gains above-average performance in 5 of 7 comparisons with

fixed presets. Going back to the research question in Section.2.2:

How to design an algorithm to select parameter values for a metaheuristic when it is

running, so that the metaheuristic can gain above-average performance, compared to

only applying a fixed preset to the metaheuristic?

We answer the research question by answering its sub-questions.

• Since we tend to let the tuning algorithm, DPTP, determine the parameter values without any

pilot test or prior knowledge about the metaheuristic, based on what criteria should it make decisions

about the parameter values?

We name the algorithm for which the parameter values need to be adjusted as the “basis algo-

rithm”, and the algorithm DPTP designed in this paper to adjust the parameter values for the

basis algorithm as the “tuning algorithm”. To use DPTP, we need to provide the presets, which

are just alternative sets of parameter values for the basis algorithm. These presets can be generated

by completely random values in sensible ranges of the parameters. They have attributes like names

and probabilities, etc. As for determining the number of the presets provided for DPTP, we need

to first consider the limitation for the running time. For each preset, we calculate its probability by

the improvements and the time spent on the improvements when the preset is used. DPTP needs

enough running time to collect feedback and learn from it. Thus, if we provide more presets for

DPTP, we need to extend the cycle length so that enough running time for presets and the learning

time for DPTP can be ensured. Whereas, longer cycle length means longer running time is needed

to get a final solution. On the other hand, if we provide too few presets for DPTP, the effective

values in the parameter value ranges may not be explored and used in the preset. Thus, users need

to make a balance between the number of presets and the running time when generating presets for

DPTP.

After the basis algorithm starts running, there is a selector to select the presets that are to be used by

the basis algorithm based on their probabilities. The probabilities of presets are initialized with the

value 1/n, where n is the number of provided presets, and will be updated based on the performance

of the presets. Since different parameter values affect the performance of the basis algorithm, we can

use improvements the basis algorithm gets per unit time to measure the effectiveness of the selected

presets by the DPTP selector. The presets that help the basis algorithm gain higher improvements

during the unit time get higher probabilities, and they are considered “good” presets. Otherwise, the

presets that does not help the basis algorithm improve much, or even no improvement, are deemed

“bad” presets. In other words, we use the feedback from the running time of the basis algorithm

to determine the values of the parameters. That is why we do not need any pilot test or prior

knowledge of the basis algorithm to adjust its parameter values. All in all, the criteria on which we

make decisions about the parameter values are the effectiveness of the presets provided for DPTP,

measured by the improvements they help the basis algorithm get per unit time.

• Once we determine the criteria and method based on which DPTP makes decisions about selecting
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presets, how to collect the data about the performance of DPTP as well as fixed values, and how

should we use these data to improve DPTP’s selection making?

The data is collected while the basis algorithm is running, so we do not need extra time to run pilot

tests for testing which values can give the basis algorithm good performance. Then we update the

preset probabilities periodically. For using the data, we calculate the average improvements per unit

time of all the presets, and then use the unit-time improvements to calculate the probabilities of

these presets.

It is remarkable that sometimes, some presets are not selected and used between two updates of

the probabilities. Thus, when we calculate the new probabilities, their weights are badly affected

because they have 0 improvement for the basis algorithm, so they get lower probabilities in such a

condition. However, if they were used they might have gotten good improvements. Therefore, if we

give them low probabilities for no improvements are made by them because they are not selected,

the low probabilities are not due to bad performance, but from the randomness that causes them

not to be selected and used. So we design another algorithm, Algorithm.4, of updating probabilities

with some “protection” for these unused presets. That is, we just keep their current probabilities

the same and use it until they are selected and get some feedback.

As described above, we provide some alternative presets to DPTP, then select one from the provided

presets by their probabilities. After we use the presets, we calculate and update the new probabilities

according to the improvements the basis algorithm get and the time the basis algorithm takes for

obtaining such improvements when use the presets. We can see that compared to using fixed

parameter values, DPTP dynamically adjusts the parameter values by the running time feedback.

• How to design and execute experiments and data analysis to validate that the metaheuristic using

the tuning method gains above-average performance, compared to only using fixed parameter values

during the running?

In the experiments, we compare the effectiveness of DPTP by comparing it with the effectiveness of

the fixed values over the whole run of the basis algorithm. If the result of using DPTP is better than

or equal to a fixed-preset group, we say that the DPTP group “outperforms” this fixed-preset group.

First we generate 10 presets randomly. We provide these presets as the input to DPTP. Meanwhile,

they are also the fixed values we use for comparing with DPTP. Then we run basis algorithms with

separately using DPTP and the 10 presets, and collect the data from these experiments. Measured

by some benchmark functions, we can see from the resulting data if DPTP overwhelms over half of

the fixed presets, which is, the above average performance.

For more solid validation, we also use the hypothesis test to test the relationship among the resulting

data from DPTP and the other 10 presets. The hypothesis test can significantly recognize that if

the effectiveness of DPTP is equal to the good presets, or better than the bad presets. By the test

results, we can have an insight about how many fixed-preset groups the DPTP group outperforms.

• What How does DPTP affect the performance of the metaheuristics compared to using only fixed

presets, according to the experiment data?

The data visualization and the test results in Section.6 suggest that in most cases, DPTP can

effectively select the presets that can help the basis algorithm gain better performance, i.e. gain
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more improvements during the same time, or gain the same improvements during shorter time,

compared with the only using fixed parameter values over the whole run. It updates the selection

probabilities for presets by the feedback from the iterations using different presets. Both the figures

in Section.6.2 and the test results in Section.6.3 indicate that DPTP helps the basis algorithm gain

an above-average performance defined in RQ. The results from DPTP are at least as good as half

of the fixed presets it uses. In the test result, DPTP outperforms 5 our of 7 fixed-preset groups.

However, it is remarkable that in few cases DPTP does not have the above-average performance.

This implies that DPTP is still possible to be affected by the specific problems or benchmark

functions. Thus, we can only say that in most cases, using DPTP is better than using fixed values

for parameters of the basis algorithm, according to the experiment results we have.

• If DPTP has a satisfactory above-average effectiveness, what is its behavior like with regard to the

selection of presets?

In Section.6.3.2, we find that DPTP does not always give good presets high probabilities at the

final stages of the algorithm run as we expect. We make some conjectures about the reason why

it does so: The possible reason can be that the running time is not enough for the probabilities to

converge. We run each experiment for 10 minutes, and it can be shorter than the required time

for the probabilities to converge. Also, It could be the reason of the randomness, so that DPTP

happens to select the bad presets at the final stages, and using these presets gives good feedback

which increases the probabilities of the bad presets. Table.7 shows that at the final stage, some bad

presets’ probabilities does not really converge to 0. This implies that the randomness still plays an

important role in the process of DPTP assuming that we have run the algorithm for enough time.

Another possible reason is simply because that we have not run the basis algorithm for enough

time. In the experiments, each run takes 10 minutes. Such a running time is long enough for the

benchmark function values to converge, as we can see in the experiment results. But the convergence

of the benchmark function values does not mean the convergence of the preset probabilities. Thus,

to validate this, we need longer running time to observe if the probabilities converge.

Since DPTP gains above-average performance in most of the cases for the basis algorithm in this

paper, it is validated to be a promising direction for parameter control of metaheuristic algorithms.

However, it still has some limitations. DELMIA continues the research on DPTP after this paper is

completed, focusing on why DPTP fails in some cases, and how to improve it to make it work better

in these cases. Additionally, they will build the algorithm into their QUINTIQ platform to apply it

to more types of real optimization problems in their business, so that the generality of DPTP can

be further validated.

7.2 Limitations and further research

The experiments and the test results validates the high effectiveness of DPTP because it does better

than most of the randomly generated fixed presets, but there are still some limitations that can be

optimized in further researches. In this section, we discuss some limitations so far in our research,

and hopefully we can research more on these topics.
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Generality of the research An ideal situation for the experiment results of the research is that

results from different experiment setups are distinguished from each other significantly. We want

the results to be more dispersed rather than converging from the very beginning. If there are clear

hierarchies among groups with different setups, so larger dispersion, we can better see in what

position DPTP is for a better analysis. But with presets that gives similar results, first it is hard to

differentiate them easily in a graphical way. Though the mathematical test helps us differentiate the

good and bad presets, comparing DPTP to too many similar results is hard and meaningless, for

they are arguably the same or similar results and when the test results indicate that DPTP is better

than or equal to these results, it is hard to say that DPTP really outperforms most of the presets.

The experiment results and figures show that there are still many of the resulted lines jammed

together. For example, in the following Figure.7 and 7, we can see that the dispersion degrees are

different. We want to eliminate the results of fixed-preset groups that are too close to each other

and increase the dispersion of these groups as much as possible in future researches.

Figure 7: Experiment results of C25 with smaller dispersion,

the results of different groups are close to each other and hard

to differentiate

The reason of the jammed results can be the problem of generated presets. If we do not intend to use

any pre-knowledge about the basis algorithm and use completely random values to generate presets,

it is likely that we get the presets that lead to similar results without small degree of dispersion.

Besides, another reason that the experiment results are not easily distinguished from each other can

be the basis algorithm we use in the research. We only use one basis algorithm (the CRO) in this

paper to test the effectiveness of DPTP, which lacks the generality of validation, though with up

to 7 benchmark functions. The selected basis algorithm may be not that sensitive to the change

of parameter values. Therefore, we can use more basis algorithm in the future researches to test

DPTP. What’s more, we see some cases that DPTP does not have an above-average performance

as mentioned in the last section. This problem also needs to be studied more. We can try DPTP

on more basis algorithm to figure out what kind of problems DPTP does not fit into and how to

improve it.
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Figure 7: Experiment results of C29 with larger dispersion, the

results of different groups are easier to be distinguished

Quantitative study For now, we only have a conclusion that DPTP has an above-average ef-

fectiveness among all the setups, but we don’t know how much it can improve the basis algorithm

quantitatively compared to fixed presets. Such knowledge can be used in the decision-making pro-

cess whether we use DPTP or just fixed values when we run the basis algorithm. DPTP is more

complicated than just using fixed values, so for some simple optimization problems, if we anticipate

that the improvement DPTP can make is not high enough to offset the complexity of using DPTP,

we can just use fixed values instead to quickly get the results.

Effect of randomness in final stages of a run In Section.6.3.2, we depict a situation that in the

final stages of a run, when any improvement is really hard to be obtained, very tiny improvements

can lead to quite high probabilities when other presets do not make any improvements. This is the

negative effect to the accuracy of DPTP we want to avoid.

To eliminate such effect, a possible solution can be the introduction of a new variable. The value

of it decreases as the basis algorithm runs. Such a variable is the weight of improvements obtained.

Thus, when the run is at final stages, the weight variable gets a smaller value and the effect of

improvements is less and less. In this way, the initial value of the variable and the speed by which

its value decreases should be finely set. However, such a solution causes another problem, too many

parameters for DPTP. The original intention of DPTP is to get rid of the decision-making process

about the parameter values for the basis algorithm, and just let DPTP do the job automatically.

If we introduce too many parameters for DPTP, even more than the number of the parameter of

the basis algorithm, we need to still consider the value problem of DPTP. Then we find DPTP

meaningless in the parameter controlling.
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Smarter presets generating In this paper, we provide DPTP with some alternative presets to

make DPTP be able to select the presets based on the feedback from the running time, so that it

gives the basis algorithm a good performance. However, the provided presets also constrain DPTP in

a given restricted range. DPTP can only select possible values from the given presets. We generate

the presets by random values in the parameter ranges. The more presets we make and the smaller

the parameter ranges are, the more likely that the randomly generated values get close to the values

that can really boost the basis algorithm. When the value range of a parameter is very large, The

randomly generated values in the presets might not work that well. A large range means that it is

harder to randomly generate values that are effective for the basis algorithm. So for larger ranges,

we have to provide more presets to DPTP, and more presets requires longer cycle length. Thus, we

want a smarter way of generating and using presets. It is better if we find a way to make DPTP to

not only use the given presets, but also creating presets themselves while it is being executed.
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Ahuja, R. K., Ergun, Ö., Orlin, J. B., & Punnen, A. P. (2002). A survey of very large-scale

neighborhood search techniques. Discrete Applied Mathematics, 123 (1-3), 75–102.

Aleti, A., & Moser, I. (2016). A systematic literature review of adaptive parameter control methods

for evolutionary algorithms. ACM Computing Surveys (CSUR), 49 (3), 1–35.

Altinbas, H., & Akkaya, G. C. (2017). Improving the performance of statistical learning methods

with a combined meta-heuristic for consumer credit risk assessment. Risk Management , 19 (4),

255–280.

Arcuri, A., & Fraser, G. (2011). On parameter tuning in search based software engineering. In

International symposium on search based software engineering (pp. 33–47).

Bartz-Beielstein, T. (2010). Spot: An r package for automatic and interactive tuning of optimization

algorithms by sequential parameter optimization. arXiv preprint arXiv:1006.4645 .

Bartz-Beielstein, T., Lasarczyk, C., & Preuss, M. (2010). The sequential parameter optimization

toolbox. In Experimental methods for the analysis of optimization algorithms (pp. 337–362).

Springer.

Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. (2002). The explicit linear quadratic

regulator for constrained systems. Automatica, 38 (1), 3–20.

Bui, D. T., Panahi, M., Shahabi, H., Singh, V. P., Shirzadi, A., Chapi, K., . . . others (2018). Novel

hybrid evolutionary algorithms for spatial prediction of floods. Scientific reports, 8 (1), 1–14.

Chong, E. K., & Zak, S. H. (2004). An introduction to optimization. John Wiley & Sons.

Conover, W. J. (2007). Practical nonparametric statistics. Academic Internet Publishers.
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Appendix A Coral Reef Optimization

The coral reefs optimization (CRO) algorithm, just like the other genetic metaheuristics, is inspired

by the process of the natural selection. It simulates the process of the formation and reproduction

of coral reefs in different phases. In this section, we introduce how CRO emulates such a process

and how it is used for optimization problems.

An important subgroup of corals is reef-building corals, also known as herbaceous corals or simply

hard corals. Hard corals are usually shallow water animals that produce hard calcium carbonate

skeletons. Coral reefs are made up of hundreds of hard corals connected by their calcium carbonate.

Polyps periodically lift from the basal plate and secrete new calcium carbonate, creating chambers

that help coral bones grow. Polyps keep building these chambers on the reef, so eventually the

entire reef grows larger and larger. Living coral grows on the calcium carbonate bones of their dead

ancestors. Coral reefs are usually made up of corals that live in groups or independently. A coral reef

usually consists of single type corals, but can also be the environment where multiple other species

is located. In addition to coral, many other floras and animals live on coral reefs, such as fish, algae,

sponges, sea anemones, mosses, starfish, crustaceans (e.g. shrimp, crab, lobster), octopuses, squid,

clams, snails and other mollusks.

Corals require free space to grow. In the real world, free space is usually a kind of limited resource

that leads to badly competition between different coral species. One of the strategies the corals

mostly use is growing fast. The corals that grow faster easily grow on top of those that grow slower

and eventually kill the latter in this way.

The behavior described above for reproduction and competing for more growing space gives inspi-

ration to the use of CRO. Some strategies that CRO emulates include:

• External reproduction: broadcast Spawning Sometimes, coral reefs produce a huge

amount of male or female gametes, and they are released into the water. When an egg and a

sperm meet each other, they combine to produce a larva. A larvae looks for a free space to

grow as a polyp. On large reefs, such spawning phenomenon usually happens synchronously,

otherwise the encounter will be hard to happen between gametes generated by different corals.

• Internal reproduction: brooding Brooding is a method of internal reproducing. With this

reproduction mode, some female corals contain eggs that are not release the water. Then the

sperm released by other corals of the same species gets inside the female coral and fertilize the

egg. The fertilized egg then produce a larva. When the larva grows older, it is released to the

water in a more advanced stage of development so that it is easier for it to get onto free space

without being preyed upon.

• Asexual reproduction: budding or fragmentation When corals grow large enough, they

are able to produce budding: new polyps bud off from their parents and look for new colonies

to grow. Fragmentation is similar to budding, but it is caused by the external phenomena

such as storm or boats grounding, and usually a larger part of the coral reef is divided from

the main part. The divided part off the main part is able to keep growing and grow to a new

coral reef. Corals reproduced by both the budding and fragmentation are genetically identical

to their parents.
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• Reef longevity and causes of death Some researches show that corals can live as long as

centuries. During their lifetime, they face many hazards. In their larva stage, they are preyed

upon by fishes and other predators. Thus, corals produce huge number of larvae to ensure

that there is an enough number of polyps can ground on the suitable place and grow up. After

then find their colony and grow there, they can still be preyed upon by their natural enemies

like starfishes and parrot fishes. Besides, human being’s activities can also effect the longevity

of corals.

CRO emulates these behaviors to make the solution evolve, so the optimization is conducted. Let

Λ be a coral reef composed of N × M square grid, and each of the grid (i, j) of Λ can hold a

coral Θ(i,j). One coral represents one solution. For initialization, we randomly pick some grids

and initialize them by some constructive algorithm, while other grids stays empty. The ratio of

initialized grids to empty ones at the beginning is a parameter of CRO, ρ0, where 0 < ρ0 < 1. For

each non-empty grid that has a solution in it, we measure the solution by the benchmark function

we use. The benchmark function is the objective function of the algorithm selected by us, which is

seen as the “health function” of each solution. The health function of solution Θ(i,j) is denoted as

f(Θ(i,j)) : I → R.

After the initialization, CRO starts the formation process, which basically emulates the aforemen-

tioned reproduction and competition behaviors to evolve the initialized solution:

• External reproduction: broadcast Spawning In a given step of the reproduction phase

t, a fraction of coral grids, each of which represents a solution, is selected to reproduce new

solutions by broadcast spawning. The ratio of the selected grids to all the N ×M grids is

denoted as Fb. Meanwhile, The remaining grids that are not selected, i.e. 1− Fb of the grids

reproduce new solutions by brooding.

After the broadcast spawning corals are determined, we make couples out of them. The

couples can be selected from them randomly, or by some sorting methods. Each of these

couples crossover and produce a new production. For example, we can merge different parts

of the parent solutions to reproduce a new one.

• Brooding The fraction 1−Fb of brooding solutions reproduce new solutions through random

mutation. Specifically, this is similar to the method we use for looking for neighbors. We can

slightly change the solution to make it a new one.

• Larva setting Just as the situation that not all the larvae can eventually find a place to grow,

not all the solutions reproduced by broadcast spawning or brooding are guaranteed to fill a

grid and continue to evolve. Larvae may be preyed upon before they get on a place, or they

may fail to find a place to grow. Similarly, a solution tries to randomly set in a grid (i, j), and

if the grid is empty, the solution will just set in it. However, if the randomly selected grid has

already occupied by other solution, then we compare the health function values of these two

solutions, and the solution with better health function value (higher function value is better

in maximal optimization problems, and vice versa) will take the grid. In this process, there

is another parameter k, as the attempt times by which a larva tries to set in a grid: after k

times of failed tries, the larva is preyed upon, meaning that a solution that is not able to fill

into a grid is discarded.
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• Asexual reproduction For simulation of asexual reproduction budding and fragmentation,

all the corals on the reef, i.e. the solutions on the square, are first sorted by their health

function. Then, a fraction of Fa solutions duplicate themselves and try to set into a grid

following the process described above.

• Depredation Even if some larvae are successfully set in some places, they can die of either

predation or other reasons. For the solutions in the grids, they are first sorted by their health

function at the end of each phase t, and a fraction Fd of larva that has the worst health values

has a probability Pd to be eliminated. If they are eliminated, the grids taken by them are

cleared and become empty grids. These empty grids can be used for holding new solutions

reproduced in the next phases.

CRO repeats the above processes so that the solutions keep evolving, until certain termination

criteria such as running time limits, or the fitness value target are met. So far, all the parameters,

ρ0, Fb, Fa, Fd, Pd, k, which need to be adjusted in CRO, are illustrated. Table.1 gives a summary

of these parameters. DPTP works on CRO to select appropriate values for these parameters to give

CRO a good performance.
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Appendix B Raw Data of Experiments

Due to limited space, it is hard to append all the raw experiment data here. All the experiment

data can be downloaded via the link: https://drive.google.com/file/d/1Z98qSEyXLseBvIsf

sMmX1w4Zq1uhiy /view?usp=sharing.

In the folder, the data of benchmark function values are in Excel files that are named in the format

“[Experiment setup] training [benchmark function name].xlsx”. For example, a file named “DPTP

training C23.xlsx” means it is the data from the experiments using DPTP tuning method mea-

sured by benchmark function C23, and “preset 0 training C23.xlsx” means it is the data from the

experiments using preset 0 measured by benchmark function C23.

In addition, there are also the data of updating probabilities of different presets updated in the

running time named as “probabilities [benchmark function name].xlsx”. For example, a file named

“probabilities C23” means that it contains the data of preset probabilities in the experiments mea-

sured by benchmark function C23.
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