
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Almost Core Allocations on
Minimum Cost Spanning Tree Games

Boyue Lin
M.Sc. Thesis
October 2022

Supervisors:
prof. dr. M. J. Uetz

dr. M. Walter

Graduation committee:
prof. dr. M. J. Uetz

dr. M. Walter
dr. J. B. Timmer

DMMP Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

In cooperative game theory, a core allocation guarantees that no subset of play-
ers would prefer to deviate. However, the allocation in the core requires distributing
the exact cost of the grand coalition to all individual players. This thesis studies
the optimization problem to maximize the total amount that can be distributed over
the individual players while maintaining the stability with respect to proper coali-
tions. The corresponding solution concept is referred to as “almost core”. It shows
how much one could maximally tax the total cost of the grand coalition, without any
proper coalition wanting to deviate. Some complexity theoretic results of almost core
allocations are derived. We study almost core allocations to a class of games with
non-empty core: the minimum cost spanning tree games. A tight 2-approximation
algorithm to compute an almost core optimum is proposed. The algorithms to com-
pute the almost core optimum on some constrained minimum cost spanning tree
structures are also given. In addition, the almost core concept is studied for value
games. It turns out that the same algorithmic results can be derived also for value
games.

ii

Preface

It’s a fun and challenging year both in academics and in life. I started working on
some directions I had rarely studied before, and I found it very interesting to learn
discrete optimization. I am more aware of the fascination of algorithms. I learnt so
much during the research with prof. Marc Uetz, dr. Matthias Walter and Rong Zou. I
really enjoy it.

First of all, I would like to thank prof. dr. Marc Uetz, for welcoming me into the
DMMP group. It is my first time studying abroad for so long, but you turned all my
insecurities and worries into delight and contentment with your kindness, and your
enthusiasm for academics encouraged me to dig deeper into discrete optimization.
In addition, my special thanks go out to dr. Matthias Walter. You have a unique
perspective on many problems and always inspire me in academics. Moreover, I
am grateful to dr. Judith Timmer for being a member of my graduation committee.
Thank you for taking the time and effort to read the thesis as well as to attend and
assess the defence.

Furthermore, my gratitude goes out to my supervisor in China, prof. dr. Genjiu
Xu. Thank you for the opportunity you gave me to be an exchange student in the
Netherlands. You always support me and are not only my supervisor but also my
mentor in life.

Also, I would like to say thank you to Rong Zou. Thank you for all the help when I
just got Enschede. You are always there for me to give advice when I get confused.
Last but not least, I want to thank all my friends of Xin Gen Ju Di. You are like family
to me and made me realize I am not alone. I am so lucky to have you as friends
because you are so awesome!

It has been a fulfilling year, and I am happy to say that being an exchange student
at UT is one of my best memories. I hope I can continue my academics and dig
deeper into optimization and algorithms in the future.

iii

Contents

Abstract ii

Preface iii

1 Introduction 1
1.1 Cost Sharing Games . 1
1.2 Relaxations of the Core . 2
1.3 Minimum Cost Spanning Tree Games 4
1.4 Outline . 4

2 Cost Sharing Beyond the Core 6
2.1 Almost Core Allocations . 6
2.2 Equivalence between the Almost Core and Other Relaxations of the

Core . 7
2.3 On the Complexity of Almost Core Allocations 9

3 Almost Core Allocations on MST games 13
3.1 The Core of MST games . 13
3.2 Gap Between the core and the Almost Core on Minimum Cost Span-

ning Tree Games . 14
3.3 Computational Complexity . 15
3.4 Algorithm to Compute Almost Core Allocations on MST games 19

3.4.1 A 2-approximation Algorithm on the Almost Core Allocations . 19
3.4.2 Correctness of the Algorithm 20

3.5 Performance of the Algorithms . 22

4 Constrained MST Structures 24
4.1 When Some MST is Not a Path . 24
4.2 (0,M)-MST games . 26

5 Almost Core Allocations on Value Games 29
5.1 Value Games . 29

iv

Contents v

5.2 Almost Core Allocation for MST Value Games 29
5.2.1 Computational Complexity . 30

5.3 Algorithm for MST Value Games . 31
5.3.1 Algorithm and Example . 31
5.3.2 Correctness of the Algorithm 32
5.3.3 Performance of the Algorithms 33

6 Conclusions 35

References 36

Appendices

Chapter 1

Introduction

In this section, cost sharing games and some relatively basic concepts are intro-
duced. Before bringing up the definition of almost core, we discuss relations among
other various relaxations of the core. The motivation and the organization of the
report are also mentioned. In this report, We mainly focused on cost sharing games
in Chapter 2- Chapter 4, and the discussion of value games is given in Chapter 5.

1.1 Cost Sharing Games

Game theory studies mathematical models of strategic behaviours among a set of
players. It has a wide range of applications in economics, political science, finance,
artificial intelligence, psychology, etc. Modern game theory is based on the book
of Von Neumann and Morgenstern [1]. In a game theory model, players can take
actions, and the outcome depends on both their own actions and other players’ ac-
tion. the outcome of the action can be represented by a well-defined utility function.
Normally, players are intelligent, which means they are capable enough to compute
their best strategies. There are two types of games in modern game theory: co-
operative games and noncooperative games. The main difference is in cooperative
games, there are binding agreements among the players. Depending on whether
the players get payoffs or are charged fees, we refer to cooperative games as value
games or cost sharing games.

Cost sharing games are usually with transferable utility. In this case, the utility
can be arbitrarily transferred among the members of a coalition. These kinds of
games are called TU games (TU stands for transferable utility). A TU game with
player set N consists of a characteristic cost function c : 2N → R≥ 0. The intended
meaning is that c(S), S ⫅ N , denotes the cost for players to form the coalition S and
accomplish the task together.

Usually in cost sharing games, for a coalition S, c(S) is given in the following way:

1

CHAPTER 1. INTRODUCTION 2

Players in S form a coalition and try to get the lowest cost for S. Other players may
form other coalitions against S. In this case, c(S) is the best cost that S can obtain.

To allocate the total cost incurred by the grand coalition N , let x be an alloca-
tion vector over all individual players, and define xAC(S) =

∑
i∈S x

AC(i), xAC(N) =∑
i∈N xAC(i). A question is how to obtain a stable allocation, it means no coalition

would break away and form new coalitions that all its members get a smaller cost
share. Coalitional stability is an important indicator, which is x(S) ≤ c(S) for all
S ⫋ N . If the allocation x to all players equals the total cost of the grand coalition N ,
that is x(N) = c(N), the allocation is said to be budget balanced.

The core [2] is a solution concept that satisfies both coalitional stability and bud-
get balance:

C⟨N,c⟩ := {x ∈ Rn : x(S) ≤ c(S) ∀S ⫋ N, x(N) = c(N)} . (1.1)

Let xC be a core allocation in C⟨N,c⟩. Every allocation in the core guarantees no
coalition would have an incentive to deviate from the proposed cost shares x. To
make the problem not trivial, we only consider games with more than one player in
this thesis.

1.2 Relaxations of the Core

A core allocation requires distributing the total cost incurred by a set of players over
individual players so that no subset of players would prefer to deviate. However, the
core may be empty. In order to obtain a solution also for the unbalanced game, the
core restrictions can be relaxed. Several relaxed concepts to the core have been
proposed in the literature.

Shapley and Shubik [3] were the first to extend the concept of the core by intro-
ducing the strong ε-core:

Cε
s(N, c) := {x ∈ Rn : x(S) ≤ c(S) + ε ∀S ⫋ N, x(N) = c(N)} .

The strong ε-core consists of all pre-cost-sharing vectors that give rise to x − c

not greater than ε for all proper coalitions S ⫋ N . If ε is 0, C0
s (N, c) is equal to the

core. If ε1 ≤ ε2, Cε1
s (N, c) ⫅ Cε2

s (N, c). If ε is large enough, the strong ε-core is
non-empty. We denote the smallest ε ≥ 0 for which this set is non-empty by ε⋆s. The
corresponding set Cε⋆s

s (N, c) is called the least core [4].
Shapyley and Shubik [3] also introduced the weak ε-core as

Cε
w(N, c) := {x ∈ Rn : x(S) ≤ c(S) + ε · |S| ∀S ⫋ N, x(N) = c(N)} .

Instead of taxing a fixed rate on the coalitions as for strong ε-core, weak ε-core
means a proper coalition is taxed with rate ε proportionally to its size. Similar to the

CHAPTER 1. INTRODUCTION 3

strong ε-core, if ε is large enough, the weak ε-core is non-empty. We denote the
smallest ε ≥ 0 for which this set is non-empty by ε⋆w. Note that by definition, for any
ε ≥ 0, Cε

s(N, c) ⊆ Cε
w(N, c), and hence ε⋆w ≤ ε⋆s.

Rather than using an additive relaxation of the constraints, Faigle and Kern [5]
defined the multiplicative ε-core as

Cε
m(N, c) := {x ∈ Rn : x(S) ≤ (1 + ε) · c(S) ∀S ⫋ N, x(N) = c(N)} .

In multiplicative ε-core, the tax imposed on a proper coalition is proportional to
its cost c(S). When the multiplicative ε-core is non-empty, we denote the smallest
ε ≥ 0 for which this set is non-empty by ε⋆m.

A different viewpoint is called approximate core or γ-core [6] for some γ ∈ [0, 1],
it is defined as

Cγ
a (N, c) := {x ∈ Rn : x(S) ≤ c(S) ∀S ⊆ N, γ · c(N) ≤ x(N)} . (1.2)

For games where there exists the non-empty approximation core for some γ ∈ [0, 1].
Denote the largest γ ≤ 1 for which this set is non-empty by γ⋆

a.
The cost of stability for an unbalanced cooperative value game was introduced

by Bachrach et al. [7]. They defined it as the minimal monetary infusion required to
stabilize a game with nonnegative allocation. For (unbalanced) cost sharing games
it is defined by Meir et al. [8] as

δ⋆CoS := c(N)−max{x(N) : x(S) ≤ c(S) ∀S ⊆ N} .

An alternative viewpoint was independently introduced in a paper by Bejan and
Gómez [9] who considered, for profit sharing games, the so-called extended core.
In order to define it for cost sharing games, let

δ⋆ec := min{t(N) : ∃(x, t) ∈ Rn × Rn
≥ 0, x(N) = c(N),

(x− t)(S) ≤ c(S) ∀S ⫋ N} . (1.3)

The extended core is the set of all budget balanced x ∈ Rn, so all x with x(N) = c(N)

for which the minimum above is attained (for suitable t ∈ Rn
≥ 0).

Yet another concept to stabilize an unbalanced game was considered by Zick,
Polukarov, and Jennings [10]. Interpreting ti in the definition of the extended core of
Bejan and Gómez [9] as a discount offered to player i, in [10] a coalitional discount tS
is offered to each player set S. This is an exponential blowup of the solution space,
which however gives more flexibility.

In this thesis, we introduce a model where the equation constraint in the core
is relaxed. We study the optimization problem to maximize the total amount that
can be distributed over the individual players while maintaining the stability of proper
coalitions S ⫋ N .

CHAPTER 1. INTRODUCTION 4

1.3 Minimum Cost Spanning Tree Games

A classic type of cost sharing game is minimum cost spanning tree games (MST
games). MST games were first introduced by Bird [11]. After that, Granot and Hu-
berman [12, 13, 14] studied the core and the nucleolus of MST games and proposed
some algorithms to compute a core allocation. Faigle and Kern [5, 15, 16] focused
on the complexity of the core and the least core of minimum cost spanning tree
games.

To motivate MST games, consider the situation in which some houses need elec-
tricity from a unique power station. Electricity cables can be installed among the
houses and the power station, and can only be laid between two buildings. Differ-
ent cables between different buildings have different installation costs. We try to
minimize the total installation cost such that every building can use electricity. After
determining the installation plan, the power station needs an allocation to charge
every house for the total installation cost. By modelling the problem as a graph,
the vertices in the graph represent the buildings, and there is a “source” node as the
power station. The weighted edge between any two vertices is a possible installation
cable with a cost, we can then get an MST game.

More specifically, given an edge-weighted, undirected graph G = (N ∪ {0}, E)

with non-negative edge weights w : E → R≥0, where node 0 is a special node
referred to as source node. Without loss of generality, we may assume that the
graph is complete by adding dummy edges with a large enough cost if necessary.
To prevent notation conflicts, we use (u, v) as undirected graph in this thesis, that is
(u, v) = (v, u).

The players of the game are the vertices N of the graph, and the characteristic
cost function of the game is given by the costs of minimum spanning trees. That is,
the cost of any subset of vertices S ⊆ N is defined as the cost of a minimum cost
spanning tree on the subgraph induced by vertex set S∪{0}. The characteristic cost
function is defined as:

c(S) := min
T∈T (S)

{∑
e∈T

w(e)

}
.

Here, T (S) is the set of spanning trees for the subgraph induced by vertex set
S ∪ {0}.

1.4 Outline

The thesis comprises 6 chapters. In Chapter 1, some relative basic concepts of
this thesis are introduced. The motivation and the organization of the report are also
mentioned. In Chapter 2, this report develops the “almost core” concept to maximize

CHAPTER 1. INTRODUCTION 5

the total amount that can be distributed over the players N while maintaining stability
with respect to proper coalitions. We also investigate the computational complexity
of optimization problems related to the core and the almost core. In Chapter 3,
the almost core allocation is applied to minimum cost spanning tree games. The
computational complexity of optimizing over the almost core is discussed. A 2-
approximation algorithm is proposed. In Chapter 4, we analyze the gap between
the almost core optimum and the total cost of the grand coalition under the assump-
tion of different graph structures for minimum cost spanning tree games. In addition,
some observations are made about their properties. In Chapter 5, this report ana-
lyzes the almost core idea for value games, in particular, the minimum cost spanning
tree value games, for which we also propose a 2-approximation algorithm.

Chapter 2

Cost Sharing Beyond the Core

In this chapter, we develop the “almost core” concept to maximize the total amount
that can be distributed over the players N while maintaining stability with respect to
proper coalitions. We also investigate the computational complexity of optimization
problems related to the core and the almost core.

2.1 Almost Core Allocations

A core allocation in (1.1) requires distributing the total cost incurred by a set of
players over individual players so that no subset of players would prefer to deviate.
However, allocation vectors obtained from the core constraints may not be accept-
able from a modelling point of view. In some cases, one may have to, or want to,
distribute either less or more than c(N).

While maintaining the stability of proper coalitions in (1.1), we drop the equality
constraint that a core allocation is budget balanced, so do not require that x(N) =

c(N). This allows us to vary the total cost that is distributed over the set of players,
resulting in a problem that always has a feasible solution.

For convenience, we refer to the set of all such allocations as the almost core,
AC. Formally, given a TU game ⟨N, c⟩ ∈ GN , define the almost core for ⟨N, c⟩ by

AC⟨N,c⟩ := {x ∈ Rn : x(S) ≤ c(S) ∀S ⫋ N} .

Note that C⟨N,c⟩ ⊆ AC⟨N,c⟩ by definition.
If the total cost c(N) of the grand coalition cannot be distributed over the set of

players while maintaining coalitional stability, i.e., the game is unbalanced, it is a
natural question to ask what fraction of the total cost c(N) can be maximally dis-
tributed while maintaining coalitional stability. For this case maximizing x(N) over
the almost core is in fact equivalent to some of the earlier proposed core relaxations;
see Section 2.2.

6

CHAPTER 2. COST SHARING BEYOND THE CORE 7

For games with non-empty core, one may be interested in maximizing the total
cost that can be distributed over the set of players. The question is then how much
one could maximally tax the total cost c(N) of the grand coalition, without any proper
coalition wanting to deviate.

To deal with these two questions, consider the following linear program.

max x(N) (2.1)

s.t. x(S) ≤ c(S), ∀S ⫋ N

x ∈ Rn

Let xAC be some optimal solution to this almost core optimization problem (2.1).
We call xAC(N) the almost core optimum, and any maximizer xAC is called an opti-
mal almost core allocation. The objective value of this linear program indicates the
largest total cost that can be shared amongst the players while retaining stability in
the sense that no subset of players S ⫋ N would prefer to deviate, as no subset can
realize smaller costs on its own.

2.2 Equivalence between the Almost Core and Other
Relaxations of the Core

Clearly, the core of a game is non-empty if and only if the almost core optimum
is larger than or equal to c(N). For unbalanced games, the total costs c(N) of
the grand coalition cannot be distributed over the set of players while maintaining
coalitional stability, computing the almost core optimum is equivalent to computing
some of the earlier proposed core relaxations. The following theorem summarizes
how the different core relaxations are related; the last equality and the inequality are
from [17, Section 4].

We include proof of all equalities for convenience.

Theorem 2.2.1 (see also [17]). For any TU game ⟨N, c⟩ with empty core, the opti-
mization problems for the weak ε-core, the multiplicative ε-core, the cost of stability
and the extended core are equivalent. In particular, the values satisfy

δ⋆ec = (1− γ⋆
a) · c(N) =

ε⋆m
1 + ε⋆m

· c(N) = δ⋆CoS = ε⋆w · n ≥ n

n− 1
ε⋆s .

Proof. First, we establish δ⋆CoS = δ⋆ec. We substitute x− t by x′ in (1.3) and obtain

δ⋆ec = min{t(N) : ∃(x′, t) ∈ Rn × Rn
≥ 0, x

′(N) + t(N) = c(N),

x′(S) ≤ c(S) ∀S ⫋ N} . (2.2)

CHAPTER 2. COST SHARING BEYOND THE CORE 8

Since t is only relevant with the equation constraint in (2.2), the actual entries of
t do not matter (except for nonnegativity) , but only the value t(N) is important. This
yields δ⋆CoS = δ⋆ec.

Second, we show δ⋆CoS = (1− γ⋆
a) · c(N). To this end, observe

γ⋆
a = max{γ ∈ R : ∃x ∈ Rn, x(S) ≤ c(S) ∀S ⊆ N, x(N) = γc(N)} .

In this equation, the maximum is attained by x⋆ ∈ Rn with x⋆(N) maximum when sait-
isfying x(S) ≤ c(S) ∀S ⊆ N . Moreover, the value of γ⋆

a is then equal to x⋆(N)/c(N).
This shows 1− γ⋆

a = (c(N)− x⋆(N))/c(N) = δ⋆CoS/c(N).
Third, we show 1− γ⋆

a = ε⋆m/(1 + ε⋆m). Observe that the map π : Rn → Rn defined
by π(x) = (1 + ε)x induces a bijection between allocations x ∈ Rn with x(S) ≤ c(S)

for all S ⊆ N and allocations π(x) with x(S) ≤ (1 + ε)c(S) for all S ⊆ N . Moreover,
x(π(N)) = (1 + ε)x(N). Hence we can substitute the x in (1.2) by π(x) and get:

Cγ
a (N, c) := {x ∈ Rn : x(S) ≤ (1 + ε)c(S) ∀S ⊆ N, (1 + ε)γ · c(N) ≤ x(N)} .

Hence, Cε
m⟨N, c⟩ is (non-)empty if and only if Cγ

a ⟨N, c⟩ is (non-)empty, where γ =

1/(1 + ε) holds. This implies γ⋆
a = 1/(1 + ε⋆m).

We finally show δ⋆CoS = ε⋆w · n. To this end, in

ε⋆w = min{ε ≥ 0 : ∃x ∈ Rn, x(S) ≤ c(S) + ε · |S| ∀S ⫋ N, x(N) = c(N)}

we substitute x by x′ + (ε, ε, . . . , ε) which yields

ε⋆w = min{ε ≥ 0 : ∃x′ ∈ Rn, x′(S) ≤ c(S) ∀S ⫋ N, x′(N) + ε · n = c(N)} .

Since δ⋆CoS is equal to the minimum c(N) − x(N) when x(S) ≤ c(S) ∀S ⊆ N is
satisfied, the minimum ε⋆w is attained if and only if ε · n = δ⋆CoS holds. For the final
inequality relating the least core with the weak ε-core, we refer to the corresponding
proof in [17].

Also notice that by definition of the cost of stability, it is equal to the gap between
the almost core optimum and the total cost of the grand coalition c(N). Further
relations between the cost of stability δ⋆CoS and other core relaxations for specific
classes of games appear in [17, 18], e.g., it is true that for superadditive (profit
sharing) games, δ⋆CoS ≤

√
nε⋆s and

√
nε⋆w ≤ ε⋆s.

Most of the previous work in this direction was about determining bounds on the
cost of stability (see [7, 8, 17, 19, 20]) or other structural insights [9]. Algorithmic
considerations were made for specific (unbalanced) games such as weighted voting
games [7] and threshold network flow games [21]. Aziz, Brandt and Harrenstein [22]
settle the computational complexity of computing the cost of stability (and other mea-
sures) for many other specific games, and Chalkiadakis, Greco and Markakis extend

CHAPTER 2. COST SHARING BEYOND THE CORE 9

this work under additional assumptions on the so-called interaction graph [23]. Ap-
proximations of ε⋆m for the multiplicative (1 + ε)-core and corresponding allocations
have also been obtained for the symmetric traveling salesman game by Faigle et
al. [24], and for the asymmetric case also by Bläser et al. [25].

There are also papers that attack the problem from a computational point of
view. Under the name “optimal cost share problem”, Caprara and Letchford [26]
computationally obtain γ-core solutions for a generalization of certain combinatorial
games, named integer minimization games.

Under the name “optimal cost allocation problem”, also Liu, Qi and Xu [27] give
computational results using Lagrangian relaxation, which also works for nonlinear
objective functions.

Also, the problem to compute allocations in the least core has been considered
in the literature. For cooperative games with submodular cost functions, it can be
computed in polynomial time [28], while for supermodular cost cooperative games it
is NP-hard to compute, and even hard to approximate [29]. Finally, Faigle et al. [16]
show NP-hardness to compute a cost allocation in the so-called f -least core for
minimum cost spanning tree games, which is a tightening of the core constraints to
x(S) ≤ c(S)− εf(S) for certain non-negative set functions f . As we will argue later,
their result also implies the hardness of computing optimal almost core allocations
for minimum spanning trees.

2.3 On the Complexity of Almost Core Allocations

In this section, we investigate the computational complexity of optimization problems
related to the core and the almost core. To capture results for the general and the
nonnegative case, we consider linear optimization over the polyhedra

AC⟨N,c⟩ and P⟨N,c⟩ := {x ∈ Rn : x(S) ≤ c(S) ∀S ⊆ N}.

as well as optimization over P⟨N,c⟩ ∩ Rn
≥ 0 and AC⟨N,c⟩ ∩ Rn

≥ 0 for families of games
⟨N, c⟩. Note that the core of the cost sharing games is the set of optimal solutions
when maximizing 1 over P⟨N,c⟩. Also note that whenever the core of a game ⟨N, v⟩
is empty, so no x exists with x(N) ≥ c(N) and x(S) ≤ c(S) ∀S ⊆ N , we have that
x(N) < c(N) is implied by the set of constraints x(S) ≤ c(S), S ⫋ N , which in
turn implies P⟨N,c⟩ = AC⟨N,c⟩. For games with non-empty cores, we get the following
correspondence between the optimization problems for the two polyhedra.

Theorem 2.3.1. For a family of games ⟨N, c⟩, linear optimization problems over
AC⟨N,c⟩ can be solved in polynomial time if and only if linear optimization problems
over P⟨N,c⟩ can be solved in polynomial time.

CHAPTER 2. COST SHARING BEYOND THE CORE 10

Proof. To prove the result we make use of the equivalence of optimization and sep-
aration [30, 31, 32], that is, linear optimization problems over a polyhedron can be
solved in polynomial time if and only if the separation problem for the polyhedron
can be solved in polynomial time. Hence we only need to show that we can solve
the separation problem for P⟨N,c⟩ if and only if we can solve the separation prob-
lem for AC⟨N,c⟩. Since P⟨N,c⟩ = {x ∈ AC⟨N,c⟩ : x(N) ≤ c(N)} holds, separation
over P⟨N,c⟩ reduces to separation over AC⟨N,c⟩ plus an explicit check of the inequality
x(N) ≤ c(N).

It remains to show how to solve the separation problem for AC⟨N,c⟩ when we can
solve that for P⟨N,c⟩. For given x̂ ∈ Rn, we construct n points x̂k ∈ Rn (k = 1, 2, . . . , n)
which are copies of x̂ except for x̂k

k := min(x̂k, c(N) −
∑

i∈N\{k} x̂i). Note that by
construction x̂k ≤ x̂ and x̂k(N) ≤ c(N) hold. We then query a separation algorithm
of P⟨N,c⟩ for each x̂k.

Suppose such a query yields x̂k(S) > c(S) for some S ⊆ N . Due to x̂k(N) ≤ c(N)

we have S ̸= N . Moreover, x̂ ≥ x̂k implies x̂(S) > c(S), and we can return the same
violated inequality to testify that x̂ /∈ AC⟨N,c⟩.

Otherwise, we have x̂k ∈ P⟨N,c⟩ for all k ∈ N and claim x̂ ∈ AC⟨N,c⟩. To prove
this claim we assume that, for the sake of contradiction, x̂(S) > c(S) holds for some
S ⫋ N . Let k ∈ N \ S. Since for all i ∈ S, i ̸= k and x̂k

i = x̂i holds, we have
x̂k(S) = x̂(S) > c(S). This contradicts the fact that x̂k ∈ P⟨N,c⟩ holds.

It turns out that almost the same result is true when we also require that there
are no subsidies, that is x ≥ 0. For linking the non-negative core to the non-negative
almost core, it requires an assumption on the characteristic function.

c(N \ {k}) ≤ c(N) ∀k ∈ N. (2.3)

This condition holds, for instance, for monotone functions c, and implies that the core
is contained in Rn

≥ 0 (see Lemma 2 and Theorem 1 in [33]).

Theorem 2.3.2. For a family of games ⟨N, c⟩ satisfying (2.3), linear optimization
problems over AC⟨N,c⟩ ∩ Rn

≥ 0 can be solved in polynomial time if and only if linear
optimization problems over P⟨N,c⟩ ∩ Rn

≥ 0 can be solved in polynomial time.

Proof. The proof for Theorem 2.3.2 is the same as that of Theorem 2.3.1 with only a
few exceptions. All vectors must be restricted to Rn

≥ 0 to solve the separation problem
for AC⟨N,c⟩ ∩ Rn

≥ 0 when we can solve that for P⟨N,c⟩ ∩ Rn
≥ 0. For given x̂ ∈ Rn

≥ 0,
we construct n points x̂k ∈ Rn

≥ 0 (k = 1, 2, . . . , n) which are copies of x̂ except for
x̂k
k := min(x̂k, c(N)−

∑
i∈N\{k} x̂i).

By (2.3), c(N)− c(N \ {k}) ≥ 0 and we know c(N)−
∑

i∈N\{k} x̂
k
i ≥ c(N)− c(N \

{k}) ≥ 0. Also with x̂k ≥ 0, we know x̂k
k ≥ 0, and we can conclude x̂k ≥ 0.

CHAPTER 2. COST SHARING BEYOND THE CORE 11

We obtain some immediate consequences.

Corollary 2.3.3. For a family of games ⟨N, c⟩ for which c(·) is submodular (and (2.3)
holds) one can find a (non-negative) optimal almost core allocation in polynomial
time.

Proof. For submodular c(·) one can optimize any linear objective function over P⟨N,c⟩

using the Greedy algorithm [34]. The result follows from Theorems 2.3.1 and 2.3.2.

These results only make statements about optimizing arbitrary objective vectors
over these polyhedra. In particular, we cannot draw conclusions about the hardness
of the computation of an almost core allocation refer to (2.1). However, it is easy to
see that this problem cannot be easier than deciding non-emptiness of the core.

Proposition 2.3.4. Consider a family of games ⟨N, c⟩ for which deciding non-emptiness
of the core is (co)NP-hard. Then finding an optimal almost core allocation is also
(co)NP-hard.

Proof. By the premise of the theorem there exists a Karp reduction from some NP-
hard problem P to the non-emptiness decision problem for our family of games. The
reduction turns (in polynomial time) an instance I of P into a game ⟨N, c⟩ such that
I is a YES-instance (resp. NO-instance) if and only if ⟨N, c⟩ has a non-empty core.

The almost core optimum is at least c(N) if ⟨N, c⟩ has a non-empty core. Also,
if the almost core optimum is at least c(N), it means there exists an allocation x so
that x(S) ≤ c(S) ∀S ⫅ N and x(N) ≥ c(N), and then we can get a core allocation
by scaling down x(N). As a result, the almost core optimum is at least c(N) if and
only if ⟨N, c⟩ has a non-empty core. The same reduction works for the almost core
and I is a YES-instance (resp. NO-instance) if and only if the almost core optimum
is at least c(N).

It is well known that there exist games for which it is NP-hard to decide the non-
emptiness of the core, e.g., the weighted graph game [35]. Hence, we cannot hope
for a polynomial-time algorithm that computes an optimal almost core allocation for
arbitrary games.

In contrast, the maximization of x(N) becomes trivial for games ⟨N, c⟩ with su-
peradditive characteristic function c(·), as the set of constraints x({i}) ≤ c({i}),
i = 1, . . . , n, already imply all other constraints x(S) ≤ c(S), S ⫅ N , hence one can
set up a compact linear program.

Proposition 2.3.5. For games ⟨N, c⟩ with superadditive c(·), finding an optimal al-
most core allocation can be done in polynomial time.

CHAPTER 2. COST SHARING BEYOND THE CORE 12

Proof. Superadditive cost satisfies: c(S ∪ T) ≥ c(S) + c(T). Hence with superad-
ditivity, the allocation xi = c({i}) is in the almost core AC⟨N,c⟩ and x(N) can not be
improved.

The same is true for all classes of games where a polynomial number of con-
straints can be shown to be sufficient to define the complete core. Matching games
in undirected graphs [36] is one example of such a game, where it is sufficient to
consider the polynomially many core constraints induced by all edges of the graph,
as these imply all other core constraints.

Note that Proposition 2.3.5 also includes supermodular cost functions. It is there-
fore interesting to note that for supermodular cost games, it is NP-hard to approxi-
mate the least core value ε⋆s better than a factor 17/16 [29].

It also turns out that condition (2.3) implies that the value of an almost core
allocation cannot exceed that of a core allocation by much.

Proposition 2.3.6. Let ⟨N, c⟩ be a game that satisfies (2.3). Then every x ∈ AC⟨N,c⟩

satisfies x(N) ≤
(
1 + 1

n−1

)
c(N).

Proof. Let x ∈ AC⟨N,c⟩. We obtain

(n− 1) · x(N) =
∑
k∈N

x(N \ {k}) ≤
∑
k∈N

c(N \ {k}) ≤
∑
k∈N

c(N) = n · c(N),

where the first inequality follows from the feasibility of x and the second follows
from (2.3).

Condition (2.3) implies non-negativity for all core allocations and all optimal al-
most core allocations. However, this does not mean that a non-negativity require-
ment implies that the almost core optimum is close to c(N). In the next section, we
will show that this gap can be arbitrarily large, even for MST games (see Proposi-
tion 3.2.1).

Chapter 3

Almost Core Allocations on MST
games

This chapter applies the almost core concept to minimum cost spanning tree games.
It is a class of games for which the core is non-empty. The computational complexity
of almost core for MST games is also discussed. For non-negative allocations, a 2-
approximation algorithm is proposed.

3.1 The Core of MST games

To describe a minimum cost spanning tree game, given an edge-weighted, undi-
rected graph G = (N ∪ {0}, E) with non-negative edge weights w : E → R≥0, where
node 0 is a special node referred to as “source” node. Without loss of generality,
we may assume that the graph is complete by adding dummy edges with a large
enough cost if necessary.

The players of the game are the vertices N of the graph, and the characteristic
function of the game is given by the costs of minimum spanning trees. That is, the
cost of any subset of vertices S ⊆ N is defined as the cost of a minimum cost
spanning tree on the subgraph induced by vertex set S ∪ {0}. The characteristic
function c(S) is defined as:

c(S) := min
T∈T (S)

{∑
e∈T

w(e)

}
.

Here, T (S) is the set of spanning trees for the subgraph induced by vertex set
S ∪ {0}. c(S) is the cost of a minimum spanning tree on the subgraph induced by
vertex set S ∪ {0}.

Definition 3.1.1. The monotonic cover of a cooperative cost game ⟨N, c⟩ is the

13

CHAPTER 3. ALMOST CORE ALLOCATIONS ON MST GAMES 14

S c(S) c̄(S)

{1} 4 4
{2} 9 7
{3} 9 9
{1,2} 7 7
{1,3} 10 9
{2,3} 11 9
{1,2,3} 9 9

Figure 3.1: Coalitional costs in MST game in Example 3.1.2 and its monotonic cover

cost game ⟨N, c̄⟩ given by

c̄(S) := min{c(T) | S ⊆ T} ∀S ∈ 2N \ {∅}

By definition, the monotonic cover possesses the following properties.

• c̄(S) ≤ c(S) ∀S ∈ 2N

• ⟨N, c̄⟩ is monotonic: c̄(S) ≤ c̄(R) ∀ S ⊆ R,

Note that for the associated core of a cooperative cost game and its monotonic
cover, we always have that C⟨N,c̄⟩ ⊆ C⟨N,c⟩.

Example 3.1.2. Let N = {1, 2, 3}. Consider the graph in Figure 3.1. The weights
of the edges are as in the figure, and the MST is marked in orange. The table on
the right-hand side shows the cost of various coalition in MST game ⟨N, c⟩ and its
monotonic cover ⟨N, c̄⟩.

Proposition 3.1.3. The core of a minimum cost spanning tree game and the core
of its monotonic cover are not empty.

Proof. The core is non-empty if we can get an allocation in the core. Actually, we
can get one core element by "reading" directly from a minimum cost spanning tree
graph [12], and the algorithm proposed later will also prove this result.

3.2 Gap Between the core and the Almost Core on
Minimum Cost Spanning Tree Games

The linear program (2.1) may include negative solutions, that is, a negative cost
share may be considered, which is actually a payoff. One may wish to avoid this
situation by adding the constraints xi ≥ 0, i = 1, · · · , n.

CHAPTER 3. ALMOST CORE ALLOCATIONS ON MST GAMES 15

In this case, the almost core allocation problem will be:

max x(N) (3.1)

s.t. x(S) ≤ c(S), ∀S ⫋ N

x ∈ Rn
≥0

Let xOPT be some optimal solution to this optimization problem.

Proposition 3.2.1. The almost core optimum can be arbitrarily larger than c(N),
even for minimum cost spanning tree games and when we require that x ≥ 0 for
Problem (3.1).

Proof. Consider the instance depicted in Figure 3.2, for some value k > 0. Then
c(N) = 0, while x = (0, 0, 2k) is an optimal non-negative almost core allocation with
value 2k.

Figure 3.2: MST game with large relative gap between almost core optimum and
c(N).

3.3 Computational Complexity

Proposition 3.3.1. Computing an optimum almost core allocation in (2.1) for mini-
mum cost spanning tree games is NP-hard.

Proof. Let ε⋆ be the largest ε for which the linear inequality system

x(S) ≤ c(S)− εc(S) ∀S ⫋ N, x(N) = c(N) (3.2)

has a solution. In [16] it is shown that finding a feasible solution x for (3.2) with
respect to ε⋆ is NP-hard. Note that in the reduction leading to this hardness result,
c(N) > 0. Then, given an optimum almost core allocation xAC, xAC(N) ≥ c(N) > 0,

CHAPTER 3. ALMOST CORE ALLOCATIONS ON MST GAMES 16

and we can obtain ε⋆ := 1−c(N)/xAC(N). We can see that the vector x′ := (1−ε⋆)xAC

is a feasible solution for (3.2). To see that the so-defined ε⋆ is indeed maximal,
observe that scaling any feasible vector in (3.2) by 1/(1 − ε⋆) yields an almost core
allocation. Hence, computation of an almost core optimum for MST games yields a
solution for an NP-hard problem.

Proposition 3.3.2. Testing membership in the almost core AC⟨N,c⟩ for minimum cost
spanning tree games is coNP-hard.

Proof. It has been proved that the core membership testing is coNP-hard in [15]. We
follow the same reduction from the exact cover by 3-sets problem (X3C) to show that
the almost core membership testing is also coNP-hard. Given an instance of X3C: A
finite set A = {a1, · · · , a3q} and a collection F = {f1, · · · , f|F |} of 3-element subsets
of A. Construct the following MST game corresponding to graph (N,E) in Figure 3.3.
So the player set in this game is {1, · · · , 3q} ∪ {3q + 1, · · · , 3q + k} ∪ {g, St} consist
of element-players, set-players, Steiner-point-player and guardian. For each set
fi = {j, e, l}(i = 1, · · · , |F |), the weights of edges are given by:

w(u, v) =



q + 1 ∀u = 3q + i, v ∈ {j, e, l}
q ∀u = 3q + i, v = St

q + 1 ∀u = 3q + i, v = g

2q − 1 ∀u = g, v = 0

q + 1 ∀u = St, v = g

(3.3)

The weights of other edges are induced from triangle inequality of these edges.
An allocation of this MST game is on player set {1, · · · , 3q, 3q+1, · · · , 3q+k, st, g}.

Let x be an allocation given by:

xi =


q + 2 ∀i = 1, · · · , 3q

q ∀i = 3q + 1, · · · , 3q + k

0 ∀i ∈ {St, g}

(3.4)

By using the greedy algorithm in [12], we can get a core allocation y as:

yi =


q + 1 ∀i = 1, · · · , 3q

q ∀i = 3q + 1, · · · , 3q + k

q + 1 i = St

2q − 1 i = g

(3.5)

Recall that 3q is the number of the elements in finite set A hence q ≥ 1. Consider
d := x− y, we get:

CHAPTER 3. ALMOST CORE ALLOCATIONS ON MST GAMES 17

di =


1 ∀i = 1, · · · , 3q
0 ∀i = 3q + 1, · · · , 3q + k

−q − 1 i = St

−2q + 1 i = g

(3.6)

Assume x is not in AC⟨N,c⟩ of the MST game, so there exists S ⫋ N that x(S) >
c(S). Since y is in the core, we know y(S) ≤ c(S) and d(S) > 0. We can have two
conclusions from it, first, there is some element-player in S, second, g, St cannot be
in S at the same time.

Figure 3.3: (N,E) corresponding to the MST game induced by X3C

Any path from an element-player to 0 in (N,E) has to visit a covering set-player
and g. Since the weights of edges not in E are induced, we may assume w.l.o.g that
g ∈ S and S contains a covering set-player for each element-player in S. (Otherwise,
there exists such S with bigger x(S) and we can consider this set instead). So
St /∈ S. Consider the cost and x over S:

c(S) = (q + 1)|S ∩ {1, · · · , 3q}|+ (q + 1)|S ∩ {3q + 1, · · · , 3q + k}|+ 2q − 1 (3.7)

x(S) = (q + 2)|S ∩ {1, · · · , 3q}|+ q|S ∩ {3q + 1, · · · , 3q + k}| (3.8)

By Equation (3.7) and Equation (3.8), we can get:

0 < x(S)− c(S) = |S ∩ {1, · · · , 3q}| − |S ∩ {3q + 1, · · · , 3q + k}| − 2q + 1 (3.9)

which implies |S ∩ {3q + 1, · · · , 3q + k}| ≤ q.

CHAPTER 3. ALMOST CORE ALLOCATIONS ON MST GAMES 18

By the assumption of S, every set-player covers at most 3 element-players, thus
we have:

|S ∩ {1, · · · , 3q}| ≤ 3|S ∩ {3q + 1, · · · , 3q + k}| (3.10)

Together with Equation (3.9) this yields 2|S ∩ {3q + 1, · · · , 3q + k}| > 2q − 1, which
imples |S ∩ {3q + 1, · · · , 3q + k}| ≥ q and hence |S ∩ {3q + 1, · · · , 3q + k}| = q.
Using Equation (3.9) we get:

0 < |S ∩ {1, · · · , 3q}| − 3q + 1 (3.11)

So we can conclude that |S ∩ {1, · · · , 3q}| ≥ 3q and thus {1, · · · , 3q} ⊆ S. By
assumption, S contains a covering set-player for each of its element-players, and
St /∈ S hence S ⫋ N . These computations imply that the set-players in S must form
an exact cover of A.

On the other hand, if F admits an exact 3-cover, the coalition S consisting of
all element-players, some set-players which form an exact cover and the guardian
satisfies:

c(S) = 3q(q + 1) + q(q + 1) + (2q − 1) = 4q2 + 6q − 1 (3.12)

x(S) = 3q(q + 2) + q2 = 4q2 + 6q (3.13)

hence x(S) > c(S) and S ⫋ N , which implies that x is not in the core of the MST
game.

As a result, x is not in the core of this MST game if and only if F contains an
exact cover. Since X3C is one of the six basic NP-complete problems [37]. Testing
membership in the almost core AC⟨N,c⟩ for minimum cost spanning tree games is
coNP-hard.

Theorem 3.3.3. Computing an optimal non-negative almost core allocation in (3.1)
for MST games is NP-hard.

Proof. We have proved the almost core optimization problem (2.1) for MST games
is NP-hard in Proposition 3.3.1. The claim follows by showing that problem (2.1)
can be reduced in polynomial time to problem (3.1). The reduction works as follows.
Given a MST game instance of (2.1) with edge weights w, we define a new MST
game instance by w′(e) := w(e) + M , e ∈ E, for some large enough constant M ,
hence we can get c′(S) = c(S) + |S| ·M , S ⫋ N and c′(N) = c(N) + n ·M .

Now consider an optimal solution x′ to problem (3.1) for cost function c′, and
define x := x′− (M, . . . ,M). We have x(S) = x′(S)− |S| ·M ≤ c′(S)− |S| ·M = c(S)

for all S ⫋ N , so x is feasible for problem (2.1).
We claim that x is also optimal for problem (2.1). This is true since for any

solution x̃ that is optimal for (2.1) , we have y′ := x̃ + (M, . . . ,M) ≥ 0 for large
enough M , and y′(S) = x̃(S) + |S| ·M ≤ c(S) + |S| ·M = c′(S), so y′ is feasible for

CHAPTER 3. ALMOST CORE ALLOCATIONS ON MST GAMES 19

(3.1) with cost function c′. Hence, assume x is not optimal for (2.1) so x̃(N) > x(N),
we know y′(N) = x̃(N)+n ·M > x(N)+n ·M = x′(N), and it yields the contradiction
y′(N) > x′(N).

Finally, observe in problem (2.1) we maximize x(N), hence for any optimal so-
lution x̃ there exists M > 0 so that x̃i ≥ −M for all i ∈ N , e.g. one can see
that M := n · maxj∈N c({j}) suffices. This is true because for an optimal solution
x̃, for all i ∈ N , some S ∋ i exists so that constraint x(S) ≤ c(S) is tight, and
x̃i ≤ c({i}) for all i ∈ S. Hence we can get x′

i = x̃i +M = x̃(S)−
∑

j∈S\{i} x̃j +M ≥
c(S)−

∑
j∈S\{i} c({j}) +M ≥ 0 because c(S) ≥ 0.

3.4 Algorithm to Compute Almost Core Allocations
on MST games

For minimum cost spanning tree games, we developed a tight 2-approximation algo-
rithm to compute the AC⟨N,c⟩ optimum in polynomial time for the non-negative case
(3.1).

3.4.1 A 2-approximation Algorithm on the Almost Core Alloca-
tions

We propose the following polynomial time algorithm to compute an approximately
optimal almost core allocation. For notational convenience, let us define for all i =
1, . . . , n,

Ni := N \ {i} .

Algorithm 1: Approximation algorithm for the almost core maximization
problem (3.1) for MST games

Input: Players N , edge set E of complete graph on N ∪ {0} and edge
weights w : E → R≥ 0

Output: Almost core allocation x.
1 Initialize I0 := {0} and T := ∅.
2 for k = 1, 2, . . . , n do
3 Let i ∈ Ik−1, j ∈ N \ Ik−1 with minimum w(i, j) (among those i, j).
4 Let Ik := Ik−1 ∪ {j} and augment the tree T := T ∪ {(i, j)}.
5 Assign player j the cost share xj := w(i, j).
6 end
7 Let ℓ ∈ In \ In−1 be the last assigned player.
8 Update player ℓ’s cost share xℓ := min

k∈Nℓ

{c(Nk)− x(N \ {k, ℓ})} .

CHAPTER 3. ALMOST CORE ALLOCATIONS ON MST GAMES 20

The backbone of Algorithm 1 is effectively Prim’s algorithm to compute a min-
imum cost spanning tree [38]. The additional line 5 yields the core allocation by
Granot and Huberman [12], which we extend by adding lines 7 and 8. Let us first
collect some basic properties of Algorithm 1. Henceforth, we assume w.l.o.g. that
the players get assigned their cost shares in the order 1, . . . , n (so that ℓ = n in
lines 7 and 8). We denote by xALG a solution computed by Algorithm 1.

In order to show how the algorithm functions, Example 3.1.2 walks through the
algorithm step by step:

Step 1: I0 = {0} and T = ∅. Find the edge with the minimum weight to connect I0
and N \ I0. I1 = {0, 1} and add edge (0, 1) to the tree T = {(0, 1)}. Assign
player 1 with the weight of edge (0, 1): x1 = 4.

Step 2: Find the edge with the minimum weight to connect I1 and N \ I1. I2 =

{0, 1, 2} and augment edge (1, 2) to the tree T = {(0, 1), (1, 2)}. Assign
player 2 with the weight of edge (1, 2): x2 = 3.

Step 3: Find the edge with the minimum weight to connect I2 and N \ I2. I3 =

{0, 1, 2, 3} and augment edge (2, 3) to the tree T = {(0, 1), (1, 2), (2, 3)}. As-
sign player 3 with the weight of edge (2, 3): x3 = 2.

Step 4: Assign the last player I3 \ I2 = 3 with a cost share x3 = min
k∈N3

{c(Nk)− x(N \
{k, 3})} = 6.

The allocation of Algorithm 1 is xALG = (4, 3, 6) with a total value of 13. While the
almost core optimal value is 14 with the allocation xOPT = (3, 4, 7), which is better
than the result of the algorithm, the algorithm has improved the core allocation by 4.
Actually, even though the gap between the core and the almost core optimum can
be large, Algorithm 1 has a performance guarantee of 2. This will be demonstrated
later in this chapter.

3.4.2 Correctness of the Algorithm

Lemma 3.4.1. We have that xALG(Ik) = c(Ik) for all k = 1, . . . , n− 1.

Proof. The line 3 up to line 5 are the steps of forming a minimum spanning tree by
Prim’s [38] algorithm, so xALG(Ik) equals the cost of the minimum spanning tree on
the vertex set {0, 1, . . . , k}, which is c(Ik) in minimum cost spanning tree games.

Lemma 3.4.2. For all S ⊆ Nn we have xALG(S) ≤ c(S).

CHAPTER 3. ALMOST CORE ALLOCATIONS ON MST GAMES 21

Proof. The proof follows by [12, Thm. 3] and is given here for completeness. Let
S ⊆ Nn and assume S is not the empty set. Let ΓS be a minimum cost spanning
tree on vertices S ∪ {0}. Define pi as the predecessor of i ∈ Nn so that edge (p_i, i)
is added in Algorithm 1 and define the edge set Ē by Ē := {(pi, i) | i ∈ Nn \S}. Note
that pi is the first vertex after i on the unique (i, 0)-path in ΓN .

From the definition, we know that if an edge (i, j) ∈ Ē, then either i ∈ Nn \ S or
j ∈ Nn \ S, whereas if (i, j) ∈ ΓS, then both i ∈ S ∪ {0} and j ∈ S ∪ {0}. Therefore,
the edge set ΓS ∪ Ē forms a connected graph on Nn ∪ {0}. The weight of all edges
in the connected graph < Nn ∪ {0}, ΓS ∪ Ē > is:

w(ΓS ∪ Ē) = c(S) +
∑

i∈Nn\S

w(pi, i) = c(S) + xALG(Nn \ S)

Since c(Nn) is the cost of the minimum cost spanning tree on Nn ∪ {0}, we know
c(Nn) ≤ c(S) + xALG(Nn \ S).

By Lemma 3.4.1, xALG(Nn) = c(Nn), so we can conclude:

xALG(S) = c(Nn)− xALG(Nn \ S) ≤ c(S)

As a result, xALG(S) ≤ c(S)

The same procedures in the proof of Lemma 3.4.1 and Lemma 3.4.2 also show
that by lines 3- 5 in Algorithm 1, we can get a feasible core allocation.

Lemma 3.4.3. Suppose xALG(S) > c(S) for some set S with n ∈ S ⫋ N . Then there
is a superset T ⊇ S with |T | = n− 1 such that xALG(T) > c(T).

Proof. Recall that the players got assigned their cost shares in order 1, . . . , n. Define
k := max{i | i /∈ S} to be the largest index of a player not in S. Let i1, . . . , iℓ be the
set of players so that Nk = N \ {k} = S ∪ {i1, . . . , iℓ} and w.l.o.g. i1 < · · · < iℓ. We
show that xALG(S) > c(S) implies xALG(S ∪ {i1}) > c(S ∪ {i1}). Then repeating the
same argument, we inductively arrive at the conclusion that xALG(Nk) > c(Nk). So
observe that

xALG(S ∪ {i1}) = xALG(S) + xi1 > c(S) + xi1 ,

and c(S) is the cost of a minimum cost spanning tree for S, call it MST(S). Moreover,
as i1 ̸= n, xi1 is the cost of the edge, call it e, that the algorithm used to connect
player i1. We claim that MST(S) ∪ {e} is a tree spanning vertices S ∪ {0, i1}, hence
c(S) + xi1 is the cost of some tree spanning S ∪ {0, i1}. Then, as required we get

xALG(S ∪ {i1}) > c(S) + xi1 ≥ c(S ∪ {i1}) ,

because c(S ∪ {i1}) is the cost of a minimum cost tree spanning S ∪ {0, i1}. If
MST(S) ∪ {e} was not a spanning tree for vertices S ∪ {0, i1}, then edge e would
connect i1 to some vertex outside S, but this contradicts the choice of i1 as the
vertex outside S.

CHAPTER 3. ALMOST CORE ALLOCATIONS ON MST GAMES 22

Lemma 3.4.4. We have xALG ≥ 0.

Proof. Recall that in minimum cost spanning tree games [12, 39], the weight of
edges are non-negative. Since Algorithm 1 computes the allocation for players in
line 5 by the edge weight of the first edge on the unique path to 0, there is xALG

k ≥ 0

for all k = 1, 2, · · · , n − 1. So we only need to argue about xALG
n . To that end, note

that an equivalent definition of xALG
n in line 8 of the algorithm is

max. xn s.t. xn ≤ c(Nk)− xALG(N \ {k, n}) for all k = 1, . . . , n− 1 . (3.14)

We claim that x̃n := c(N) − c(Nn−1) ≥ 0 is a feasible solution to this maximization
problem, hence the actual value of xALG

n after the update in line 8 can only be larger,
and therefore in particular it is non-negative. First, note that indeed, x̃n ≥ 0, as this is
the cost of the last edge that Prim’s algorithm uses to connect the final vertex n to the
minimum cost spanning tree. That x̃n is feasible in (3.14) follows from the fact that
x̃n is the cost share that is assigned to player n in the core allocation of [12]. Indeed,
letting x̃ be equal to x except for x̃n = c(N) − c(Nn−1), we have that x̃ is precisely
the cost allocation as proposed in [12]. By the fact that this yields a core allocation,
we have that x̃(S) ≤ c(S) for all S ⊆ N , so in particular for all k = 1, . . . , n− 1,

x̃n + xALG(N \ {k, n}) = x̃(Nk) ≤ c(Nk) ,

and hence the claim follows.

Theorem 3.4.5. Algorithm 1 yields a feasible solution.

Proof. Denote by xALG a solution by Algorithm 1. For S : n /∈ S, this follows from
Lemma 3.4.1. For S : n ∈ S, assume x(S) > c(S). Then Lemma 3.4.3 yields that
there exists some Nk = N \ k with n ∈ Nk satisfies xALG(Nk) > c(Nk). However by
definition of xn in Line 8 of the algorithm, we have for all k = 1, . . . , n− 1

xALG
n ≤ c(Nk)− xALG(N \ {k, n}) ,

which yields a contradiction to xALG(Nk) > c(Nk).

3.5 Performance of the Algorithms

Theorem 3.5.1. Algorithm 1 is a 2-approximation algorithm for the almost core max-
imization problem (3.1) for minimum cost spanning tree games, and this bound is
tight.

Proof. To show that the performance guarantee is indeed 2, let xOPT be some op-
timal solution to the almost core maximization Problem (3.1). Let k⋆ ∈ Nn be the

CHAPTER 3. ALMOST CORE ALLOCATIONS ON MST GAMES 23

Figure 3.4: MST game showing that the analysis of Algorithm 1 cannot be im-
proved.

index for which the minimum in line 8 is attained. Observe that xALG
n is updated

such that xALG(Nk⋆) = c(Nk⋆) holds. Then by non-negativity of xOPT and because of
Lemma 3.4.4,

xOPT
n ≤ xOPT(Nk⋆) ≤ c(Nk⋆) = xALG(Nk⋆) ≤ xALG(N) .

Moreover, by definition of xALG, we have xALG(Nn) = c(Nn), and by Lemma 3.4.4,

xOPT(Nn) ≤ c(Nn) = xALG(Nn) ≤ xALG(N) .

Hence we get xOPT(N) = xOPT
n + xOPT(Nn) ≤ 2xALG(N). To see that the performance

bound 2 is tight for Algorithm 1, consider the instance in Figure 3.4.
Here, Algorithm 1 computes the solution xALG = (1, 0, ε) with value 1 + ε, as the

order in which players get assigned their cost shares is 1, 2, 3, and in line 8 of the
algorithm we get xALG

3 = c({1, 3}) − x1 = (1 + ε) − 1 = ε. An almost core optimum
would be xOPT = (0, 1, 1) with value 2.

Chapter 4

Almost Core Allocations on
Constrained MST Structures

For minimum cost spanning tree games, we analyze the gap between the almost
core optimum and the total cost of the grand coalition under the assumption of dif-
ferent graph structures for minimum cost spanning tree games. In addition, some
observations are made about their properties. For clarity of expression, we use
round brackets to represent undirected edges, that is, (u, v) = (v, u).

4.1 When Some MST is Not a Path

There is a class of MST games where there is a minimum cost spanning tree that is
not a path in the corresponding graph:

∃T ∈ T (N), T is not a path (4.1)

Where T (N) is the set of spanning trees induced by vertex set N ∪ {0}. For such
games, the almost core optimum is bounded by 2c(N).

Example 4.1.1. Let N = {1, 2, 3, 4}. Consider the graph in Figure 4.1. The weights
of the edges are as in the figure, and the MST is marked in orange. The table on the
right-hand side shows the costs of various coalitions in MST game.

Theorem 4.1.2. For games that satisify Equation (4.1), the almost core optimum
xOPT(N) of linear program (3.1) with non-negative domain is bounded and xOPT(N) ≤
2c(N).

Proof. Let T be MST as in Example 4.1.1. Since the minimum cost spanning tree of
the graph is not a path, in MST graph ⟨N,E(T)⟩, there exists node incident to more
than 3 edges, take such node with the smallest index (according to the order players

24

CHAPTER 4. CONSTRAINED MST STRUCTURES 25

S c(S) S c(S)

{1} 0 {2,4} 3
{2} 3 {3,4} 9
{3} 10 {1,2,3} 1
{4} 4 {1,2,4} 1

{1,2} 1 {1,3,4} 9
{1,3} 5 {2,3,4} 3
{1,4} 4 {1,2,3,4} 1
{2,3} 3

Figure 4.1: MST game with four players and the costs of coalitions

got assigned their cost shares in line 3 up to line 5 for Algorithm 1) be v, so the
degree of v in T satisfies d(v) ≥ 3. Notice there is a unique (0, v)-path p0 in T , and
we can partition T \ p0 into two disjoint subtrees, say T1 and T2, that meet at v. Let
the vertices which are on p0 ∪ T1 be P1, the vertices which are on p0 ∪ T2 be P2. In
Example 4.1.1, P1 = {1, 2, 3} and P2 = {1, 2, 4}.

Note that P1 ∪ P2 = N . Construct two MST games corresponding to P1 and P2:
⟨P1, p0∪T1⟩ and ⟨P2, p0∪T2⟩, and consider following 2 linear programs on P1 and P2:

z1 = max x(P1) (4.2)

s.t. x(S) ≤ c(S), ∀S ⊆ P1

x ∈ Rn
≥0

z2 = max x(P2) (4.3)

s.t. x(S) ≤ c(S), ∀S ⊆ P2

x ∈ Rn
≥0

We know the core of an MST game is nonempty, so any optimum solution x⋆(Pi)

is in the core of MST game ⟨Pi, p0 ∪ Ti⟩ and the optimum value zi is equal to c(Pi).
Let xc be the core allocation by Granot and Huberman’s [12] algorithm. Since we
construct ⟨P1, p0 ∪ T1⟩ and ⟨P2, p0 ∪ T2⟩ by maintaining the core allocation edges of
P1 and P2, we have xOPT(P1) ≤ c(N), xOPT(P2) ≤ c(N), so there is:

z1 + z2 = xOPT(P1) + xOPT(P2) ≤ 2c(N)

Consider the following linear programming:

z3 = max x(P1) + x(P2) (4.4)

s.t. x(S) ≤ c(S), ∀S ⊆ P1 or S ⊆ P2

x ∈ Rn
≥0

CHAPTER 4. CONSTRAINED MST STRUCTURES 26

The polyhedron of (4.4) lies in the intersection of the two polyhedra of (4.2) and
(4.3) and there are more constraints for (4.4), so there is z3 ≤ z1 + z2 ≤ 2c(N).

For the following linear programming:

z4 = max x(N) + x(P1 ∩ P2) (4.5)

s.t. x(S) ≤ c(S), ∀S ⊊ N

x ∈ Rn
≥0

Since P1, P2 ⊊ N , the polyhedron constraints (4.5) lies in the polyhedron of (4.4)
and there are more constraints for (4.5). By non-negativity, we know z3 ≥ z4 ≥
xOPT(N).

In conclusion, there is: xOPT(N) ≤ z3 ≤ 2c(N) when MST of the graph is not a
path.

However, for a MST game where every MST of the graph is a path, the almost
core optimum xAC(N) can be arbitrarily larger than c(N), even when we require that
x ≥ 0 (see 3.2).

4.2 (0,M)-MST games

We refer to a MST game as a (0,M)-MST game when the following holds: the edges
of the corresponding complete graph have only two possible weights: 0 and M(M >

0), and the edges with weight 0 form a unique MST and there is only one edge
with weight 0 incident to the source node (if not, xAC ≤ 2c(N) = 0). That is, the
corresponding complete graph with T being a spanning tree graph (the graph of the
spanning tree for G) satisfies:

w(e) =

{
0 if e ∈ E(T)

M ∀e ∈ E(G \ T)
(4.6)

|δ(0) ∩ T | = 1 (4.7)

Define the parent of a node v to be the node connected to v on the unique path
from v to the source node 0 in (V,E(T)). A child of a node v is a node of which v is
the parent.

CHAPTER 4. CONSTRAINED MST STRUCTURES 27

Algorithm 2: Algorithm of (0,M)-MST game for the almost core maximiza-
tion problem (3.1)

Input: An (0,M)-MST game network G = (V,E,w)

Output: (0,M)-Almost core allocation x

1 Let E(T) be the edge set with all edges of weight 0 in G.
2 M := the largest weight in G.
3 for v = 1, 2, . . . , n do
4 Kv := number of child nodes of node v.
5 xv := −(Kv − 1)M .
6 end
7 Output the almost core allocation x for (0,M)-MST game.

Define a child tree T̂ of v as a subtree rooted from node v and contain all the
child nodes of T̂ . In Example 4.2.4,{2, 4, 5, 6} is a child tree, but {3, 8} is not a child
tree because 7 is a child of 3, but it is not in the set.

Lemma 4.2.1. We have x(T̂) = M .

Proof. Since for any child tree T̂ , x(T̂) = kM − (k − 1)M = M . By induction, If
the allocation value to a child tree T̂ of v is M , let v′ be a parent of v, and then the
allocation value to the child tree T̂ ′ of v′ is also M As a result, for any child tree T̂ in
graph G, there is x(T̂) = M .

Theorem 4.2.2. The result of Algorithm 2 is in the almost core AC⟨N,c⟩.

Proof. For any S ⊊ N , there exists a partition of S induced by MST: S = S1∪ ...∪Sq,
where every cell Si is a maximal connected subset in MST, that is, all nodes in Si

are connected in MST while Si and Sj are disjoint in MST. Take the player induced
by the node adjacent to the source node in MST to be player 1.

If {1} /∈ S, to connect the source node and every unconnected cell, c(S) = qM .
By the allocation rule of Algorithm 2, the largest allocation to any connected subset
is M , that is, for any connected cell Si, x(Si) ≤ M and there is x(S) =

∑q
i=1 x(Si) ≤

qM = c(S).
Otherwise, if {1} ∈ S, c(S) = (q − 1)M . Suppose {1} ∈ S1, Since S1 ⊆ S ⊊ N ,

x(S1) ≤ 0. In this case, x(S) =
∑

i x(Si) ≤ (q − 1)M = c(S).

Theorem 4.2.3. The result of Algorithm 2 is an optimal almost core allocation for
any (0,M)-MST game.

Proof. Take player 1 to be the player node incident to the source node by MST.
Since there is only one edge with weight 0 incident to the source node in (0,M)-
MST game, c((N \ {1}) ≤ M to connect c((N \ {1}) ≤ M with 0 , For any almost

CHAPTER 4. CONSTRAINED MST STRUCTURES 28

core allocation x̂ in AC⟨N,c⟩:

x̂(N) = x̂(1) + x̂(N \ {1})
≤ c(1) + c((N \ {1})
≤ M

We have proved the allocation in Algorithm 2 distribute a total value M , that is
x(N) = M , and it is in AC⟨N,c⟩. Hence it is one optimum almost core allocation
for (0,M)-MST games.

Example 4.2.4. Consider a (0,M)-MST game with 10 players. Figure 4.2 is the
corresponding complete graph when only edges with weight 0 are shown in the
figure, all other edges have a weight of M . Note that all edges with weight 0 form
the unique MST of this graph. In this example, the solution computed by algorithm
Algorithm 2 is marked in blue in Figure 4.2 with a total value of M .

Figure 4.2: MST graph (V), E(T)) of a (0,M)-MST game example

(0,M)-MST game can be applied to the real-life example of a cable-laying prob-
lem where an old cable system already exists and it costs M to lay a new cable
between two buildings. The electricity supplier can get a maximum benefit by the
allocation of algorithm 2.

Chapter 5

Almost Core Allocations on Value
Games

This chapter adapts the almost core concept to value games, in particular the mini-
mum cost spanning tree value games, for which we also propose a 2-approximation
algorithm.

5.1 Value Games

We described the characteristic functions of a cooperative game to be cost functions
in Section 1.1. However, when the purpose of the game is to distribute payoff to
every single player, we can define the characteristic value function to be v : 2N →
R≥ 0. These kinds of games are called value games or profit games.

For value games, the almost core allocation is defined as follows:

min x(N) (5.1)

s.t. x(S) ≥ v(S), ∀S ⫋ N

x ∈ Rn

The difference between 5.1 and the almost core allocation in the previous chap-
ters is that coalition values are induced by the costs of coalitions for a cost sharing
game, now they represent payoffs.

5.2 Almost Core Allocation for MST Value Games

To convert minimum cost spanning tree games to values games, recall the example
of 3 cities and the source, but in this case, every city will get a payoff for the service.
The cost of connecting every two buildings still exists. The value of every coalition
is the saving they can obtain by forming the coalition.

29

CHAPTER 5. ALMOST CORE ALLOCATIONS ON VALUE GAMES 30

In conclusion, for MST value games, define the characteristic value function as
v(S) =

∑
i∈S ci − c(S), and c(S) maintains to be the definition in Section 3.1, that is

the cost of a minimum spanning tree on the subgraph induced by vertex set S ∪{0}.
Notice that in value games, every feasible allocation in the (almost) core is non-

negative since x(i) ≥ v(i) = ci − ci = 0.

5.2.1 Computational Complexity

Consider linear optimization over the polyhedra

AC⟨N,v⟩ and P⟨N,v⟩ := {x ∈ Rn : x(S) ≥ v(S) ∀S ⊆ N}.

as well as optimization over P⟨N,v⟩ ∩ Rn
≥ 0 and AC⟨N,v⟩ ∩ Rn

≥ 0 for families of value
games ⟨N, v⟩. Note that the core of the value games is the set of optimal solutions
when maximizing 1 over P⟨N,v⟩. Also note that whenever the core of a game ⟨N, v⟩
is empty, so no x exists with x(N) ≤ v(N) and x(S) ≥ v(S) ∀S ⊆ N , we have that
x(N) > v(N) is implied by the set of constraints x(S) ≥ v(S), S ⫋ N , which in
turn implies P⟨N,v⟩ = AC⟨N,v⟩. For games with non-empty core, we get the following
correspondence between the optimization problems for the two polyhedra.

Corollary 5.2.1. For a family of games ⟨N, v⟩, linear optimization problems over
AC⟨N,v⟩ can be solved in polynomial time if and only if linear optimization problems
over P⟨N,v⟩ can be solved in polynomial time.

Proof. The proof is similar to the proof of Theorem 2.3.1 for cost games by convert-
ing the cost game to the corresponding value game. We can use the equivalence
of optimization and separation problems. Separation over P⟨N,v⟩ can be reduced to
separation over AC⟨N,v⟩ plus an explicit check of a single inequality x(N) ≥ v(N),
and we can construct the separation oracle for AC⟨N,v⟩ by solving the separation
oracle for P⟨N,v⟩ as in the proof of Theorem 2.3.1.

Corollary 5.2.2. Consider a family of value games ⟨N, v⟩ for which deciding non-
emptiness of the core is (co)NP-hard. Then finding an optimal almost core allocation
is also (co)NP-hard.

Proof. The proof is identical to the proof of Proposition 2.3.4.

CHAPTER 5. ALMOST CORE ALLOCATIONS ON VALUE GAMES 31

5.3 Algorithm for MST Value Games

5.3.1 Algorithm and Example

Algorithm 3: Approximation algorithm for the almost core minimization
problem (2.1) for MST value games

Input: Players N , edge set E of complete graph on N ∪ {0} and edge
weights w : E → R≥ 0

Output: Almost core allocation x.
1 Initialize I0 := {0} and T := ∅.
2 for k = 1, 2, . . . , n do
3 Let i ∈ Ik−1, j ∈ N \ Ik−1 with minimum w(i, j) (among those i, j).
4 Let Ik := Ik−1 ∪ {j} and augment the tree T := T ∪ {(i, j)}.
5 Assign player j the value share xj := cj − w(i, j).
6 end
7 Let ℓ ∈ In \ In−1 be the last assigned player.
8 Update player ℓ’s cost share xℓ := max

k∈Nℓ

{v(Nk)− x(N \ {k, ℓ})} .

W.l.o.g. assume the players get assigned their payoffs in the order 1, . . . , n (so
that ℓ = n in lines 7 and 8). The algorithm Algorithm 3 is similar to the algorithm
Algorithm 1, but we assign xj := cj − w(i, j) instead of w(i, j) in line 5 and try to
update the minimal feasible amount to the last player in line 8. We denote by xALG a
solution computed by Algorithm 3.

In order to show how the algorithm functions, the example corresponding to Fig-
ure 5.1 walks through the algorithm step by step:

Step 1: I0 = {0} and T = ∅. Find the edge with the minimum weight to connect I0
and N \ I0. I1 = {0, 1} and augment edge (0, 1) to the tree T = {(0, 1)}.
Assign player 1 with x1 = c1 − w(0, 1) = 0.

Step 2: Find the edge with the minimum weight to connect I1 and N \ I1. If there
are two same weights, choose one arbitrary. Here one possible result may
be I2 = {0, 1, 2}. Augment edge (1, 2) to the tree T = {(0, 1), (1, 2)}. Assign
player 2 with x2 = c2 − w(1, 2) = 3.

Step 3: Find the edge with the minimum weight to connect I2 and N \ I2. I3 =

{0, 1, 2, 3} and augment edge (2, 3) to the tree T = {(0, 1), (1, 2), (2, 3)}. As-
sign player 3 with x3 = c3 − w(2, 3) = 0.

Step 4: Assign the last player I3 \ I2 = 3 with x3 = max
k∈N3

{v(Nk)− x(N \ {k, 3})} = 3.

CHAPTER 5. ALMOST CORE ALLOCATIONS ON VALUE GAMES 32

The allocation of Algorithm 3 is xALG = (0, 3, 3) with a total value of 6. Actually, Al-
gorithm 3 also has a performance guarantee of 2. This will be demonstrated later in
this chapter.

5.3.2 Correctness of the Algorithm

Lemma 5.3.1. We have that xALG(Ik) = v(Ik) for all k = 1, . . . , n − 1, and for all
S ⊆ {1, . . . , n− 1} we have xALG(S) ≥ v(S).

Proof. The first claim follows because xALG(Ik) =
∑

i∈Ik(ci − w(i, j)) and we have∑
i∈Ik w(i, j) = c(Ik) because the w(i, j) follows Prim’s[38] algorithm which com-

putes a minimum cost spanning tree on the vertex set {1, . . . , n− 1}. As a result, we
can conclude xALG(Ik) =

∑
i∈Ik ci − c(Ik) = v(Ik).

Now we prove the second claim. Similar to the proof of (3.4.2), let S ⊆ Nn and
assume S is not the empty set. Let ΓS be a minimum cost spanning tree on vertices
S ∪ {0}. Define pi as the predecessor of i ∈ Nn so that edge (pi, i) is added in
Algorithm 1 and define the edge set Ē by Ē := {(pi, i) | i ∈ Nn \ S}. Note that pi is
the first vertex other than i on the unique (i, 0)-path in ΓN .

From the definition, we know that if an edge (i, j) ∈ Ē, then either i ∈ Nn \ S or
j ∈ Nn \ S, whereas if (i, j) ∈ ΓS, then both i ∈ S ∪ {0} and j ∈ S ∪ {0}. Therefore,
the edge set ΓS and Ē forms a connected graph on Nn∪{0}. The weight of all edges
in the connected graph (Nn ∪ {0}, ΓS ∪ Ē) is w(ΓS ∪ Ē) = c(S) +

∑
i∈Nn\S w(pi, i).

Since c(Nn) is the cost of the minimum cost spanning tree on Nn ∪ {0}, we know
c(Nn) ≤ c(S) +

∑
i∈Nn\S w(pi, i).

To convert the cost of player sets to the value of player sets, substitude c(S) by∑
i∈S ci(S)− v(S) we will get:∑

i∈Nn

ci − v(Nn) ≤
∑
i∈S

ci − v(S) +
∑

i∈Nn\S

w(pi, i) (5.2)

Notice that
∑

i∈Nn\S w(pi, i) is equal to
∑

i∈Nn\S(ci − xALG
i), together with Equa-

tion (5.2), we can get
∑

i∈Nn
ci− v(Nn) ≤

∑
i∈S ci+

∑
i∈Nn\S ci− v(S)−xALG(Nn \S),

that is:
v(Nn) ≥ v(S) + xALG(Nn \ S)

We know that xALG(Nn) = v(Nn), so we can conclude:

xALG(S) = v(Nn)− xALG(Nn \ S) ≥ v(S)

So for all S ⊆ {1, . . . , n− 1} we have xALG(S) ≥ v(S).

Lemma 5.3.2. Suppose xALG(S) < v(S) for some set S with n ∈ S ⫋ N . Then there
is a superset T ⊇ S with |T | = n− 1 such that xALG(T) < v(T).

CHAPTER 5. ALMOST CORE ALLOCATIONS ON VALUE GAMES 33

Proof. Recall the players got assigned their cost shares in order 1, . . . , n. Define
k := max{i | i /∈ S} to be the largest index of a player not in S. Let i1, . . . , iℓ be the
set of players so that Nk = N \ {k} = S ∪ {i1, . . . , iℓ} and w.l.o.g. i1 < · · · < iℓ. We
show that xALG(S) < v(S) implies xALG(S ∪ {i1}) < v(S ∪ {i1}). Then repeating the
same argument, we inductively arrive at the conclusion that xALG(Nk) < v(Nk). So
observe that

xALG(S ∪ {i1}) = xALG(S) + xi1 < v(S) + xi1 =
∑
i∈S

ci − c(S) + xi1 ,

and c(S) is the cost of a minimum cost spanning tree for S, call it MST(S). Moreover,
as i1 ̸= n, xi1 is the cost of the edge, call it e, that the algorithm used to connect
player i1. We claim that MST(S) ∪ {e} is a tree spanning vertices S ∪ {0, i1}, hence
c(S) + xi1 is the cost of some tree spanning S ∪ {0, i1}. Then, as required, we get

xALG(S ∪ {i1}) <
∑
i∈S

ci − c(S) + xi1 ≤
∑

i∈S∪{i1}

ci − c(S ∪ {i1}) = v(S ∪ {i1}) ,

because c(S ∪ {i1}) is the cost of a minimum cost tree spanning S ∪ {0, i1}. If
MST(S) ∪ {e} was not a spanning tree for vertices S ∪ {0, i1}, then edge e would
connect i1 to some vertex outside S, but this contradicts the choice of i1 as the
vertex outside S with smallest index.

Theorem 5.3.3. Algorithm 3 yields a feasible solution.

Proof. Denote by xALG a solution by Algorithm 3. For S : n /∈ S, this follows from
Lemma 5.3.1. For S : n ∈ S, assume x(S) < v(S). Then Lemma 5.3.2 yields that
there exists some Nk = N \ k with n ∈ Nk satisfies xALG(Nk) < v(Nk). However by
definition of xn in Line 8 of the algorithm, we have for all k = 1, . . . , n− 1

xALG
n ≥ v(Nk)− xALG(N \ {k, n}) ,

which yields a contradiction to xALG(Nk) < v(Nk). It shows Algorithm 3 computes a
result in AC⟨N,v⟩.

5.3.3 Performance of the Algorithms

Theorem 5.3.4. Algorithm 3 is a 2-approximation for the almost core minimization
problem (5.1) for MST value games, and this bound is tight.

Proof. To show that the performance guarantee is indeed 2, let xOPT be some op-
timal solution to the almost core maximization problem (5.1). Let k⋆ ∈ Nn be the
index for which the maximum in line 8 is attained. Observe that xALG

n is updated

CHAPTER 5. ALMOST CORE ALLOCATIONS ON VALUE GAMES 34

S c(S) v(S)

{1} 1 0
{2} 5 0
{3} 5 0

{1,2} 3 3
{1,3} 3 3
{2,3} 10 0

Figure 5.1: MST game showing that the analysis of Algorithm 3 cannot be im-
proved.

such that xALG(Nk⋆) = v(Nk⋆) holds. Then by non-negativity of xOPT and since
xALG(i) ≥ v(i) = 0,

xALG
n ≤ xALG(Nk⋆) = v(Nk⋆) ≤ xOPT(Nk⋆) ≤ xOPT(N).

Moreover, by Lemma 5.3.1, we have xALG(Nn) = v(Nn),

xALG(Nn) = v(Nn) ≤ xOPT(Nn) ≤ xOPT(N)

Hence we get xALG(N) = xALG
n + xALG(Nn) ≤ 2xOPT(N).

To see that the performance bound 2 is tight for Algorithm 3, consider the in-
stance in Figure 5.1.

Here, Algorithm 3 computes the solution xALG = (0, 3, 3) with value 6, as the order
in which players get assigned their cost shares is 1, 2, 3, and in line 8 of the algorithm
we get xALG

3 = v({1, 3})− x1 = 3. An almost core optimum would be xOPT = (3, 0, 0)

with value 3.

In fact, for a cost sharing game ⟨N, c⟩, when the characteristic function of the
corresponding value game ⟨N, v⟩ is given by: v(S) =

∑
i∈S ci− c(S), given a feasible

allocation x of cost sharing game, we can get a feasible allocation y of value game
by:

yi = ci − xi

It is feasible because y(S) =
∑

i∈S ci − x(S) ≥
∑

i∈S ci − c(S) = v(S). However,
the performance guarantee of the algorithm by this transformation may change.

Chapter 6

Conclusions

We collected some problems which we believe are interesting for further research.
First, we would like to gain more insight into the computational complexity for the
almost core problem (2.1) for other classes of games. Moreover, we could give a 2-
approximation for MST cost games under the additional assumption that subsidies
are not allowed, so x ≥ 0, but do not have such a result when it is allowed that
players are subsidized.

Furthermore, we studied the games when the grand coalition could not cooper-
ate. Similarly, cooperative games with restricted cooperation are worth considering
for further research.

Most of the results in this thesis were based on joint work with M. Uetz, M. Walter
and R. Zou [40] (In preparation). While the joint work focus on cost sharing games,
this thesis also studied the almost core concept of value games.

35

Bibliography

[1] O. Morgenstern and J. Von Neumann, Theory of games and economic behav-
ior. Princeton university press, 1953.

[2] D. B. Gillies, “Solutions to general non-zero-sum games,” in Contributions to the
Theory of Games, Volume IV, ser. Annals of Mathematics Studies, A. W. Tucker
and R. D. Luce, Eds. Princeton University Press, 1959, vol. 40, pp. 47–85.

[3] L. S. Shapley and M. Shubik, “Quasi-cores in a monetary economy with non-
convex preferences,” Econometrica: Journal of the Econometric Society, pp.
805–827, 1966.

[4] M. Maschler, B. Peleg, and L. S. Shapley, “Geometric properties of the kernel,
nucleolus, and related solution concepts,” Mathematics of operations research,
vol. 4, no. 4, pp. 303–338, 1979.

[5] U. Faigle and W. Kern, “On some approximately balanced combinatorial coop-
erative games,” Zeitschrift für Operations Research, vol. 38, no. 2, pp. 141–152,
1993.

[6] K. Jain and M. Mahdian, “Cost sharing,” in Algorithmic game theory, N. Nisan,
T. Roughgarden, É. Tardos, and V. V. Vazirani, Eds. Cambridge University
Press New York, 2007, ch. 15, pp. 385–410.

[7] Y. Bachrach, E. Elkind, R. Meir, D. Pasechnik, M. Zuckerman, J. Rothe, and
J. S. Rosenschein, “The cost of stability in coalitional games,” in International
Symposium on Algorithmic Game Theory. Springer, 2009, pp. 122–134.

[8] R. Meir, Y. Bachrach, and J. S. Rosenschein, “Minimal subsidies in expense
sharing games,” in International Symposium on Algorithmic Game Theory.
Springer, 2010, pp. 347–358.

[9] C. Bejan and J. C. Gómez, “Core extensions for non-balanced TU-games,” In-
ternational Journal of Game Theory, vol. 38, no. 1, pp. 3–16, 2009.

36

BIBLIOGRAPHY 37

[10] Y. Zick, M. Polukarov, and N. R. Jennings, “Taxation and stability in cooperative
games,” in Proceedings of the 2013 international conference on Autonomous
agents and multi-agent systems, 2013, pp. 523–530.

[11] C. G. Bird, “On cost allocation for a spanning tree: a game theoretic approach,”
Networks, vol. 6, no. 4, pp. 335–350, 1976.

[12] D. Granot and G. Huberman, “Minimum cost spanning tree games,” Mathemat-
ical programming, vol. 21, no. 1, pp. 1–18, 1981.

[13] D. Granot and G. Huberman, “The relationship between convex games and
minimum cost spanning tree games: A case for permutationally convex games,”
SIAM Journal on Algebraic Discrete Methods, vol. 3, no. 3, pp. 288–292, 1982.

[14] D. Granot and G. Huberman, “On the core and nucleolus of minimum cost
spanning tree games,” Mathematical programming, vol. 29, no. 3, pp. 323–347,
1984.

[15] U. Faigle, W. Kern, S. P. Fekete, and W. Hochstättler, “On the complexity of
testing membership in the core of min-cost spanning tree games,” International
Journal of Game Theory, vol. 26, no. 3, pp. 361–366, 1997.

[16] U. Faigle, W. Kern, and D. Paulusma, “Note on the computational complexity of
least core concepts for min-cost spanning tree games,” Mathematical Methods
of Operations Research, vol. 52, pp. 23–38, 2000.

[17] R. Meir, J. S. Rosenschein, and E. Malizia, “Subsidies, stability, and restricted
cooperation in coalitional games,” in Twenty-Second International Joint Confer-
ence on Artificial Intelligence, 2011, pp. 301–306.

[18] Y. Bachrach, E. Elkind, E. Malizia, R. Meir, D. Pasechnik, J. S. Rosenschein,
J. Rothe, and M. Zuckerman, “Bounds on the cost of stabilizing a cooperative
game,” Journal of Artificial Intelligence Research, vol. 63, pp. 987–1023, 2018.

[19] R. Meir, Y. Zick, E. Elkind, and J. Rosenschein, “Bounding the cost of stability
in games over interaction networks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2013, pp. 690–696.

[20] N. Bousquet, Z. Li, and A. Vetta, “Coalition games on interaction graphs: a
horticultural perspective,” in Proceedings of the Sixteenth ACM Conference on
Economics and Computation, 2015, pp. 95–112.

[21] E. Resnick, Y. Bachrach, R. Meir, and J. S. Rosenschein, “The cost of stability in
network flow games,” in International Symposium on Mathematical Foundations
of Computer Science. Springer, 2009, pp. 636–650.

BIBLIOGRAPHY 38

[22] H. Aziz, F. Brandt, and P. Harrenstein, “Monotone cooperative games and their
threshold versions.” in AAMAS, vol. 10. Citeseer, 2010, pp. 1017–1024.

[23] G. Chalkiadakis, G. Greco, and E. Markakis, “Characteristic function games
with restricted agent interactions: Core-stability and coalition structures,” Artifi-
cial Intelligence, vol. 232, pp. 76–113, 2016.

[24] U. Faigle, S. P. Fekete, W. Hochstättler, and W. Kern, “On approximately
fair cost allocation in euclidean tsp games,” Operations-Research-Spektrum,
vol. 20, no. 1, pp. 29–37, 1998.

[25] M. Bläser and L. Shankar Ram, “Approximately fair cost allocation in metric
traveling salesman games,” Theory of Computing Systems, vol. 43, no. 1, pp.
19–37, 2008.

[26] A. Caprara and A. N. Letchford, “New techniques for cost sharing in combi-
natorial optimization games,” Mathematical programming, vol. 124, no. 1, pp.
93–118, 2010.

[27] L. Liu, X. Qi, and Z. Xu, “Computing near-optimal stable cost allocations for
cooperative games by lagrangian relaxation,” INFORMS Journal on Computing,
vol. 28, no. 4, pp. 687–702, 2016.

[28] X. Deng, “Combinatorial optimization and coalition games,” in Handbook of
Combinatorial Optimization, D.-Z. Du and P. Pardalos, Eds. Dordrecht: Kluwer
Academic Publishers, 1959, vol. 2, pp. 77–103.

[29] A. S. Schulz and N. A. Uhan, “Sharing supermodular costs,” Operations Re-
search, vol. 58, no. 4, pp. 1051–1056, 2010.

[30] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and its conse-
quences in combinatorial optimization,” Combinatorica, vol. 1, no. 2, pp. 169–
197, 1981.

[31] R. M. Karp and C. H. Papadimitriou, “On linear characterizations of combina-
torial optimization problems,” in Foundations of Computer Science, 1980., 21st
Annual Symposium on. IEEE, 1980, pp. 1–9.

[32] M. W. Padberg and M. R. Rao, “The russian method for linear inequalities iii:
Bounded integer programming,” Ph.D. dissertation, INRIA, 1981.

[33] J. Drechsel and A. Kimms, “The subcoalition-perfect core of cooperative
games,” Annals of Operations Research, vol. 181, no. 1, pp. 591–601, 2010.

BIBLIOGRAPHY 39

[34] J. Edmonds, “Submodular functions, matroids, and certain polyhedra,” in Com-
binatorial Structures and Their Applications, R. Guy, Ed. New York: Gordon
and Breach, 1970, pp. 69–87.

[35] X. Deng and C. H. Papadimitriou, “On the complexity of cooperative solution
concepts,” Mathematics of operations research, vol. 19, no. 2, pp. 257–266,
1994.

[36] W. Kern and D. Paulusma, “Matching games: The least core and the nucleolus,”
Mathematics of Operations Research, vol. 28, no. 2, pp. 294–308, 2003.

[37] M. R. Garey and D. S. Johnson, “Computers and intractability,” A Guide to the,
1979.

[38] R. C. Prim, “Shortest connection networks and some generalizations,” The Bell
System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[39] A. Claus and D. Kleitman, “Cost-allocation for a spanning tree,” Networks, vol. 3,
pp. 289–304, 1973.

[40] R. Zou, B. Lin, M. Uetz, and M. Walter, “Algorithmic solutions for maximizing
shareable costs,” Submitted, 2022.

	Abstract
	Preface
	Introduction
	Cost Sharing Games
	Relaxations of the Core
	Minimum Cost Spanning Tree Games
	Outline

	Cost Sharing Beyond the Core
	Almost Core Allocations
	Equivalence between the Almost Core and Other Relaxations of the Core
	On the Complexity of Almost Core Allocations

	Almost Core Allocations on MST games
	The Core of MST games
	Gap Between the core and the Almost Core on Minimum Cost Spanning Tree Games
	Computational Complexity
	Algorithm to Compute Almost Core Allocations on MST games
	A 2-approximation Algorithm on the Almost Core Allocations
	Correctness of the Algorithm

	Performance of the Algorithms

	Constrained MST Structures
	When Some MST is Not a Path
	(0,M)-MST games

	Almost Core Allocations on Value Games
	Value Games
	Almost Core Allocation for MST Value Games
	Computational Complexity

	Algorithm for MST Value Games
	Algorithm and Example
	Correctness of the Algorithm
	Performance of the Algorithms

	Conclusions
	References

