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Abstract

Introduction: Freezing of gait (FOG) is one of the debilitating symptoms experienced by patients
with Parkinson’s Disease, and the most common cause of falls in these patients. External cueing can
help to overcome FOG. In order to enhance the user experience of cueing devices and to diminish
intrusiveness and habituation to cues, on-demand cueing is desired. In addition, objective FOG de-
tection enables monitoring and objective assessment of therapy. Therefore, automatic detection of
FOG needs to be developed. In this research, the performance on the detection of FOG of three deep
learning classifiers based on inertial measurement unit (IMU) data is studied.

Methods: Data from four studies with walking tasks ranging from straight walking, turning and
obstacle course was combined. The dataset contains over 300 000 windows of which 8% was labelled
as FOG. All experiments were recorded for video annotation of FOG. IMU measurements were per-
formed using hardware and software of Xsens 3D motion tracking technology. The data was tested
on three classification models: a CNN, MiniRocket and InceptionTime. Five fold cross-validation
was applied to estimate an unbiased model performance. The models were evaluated using a receiver
operating characteristic (ROC) curve. The model with the highest area under the ROC curve (AUC-
ROC) was selected and a sensor evaluation was performed on this model. Sensors that were evaluated
include the accelerometers of the upper legs, lower legs and feet. The best model in combination with
the best sensor selection was trained on the training + validation set and tested on the hold out test set.

Results: In total, 71 unique participants were included in this study. The highest AUC-ROC was
reached for the CNN trained on the acceleration data of the lower legs and feet with an AUC-ROC
of 0.72, sensitivity of 73.7% (72.5 - 75.0%) and specificity of 60.8% (60.3 - 61.3%) on the test set.
The mean AUC-ROC of MiniRocket was 0.10 smaller than the AUC-ROC of the CNN, and the mean
AUC-ROC of InceptionTime was 0.04 smaller than the CNN. The difference in mean AUC-ROC for
the sensor combinations was 0.01.

Conclusion: The classification algorithm has potential to be implemented in on-demand cueing de-
vices and home monitoring applications for objective FOG detection. Further research is needed to
optimize the model and improve the performance.

Keywords: Parkinson’s Disease, Freezing of Gait (FOG), inertial measurement unit (IMU), au-
tomatic detection, time series classification, deep learning, convolutional neural network (CNN),
MiniRocket, InceptionTime.
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1 Introduction

Parkinson’s Disease (PD) is a complex, progressive, neurodegenerative disease [1]. PD is the fastest
growing neurological disorder in the world, driven by the aging population. The prevalence of over six
million patients with PD worldwide in 2015, is expected to double in the next two decades [2].

Freezing of gait
PD involves disabling motor- and non-motor symptoms. One of the gait impairments experienced by
patients with PD is freezing of gait (FOG). FOG is one of the most common cause of falls in PD
patients [3]. FOG is defined as a ”brief, episodic absence or marked reduction of forward progression
of the feet despite the intention to walk”. Assessing and adjusting FOG treatments is challenging for
medical professionals, since FOG may not manifest during clinic visits [4].

Cueing is one of the most common strategies to reduce FOG in patients with PD and is defined as
temporal or spatial stimuli, which facilitate repetitive movement including gait. External cueing uses
the strategy to focus attention on walking in order to overcome FOG and prevent falls. Effective cueing
devices include visual stimuli such as a Parkinson walker projecting a laserline onto the ground and
rhythmic auditory stimuli. However, the visibility of these devices for bystanders is a big disadvantage
for patients. A more discrete device may, in addition, raise situational awareness of the patient and
therefore be more safe. Tactile cueing by vibrating socks may provide the need for a subtle, safe and
effective cueing device [5].

After promising results of a case study with the vibrating socks, a clinical study into the effectiveness
of the socks was performed [5]. At the moment, a home monitoring study is started to evaluate the
usability of the vibrating socks [6]. A prototype of the vibrating socks is shown in figure 1. In order to
enhance the user experience, it would be favourable if cueing of the vibrating socks only activates at
the moment FOG occurs or shortly before. In addition, Velik et al. found that the duration of FOG
reduces more with on-demand cueing than with continuous cueing. On-demand cueing is thought
to diminish intrusiveness and habituation to cues [7]. Furthermore, objective FOG detection enables
monitoring patients at home and objective assessment of therapy. To provide the socks with feedback
information about the presence of FOG, automatic detection of FOG needs to be developed.

Figure 1: Prototype of the vibrating socks, currently used in the Vibrating socks at home study. Photo
from L.F.J. Nannings [8].
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FOG detection
The gold standard to detect FOG is visual examination of video data [9]. However, clinicians often
disagree on classifying an episode as freezing or not. A detection algorithm would be more objective
and convenient [10]. Automatic FOG detection can be done based on wearable sensor data such as
inertial measurement units (IMU) containing accelerometers and gyroscopes. Machine learning and
deep learning algorithms to detect FOG are widely explored [11–16]. According to a review of Par-
doel et al., the best performing classifiers for FOG detection are AdaBoosted decision trees, random
forests, support vector machines and convolutional neural networks (CNN). The CNN shows the high-
est overall sensitivity, is extensively studied, and has the advantage of deep learning over machine
learning that feature extraction is not needed. However, the published CNNs are trained and tested
on small datasets up to 21 patients and 237 FOG episodes [11]. Considering the future application of
the algorithm and patient comfort, ideally the number of sensors needed is limited.

In this study, we will implement FOG detection on a large dataset and test three different detection
algorithms to improve detection performance. The first algorithm is a CNN, based on previous research
on FOG detection of Abdallah et al. [14] and Ten Broeke [17]. The second algorithm is MiniRocket,
a fast data mining classifier and the state-of-the-art model in time series classification [18]. The third
algorithm is InceptionTime, an ensemble of deep CNN models and the best performing neural network
for time series classification [19]. The choice for MiniRocket and InceptionTime is based on a review
of Ruiz et al. comparing recent algorithms on 26 multivariate time series datasets [20]. All of these
models will be trained patient-independently to ensure easy application in the vibrating socks.

1.1 Research aim

The aim of this research is to develop a detection model that automatically classifies FOG in PD
patients. The research question is defined as follows:

How can freezing of gait in Parkinson’s Disease be detected using convolutional neural networks
based on IMU data?

Several steps will be made in order to develop a FOG detection model. First of all, four datasets with
IMU data of PD patients will be combined to maximize the input data. Three time series classification
models will be implemented, optimized and tested, namely a self-developed CNN, MiniRocket, and
InceptionTime. Cross-validation is applied to accurately validate and test the performance of the
models. More information on the models and types of cross-validation can be found in chapter 2. The
type of IMU sensors (accelerometers and/or gyroscope) and the sensor locations of the IMU sensors
will be evaluated.

1.2 Hypothesis

A time series classification model dedicated for the analysis of IMU data, will have sufficient accuracy
in FOG classification. It is expected that adequate labelling of IMU data with one of the three
models can be used for objective FOG detection. Several studies have shown that FOG classification
can be done using CNNs [11] and part of the dataset in this study is also used as input to CNNs
before [17, 21]. On the other hand, the model input suffers from the limitations of video annotation
[10] and the heterogeneity of FOG [4], which complicates FOG detection. The CNN is expected to
show at least equal performance to Opdams CNN with an AUC-ROC of 0.83 [21]. Regarding the
complex architecture of InceptionTime and limited data set, it is expected that the more simple CNN
outperforms InceptionTime. However, MiniRocket is expected to show the best performance, being
the state-of-the-art time series classification method in literature [20]. Based on the pilot study of Ten
Broeke, acceleration data of the knees and ankles is expected to provide valuable data input. Sensors
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solely at the ankles will perform slightly worse than at the knees and ankles [17]. However, this should
be re-evaluated on the full dataset.
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2 Background

The first part of this chapter provides background information on PD and particularly FOG, while
the second part introduces classification algorithms and machine learning techniques for detection of
FOG.

2.1 Clinical background

The clinical part starts with a background in the anatomy and pathofysiology relevant for PD. Next,
the diagnosis and treatment of PD is described, followed by information on the motor symptom freez-
ing of gait.

Anatomy
The central nervous system consists of the cerebrum, diencephalon, brainstem, cerebellum, and the
spinal cord. The cerebrum is divided in two hemispheres. It contains the cerebral cortex and several
subcortical structures, including the basal ganglia, see figure 2 [22]. The basal ganglia are involved in
movement control. It includes the striatum, pallidum, subthalamic nucleus and the substantia nigra.
Several circuits traverse the basal ganglia, namely a motor loop (concerned with learned movements),
cognitive loop (concerned with motor intentions), limbic loop (concerned with emotional aspects of
movements), and an oculomotor loop (concerned with voluntary saccades) [23].

Figure 2: The basal ganglia (blue) and thalamus (red), lateral view. Picture from Andrusca et al.
[24].

Pathofysiology
The primary underlying pathology of PD is degeneration of dopaminergic neurons in the substantia
nigra, located in the basal ganglia [3]. The loss of dopaminergic neurons results in a loss of dopamine
in the striatum of the basal ganglia [23]. Dopamine is an excitatory neurotransmitter which plays
an important role in the striatal locomotor pathway. The effect of dopamine on this pathway largely
explains the motor symptoms in PD [25]. In addition, dopamine is also involved in reward and rein-
forcement mechanisms, learning and memory mechanisms, and various other functions like attention,
sleep, impulse control, and decision making [26]. The first symptoms of PD appear delayed, after
about 60% of the neurons has been lost. The delay is caused by an increased dopamine production
by unaffected surrounding neurons, and upregulation of dopamine receptors in the target neurons in
the striatum [23].

Diagnosis & treatment
PD is a clinical diagnosis based on the overall presentation of a patient. Preliminary premotor symp-
toms, motor symptoms, and cognitive and psychiatric symptoms have to be recognized. Premotor
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symptoms include anosmia, rapid eye movement behaviour disorder, and depression. Motor symp-
toms include rigidity, bradykinesia, tremor, and balance and walking problems [3]. The altered gait
pattern is characterised by a small stride length, reduced arm swing, stooped posture, shuffling feet, dif-
ficulties with turning, and freezing of gait. Autonomic dysfunction like constipation, hypotension and
urinary urgency, as well as pain and cognitive decline can develop during later stages of the disease [1].

Additional research for diagnosis includes MRI, mainly to reject other causes of Parkinsonian syn-
dromes [27]. Optionally, a FP-CIT-SPECT-scan (“DAT scan”) can be performed in case a clinical
diagnosis of a hypokinetic movement disorder cannot be made [27].

Treatments aim to suppress symptoms. The main treatment consists of pharmacotherapy with lev-
odopa, which can be combined with or substituted by dopamine agonists. Besides pharmacother-
apy, also physiotherapy, occupational therapy, and symptom specific treatments can be offered. Ad-
vanced therapy in patients with advanced PD includes deep brain stimulation, apomorphine, or lev-
odopa/carbidopa intestinal gel [27].

Freezing of gait
As stated before, FOG is a symptom of PD usually defined as a ”brief, episodic absence or marked
reduction of forward progression of the feet despite the intention to walk”. Patients often describe
FOG as the feeling of their feet being glued to the floor. Three FOG patterns are recognised: shuffling
forward (very short, shuffling steps), trembling in place (alternating tremor of the legs), and complete
akinesia (no movement of the limbs or trunk, uncommon). See also figure 3. FOG is often preceded
by festination, the tendency to move forward with an increasing cadence and a decreasing step length.
FOG can be asymmetrical and affect mainly one foot or turning in one direction. Episodes usually
last a couple of seconds, although duration varies from less than a second to more than 30 seconds
[4]. FOG is associated with the severity of PD and the duration of levodopa treatment, but can be
present early in the disease or in untreated patients [3].

Figure 3: Three phenotypes of FOG according to leg movements. Picture from Kondo et al. [28].

Situations that may provoke FOG include gait initiation, turning, approaching a destination, and
passing through narrow passages. Also environmental influences, emotional and cognitive situations
can affect FOG. Approaching doorways, crowded places, dual-tasking, distractions, and time pressure
enhance the likelihood that FOG occurs. Contrary, excitement, climbing stairs, and cueing strategies
diminish the likelihood of FOG. Conditions that distract the patient from walking aggravate FOG,
while paying attention to stepping alleviates FOG. When paying attention to walking, the impaired
subcortical control of gait is taken over by the cortical pathway. In this way, the automatic control of
walking is changed to goal-directed control [4].
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2.2 Technical background

FOG detection based on IMU data is a type of multivariate time series classification. Classifiers
are functions that use the input data to predict a probability distribution over the class variable
values. FOG detection considers a binary classification problem: FOG or no FOG. The input is
multivariate using several three-dimensional sensors, which means the discriminatory features may be
in the interactions between dimensions [20]. In deep learning, the model performs feature extraction
itself and then uses this features to classify the data, see figure 4. Classifiers, especially deep learning
classifiers, require a large data set to learn to properly differentiate between classes. In this study, three
deep learning classifiers are trained and tested: a self-developed CNN, MiniRocket, and InceptionTime.
The CNN is a sequential model and has a relatively simple architecture. In MiniRocket, the data
is transformed using a small, fixed set of convolution kernels and passed to a linear classifier [18].
InceptionTime is an ensemble of CNNs [19].

Figure 4: FOG classification using CNNs as deep learning method.

Convolutional neural network
A CNN is a neural network that consists of interconnected convolution layers of nodes, inspired by
the structure of neurons in the brain. CNNs have proven to be successful at computer vision tasks
like recognizing objects or faces. Although CNNs are designed for image data, they can also be used
for time series data [11]. The CNN consists of several layers:

• Convolution layer: performs convolutions using convolution filters to produce feature maps. In
order to perform the convolution, the filter is moved to every possible position in the feature
map. Matrix multiplication is performed at every position and the results are added. Filter
weights are determined during training. The feature map contains the features extracted from
the input data [14];

• ReLU layer: the convolution layer is followed by a rectified linear activation unit (ReLU) func-
tion. The ReLU function sets negative values from the filtered matrix to zero in order to make
sure that only neurons contributing to classification are activated [14];

• Batch normalization: one challenge of training neural networks is a changing distribution of the
inputs to layers deep in the neural network, since parameters of the previous layers change. This
may cause the model to keep chasing a moving target. Batch normalization is a technique to
stabilize the learning process and reduce the number of required training epochs. The inputs to
a layer are standardized for each mini-batch, which allows to use higher learning rates and make
the algorithm less sensitive to initialization [29];

• Pooling layer: locally summarizes the input in order to make the output invariant to small
translations in the input. In addition, the size of the activations that are fed to the next layer
is reduced. Therewith, memory footprint is reduced and the overall computational efficiency
improved. Max pooling, taking the maximum value of the neighborhood, is often used as pooling
technique [14];

• Dropout layer: randomly and uniformly turns off non-output nodes, with a certain probability. It
is a computationally cheap and effective regularization method to reduce overfitting and improve
generalization [30];
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• Softmax layer: the activation function in the last (dense) layer is softmax, assigning a probability
to each class. The probabilities must sum up to 1. It is a type of logistic regression [31].

MiniRocket
The random convolutional kernel transform (Rocket) uses a large number of random convolution ker-
nels in combination with a linear classifier. Input data is transformed using convolutional neural
networks. Proportion of positive values (PPV) pooling is applied to the convolutional output to pro-
duce two features per kernel. This transformation results in a feature map. Logistic regression is
applied to classify the data. Ruiz et al. recommended Rocket as the default choice for multivariate
time series classification problems, because of the highest performance ranking and being the fastest
classifier [20]. Rocket’s successor MiniRocket maintains essentially the same accuracy, but is up to
75 times faster. The difference of MiniRocket compared to Rocket is the use of a small, fixed set of
kernels, thereby using a mostly-deterministic approach. The kernels have only a length of 9, and all
these weights are restricted to have two different values (-1 and 2). Therefore, MiniRocket should be
used as the default variant of Rocket [18]. The architecture of MiniRocket is shown in figure 5.

Figure 5: Architecture of MiniRocket. PPV = proportion of positive values, a pooling layer.

InceptionTime
InceptionTime is an ensemble of five deep convolutional neural network models developed for time se-
ries classification. The network outperforms the previous state-of-the-art deep learning model (HIVE-
COTE) both in accuracy and scalability. Therefore, InceptionTime is recommended by Ruiz et al. as
a deep learning method for time series classification [20]. InceptionTime consists of five inception net-
works. Each network is build with a series of inception modules followed by a global average pooling
layer and a dense layer with a softmax activation function, see figure 6. An inception module consists
of several layers (see figure 7):

• Bottleneck layer: the dimensionality or depth of the input data is reduced in this layer. Reducing
dimensionality decreases the computational cost and the number of parameters, which results
in faster training and improved generalization [32].

• Convolution layer: the output of the bottleneck layers enters three convolutional layers. These
layers differ in kernel size, namely 10, 20 and 40 [32]. In this way, the network can automatically
extract relevant features from both short and long time series [33].

• Max pooling layer: parallel to the bottleneck and convolution layer, a max pooling layer is added.
The layer makes the model invariant to small perturbations. The max pooling layer is followed
by a bottleneck layer [19].

7



• Depth concatenation layer: in the last layer of the inception module, the outputs of the four
convolutional layers are concatenated along the depth dimension [32].

Furthermore, at every third inception module a residual connection is added. A residual or skip
connection is a connection to pass data to latter parts of the neural network by skipping some layers,
as showed in figure 8. The residual connection applies identity mapping to the input, and then performs
element-wise addition of the input and the output of the inception modules. Residual connections
enable deep neural networks to converge much more easily by avoiding exploding or vanishing gradient
problems [34].

Figure 6: The Inception network for time series classification. Picture from Ismail-Fawaz et al. [19].

Figure 7: The inception module of InceptionTime. The first number in the boxes indicates the kernel
size while the second indicates the size of the stride. “(S)” specifies the type of padding, i.e. “same”.
Picture from V. Stylianou [32].
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Figure 8: A residual connection in the inception network. Picture from V. Stylianou [32].

Adam optimizer
Adam is an optimization algorithm that can be used to update network weights during training. It
is an extension to the stochastic gradient descent method. Stochastic gradient descent uses a fixed
learning rate for all weight updates during training [35]. In Adam, adaptive moment estimation,
adaptive learning rates for different parameters are used. The algorithm updates exponential moving
averages of the gradient and the squared gradient. The moving averages are estimates of the mean and
the uncentered variance of the gradient. The decay rates of these moving averages are controlled by
two hyperparameters [36]. Adam is computationally efficient, requires little memory, and the default
configuration parameters do well on most problems [35].

Cross-validation
Cross-validation is a statistical method to test the performance of a model and to find the optimal
model. Several techniques are available, for example k-fold cross-validation, leave one group out
cross-validation, time series cross-validation and nested cross-validation [37]. In this study, leave one
group out cross-validation is used. The training+validation data is divided into five groups. All
data of one patient is assigned to the same group. The different groups are balanced with regard
to freezers/non-freezers and study, also called stratification. In this way, each subset contains the
same skewed class distribution [38]. The network is trained from scratch five times, each time with
a different validation set. See figure 9. The average performance of these five trained networks is
thought to be representative for the performance of the model in general [39].

Figure 9: Leave one group out cross-validation. Each row represents one fold, with the highlighted
group being the validation set. Picture from M. Abdelrazek [39].
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3 Methods

In order to answer the research question, three classification models were examined. A dataset of
71 patients was used and cross-validation was applied. Next, the IMU sensor type and sensor lo-
cations were evaluated. The data is preprocessed using Matlab R2021b (The Mathworks, Natick,
Massachusetts, USA) and Python version 3.9, and the algorithm was developed using Python ver-
sion 3.9 (Python Software Foundation, Fredericksburg, Virginia, USA). The classification models were
trained on a NVIDIA GeForce GTX 1080 Ti.

3.1 Data acquisition

In this study, the data from four previous studies was combined to create a large dataset: the Vi-
brating Socks study [40], the Pedal study [41], the Cinoptics study [42], and the Hololens study [43].
The medical ethical committee gave its approval to use the datasets for this non WMO research
(Dutch Medical Research with Human Subjects Law). The study was assessed by the MEC-U and
registered under W22.089. Furthermore, the committee gave its approval to link overlapping patients,
who took part in multiple studies, to each other. This information is important to divide the dataset
into a training, validation and test set with different participants. All experiments were recorded for
video annotation of FOG by two experienced clinicians reaching consensus. IMU measurements were
performed using the MVN Awinda motion capture system (XSens 3D motion tracking technology,
Enschede, The Netherlands). The Xsens software to analyze the IMU data was MVN studio v4.2.0
for the Cinoptics study, MVN studio v4.4 for the Pedal study and the Hololens study, and MVN
analyze 2020.0.1 for the Vibrating Socks study (XSens 3D motion tracking technology, Enschede, The
Netherlands). The calibrated acceleration data and angular velocity data was provided in the earth-
referenced local frame [44]. A short description of the studies is given below. An overview of the gait
tasks and cueing conditions per study can be found in table 1.

Vibrating Socks study
Patients with PD and a recent history of disabling or regular FOG were included in the Vibrating
Socks study, resulting in 32 participants. The data of 27 patients was included in this freeze detection
study. Two measurements per patient were conducted, one while on dopaminergic medication and
one while off dopaminergic medication. Patients were asked to perform three walking tasks, which
were repeated four times with different cueing conditions [40].

Pedal study
Patients with PD and a recent history of disabling or regular FOG were included in the Pedal study,
resulting in twenty participants. The same number of healthy controls were included, but left out of
the dataset in this study. Measurements were performed while patients were off dopaminergic medi-
cation. Patients were asked to walk 30 meters straight in a corridor with two narrow passages at 10
and 20 meters. When patients reached the end of the corridor, they were requested to walk a wide
turn and return. Multiple trials lasting 30 seconds each were performed directly after each other. The
experiment was performed with different cueing conditions and cognitive conditions. The adjusted
auditory stroop task (AAS) was applied to increase cognitive load, aiming to induce FOG. Besides
the walking task, also a pedaling experiment with virtual reality was performed [41]. This part of the
Pedal study was not included in the dataset of this study.

Cinoptics study
Patients with PD and a recent history of disabling or regular FOG were included in the Cinoptics study,
resulting in twenty-five participants. Measurements were performed while patients were end-of-dose
levodopa. Patients were asked to perform three walking tasks, with five different cueing conditions. A
narrow passage was located halfway down the trajectory. The whole experiment was performed twice
[42].
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Hololens study
Patients with PD and a recent history of disabling or regular FOG were included in the Hololens
study, resulting in eighteen participants. Patients were asked to perform a turning task under four
different conditions. For each cueing condition, patients performed 15 trials of 180 degree turns on
the spot [43].

Table 1: Gait tasks and cueing conditions of the four datasets.

Vibrating Socks Pedal Cinoptics Hololens

Walking
task

Walking 10 meter
straight.

Walking straight
with two narrow
passages for 30
seconds.

Walking 15 meter
straight.

180 degree turns
to the left and
to the right.

Gait trajectory
consisting of two
turns (left and right)
and a narrow passage.

Walking 15 meter
straight with stop
and start commands
at three randomized
moments.

360 degree turns to
the left and to the
right.

Walking 15 meter
straight with 360
degree turns at three
randomized moments.

Cueing
Tactile cueing in a
closed-loop manner.

Visual cueing
using white
transverse bars.

Visual cueing with
augmented 3D bars.

Auditory cueing.

Tactile cueing in an
open-loop manner.

Visual cueing
using white
transverse bars
and AAS.

Visual cueing with
augmented 3D staircase.

Visual cueing in
augmented reality.

Auditory cueing. No cueing.
Visual cueing with
conservative bars
on the floor.

Both auditory and
visual cueing.

No cueing.
No cueing
and AAS.

Auditory cueing. No cueing.

No cueing.

3.2 Data preprocessing

The IMU data was synchronised with the labeled video data. Artefacts were detected and removed.
Artefacts were defined as acceleration >100 m/s2 or angular velocity > 20°/s. The IMU data was
filtered with a zero phase third order bandpass Butterworth filter. The cut-off frequencies of 0.3 Hz
and 15 Hz were chosen to remove the offset and to enable a full spectral analysis on the locomotor
band of 0.5-3 Hz and freezing band of 3-8 Hz, while higher harmonics were removed [3, 16, 45]. The
data was resampled to 60 Hz in order to ensure a uniform sampling frequency. The dataset was split
in a training + validation and testing group. The data within these subsets was balanced regarding
the presence of FOG and the different studies. The data was scaled per channel between -1 and 1,
based on the minimum and maximum value in the whole training set. The data was windowed using
sliding windows of 2 seconds every 0.5 seconds, corresponding to 75% overlap [12]. Windows without
any FOG samples were labeled as no FOG, windows containing ≥25% FOG were labeled as FOG.
Windows with >0% and <25% FOG were discarded from the training and validation set and from
the test set. A similar approach was used by Sigcha et al. and Camps et al., however the percentage
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of FOG was lowered to 25% in this study in order to retain more FOG-labelled windows in the data
set [12, 46]. Twenty-five percent of FOG was hypothesized to be high enough to train the network
with the characteristics of FOG episodes, while not loosing too much FOG data. In this way, FOG
episodes of at least 0.5 seconds were taken into account.

3.3 Network architecture

Three classification models were evaluated on the IMU data of patients with PD. First of all, a basic
CNN inspired by previous FOG detection networks is evaluated. Second, a fast and top-performing
time series classification model named MiniRocket is examined. Lastly, the state-of-the-art deep
learning classifier for time series data called InceptionTime is evaluated on IMU data. The input data
for the comparison between the models was the acceleration data of the lower legs and feet. All models
were optimized using Adam. An overview of the hyperparameters can be found in table 2.

Table 2: Hyperparameters of the three deep learning models.

Hyperparameter CNN MiniRocket InceptionTime

Initial learning rate 0.001 0.001 0.001

Loss function Binary cross entropy Logistic regression Binary cross entropy

Number of epochs 30 10 20

Kernel size 6 9 2, 4, 8

Class weight FOG Balanced Determined by algorithm Balanced

Convolutional neural network
The model consists of three convolutional layers with kernel size 6. The kernel size was optimized to
gain the highest area under the receiver operating characteristic (AUC-ROC). Each convolution layer
with ReLU function is followed by batch normalization, max pooling, and a dropout layer. After three
of these blocks, a flatten layer generates one dimensional input for the two dense layers performing
actual classification of the data. The output of these dense layers is a probability distribution over
the class variables. The architecture can be found in figure 10.

Figure 10: Architecture of the proposed CNN.

The model was implemented using Tensorflow in Python. The loss function is binary cross entropy.
In order to overcome the unbalance of the dataset, a balancing class weight (calculated using the
percentage of FOG) was used to penalize the algorithm harder for falsely classifying freezing windows.
The model was trained for 100 epochs to check the training process, and thereafter set to 30 epochs.

MiniRocket
MiniRocket was implemented using the PyTorch version of the time series for artificial intelligence
(tsai) package in Python. As recommended by Dempster et al. for datasets of >10 000 samples, a
logistic regressor was applied. More information about this model can be found in chapter 2 and in
Dempster et al. 2021 [18]. The learning rate is halved if the validation loss does not improve after 50
updates, and training is stopped after 100 updates without improvement of the validation loss. The
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class weight is determined by the algorithm itself.

Inception Time
Inception Time was implemented using Tensorflow and the classification algorithm provided on Github
by Ismail Fawaz et al. More information about this model can be found in chapter 2 and in Ismail
Fawaz et al. [19]. Instead of the default kernel size of 10, 20 and 40, a smaller kernel size of 2, 4 and 8
was used to decrease the number of parameters in the network and thus prevent overfitting [19]. The
loss function is binary cross entropy, a popular method for binary classification taking the log of the
probabilities [47]. In order to overcome the unbalance of the dataset, a balancing class weight was
used to penalize the algorithm harder for falsely classifying freezing windows. The model was trained
for 100 epochs to check the training process, and thereafter set to 20 epochs.

3.4 Sensor evaluation

Accelerometer data of the lower legs and feet was selected from the IMU data as input to the three
models. However, IMU data also includes gyroscope data that may provide additional information
about the presence of FOG. In this study, we evaluated whether adding gyroscope data enhances the
model performance of the model with the highest AUC-ROC. Furthermore, body locations of the IMU
sensors were evaluated. A trade off between increase in model performance and practical applicability
has to be made. Sensor combinations that were studied include:

• Upper legs + lower legs + feet;

• Lower legs + feet;

• Feet.

3.5 Model validation and analysis

To test if the three models were implemented correctly, the models were trained and evaluated on the
Wafer dataset from the UCR time series classification repository. The UCR repository is an archive
with 85 time series datasets. The data is z-normalized to remove offset and scaling and has a prede-
fined train/test split. The archive contains among others IMU data, but no gait tasks [48].

Cross-validation was implemented in order to estimate an unbiased model performance [39]. Five-fold
leave one group out stratified cross-validation was applied. All data of one patient was assigned to the
same fold, taking into account participants that took part in multiple studies. Stratification of study
and freezers/non freezers was applied to maintain the same class distribution in each subset [38]. The
average performance of the five validation folds was used to compare several models.

The models were evaluated for various discrimination thresholds using a receiver operating charac-
teristic (ROC) curve. The best model was chosen based on the AUC-ROC. The final model was
evaluated on the hold out test set. In this way, the optimized model could be checked for overfitting
and a fair performance was calculated. Besides the ROC curve, the sensitivity and specificity with
Clopper-Pearson 95% confidence interval were calculated based on the confusion chart.
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4 Results

In total, 71 unique participants were included in this study. Fourteen of them participated in multiple
studies, all data of one patient was assigned to either the training, validation or test set. Fifty-
seven patients were assigned to the training + validation set and fourteen to the test set. Clinical
characteristics of the participants can be found in table 3. The clinical characteristics could not
be determined separately for the training + validation and test set, since the individual patient
characteristics were unknown in this study. Characteristics about the number of patients, size of the
datasets and percentage of FOG of the training + validation and test group can be found in table 4.

Table 3: Clinical characteristics of the participants per study.

Vibrating Socks Pedal Cinoptics Hololens
Median (25th - 75th percentile) Median (IQR)

No. participants 32 20 25 16

Age (years) 66 (60 - 74) 70.5 (63.5 - 73) 72 (65 - 79) 69 (13)

Gender (% male) 87.1 85 76 81

Disease duration (years) 11 (5 - 14) 11 (7.5 - 16) 11 (3 - 20) 10 (9)

Years since FOG (years) 4 (2.5 - 6.5) 2 (0.25 - 12) 4 (9)

Hoehn and Yahr score 2 (2 - 3) 2 (2 - 3) 2 (2 - 3) 2 (1)

MDS-UPDRS III
ON: 38 (29 - 46)
OFF: 51 (47 - 62)

39.5 (31.5 - 47.5) 34 (10 - 61) 38 (17)

N-FOGQ FOGQ: 15 (13 - 18) 21 (16 - 25) 18 (8 - 28) 18 (7)

MMSE 28 (26 - 30) 29 (27 - 30) 28 (19 - 30) 29 (2)

FAB 17 (14 - 18) 16 (15 - 17) 14 (5 - 26) 17 (2)

MDS-UPDRS III, Movement Disorders Society Unified Parkinson’s Disease Rating Scale part III; N-FOGQ,
New Freezing of Gait Questionnaire (range 0-28); FOGQ, Freezing of Gait Questionnaire (range 0-24);
MMSE, mini-mental state examination (range 0-30); FAB, Frontal Assessment Battery (range 0-18); IQR,
interquartile range; ON, ’on’ dopaminergic state; OFF, ’off’ dopaminergic state.

Table 4: Characteristics of training + validation group and test group.

Characteristics Training + validation set Test set

No. patients
- Vibrating Socks study
- Pedal study
- Cinoptics study
- Hololens study

57
21
17
21
15

14
6
3
4
3

No. patients in multiple studies 12 2

No. samples
- Vibrating Socks study
- Pedal study
- Cinoptics study
- Hololens study

131 372
71 946
22 875
24 555
12 996

40 938
29 648
4 137
4 786
2 367

No. samples with 0-25% FOG 0 0

No. samples with 25-100% FOG 10 590 4 978

Percentage of (25-100%) FOG
- Vibrating Socks study
- Pedal study
- Cinoptics study
- Hololens study

8.1
4.8
1.1
11.2
31.9

12.2
9.5
12.9
0.2
78.0
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Prior to training the models with the IMU data, the models were tested using the Wafer dataset of the
UCR archive [48]. The performance of MiniRocket and InceptionTime on this dataset was comparable
with the performance of the authors of these algorithms [18, 19]. The performance of the CNN was
comparable with the performance of the other two models. Results can be found in appendix A.

4.1 Neural network evaluation

The CNN, MiniRocket and InceptionTime were trained with the acceleration data of the lower legs
and feet. The ROC curves and model loss of the CNN, MiniRocket and InceptionTime can be found
in figure 11.

Convolutional neural network
The ROC curve of the CNN in figure 11a shows the performance after 30 epochs with a mean AUC-
ROC of 0.82 ±0.03. The performance difference in between the folds is limited, indicated by the
standard deviation of the mean AUC-ROC. The number of epochs was determined based on the
model loss in figure 11b. The validation loss varies around 0.6 during the training process and does
not decrease further, so the training is stopped after 30 epochs. The validation loss does not seem
to be affected by the training process. The training loss is smaller than 0.1 from the beginning, and
decreases further over time. The training loss was expected to start at a higher level.

MiniRocket
The ROC curve of MiniRocket in figure 11c shows the performance with a mean AUC-ROC of 0.72
±0.09. The AUC-ROC of the individual folds varies from 0.61 to 0.86, both outliers compared to the
mean AUC-ROC and its standard deviation. The model loss could not be displayed for this algorithm.

InceptionTime
Figure 11d shows the ROC curve of InceptionTime after 20 epochs with a mean AUC-ROC of 0.78
±0.05. The variance in AUC-ROC is larger than for the CNN, but smaller than for MiniRocket.
Figure 11e shows that the training loss is below 0.1 from the beginning and decreases further, while
the validation loss increases during the training process indicating overfitting. Therefore, the kernel
size was reduced and the number of epochs was limited to twenty.

4.2 Sensor evaluation

The sensor evaluation was performed on the CNN, since this model showed the highest AUC-ROC.
The ROC curves of the CNN trained on 1) upper legs, lower legs, feet; 2) lower legs, feet; and 3)
feet; can be found in figure 12. The corresponding AUC-ROCs are 1) 0.81 ±0.04; 2) 0.82 ±0.03; and
3) 0.81 ±0.04. Because of technical memory issues, the added value of gyroscope data could not be
evaluated. Although the mean AUC-ROC values are almost the same, the input data with the highest
AUC-ROC was selected for the final model, namely the acceleration data of the lower legs and feet.

4.3 Final model - evaluation on test set

The final model is the CNN trained with acceleration data of the lower legs and feet. The ROC curve
on the test set with an AUC-ROC of 0.72 is shown in figure 13a. With a threshold of 0.01, a sensitivity
of 73.7% (72.5 - 75.0%) and specificity of 60.8% (60.3 - 61.3%) was reached. The threshold is based
on the ROC curve of the test set, with the highest possible sensitivity while the specificity is above
60%. The sensitivity and specificity were deduced from the confusion chart in figure 13b.
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(a) ROC curve of the five folds and the mean ROC
after training the CNN for 30 epochs.

(b) Model loss of the first fold in training the CNN for
100 epochs.

(c) ROC curve of the five folds and the mean ROC
after training MiniRocket.

(d) ROC curve of the five folds and the mean ROC
after training InceptionTime for 20 epochs.

(e) Model loss of the first fold in training Inception-
Time for 100 epochs.

Figure 11: ROC curve and model loss of the three detection algorithms.
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(a) ROC curve of the CNN trained on the acceleration
data of the upper legs, lower legs and feet.

(b) ROC curve of the CNN trained on the acceleration
data of the lower legs and feet.

(c) ROC curve of the CNN trained on the acceleration
data of the feet.

Figure 12: ROC curves of the CNN trained on three combinations of acceleration sensors.
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(a) ROC curve of the final model. The black dot rep-
resents the threshold which was set at 0.01. (b) Normalized confusion chart of the final model.

Figure 13: Performance of the CNN evaluated on the test set with acceleration data of the lower legs
and feet as input.
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5 Discussion

In this study, three classification models, namely a CNN, MiniRocket and InceptionTime, were imple-
mented for the detection of FOG based on IMU data. The CNN trained on acceleration data of the
lower legs and feet showed the highest AUC-ROC. When evaluated on the test set, an AUC-ROC of
0.72, sensitivity of 73.7% (72.5 - 75.0%) and specificity of 60.8% (60.3 - 61.3%) was reached.

5.1 Interpretation of the results

Comparing the CNN, MiniRocket and InceptionTime with accelerometer data of the lower legs and
feet of 71 PD patients as input, the CNN turned out to reach the highest mean AUC-ROC on the
validation set (0.84 ±0.04). For the CNN, the sensors of the lower legs and feet resulted in the highest
performance, although the difference with other sensor combinations was only 0.01 in AUC-ROC. The
added value of gyroscope data could not be evaluated. An AUC-ROC of 0.72 was reached on the test
set. The decrease in AUC-ROC on the test set indicates that the model might be overfitting on the
training + validation set.

As described in the hypothesis, MiniRocket was expected to show the best performance in this FOG
detection study. However, the AUC-ROC was 0.10 smaller than the AUC-ROC of the CNN. The
variance in the ROC curves of the five folds, figure 11c, is higher than for the CNN and Inception-
Time, which might indicate overfitting. Therefore, the model loss should be inspected. The number
of epochs was optimized by the algorithm. Other hyperparameters and the windowing should be op-
timized. Despite promising results on time series datasets including IMU data from the UCR archive
[18, 20, 48], the architecture seems less effective on IMU data for FOG detection.

As hypothesized because of the complex architecture, InceptionTime showed severe overfitting. There-
fore, the kernel size and number of epochs was reduced. More techniques to reduce overfitting are
required. First, the AdamW optimizer should be implemented to improve regularization in Adam.
This optimizer decouples the weight decay from the gradient-based update and this improves general-
ization [49]. Second, drop-out layers should be used, as done in the CNN. Next, further enlargement
of the dataset is required to reach the optimal performance of this complex time series classification
model in FOG detection.

Contrary to InceptionTime, at first sight the CNN suffers much less from overfitting, due to the simpler
architecture. However, the model loss shows a different behaviour than expected. As can be seen from
figure 11b, the training loss is very small from the beginning. The training loss decreases further, so
the model is learning. The validation loss neither decreases, as expected during at least the first part
of training, nor increases, indicating overfitting. The predictions of the validation set seem basically
random. The code should be checked for bugs that may cause this unexpected behaviour. Another
cause of the problem might be a different data distribution between the training and validation set.
Deep learning models normally assume that the data is independent and identically distributed [50].
If that is not the case, these models fail to work. However, the data in the training, validation and
test set was balanced with regard to freezers and study, and the results of the five folds were similar.
Further research is needed to find the origin of the problem. The ROC curve after 30 epochs in figure
11a is comparable with the ROC curve after 100 epochs. This corresponds to the validation loss, which
also varies around the same level. The number of epochs should be optimized further by automatically
saving the model with the smallest validation loss.

The results of this study are in line with previous research in FOG detection using deep learning based
on IMU data [11, 13]. In addition, previous pilot studies on part of the dataset showed similar results.
For example, Opdam was able to train a CNN on the Cinoptics acceleration data with an AUC-ROC
of 0.83 [21].

19



The methodology of this study is similar to other FOG detection studies [12, 14, 46]. What is remark-
able are the data characteristics per study, see table 4. Even though the subsets are balanced with
regard to freezers and studies, the percentage of FOG per study varies a lot. Reason for this is the
big difference in amount of FOG per participant. In addition, over 50% of the dataset originates from
the Vibrating Socks study and could therefore heavily influence the results. Further balancing of the
data could help the training process and ensure a fair performance. Another setting that affects the
performance is the FOG labelling with a threshold of 25% or 0.5 seconds. A high threshold improves
the model performance, while a low threshold enables recognition of partial FOG windows and short
FOG episodes. Thus lowering the threshold minimises the detection latency and improves detection
robustness. However, this comes at the cost of the model performance [13].

5.2 Strengths and limitations

This study has several strenghts. First of all, the algorithms in this study are trained on a large
dataset with IMU data of 71 PD patients with FOG. As stated before, deep learning requires a large
dataset to prevent overfitting. However, the datasets used in previous research were limited in size
(up to 21 patients) [11]. Recently, Shi et al. published a FOG detection study on 67 PD subjects.
Shi et al. proposed a deep learning model and compared the model against the state-of-the-art deep
learning models for FOG detection from Xia, Camps and Bikias [46, 51, 52]. They showed a decreased
performance on the reconstructed models. Reason for this may be a different dataset, an increased
heterogeneity in the data because of a larger dataset, differences in data collection, sensor data, or
preprocessing [13]. These results emphasize the need for a large dataset for deep learning algorithms.
Although the dataset in this study is much larger than most of the published studies on FOG detec-
tion, more data would improve the training process of the deep learning models and allow the use of
more complicated architectures.

Second, the dataset includes gait tasks ranging from straight walking, turning and obstacle course.
These different gait tasks make the data more representative for movements in real life. Third, all
data was gathered using the hardware and software of Xsens, which ensures a consistent and reliable
dataset. Different software versions of MVN studio and MVN analyze were used in different studies,
which may result in minor differences in the calibrated and normalized data.

Fourth, cross-validation was applied to estimate an unbiased model performance. The data in the
training, validation and test set was balanced with regard to the presence of FOG and the different
studies. All data of one participant was assigned to the same subset. For patients who took part in
multiple studies, the identification numbers of the different studies were linked to make sure that all
data of one participant was assigned to the same subset.

Fifth, three promising classification algorithms were evaluated for the application of FOG detection.
The CNN was inspired by the model of Abdallah et al. [14] and optimized for this binary FOG
classification problem. The relatively simple architecture turns out to be effective on the dataset in
this study. MiniRocket and InceptionTime are considered to be state-of-the-art models in time se-
ries classification, and have not been evaluated on IMU data for FOG detection before [18–20]. It
can be concluded that these models require optimization specifically for IMU datasets containing FOG.

Finally, another strength of this study is the patient independent models, since these are easily appli-
cable to cueing devices like the vibrating socks. Automatic FOG detection enables on-demand cueing,
but also objective assessment of therapy using home monitoring.

Besides some strengths, this study has several limitations. The dataset in this study is a combination
of four studies. Combining datasets may cause different artefacts, a different scale because of the
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different software versions of Xsens, or a different gait pattern because of the provided cues [21]. In
addition, the percentage of FOG varies a lot per study. Because of these differences in the datasets,
the networks may learn to recognize which samples originate from which dataset. On the other hand,
big artefacts were removed, and the different software versions of Xsens are thought to have minimal
effects on the normalized data. Considering the variation in gait pattern and FOG frequency, the
algorithm should recognize FOG regardless of the specific movement at that moment. After all, in
reality the algorithm should also detect FOG regardless of the walking pattern. In order to exclude
the possible negative effects of combining datasets, the performance per individual dataset and per
gait task should be evaluated.

The second limitation is the calibration of the Xsens IMU data. As described in chapter 3, the data is
calibrated in the earth local frame, so walking forward is presented opposite from walking backward
[44]. This problem applies to the Vibrating Socks and Cinoptics study, and to some patients of the
Pedal study. It would be favorable to use free acceleration, comparable to IMU sensors in cueing
devices. To train the algorithm with more universal data, the part where patients walk back should
be flipped.

Third, the algorithms are trained on FOG annotated by two experts per study. Although this is the
gold standard, there is often discussion about the classification between experts [10]. Thus the as-
sumed ground truth may be incorrect sometimes. In addition, FOG is known for different phenotypes
and diverse presentation in between patients which complicates detection [28].

Finally, windows containing >0% and ≤ 25% FOG were removed from the training + validation and
test set. The data is treated as binary, but for the windows at the beginning and end of a FOG episode
this is not true. For that reason, windows with a small amount of FOG were removed to make the
classification problem binary. In reality, the models would randomly assign these windows to a class.
Therefore, the performance on windows with a small amount of FOG should be evaluated separately.

5.3 Future research

Besides optimization of the hyperparameters, preprocessing settings such as the window length and
overlap should be varied. According to Tautan et al., the input data should be provided as accelerom-
eter magnitude instead of the individual accelerometer axis with the following formula: magnitude =√

x2 + y2 + z2 with x, y, z the three accelerometer axes signals [53]. In addition, data augmentation
should be explored to further enlarge the dataset. Data augmentation is widely applied in imaging,
but has to be used with care for time series data [54]. Therefore, the models should be trained with
and without data augmentation. Examples of applicable data augmentation are switching the sensors
of the left and right limb, or adding noise. Next to applying data augmentation, adding more real
data would improve the training of the network. The network architecture of the CNN could also be
changed trying to improve the performance. Further validation of the models should be done with
another dataset for FOG detection of IMU data, to test the models on a different study and show
the models’ ability to generalize. A dataset from the catholic university of Leuven is available for this
evaluation.

Considering the performance of the CNN, the model has potential to be implemented in on-demand
cueing devices and home monitoring applications for objective FOG detection. For practical applica-
bility and patient comfort in the vibrating socks, it is recommended to select the sensors solely at the
ankles to the cost of a slightly lower performance. In order to make the detection algorithm patient
specific, the threshold to determine the point on the ROC curve should be variable. When a patient
experiences a lot of favor from the vibrating socks, a high sensitivity can be chosen; while a patient
who thinks the vibrations are annoying, could choose a higher specificity.
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6 Conclusion

The aim of this research was to develop a detection model that classifies FOG in PD patients based on
IMU data. Four datasets with IMU data of 71 PD patients were combined and used as input for the
models. Three neural networks, namely a CNN, MiniRocket and InceptionTime, were implemented
and trained on this dataset. The CNN trained on acceleration data of the lower legs and feet per-
formed best, with an AUC-ROC of 0.72, sensitivity of 73.7% (72.5 - 75.0%) and specificity of 60.8%
(60.3 - 61.3%) on the test set. The model has potential to be implemented in on-demand cueing
devices and home monitoring applications for objective FOG detection. Therefore, further research is
needed. The unexpected behaviour of the model loss should be declared and solved. Furthermore, the
hyperparameters should be optimized further to prevent overfitting, preprocessing settings should be
varied to obtain the optimal data input, and data augmentation should be explored. Also adjustments
in the network architecture may improve the performance.
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A Results Wafer dataset

The Wafer dataset contains measurements recorded by one sensor during the processing of a silicon
wafer for semiconductor fabrication. The two classes are normal and abnormal. The training set
contains 1000 samples, the test set 6164 samples. The length of the samples is 152, the number of
channels is 1. The data is imbalanced, 10.7% of the training data and 12.1% of the test data is ab-
normal [48]. Therefore, a class weight of 0.10 for the data of class 0 and a class weight of 0.90 for the
data of class 1 is used in the CNN and InceptionTime.

Convolutional neural network
The CNN is trained in 100 epochs. Since the CNN is designed in this study, the results cannot be
compared with another study. However, the results are comparable with other classification networks
[20], and the performance is high with an accuracy of 99.8% and the ROC curve in figure 14.

Figure 14: ROC curve of the CNN trained on the Wafer dataset.

MiniRocket
The ROC curve of MiniRocket trained on Wafer can be found in figure 15. The implementation of
MiniRocket reached an accuracy of 99.0%, a little bit less than the 99.6% reported by Dempster et al.
[18]. These differences may be due to optimization of hyperparameters.

InceptionTime
InceptionTime is trained in 100 epochs. The ROC curve of InceptionTime trained on the Wafer
dataset is depicted in figure 16. An accuracy of 99.6% was reached, while Ismail-Fawaz et al. reported
an accuracy of 99.9% [19]. This difference in performance may also be declared with optimization.
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Figure 15: ROC curve of MiniRocket trained on the Wafer dataset.

Figure 16: ROC curve of InceptionTime trained on the Wafer dataset.
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