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Abstract

In this thesis, we introduce zk-SCHNAPS; zero-knowledge Secure Commitment-
based Homomorphic Non-interactive Authentication with Passwords using SNARKs.
With this password authentication protocol, arbitrary password policies can be en-
forced by a server, without having the requirement or possibility of inspecting the
password. This prevents a server from leaking users’ passwords, whether acciden-
tally or on purpose, while still forcing users to choose strong passwords. We do this
by using a zk-SNARK to proof compliance of a password during registration, and
combining it with a SNARK-friendly encryption scheme (SAVER) to yield an encryp-
tion of the password that can be stored by the server. During login, the password
is encrypted similar to the SAVER encryption and combined with a zero-knowledge
proof, affirming the knowledge of the password that is encrypted. Using the ho-
momorphic property of SAVER, the server can check whether the passwords are
equal, without decrypting the individual ciphertexts. We implemented the proposed
scheme and show that both proof generation and password verification run in prac-
tical time (a few seconds and less than a second respectively) for several real-world
password policies, including a blocklist of 100,000 items.
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Chapter 1

Introduction

Passwords are still the dominant means of authenticating a user to a (web) service.
During registration, a user chooses a username and password of their liking and
sends their credentials to the service. If the service approves the credentials (e.g.
the username is not yet taken, the password has at least eight characters), the pass-
word is hashed and stored alongside the username, often in a database. Hashing
is required to prevent disclosure of plaintext passwords due to a data leak. Before
hashing, a randomly generated salt is added, such that same passwords do not re-
sult in the same hash. This salt is then stored alongside the password. In addition,
a constant pepper is added, which is exclusively known to the server and prevents
bruteforcing passwords if only the database is leaked. After the registration phase,
the chosen credentials can be used to subsequently log in to that service by sending
them in plaintext. This typical registration and login workflow is also shown in Figure
1.1.

A service approves a password during registration if it complies with certain re-
quirements, also known as password policies. Examples of such policies are that
the password needs to have a certain minimum length or a certain minimum number
of characters from a specific group, such as alphanumeric and special characters. In
addition, commonly used passwords may be rejected by using a blocklist, on which
the chosen password may not occur. These policies are intended to force users to
choose more difficult-to-guess passwords, which prevents unauthorized parties to
log in using a guessed password.

For a long time, passwords were assumed to be secure enough. For example,
access to online bank accounts was granted using only a username and password,
without additional security measures. However, due to carelessness of users, pass-
words are not always chosen securely and are shared among multiple services. In
addition, due to data breaches, passwords have become available to adversaries in
large numbers. Thus, adversaries logging in using someone else’s credentials is not
unimaginable.
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Client Server

Registration

Choose valid username u

and password p such that

P (p) = P1(p) ∧ P2(p)

∧ ... ∧ Pn(p) evaluates

to true, where Pi is

a single password policy.

Send u and p

Check that P (p)

evaluates to true.

Obtain h = H(p:s:t),

where H is a hash

function suitable for

password hashing, s is a

randomly generated n-

byte salt, t is a constant

m-byte pepper and :

represents concatenation.

Store u, h and s.

{valid, invalid}

Login

Enter username u′ and

password p′.

Send u′ and p′

Look up h and s

corresponding to u′.

Compute h′ = H(p′:s:t)

and compare h and h′.

{valid, invalid}

Figure 1.1: Classic registration and login workflow with passwords
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In recent years, a shift towards multi-factor authentication (MFA) has strength-
ened service authentication by requiring another factor of authentication. While
passwords are considered to be something you know, with MFA it needs to be com-
plemented by something you have (typically a one-time password on a trusted de-
vice) or something you are (using biometrics). Only knowing the password is thus
not sufficient anymore to log in, making it more difficult for adversaries to break into
someone else’s account.

While MFA enhances security, it does not tackle some of the issues of passwords.
First of all, a user has to trust the service with their password. Passwords are gener-
ally sent in plaintext to the service. This means that the service is able to inspect the
password, which is needed to determine whether the password meets the password
policy requirements in the registration phase, or whether the password is indeed the
correct password in the login phase. However, since the service knows the plaintext
password, it could share it with third parties or sell it to adversaries without the user
knowing.

Furthermore, the service is trusted to securely store the password. It is common
practise to apply a memory-hard hash function (such as Argon2 [BDK16] or scrypt
[Per09]) together with a salt and pepper to the password, such that the resulting
hash is of limited use to an attacker, while still being able to validate a password in
the login phase. However, it has been shown multiple times that some services store
their users’ passwords in plaintext (e.g. [Ng19]) or use an insecure hash function,
risking password leaks.

To counter these issues, zero-knowledge password protocols were created. In a
zero-knowledge password protocol, a service can be convinced that the user knows
their password, without needing to send it. This solves the two problems discussed
above, since the password is never sent to the server. However, zero-knowledge
password protocols bring their own challenges. Because the password is not sent
to the server, it is not straightforward to enforce password policy requirements any-
more. In addition, most protocols require interactivity, hence increasing the commu-
nication complexity.

In 2014, [KM14] introduced a new class of protocols, namely Zero-Knowledge
Password Policy Checks (ZKPPC), which allows for basic password policy enforce-
ment while still preserving zero-knowledge of the password. This allows the server
to be convinced of the password strength without inspecting the password. How-
ever, [KM14] only supports a limited set of password policies. These policies are
minimum password length, maximum password length and requirements regarding
the number of uppercase and lowercase letters, digits and symbols in a password.
Other policies, such as prohibiting certain passwords (e.g. ‘password123’), are not
supported, while they can greatly increase the security.
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To fill this gap, we propose zk-SCHNAPS, zero-knowledge Secure Commitment-
based Homomorphic Authentication with Passwords using SNARKs, which is a non-
interactive zero-knowledge password protocol that supports arbitrary password poli-
cies. We do this by leveraging zk-SNARKs to prove compliance to the implemented
password policies. We provide an implementation of the protocol and show that it
runs in practical runtime for several implemented password policies.

This thesis is structured as follows. Chapter 2 provides some preliminaries.
Then, Chapter 3 describes the related work. Chapter 4 proceeds by describing
the zk-SCHNAPS protocol. Chapter 5 evaluates the protocol by providing an im-
plementation and showing benchmarks. Chapter 6 then discusses the results and
provides directions for future work. Finally, Chapter 7 concludes the paper.



Chapter 2

Preliminaries

2.1 Pairings

Definition 1. Let G0, G1 and GT be cyclic groups of prime order q. A pairing is a
map

e : G0 ×G1 → GT

that satisfies the following properties:

1. Bilinearity: For all u ∈ G0, v ∈ G1 and a, b ∈ Z we have that

e(ua, vb) = e(u, v)ab

2. Non-degeneracy: For generators g ∈ G0 and h ∈ G1, we have that e(g, h) ̸= 1.

2.2 Homomorphic encryption

We use the following definition of homomorphic encryption:

Definition 2. A homormophic encryption scheme is an encryption scheme with op-
erations ⊗ and ⊕ such that

E(m1)⊗ E(m2) = E(m1 ⊕m2)

for all plaintexts m1 and m2. An encryption scheme is said to be additive homomor-
phic if there is an operation ⊗ such that

E(m1)⊗ E(m2) = E(m1 +m2)

for all plaintexts m1 and m2. Similarly, an encryption scheme is multiplicative homo-
morphic if there is an operation ⊗ such that

E(m1)⊗ E(m2) = E(m1 ·m2)

for all plaintexts m1 and m2.

5
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Homomorphic encryption has several applications. One application is that of
private data aggregation in smart grids, where homomorphic encryption is used to
calculate the sum of a neighborhood’s or single household’s consumption, without
having access to the individual readings [ET12, Erk15]. This allows the provider to
invoice households based on their exact consumption in a privacy-friendly manner.

Another application is that of multi-party computation, where different parties to-
gether compute a function over their inputs, without exposing those inputs to the
other parties. Homomorphic encryption enables this by encrypting the inputs and
performing calculations in the encrypted domain, after which the result can be de-
crypted to obtain the output [AW21].

2.3 Zero-knowledge proofs

Zero-knowledge proofs were already designed in 1989 [GMR89] and are a type of
proof in which a prover can convince a verifier that a given statement is true without
revealing any additional information about the statement. Zero-knowledge proofs
can thus be effective in situations where a prover wants to convince a verifier it
knows a certain secret value, without exposing it to the verifier.

In order for a proof to be zero-knowledge, it needs to comply to three require-
ments: completeness, soundness and zero-knowledge. These requirements en-
sure that the proof is secure and does not leak any additional information besides
the proven statement. Completeness refers to the fact that if the prover knows the
secret, then the verifier accepts their proof with probability one. Hence, if the prover
creates a valid proof, the verifier should always be able to successfully verify the
proof. The second requirement is soundness and is concerned with the small prob-
ability that the prover does not know the secret, but is still able to create a valid proof
and thus convince the verifier. Naturally, this probability should be very small to
provide a secure zero-knowledge scheme. Finally, the zero-knowledge requirement
refers to the fact that nothing can be learnt from the proof, except that the proven
statement is true. This implies that the proof does not leak any information about
the secret of the prover. This property is often proven by comparing simulations
(in which the secret is not known) and valid transcripts, and proving that these are
indistinguishable from each other.

2.4 zk-SNARKs

First described in 2012 by [BCCT12], zk-SNARKs are a class of zero-knowledge
proofs that have certain properties, as dictated by its acronym: zero-knowledge
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Prover Verifier

Setup

Create proof πy of a

function F with (secret)

inputs x and output

y = F (x).

Send πy and y

Verify y using πy.

Figure 2.1: zk-SNARK stages

Succinct Non-interactive ARgument of Knowledge. Zero-knowledge refers to the
fact that given a zk-SNARK proof, no additional information can be learnt about
the secret than the statement that is proven. Succinct refers to the proof size and
verification time of the proof. In order for a proof to be succinct, it needs to be small
(only a few hundred bytes for large programs) and have a short verification time
in the order of milliseconds. The non-interactive property indicates that there is no
interaction required between the prover and the verifier, which means that the prover
can create a proof without involving the verifier. Finally, the argument of knowledge
part indicates that the prover is able to convince the verifier that they know a secret,
without revealing that secret.

In general, a zk-SNARK proving system consists of three stages, namely setup,
prove and verify, as shown in Figure 2.1. In the setup phase, the proof parameters
are constructed. Depending on the specific scheme, this phase is required per
function, one-time only or not at all. In addition, the setup phase may be executed
solely by the verifier and shared with the prover, or in collaboration with the prover
using for example multi-party computation. In the prove phase, the prover uses the
parameters generated in the setup phase to create a proof πy of a function F with
(secret) inputs x and output y = F (x). Together with the output, the proof is sent
to the verifier, who initiates the verify phase. In this phase, the proof πy is verified
using the setup parameters and the result y, resulting in valid or invalid.

2.4.1 Pinocchio

The Pinocchio system presented in [PHGR13] is the first zk-SNARK with nearly
practical performance and forms the basis of many current zk-SNARK systems. In
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x1 x2

x3+

×

y

Figure 2.2: Example of an arithmetic circuit with inputs x1, x2 and x3 and output y.
This arithmetic circuit computes y = (x1 + x2) ∗ x3.

their paper, the authors present a solution to achieve verifiable computation in a
more efficient way. The goal of verifiable computation is to provide a proof of a
certain computation, which, together with the output of the computation, can be
checked for validity by a different party. The typical setting for verifiable computation
is outsourced computations from weaker clients (such as smartphones) to more
powerful workers (such as cloud servers). In such a setting, the client needs a
guarantee that the result returned from the worker is indeed the outcome of the
computation, which it can get by verifying the proof.

In order to prove the output of a function F , F needs to be converted to a
Quadratic Arithmetic Program (QAP), which is a way to encode an arithmetic cir-
cuit. An arithmetic circuit is a circuit with input and output wires that connect to
addition or multiplication gates, where values flow from the inputs to the outputs. An
example of an arithmetic circuit is shown in Figure 2.2. Since [GGPR13] shows how
an arithmetic circuit representing F can be efficiently encoded into a QAP, it suffices
to convert F to an arithmetic circuit. Hence, the workflow to encode F into a QAP is
as follows:

F
convert−−−−→ arithmetic circuit convert−−−−→ QAP

Before the prover can create a proof for their computation, a trusted setup is
required to generate the public evaluation key EKQ and the public verification key
VKQ for a QAP Q. Note that Q is required in the setup phase, and hence Pinocchio
requires a per-program setup. The setup can be done by the verifier, or in collabo-
ration with the prover. The prover cannot perform the setup on their own, because
generating the evaluation and verification keys exposes the randomly sampled val-
ues, which are also known as toxic waste. With this toxic waste, the prover is able
to forge proofs, which eliminates the trust in the proofs.

When the keys have been generated in the setup phase, Q and EKQ are sent
to the prover, as shown in Figure 2.3. The prover uses its own input u to compute
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Verifier Prover

Choose function F and

convert it to a QAP Q.

(EKQ ,VKQ)← setup(Q)

Send Q and EKQ

(y, πy)← prove(Q, u,EKQ),

where u is the (private)

input of the prover, such

that y = Q(u).

Send y and πy

{valid, invalid} ←
verify(y, πy,VKF )

Figure 2.3: The workflow of Pinocchio

y = Q(u) and a proof πy, which is an attestation that y is indeed the outcome of the
computation. The size of πy is always 288 bytes and thus independent of the size
of the computation. After y and πy have been computed, they are sent back to the
verifier. Using VKF and πy, it can be verified whether y was indeed the outcome of
the computation.

2.4.2 Overview of zk-SNARK systems

Since the publication of [PHGR13], the field of zk-SNARKs has seen an increase in
research activity with many zk-SNARK systems that improve upon Pinocchio on sev-
eral aspects, such as the proving efficiency and improvements on the setup phase.
In general, we can make a distinction between circuit-dependent and universal zk-
SNARKs.

2.4.2.1 Circuit-dependent zk-SNARKs

These zk-SNARK systems are characterized by the fact that a trusted setup is re-
quired for each circuit. While this limits the usability of these systems, the proving
time and size of the proofs are typically smaller than those of universal systems.
The Pinocchio scheme discussed in Section 2.4.1 falls under this category.
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In 2015, [CFH+15] published their paper about Geppetto, which improves on
Pinocchio by introducing Multi-QAPs. Multi-QAPs enable the prover to commit to
the same data in multiple proofs. This is especially useful in loops, in which the loop
body can be committed to once instead of unrolling the loop.

The most efficient zk-SNARK to date is that described by [Gro16]. While Pinoc-
chio’s proofs consist of 8 group elements, [Gro16] manages to reduce this to only 3
group elements, effectively reducing the proof size. In addition, verification of proofs
is faster with only 3 pairings, as opposed to Pinocchio’s 11 pairings. Finally, the keys
generated in the setup phase are smaller.

Pinocchio has already seen practical use in the digital currencies Zerocash
[BSCG+14] and its successor ZCash [Zer19], where zk-SNARKs are used to pro-
vide strong privacy guarantees. Because of its efficiency, [Gro16] has replaced the
Pinocchio proving system in the current version of ZCash.

2.4.2.2 Universal zk-SNARKs

Universal zk-SNARKs do not require a trusted setup per circuit and are thus uni-
versal in use. Zk-SNARKs in this category can be subdivided into three categories,
namely universal setup, transparent setup and universal circuits.

Universal setup. Zk-SNARKs with univeral setup are characterized by requiring
one universal trusted setup for all circuits. Sonic, introduced in [MKBM19], has a
universal setup, enabling proving any program up to a certain size. In addition, its
setup can be updated afterwards, strengthening its security in case the toxic waste
of the setup is leaked. While having competitive cost of verification, Sonic requires
batching of proofs to be efficient. Other zk-SNARK system in this category are
Libra [XZZ+19], PLONK [GWC20], Marlin [CHM+20], Mirage [KPPS20] and Lunar
[CFF+21].

Transparent setup. Zk-SNARK systems in this category do not require a trusted
setup, but at most a transparent setup. A transparent setup does not produce any
toxic waste, and can thus be publicly performed. However, the proof size is typically
larger than systems with a trusted setup, in the order of tens or hundreds of kilobytes.
One system with a transparant setup is Aurora [BSCR+19], in which only the hash
function needs to be agreed on by the parties, which is public information. Other
zk-SNARK systems with a transparent setup are Ligero [AHIV17], Spartan [Set20],
Halo [BGH19], Fractal [COS20], Hyrax [WTS+18] and zk-STARK [BSBHR18].
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Universal circuits. The last category of universal zk-SNARKs are that of univer-
sal circuits. Instead of converting each to-be-proven program to an arithmetic circuit,
this category of systems aims to generate one universal circuit for all programs. This
is done by viewing a program as data fed into the universal circuit, effectively simu-
lating a processor. [BSCTV14] is such a system, in which programs are executed on
vnTinyRAM, a von Neumann RISC architecture. While any program up to a certain
size can be proven with this method, the system has a clock rate of verified instruc-
tion per second of around 0.1Hz, making it unsuitable for practical use in its current
form.

2.5 SAVER

Presented in [LCKO19] in 2019, SAVER (SNARK-friendly, Additively-homomorphic
and Verifiable Encryption and decryption with Rerandomization) provides a solution
to combine encryption with zk-SNARKs. Traditionally, in order to encrypt inputs or
outputs of a zk-SNARK, the encryption should be performed in the zk-SNARK circuit.
However, due to the complex cryptographic operations, this increases the circuit size
in such an extent that the proving time becomes impractical. Instead, SAVER tackles
this problem by encrypting outside the circuit, and linking the encryption to the zk-
SNARK. This does not add any cryptographic computations to the zk-SNARK circuit,
and hence does not impact proving time.

SAVER is a probabilistic encryption scheme and can be used in conjunction with
[Gro16], as well as with other pairing-based schemes such as [GM17] and [KLO20].
As its expanded name suggests, it provides verifiable encryption and decryption,
and also supports rerandomization. Next to that, SAVER is additively homomorphic,
meaning that two encryptions c1 = E(m1) and c2 = E(m2) can be combined into
c12 = E(m1 +m2) by multiplying c1 with c2.

In contrast to most encryption schemes, SAVER’s decryption does not yield the
original plaintext m, but gm, where g is an element resulting from a pairing. Thus,
after the actual decryption, the result should be bruteforced to find the original plain-
text m. To make this efficient, the original plaintext should be split into n blocks, such
that each plaintext part mi can efficiently be bruteforced. The parts m1, . . . ,mn can
then be combined together to form the original plaintext.

The following algorithms are provided by SAVER:

• SETUP(relation): performs the zk-SNARK setup and prepares the Common
Reference String (CRS).

• KEYGEN(CRS ): generates three SAVER keys, namely a public key, secret key
and verification key.
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• ENC(CRS ,PK ,m1, . . . ,mn, ϕn+1, . . . , ϕl;w): encrypts the inputs m1, . . . ,mn

and returns the ciphertext together with the zk-SNARK proof.

• RERANDOMIZE(PK , π, CT ): rerandomizes the ciphertext.

• VERIFY ENC(CRS ,PK , π, CT , ϕn+1, . . . , ϕl): verifies the validity of the cipher-
text and the proof.

• DEC(CRS , SK ,VK , CT ): decrypts the ciphertext.

• VERIFY DEC(CRS ,VK ,m1, . . . ,mn, ν, CT ): verifies the validity of the de-
crypted ciphertext.

2.6 Approximate Membership Query Filters

An Approximate Membership Query Filter (AMQ-Filter) is a data structure that stores
data in a space-efficient way, such that it can be efficiently determined whether an
element is present in the filter. Since an AMQ-Filter is a probabilistic data structure,
it is possible that an element not present in the filter is designated as in the filter with
probability ϵ. While false positives can thus occur, false negatives are impossible.
Hence, if the answer to a membership query returns not in filter, it is certain
that the element is indeed not in the filter. In contrast, when returning in filter, it
is with probability 1− ϵ that this is indeed the case.

There are several types of AMQ-Filters with their own strengths and weaknesses.
The most notable are the Bloom filter [Blo70], cuckoo filter [FAKM14] and xor filter
[GL20].

Already conceived in 1970 [Blo70], a Bloom filter consists of a sequence of m
bits, all set to 0 initially. These bits are mutated using k different hash functions,
each mapping an arbitrary input to an index in the sequence. When an element is
inserted into the Bloom filter, it is hashed by each of the k hash functions, resulting
in k indices. The bit at each of those indices is then set to 1, regardless whether it is
already set to 1. Looking up an element then consists of hashing the element with
the k hash functions and checking whether all bits at the corresponding indices are
set to 1. If this is the case, the element is probably in the filter. If not, the element is
definitely not in the filter.

The cuckoo filter was published in 2014 [FAKM14] and presented as a replace-
ment for Bloom filters. While Bloom filters only support insertion and lookup, cuckoo
filters also support deletion. Instead of single bits, cuckoo filters store fingerprints
of the inserted elements in n buckets with bucket size b. It uses exactly two hash
functions and cuckoo hashing [PR01] to insert these fingerprints in the filter. When
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inserting an element, it is hashed with the first hash function, resulting in an index re-
ferring to one of the n buckets. If the bucket is not yet full, its fingerprint is computed
and inserted into the bucket. Otherwise, the element is hashed with the second
function and its fingerprint is inserted into the designated bucket if not full. If both
buckets are full, one of the fingerprints in one of the two buckets is replaced with
the new fingerprint. The alternative location of the replaced fingerprint is calculated
and the above procedure is repeated with the replaced fingerprint, until either all
fingerprints are situated in a bucket, or it is concluded that the insertion failed after
reaching a predefined maximum iterations. Looking up an element consists of locat-
ing the two possible buckets and checking whether one of the buckets contains the
fingerprint of the element. Removing an element from the cuckoo filter is achieved
by removing the fingerprint of that element from one of the two candidate buckets.

In contrast to the previously discussed filters, an xor filter [GL20] only supports
inserting elements during its construction. Similar to the cuckoo filter, it stores fin-
gerprints of elements, but these are stored in a one-dimensional array instead of
buckets. During construction, three hash functions are chosen, each mapping an el-
ement to a location in one-third of the array of fingerprints. By cleverly constructing
the xor filter, element lookup can be performed by a series of hash and XOR opera-
tions. During lookup, the fingerprint of the element is computed and the element is
hashed using the three hash functions. Each hash refers to a location in the array
of fingerprints, and the corresponding fingerprints are XOR’ed. If the result of these
XOR operations is equal to the fingerprint of the element, the element is probably in
the filter. Otherwise, it is definitely not in the filter.

While the aforementioned AMQ-Filters are all achieving a common goal, their
features and performances differentiate them. It has been shown that Bloom filters
require around 1.44 · log2(1ϵ ) bits per inserted element [Blo70], where ϵ is the false
positive rate. In contrast, cuckoo filters require less bits per element for a small
ϵ, namely log2(

1
ϵ
)+2

α
[FAKM14], where α is the load factor of the filter. In addition,

cuckoo filters require only two hash functions, as opposed to k hash functions of
a Bloom filter. Finally, xor filters are shown to require 1.23k bits per element, or
1.0824k + 0.5125 in its optimized form, where k is the fingerprint size in bits, beating
the Bloom filter and cuckoo filter when requiring a small false positive rate. Similar to
the cuckoo filter, only a small number of hash functions are required, namely three.
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Chapter 3

Related work

3.1 Zero-knowledge password protocols

The National Institute of Standards and Technology (NIST) describes a zero-
knowledge password protocol as “[a] password-based authentication protocol that
allows a claimant to authenticate to a verifier without revealing the password to the
verifier” [GGF17]. This means that, while passwords are used in the protocol, the
verifier never learns the password, but can be convinced of its correctness.

The basis of zero-knowledge for authentication has been laid already in 1992
with the publication of [BM92]. In their paper, the authors introduce the Encrypted
Key Exchange (EKE), which is a secure interactive key exchange using a password
as encryption key. Since messages are encrypted, parties without knowledge of
the password are not able to authenticate. The shared key originating from the key
exchange can subsequently be used to create zero-knowledge proofs, as knowledge
of the key proofs knowledge of the password. One downside, however, is that both
parties in the authentication process need to know the password in order to perform
the key exchange.

An important zero-knowledge password protocol still used today is the Secure
Remote Password (SRP) introduced in [Wu98]. In SRP, there are two parties,
namely a client that knows the password, and a server that holds a verifier. The
verifier is computed by the client and sent to sever, with which it can authenticate
the client. The verifier cannot be used to find the password or impersonate as the
client, making it useless if the verifier is compromised. Since the server does not
learn the password, SRP is a zero-knowledge protocol.

Both protocols described above can be generalized as Password-Authenticated
Key Exchange (PAKE) protocols, in which a password is used to securely estab-
lish a shared key interactively. There are two types of PAKE protocols, namely bal-
anced PAKE and augmented PAKE. Balanced PAKE assumes that both parties have
knowledge of the password. EKE is thus a balanced PAKE. Other balanced PAKE
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protocols are SPEKE [Jab96], J-PAKE [HR10] and CPace [AHH22]. Augmented
PAKE on the other hand only requires one party to know the password, making this
type more suitable for use in zero-knowledge protocols. SRP falls under this type, as
well as Augmented EKE [BM93], AuCPace [HL19] and OPAQUE [JKX18]. CPace
and OPAQUE have been standardized by the IETF in 2020 [Smy20].

Because the server does not receive the password in augmented PAKE proto-
cols, it cannot enforce password policies such as minimum password length. [KM14]
introduces Zero-Knowledge Password Policy Checks (ZKPPC), which is a class of
protocols that preserve zero-knowledge of the password, while still being able to
perform basic policy checks. The supported password policies are limited to min-
imum and maximum length and requirements regarding the number of uppercase
and lowercase letters, digits and symbols in a password. In addition, only ASCII
characters are supported.

In a later paper, the same authors introduced Blind Password Registration (BPR)
[KM16], improving upon [KM14]. While BPR is simpler and faster, it still only sup-
ports the same limited password policies, except that the constraint on the maximum
password length is removed. To the best of this author’s knowledge, no other work
about enforcing password policies in PAKE protocols exists.

3.2 Password policies

Several studies, such as [FH07] and [DMR10], have shown that people tend to use
passwords that are easy to remember, ranging from common passwords, such as
‘password’, to using their name or other public information as their password. How-
ever, those passwords are also much easier to guess by adversaries, which enables
them to impersonate other users.

To counter this, it is common to create rules that a password should comply with,
so-called password policies. These password policies are enforced by a service dur-
ing registration, such that users can only register if they choose a strong password.
The aim of password policies is to force users to choose more complex passwords,
typically with a certain minimum length and different character sets. [FH10] defines
three kind of attacks that are reduced by enforcing password policies: online brute-
force attacks, offline attacks on the file of hashed passwords and password re-use
across sites.

In online brute-force attacks, an adversary tries to guess the password by trying
many passwords for a single account. This can be done by iterating over all possible
passwords (e.g. ‘aaa’, ‘aab’, ...), as well as using a dictionary of common passwords.
This last attack is also known as a dictionary attack. While most systems lock an
account after a certain number of incorrect password guesses, an adversary might
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still be able to guess credentials of some account by fixing a handful of passwords
and iterating over many usernames. If accounts have a weak password, the adver-
sary might thus be able to learn those credentials, provided that they can obtain a
large number of usernames. Password policies can prevent this type of attack by
eliminating weak passwords, hence making bruteforcing unfeasible.

Secondly, with offline attacks on the file of hashed passwords it is assumed that
an adversary has gained access to the collection of hashed passwords and tries to
find the passwords corresponding to the hashes. While there are ways to make it
harder for an adversary to obtain a password from its hash using bruteforce (such
as using a salt and pepper in the hash and using memory-hard hash functions), it is
still relatively easy for an adversary to find weak passwords. These weak passwords
can be prevented by using strict password policies.

Finally, password re-use can be reduced because of different policies. The threat
of password re-use is that when the password is leaked from an account from one
service, other accounts of that user with the same password are also vulnerable. By
having different password policies, it might be that certain passwords are allowed at
one service, but not at another. For example, one service might impose a constraint
that no digits are allowed in the password, while another service might require at
least two digits. However, as the authors also notice, this does not seem to be a
primary goal of password policies.

To measure the effect of password policies, [KSK+11] uses the definition of en-
tropy to measure the password strength resulting from several policies. The entropy
of a password is correlated with the amount of guesses that an adversary needs to
do at most in order to find the password. If a password has an entropy of H, an
adversary needs to make 2H guesses at most, or 2H−1 guesses on average. The
entropy of a password can thus be calculated using the following formula:

H = log2 (N
L),

where N is the number of possible characters (e.g. digits and/or letters) and L the
password length. The higher the entropy, the more guesses an adversary needs on
average and thus the stronger the password is.

In their study, [KSK+11] argues that password policies should be a balance be-
tween security, where strict password policies improve password entropy and thus
password strength, and usability, where strict password policies degrade the usabil-
ity because users have to come up with and remember more difficult passwords.
In addition, the authors show that dictionary checks (prohibiting dictionary words)
increase the entropy of a password, but less than expected, while significantly de-
creasing the usability. From their tested password policies, it is concluded that a
minimum password length of 16 characters without additional rules provides the
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most entropy, while preserving usability.
Another research on password policies is [SKD+16], which aims to design secure

password policies, while also limiting its impact on usability. Through a large-scale
study, the password strengths originating from several policies are examined. In
contrast to [KSK+11], the strength of a password is not measured using entropy, but
using the number of required guesses to crack a password hash using two algo-
rithms. Next to insights in the nature of chosen passwords by the participants, the
authors describe some recommendation for service providers, among which avoid-
ing relying exclusively on length-only requirements and using substring blocklists
(e.g. disallowing passwords that contain the sequence ‘123’).



Chapter 4

zk-SCHNAPS

In this section, we present zk-SCHNAPS, zero-knowledge Secure Commitment-
based Homomorphic Authentication with Passwords using SNARKs. With this pass-
word authentication scheme, users can authenticate to a server without exposing
their password to the server. In addition, arbitrary password policies can be enforced
in zero-knowledge. This chapter is structured as follows. Section 4.1 presents the
main idea of the protocol. Section 4.2 then proceeds by discussing the encoding of
passwords in the zk-SNARK. Section 4.3 explains how password policies can be de-
signed and provides examples of the most common password policies. Section 4.4
then explains the proposed protocol in detail. Section 4.5 proceeds by discussing
measures against replay attacks. Finally, Section 4.6 discusses the security of the
used components and the protocol.

4.1 Main idea

The zk-SCHNAPS protocol consists of three phases, namely registration, login and
change password. Before the protocol can be used, a setup should be executed by
the server, establishing the necessary cryptographic primitives.

In the registration phase, a user registers theirself by choosing a username and
password. In order to be accepted by the system, the password should comply
to predefined password policies to ensure a secure password. These password
policies are embedded in a zk-SNARK, which proves compliance without exposing
the password. Because of its efficiency, the zk-SNARK system described in [Gro16]
is used, which has a proof size of only a few hundred bytes. The zk-SNARK is
combined with SAVER to encrypt the password hash for storage. The registration
phase is only executed once per user; after registration, users can advance to the
login phase.

During the login phase, a user enters their username and password as chosen
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in the registration phase. Because the password was already confirmed to comply
to the password policies in the registration phase, such a check is not necessary
anymore, and hence no zk-SNARK is used in this phase. Instead, the password is
encrypted with SAVER and combined with a zero-knowledge proof, affirming knowl-
edge of the password that is encrypted. Using the homomorphic property of SAVER,
the two encryptions are combined by the server using division, after which it can
check whether the passwords are equal by decrypting the combined ciphertext and
checking whether the result is equal to 1. This works because dividing two en-
cryptions of the same password hash results in the encryption of 0, which, due to
SAVER’s decryption resulting in gm for a base g and plaintext m, decrypts to 1. Only
if the username and password matches those chosen in the registration phase, the
decryption result will be 1 and the user can successfully login.

When a user is logged in, they can optionally change their password. This phase
is a combination of the registration and login phase. First, a user enters their old
password to confirm the action, following the same procedure as during login. Sec-
ond, a new password is chosen, which follows the requirements as in the registration
phase. After the password is successfully changed, the user can only login using
the new password; the old password is invalidated.

4.2 Encoding passwords as input of a zk-SNARK

Zk-SNARKs operate on inputs over a field F, typically Fp, where p is an l-bit prime.
However, a password is a variable-length string and thus incompatible as input of a
zk-SNARK. For a zk-SNARK to receive a password as input, the password should
thus be mapped to an element e ∈ F, ideally without loss of its properties.

One option is to encode each character of the password string (e.g. using ASCII
encoding) and use a separate input for each encoded character. While this eases
string encoding and accessing individual characters in the zk-SNARK computation,
it has the drawback of being inefficient due to the large circuit size and number
of constraints. In addition, there is a hard limit on the maximum password length,
because a zk-SNARK with n inputs can only support passwords with a length up to
n characters.

Another way to encode a string is described by [KM14]. As part of their research,
the authors describe a way to map a string of ASCII characters to a single integer.
This has the advantage that a zk-SNARK only requires one input for the password,
which results in a smaller circuit size and less constraints. Therefore it is the basis
of the password encoding algorithm described below.

While the approach described by [KM14] is similar, it is specifically targeted at
ASCII strings, although they mention that it can be easily adapted to other character
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sets such as UTF-8. In contrast, the approach proposed by us is universal for any
character set. In addition, [KM14] uses several constructs that are not relevant for
this research and can thus be omitted, resulting in a simplified algorithm.

We define the field F to be Fp, where p is an l-bit prime. Mapping a string to an
element e ∈ Fp then consists of two steps: mapping each character ci of the string
to an element ei ∈ Zb for a base b and aggregating each ei into a single element
e ∈ Fp.

First of all, we define a character set Σ that contains all characters that can be
used in a password. This character set can be ASCII, UTF-8 or any other (custom)
character set. We then choose a base b ∈ Fp such that b > n, where n = |Σ|. The
natural choice for b is n+ 1.

Secondly, we define an injective mapping function ϕ : Σ → Zb \ {0} that maps a
character c ∈ Σ to en element e ∈ Zb\{0}. A character cannot be mapped to 0, since
this term will not contribute to the aggregation step and will thus be disregarded (e.g.
if ϕ(a) = 0, then a, aa and aaa will all be mapped to the same element 0).

We can then aggregate all ei for 0 ≤ i < k, where k is the length of the password
string, by calculating

e =
k−1∑︂
i=0

ei · bi, (4.1)

which results in a single element e ∈ Fp that is the unique encoding for a password.
The algorithm for encoding a password is shown in Algorithm 1.

The operations can be reversed to decode the encoded string. Each ei can be
retrieved from e using

ei = ⌊
e

bi
⌋ mod b, (4.2)

where ⌊a
b
⌋ means integer division. Each ei can then be mapped to its corresponding

character by reversing the mapping. The decoding algorithm is shown in Algorithm
2.

Because e ∈ Fp, it is required that e < p. Hence, there is an implicit maximum
length, depending on the base b and prime p. The maximum password length can
be expressed in the following way:

lmax = ⌊logb(p)⌋ (4.3)

The larger the character set Σ, the larger b and thus the smaller the maximum
password length.
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Algorithm 1 Encode password
Require: base b, mapping function ϕ, password p̂
Ensure: encoding of the password

1: function ENCODE PASSWORD(b, ϕ, p̂)
2: e← 0

3: for i← 0 to LENGTH(p̂)− 1 do
4: ci ← CHARAT(p̂, i)

5: ei ← ϕ(ci)

6: e← e+ ei · bi

7: end for
8: return e

9: end function

Algorithm 2 Decode password
Require: base b, mapping function ϕ, endoded password e
Ensure: decoded password

1: function DECODE PASSWORD(b, ϕ, e)
2: p̂← ””

3: for i← 0 to logb(e) do
4: ei ← ⌊ ebi ⌋ mod b

5: ci ← ϕ−1(ei)

6: p̂← p̂+ ci

7: end for
8: return p̂

9: end function

4.3 Encoding password policies in a zk-SNARK

Now that the password encoding scheme is defined, password policies can be ex-
pressed. Since zk-SNARKs can proof any program up to a certain size, arbitrary
password policies can be enforced (up to that size). This section first describes the
general approach of creating password policies (Section 4.3.1). Section 4.3.2 then
illustrates the implementation of the most common password policies.
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4.3.1 Creating password policies

With the password as input of the zk-SNARK, constraints can be designed such
that a valid proof can only be generated if the password follows these constraints.
If these constraints are encoded password policies, then it follows that if and only
if the password complies to the implemented password policies, a valid proof can
be generated. Hence, checking the validity of a proof affirms whether the password
complies to the password policies.

A password policy receives the password as input, possibly together with other
auxiliary inputs. It then proceeds with asserting certain properties of the password
using constraints. If all constraints are met, the password is accepted by the policy.
Otherwise, it is rejected. Next to creating individual password policies, policies can
also be combined using logical operators such as AND and OR. This allows for more
complex password policies.

4.3.2 Example policies

This section describes the implementation of four common password policies,
namely minimum password length (Section 4.3.2.1), minimum number of characters
from a subset (4.3.2.2), password not in blocklist (4.3.2.3) and substring of password
not in blocklist (4.3.2.4).

4.3.2.1 Minimum password length

One of the most deployed password policies is the minimum length check. To ensure
strong passwords, passwords with less than n characters are often invalidated. The
exact value of n can be chosen independently by each service and is often a trade-
off between security (the more characters, the more difficult the password can be
guessed) and usability (the less characters, the easier to remember the password).

In order to check whether the password consists of at least n characters, it suf-
fices to compare the encoded password to bn−1, where b is the base chosen in the
password encoding step. Since the encoding of a password with less than n char-
acters is at most

∑︁n−2
i=0 (b − 1) · bi = bn−1 − 1, a password is valid if its encoding is

greater than bn−1 − 1. The corresponding algorithm is shown in Algorithm 3.

4.3.2.2 Minimum number of characters from a subset

Another often deployed password policy is checking whether a passwords contains
a minimum number of characters from certain character sets. Typically used char-
acter sets are lowercase characters, uppercase characters, digits and symbols. The
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Algorithm 3 Enforcement of minimum password length
Require: base b, minimum n ≥ 1, valid password encoding e
Ensure: reject password if e contains less than n characters

1: function MINPASSWORDLENGTH(b, n, e)
2: if e < bn−1 then
3: REJECT(e)
4: else
5: ACCEPT(e)
6: end if
7: end function

required minimum number of characters n can be chosen independently for each
character set.

Checking whether a password contains the minimum number of characters from
a certain subset comes down to extracting the characters from the encoded pass-
word using Equation 4.2 and counting each character that is in the subset. The
resulting sum k can then be compared to the predefined minimum number of char-
acters n. The password is rejected if k < n. This algorithm is also shown in Algorithm
4.

Algorithm 4 Enforcement of minimum number of characters from a subset
Require: base b, subset s, minimum n ≥ 0, valid password encoding e
Ensure: rejects password if e contains less than n characters from s

1: function MINCHARACTERSFROMSUBSET(b, s, n, e)
2: k ← 0

3: for i← 0 to PASSWORDLENGTH(e)− 1 do
4: c← ⌊ e

bi
⌋ mod b

5: if c ∈ s then
6: k ← k + 1

7: end if
8: end for
9: if k < n then

10: REJECT(e)
11: else
12: ACCEPT(e)
13: end if
14: end function
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4.3.2.3 Password not in blocklist

While the previously discussed password policies restrict passwords that do not
conform to certain requirements, it may still allow commonly used passwords and
compromised passwords. These types of passwords are susceptible to dictionary
attacks, in which an attacker uses a dictionary of known passwords to guess the
password of a certain account. Disallowing these kinds of passwords can mitigate
these kinds of attacks and thus greatly improve account security.

Common passwords can be collected and compiled into a blocklist, in which a
user’s chosen password may not occur. The straightforward way to check whether
a password occurs on the blocklist is by comparing the password with each entry of
the blocklist and rejecting the password if any of the entries matches the password.
While this ensures that there are no false positives and false negatives, the password
needs to be compared to all entries, which is not efficient for large blocklists.

A well-researched construct that can improve the efficiency is an Approximate
Membership Query Filter (AMQ-Filter). By inserting all passwords from the blocklist
into an AMQ-Filter, the blocklist can (1) be stored more efficiently in a zk-SNARK
and (2) be queried more efficiently, at the expense of introducing a false-positive
probability ϵ. There are several types of AMQ-Filters with their own strengths and
weaknesses, among which the Bloom filter [Blo70], cuckoo filter [FAKM14] and xor
filter [GL20]. From these, the xor filter is shown to be the most space-efficient.
While xor filters do not support inserting elements after construction, this does not
impact its suitability for password blocklists, as these lists can be generated once
and embedded in a zk-SNARK. If more passwords need to be added, the filter can
be constructed from scratch again. Hence, the xor filter has been opted for.

Since zk-SNARKs operate over a field Fp, the fingerprints of the filter must be
represented as field elements. When storing each fingerprint separately as an el-
ement, the space complexity will be very large. Since the number of fingerprints
stored in the filter is larger than the length of the blocklist, the space complexity
would be even larger than including the original blocklist. Instead, we can use the
fact that all fingerprints have a fixed size to our advantage. By fitting as many finger-
prints inside an element in Fp, the space requirements are greatly reduced. Similar
to the encoding of passwords discussed in Chapter 4.2, this is done by stacking the
fingerprints, with the fingerprint size as base. The encoding algorithm is shown in
Algorithm 5.

In order to use a blocklist filter, several steps need to be performed. First of all, a
blocklist should be created, containing passwords which are encoded as described
in Section 4.2. Secondly, a suitable hash function needs to be chosen that should be
efficient for use in zk-SNARKs, a so-called SNARK-friendly hash function. This hash
function does not need to be cryptographically secure, as long as it is sufficiently
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Algorithm 5 Encode xor filter
Require: xor filter f , fingerprint bit size s
Ensure: encoded xor filter

1: function ENCODEXORFILTER(f , s)
2: fingerprintsPerElement← ⌊MAXBITS

s
⌋

3: elements← []

4: for i← 0 to ⌈ LENGTH(f)
fingerprintsPerElement

⌉ do
5: start← i · fingerprintsPerElement
6: end← MIN((i+ 1) · fingerprintsPerElement, LENGTH(f ))
7: el← 0

8: for j ← start to end− 1 do
9: el← el + (GET(f, j) << ((fingerprintsPerElement− 1− j) ∗ s))

10: end for
11: APPEND(elements, el)
12: end for
13: return elements

14: end function

independent and uniformly distributed. Examples of SNARK-friendly hash functions
are MiMC7 [AGR+16], Poseidon [GKR+21], Pedersen [BHW20] and Rescue Prime
[SAD20], which are all suitable to be used as hash function in the blocklist filter. To
obtain three different hash functions, different seeds can be used.

After construction, the filter is encoded using Algorithm 5 and embedded in the
zk-SNARK. Testing whether the blocklist filter contains a password is done as fol-
lows. First, the password is hashed with the three hash functions generated in the
construction phase. While the hash indicates the index of the fingerprint in the fil-
ter, it cannot be used directly, since the filter is encoded. Instead, the index in the
encoded filter can be retrieved by dividing the hash by the number of fingerprints
per element. Similarly, to obtain the correct fingerprint part from the element at the
found index, the hash modulo the number of fingerprints per element is calculated.
After extracting them from the encoded filter, the fingerprints are XOR’ed. Finally,
the fingerprint of the password is compared to the result of the XOR operations. If
they are the same, then the password is probably on the blocklist and thus rejected.
Otherwise, the password is accepted. This algorithm is also shown in Algorithm 6.

As already mentioned, the use of AMQ-Filters introduces a false positive rate ϵ. In
the context of password blocklists, this means that some passwords will be rejected,
while not present in the blocklist. The choice of fingerprint size determines the exact
value of ϵ. While having small fingerprints is beneficial in terms of filter size, it incurs
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Algorithm 6 Enforcement of password not in blocklist
Require: encoded xor filter f , fingerprint bit size s, hash functions h0, h1, h2, valid

password encoding e
Ensure: in filter if e ∈ f with error probability ϵ; not in filter if e /∈ f

1: function PASSWORDNOTINBLOCKLIST(f, s, h0, h1, h2, e)
2: fingerprintsPerElement← ⌊MAXBITS

s
⌋

3: fp← FINGERPRINT(e)

4: res← 0

5: for i← 0 to 2 do
6: hash← hi(e)

7: elementNo← ⌊ hash
fingerprintsPerElement

⌋
8: elementPart← hash mod fingerprintsPerElement

9: res ← res ⊕ ((GET(f, elementNo) >> (fingerprintsPerElement −
elementPart− 1) ∗ s) & ((1 << s)− 1))

10: end for
11: if fp = res then
12: REJECT(e)
13: else
14: ACCEPT(e)
15: end if
16: end function

a higher false positive rate. There is thus a trade-off between fingerprint size and
false positive rate.

4.3.2.4 Substring of password not in blocklist

Similar to disallowing certain passwords, it can benefit security to block certain sub-
strings. For example, passwords containing ‘password’ or ‘123’ are very likely easy
to guess. By compiling a blocklist of forbidden substrings, this kind of passwords
can be effectively blocked.

In contrast to the password blocklist, it is not possible to use an AMQ-Filter to
efficiently check whether a substring is in the filter in the same way. This has two
reasons. First of all, changing one bit in the input will result in a completely different
hash. Hence, a password cannot be checked once for all substrings. Secondly,
while it is possible to compare each substring of a password to a blocklist filter, this
will not be efficient. Since a password of length n contains n·(n+1)

2
substrings, n·(n+1)

2

queries to the filter are required to check all substrings. Therefore, this approach is
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Algorithm 7 Enforcement of substring of password not in blocklist
Require: base b, blocklist l, valid password encoding e
Ensure: rejects password if e contains a substring s ∈ l

1: function SUBSTRINGOFPASSWORDNOTINBLOCKLIST(b, l, e)
2: passwordLength← PASSWORDLENGTH(e)

3: for all i ∈ l do
4: substringLength← PASSWORDLENGTH(i)
5: for j ← 0 to passwordLength− substringLength do
6: s← ⌊ e

bj
⌋ mod bsubstringLength

7: if s ∈ b then
8: REJECT(e)
9: end if

10: end for
11: end for
12: ACCEPT(e)
13: end function

infeasible.

Instead, the approach is to compile a list of forbidden substrings, encode each
substring with the encoding discussed in Section 4.2 and embed the blocklist in
the zk-SNARK. Checking whether the password contains any substring then comes
down to iterating over the substrings in the blocklist and comparing each substring
with the password. To do this comparison, an iteration is required over all possible
starting positions of that substring, and comparing each part of the password with
that substring. If any of the substrings matches, the password is rejected. Otherwise,
it is accepted. This algorihm is also shown in Algorithm 7.

While this approach has the advantage of not introducing any false positives, it
has as drawback that it is less efficient than using AMQ-Filters. Hence, for perfor-
mance reasons, the substring blocklist cannot be very large.

4.4 Protocol

Using the results from Sections 4.2 and 4.3, the protocol can be built. The protocol
achieves zero-knowledge of the password, while still being able to enforce password
policies. This section describes the different phases of the protocol, which are Setup,
Registration, Login and Change password.
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4.4.1 Setup

Before the protocol can be used, a setup is required. This setup is executed solely
by the server and comprises setting up the cryptographic primitives and generating
cryptographic keys. More specifically, the setup entails setting up the zk-SNARK
Common Reference String (CRS), setting up SAVER and generating the SAVER
keys. The key generation results in three different keys, namely the public key PK ,
secret key SK and verification key VK . PK is required by the client to generate
proofs and is thus public. SK and VK are required to decrypt and verify cipher-
texts respectively and stay on the server. The CRS and SAVER setup is shown in
Algorithm 8. The SAVER key generation is shown in Algorithm 9.

4.4.2 Registration

During the registration phase, a user chooses a username and password. In order to
prove to a server that the password complies to the password policies, a zk-SNARK
is used. This zk-SNARK takes as input the password and a salt, and computes and
outputs the password hash. Of these inputs and outputs, the salt and hash should

Algorithm 8 SAVER setup
Require: relation rel
Ensure: Common Reference String CRS

1: function SETUP(rel)
2: CRSˆ ← Πsnark.SETUP(rel)

3: CRS ← CRSˆ ∪ {G−γ}
4: return CRS

5: end function

Algorithm 9 SAVER key generation
Require: CRS

Ensure: SAVER keys

1: function KEYGEN(CRS )
2: s, v, t0, t1, ρ

$← Z∗
p

3: PK ← (Gδ, Gδs, G1
t1 , H t0 , H t1 , Gδ(t0+t1s), G−γ(1+s))

4: SK ← ρ

5: VK ← (Hρ, Hsv, Hρv)

6: return (PK , SK ,VK )

7: end function
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be public, as the salt should be stored by the server and the hash is to be encrypted
using SAVER. In contrast, the password is a private input and thus never exposed
to the server.

Ideally, the password hashing function should be cryptographically secure and
memory-hard, such that bruteforcing passwords and computing hashes is slow. This
ensures that even if an adversary gets hold of the SAVER private key, finding the
password is difficult. Apart from computing the password hash, the zk-SNARK en-
forces password policies, implemented as discussed in Section 4.3. A valid zk-
SNARK proof can only be generated if the password complies to the implemented
password policies. Hence, it suffices to verify the zk-SNARK proof to check whether
the password complies to the chosen password policies.

To authenticate a user after registration, some derivation of the password needs
to be stored at the server. For this, we use SAVER to encrypt the output of the
zk-SNARK, which is the password hash. This encryption is sent alongside the pass-
word proof to the server, which validates them both and stores the encryption with
the username and salt.

The interaction flow between the client and the server is shown in Figure 4.1.
The procedure of creating a proof and the corresponding encryption is shown in
Algorithm 10. Finally, the verification algorithm is shown in Algorithm 11.

Client Server

Choose valid username û

and password p̂.

ŝ
$← Zp

(π, CT )←
Encregistration(CRS , p̂, ŝ)

Send û, π, CT , ŝ

Verify Encregistration(

CRS ,PK , π, CT , ŝ)

Store û, ŝ and CT .

{valid, invalid}

Figure 4.1: Registration interaction flow
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Algorithm 10 Encregistration

Require: CRS , SAVER public key PK , password p̂, salt ŝ
Ensure: valid proof and password hash encryption

1: function ENCREGISTRATION(CRS ,PK , p̂, ŝ)
2: let PK = (X0, X1, Y, Z0, Z1, P1, P2)

3: r
$← Z∗

p

4: (ĥ, π̂ = (A,B,C))← Πsnark.PROVE(CRS, p̂, ŝ)

5: π ← (A,B,C · P2
r)

6: CT ← (X0
r, X1

rG1
ĥ, ψ = P1

rY ĥ)

7: return (π, CT )
8: end function

Algorithm 11 Verify Encregistration

Require: CRS , SAVER public key PK , proof π, ciphertext CT , salt ŝ
Ensure: succeeds if and only if CT is a valid ciphertext belonging to π and π is a

valid zk-SNARK proof; fails otherwise

1: function VERIFY ENCREGISTRATION(CRS ,PK , π, CT , ŝ)
2: parse π = (A,B,C) and CT = (c0, c1, ψ)

3: let PK = (X0, X1, Y, Z0, Z1, P1, P2)

4: assert e(c0, Z0) · e(c1, Z1) = e(ψ,H)

5: assert e(A,B) = e(Gα, Hβ) · e(c0 · c1 ·G2
ŝ, Hγ) · e(C,Hδ)

6: end function

4.4.3 Login

After a user is registered, they can subsequently log in to the server using the same
credentials. Because the password has already been proven to comply with the
policies in the registration phase, a zk-SNARK proof does not provide additional
security. Instead, a similar approach to SAVER is taken to arrive at an encryption,
which can subsequently be checked by the server.

When a client wants to log in with their credentials, they first request the salt that
was used in the registration phase. Since salts are public information, those can be
returned on request via an API call or stored in a public directory. Using the salt, the
client hashes the password with the same hashing function Hp as used in the zk-
SNARK, mirroring the hash calculation of the zk-SNARK. Secondly, it uses the same
SAVER parameters and keys as in the registration phase to encrypt the password
hash. Because SAVER’s encryption scheme is probabilistic, the ciphertext will be
different from the ciphertext stored at the server.
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Prover Verifier

y = X1
rG1

ĥ

k0, k1 ∈R Zp

t = X1
k0G1

k1

t

e ∈R Zp

e

s0 = k0 + re (mod p)

s1 = k1 + ĥe (mod p)

s0, s1

t
?
= X1

s0G1
s1y−e

Figure 4.2: Sigma protocol proving knowledge of the exponents in c1

To prevent adversaries from using the ciphertext stored at the server during lo-
gin, a zero-knowledge proof is added to the ciphertext. This zero-knowledge proof is
a sigma protocol, proving the knowledge of the exponents of the second item of the
ciphertext, r and ĥ in X1

rG1
ĥ, made non-interactive using the Fiat-Shamir heuristic

[FS87]. Because of the structure of c1, this is similar to proving knowledge of the
exponents of a Pedersen commitment [Ped92]. The sigma protocol is shown in Fig-
ure 4.2. After applying the Fiat-Shamir heuristic, the non-interactive zero-knowledge
proof consists of the triple φ = (φCo, φCh, φRe):

φCo = (X1
k0G1

k1)

φCh = Hφ(X1, G1, y, φCo)

φRe = (k0 + r · φCh (mod p), k1 + ĥ · φCh (mod p))

where Hφ is a cryptographic hash function. Because of this non-interactive zero-
knowledge proof, randomizing the SAVER encryption will not result in a valid proof,
unless the exponents are known, with which a new proof can be generated.

The username û and the ciphertext CT are then sent to the server. First, the
server checks whether CT is well-formed. Secondly, it verifies the correctness of the
included non-interactive zero-knowledge proof, by checking whether

Hφ(X1, G1, y,X1
s0G1

s1y−φCh)
?
= φCh.
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If these two checks succeed, the ciphertext is well-formed and valid. However, this
does not mean that the credentials are correct. For this, the server retrieves the
stored ciphertext CT ′ using û. Now, there are two ciphertexts CT and CT ′ that need
to be compared to find whether the same ĥ was encrypted. This can be done in
two ways. First of all, both ciphertexts can be decrypted similar to SAVER to obtain
e(G1, V2)

ĥ and e(G1, V2)
ĥ
′
, which can directly be compared for equality.

The second approach is to exploit the homomorphic property of SAVER. Instead
of decrypting both ciphertexts, the ciphertexts are combined using the division op-
erator:

CT ′′ = (
c0
c0′
,
c1
c1′

)

= (
X0

r

X0
r′
,
X1

rG1
ĥ

X1
r′G1

ĥ
′ )

= (X0
r−r′ , X1

r−r′G1
ĥ−ĥ

′
)

after which CT ′′ can be decrypted. It can then be checked whether the result is
equal to 1, which indicates successful authentication. After all, if we have ĥ = h′̂,
then we find

CT ′′ = (X0
r−r′ , X1

r−r′G1
ĥ−ĥ)

= (X0
r−r′ , X1

r−r′G1
0)

and the decryption will yield e(G1, V2)
0 = 1.

Each decryption requires two pairings and one division, resulting in four pairings
and two divisions for the first approach. In contrast, the second approach requires
only one decryption and two divisions, resulting in two pairings and three divisions.
Since a division operation is more efficient than a pairing, the second approach has
a better performance and is thus favored.

Algorithm 12 shows the algorithm for creating the encryption. For the server side,
algorithm 13 shows the verification procedure and algorithm 14 shows the algorithm
for comparing the two ciphertexts. Finally, the complete login interaction flow is
shown in Figure 4.3.

4.4.4 Change password

The last part of the protocol is change password and is a combination of the regis-
tration and login phases. First, to confirm the action, the client performs the same
procedure as during login using their current password. Secondly, a zk-SNARK
proof is created in a similar way as during registration, using their newly chosen
password. These two ciphertexts and proofs are sent to the server, which checks
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Algorithm 12 Enclogin

Require: CRS , SAVER public key PK , password p̂, salt ŝ
Ensure: valid password hash encryption

1: function ENCLOGIN(CRS ,PK , p̂, ŝ)
2: let PK = (X0, X1, Y, Z0, Z1, P1, P2)

3: ĥ← Hp(p̂; ŝ)

4: r, k0, k1
$← Z∗

p

5: CT̂ = (c0, c1, ψ)← (X0
r, X1

rG1
ĥ, ψ = P1

rY ĥ)

6: φCo ← X1
k0G1

k1

7: φCh ← Hφ(X1, G1, c1, φCo)

8: φRe ← (k0 + r · φCh, k1 + ĥ · φCh)

9: CT ← (c0, c1, ψ, φ = (φCo, φCh, φRe))

10: return CT
11: end function

Algorithm 13 Verify Enclogin

Require: CRS , SAVER public key PK , ciphertext CT
Ensure: succeeds if and only if CT is a valid ciphertext; fails otherwise

1: function VERIFY ENCLOGIN(CRS ,PK , CT )
2: parse CT = (c0, c1, ψ, φ = (φCo, φCh, φRe = (s0, s1)))

3: let PK = (X0, X1, Y, Z0, Z1, P1, P2)

4: assert e(c0, Z0) · e(c1, Z1) = e(ψ,H)

5: assert Hφ(X1, G1, c1, X1
s0G1

s1c1
−φCh) = φCh

6: end function
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Client Server

Enter username û

and password p̂.

Request salt belonging

to û

ŝ← DB.FindSalt(û)

ŝ

CT ←
Enclogin(CRS ,PK , p̂, ŝ)

Send û and CT

Verify Enclogin(

CRS ,PK , CT )

CT̂ ← DB.FindCT(û)

Compare Enc(

CRS , SK ,VK , CT , CT̂ )

{valid, invalid}

Figure 4.3: Login interaction flow
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Algorithm 14 Compare Enc
Require: CRS , SAVER private key SK , SAVER verification key VK , first ciphertext
CT , second ciphertext CT ′

Ensure: succeeds if the encrypted password hashes are equal; fails otherwise

1: function COMPARE ENC(CRS , SK ,VK , CT , CT ′)
2: parse CT = (c0, c1, ψ, φ) and CT ′ = (c0

′, c1
′, ψ′, φ′)

3: CT̂ ← ( c0
c0′
, c1
c1′
)

4: m← DEC(CRS , SK ,VK , CT̂ )
5: assert m = 1

6: end function

7: function DEC(CRS , SK ,VK , CT )
8: parse sk = ρ, VK = (V0, V1, V2) and CT = (c0, c1)

9: return e(c1,V2)
e(c0,V1)ρ

10: end function

them similarly as in the registration and login phase. Only if both ciphertexts and
proofs are correct, the stored ciphertext is replaced with the new one, invalidating
the old one. This interaction flow is shown in Figure 4.4.

4.5 Protecting against replay attacks

Because the protocol is non-interactive, replay attacks are a present threat. Replay
attacks are performed by capturing valid messages and retransmitting them, which
may lead to tricking the server into accepting the message as if it was original. In
the case of our proposed protocol, this means that if an attacker is able to capture a
valid ciphertext, they can use that ciphertext to log in, even if they do not know the
password.

Preventing replay attacks in our protocol is only needed for the login and change
password phases. After all, if a proof in the registration phase is replayed, a new
account is created and hence no additional gain can be obtained in comparison with
creating an original proof.

For the other two phases, an extra freshness check on the server side can thwart
replay attacks. This check is linked to the zero-knowledge proof φ, which is in-
cluded in the ciphertext. Because k0 and k1 are chosen randomly for each proof,
the commitment φCo = X1

k0G1
k1 has a very high probability to be unique. Hence, all

previously received commitments can be stored by the server, possibly in a space-
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Client Server

Enter username û, old

password p̂ and new

password p̂′.

ŝ′
$← Zp

(π′, CT ′)←
Encregistration(CRS , p̂

′, ŝ ′)

Request salt belonging

to û

ŝ← DB.FindSalt(û)

ŝ

CT ←
Enclogin(CRS ,PK , p̂, ŝ)

Send π′, CT ′, ŝ′, CT

Verify Enclogin(

CRS ,PK , CT )

CT̂ ← DB.FindCT(û)

Compare Enc(

CRS , SK ,VK , CT , CT̂ )

Verify Encregistration(

CRS ,PK , π, CT ′, ŝ′)

Replace ŝ and CT̂
associated to û with

ŝ′ and CT ′.

{valid, invalid}

Figure 4.4: Change password interaction flow
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Algorithm 15 Verify Freshness
Require: commitment collection Φ, ciphertext CT
Ensure: succeeds if and only if CT is a fresh ciphertext; fails otherwise

1: function VERIFY FRESHNESS(Φ, CT )
2: parse CT = (c0, c1, ψ, φ = (φCo, φCh, φRe))

3: assert φCo /∈ Φ

4: Φ← Φ ∪ φCo

5: end function

efficient way such as AMQ-Filters, and be used as a blocklist for future commitments.
This disallows re-use of the zero-knowledge proof φ, which in turn disallows re-using
the whole ciphertext CT . The freshness check is shown in Algorithm 15 and should
be performed by the server after Verify Enclogin.

4.6 Security

In this section, the security of the protocol is discussed on the basis of the security
assumptions and the security of its components. These components are the zk-
SNARK in the registration phase, SAVER and the zero-knowledge proof of the login
phase.

We model the server as an honest-but-curious adversary. This is because it
needs to be trusted to generate correct keys and throw away the toxic waste of the
zk-SNARK setup. However, it might still want to learn as much as possible.

The zk-SNARK system used in the registration phase, [Gro16], has been shown
to be secure in the generic bilinear group model (GBGM) [Sho97, Gro16]. With small
modifications, [ABLZ17] shows that the zk-SNARK system is secure in the sub-
version generic bilinear group model (Sub-GBGM), which is stronger than GBGM.
Since no modifications are done to the zk-SNARK system, the GBGM security also
holds in the proposed protocol.

SAVER has been proven to be IND-CPA secure [LCKO19]. In addition, the au-
thors prove the soundness of the ciphertext and zk-SNARK resulting from the Enc

phase. Since we do not alter the encryption scheme (except for adding an additional
element in the form of a non-interactive zero-knowledge proof), the same security
holds in the proposed protocol.

The zero-knowledge proof added to the ciphertext in the login phase is a sigma
protocol proving knowledge of a Pedersen commitment, made non-interactive using
the Fiat-Shamir heuristic [FS87]. Its security thus consists of two parts, namely that
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of the Pedersen commitment and of the non-interactive sigma protocol.
A Pedersen commitment has been shown to be information theoretically hiding

and computationally binding. Hence, it is impossible for an adversary to find the
committed values purely based on its commitment. Finding different values which
result in the same commitment is possible, but is considered hard.

The interactive sigma protocol shown in Figure 4.2 can be shown to be se-
cure based on three requirements, namely completeness, soundness and zero-
knowledge (see Section 2.3), provided that the verifier is honest. We now provide
a proof that the interactive sigma protocol proving knowledge of a Pedersen com-
mitment is a secure zero-knowledge protocol. When using the Fiat-Shamir heuristic
to make the sigma protocol non-interactive, the result is proven to be secure in the
random oracle model [PS96].

Theorem 1. The interactive sigma protocol shown in Figure 4.2 is a secure zero-
knowledge procotol.

Proof. We prove this by showing that the sigma protocol conforms to the require-
ments of a secure zero-knowledge protocol:

Completeness. If the prover knows r and ĥ, then the verifier always accepts the
proof:

t = X1
s0G1

s1y−e

= X1
k0+reG1

k1+ĥeX1
−reG1

−ĥe

= X1
k0+re−reG1

k1+ĥe−ĥe

✓
= X1

k0G1
k1

Soundness. To prove soundness, we show that the protocol is special-sound,
which implies soundness. We do this by showing that given two protocol runs with
the same commitment but different challenges ((t, e, s0, s1) and (t, e′, s0′, s1′), where
e ̸= e′), an adversary can recover the committed values:

X1
s0G1

s1y−e = X1
s0′G1

s1′y−e′

X1
s0G1

s1X1
−reG1

−ĥe = X1
s0′G1

s1′X1
−reG1

−ĥe′

X1
s0−reG1

s1−ĥe = X1
s0′−re′G1

s1′−ĥe′

s0 − re = s0
′ − re′ ∧ s1 − ĥe = s1

′ − ĥe′

r =
s0 − s0′

e− e′
∧ ĥ =

s1 − s1′

e− e′
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Zero-knowledge. We prove the zero-knowledge requirement by showing that a
real transcript and a simulation are indistinguishable .The distribution of transcripts
generated by the real protocol is:

{(t, e, s0, s1) : k0, k1 ∈R Zp; e ∈R Zp; t = X1
k0G1

k1 ;

s0 = k0 + re (mod p); s1 = k1 + ĥe (mod p); }

The distribution of accepting transcripts that the simulator can generate is:

{(t, e, s0, s1) : s0, s1 ∈R Zp; e ∈R Zp; t = X1
s0G1

s1y−e}

These two distributions are identical, and each transcript occurs with equal proba-
bility. Hence, the real transcript and simulation are indistinguishable.
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Evaluation

In order to show the feasibility of the proposed protocol, an implementation has been
built. Section 5.1 provides details about this implementation. Section 5.2 then pro-
ceeds by showing benchmarks of the implementation to estimate its performance.

5.1 Implementation

To create and verifiy zk-SNARK proofs, the Node.js library snarkjs [ide] is used,
which relies on Circom [BmIMt+22] for designing circuits. We extended the snarkjs
library to support SAVER’s setup, key generation, encryption, verify encryption and
decryption operations1. This extended library is then used in another Node.js library
schnapsjs2, which implements the protocol functions and exposes them via an API.
The API consists of the following functions:

• Registration:

– CREATEPROOF

– VERIFYPROOF

• Login:

– CREATEENCRYPTION

– VERIFYENCRYPTION

– COMPAREENCRYPTIONS

Next to these libraries, a Rust program has been developed to create password
blocklists as described in Section 4.3.2.33. It takes a list of passwords as input, and

1https://github.com/Matthiti/snarkjs
2https://gitlab.com/Matthiti/schnapsjs
3https://gitlab.com/Matthiti/zk-snark-password-blocklist-encoder

41

https://github.com/Matthiti/snarkjs
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outputs the generated parameters and encoded blocklist, such that it can be embed-
ded in a zk-SNARK. Finally, a demo application has been developed, showcasing
the real-world use of the schnapsjs library, consisting of a server and a client4.

5.2 Performance

As described in Section 4.2, a password should first be encoded before it can be
used in a zk-SNARK. The character set Σ used in these benchmarks consists of all
printable ASCII characters, which yields the following mapping function:

ϕ(c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⊥ if ASCII(c) < 32

ASCII(c)− 31 if 32 ≤ ASCII(c) ≤ 126

⊥ if ASCII(c) > 126

(5.1)

Since n = |Σ| = 95, we use the base b = n + 1 = 96. The complete mapping is
shown in Table 5.1.

To obtain a representative set of passwords for the password blocklists, the
xato.net password list is used, which contains around five million unique passwords
[Mie19]. MiMC7 [AGR+16] is used as the hash function of the xor filter, with different
seeds to obtain distinct hash functions.

All benchmarks have been performed on a 2020 MacBook Pro 13” with a 2.0-
GHz quad-core Intel Core i5-1038NG7 processor and 16 GB of RAM.

5.2.1 schnapsjs

The performance of the schnapsjs library can be measured in terms of execution
time per function. The functions are parameterized by zk-SNARK circuit and thus by
choice of password policies, for which the following scenarios have been chosen:

(A) Minimum password length (8)

(B) Minimum password length (8) + lowercase characters (1) + uppercase charac-
ters (1) + digits (1) + symbol (1)

(C) Minimum password length (8) + blocklist with 10,000 passwords with fingerprint
size 8

(D) Minimum password length (8) + blocklist with 100,000 passwords with finger-
print size 8

4https://gitlab.com/Matthiti/zk-schnaps-demo

https://gitlab.com/Matthiti/zk-schnaps-demo
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Table 5.1: Mapping resulting from Equation 5.1
Character Value Character Value Character Value

1 @ 33 ` 65

! 2 A 34 a 66

” 3 B 35 b 67

# 4 C 36 c 68

$ 5 D 37 d 69

% 6 E 38 e 70

& 7 F 39 f 71

’ 8 G 40 g 72

( 9 H 41 h 73

) 10 I 42 i 74

* 11 J 43 j 75

+ 12 K 44 k 76

, 13 L 45 l 77

- 14 M 46 m 78

. 15 N 47 n 79

/ 16 O 48 o 80

0 17 P 49 p 81

1 18 Q 50 q 82

2 19 R 51 r 83

3 20 S 52 s 84

4 21 T 53 t 85

5 22 U 54 u 86

6 23 V 55 v 87

7 24 W 56 w 88

8 25 X 57 x 89

9 26 Y 58 y 90

: 27 Z 59 z 91

; 28 [ 60 { 92

< 29 \ 61 — 93

= 30 ] 62 } 94

> 31 ˆ 63 ˜ 95

? 32 64
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(E) Minimum password length (8) + substring blocklist with 100 substrings

(F) Minimum password length (8) + lowercase characters (1) + uppercase char-
acters (1) + digits (1) + symbol (1) + blocklist with 100,000 passwords with
fingerprint size 8 + substring blocklist with 100 substrings

Node.js version 16.14.0 was used for the benchmark. Each configuration has
been run ten times for each function, after which the average time was noted down.
The password used in all scenarios is ‘$N@RK$@r3@w3$0m3!’, which passes all
password policies described above. The results are shown in Table 5.2. From this
table, it can be seen that only the proving time for the registration phase is signifi-
cantly affected by the choice of password policies. All other functions run well under
one second, demonstrating practical performance.

5.2.2 Password blocklist

Evaluating the performance of the password blocklist xor filter consists of three mea-
surements: setup time, number of zk-SNARK constraints and false positive percent-
age. These are parameterized by fingerprint size and blocklist length. To obtain the
false positive percentage, the same 100,000 passwords not present in the filter were
tested for each configuration.

Rust version 1.60.0 was used for the benchmark. Each configuration has been
run ten times, after which the average times and false positive percentage was noted
down. The results are shown in Table 5.3. From this table it can be seen that the
setup time and encoding time increase linearly with the blocklist length. In addition,
it is apparent that there is a trade-off between blocklist length and fingerprint size in
terms of the number of generated constraints. With a small blocklist length, a larger
fingerprint size results in less constraints. This is due to the fact that retrieving
small fingerprints from the filter is more expensive than traversing the filter for small
blocklists. On the other hand, with larger blocklists, a smaller fingerprint is more
efficient, resulting from expensive filter traversals.
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Table 5.2: Performance of the schnapsjs library functions in terms of execution time

Function Scenario Time (s)

REGISTER.CREATEPROOF

A 1.987

B 2.150

C 2.918

D 4.345

E 2.481

F 4.823

REGISTER.VERIFYPROOF

A 0.903

B 0.879

C 0.934

D 0.932

E 0.886

F 0.918

LOGIN.CREATEENCRYPTION

A 0.885

B 0.875

C 0.866

D 0.849

E 0.860

F 0.856

LOGIN.VERIFYENCRYPTION

A 0.878

B 0.868

C 0.847

D 0.861

E 0.840

F 0.882

LOGIN.COMPAREENCRYPTIONS

A 0.886

B 0.870

C 0.884

D 0.867

E 0.867

F 0.857
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Table 5.3: Performance of the blocklist filter in terms of setup time, encoding time,
false positive percentage and number of constraints

Blocklist
length

Finger-
print size

Setup
time (s)

Encoding
time (s)

False
positive
percent-

age

Number
of con-

straints

1,000 20 0.122 0.000 0.000% 8,201

1,000 16 0.095 0.000 0.002% 8,726

1,000 12 0.094 0.000 0.026% 10,832

1,000 8 0.093 0.000 0.389% 14,126

1,000 7 0.106 0.000 0.779% 16,172

1,000 6 0.098 0.000 1.582% 18,419

1,000 5 0.093 0.000 3.102% 21,293

1,000 4 0.100 0.000 6.259% 26,414

1,000 3 0.107 0.000 12.457% 34,484

1,000 2 0.116 0.000 24.922% 50,687

1,000 1 0.108 0.000 49.963% 99,404

10,000 20 0.983 0.001 0.000% 13,733

10,000 16 1.037 0.001 0.002% 13,154

10,000 12 1.096 0.001 0.025% 13,994

10,000 8 0.993 0.002 0.389% 16,268

10,000 7 0.968 0.001 0.779% 18,014

10,000 6 0.966 0.001 1.569% 19,997

10,000 5 0.971 0.001 3.115% 22,619

10,000 4 0.894 0.001 6.206% 27,464

10,000 3 0.961 0.001 12.514% 35,270

10,000 2 0.982 0.001 24.991% 51,209

10,000 1 1.097 0.001 50.035% 99,662

50,000 20 4.606 0.006 0.000% 38,333

50,000 16 4.551 0.006 0.002% 32,834

50,000 12 4.486 0.006 0.025% 28,052

50,000 8 4.563 0.006 0.396% 25,790
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50,000 7 4.507 0.006 0.775% 26,216

50,000 6 4.526 0.006 1.540% 27,029

50,000 5 4.495 0.006 3.139% 28,523

50,000 4 4.517 0.005 6.226% 32,150

50,000 3 4.463 0.005 12.537% 38,786

50,000 2 4.573 0.005 24.959% 53,555

50,000 1 4.491 0.003 49.956% 100,838

100,000 20 9.243 0.013 0.000% 69,083

100,000 16 9.230 0.014 0.001% 57,434

100,000 12 9.098 0.011 0.023% 45,620

100,000 8 9.259 0.013 0.397% 37,694

100,000 7 9.169 0.012 0.768% 36,464

100,000 6 9.061 0.012 1.558% 35,813

100,000 5 9.133 0.012 3.146% 35,903

100,000 4 8.958 0.011 6.275% 38,006

100,000 3 9.007 0.010 12.544% 43,178

100,000 2 9.098 0.010 24.984% 56,483

100,000 1 9.064 0.006 50.002% 102,302

200,000 20 18.266 0.023 0.000% 130,583

200,000 16 18.493 0.026 0.002% 106,634

200,000 12 18.343 0.023 0.026% 80,762

200,000 8 18.339 0.025 0.384% 61,502

200,000 7 18.444 0.025 0.764% 56,966

200,000 6 18.557 0.024 1.574% 53,381

200,000 5 18.306 0.024 3.146% 50,663

200,000 4 18.091 0.021 6.268% 49,724

200,000 3 18.672 0.022 12.542% 51,962

200,000 2 18.573 0.020 25.034% 62,339

200,000 1 18.390 0.013 49.922% 105,230

500,000 20 47.358 0.066 0.000% 315,083

500,000 16 46.731 0.061 0.000% 254,234
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500,000 12 45.979 0.058 0.025% 186,194

500,000 8 46.450 0.065 0.385% 132,920

500,000 7 46.532 0.059 0.775% 118,466

500,000 6 46.441 0.060 1.550% 106,097

500,000 5 46.526 0.058 3.115% 94,943

500,000 4 45.651 0.052 6.255% 84,866

500,000 3 47.220 0.054 12.580% 78,320

500,000 2 47.097 0.047 25.000% 79,913

500,000 1 46.266 0.032 49.990% 114,014



Chapter 6

Discussion and Future Work

In this chapter we discuss the results from Chapters 4 and 5 and identify several
directions for future work.

6.1 Password hash function

In Section 4.4.2, the requirement of a cryptographic and memory-hard hash function
for passwords is discussed. Since a user has only one secret (the password), it is not
possible to completely prevent bruteforcing a password. However, it can be made
harder and thus more expensive by using a slow and memory-hard hash function.

Unfortunately, such a hash function does not exist yet in a SNARK-friendly man-
ner. Since computations in zk-SNARKs are significantly slower than when per-
formed outside a zk-SNARK, existing hash functions suitable for passwords cannot
be duplicated for use in a zk-SNARK, because they would be either too expensive
to use or too fast outside a zk-SNARK, defeating its security.

While using a more efficient hash function eases bruteforcing, it is only the server
that can use this to its advantage. After all, only the password hash encryptions are
stored in the database, and assuming the SAVER private key is stored securely
(e.g. in a Hardware Security Module) and not compromised, adversaries cannot
bruteforce the password hash encryptions if the database is leaked. Hence, this
requires more trust in the server, but does not impact password confidentiality if the
database is compromised.

Future work is oriented at two directions. First, more research in password hash-
ing functions for zk-SNARKs might uncover new hash functions that are SNARK-
friendly and suitable for use in zk-SNARKs. Secondly, research can be aimed at
modifying or replacing SAVER, such that the individual ciphertexts cannot be de-
crypted, while still allowing an equality check of the encrypted plaintexts. This elimi-
nates the ability to bruteforce passwords.
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6.2 Proving speed

Section 5.2 showed that creating a zk-SNARK registration proof can easily take
a few seconds, depending on the used password policies. This is quite long in
comparison with the current practise of sending the password in plaintext to the
server, which does not incur any additional waiting time. In addition, the zk-SNARK
proof is created by the client, and hence the proving speed is heavily influenced by
the power of the device. Weaker smartphones, for instance, may have a significantly
longer proving time.

However, as a user only registers theirself once, it is a one-time delay and hence
may be acceptable. In addition, future work may be aimed at optimizing the imple-
mentation, improving the proving time. Verifying the registration and login proofs
and creating the login encryption all perform well under a second, and are thus fast
enough to be practical.

6.3 Fetching salts

Because the password is hashed on the client, as described in Section 4.4.3, the
password hash salt needs to be fetched from the server during login. This salt can
for example be stored in a public directory or exposed via an API call. However, this
exposes which usernames are taken, since usernames that are not registered do
not have a salt. This may be considered a security threat, since this information can
be used to bruteforce username and password combinations.

While a public directory cannot hide taken username, it is possible when expos-
ing salts via an API. Instead of returning an error when the salt of a non-registered
username is requested, a dummy salt may be returned. Naturally, returning the
same dummy salt does not work, as real salts and dummy salts can be easily dis-
tinguished. On the other hand, returning a different random salt will also not work,
as two invocations of the API reveal that a dummy salt is used. Another solution is
to save the random salt for a non-registered username, such that it can be returned
upon further invocations. However, this produces a large storage cost, potentially
having to store a salt for every possible username.

Instead, a better solution is to use an HMAC for non-registered usernames, with
the username as input and a key exclusively known to the server. By using a cryp-
tographic hash function in the HMAC, the result is indistinguishable from random
and can thus not be distinguished from a real salt. In addition, the dummy salt for
each username is consistent over multiple invocations. Finally, since the key is not
known to anyone but the server, the hashes cannot be computed and compared by
an adversary.



Chapter 7

Conclusion

In this thesis, we presented zk-SCHNAPS. We showed that arbitrary password poli-
cies can be enforced by leveraging a zk-SNARK in the registration phase, proving
compliance to the implemented password policies. The zk-SNARK is combined with
SAVER to yield an encryption that can be stored by the server for later authentica-
tion. During login, a similar encryption is created and the ciphertexts are compared
by the server using the homomorphic property of SAVER.

We presented how password policies can be encoded in a zk-SNARK and
showed the implementation of the most common ones. In addition, we showed the
feasibility of the protocol by providing an implementation, and measured the perfor-
mance by running several benchmarks. We found that creating the zk-SNARK proof
in the registration phase takes a few seconds depending on the implemented pass-
word policies, with all other protocol function taking well under one second, showing
practical performance.
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