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Abstract 
Introduction: Epilepsy is nowadays regarded as a network disorder instead of a focal disease. While 
epilepsy surgery is currently based on the removal of a local focus, a network approach seems more 
suitable and might eventually improve the surgical outcome. Insight into how epilepsy alters the 
patient-specific brain network is necessary to establish a network based surgical strategy. There are 
different approaches to characterize brain networks but it is unclear if and to what extent these 
approaches relate. Effective networks are described by the causal influence between brain areas by 
invasive perturbation of one of the areas with for example single pulse electrical stimulation (SPES). 
Structural networks are described by the anatomical connections between brain areas via white matter 
tracts and can be determined non-invasively with diffusion weighted imaging (DWI). Exploring the 
relation between structural and effective networks could deepen our understanding of epileptogenic 
networks by revealing the biologically plausible structural pathways that give rise to effective 
connections. DWI based structural network characterization is non-invasive and could be adapted 
earlier in the surgical trajectory than SPES based effective network characterization. The combination 
of structural and effective networks could potentially elucidate network alterations caused by epilepsy. 
We aimed to characterize structural networks with DWI and effective networks with SPES, evaluate 
their relation, and explore how epilepsy alters this relation. 
 
Methods: We compared effective networks acquired by SPES to structural networks derived from DWI. 
Invasive electroencephalography (iEEG) electrode positions were used as nodes. Early responses (ER) 
in SPES were automatically detected, for which an existing detection algorithm for ERs in 
electrocorticography (ECoG) was optimized and validated for stereo EEG (sEEG) (Chapter 2). The 
optimized detector was used to reconstruct the effective networks. We reconstructed structural 
networks from DWI and fiber tractography(FT) using the iFOD2 algorithm with parameters optimized 
for local network structures (Chapter 3). We determined the inter-modal similarity between structural 
and effective networks with the Jaccard index (JI). We compared the topography with the degree and 
betweenness centrality on electrode contact level within patients. We constructed a linear multilevel 
model to evaluate the correlation at group level, accommodate for node proximity bias due to irregular 
spatial sampling, and analyze the influence of epilepsy. 
 
Results: We included 13 patients (five ECoG, eight sEEG). The sensitivity and specificity of the 
optimized ER detector were 81% and 93%. The FT algorithm for sEEG and ECoG required equal 
parameters. The median JI was 0.25 (IQR: 0.19-0.29). The degree of the structural networks compared 
to the effective networks at patient level showed a significant positive correlation in 10/13 patients. 
This correlation was also present at group level with linear multilevel modeling after controlling for 
node proximity. We did not find statistical evidence that epilepsy alters the relation between structural 
and effective networks. 
 
Conclusion: We explored the relation between structural and effective patient-specific brain networks. 
The performance of the optimized automatic ER detector was sufficient to reliably characterize 
effective networks. Structural and effective networks showed a moderate overall relation and their 
topography, described by the degree correlated independently of common sources of bias. This 
suggests that for some applications structural and effective networks could be interchangeably used, 
in which case we recommend to use non-invasive, structural networks. Higher sample sizes and 
correction of the node proximity on a patient level are needed to exactly explain to what extent 
structural and effective networks interrelate and further investigate how epilepsy alters this relation. 
We recommend continuing a multi-modality approach to study complex network alterations in focal 
drug resistant epilepsy patients to establish a network based surgical strategy. 
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 General introduction 
1.1 Clinical Background 
Epilepsy is one of the oldest medical topics to write about with notes dating back to 4000 Before the 
Common Era [1]. Today it is still a popular topic with 10.000 epilepsy-themed articles published in the 
last year [2]. Not an abnormal number when you look at the characteristics of epilepsy. 1.000 patients 
of all ages are diagnosed yearly with epilepsy in the Netherlands [3]. An epileptic seizure is caused by 
hyper synchronized discharges of neurons that disturb normal brain function. This disturbance of brain 
function can manifest in a variety of clinical signs such as short loss of awareness, unusual behavior, or 
generalized tonic-clonic seizures. The consequences of seizures are severe and include a shorter life 
expectancy, neuropsychological impairment, and social disability [4]. The life expectancy of someone 
with epilepsy is shortened by 2 to 10 years and in 2020, 320 people died with epilepsy as the underlying 
cause of death [3]. The disease burden is similar to brain cancer and multiple sclerose in the 
Netherlands. The severity of these consequences relates to seizure control [3]. In thirty percent of the 
epilepsy patients, seizure freedom is not achieved with drug therapy [5]. 
 
Patients with focal, drug resistant epilepsy may benefit from epilepsy surgery, but 25-50% of the 
surgical candidates do not become seizure-free [6]. Epilepsy surgery is based on the removal of the 
epileptogenic zone (EZ). The EZ is the brain area that must be removed to achieve seizure freedom [7]. 
In most patients, the EZ is delineated with the integration of non-invasive techniques including video 
electroencephalography (EEG), magnetic resonance imaging (MRI), functional MRI, 
magnetoencephalography, and 18F-fluorodeoxyglucose positron emission tomography [8]. An invasive 
EEG (iEEG) monitoring period is indicated for epilepsy surgery candidates with no structural 
abnormalities observed from imaging, no clearly defined EZ from EEG, dual pathology, or a possible 
overlap of the EZ with functional areas [9]. iEEG electrodes are placed inside the skull and enable a 
high spatial resolution recording without extracranial artifacts and signal attenuation from the skull 
[10]. iEEG electrodes are implanted under anesthesia and the patient is monitored on the ward for 7 
to 21 days, during which spontaneous seizures and interictal activity are analyzed to approximate the 
EZ. Stimulations are performed to determine the functional areas and confirm the EZ. There are two 
principal iEEG configurations: electrocorticography (ECoG) and stereo EEG (sEEG) (see Figure 1.1). 
ECoG with subdural electrodes allows contiguous sampling of the lateral cortical surfaces of the 
cerebral hemispheres to precisely delineate eloquent functional areas and the EZ. sEEG with cylindrical 
depth electrodes offers the ability to sample deep structures such as the insula or medial and basal 
surfaces. The choice of iEEG configuration depends on the expected location of the EZ, expected 
cooperation of deep structures, and the desire to contiguous sample the cortical surface. 

Figure 1.1: The two principal iEEG configurations ECoG and sEEG. 
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The interest of epilepsy surgery research is turning from delineating this localized EZ towards a network 
approach. In the network approach, epilepsy is caused by a collection of hyperexcitable nodes in an 
epileptogenic brain network that produces and propagates epileptic activity. Network disconnection 
of the connections that propagate epileptic activity could adapt the surgical strategy. Brain networks 
can be characterized with single pulse electrical stimulation (SPES) and diffusion weighted imaging 
(DWI). 
 
1.2 Single pulse electrical stimulation  
SPES is the delivery of electrical stimuli to adjacent electrode contacts that are part of an iEEG 
configuration, with such settings that only the neurons in the brain tissue directly near the electrode 
contacts are activated. The electrographic response to these stimuli could reveal connections between 
local and distant activated brain areas. Two types of electrographic responses are excited with SPES: 
physiological early responses (ER) and pathological delayed responses. 
 
A typical ER consists of a spike often followed by a slow wave within 100 ms after the stimulus artifact 
(see Figure 1.2). This spike and slow wave are defined as the first and second negative deflections and 
are called the N1 and N2 peaks. Those peaks are alternated with positive deflections, the P1 and P2. 
The morphology of the ER and thus the presence and order of the P1, N1, P2, and N2 peaks is 
determined by the orientation of pyramidal cells relative to the stimulated and receiving electrode. 
The N1 peak describes direct cortical connections and the N2 peak demonstrates possibly also indirect 
connections [11], [12]. Brain networks characterized by SPES are named effective networks because 
they describe causal interactions between brain areas caused by perturbation of the brain areas. 
A disadvantage of effective networks is that they only sample a small part of the whole-brain network 
and are only available after an invasive surgical intervention. 

 

1.3 Diffusion weighted imaging  
DWI is a magnetic resonance imaging (MRI) technique that captures the anisotropic diffusion of water 
molecules along myelinated axons to estimate the spatial organization of the white matter [13]. With 
fiber tractography (FT), the specific paths of white matter tracts between brain areas can be non-
invasively reconstructed, allowing the identification of anatomical connections [14]. 

Figure 1.2: Typical electrographic response to single pulse electrical stimulation (SPES). The P1 peak is defined as the first 
positive peak, the N1 peak is the first negative peak, the P2 the second positive, and the N2 the second negative. 
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1.3.1 Acquisition of DWI data 

The principle behind diffusion imaging is the Brownian motion of water molecules. Brownian motion 
is the phenomenon that water molecules move with a heat-driven, random velocity and in a random 
direction unless the movement is constrained by barriers [15]. In the brain, the most important barriers 
are myelinated axonal membranes in the white matter [13]. The directional constraining of movement 
due to barriers is called anisotropic diffusion. MRI can be used to capture diffusion in the human brain 
due to the high density of water and the ability of the hydrogen protons in water to freely move. The 
MRI sequence used for DWI is the spin echo pulse sequence, which components are illustrated in 
Figure 1.3 [13]. 

The sequence starts with the excitation radiofrequency (RF) pulse of 90° which causes the hydrogen 
protons to have coherent phases (see Situation A, Figure 1.3). On top of the standard strong static 
magnetic field, a spatial gradient is activated to cause the hydrogen protons to develop divergent 
phases over time and space (see Situation B, Figure 1.3). This gradient is called the diffusion sensitizing 
gradient. To restore the initial phase coherence, halfway in the sequence an RF refocusing pulse of 
180° is given and the diffusion sensitizing gradient is again activated. When there is no movement of 
water molecules, the diffusion sensitizing gradients cancel each other out and the refocusing pulse 
causes the protons to have coherent phases at the time of signal detection (see Situation C, Figure 
1.3). The time between the excitation pulse and the signal detection is called the echo time (TE). If 
there is diffusion within the voxel during this TE period, the moved hydrogen protons do not 
experience the same magnetic field during the first and second half of the TE. This causes a loss of 
phase coherence and thus a weaker detected signal.  
 
Using the spin echo pulse sequence, the average amount of diffusion 𝐷𝐷 over time and space (𝑚𝑚𝑚𝑚2

𝑠𝑠�  ) 
in one voxel can be calculated with 
 
𝑆𝑆
𝑆𝑆0

= 𝑒𝑒−𝑏𝑏𝑏𝑏              (1.1) 

Figure 1.3: Graphical summary of the spin echo pulse sequence. A, B and C illustrate the hydrogen protons, in A) they have 
coherent phase, in B) divergent phase and in C) the phase depends on the diffusion. 
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Figure 1.4: The spherical coordinate system with elevation angle 𝜃𝜃 and azimuthal angle ∅ [20]. 

 

 
where, 𝑆𝑆 and 𝑆𝑆0 are the signal levels with and without the activation of the diffusion sensitizing 
gradient. 𝐷𝐷 is the diffusion coefficient [16]. 𝑏𝑏 is the value that indicates the strength of the diffusion 
sensitizing gradient, given by 
 
𝑏𝑏 = 𝛾𝛾2𝐺𝐺2𝛿𝛿2  �∆ − 𝛿𝛿

3
�                           (1.2) 

 
with 𝛾𝛾 the gyromagnetic ratio of a hydrogen nucleus, 𝐺𝐺 the size of the diffusion sensitizing gradient, 𝛿𝛿 
the period of activation of this gradient, and ∆ half of the TE period [16]. The 𝑏𝑏 value determines the 
spatial sensitivity to diffusion. A regular DWI sequence with a 𝑏𝑏 value of 1000 mm2/s is sensitive to a 
water molecule displacement on a microscopic scale, which is approximately 2-18 µm in any direction 
[13]. A larger b value makes the DW images more sensitive to diffusion but decreases the signal-to-
noise ratio due to the greater loss of phase coherence and thus a smaller signal of interest. 

1.3.2 Fiber orientation distribution  

Although DWI could provide interesting information about the microscopic diffusion properties of 
brain tissue, it does not take the directional constraints of diffusion into account [17].To be able to 
look at the directionality of diffusion, DWI images need to be made in different directions to 
reconstruct a diffusion coefficient along any arbitrary direction. This reconstruction is calculated by 
using a fiber orientation distribution (FOD), of which constrained spherical deconvolution (CSD) is the 
current best practice. The resolution of DWI that can be achieved, is in the range of mm’s, which results 
in more than one fiber bundle in 90% of all white matter voxels [18]. The FOD describes the orientation 
and volume fractions of all these fiber bundles within a voxel. The volume fraction can be seen as a 
measure of diffusion strength. The more diffusion directions are acquired, the more precise the FOD 
model will be. 
 
The CSD model requires two assumptions [19]. 1) The signals emanating from different fiber bundles 
are assumed independent from each other. Thus, the measured diffusion weighted signal attenuation 
𝑆𝑆 is the sum of all signals from the different fiber bundles present in the voxel. 2) The diffusion 
characteristics of these fiber bundles are assumed identical. In the CSD model, the signal from one 
fiber bundle is represented by a response function. The total signal 𝑆𝑆(𝜃𝜃,∅) is the sum of these response 
functions, rotated such that they are aligned with their orientation and weighted by their volume 
fraction. This rotation is expressed in spherical coordinates with an elevation angle 𝜃𝜃 and an azimuthal 
angle ∅ (see Figure 1.4). This can be written in a formula as: 
 
𝑆𝑆(𝜃𝜃,∅) =  ∑ �̂�𝐴𝑖𝑖𝑓𝑓𝑖𝑖𝑅𝑅(𝜃𝜃)𝑖𝑖              (1.3) 
 
With �̂�𝐴𝑖𝑖  representing a rotation onto the direction (𝜃𝜃𝑖𝑖,∅𝑖𝑖), 𝑓𝑓𝑖𝑖 the volume fraction of the 𝑖𝑖th fiber 
bundle and 𝑅𝑅(𝜃𝜃) the response function. 
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Equation 1.3 can be expressed as the convolution over the unit sphere of the response function 𝑅𝑅(𝜃𝜃): 
 
𝑆𝑆(𝜃𝜃,∅) =  𝐹𝐹(𝜃𝜃,∅) ⨂ 𝑅𝑅(𝜃𝜃).                          (1.4) 
 
The FOD function 𝐹𝐹(𝜃𝜃,∅) contains information about the directions (𝜃𝜃,∅) with the highest volume 
fraction and is thus the characteristic you want to estimate to enable fiber tracking (section 1.3.3). 
Since we measure the signal 𝑆𝑆(𝜃𝜃,∅)and the response function 𝑅𝑅(𝜃𝜃) could be estimated, the 𝐹𝐹(𝜃𝜃,∅) 
can be acquired with spherical deconvolution. The response function is estimated from the patient’s 
DWI data by measuring the signal 𝑆𝑆 in voxels likely to contain only one fiber bundle. Spherical 
deconvolution could be performed using spherical and rotational harmonics. These harmonics form an 
orthonormal basis set of functions over a sphere similar to the Fourier series. A spherical harmonics 
(see Figure 1.5) consists of a harmonic order 𝑛𝑛 (𝑛𝑛 ≥ 0) and a phase factor 𝑚𝑚 (−𝑛𝑛 ≤ 𝑚𝑚 ≤ 𝑛𝑛). The 
rotational harmonic has a harmonic order 𝑛𝑛 (𝑛𝑛 ≥ 0) and two phase factors 𝑚𝑚 and 𝑙𝑙 (−𝑛𝑛 ≤ 𝑚𝑚, 𝑙𝑙 ≤ 𝑛𝑛). 
The 𝑛𝑛th order spherical harmonic decomposition of the signal 𝑆𝑆(𝜃𝜃,∅) is given by the matrix 
multiplication: [20] 
 
𝑆𝑆𝑛𝑛����⃗ = 𝑹𝑹𝑛𝑛𝐹𝐹𝑛𝑛�����⃗ .                                     (1.5) 
 
With 𝑹𝑹𝑛𝑛 a matrix of size (2𝑛𝑛 + 1)(2𝑛𝑛 + 1) and 𝐹𝐹𝑛𝑛�����⃗  a vector of length (2𝑛𝑛 + 1). Each  𝑹𝑹𝑛𝑛 matrix must 
be inverted to calculate the 𝐹𝐹𝑛𝑛�����⃗  and finally get the FOD. The FOD needs to be constrained for negative 
values since those are physically impossible [21]. 

The harmonic order is inversely related to the resolution and limited by the diffusion directions. The 
maximal harmonic order is eight for 45 diffusion directions and 10 for 66 directions. However, spherical 
deconvolution is more sensitive to noise when using higher harmonic orders. Therefore a trade-off 
must be made between resolution and the influence of noise. 

1.3.3 Fiber tractography  

The FOD is used to perform FT. There are two primary methods for FT, deterministic and probabilistic 
tractography. With deterministic tractography, curved three dimensional lines, called streamlines, are 

Figure 1.5: Visual representation of spherical harmonics orthonormal basis set of functions over the sphere up to order n = 3 
(vertical) and phase factor m = [-n, +n] = [-3, +3](horizontal). This basis set is similar to how the Fourier series forms an 
orthonormal basis for the Cartesian space.  
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made by following the principal direction of the FOD from voxel to voxel. The direction of this 
streamline is calculated at each voxel by numerically solving the differential equation (DE) of the form 
𝑑𝑑𝒓𝒓(𝑠𝑠)
𝑑𝑑𝑠𝑠

= 𝒗𝒗1�𝒓𝒓(𝑠𝑠)�, 𝒓𝒓(0) = 𝒓𝒓0         (10) 
with  𝒓𝒓(𝑠𝑠) the curve at position 𝑠𝑠 and 𝒗𝒗1 the principal direction vector [22]. This streamline 
determination is termed seeding. In probabilistic tractography, the direction of a streamline is 
determined by probabilities of the principal direction of the FOD in a certain voxel. For each voxel, the 
direction of the streamline is sampled from a FOD volume fraction probability profile. All the 
streamlines are assembled to produce statistical estimates of the white matter pathways. 
 
To seed streamlines that could realistically be white matter pathways, some rules for the propagation 
of the streamline could be set. Examples of parameters that can be used are the maximum curvature 
angle to avoid unrealistic sharp turns, the maximum and minimum length of the streamline, and the 
minimal FOD volume fraction [23]. Furthermore, the FT procedure could be anatomically constrained 
by defining regions for start, propagation, and termination of the streamlines [24]. 
 
The result of FT is a number of streamlines that can be presented in a three dimensional image, called 
a tractogram. Brain networks characterized by DWI are named structural networks. Structural 
networks can solve the disadvantage of effective networks as non-invasive, whole-brain structural 
network analysis is possible. 
 

1.4 Brain networks 
A network is a way of organizing a system that consists of similar parts that are connected with each 
other. A network consists of two elements: nodes and edges. In the case of SPES and DWI based 
networks, nodes represent the brain area near an electrode. Edges are the effective or structural 
connections between the brain areas. These edges could be determined in a binary manner, by 
describing only the presence or absence of a connection or in a weighted manner by also taking the 
connectivity strength between two nodes into account. An overall comparison between two networks 
could be made with the Jaccard index, which measures the overlap between two binary networks [25]. 
Networks could be further analyzed with graph analysis [26]. The degree and betweenness centrality 
are examples of network characteristics, depicted in Figure 1.6. The degree of a node is the number of 
edges that are connected to that node and reflects the importance of this node in the network. The 
betweenness centrality quantifies the number of times a node is part of the shortest path between 
two other nodes. This is calculated by computing all shortest paths between the nodes in the network 
and determining the fraction of shortest paths that pass through the node of interest. Nodes with a 
high betweenness centrality are crucial nodes in the network that connect multiple nodes. 

 
 

  

Figure 1.6: Graph measures in a network with 6 nodes and 7 edges. A) Degree. The orange node has a degree of 2. B) The 
betweenness centrality. The orange node is part of the shortest path between node 2 and 4. There are two possible shortest 
paths between node 1 and 4, of which the orange node is part of one of them. Therefore, the orange node has a betweenness 
centrality of 1.5. 
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1.5 Networks and epilepsy 
The influence of epilepsy on the brain network organization is studied using both effective and 
structural networks. Studies using effective networks suggest that the epileptogenic tissue is densely 
interconnected. Van Blooijs et al. studied effective network alterations and reported a significantly 
higher degree of nodes within epileptogenic tissue compared to non-epileptogenic tissue [27]. They 
elucidated that this high degree was mainly caused by connections within the epileptogenic tissue. 
Boulogne et al. analyzed effective networks in a specific type of focal epilepsy caused by the structural 
pathology nodular heterotopia [28]. They characterized highly connected epileptogenic networks and 
showed that regions connected with pathogenic tissue are more likely part of the epileptogenic tissue. 
Studies using structural networks show that the network alterations caused by epilepsy might not be 
limited to the epileptogenic focus. Structural network studies reported a higher average shortest path 
length between nodes compared to controls, suggesting that the whole-brain structural networks in 
epilepsy patients are less efficiently organized [29]–[31]. Campos et al. observed structural network 
alterations in regions closely related to the presumed EZ [32]. Structural and effective network 
characterization describe seemly distinct influences of epilepsy on the network organization, thus 
might complement each other. The structural and effective network studies use different network 
characteristics and spatial scales, therefore is still unclear to what extent the structural and effective 
networks relate. 
 

1.6 Objective 
Other surgical strategies such as network disconnection are needed to further improve the success 
rate of epilepsy surgery. To reach that clinical goal, a better understanding of how epilepsy alters the 
patient-specific network is necessary. DWI in combination with SPES could deepen our understanding 
of epileptogenic networks by revealing the biologically plausible pathways that give rise to the 
observed effective connections between electrodes. We aimed to understand how structural and 
effective networks are related as a step towards clinical use of brain networks in epilepsy surgery. 
Therefore, we assessed the inter-modal similarity between non-invasive structural and invasive 
effective networks of focal epilepsy patients.’ 
 
1.7 Research questions 
The aim of this research can be summarized by one main research question and two sub-questions. 

• How do structural networks derived from DWI relate to effective networks obtained from SPES 
in patients with focal drug resistant epilepsy? 

a. What is the inter-modal similarity between structural networks derived from DWI and 
effective networks obtained from SPES? 

b. What is the influence of epilepsy on the correlation between network characteristics 
of structural and effective networks? 

We hypothesize that structural and effective networks have a high inter-modal similarity when 
characterized on the same spatial scale. We expect that epilepsy decreases the correlation between 
network characteristics of structural and effective networks due to the seemly distinct network 
alterations reported. 

To characterize effective networks, an automatic detector was optimized in Chapter 3. We developed 
an fiber tractography algorithm in Chapter 4 to characterize structural networks using DWI and 
determined structural connections between multiple intracranial EEG electrodes. In Chapter 5 we 
compared structural and effective networks and assessed the influence of epilepsy on their relation. 
The results of Chapter 5 were submitted for the European Epilepsy Conference in Geneva, 9-13 July 
2022, and accepted for oral presentation (see Appendix A) 
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 Optimization of automatic detection of early responses for stereo 
EEG 

2.1 Introduction 
Early responses (ER) evoked by SPES are physiological responses to stimulation of a local population of 
neurons and can reveal effective brain networks, as described in Chapter 1. Valentin et al. introduced 
the term ‘early responses’ in 2002 and defined it as a sharp deflection after the stimulus artifact 
followed by one or two slow waves of alternating polarity [33]. He and others identified ERs visually 

[34]–[37]. Annotating SPES is a time-consuming task since SPES performed in one patient results in 
around 3000 epochs. Automatic ER detection allows to investigate ERs and effective brain networks 
efficiently and objectively.  
 
Several research groups developed automatic detectors to detect the occurrence, amplitude, and 
latency of ERs [8], [27], [38]. Van Blooijs et al. constructed and validated an automatic ER detector for 
ECoG data with a sensitivity of 78%, a specificity of 91%, a positive predictive value (PPV) of 75%, and 
a negative predictive value (NPV) of 92% [39]. This detector detects the occurrence of the N1 peak of 
the ER with the Matlab function peakfinder. The peakfinder is based on the standard deviation (SD) of 
the spontaneous background activity. Van Blooijs noted a significant ER when a positive N1 peak occurs 
within 9-100 ms after stimulation and the amplitude exceeds 2.6 times the SD of the baseline before 
stimulation. This detector cannot be used directly for sEEG data because of the morphological 
differences in ERs between the two iEEG configurations. 
 
ERs from ECoG data have consistent morphologies with a negative first deflection (N1 peak) (see 
Chapter 1). In sEEG, the position of the stimulated and receiving electrode contact relative to the 
orientation of the pyramidal cells varies, which results in variation in the morphology of the ER [40]. 
The polarity of the stimulus artifact determines the polarity of the main deflection, a negative stimulus 
artifact results in the main deflection being the P1 peak (see Figure 2.1). Furthermore, we hypothesize 
that the amplitude of the main deflection (N1 or P1 peak) is different due to shorter interelectrode 
contact distance and lower stimulation currents. Shorter interelectrode contact distances increase the 
amplitude while lower stimulation currents decrease the amplitude but to what extent is not known. 
Therefore, the present SD threshold of 2.6 must be revised. Next to the SD threshold, two more 
settings are important for the functioning of the detector (see Figure 2.1). The minimal SD is set to 
prevent the detection of small peaks in signals with low voltage activity. The sel, defined as the voltage 
difference between neighboring time points to qualify as a peak, is set to prevent the detection of 
small peaks in signals with a slow trend after the stimulation artifact.  
 
We adapted the automatic detector validated by van Blooijs to detect the occurrence of ERs in sEEG 
data [39]. The intention of the automatic detector is to sensitively detect ERs, after which the detected 
ERs are visually checked. The detector must be sensitive to make sure that most of the ERs are 
detected, while the number of false positive detections must be limited. We aimed to optimize the 
parameters of the automatic ER detector and validate the results for sEEG data to use the detector for 
the construction of effective networks.  
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Figure 2.1: Important ER characteristics for the functioning of the ER detector for sEEG data. A) Example of an ER with a 
variation in morphology compared to ERs from ECoG data. B) The SD threshold is defined as the minimal ratio between the 
amplitude of the N1 peak and the SD of the baseline. When the SD of the baseline does not exceed the minimal SD, the minimal 
SD is used. C) Example of a slow trend after the stimulation artifact where the parameter sel prevents detection of small peaks.  

2.2 Methods 

2.2.1 Patient specification  

We selected data from six patients who underwent SPES as part of an iEEG monitoring period with 
depth electrodes between 2014 and 2021. To ensure an independent patient subset from the patients 
selected in Chapter 4 and Chapter 5, the exclusion criterion was the presence of a diffusion weighted 
MRI. The patients were randomly divided into a training (50%) and validation (50%) subset. The clinical 
data were extracted from the RESPect database that consists of iEEG data from epilepsy surgery 
candidates treated at the University Medical Center Utrecht, the Netherlands [57]. iEEG data were 
recorded at 2048 Hz with a MicroMed LTM64/128 express EEG headbox with an integrated 
programmable stimulator (MicroMed, Mogliano—Veneto, Italy). The SPES stimulation protocol 
consisted of trials of ten monophasic stimuli applied to each pair of adjacent electrode contacts with 
a pulse width of 1 ms, a current of 1-4mA, and a repetition rate of 0.2 Hz. In three patients, we switched 
the cathode and anode after 5 stimuli. Only electrodes placed in the grey matter were stimulated.  

2.2.2 Visual annotation 

ERs were annotated by two observers (SJ and DvB) using in-house developed software with MATLAB 
(version R2021b, The Mathworks Inc., Natick, Massachusetts). Per electrode contact, we selected 
epochs with a time window of 2s pre- and 2 s post-stimulation. We averaged the ten epochs and 
subtracted the median amplitude of the averaged epoch during 2s pre-stimulation. We re-referenced 
the averaged epoch by subtracting the median epoch of the 5% signals with the lowest variance. The 
obtained post-stimulus signal where we expect the ERs is called the evoked response potential (ERP). 
We visually annotated the ERPs by plotting them per electrode contact and stimulus pair (see Figure 
2.2). 
 



17 
 

We determined the inter-observer agreement between the two observers with the unweighted 
Cohens kappa score. Common distinctive ERPs with no agreement were discussed between the two 
observers. Hereafter, all EPRs with no agreement were rescored by SJ and only ERPs where agreement 
is gained were annotated as ERs. We only included patients with a kappa score higher than 0.6 [41]. 

2.2.3 Optimization 

The parameters SD threshold, sel, and minimal SD were varied to find the optimal combination for 
sEEG data. The SD threshold was varied between 0.5 and 15 with steps of 0.5. The sel was varied 
between 0 and 200 µV with steps of 10. The minimal SD of the baseline was varied between 0 and 100 
with steps of 10. The baseline SD was calculated over the pre-stimulus period of 2 s. For each 
parameter combination, detector detected ERs with a P1 or N1 peak in the post-stimulus interval 
between 9 and 100 ms. Both P1 and N1 peaks that meet the, by the parameters defined criteria, were 
detected as ER.  
 
The results of the detector were compared to the visual annotations and the ERPs were categorized as 
true positives, true negatives, false positives and false negatives. The sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), false positive percentage (FPP), and false 
negative percentage (FNP) were calculated as  
 
Sensitivity = True Positive (𝑇𝑇𝑇𝑇)

𝑇𝑇𝑇𝑇+False Negative (𝐹𝐹𝐹𝐹)
 ,           (3.1) 

Specificity = True Negative (𝑇𝑇𝐹𝐹)
𝑇𝑇𝐹𝐹+False Positive (𝐹𝐹𝑇𝑇) ,            (3.2) 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 ,               (3.3) 

𝑁𝑁𝑃𝑃𝑃𝑃 = 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹

 .              (3.4) 

𝐹𝐹𝑃𝑃𝑃𝑃 = 𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹

 ,              (3.5) 

𝐹𝐹𝑁𝑁𝑃𝑃 = 𝐹𝐹𝐹𝐹
𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹

              (3.6) 
 
The parameter combination resulting in the optimal detector performance was defined as the 
combination with the lowest distance to the upper-left corner of the ROC curve (d-ROC). The d-ROC 
was calculated as 
 

Figure 2.2: Example of an epoch with a plotted evoked response potential (ERP) of one electrode contact and stimulation 
pair. The individual signals (colors), averaged signals (dotted black) with confidence interval (CI, red marked), and re-
referenced signals (black) were plotted in two time windows. Based on this plot, the ERs were annotated.   
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𝑑𝑑 − 𝑅𝑅𝑅𝑅𝑅𝑅 =  �(1 − sensitivity)2 + (1 − specificity)2.        (3.7) 
 
The d-ROC was used as the optimal performance metric because it was the most relevant parameter 
to acquire a high sensitivity and maintain a feasible amount of false positives [42]. The initial optimal 
parameter combination was used to adjust the parameter ranges and reduce the step size. We reduced 
the step size to 0.1 with a range of 2 around the initial optimal parameter value for the SD threshold. 
The step size was reduced to 1 with a range of 20 around the initial optimal parameter value for the 
sel and minimal SD. The detector ran again with these new parameter combinations, results were again 
compared with visual results, and the parameter combination with the lowest d-ROC was used for 
validation. 

2.2.4 Validation 

The detector with the parameter combination resulting in the lowest d-ROC was validated with the 
patients in the validation subset. Sensitivity, specificity, NPV, and PPV were calculated. A detector with 
a sensitivity of more than 80% and a PPV of more than 50% was considered reasonable for usage as ER 
detector for sEEG data with a visual check. A detector with a sensitivity of more than 80% and a PPV 
of more than 80% was considered reasonable for usage as ER detector for sEEG data without a visual 
check.  

2.2.5 Benefit detector 

We intended to save time by reducing the amount of ERPs that need to be visually checked. If a 
visual check was necessary, the percentage ERPs needed to be visually checked is calculated as 
% ERPs to visually check = 𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹
            (3.8) 

 
2.3  Results 

2.3.1 Patient specification 

We included six patients (see Table 2.1). The three patients in the train set had a mean age of 33 ± 10 
(mean ± standard deviation (SD)), the sEEG contained 52 ± 7 electrode contacts in the grey matter, and 
41 ± 7 stimulus trials were applied. The validation subset contained three patients with a mean age of 
21 ± 9), 43 ± 5 grey matter contacts, and 34 ± 4 stimulus trials. 

Patient  Train/ 
validation 
subset 

Gender Age 
at 
sEEG 

Electrodes 
in grey 
matter (all 
electrodes) 

Stimuli 
trials 

Switched 
cathode 
& 
anode? 

Visual 
ERs 

Kappa 
score 

1 T f 19 58 (64)  50 N 1073 0.87 

2 T m 41 43 (75) 32 Y 149 0.90 

3 T f 38 56 (93) 40 Y 374 0.91 

4 V m 10 35 (74) 28 N 144 0.86 

5 V f 20 46 (70) 38 N 220 0.80 

6 V f 32 45 (82) 36 Y 318 0.78 

Table 2.1: Patient specification. The kappa score of the validation subset is lower compared to the train subset. ; T= train; V= 
validation m = male; f = female; F = frontal; T = temporal; P = parietal; C = central; IH = interhemispheric; A = amygdala; H = 
hippocampus; I = insula; N= no; Y = yes 
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2.3.2 Visual annotation 

For the train subset, 1596 ERs were annotated of which 1073 were acquired in one patient. The 
validation subset consisted of 682 ERs. The inter-observer agreement was 0.89 ± 0.019 (mean ± SD) in 
the train subset and 0.81 ± 0.034 in the validation subset. 

2.3.3 Optimization 

The initial optimal parameter combination had an SD threshold of 4, a sel of 10 µV, and a minimal SD 
of 10. The adjusted parameter ranges were between 3 and 5 for the SD threshold, between 0 and 20 
µV, and between 0 and 20 for the minimal SD. The parameter combination with the lowest d-ROC of 
15 had an SD threshold of 3.5, a sel of 0 µV, and a minimal SD of 16 (see Figure 2.3). The detector with 
the lowest d-ROC in the train subset had a mean sensitivity of 89%, a mean specificity of 90%, a mean 
PPV of 78%, and a mean NPV of 96% (see Table 2.2). This performance resulted in an overall FPP of 7% 
and a FNP of 3% (see Figure 2.4 and 2.5). 
 
Table 2.2: The performance of the detector in the train subset. 

Patient  Sensitivity 
(%) 

Specificity 
(%) 

PPV (%) NPV (%) d-roc 

1 92 82 80 93 20 

2 83 96 70 98 17 

3 83 94 74 96 18 
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Figure 2.3: The ROC curve for the optimization with the adjusted parameter ranges. Each green dot represents the sensitivity 
and specificity of one parameter combination. The performance of the parameter combination SD threshold of 3.5, a sel of 0 
µV, and a minimal SD of 16, chosen as best, is indicated with a red asterisk.  

 

 

  

Figure 2.4: In this curve, the false positive percentage is plotted against the false negative percentage to get an indication of 
how they relate. The performance of the parameter combination SD threshold of 3.5, a sel of 0 µV, and a minimal SD of 16, 
chosen as best, is indicated with a red asterisk. We observed that the curve flattens to the right of this astrix and a small 
decrease in the false negatives results in a lot of false positives that need to be visually checked.  
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Figure 2.5: An example of a true positive, true negative, false positive, false negative, and distinctive hippocampal ER. The false positive ERP 
is an artifact. In the false negative ERP, the standard deviation of the baseline is large, which explains why the ER is not detected. The 
hippocampal ER is characterized by a short latency and a sharp peak. 
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2.3.4 Validation 

The detector in the validation subset had a sensitivity of more than 80% ( 81%) and a mean PPV of 
more than 50% (75%) (see Table 2.3), thus was considered reasonable for usage as ER detector for 
sEEG data with a visual check. The mean specificity and mean NPV were respectively 93% and 96%.  
Table 2.3: The performance of the detector in the validation subset 

Patient  Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

4 87 92 66 97 

5 61 93 55 95 

6 86 94 76 97 

2.4 Discussion 
We aimed to optimize the parameters of the automatic ER detector by Van Blooijs et al. for sEEG data 
and validate this optimized detector [39]. The optimized detector reliably detected ERs in sEEG data 
with reasonable sensitivity and a fair amount of false positives. A visual check of the detected ERPs is 
still necessary but, the amount of ERPs to check visually is reduced to 19% of the data, which saves a 
considerable amount of time.  
 
The detector with the best performance had an SD threshold of 3.5, a sel of 0 µV, and a minimal SD of 
16. We hypothesized that the amplitude of the second deflection of the ER was different in SPES in 
sEEG data compared to ECoG. The SD threshold was higher, from 2.6 to 3.5 for respectively ECoG and 
sEEG data. The minimal SD was set lower from 50 to 16 and we noticed that the mean SD of the sEEG 
baseline was lower than the SD of the ECoG baseline. Therefore we can conclude that the sEEG 
detector is more sensitive to lower amplitudes than the ECoG detector. The performance of the sEEG 
and ECoG detector are comparable with a sensitivity of 78% (ECoG) versus 81% (sEEG), a specificity of 
91% versus 93%, a PPV of 75% versus 68%, and a NPV of 92% vs 96% [39]. Trebaul et al. also used the 
baseline before stimulation to determine the signal-to-noise ratio for the detection of ERs [43]. They 
reported a similar sensitivity of 86% when using the same amount of stimuli per trial. They generated 
surrogate data extracted from the baseline to calculate the significance threshold on the amplitude. 
This threshold could thus be expressed in a p-value (0.001) or z-score (5), which is hard to compare 
with our SD ratio.  
 
The parameter sel had a value of 0 µV and thus did not have a function in the final detector.  The 
parameter sel was originally included to account for the false positive detections caused by a slow 
trend after the stimulation artifact (see Figure 2.5). Including sel did not result in higher performances 
in this study. A reason for this may be that we wanted a sensitive detector and the parameter sel can 
also cause false negatives.  
 
We used a common average reference montage including only channels with low variance. Other 
studies used a bipolar montage between adjacent electrode contacts within the same electrode to 
improve sensitivity to local current generators [8], [44]. Mitsuhashi et al. studied the effect of sEEG 
montage on the occurrence of ERs [44]. They concluded that ERs detected with a bipolar montage 
reflect solely near-field potentials from the cortex near the electrode contact, while ERs detected with 
an average montage could also be generated by a distant source. Practically, a stimulus pair that 
evoked an ER in many electrode contacts may be present in the average signal and thus in every 
electrode contact signal. The disadvantage of a bipolar montage is that we could not determine which 
of the electrode contacts is responsible for the detected ER. Therefore a combinational use between 
the average and bipolar montage may be a beneficial improvement to characterize brain networks 
with SPES for sEEG more reliable.  
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2.4.1 Strengths and limitations 

A strong point of this study is that the visual annotation was performed by two observers. The inter-
observer agreement in both the train and validation subset was >0.78 which is considered high [45]. 
The inter-observer agreement was 0.08 lower in the validation subset, which may be explained by the 
time sequence of scoring. The two observers reached a consensus about the scoring at front and 
started annotating with the train subset. Although the inter-observer agreement was high, we 
discovered some common distinctive ERs we were not familiar with in ECoG data. This resulted in an 
inconsistent scoring of these distinctive ERs. Therefore, a rescoring is done after a consensus was 
reached about the distinctive ERs. An example of a distinctive ER is an ER evoked in the hippocampal 
electrode contacts characterized by a short latency and a sharp peak (see Figure 2.5).  
A limitation of this study is that we did not evaluate the performance of the detector on distinctive ERs 
between distinct anatomical areas. Frauscher et al. made an atlas of the normal sEEG signal and 
concluded that the sEEG signal and amplitude can largely differ between cortical areas [46]. This could 
lead to a lower performance of the detector in areas with a lower ER amplitude and must be accounted 
for in further research. Furthermore, the SPES protocol differed between patients, in half of the 
patients we switched the cathode and anode after 5 stimuli. The SPES protocol was updated at a 
certain moment and this switch was introduced to facilitate discarding the stimulation artifact. We 
included patients stimulated with both SPES protocols in this study because we wanted this detector 
to be applicable for both SPES protocols. Lastly, a large part of the ERs were annotated in one patient 
in the train subset which may indicate that this patient had a large influence on the parameter 
optimization.  

2.4.2 Future perspectives 

Ideally, we want to use the ER detector fully automatically without visually checking the detected ERs. 
To reach this goal, both the number of false positive detections and the number of false negative 
detections must be improved. Ideally both the FPP and FNP (see Figure 2.4) are close to 1%. To 
decrease the number of FP detections, the non-stimulation triggered events, such as interictal epileptic 
discharges or artifacts, must be removed. This could be done by excluding individual ERPs in epochs 
that exceed the median ERP over the whole epoch [43]. To increase the sensitivity, the artifact removal 
can be further improved so that we do not miss ERs hidden in a noisy signal. An improvement to the 
SPES protocol could be to add more stimuli to one trial. According to David et al., who constructed the 
first version of the detector improved by Trebaul et al., 40 stimuli per trial already resulted in 
sensitivities approaching 100% [8] [43]. In the current clinical workflow, this is not a feasible solution 
since the time to perform the SPES stimulation will be four times as high, while the current SPES 
stimulation protocol already takes an hour. 
 
Lastly, we focused on optimizing the detector to detect the occurrence of an ER. The detector for ECoG 
is also able to detect the amplitude and latency of the N1 peak of the ER. This is relevant for quantifying 
effective connectivity and can be a subject for further study.  

2.4.3 Conclusion 

We optimized the automatic ER detector by Van Blooijs et al. for stereo electroencephalography (sEEG) 
data [39]. The sensitivity, specificity, PPV and NPV of this validated detector were respectively 81%, 
93%, 68%, and 96%. We conclude that the optimized ER detector presented in this chapter can be used 
for the characterization of effective networks. In the next chapter, we constructed a fiber tractography 
algorithm for the characterization of structural networks. 
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 Development of an invasive EEG constrained fiber tractography 
algorithm  

3.1 Introduction 
Fiber tractography (FT), derived from diffusion weighted imaging (DWI), is a technique that estimates 
the white matter tracts between brain areas and allows the reconstruction of structural brain 
networks, as described in Chapter 1. Basser et al. were the first to successfully perform in vivo FT in 
2000 [22]. Nowadays, FT is clinically used to delineate large fiber tracts for pre-surgical planning and 
intra-operative navigation in neurosurgery [24]. In neuroscience research, FT is often used to non-
invasively reconstruct a structural brain network of the whole-brain [47]. Because focal epilepsy is 
regarded as a network disease with epilepsy-related structural abnormalities, reconstruction of 
structural networks could be beneficial to understand which part of the epileptogenic network is 
diseased. To assess the feasibility of FT to characterize epileptogenic networks, our goal is to 
compare networks based on FT with the already clinically used effective networks derived from SPES 
(see Chapter 2). An FT algorithm based on invasive electroencephalography (iEEG) locations allows 
investigation of the relation between structural and effective networks. 
 
Multiple research groups performed FT based on intracranial electrodes [14], [25], [38], [48]–[54]. 
They used either basic deterministic methods, such as the streamline tracking technique algorithm 
(STT) and the second-order Runge Kutta, or the more advanced iFOD2 algorithm (see Table 3.1). The 
iFOD2 algorithm is a probabilistic FT algorithm that performs second-order integration over the fiber 
orientation distributions (FOD) [55]. FOD volume fraction probability profiles are made using trilinear 
interpolation. The iFOD2 algorithm has six crucial algorithm parameters that affect the performance 
of the FT algorithm: the FOD threshold, the path step size, the maximum curvature angle, the 
minimum and maximum streamline length, and the streamline density threshold. The FOD threshold 
determines the minimal volume fraction, thus diffusion strength, in a specific direction to allow 
tracking in that direction. With a lower FOD threshold, more noisy streamlines are tracked and a 
higher FOD threshold leads to fewer and more restricted streamlines [56]. The path step size 
determines how often the algorithm takes an independent sample from the FOD probability profile. 
A larger step size makes the streamlines smoother, while a smaller step size introduces more wobbly 
streamlines [56]. The optimal step size is the largest step size with sufficient accuracy due to the 
large computation time of small step sizes. The maximum curvature angle defines the angle that is 
allowed between steps. With a high angle, more spurious streamlines are tracked, but the angle must 
be high enough to track U-fibers with a sharp curvature. The minimum and maximum streamline 
lengths could be used to constrain biologically implausible short or long streamlines. The streamline 
density threshold determines the minimal amount of streamlines to form a structural connection. 
The ideal setting of these parameters depends on the intended application, quality of the DWI scan, 
and specific processing algorithms used beforehand.  
 
In this chapter, we describe how we developed an iEEG constrained FT algorithm based on the iFOD2 
algorithm. We intended to make an algorithm that is sensitive for tracking all plausible connections, 
including streamlines with a long distance or a large curvature. A second, inferior requirement was 
that the risk of tracking biologically implausible streamlines must be minimized. We aimed to 
construct an iEEG constrained FT and optimize its parameters to use the algorithm for the 
construction of structural networks.  
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3.2 Methods 

3.2.1 Patient specification  

We selected data from four patients who underwent both a diffusion weighted MRI and long-term, 
intracranial EEG monitoring between 2018 and 2021. Inclusion criteria were the presence of a DW 
image, a T1-weighted MRI, and a post-implementation CT scan. The iEEG data were extracted from 
the RESPect database and the DWI data from the Brain Computer Interface group [57].  

3.2.2 DWI acquisition 

DWI was acquired using a multi slice, multi shot echo-planar imaging (EPI) sequence with TE = 91 ms, 
TR = 3191 ms,  field of view (FOV) = 224 x 132 x 224, and resolution = 2 x 2 x 2 mm3.  62 volumes with 
a 𝑏𝑏1value of 1600 𝑠𝑠 𝑚𝑚𝑚𝑚2� were obtained with as principal phased-encoded direction the Posterior-
Anterior (PA) direction. One 𝑏𝑏0 scan in both the Anterior-Posterior (AP) and PA direction was 
obtained. The total scan duration was 204.1 seconds. A 3D T1 MRI was obtained at the same time as 
the DWI for anatomical reference (MRI-DWI) and was acquired with a turbo field echo sequence with 
TE= 3.8 ms, TR = 8.4 ms, TI = 1150 ms, FOV = 288 x 288 x 175, and resolution = 1 x 1 x 1 mm3. The 
MRI-DWI was de-skulled using the brain extraction tool (bet) from the FSL toolbox for visualization 
purposes. Another 3D T1 MRI (MRI-CT) was acquired pre-implementation with a turbo field echo 
sequence with TE= 3.04 ms, TR = 6.21 ms, FOV = 240 x 240 x 180, and resolution = 0.6 x 0.6 x 0.6 
mm3. The MRI-CT and post-implantation CT scan, with a resolution of 0.6 x 0.6 x 0.6 mm3, were used 
to extract the intracranial electrode contact coordinates.  

3.2.3 Pre-processing 

All processing was performed with the MRtrix3 package and MATLAB version R2021b (The 
Mathworks Inc., Natick, Massachusetts), combined with the brain imaging toolboxes Freesurfer, FSL, 
ANTs, and SPM12 [58]. The DWI data were preprocessed to improve the signal-to-noise ratio (SNR) 
and correct for common distortions. Consecutively MP-PCA denoising, Gibbs ringing correction, Eddy 
current correction, EPI distortion correction, movement distortion correction, 𝑏𝑏0 field inhomogeneity 
correction, and 𝑏𝑏1  bias field correction was performed. We improved the SNR using Marchenko-
Pastur Principal Component Analysis (MP-PCA). MP-PCA is based on identifying noise-only principal 
components, thus all anatomical information is retained [59]. We removed Gibbs ringing artifacts in 
the grey-white matter boundary with an algorithm based on modeling the artifact with the sinc-

Table 3.1: Summary of methods used for an iEEG constrained fiber tractography algorithm [14], [25], [38], [48]–[54].NS = 
not specified; ECoG = electrocorticography; sEEG = stereo-EEG; DBS = deep brain stimulation; STT = streamline tracking 
technique; iFOD2 = second order integration over fiber orientation distributions. 
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function [60]. Geometric distortion due to the EPI sequence and movement distortions were 
corrected using the FSL TOP UP tool. The TOP UP tool uses 𝑏𝑏0 data in the principal and reversed 
phase-encoded direction to model the geometric shearing per slice [61]. Eddy currents artifacts were 
removed by modeling the diffusion signal as a Gaussian Process and assuming that the two phase-
encoded directions measure an identical signal [62]. The 𝑏𝑏0 field inhomogeneity was corrected by 
calculating the mean for both phase-encoding directions. The 𝑏𝑏1 bias field is the spatially biased 
signal intensity due to radiofrequency field inhomogeneities which affects the fiber orientation 
model. The 𝑏𝑏1 bias field was estimated from the corrected 𝑏𝑏0 data and applied to all 𝑏𝑏1 volumes [63]. 
We inspected the quality of the preprocessing by visually checking the processed DWI data and 
residual data step for each patient and preprocessing step (see Figure 3.1).  

3.2.4 Co-registration  

The CT scan was linearly co-registered to the MRI-CT as the reference image, and the electrode 
contact coordinates were extracted from the CT scan. The MRI-DWI was linearly co-registered to the 
DWI 𝑏𝑏0 image using the objective function normalized mutual information with the SPM toolbox. 
Normalized mutual information is the best objective function for images with a difference in contrast 
[55]. We used the MRI-DWI as the source image because the transformation of all 62 𝑏𝑏1 volumes is 
not beneficial for the data quality [64]. Lastly, the MRI-CT was linearly co-registered to the MRI-DWI 
as the reference image using the within-modality objective function normalized cross correlation 
with the SPM toolbox. Non-linear registration was not needed because we preprocessed the data 
and all the transformations were intra-subject. We segmented the MRI-DWI in six binary brain masks 
containing cortical grey matter, subcortical grey matter, white matter, the grey-white matter 
boundary, cerebrospinal fluid, and if present pathological tissue. We defined electrode contact areas 
in the grey-white matter boundary of the MRI-DWI, where the white matter pathways start, with a 
volume of 64 mm3 to constrain the FT (see Figure 3.2). For each electrode contact coordinate, the 64 
voxels in the grey-white matter boundary with the shortest Euclidian distance to the actual contact 
positions were the electrode contact areas. Overlapping voxels were assigned to the nearest 
electrode contact. 

Figure 3.1: Raw and pre-processed images of a DWI volume. A) 𝑏𝑏0 DWI volume. The geometric distortions are clearly 
improved as seen in the blue circles. B) 𝑏𝑏1 DWI volume. The SNR is clearly improved. 
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3.2.5 Fiber orientation model 

We used Multi-Shell Multi-Tissue Constrained Spherical Deconvolution (MSMT-CSD) with a maximal 
harmonic order of eight to calculate the fiber orientation distributions (FOD). For each patient, the 
response function was estimated from the DWI data with the dHollander algorithm [14]. With two 
unique 𝑏𝑏 values (𝑏𝑏0 and 𝑏𝑏1), we could resolve FODs for two tissue types, white matter and non-white 
matter (see Figure 3.3).  

 Parameter optimization 

We performed anatomical constrained probabilistic tractography using the iFOD2 algorithm with a 
seed density of 6000 seeds per voxel. We optimized the parameters: FOD threshold, path step size, 
maximum curvature angle, minimum and maximum streamline length, and streamline density 
threshold of the algorithm by starting with a set of ‘standard’ parameter settings, which were the 
most common setting used in previous studies. The standard parameter setting, varied parameter 

Figure 3.3: Fiber orientation distributions (FODs) displayed as an overlay on the MRI DWI. The electrode contact areas are 
displayed in orange. The shape of the FODs in and around the electrode contact area show that the area is located on the grey-
white matter boundary. The grey matter is located on the left and upper right of the electrode contact area. 

Figure 3.2: Electrode contact areas (orange) and the electrode contact coordinates (black) are displayed as an overlay on the 
MRI-DWI with the segmented grey-white matter boundary visualized in blue. We see that the electrode contact areas are 
located near the real electrode contact coordinates. 
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settings, and our strategy to optimize the parameters settings is summarized in Figure 3.4. We varied 
the maximum curvature angle separately for sEEG and ECoG patients to respectively 30° and 70°.  
For each setting, streamlines were created between all electrode contact areas. The streamline 
density was calculated by the number of streamlines divided by the volume of the two involved 
electrode contact areas. A structural connection was formed when the streamline density exceeds 
the streamline density threshold. All connections formed with a varied parameter setting were 
sorted on the absolute difference in streamline density between the standard and the varied 
parameter setting per patient. Two types of connections were defined: extended and restricted 
connections. An extended connection was a connection with a larger streamline density in the varied 
parameter setting compared to the standard setting. A restricted connection is defined as a 
connection with a smaller streamline density in the varied parameter setting compared to the 
standard setting. The first 5% of the connections with the largest difference in streamline density 
(either extended or reduced) between the two settings was visually inspected by SJ. If less than 10% 
of the connections to be visually annotated consisted of restricted or extended connections, we only 
visually annotated the respectively extended or restricted connections. The connections consisting of 
streamlines, the de-skulled MRI-DWI, and two electrode contact areas involved in the connection 
were shown. Each inspected connection was rated as plausible, if its streamlines showed reasonable 
paths, or spurious, when its streamlines showed an unlikely path. A parameter was deemed better 
than the standard parameter when the parameter variation resulted in more extended plausible 
connections than extended spurious and restricted plausible connections.  
 
We calculated the network density of the structural networks 𝑑𝑑𝑆𝑆𝑆𝑆  as the number of actual formed 
structural connections divided by the number of potential connections: 
𝑑𝑑𝑆𝑆𝑆𝑆 =  2∗𝑆𝑆𝑆𝑆

𝐹𝐹(𝐹𝐹−1)
           (3.1) 

with 𝑆𝑆𝑅𝑅 the number of formed structural connections and N the number of electrode areas. The 
network density is used to determine if a reasonable amount of structural connections is 
characterized. Network densities between 6-17% are previously reported, and used as reference 
[24].  
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Figure 3.4: Strategy to optimize the parameters of the FT algorithm. 1. We varied each FT algortihm parameter separately and 
kept all other parameters the same as in the standard setting. 2. We visually inspected the first 5% of the connections sorted on 
the absolute difference in streamline density between the standard and the varied parameter setting. A connection was rated as 
plausible, if its streamlines showed reasonable paths, or spurious, when its streamlines showed an unlikely path. 3. The varied 
parameter setting was deemed more optimal when it resulted in more plausible connections than with the standard parameter 
setting and not too much new spurious connections were introduced. This requirement is formalized by defining the varied 
parameter setting as optimal setting when the number of extended plausible connections is larger than the number of restricted 
plausible connections and extended spurious connections.  
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Table 3.2: Patient specification of the patients with ECoG (first 2 patients) and sEEG (last 2 patients). m = male; f = female; F = 
frontal; T = temporal; P = parietal; C = pre or post-central gyrus; IH = interhemispheric; A = amygdala; H = hippocampus; R=right; 
L=left; N = normal MRI; WA = white matter abnormalities; FCD = focal cortical dysplasia; mMCD = mild malformation of cortical 
development; NP=no pathology found. 

 

3.3 Results 

3.3.1 Patient specification 

We included four patients with no or mild abnormal MRI (see Table 3.2). Two patients underwent 
sEEG and two patients underwent ECoG.  
 
 
 
 

Patient  ECoG/ 
sEEG 

Age at 
iEEG 

iEEG 
location 

Sampled 
hemisphere 

Included 
electrodes 
(all 
electrodes) 

Electrodes 
in SOZ 

Abnormal 
MRI  

Pathology 

1 ECoG 28 T L 71 (72) 4 N mMCD 

2 ECoG 44 F,T,IH L 71 (80) 15 WA  FCD type 2A 

3 sEEG 50 F,T,A,H R & L 47 (88) 4 Cysts NP 

4 sEEG 17 F,C,T,P L 47 (89) 11 Possible FCD mMCD 

3.3.2 Parameter optimization 

In total, 816 connections were visually annotated. The standard parameter setting resulted in a 
network density of 17% (range between patients: 6-23%) (see Figure 3.5). The varied maximum 
curvature angle of 70° and the maximum streamline length of 400 mm resulted in a higher 
percentage of extended plausible connection and were therefore deemed as better than the 
standard parameter settings (see Figure 3.6). The optimal algorithm parameters for sEEG and ECoG 
were a FOD threshold of 0.15, a maximum curvature angle of 70°, a minimum streamline length of 4 
mm, a maximum curvature angle of 70°, a minimum streamline length of 4 mm, a maximum 
streamline length of 400 mm, and a streamline density threshold of 0.1. 

Figure 3.5: Varying the FOD threshold and streamline density threshold resulted in a large effect in the network density. The 
yellow bars indicate the standard setting. The optimal parameter setting is encircled in green. 
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Figure 3.6:Overview of the parameter optimization where we visually inspected formed connections and compared them 
between the standard and varied parameter settings. Green bars indicate the percentage visually annotated plausible 
connections and red bars indicate the spurious connections. The transparent bars indicate the connections that are observed 
in the other parameter setting and are thus restricted in this setting. The optimal parameter setting is encircled in green. A) 
When we compare the FOD threshold of 0.15 with the varied setting of 0.1 we see that the number of extended plausible 
connections is much smaller than the number of extended spurious connections, thus the varied setting is not better than 
the standard setting (see Figure 3.4). For the comparison of a FOD threshold of 0.15 versus 0.2, we observe less extended 
plausible connections than restricted plausible connections. Thus we can conclude that a FOD threshold of 0.15 was the 
optimal setting. B) A path step size of 1 mm resulted in the most extended plausible and restricted spurious connections. C) 
With a maximum curvature angle of 70° the most plausible connections were extended. D) With a higher minimum 
streamline length, more plausible connections than spurious connections were restricted. E) A maximum streamline length 
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of 400 mm resulted in the most plausible connections being extended. F) A streamline density threshold of 0.1 resulted in 
more plausible connections than spurious connections extended and is thus deemed best. 

Inspection of structural connections in each parameter setting showed that the optimal algorithm 
parameters resulted in the most plausible connections and the least spurious connections (see Figure 
3.7).  
  

Figure 3.7: See next page. 
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Figure 3.7: See next page. 
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Figure 3.7: Examples of structural connections formed with varied parameter settings. The electrode contact areas (yellow) and 
streamlines (blue) are displayed into a 3D rendering of the de-skulled MRI-DWI. Plausible connections are indicated with a green 
checkmark and spurious connections with a red X. Absent connections are indicated with a yellow checkmark, when they were 
restricted spurious connections thus their restriction is good, and a yellow X when a plausible connections was restricted. The 
optimal parameter setting is encircled in green. A) With a FOD threshold of 0.1 extended spurious connections were observed. A 
FOD threshold of 0.2 resulted in restricted plausible connections. B) A path step size of 2 resulted in unrealistic straight 
streamlines in the 3D view and a path step size of 0.2 resulted in the restriction of plausible streamlines. C) With the maximum 
curvature angle of 70° plausible connections with highly curved, but not unrealistically curved streamlines were formed. D) A 
minimum streamline length of 4 mm resulted in plausible connections when closely observed in a 3D view. E) Long plausible 
connections with streamlines following the arcuate fasciculus required a maximum streamline length of 400 mm. F) A streamline 
density threshold of 0 resulted in spurious connections and a streamline density of 0.2 resulted in the restriction of plausible 
connections. 
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3.4 Discussion 
We aimed to construct an iEEG constrained fiber tractography algorithm that reliably finds 
streamlines between electrode contacts. In a parameter optimization approach, we found the 
following optimal values: a FOD threshold of 0.15, a path step size of 1, a maximum curvature angle 
of 70°, a minimum streamline length of 4 mm, a maximum streamline length of 400 mm, and a 
streamline density threshold of 0.1. Especially, the FOD threshold, path step size, and streamline 
density threshold seemed to have a large effect on the performance of the FT algorithm. We 
conclude that the iEEG constrained FT algorithm can be used for the characterization of structural 
networks.  
 
We observed an equivalent effect of the parameter variation in the sEEG and ECoG patients. We 
expected the ECoG patients to have more curved streamlines because of the subcortical U-fibers 
located underneath the electrode locations. Although we observed highly curved plausible 
connections in sEEG patients too, especially the arcuate fasciculus and the uncinated fasciculus were 
often tracked.  
 
Tournier et al. visually evaluated the effect of parameter settings of the iFOD2 algorithm for whole-
brain tractography [56]. They concluded that a small FOD threshold introduces more connections and 
a large FOD threshold results in restricted plausible connections. For the path step size, a path step 
size of 2 resulted in unrealistic straight streamlines and a path step size of 0.2 resulted in the 
restriction of plausible streamlines. This is in accordance with our results. Varying the FOD threshold, 
path step size, and streamline density threshold in our study resulted in a large effect on the network 
density. For the maximum curvature angle, maximum streamline length, and minimum streamline 
length changes in the parameter setting resulted in mostly extended or restricted parameters and 
the network density did not vary much. This indicates that these parameters did not have a large 
effect on the performance of the algorithm.  
 
There are some differences between our method and the methods used by other research groups to 
perform iEEG constrained FT. Silverstein et al. used anatomically-constrained whole-brain 
probabilistic tractography instead of only seeding from priorly defined areas [38]. Whole-brain 
tractography is assumed more reliable than seeding from pre-defined areas in finding plausible 
connections because it takes the uncertainty of a connection into account by setting a desired 
number of streamlines. The algorithm keeps seeding randomly until this number of streamlines, 
fulfilling the propagation rules defined by the parameters, is tracked. The probability that the amount 
of streamlines between two electrode contacts exceeds the streamline density and a structural 
connection is formed, is thus weighted against the probability of all possible connections in the brain. 
The disadvantage of whole-brain tractography is the long run time, especially when using high seed 
densities. Whole-brain tractography is not done in this study because we wanted a sensitive 
algorithm, which required a too high seed density to characterize a reasonable amount of structural 
connections  
 
Parker et al. seeded from priorly defined areas and reported a structural network density of 11% 
(range: 6-17%), which is comparable to our findings of 17% (range: 6-23%) [25]. They also used the 
iFOD2 algorithm with a lower FOD threshold of 0.1 and a smaller path step size of 0.2 mm. They 
acquired the DWI data with lower 𝑏𝑏1value and more 𝑏𝑏0 scans. Since the ideal setting of the 
parameters largely depends on the acquisition parameters for the DWI data, it is difficult to compare 
between our and Parkers iEEG constrained FT algorithm.  

3.4.1 Strengths and limitations 

A strength of this study is that we used both sEEG and ECoG which allowed a comparison between the 
configurations using the same DWI acquisition protocol and processing.  
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Our acquisition protocol did not meet the high angular resolution diffusion imaging (HARDI) conditions. 
The HARDI conditions are a theoretical requirement to assure a high enough image quality for 
advanced processing techniques such as constrained spherical deconvolution and higher-order 
integration over the FODs [24], [65]. To meet the HARDI conditions the DTI data must be acquired with 
high and varying b values (𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 3000 𝑠𝑠 𝑚𝑚𝑚𝑚2�  ) and many diffusion directions (> 45 directions ). Our DWI 
acquisition procedure meets the diffusion directions criterium but not the b value criterium. When 
scans fulfilled the HARDI criteria, the results might have had a higher sensitivity. In a clinical workflow 
this is not feasible due to long scan times up to a few hours [66]. Recently, more studies used advanced 
processing techniques without a HARDI acquisition procedure [13], [25], [38]. This is successful due to 
the advanced pre-processing techniques that improve image quality without the need for longer 
acquisition times.  
 
A limitation of this study is that we did not validate the FT algorithm against the golden standard of 
post-mortem validation. In our parameter optimization, we visually inspected formed connections 
and compared them between different parameter settings. Visually inspection of formed 
connections is a cumbersome, time-consuming task thus it was not possible to inspect all 
connections formed with all possible parameter combinations as done in Chapter 2. We used a more 
pragmatic approach which was earlier used in FT studies by varying the parameters one by one and 
comparing them to the standard parameter setting. We only checked the 5% connections with a 
large difference in streamline density between the standard and varied settings. In practice, that 
means that we mostly checked connections that are only formed in either the standard or a varied 
parameter setting. By checking these connections, we were able to get an indication of the effect of 
the algorithm parameters on the FT algorithm performance. A disadvantage of this approach is that 
we do not know the performance of the FT algorithm for all connections. Besides, we did not 
evaluate if any combination of varied parameters performed better than the standard setting.  

3.4.2 Future perspectives 

There have been other methods proposed to validate the performance of FT algorithms. Our FT 
algorithm could be validated against a population-average atlas of white matter tracts, either 
extracted from DWI data or histologically derived [67]. A more methodologic strategy is the use of a 
synthetic phantom model combined with simulated DWI data [68]. With a synthetic phantom model 
white matter tracts with specific characteristics could be specified, after which the model simulates 
DWI data to test if the FT algorithm can characterize these tracts.  
 
The large differences in DWI acquisition and subsequent difference in FT algorithms between studies 
indicate the need for a general approach for an iEEG constrained fiber tractography algorithm. We 
recommend evaluating the robustness of FT algorithm parameter settings by measuring the overlap 
between structural networks reconstructed with data from DWI scans with different acquisition 
parameters in the same patient.  
 
We intended to make a sensitive algorithm but there is always a tradeoff between sensitivity and 
specificity. We recommend comparing the network characteristics of structural networks made with 
both sensitive and specific parameter settings to evaluate the effect of parameter choice on 
structural networks. A method to reduce false positive streamlines is the ensemble method that 
combines various FT algorithms with different parameter settings [69]. False negative streamlines 
due to noise and artifacts could be reduced by improving the acquisition procedure. With the low-
resolution MRI sequence used in this study, the most pronounced distortions are present in the 
temporal and frontal lobes. This is also the location of most of the iEEG electrodes in this study. 
Therefore, it may be beneficial to look into more advanced acquisition methods that improve the 
signal-to-noise ratio without substantially increasing the scan times. For epilepsy patients, acquiring 
the DWI data with high field strengths of 7T could be a feasible option since 7T MRI is already 
clinically used in some of these patients [70].  
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We noticed that a part of the biologically implausible streamlines had an unrealistic long length. We 
recommend to determine the maximal streamline length individually per pair of electrode contact 
areas based on the expected length of the white matter track. With a population-average atlas of the 
white matter tracts characterized by FT this expected length of streamlines between two brain areas 
could be extracted [67].  

3.4.3 Conclusion 

We developed an iEEG constrained FT algorithm based on the iFOD2 algorithm to characterize 
structural networks. The optimized FT algorithm parameters are a FOD threshold of 0.15, a maximum 
curvature angle of 70°, a minimum streamline length of 4 mm, a maximum streamline length of 400 
mm, a path step size of 1 and a density threshold of 0.1. The algorithm was able to characterize 
plausible connections between electrode contact areas. In the next chapter, we compared structural 
networks characterized with this algorithm to effective networks. 
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 The analogy between structural brain networks obtained from 
diffusion weighted imaging and effective networks derived from 
single pulse electrical stimulation  

4.1 Introduction 
Since the first epilepsy surgery in 1886, people with increasingly complex epilepsies could be 
successfully treated due to constant improvement of surgical strategies and pre-operative 
investigations. Initially, epilepsy surgery focused on the removal of visible lesions. Then, epilepsy 
surgery focused on the removal of a more conceptual epileptogenic zone (EZ). The EZ is the cortical 
area that must be removed to achieve seizure freedom. With the current approach to delineate this 
EZ, 25-50% of the surgical candidates do not become seizure-free [6]. A network approach that 
focusses on diseased connections in a brain’s network, rather than just the EZ, might improve the 
surgical outcome [29]. 
 
There are different approaches to characterize brain networks: functional, effective, or structural 
networks. In this study, we focus on effective and structural networks. Effective networks describe the 
causal influence between brain areas by perturbating one area with for example single pulse electrical 
stimulation (SPES) [27]. With SPES, a local population of neurons is activated by applying electrical 
stimuli to adjacent intracranial electrode contacts. The responses in all other electrode contacts are 
analyzed to reveal the effective connections between underlying brain areas.  
Structural networks describe the anatomical connections between brain areas via white matter tracts 
and can be determined with diffusion weighted imaging (DWI). DWI is a magnetic resonance imaging 
(MRI) technique that captures the anisotropic diffusion of water molecules along myelinated axons to 
estimate the spatial organization of the white matter [13]. With fiber tractography (FT), the specific 
paths of white matter tracts between areas of interest, such as electrode contacts, could be 
reconstructed, allowing identification of structural networks [14].  
 
Comparing structural and effective networks benefits understanding of how epilepsy alters the 
complex brain network [29]. The structural connections can non-invasively reveal the biologically 
plausible pathways that give rise to the observed effective connections between brain areas covered 
by intracranial electrodes. Two studies compared structural and effective brain networks [25], [51]. 
Crocker et al. measured a high Pearson correlation of 0.68 ± 0.21 between physiological effective and 
structural networks [51]. Parker et al. found a low correlation (0.13 ± 0.066) and suggested that the 
two networks can complement each other in explaining how epilepsy influences the patient’s brain 
network organization[25]. Effective networks had greater outward connectivity at the ictal-onset zone, 
while structural networks showed greater connectivity within the ictal-onset zone. Parker et al. did not 
analyze to what extent these findings could be described by epilepsy related pathophysiological 
processes and what the influence of sources of error like modality specific artifacts and bias due to 
irregular spatial sampling was. Crocker et al. corrected for the bias of irregular spatial sampling and 
reported a significant influence of this bias on the correlation [51]. They only considered physiological 
networks and did not study specific network characteristics. The large difference in reported 
correlation between the two studies indicates the need to further elucidate the relation between 
structural and effective networks using specific network characteristics and by taking the influence of 
epilepsy and bias into account.  
 
We aimed to elucidate how structural and effective networks interrelate and how epilepsy alters this 
relation. We assessed the intermodal similarity between structural and effective networks of focal 
epilepsy patients. We applied graph analysis to further specify correlating network characteristics. We 
constructed a linear multilevel model to analyze the influence of epilepsy and sources of bias on the 
correlation between structural and effective networks. This research is a preliminary step in comparing 
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structural and effective networks to assess the influence of epilepsy on brain networks for a network 
based surgical strategy.  
 
4.2 Methods 

4.2.1 Patient specification  

We selected data from people with drug resistant focal epilepsy who underwent both a diffusion 
weighted MRI and long-term, invasive EEG (iEEG) monitoring between 2018 and 2021. Inclusion 
criteria were the presence of a DW image, a 3DT1-weighted MRI, a post-implementation CT scan, and 
a SPES procedure. The clinical data were extracted from the RESPect database that consists of iEEG 
data from epilepsy surgery candidates treated at the University Medical Center Utrecht, the 
Netherlands [57]. Written informed consent was obtained and the Medical Ethical Committee of the 
UMC Utrecht approved the use of coded data in the RESPect database for retrospective research.  
 
DWI acquisition 
DWI was acquired with a multi slice, multi shot echo-planar imaging (EPI) sequence with a TE of 91 
ms, TR of 3191 ms, and a resolution of 2 x 2 x 2 mm3. A total of 62 diffusion sensitizing gradient 
directions with a 𝑏𝑏 value of 1600 𝑠𝑠 𝑚𝑚𝑚𝑚2�  and a single 𝑏𝑏0 scan were obtained. The 3D T1 MRI and CT 
were acquired with a resolution of 1 x 1 x 1 mm3. A 3D T1 was acquired at the time of the DWI scan 
for anatomical reference (‘MRI-DWI’). For processing of the electrode locations we used another 3D 
T1 acquired before electrode implantation (‘MRI-CT’).   
 
iEEG recording and SPES 
iEEG data were recorded at 2048 Hz with a MicroMed LTM64/128 express EEG headbox with an 
integrated programmable stimulator (MicroMed, Mogliano—Veneto, Italy). The placement and type 
of the intracranial electrodes were determined clinically. Subdural electrode grids (ECoG) had an 
interelectrode contact distance of 1 cm and consisted of platinum electrode contacts with a 4.2 mm2 
contact surface embedded in silicone (Ad-Tech, Racine, WI). Cylindrical depth electrodes (sEEG) were 
either platinum contacts with an 8.3 mm2 contact surface and 5 mm interelectrode contact distance 
(Ad-Tech, Racine, WI) or platinum/iridium contacts with a 5.0 mm2 contact surface and 3.5 mm 
interelectrode distance (DIXI Medical, France). We excluded electrodes not placed in the grey matter 
or recording noisy signals from further analysis. SPES consisted of one trial for each pair of adjacent 
electrode contacts. Each trial consisted of ten monophasic pulses with a pulse width of 1 ms, a 
current of 1-8 mA, and a repetition rate of 0.2 Hz. 

4.2.2 Structural networks 

The DWI was processed using the MRtrix3 package and MATLAB version R2021b (The Mathworks Inc., 
Natick, Massachusetts), combined with the brain imaging toolboxes Freesurfer, FSL, ANTs, and SPM12 
[58]. The DWI data were denoised and corrected for common distortions following the pipeline 
proposed by Ades-Aron et al. [71]. In short: consecutively Marchenko-Pastur Principal Component 
Analysis (MP-PCA) denoising, Gibbs ringing correction, EPI distortion correction, Eddy current 
correction, movement distortion correction, b0 field inhomogeneity correction, and b1 bias field 
correction was performed. The MRI-DWI was linear co-registered to the DWI 𝑏𝑏0 image using the SPM12 
toolbox. 
 
The post-implantation CT scan was linear co-registered to the MRI-CT as the reference image and 
intracranial electrode contact coordinates were extracted from the CT scan (see Figure 4.1). We 
transformed the electrode contact coordinates to the DWI space via co-registration of the MRI-CT to 
the MRI-DWI. The inverse transformation matrix was used to transform the electrode contact 
coordinates. The MRI-DWI was used as the anatomical constraining image for fiber tractography. We 
segmented the MRI-DWI in six binary brain masks containing cortical grey matter, subcortical grey 
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matter, white matter, the grey-white matter boundary, cerebrospinal fluid (CSF), and if present, 
pathological tissue. The electrode contact coordinates were projected onto the grey-white matter 
boundary mask to create electrode contact areas. These electrode contact areas were used as seed 
and termination regions for fiber tractography. The nearest 64 voxels in the grey-white matter 
boundary were assigned to each electrode contact area. The volume of the electrode area of 64 mm3 
was chosen such that it was comparable to the estimated size of the locally activated brain area with 
SPES. Overlapping voxels were assigned to the nearest electrode contact, which resulted in some 
contact areas having a volume of less than 64 mm3. 

 
Figure 4.1: Schematic overview of the co-registration and electrode contact area definition. 

Structural networks were reconstructed by fiber tracking the white matter tracts between iEEG 
electrode contact locations. Anatomical constrained probabilistic tractography was performed using 
the iFOD2 reconstruction algorithm with a seed density of 6000 seeds per voxel and constraints on the 
diffusion strength (FOD (fiber orientation distribution)-threshold), maximal angle, minimal streamline 
length, and maximal streamline length. The FOD threshold was 0.15, the maximal angle was 70, and 
the minimal and maximal streamline length was respectively 4 mm and 400 mm. The response function 
for constrained spherical deconvolution (CSD) was estimated from the DWI data with the dHollander 
algorithm [72]. The fiber orientation distribution was calculated with the Multi-Shell Multi-Tissue CSD 
(MSMT-CSD) algorithm using two-tissue CSD [56].  
 
We created binary structural networks with every node representing an electrode area. The 
streamlines seeded inside an electrode area and terminated inside another electrode area were 
considered. The streamline density was calculated by the number of streamlines divided by the volume 
of the two involved electrode contact areas. A structural connection was formed when the streamline 
density exceeded a threshold of 0.1. 

4.2.3 Effective networks 

The 10 stimuli of each SPES trial were epoched in a time window 2s prior and 2s post stimulus, time-
locked to the stimulus artifact. These ten epochs for each trial were averaged per electrode contact 
and the baseline 2 s pre-stimulation was subtracted. The obtained post-stimulus signal is called the 
evoked response potential (ERP). Early responses (ERs) were detected in this ERP using an automatic 
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detector. For ECoG data, ERPs were classified as ER if they occurred within 9-100 ms after the 
stimulation and the amplitude exceeded 2.6 times the standard deviation of the baseline before 
stimulation. For sEEG data, the ERP had to exceed 3.5 times the SD of the baseline. We created binary 
effective networks with every node representing an electrode area. Connections were drawn from 
both electrode contacts in a stimulus pair to the electrode contacts in which an ER was detected. 
Effective networks were made symmetrical by considering all ERs as bi-directional, to be able to 
compare to the non-directional structural networks.  

4.2.4 Inter-modal similarity  

The inter-modal similarity between structural and effective networks was determined with the Jaccard 
Index (JI) calculated as the size of the set of intersecting connections divided by the size of the set of 
union connections: 
 
Jaccard Index (𝐽𝐽𝐽𝐽) =  𝑆𝑆𝑆𝑆⋂𝐸𝐸𝑆𝑆

𝑆𝑆𝑆𝑆⋃𝐸𝐸𝑆𝑆
         (5.1) 

 
with 𝑆𝑆𝑅𝑅 and 𝐸𝐸𝑅𝑅 the structural and effective connectivity matrixes. The Jaccard similarity test was 
conducted to statistically determine if the JI was higher than expected by chance given the densities 
of the networks [73]. The expected JI is the JI when the connections are placed at random positions in 
the network, calculated with: 
 
𝐽𝐽𝐽𝐽expected =  𝑑𝑑𝑆𝑆𝑆𝑆𝑑𝑑𝐸𝐸𝑆𝑆

𝑑𝑑𝑆𝑆𝑆𝑆+𝑑𝑑𝐸𝐸𝑆𝑆−𝑑𝑑𝑆𝑆𝑆𝑆𝑑𝑑𝐸𝐸𝑆𝑆
         (5.2) 

 
with 𝑑𝑑𝑆𝑆𝑆𝑆  and 𝑑𝑑𝐸𝐸𝑆𝑆  the densities (see Equation 3.1) of the structural and effective connectivity matrixes 
𝑆𝑆𝑅𝑅 and 𝐸𝐸𝑅𝑅. 

4.2.5 Network topography 

We performed graph analysis to compare the topography between structural and effective networks. 
We analyzed the network characteristics degree and betweenness centrality. Each network 
characteristic was calculated per electrode contact area. To evaluate the impact of the irregular spatial 
sampling of the brain with sEEG or ECoG, we determined the correlation between the node proximity 
and the degree. The node proximity per node was defined as the median distance between this node 
and all other nodes. The distance between two nodes is computed as the mean Euclidean distance 
between electrode contact coordinates extracted from the post-implementation CT scan. We used 
Spearman’s 𝜌𝜌 test to calculate the correlation between the node proximity and the degree per patient 
for both the structural and effective networks. 
 
The correlation between structural and effective networks for the degree and betweenness centrality 
per patient was determined with the spearman’s 𝜌𝜌 test. The network characteristics that showed a 
correlation between structural and effective networks at patient level were further assessed at group 
level with linear multilevel analyses. We used the network characteristic of the structural network as 
dependent variable. We first fitted an intercept-only model to quantify the dependency in the data 
with the intra class correlation (ICC). The ICC was calculated as: 
 

𝐽𝐽𝑅𝑅𝑅𝑅 =  𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
2

𝜎𝜎𝑏𝑏𝑤𝑤𝑏𝑏ℎ𝑤𝑤𝑏𝑏
2 +𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

2           (5.3) 

 
with 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛2  and 𝜎𝜎𝑏𝑏𝑖𝑖𝑏𝑏ℎ𝑖𝑖𝑛𝑛2  the variance of the data between patients and within patients respectively. 
We constructed a linear multilevel model with backward elimination of possible predictors. The 
possible predictors at patient level were the effective network characteristic, the node proximity, the 
volume of the structural electrode contact areas, and the nodes in the seizure onset zone (SOZ). The 
treating neurophysiologist of each patient determined which electrode contacts were located on the 
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SOZ independently of this study. We added each variable as fixed effect to the model. The variable 
with the highest p-value was removed at each step until all variables had a p-value<0.05. For the 
variables in the final model, we concluded that they are associated with the structural network 
characteristic.  
 
Statistical analyses were performed in R 4.1.2 [74]. We corrected for multiple comparisons with the 
Benjamini-Hochberg procedure. The individual critical p-values for statistical significance were 
calculated as:  
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑖𝑖

𝑚𝑚
∗ 0.05             (5.4) 

with 𝑖𝑖 the individual p-value’s rank and 𝑚𝑚 the number of patients.  
4.3 Results 

4.3.1 Patient specification  

We selected thirteen patients with a median age of 25 (range= 10-50). Eight patients underwent sEEG 
and five patients underwent ECoG (see Table 4.1).  
 
Table 4.1: Patient specification of the patients with ECoG (first 5 patients) and sEEG (last 8 patients). m = male; f = female; F 
= frontal; T = temporal; P = parietal; C = pre or post-central gyrus; O = occipital; IH = interhemispheric; A = amygdala; H = 
hippocampus; I= insula R=right; L=left;  ND = not determined; mMCD = mild malformation of cortical development; FCD = 
focal cortical dysplasia; NP = no pathology found; NR = not resected.  In two patients the SOZ could not be determined due 
to diffuse seizure onset. In one patient the SOZ is not resected due to overlap of the SOZ with functional area. The outcome is 
determined by the ILAE classification. 

Patient  ECoG/ 
sEEG 

Age at 
iEEG 

iEEG 
location 

Sampled 
hemisphere 

Included 
electrodes 
(all 
electrodes) 

Electrodes 
in SOZ 

Outcome 
(months 
follow 
up) 

Pathology 

1 ECoG 15 T,P,O L 104 (112) 37 5 (13) NP 

2 ECoG 28 T L 71 (72) 4 5 (25) mMCD 

3 ECoG 37 F L 61 (64) 4 NR NR 

4 ECoG 44 F,T,IH L 71 (80) 15 1 (7) FCD type 2A 

5 ECoG 18 F,T L 58 (64) 11 3 (17) mMCD 

6 sEEG 45 F,T,A,H R 44 (67) 14 1 (30) DNET grade 1 

7 sEEG 50 F,T,A,H R & L 47 (88) 4 1 (27) NP 

8 sEEG 50 T,P,A,H R 52 (78) 9 2 (7) Gliosis 

9 sEEG 25 F,T R & L 101 (121) ND NR NR 

10 sEEG 17 T,P,O,A,H R 68 (90) 21 2 (10) mMCD 

11 sEEG 17 F,C,T,P,I L 47 (89) 11 1 (7) mMCD 

12 sEEG 14 F,T,A,H,I L 58 (103) 4 5 (13) mMCD 

13 sEEG 10 F,T,A,H,I L 81 (142) ND NR NR 

4.3.2 Inter-modal similarity  

The inter-modal similarity, measured with the JI, between structural and effective networks, was 0.25 
(interquartile range (IQR)= 0.19-0.29). The JI was for all patients significantly higher (p< 0.0001) than 
expected by chance given the densities of the networks (see Table 4.2). In Figure 4.2, the union and 
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intersecting connections in the networks were visualized for a patient with a high JI and a low JI. The 
intersecting connections of a patient with a low JI were primarily between neighboring electrode areas.  
 
Table 4.2: The inter-modal similarity determined by the JI was for all patients significantly higher than the expected JI. 

Patient  Expected JI Observed JI P-value 

1 0.14 0.19 <0.0001 
2 0.14 0.26 <0.0001 
3 0.23 0.38 <0.0001 
4 0.10 0.18 <0.0001 
5 0.19 0.36 <0.0001 
6 0.08 0.27 <0.0001 
7 0.05 0.17 <0.0001 
8 0.15 0.28 <0.0001 
9 0.05 0.22 <0.0001 
10 0.08 0.19 <0.0001 
11 0.20 0.30 <0.0001 
12 0.06 0.23 <0.0001 
13 0.07 0.25 <0.0001 

  

Figure 4.2: Connectivity matrixes of two patients. Left: structural connectivity matrix in blue. Middle: effective connectivity matrix 
in green. Right: Union (blue & green) and Intersection (orange) of structural and effective connectivity matrixes. A: ECoG patient 
5 with high JI. Structural and effective connections are present in the same areas. B: ECoG patient 4 with low JI. We see mainly 
effective connections between neighboring electrode areas. 
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4.3.3 Network topography 

The node proximity showed a significant negative correlation with the degree of structural networks 
in 10/13 patients and a significant positive correlation in one ECoG patient (see Figure 4.3). In 12/13 
patients, a significant negative correlation existed between the node proximity and the degree of 
effective networks (see Figure 4.4). The nodes in de SOZ had often low node proximity. 
 

 

Figure 4.3: Correlation between the node proximity and the degree of structural networks. In 10/13 patients the node proximity 
was negatively correlated with the degree of structural networks. We computed a positive correlation in ECoG patient 1 and no 
significant correlation in sEEG patients 6 and 11. The orange lines are the best linear fit through the data points. The purple 
markers indicate the seizure onset zone (SOZ). In patient 9 and 13 the SOZ was not determined. In patients 2, 6, 7, 10, 11 and 12 
the SOZ nodes cluster with regards to the node proximity. 
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We observed a positive correlation between the degree of effective networks and the degree of 
structural networks in 9/13 (see Figure 4.5). The nodes in de SOZ did not cluster. For the 
betweenness centrality, we did not find a significant correlation in the sEEG patients and no 
consistent significant positive (2 patients) or negative (1 patient) correlation in the ECoG patients 
thus we did not further assess this correlation at group level (see Table 4.3).  

 

Figure 4.4: Correlation between the node proximity and the degree of effective networks. In 12/13 patients the node proximity 
was negatively correlated with the degree of effective networks. We computed no significant correlation in sEEG patient 6. The 
orange lines are the best linear fit through the data points. The purple markers indicate the seizure onset zone (SOZ). In patient 9 
and 13 the SOZ was not determined. In patients 2, 6, 7, 10, 11 and 12 the SOZ nodes cluster with regards to the node proximity. 
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Figure 4.5: Correlation between the degree of effective and structural networks. A positive correlation existed between the 
degree of structural and effective networks in 9/13 patients. Four patients, ECoG patients 1 and 4, and sEEG patients 10 and 12 
showed no significant correlation. The orange lines are the best linear fit through the data points. The purple markers indicate 
the seizure onset zone (SOZ). In patient 9 and 13 the SOZ was not determined. 
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Table 4.3: Correlation between the betweenness centrality of structural and effective networks per patient. In 2/5 ECoG 
patients, the betweenness centrality of the structural networks was positively correlated to the betweenness centrality of 
the effective networks. In 1/5 ECoG patients, we computed a negative correlation. In the rest of the patients no significant 
correlation was found.  

  Patient  1 2 3 4 5 6 7 8 9 10 11 12 13 

Betweennes 
Centrality 

P-value 0.011 <0.001 0.047 0.67 <0.01 0.18 0.06 0.23 0.59 0.38 0.15 0.07 0.69 

Rs -0.25 0.39 0.26 -0.05 0.39 0.2 0.27 0.17 0.05 0.11 0.21 0.24 -0.05 

 
The linear multilevel model showed that the node proximity and the degree of the effective networks 
are significantly associated with the degree of the structural network (see Table 4.5). For the models 
which included the SOZ nodes, we included the eleven patients with a defined SOZ. The ICC was 0.37, 
which indicates that a considerable amount of the variance in the data was caused by the between 
patient variance. The degree of effective networks was positively correlated to the degree of structural 
networks after accommodating for node proximity with a regression coefficient (β) of 0.11 (p-value = 
0.016). The node proximity was negatively correlated to the degree of structural networks at a group 
level with a regression coefficient (β) of -0.15 (p-value < 0.0001), in concordance with Figure 4.3.  
 
Table 4.5: The characteristics of the fitted linear multilevel models. The degree of the effective networks and the node 
proximity were significantly associated with the degree of the structural networks. β = regression coefficient. SOZ = seizure 
onset zone. All steps of the backward elimination are shown.  

 
Model with all 
possible predictors 
(n=11) 

Model without 
volume (n=11) 

Final model (n=11) Final model with all 
patients (n=13) 

Intercept 

β0 = 15 β0 = 17 β0 = 18 β0 = 17 

P-value < 0.001 P-value < 0.0001 P-value < 0.0001 P-value < 0.0001 

Degree 
effective 
networks 

β = 0.13 (0.018 – 0.24) β = 0.11 (0.018 – 0.24) β = 0.12 ( 0.014 – 0.24) β = 0.11 ( 0.021 – 0.20) 

P-value = 0.024 P-value = 0.024 P-value = 0.029 P-value = 0.016 

Node 
proximity 

β = -0.16 (-0.25 – -0.074) β = -0.16 (-0.23 – -0.08) β = -0.16 (-0.24 – -0.068) β = -0.15 (-0.23 – - 0.076) 

P-value < 0.001 P-value < 0.001 P-value < 0.001 P-value < 0.0001 

SOZ nodes 

β = -1.1 (-3.33 – 1.07) β = -1.1 (-3.33 – 1.07) 
NA NA 

P-value = 0.31 P-value = 0.32 

Volume 
electrode 
areas 

β = 0.035 (-0.095 – 0.11) NA NA NA 

P-value = 0.93    

 
4.4 Discussion 
We aimed to assess the relation between structural and effective networks and explore how epilepsy 
alters this relation. We found a moderate inter-modal similarity between structural and effective 
networks with a JI of 0.25 (IQR: 0.19-0.29). The degree of the structural networks compared to the 
effective networks at patient level showed a positive correlation in 10/13 patients. We did not find a 
consistent significant positive or negative correlation at patient level for the betweenness centrality of 
the structural networks compared to effective networks. After controlling for the bias caused by the 
node proximity and the between patient variance with multilevel modeling, the correlation between 
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the degree of structural and effective networks is still present at group level. We did not find statistical 
evidence that epilepsy alters the relation between structural and effective networks.  
 
Our findings regarding the inter-modal similarity are in concordance with Parker et al. They reported 
a JI of 0.18 ± 0.024 for the binary networks and a Pearson correlation of 0.13 ± 0.066 for weighted 
networks [25]. Crocker et al. reported a correlation for weighted networks of 0.68 ± 0.21 [51]. The 
Pearson correlation only takes the union connections into account. When the inter-modal similarity is 
low, the correlation describes a small part of the network and we must be careful interpreting this 
finding. Crocker et al. corrected for the node proximity using the distance between electrode contacts 
and reported a negative correlation between the node proximity and the connectivity strength of both 
the structural and effective networks. This is in accordance with the negative correlation between 
node proximity and degree we reported.  
 
No previous studies explicitly compared the topography between structural and effective networks. 
Parker et al. reported altered structural and effective connectivity around the ictal-onset zone but did 
not correct for node proximity [25]. Since the presumed SOZ is extensively sampled in sEEG and often 
located in the middle of the ECoG, this correction is necessary to be able to make valid conclusions. 
Van Blooijs et al. corrected for node proximity and reported a significantly higher degree in the SOZ in 
effective networks [27]. The SOZ was not a significant predictor in the multilevel model that described 
the correlation between the degree of structural and effective networks. This may suggest that 
network alterations due to epilepsy are similar in structural and effective networks. However, only four 
patients were seizure-free in our study which made the SOZ as measure of epilepsy less reliable and 
may have introduced noise into the multilevel model. Therefore we must be careful to conclude that 
epilepsy did not alter the relation between structural and effective networks.  
 
We observed an equivalent correlation between structural and effective networks in the sEEG and 
ECoG patients. For three patients, ECoG patient 1, 4, and sEEG patient 12 (see Figure 4.5) we did not 
find a significant correlation for the degree between structural and effective networks . This could be 
due to modality dependent sources of error in the structural or effective networks. For structural 
networks, noise or artifacts in the DWI data could have led to incorrect FOD reconstruction which may 
have blocked the path of the streamlines between two electrode contacts. In patient 4, the focal 
cortical dysplasia possibly altered the grey-white matter boundary which may have disturbed the 
seeding of streamlines in that area. For effective networks, volume conduction between nearby 
electrode contacts could have led to more short distance connections compared to structural 
networks.  
 
The exact relation between structural and effective networks remains a complex question. 
Theoretically, effective connections describe the physiological organization of communication 
between brain areas. Structural networks could be seen as the supporting hardware that allows this 
communication. This assumption does not fully explain the relation between structural and effective 
networks. The structural connections could be non-functional, or communication could go via other 
ways than the white matter pathways the structural connections are inferred from, for instance via 
hormonal or cell-to-cell communication [75],[76]. Some studies hypothesize that especially in 
epileptogenic network parts, the structure-function coupling is disrupted [25],[77]. This may be an 
explanation of the moderate correlations we reported and indicate that structural and effective 
networks may be interchangeably used but also have the potential to complement each other.  

4.4.1 Strengths and limitations  

A strength of this study is that we used multilevel modeling to elucidate the relation between structural 
and effective networks which allowed us to correct for node proximity. The ICC was 0.37 which 
indicates that a multilevel model is necessary to analyze the correlation between the degree of 
structural and effective networks at group level. A limitation is that we used a small heterogeneous 
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dataset. Therefore we could not draw explicit conclusions on group level, but we assessed the data on 
electrode contact level, and focused on the comparison between nodes within one patient.  
 
A possible cause of underestimation of the relation between structural and effective networks is the 
arbitrary choice of sampled brain areas for the characterization of structural networks. To determine 
the size of the electrode contact areas, we made an assumption about the size of the local activated 
brain area with SPES. This assumption and the projection onto the grey-white matter boundary 
probably resulted in a spatial different sampled structural network compared to the effective network. 
Furthermore, the volume of the electrode contact areas differed due to overlapping areas. This 
resulted in some electrode contact areas having a critically low volume. We used the volume as a 
possible predictor in the multilevel model and did not find a significant correlation with the degree of 
the structural networks.  

4.4.2 Future perspectives 

 In our comparison between structural and effective networks we used binary networks. We 
recommend to further elucidate the relation with networks weighted by the connectivity strength. For 
effective networks, the amplitude and latency of the ER can be used to determine the connectivity 
strength. For structural networks, the streamline density and the mean FOD volume fraction describe 
the connectivity strength. Comparing networks weighted by the connectivity strength could result in a 
higher correlation because it avoids the need for subjective thresholding. 
 
To further explain to what extent structural and effective networks interrelate, we need a method to 
correct for the node proximity on a patient and electrode level. The comparison of whole-brain 
structural networks and structural networks constrained by iEEG could be a first step. In this study, the 
node proximity is determined using the Euclidean distance between electrode contact coordinates. 
We recommend to use the average streamline length to precisely describe the node proximity of the 
electrode contacts in structural networks.  
 
We were not able to conclude if epilepsy alters the relation between structural and effective network 
by using the SOZ as predictor in the multilevel model. A strategy to evaluate the effect of epilepsy on 
the relation is to compare epileptogenic and physiological networks. Defining physiological networks 
is challenging in the context of epilepsy as a network disorder[78], [79]. We recommend to use 
population-averaged networks as physiological network and compare them with patient-specific 
epileptogenic networks on electrode contact level. For structural networks, these population-averaged 
networks already exist [67]. For effective networks, we recommend to use a homogeneous patient 
population with approximately the same anatomical electrode configuration. Data of high density grids 
placed on a physiologically functioning brain area currently acquired in the UMC Utrecht could assist 
in the characterization of a population-averaged physiological network [80].  

4.4.3 Conclusion 

We explored the relation between structural and effective patient-specific brain networks as a 
preliminary step to establish a network based surgical strategy. We conclude that structural and 
effective networks show a moderate overall relation and their topography described by the degree 
correlates independently of common sources of bias. . We found no effect of epilepsy on the relation 
between these networks. We recommend to further investigate the extent of this relation and 
disruptions caused by epilepsy with higher sample sizes and by using population-averaged networks.   
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  General discussion & conclusion 
This master thesis focused on the relation between structural and effective brain networks in focal 
epilepsy. Our research question was: How do structural networks derived from diffusion weighted 
imaging (DWI) relate to effective networks obtained from single pulse electrical stimulation (SPES) in 
patients with focal drug resistant epilepsy? 
 
In Chapter 2, we optimized the automatic early response (ER) detector by Van Blooijs et al. for stereo 
electroencephalography (sEEG) data [39]. The sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) of this detector were respectively 0.81,0.93,0.68, and 0.69. With 
this performance and a visual check of the detected evoked response potentials (ERP), the detector 
can be used for the characterization of effective networks.  
 
In Chapter 3, we constructed an intracranial EEG (iEEG) constrained fiber tractography (FT) algorithm. 
The algorithm was able to characterize plausible connections between electrode contact areas by using 
state-of-the-art processing techniques. We concluded that the iEEG constrained FT algorithm can be 
used for the characterization of structural networks.  
 
In Chapter 4, we tried to answer two sub-questions. The two sub-questions were ‘What is the inter-
modal similarity between structural networks derived from DWI and effective networks obtained from 
SPES?‘ and ‘What is the influence of epilepsy on the correlation between network characteristics of 
structural and effective networks?’ We observed a moderate inter-modal similarity determined by the 
Jaccard Index with a median of 0.25 (IQR: 0.19-0.29). We found a positive correlation in 10/13 patients 
for the degree and no consistent correlation for the betweenness centrality. The positive correlation 
between the degree of structural and effective networks is still present at group level, thereby 
accommodating for node proximity bias and between patient variance with multilevel modeling. This 
suggests that structural and effective networks of focal drug resistant epilepsy patients correlate but 
also have the potential to complement each other. To answer the second question, we included the 
possible influence of epilepsy in our multilevel model by specifying seizure onset zone nodes but could 
not draw convincing conclusions at group level due to the small amount of seizure-free patients (n=4). 
 
Our research clarified and refined the sparse previous findings about the structural and effective brain 
network organization in focal epilepsy. Our reported correlation in the topography refined the finding 
of an overall correlation by Parker et al. and Crocker et al. We clarified the influence of node proximity 
observed by Crocker et al. by correcting for it on group level. In contrast to the relation between 
structural and effective networks, extensive efforts are made to compare structural and functional 
networks [29], [77]. Functional networks are another category of brain networks based on EEG, iEEG, 
functional magnetic resonance imaging, and magnetoencephalography [81]–[83]. Van Diessen et al. 
performed a review study and concluded that there is a positive correlation between structural and 
functional networks with similar disruptions in network topology in epilepsy patients [77]. Slinger et 
al. recently reevaluated these conclusions in a systematic review and could not reproduce the 
conclusions regarding the network topology. To what extent functional networks are constrained by 
structural networks remains a complex question. Preti et al. elucidated one of the complexities by 
using an index that quantifies the structural-functional decoupling [84]. They discovered that the 
structure-function coupling is spatially varying over brain regions with lower and higher level functions.  
 

5.1 Strengths and limitations 
This is the first study that explicitly compared the topography between structural and effective 
networks by using network characteristics and taking the influence of node proximity into account. We 
used both sEEG and ECoG which allowed a comparison between the configurations. We only analyzed 
patient-specific data and focused on comparisons within patients. Since the surgical trajectory is highly 
patient-specific this is a strong methodology that allows future clinical translation. A limitation is that 
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we were not able to perform sub analysis, for instance, to analyze the influence of epilepsy in seizure-
free patients, due to our small sample size. 
 
We gained insights into the practical and methodological strengths of structural and effective 
networks. Effective networks are the most direct measure of connectivity due to direct perturbation 
and recording of neural activity which allows a high precision but low spatial coverage. Structural 
networks can identify anatomical connections that can be located and disconnected in a surgical 
setting thus allowing potentially an easy clinical translation. Caution is needed in the structural 
network characterization of focal epilepsy patients with large white matter abnormalities or structural 
lesions affecting the grey-white matter boundary. Our FT algorithm used to characterize structural 
networks might perform differently in those areas but is potentially useful in describing the deviated 
structural pathways around those lesions. Validation of our FT algorithm using a population-averaged 
atlas is needed. 
 

5.2 Future perspectives 
Current insight into the relation between structural and effective networks in focal epilepsy patients 
is yet insufficient to elucidate how structural networks, effective networks, or a combination could be 
used to establish a network based surgical strategy.  
 
The experience in epilepsy surgery is that often an integration of techniques is needed to define the 
epileptogenic zone with enough certainty to achieve seizure freedom. This experience illustrates that 
an integration of techniques is also needed to identify all network alterations caused by epilepsy and 
determine an ‘epileptogenic network signature’. We propose the term epileptogenic network 
signature as the combination of network based biomarkers that are needed to establish a surgical 
strategy that leads to seizure freedom, thus a theoretical equivalent of the epileptogenic zone. The 
techniques to define this network signature include but are not limited to DWI based structural and 
SPES-based effective networks. Functional networks might be a useful addition because they act on 
different temporal and spatial scales than effective and structural networks [81]–[83]. Quantifying the 
coupling between structural, effective, and functional networks is important for the integration of 
these networks. We recommend to first quantify this coupling in the physiological parts of brain 
networks. We hypothesize that especially disruptions in the coupling could indicate network 
alterations caused by epilepsy [25], [77]. We recommend exploring these disruptions using 
homogeneous patient populations in terms of pathology and epilepsy location since these clinical 
variables are known to affect network topology [29].  
 
Another promising tool to integrate effective, structural, and functional networks and establish a 
network based surgical strategy is the virtual brain project. The virtual brain models a patient-specific 
brain using functional and structural network data in a computational neuronal model [85]. With this 
model, the extent of the epileptogenic network signature could be estimated. Furthermore, seizures 
could be simulated which allows exploration of the seizure outcome of surgical strategies. With seizure 
simulation, new network based biomarkers could be experimentally validated without the need to 
validate network based biomarkers with estimates of the epileptogenic zone.  
 
A future application of structural networks is in the planning of intracranial electrode locations. Whole-
brain scale structural networks could be made to non-invasively determine network alterations and 
identify important nodes and connections in the epileptogenic networks. This first hypothesis of the 
epileptogenic network signature could then be confirmed during the iEEG monitoring period with 
effective networks and analysis of seizure propagation.  
 
A different application for structural and effective networks lies in network modulation. Network 
modulation aims to disturb the epileptogenic network via vagal nerve stimulation, deep brain 
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stimulation, or cortical stimulation. The response to these treatments varies largely among patients 
and we do not completely understand why [86]. Insight into how neuromodulation affects effective 
networks, structural networks, and their relation might help us find the optimal stimulation settings 
and predict response to network modulation. 
 
A network approach might also be useful in the earlier stages of epilepsy. Research showed that 
network alterations could clarify behavioral and cognitive deficits in epilepsy patients [87], [88]. 
Network analysis might identify patients at risk and help understand why these deficits arise. 
 
5.3 Conclusion 
We observed a moderate relation between structural networks and effective networks in overall 
overlap and topography. Both structural and effective networks hold future possibilities towards a 
network based surgical strategy. We recommend a multi-modality approach to study the complex 
network alterations in focal epilepsy patients. 
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Appendix A 
 

The analogy between structural networks obtained from diffusion 
weighted imaging and effective networks derived from single pulse 
electrical stimulation in people with epilepsy 
S.B. Jelsma1,2, D. van Blooijs2,3, M.J.A.M. van Putten1, M. Raemaekers2, M. Zijlmans2,4, N.E.C van Klink2 
, on behalf of the RESPect database group 
1. MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, 
Enschede, the Netherland 
2. Brain Center, University Medical Center Utrecht, the Netherlands 
3. Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, the Netherlands 
4. Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands 
 
Purpose: Epilepsy is regarded as a network disorder. Effective networks describe the connections 
between brain regions by perturbation of one region e.g., by single pulse electrical stimulation (SPES). 
Structural networks describe the connections between brain regions via white matter tracts derived 
from diffusion weighted imaging (DWI). We studied the similarity between these structural and 
effective networks. Comparison of the presence and strength of patient-specific connections between 
modalities can expand our knowledge of epileptogenic networks. 
 
Method: We included patients who underwent DWI and long-term intracranial EEG monitoring with 
subdural electrocorticography (ECoG) or stereoEEG (sEEG). An automatic detector was optimized to 
detect early responses from SPES (0.2Hz, 10 stimuli) for both ECoG and sEEG. Effective networks were 
constructed with electrode contacts representing the nodes. Edges were drawn from the stimulus pair 
to the electrodes with early responses. DWI was acquired with 62 diffusion directions (b=1600s/mm2). 
Anatomical constrained probabilistic fiber tractography using constrained spherical deconvolution was 
performed with electrode contacts as regions of interest. Structural networks were constructed by the 
streamline density as edge between regions of interest. We will compare both networks with the 
Jaccard index and graph measures (degree, betweenness centrality, clustering coefficient) in- and 
outside epileptogenic tissue.  
 
Results: We included 15 patients (six ECoG, eight sEEG, one sEEG+ECoG). The SPES-detector had a 
sensitivity of 82% and 78% and specificity of 82% and 91% for sEEG and ECoG data respectively. The 
networks had 56-154 nodes per patient (median: 84). The epileptogenic zone was covered by 3-37 
electrodes (median: 10).  
 
Conclusion: We designed a method to reveal complementary network characteristics of structural and 
effective patient-specific brain networks for sEEG and ECoG. 
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